Module 2-Electric Actuators electrical engineering robotics

GrimReaper43 46 views 102 slides Jul 07, 2024
Slide 1
Slide 1 of 102
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102

About This Presentation

electrical engineering 6th sem electric actuators pdf forrobotics and automation. It covers a range of topics from
1 Actuators and Grippers : Electric Actuators
2 Hydraulic Actuators
3 Pneumatic Actuators
4 Selection of Motors
5 Grippers


Slide Content

MODULE 2 ( PPT-2/4)
ROBOTICS AND
AUTOMATION
21ECE1673

SYLLABUS
MODULE-2
1 Actuators and Grippers : Electric Actuators T1 : 3.1
2 Hydraulic Actuators T1 : 3.2
3 Pneumatic Actuators T1 : 3.3
4 Selection of Motors T1 : 3.4
5 Grippers T1 : 3.5

ELECTRIC ACTUATORS

ELECTRIC ACTUATORS
Electric actuators
are generally those where an
electric motor drives robot links
through some mechanical transmission, e.g., gears, etc.

ELECTRIC ACTUATORS
In the early years of industrial robotics,
hydraulic robots were the most common,
but recent improvements in electric motor design
have meant that most new robots are of all-electric construction.
.

INDUSTRIAL ROBOT
ABBpioneeredtheworld’s
first commercial all-
electric microprocessor-
controlledrobotin1974.
Since then, it has
introduced anumber of
robotics innovations from
high-speed“delta”robots,
forpickingandpackaging,
totheworld’sfirsttruly
collaborative industrial
robot,YuMi,in2015.

ELECTRIC ACTUATOR
COMPONENTS

ELECTRIC ACTUATOR -ADVANTAGES
1.Widespread availabilityof power supply.
2.Basic drive element electric motor is usually lighterthan pressurized
fluid or compressed air.
3.High power-conversionefficiency.
4.No pollution of working environment.
5.Accuracy and repeatability of electric drive robots are normally better
than fluid power
6.Being relatively quietand clean, they are very acceptable
environmentally.
7.They are easilymaintainedand repaired.
8.Structural components can be lightweight.
9.The drive system is well suited to electronic control.

ELECTRIC ACTUATOR -
DISADVANTAGES
1.Electricallydrivenrobotsoftenrequiretheincorporationofsomesortofmechanical
transmissionsystem.
2.Additionalpowerisrequiredtomovetheadditionalmassesofthetransmissionsystem.
3.Unwantedmovementsduetobacklashandplaysinthetransmissionelements.
4.Duetotheincreasedcomplexitywiththetransmissionsystem,weneedcomplexcontrol
requirementandadditionalcostfortheirprocurementandmaintenance.
5.Electricmotorsarenotintrinsicallysafe,mainly,inexplosiveenvironments

WHAT’S BEING DONE ???
1.Theabovedisadvantagesaregraduallybeingovercomewiththeintroductionofdirect-drive
motorsystem,inwhichtheelectricmotorisapartoftherelevantrobotarmjoint,thus,
eliminatingthetransmissionelements.
2.Moreover,theintroductionofnewerbrushlessmotorsallowelectricrobotstobeusedin
somefire-riskapplicationssuchasspraypainting,asthepossibilityofsparkingatthe
motorbrushesiseliminated.
3.Differenttypesofelectricmotorsaresteppermotors,andthedcandacmotors

STEPPER MOTORS
DC MOTORS
AC MOTORS
DIFFERENT TYPES OF ELECTRIC
MOTORS

STEPPER MOTOR

STEPPER MOTORS
Stepper motor (Bipolar, 200 Steps/Rev, 20 X30 mm, 3.9 V, 0.6 A/Phase)
[Courtesy: http://www.polulu.com]

STEPPER MOTOR
Asteppermotorisanelectricmotorwhosemainfeatureisthatitsshaftrotatesby
performingsteps,thatis,bymovingbyafixedamountofdegrees.
Thisfeatureisobtainedthankstotheinternalstructureofthemotor,andallowsto
knowtheexactangularpositionoftheshaftbysimplycountinghowmaysteps
havebeenperformed,withnoneedforasensor.

APPLICATIONS
3D Printers: XY Table Drive, Media
Drive
Video Cameras: Pan, Tilt, Zoom,
Focus
Robots: Arms, End Effectors

APPLICATIONS
Engraving Machines: XY Table Motion ATM Machines: Bill Movement, Tray Elevators

STEPPER MOTORS
Steppermotors(alsocalledsteppingmotorsorstepmotors)werefirstusedforremotecontrol
ofthedirectionindicatorsoftorpedotubesandgunsinBritishwarshipsandlater,forasimilar
purpose,intheUSNavy.
Avariablereluctance-typesteppermotorwasfirstpatentedin1919byC.L.Walker,aScottish
civilengineer.
However,itscommercialproductiondidnotstartuntil1950.

STEPPER MOTORS
Usedwithsmallandmediumrobotsandwithteachingandhobbyrobots.
Usedinindustrialapplications.(advantage:notrequiringanyfeedback
system)
Theyarecompatiblewithmanyfeedbackdevices.
Usedinfullservo-controlconfigurationsinmediumdutyindustrialrobots.

STEPPER MOTORS
Becausetheyaredigitallycontrolled,theycanbereferredtoasdigitalmotors
oractuators.
Thesemotorsdonotrequiretheexpenseofdigital-to-analogconversion
equipmentwhenconnectedtoacomputer-controlsystem

WORKING

WORKING
Normally,theshaftofasteppermotorsrotatesincrementallyinequal
stepsinresponsetoaprogrammedinputpulsetrain.
Acurrentinanyofthetwophases,i.e.,withP1andP2,willmagnetize
thepairintonorthandsouthpoles,indictedwithNandS,respectively.
Accordingly,thepermanentmagnetatthecentrewillrotateinorderto
alignitselfalongaparticularphase,whichisdemonstrated.
Switchingthecurrentsinthetwophasesinanappropriatesequencecan
produceeitherclockwise(CW)orcounterclockwise(CCW)rotations.

WORKING
Theswitchingsequencecorrespondstowhatisknownashalf-steppingwithastep
angleof45
o
,whereasthefull-steppingcorrespondsto90
o
inwhichonephaseis
energizedatatime

WORKING
Micro-stepping (non-identical steps) up to 1/125 of full-step by changing the currents in small steps instead of
switching them on and off, as in the case of half-and full-stepping.
While micro-steppingis advantageous from the point of view of accurate motion control using a stepper motor, it
has the disadvantage of reduced motor torque.
The steps are achieved through phase activation or switching sequences triggered by the pulse sequences.
The switching logic that decides the states of the phases of a given step can be generated using a look-up table.
The same sequences can also be generated using a logic circuitry which is typically an electronic device.

WORKING
Astherotorindexesroundaspecificamountforeachcontrolpulse,any
errorinpositioningisnoncumulative.
Toknowthefinalpositionoftherotor,allthatisrequiredistocountthe
numberofpulsesfedintothestator’sphasewindingofthemotor.
Thenumberofpulsesperunittimedeterminesthemotorspeed.
Therotorcanbemadetoindexslowly,comingtorestaftereachincrement
oritcanmoverapidlyinacontinuousmotiontermedslewing.Maximum
dynamictorqueinasteppermotoroccursatlowpulserates.

WORKING
Therefore,itcaneasilyaccelerateaload.Oncetherequiredpositionisachievedandthe
commandpulsescease,theshaftstopswithouttheneedforclutchesorbrakes.
Theactualrotationalmovementsorstepanglesoftheshaftareobtainabletypicallyfrom1.8°to
90°dependingontheparticularmotorchoices.
Thus,withanominalstepangleof1.8°,astreamof1000pulseswillgiveanangular
displacementof1800°orfivecompleterevolutions.
Theyhavealsoalowvelocitycapabilitywithouttheneedforgearreduction.Forinstance,ifthe
previouslymentionedmotorisdrivenby500pulsespersecond,itwillrotateat150rpm.
Otheradvantagesofthesteppermotorarethatthemotorinertiaisoftenlow,andalsoifmore
thanonesteppermotorisdrivenfromthesamesourcethentheywillmaintainperfect
synchronizations.

STEPPER MOTOR ADVANTAGES
•Duetotheirinternalstructure,steppermotorsdonotrequireasensortodetectthemotor
position.
•Sincethemotormovesbyperforming“steps,”bysimplycountingthesesteps,youcan
obtainthemotorpositionatagiventime.
•Inaddition,steppermotorcontrolisprettysimple.
•Themotordoesneedadriver,butdoesnotneedcomplexcalculationsortuningtowork
properly.
•Steppermotorsoffergoodtorqueatlowspeeds,aregreatforholdingposition,andalsotend
tohavealonglifespan.

STEPPER MOTOR DISADVANTAGES
1.They can miss a step if the load torque is too high.
2.These motors always drain maximum current even when still, which makes efficiency worse and
can cause overheating.
3.Stepper motors have low torque and become pretty noisy at high speeds.
4.Finally, stepper motors have low power density and a low torque-to-inertia ratio.
5.Low efficiency
6.Drive inputs and circuitry have to be carefully designed in relation to the torque and speed
required.

TORQUE –SPEED
CHARACTERISTICS

TYPES OF STEPPER MOTORS

TYPES OF STEPPER MOTORS
Types based on motor’s rotor:
1.VariableReluctance
2.PermanentMagnet
3.Hybrid

VARIABLE-RELUCTANCE STEPPER MOTOR
Rotor rotates due to reluctance that is offers to magnetics flux lines. When
motor moves Reduction in reluctance in air,moreenergy in magnetic field.

WORKING
Magneticreluctance,orreluctance,istheanalogofelectricalresistance.Justascurrentoccursonlyina
closedloop,somagneticfluxoccursonlyaroundaclosedpath,althoughthispathmaybemorevaried
thanthatofthecurrent.
Therotorismadeofsoftsteelandithasfourpoles,whereasthestatorhassixpoles.Whenoneofthe
phases,sayAA’,isexcitedduetoadccurrentpassingthroughthecoilsaroundthepoles,therotor
positionsitselftocompletethefluxpath.
Notethatthereisamainfluxpaththroughthealignedrotorandstatorteeth,withsecondaryfluxpaths
occurringasindicated.
Whenrotorandstatorteetharealignedinthismanner,thereluctanceisminimizedandtherotorisatrest
inthisposition.Thisfluxpathcanbeconsideredratherlikeanelasticthreadandalwaystryingtoshorten
itself.

WORKING
Therotorwillmoveuntiltherotorandstatorpolesarelinedup.Thisistermedasthepositionof
minimumreluctance.
Torotatethemotorcounterclockwise,thephaseAA’isturnedoffandphaseBB’isexcited.
Thisformofasteppermotorgenerallygivesstepanglesof7.5°or15°,whicharereferredashalf-
steppingandfull-stepping,respectively.
Notethatadisadvantageofvariable-reluctancesteppermotorsisthatithaszeroholdingtorque
whenthestatorwindingsarenotenergized(poweroff)becausetherotorisnotmagnetized.
Hence,ithasnocapacitytoholdaloadinpower-offmodeunlessmechanicalbrakesare
employed.

PERMANENT-MAGNET STEPPER MOTOR

WORKING
Thebasicmethodofoperationofapermanent-magnettypeis
similartothevariable-reluctancetype.
TherearetwocoilsAandB,eachofthemhavingfourpoles
butdisplacedfromeachotherbyhalfapolepitch.
Therotorisofpermanent-magnetconstructionandhasfour
poles.Eachpoleiswoundwithfieldwinding,thecoilson
oppositepairsofpolesbeinginseries.Currentissupplied
fromadcsourcetothewindingthroughswitches.

WORKING
Itcanbeseenthatthemotorisatrestwiththepoles
ofthepermanentmagnetrotorheldbetweentheresidual
polesofthestator.Inthisposition,therotoris
lockedunlessaturningforceisapplied.
Ifthecoilsareenergizedand,inthefirstpulse,the
magneticpolarityofthepolesofthecoilAisreversed,
therotorwillexperience atorqueandwillrotate
counterclockwise.ThereversepolesareshownasA’.

WORKING
IfthecoilBpolesarenowreversedtoB’therotorwillagain
experienceatorque,andoncemorethepolesoftherotorare
positionedmidwaybetweenthestatorpoles.Thus,byswitchingthe
currentsthroughthecoils,therotorrotatesby45°.
Ifinthefirstpulse,thepolesofthecoilBhadbeenreversedthenthe
motorwouldhaverotatedclockwise.Withthistypeofmotor,
commonlyproducedstepanglesare1.8°,7.5°,15°,30°,34°,90°.

HYBRID STEPPER MOTOR

WORKING
Hybridsteppermotorsarethemostcommonvarietyofsteppermotorsin
engineeringapplications.
Theycombinethefeaturesofboththevariablereluctanceandpermanent-
magnetmotors,havingapermanentmagnetencagedinironcapswhicharecut
tohaveteeth.
Ahybridsteppermotorhastwostacksofrotorteethonitsshaft
(WRStepper,2013).Thetworotorstacksaremagnetizedtohaveopposite
polarities,whiletwostatorsegmentssurroundthetworotorstacks.
Therotorsetsitselfintheminimumreluctancepositioninresponsetoa
pairofstatorcoilsbeingenergized.Typicalstepanglesare0.9°and1.8°.

STEPPER MOTORS SUMMARY
Fromthedescriptionsofsteppermotors,itis,therefore,apparentthattherateatwhich
thepulsesareapplieddeterminesthemotorspeed,thetotalnumberofpulsesdetermines
theangulardisplacement,andtheorderofenergizingthecoilsinthefirstinstance
determinesthedirectionofrotation.
Itisbecauseofthiseaseofdrivingusingdirectdigitalcontrolthatsteppermotorsarewell
suitedforuseinacomputercontrolledrobot,althoughthemotordoesrequireinterfacing
withahigh-currentpulsesource.

EXAMPLE

EXAMPLE

EXAMPLE

DC MOTOR

DC MOTORS
Traditionally, roboticists haveemployedelectrically drivendc(direct-
current)motorsforrobotsbecause,notonlyarepowerfulversionsavailable,
buttheyarealsoeasilycontrollablewithrelativelysimpleelectronics.
Althoughdirectcurrentisneeded,batteriesarerarelyused(fornonmobile
robots)butinsteadtheacsupplyisrectifiedintoasuitabledcequivalent.

DC MOTORS
Theoperationofanyelectricmotorisbasedupontheprinciplewhichstatesthataconductorwill
experienceaforceifanelectriccurrentinthatconductorflowsatrightanglestoamagneticfield.
Therefore,toconstructamotor,twobasiccomponentsarerequired.
Onetoproducethemagneticfieldusuallytermedthestator,
andanothertoactastheconductorusuallytermedthearmatureortherotor.

DC MOTORS
Theprincipleisforoneelementofadcmotor,whereasatwo-
poledcmotorisshown
Themagneticfieldmaybecreatedeitherbyfieldcoilswoundon
thestatororbypermanentmagnets.
Thefieldcoils,ifused,wouldbeprovidedwithanelectric
currenttocreatemagneticpolesonthestator.
Thecurrentissuppliedtoaconductorviathebrushesand
commutators.

DC MOTORS

Thecurrentpassingthroughthefieldproducesatorque,or
moreaccuratelystatictorqueontheconductors.

TYPES OF WINDINGS OF DC
MOTOR

SHUNTWOUND
Inashunt-woundmotor,thearmaturewindingsandfieldwindingsare
connectedinparallel.Atsteadystate,thebackelectromotiveforce(e.m.f.)
dependsdirectlyonthesupplyvoltage.Sincethebacke.m.f.isproportionalto
thespeed,itfollowsthatthespeedcontrollabilityisgoodwiththeshunt-wound
configuration.

SERIES WOUND
Inseries-woundmotorstheyareconnectedinseries.Therelationbetweenthebacke.m.f.andsupply
voltageiscoupledthroughboththearmaturewindingsandthefieldwindings.Hence,itsspeed
controllabilityisrelativelypoor.Butinthiscase,arelativelylargecurrentflowsthroughbothwindings
atlowspeedsofthemotor,givinghigherstartingtorque.Also,theoperationisapproximatelyat
constantpower.

COMPOUND WOUND
Inthecompoundwoundmotor,apartofthefieldwindingsrelatestothearmaturewindingsinseriesand
theotherpartisconnectedinparallel,thiskindofmotorsprovidesacompromiseperformancebetweenthe
extremesofspeedcontrollabilityandhigherstartingtorquecharacteristics,asprovidedbytheshuntwound
andseries-woundmotors,respectively.

DC MOTORS
Foranindustrialrobot,ingeneral,itissaidthatthecurrentexcitedfieldcontrolmethods
involvetooslowaresponsetimeandincurlossesthatmakepermanent-magnetfieldsand
armaturecontrolmoreattractive,whichareexplainednext.

TYPES OF DC MOTOR

TYPES OF DC MOTORS
Permanent magnet dc Motors
Brushless Permanent-Magnet dc Motors
DC Servo motors

PERMANENT-MAGNET (PM) DC MOTORS
The permanent-magnet dc motor, which is also referred as torque motor, can provide high torque.
Here, no field coils are used and the field is produced by the permanent magnets themselves.
These magnets should have high-flux density per unit yielding a high torque/mass ratio.
Typical materials with desired characteristic of such dc motors are rare-earth materials such as samarium
cobalt, etc.

PERMANENT-MAGNET (PM) DC MOTORS
Some PM motors do have coils wound on the magnet poles but these are simply to recharge the magnets if
their strength fails.
Due to the field flux being a constant, the torque of these motors is directly proportional to the armature
current.
Some other advantages are: excitation power supplies for the field coils are not required, reliability is improved
as there are no field coils to fail, and no power loss from field coils means efficiency and cooling are improved.
However, these types of motors are more expensive. They are cylindrical and disk types.

TWO TYPES OF PM CONFIGURATIONS

PMDC MOTOR

BRUSHLESS PERMANENT-MAGNET
DC MOTORS
Theproblemwithdcmotorsisthattheyrequireacommutatorandbrushesinorderto
periodicallyreversethecurrentthrougheacharmaturecoil.
Thebrushesmakeslidingcontactswiththecommutatorsandasaconsequencesparksjump
betweenthetwoandtheysufferwear.
Brusheshavetobeperiodicallychangedandthecommutatorresurfaced.
Toavoidsuchproblems,brushlessmotorshavebeendesigned.

BRUSHLESS PERMANENT-MAGNET
DC MOTORS
Essentially,theyconsistofasequenceofstatorcoiledandapermanentmagnetrotor.
Acurrent-carryingconductorinamagneticfieldexperiencesaforce;likewise,asaconsequenceof
Newton’sthirdlawofmotion,themagnetwillalsoexperienceanoppositeandequalforce.
Withtheconventionaldcmotor,themagnetisfixedandthecurrent-carryingconductorsmadeto
move.
Withthebrushlesspermanent-magnetdcmotorthereverseisthecase,thecurrent-carrying
conductorsarefixedandthemagneticfieldmoves.

BRUSHLESS PERMANENT-MAGNET
DC MOTORS
Therotorisaferriteorceramicpermanentmagnet.
Inconcept,brushlessdcmotorsaresomewhatsimilartopermanent-magnetsteppermotors
explained
Thecurrenttothestatorcoilsiselectronicallyswitchedbytransistorsinsequenceroundthecoils,
theswitchingbeingcontrolledbythepositionoftherotorsothattherearealwaysforcesactingonthe
magnetcausingittorotateinthesamedirection.

BRUSHLESS PERMANENT-MAGNET
DC MOTORS

BLDC MOTOR

ADVANTAGES
Thebrushlessmotorshavemanyadvantagesoverconventionaldcmotors.Forexample,
1.Theyhavebetterheatdissipation;heatbeingmoreeasilylostfromthestatorthantherotor.
2.Thereisreducedrotorinertia.Hence,theyweighlessandlowmassforaspecifiedtorquerating.
3.Themotorsinthemselvesarelessexpensive.
4.Theyaremoredurableandhavelongerlife.
5.Lowmaintenance.
6.Lowermechanicalloading.
7.Improvedsafety.
8.Quieteroperation.
9.Theyareofsmallerdimensionsofcomparablepower.
Theabsenceofbrushesreducesmaintenancecostsduetobrushandcommutatorwear,andalsoallowselectric
robotstobeusedinhazardousareaswithflammableatmospheressuchasarefoundinspray-paintingapplications.

DC SERVO MOTORS AND
THEIR DRIVERS
Servomotorsaremotorswithmotionfeedbackcontrol,whichareabletofollowaspecified
motiontrajectory.
Inadcservomotor,bothangularpositionandspeedmightbemeasuredusing,say,shaft
encoders,tachometers, resolvers,potentiometers, etc.,andcomparedwiththedesired
positionandspeed.
Theerrorsignalwhichisthedifferencebetweenthedesiredminusactualresponsesis
conditionedandcompensatedusinganalogcircuitryorisprocessedbyadigitalhardware
processororacomputer,andsuppliedtodrivetheservomotortowardthedesiredresponse.

DC SERVO MOTORS AND THEIR DRIVERS
Motioncontrolimpliesindirecttorquecontrolofthemotorthat
causesthemotion.Insomeapplicationslikegrinding,etc.,where
torqueitselfisaprimaryoutput,directcontrolofmotortorque
wouldbedesirable.
Thiscanbeaccomplishedusingfeedbackofthearmaturecurrentor
thefieldcurrentbecausethosecurrentsdeterminethemotortorque
isdesirable.
Thiscanbeaccomplishedusingfeedbackofthearmaturecurrentor
thefieldcurrentbecausethosecurrentsdeterminethemotortorque

A TYPICAL LAYOUT OF A DC
SERVOMOTOR

WORKING
Note that the control of a dc motor is achieved by controlling either the stator field flux or the armature flux.
If the armature and fi eld windings are connected through the same circuit, i.e., one of the winding types,
both techniques are implemented simultaneously.
Two methods of control are armature control and field control.
In armature control, the fi eld current in the stator circuit is kept constant and the input voltage to the rotor is
varied in order to achieve a desired performance.
Inthefieldcontrol,ontheotherhand,thearmaturevoltageiskeptconstantandinputvoltagetothefield
circuitisvaried.
Thesewindingcurrentsaregeneratedusingamotordriver.

Itisahardwareunitthatgeneratesnecessarycurrenttoenergizethewindingsofthemotor.
Bycontrollingthecurrentgeneratedbythedriver,themotortorquecanbecontrolled.
Byreceivingfeedbackfromamotionsensor(encodertachometer,etc.),theangularpositionand
thespeedofthemotorcanbecontrolled.
Thedriveunitofadcservomotorprimarilyconsistsofadriveramplifier(commerciallyavailable
amplifiersarelinearamplifierorpulse-widthmodulation,i.e.,PWM,amplifier),withadditional
circuitryandadcpowersupply.
Thedriveriscommandedbyacontrolinputprovidedbyahostcomputerthroughaninterface
(input/output)card.
WORKING

CONTROLLER OF A DC
SERVOMOTOR

Also,thedriverparameterslikeamplifiergainsaresoftwareprogrammableandcanbesetbythehost
computer.
Thecontrolcomputerreceivesafeedbacksignalofthemotormotion,throughtheinterfaceboard,and
generatesacontrolsignal,usingasuitablecontrollaw
Thesignalisthenprovidedtothedriveamplifier,againthroughtheinterfaceboard.
AninterfaceboardorDataAcquisition(DAQ)cardisahardwaremodulewithDigital-to-Analog(DAC)
andAnalog-to-Digital(ADC)capabilitiesbuilt-in.Thesearegenerallypartsofarobot’scontrolsystem.
WORKING

Thefinalcontrolofadcmotorisaccomplishedbycontrollingthesupplyvoltagetoeitherthearmature
circuitorthefieldcircuit.
Adissipativemethodofachievingthisinvolvesusingavariableresistorinserieswiththesupply
sourcetothecircuit.
Thismethodhasdisadvantagesofhighheatgeneration,etc.Instead,thevoltagetoadcmotoris
controlledbyusingasolid-stateswitchknownasathyristortovarytheofftimeoffixedvoltagelevel,
whilekeepingtheperiodofpulsesignalconstant.
WORKING

PWM
Specifically, the duty cycle of a pulse signal is varied,. This is called pulse-width modulation or
PWM.

DC SERVOMOTOR AND ITS DRIVER
CONTROLLER

STABLE AND UNSTABLE OPERATING
POINTS OF A DC MOTOR

AC MOTORS

AC MOTORS
Untilrecently,ac(alternatingcurrent)motorshavenotbeenconsideredsuitableforrobots
becauseoftheproblemsinvolvedincontrollingtheirspeeds.
Initssimplestform,anacmotorconsistsofexternalelectromagnetsaroundacentralrotor,
butwithoutanyformofmechanicalswitchingmechanismfortheelectromagnets.

AC MOTORS
However,becausealternatingcurrent(suchasthemainselectricitysupply)isconstantlychanging
polarity(firstflowingoneway,thentheoppositeway,severaltimesasecond,e.g.,50inIndia,and
60intheUSA),itispossibletoconnecttheacsupplydirectlytotheelectromagnets.
Thealternatingreversalofthedirectionofcurrentthroughthecoilswillperformthesametaskof
polaritychanginginacmotors.
Themagneticfieldofthecoilswillappeartorotate(almostasifthecoilsthemselveswerebeing
mechanicallyrotated).

TYPICAL ADVANTAGES OF AN
AC MOTOR OVER ITS DC
COUNTERPART
Cheaper.
Convenient power supply.
No commutator and brush mechanism. Hence, virtually no electric spark
generation or arcing (safe in hazardous environment like spray painting and others)
Low power dissipation, and low rotor inertia.
High reliability, robustness, easy maintenance, and long life.
Some of the disadvantages are the following:
Low starting torque.
Need auxiliary devices to start the motor.
Difficulty of variable-speed control or servo control unless modern solid-state and variable-frequency drives
with field feedback compensation are used.

Duetothecomplexityinspeedcontrolofanacmotor,aspeed-controlleddcdrivegenerally
worksoutcheaperthanaspeed-controlledacdrive,thoughthepricedifferenceissteadily
droppingasaresultoftechnologicaldevelopmentsandthereductioninpriceofsolid-state
device

Alternating current (ac) motors can be classified into two groups, single phase and poly-
phase, with each group being further subdivided into induction or asynchronous and
synchronous motors.
Single-phase motors tend to be used for low power requirements while poly-phase motors are
used for higher powers.
Induction motors tend to be cheaper than synchronous motors and are thus very widely used.
TYPES OF AC MOTOR

TYPES OF AC MOTORS
Single-phase Squirrel-cage Induction Motor
Three-phase Induction Motor
Synchronous Motor
ACServomotor

SINGLE-PHASE INDUCTION MOTOR

SINGLE-PHASE SQUIRREL-CAGE INDUCTION MOTOR
Itconsistsofasquirrel-cagerotor,thisbeingcopperoraluminumbarsthatfitintoslotsinendringsto
formcompleteelectricalcircuits,asshowninFig.3.20.Therearenoexternalelectricalconnectionstothe
rotor.
Thebasicmotorconsistsofthisrotorwithastatorhavingasetofwindings.
Whenanalternatingcurrentpassesthroughthestatorwindings,analternativemagneticfieldis
produced,whichappearslikearotatingmagneticfield.
Therotatingfieldinthestatorinterceptstherotatingwindings,therebygeneratinganinducedcurrent
duetomutualinductionortransformeraction(hence,thenameinductionmotor).
Theresultingsecondarymagneticfluxinteractswiththeprimary,rotatingmagneticflux,thereby
producingatorqueinthedirectionofrotationofthestatorfield.
Thistorquedrivestherotor.
Astherotorspeedincreases,initiallythemotortorquealsoincreasesbecauseofsecondaryinteractions
betweenthestatorcircuitandtherotorcircuiteventhoughtherelativespeedoftherotatingfieldwith
respecttotherotordecreases,whichreducestherateofchangeoffluxlinkageand,hence,thedirect
transformeraction.

SINGLE-PHASE INDUCTION MOTOR

Forasingle-phasesupply,whentherotorisstationaryinitially,theforcesonthecurrent-carrying
conductorsortherotorinthemagneticfieldofthestatoraresuchastoresultinnonettorque.
Hence,themotorisnotself-starting.
Anumberofmethodsareusedtomakethemotorselfstartingandgivethisinitialimpetustostartit.
Forexample,toprovidethestartingtorque,mostsingle-phasemotorsaveamainandauxiliarywinding.
Theauxiliarywindingcurrentfromthemainwindingisphase-shifted.
Connectingacapacitorinserieswiththeauxiliarywindingcausesthemotortostartrotating.
SINGLE-PHASE INDUCTION MOTOR

SINGLE-PHASE INDUCTION MOTOR
Therotorrotatesataspeeddeterminedbythefrequencyofthealternatingcurrentappliedtothestator.
Foraconstantfrequencysupplytoatwo-polesingle-phasemotor,themagneticfieldwillalternateatthis
frequency.
Thisspeedofrotationofthemagneticfieldistermedsynchronousspeed.
Therotorwillneverquitematchthisfrequencyofrotation,typicallydifferingfromitbyabout1to3%.
Fora50Hzsupply,thespeedofrotationoftherotor,i.e.,wm,willbealmost50revolutionspersecond.

THREE-PHASE INDUCTION MOTOR

THREE-PHASE INDUCTION MOTOR
AsshowninFig.3.21(a),itissimilartothesingle-phaseinductionmotorbuthasastatorwiththree
windingslocated120°apart,eachwindingbeingconnectedtooneofthethreelinesofthesupply.
Becausethethreephasesreachtheirmaximumcurrentsatdifferenttimes,themagneticfieldcan
beconsideredtorotateroundthestatorpoles,completingonerotationinonefullcycleofthe
current.
Therotationofthefieldismuchsmootherthanwiththesinglephasemotor.
Thethree-phasemotorhasagreatadvantageoverthesingle-phasemotorinbeingself-starting.
Thedirectionofrotationisreversedbyinterchanginganytwoofthelineconnections,thuschanging
thedirectionofrotationofthemagneticfield.

SYNCHRONOUS MOTOR

SYNCHRONOUS MOTOR
Asynchronousmotorhasastatorsimilartothosedescribedaboveforinductionmotors,buta
rotorisapermanentmagnetasshowninFig.3.21(b).
Themagneticfieldproducedbythestatorrotatesandsothemagnetrotateswithit.
Withonepairofpolesperphaseofthesupply,themagneticfieldrotatesthrough360°inone
cycleofthesupplyandsothefrequencyofrotationwiththisarrangementisthesameasthe
frequencyofthesupply.
Synchronousmotorsareusedwhenaprecisespeedisrequired.Theyarenotself-starting
andsomesystemhastobeemployedtostartthem.

AC SERVOMOTOR

AC SERVOMOTOR
Generally,amodernservomotorreferstoanacpermanentmagnetsynchronousservomotor.
Itconsistsofastatorwindingplusrotorwithfeedbackunitslikeencoders,resolvers,etc.
Thesemotorshavetypicaladvantagesofacmotors.
Speedcontrolofacmotorsisbasedontheprovisionofavariablefrequencysupply,sincethe
speedofsuchmotorsisdeterminedbythefrequencyofthesupply.

AC SERVOMOTOR
Inprinciple,thehigherthefrequencyofthealternatingcurrentappliedtothemotor,thefaster
itwillrotate.
Providingvaryingfrequencysuppliestoanumberofaxisdrivessimultaneouslyhasbeen,until
recently,largelyimpractical.
Insomespecialcases,e.g.,wound-rotoracinductionmotors,speedcanbecontrolledby
accessingtherotorcircuitwheredifferentvaluesofresistancecanbeinsertedintherotor
circuit.
Electromagneticisusedtoprovideregenerativebrakingtocutdownthedecelerationtimes,
andminimizeaxisoverrun.
Manyindustrialrobots,e.g.,KUKAKR-5,useacservomotorstoday.

Alternating current (ac) motors can be classified into two groups, single phase and poly-
phase, with each group being further subdivided into induction or asynchronous and
synchronous motors.
Single-phase motors tend to be used for low power requirements while poly-phase motors are
used for higher powers.
Induction motors tend to be cheaper than synchronous motors and are thus very widely used.
LINE ACTUATORS

LINEAR ACTUATORS

LINEAR ACTUATORS
Linearactuatorslikesolenoidsareusedwidelyinroboticandotherautomationapplicationsforon-
offofthegripperandotherdevices.
Electricallypoweredstepperanddc/aclinearactuatorscanalsobeusedinmotiongenerationof
Cartesianrobots,etc.
Asolenoidshownhasacoilandasoft-ironcore.
Whenthecoilisactivatedbyadcsignal,thesoftcorebecomesmagnetized.
Thiselectromagnetcanserveason-off(push-pull)actuator.Solenoidsareruggedandinexpensive
devices.
Commonapplicationsofsolenoidsarevalveactuatorsmechanicalswitches,relays,etc.

LINEAR ACTUATORS
Mostcommonlygeneratedlinearmotionsarewiththehelpofanelectricallypoweredrotarymotor,ascoupled
withtransmissionmechanismslikenutandball-screw,cam-follower,rack-and-pinion,etc.
Thesedevicesinherentlyhaveproblemsoffrictionandbacklash.
Additionally,theyaddinertiaandflexibilitytothedrivenload,therebygeneratingundesirableresonancesand
motionerrors.Properinertiamatchingisalsoessential.
Inordertoavoidtheabovedifficultiesofusingatransmissionsystem,directrectilinearelectromechanical
actuatorsaredesirable.
Theycanbebasedonanyoftheprinciplesmentionedfortherotaryactuators,i.e.,stepperordcoracmotors.In
theseactuators,flatstatorsandrectilinearlymovingelements(inplaceofrotors)areemployed.
Thesetypesofactuatorsarealsoreferredtoaselectriccylindersinlinewithhydraulicorpneumaticcylindersthat
areexplainednext