MACHINE LEARNING (INTEGRATED)
(21ISE62)
Module 4
Dr. Shivashankar
Professor
Department of Information Science & Engineering
GLOBAL ACADEMY OF TECHNOLOGY-Bengaluru
8/13/2024 1Dr. Shivashankar, ISE, GAT
GLOBAL ACADEMY OF TECHNOLOGY
Ideal Homes Township, RajarajeshwariNagar, Bengaluru –560 098
Department of Information Science & Engineering
Module 4: Evaluating Hypothesis
•Ahypothesisisamathematicalfunctionormodelthatconvertsinputdataintooutput
predictions.
•Thehypothesisistypicallyexpressedasacollectionofparameterscharacterizingthe
behaviorofthemodel.
•Machinelearninginvolvesconductingexperimentsbasedonpastexperiences,and
thesehypothesesarecrucialinformulatingpotentialsolutions.
•Ahypothesisinmachinelearningisthemodel’spresumptionregardingtheconnection
betweentheinputfeaturesandtheresult.
The following are the necessary steps to evaluate hypothesis
Evaluatingtheaccuracyofhypothesesisfundamentaltomachinelearning.-reasons:
Observedaccuracyofahypothesisoveralimitedsampleofdata,howwelldoesthis
estimateitsaccuracyoveradditionalexamples?
Onehypothesisoutperformsanotheroversomesampleofdata,howprobableisit
thatthishypothesisismoreaccurateingeneral?
whendataislimitedwhatisthebestwaytousethisdatatobothlearnahypothesis
andestimateitsaccuracy?Becauselimitedsamplesofdatamightmisrepresentthe
generaldistributionofdata,estimatingtrueaccuracyfromsuchsamplescanbe
misleading.
8/13/2024 3Dr. Shivashankar, ISE, GAT