Module1-translational, mechl, FI, FV.pdf

SonuBR 101 views 55 slides Jul 14, 2024
Slide 1
Slide 1 of 55
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55

About This Presentation

Syshsvhssggsgsvshdbhdbshdvshsjsjeuehshusshdh


Slide Content

Basic Elements of Electrical Systems
•The time domain expression relating voltage and current for the resistor is given by Ohm’s lawRtitv
RR)()(=
•The Laplace transform of the above equation isRsIsV
RR )()(=
1.Resistor
1

2.Capacitor
•The time domain expression relating voltage and current for the Capacitor is given as:dtti
C
tv
cc = )()(
1
•The Laplace transform of the above equation (assuming there is no charge stored in the capacitor) is)()(sI
Cs
sV
cc
1
=
2

3.Inductor
•The time domain expression relating voltage and current for the inductor is given as:dt
tdi
Ltv
L
L
)(
)(=
•The Laplace transform of the above equation (assuming there is no energy stored in
inductor) is)()(sLsIsV
LL=
3

4

ControlSystems
➢Fortheanalysisanddesignofcontrolsystems,weneedtoformulateamathematicaldescriptionofthesystem.
➢Theprocessofobtainingthedesiredmathematicaldescriptionofthesystemisknownas“modeling”.Thebasic
modelsofdynamicphysicalsystemsaredifferentialequationsobtainedbyapplicationoftheappropriatelawsofnature.
➢Theseequationsmaybelinearornonlineardependingonthephenomenabeingmodeled.
➢Thecontrolsystemscanberepresentedwithasetofmathematicalequationsknownasmathematicalmodel.
➢Thesemodelsareusefulforanalysisanddesignofcontrolsystems.Analysisofcontrolsystemmeansfindingtheoutputwhen
weknowtheinputandmathematicalmodel.
➢Designofcontrolsystemmeansfindingthemathematicalmodelwhenweknowtheinputandtheoutput.
Thefollowingmathematicalmodelsaremostlyused.
•Differential equationmodel
•Transfer functionmodel(valid only for linear time-invariant systems)
•State spacemodel
➢Althoughtheanalysisanddesignoflinearcontrolsystemshavebeenwelldeveloped,theircounterpartsfornonlinearsystemsare
usuallyquitecomplex.
➢Therefore,thecontrolsystemsengineeroftenhasthetaskofdeterminingnotonlyhowtoaccuratelydescribeasystem
mathematically,butalso,moreimportant,howtomakeproperassumptionsandapproximations,whenever
necessary,sothatthesystemmaybeadequatelycharacterizedbyalinearmathematicalmodel.
5

Example
Considerthefollowingelectricalsystemasshowninthefollowingfigure.Thiscircuitconsistsofresistor,inductorand
capacitor.Alltheseelectricalelementsareconnectedinseries.Theinputvoltageappliedtothiscircuitis????????????andthe
voltageacrossthecapacitoristheoutputvoltage????????????.
6
1. Differential EquationModel
Differentialequationmodelisatimedomainmathematicalmodelofcontrolsystems.
Followthesestepsfordifferentialequationmodel.
▪Applybasiclawstothegivencontrolsystem.
▪Getthedifferentialequationintermsofinputandoutputbyeliminatingthe
intermediatevariable(s).

2.TransferFunctionModel
Transferfunctionmodelisans-domainmathematicalmodelofcontrolsystems.TheTransferfunctionofaLinearTime
Invariant(LTI)systemisdefinedastheratioofLaplacetransformofoutputandLaplacetransformofinputbyassumingallthe
initialconditionsarezero.
If�(�)and�(�)aretheinputandoutputofanLTIsystem,thenthecorrespondingLaplacetransformsare�(�)and�(�).
Therefore,thetransferfunctionofLTIsystemisequaltotheratioof�(�)and�(�).
i.e., Transfer function =
Y(s)
The transfer function model of an LTI system is shown in the followingfigure.
7
X(S)

8

9

V
i(S)
V
o(S)
Here, we show a first order electrical system with a block having the transfer
function inside it. And this block has an input ????????????
(�) & an output ????????????
(�). 10

ControlSystems
Mesh equation for this circuitis
13
Example
Considerthefollowingelectricalsystemasshowninthefollowingfigure.Thiscircuitconsistsofresistor,inductorandcapacitor.Allthese
electricalelementsareconnectedinseries.Theinputvoltageappliedtothiscircuitis????????????andthevoltageacrossthecapacitoristheoutputvoltage
????????????.
i(t)
1
2

The above equation is a second order differentialequation.
12

Where,
•????????????(�) is the Laplace transform of the input voltage????????????
•????????????(�) is the Laplace transform of the output voltage????????????
Theaboveequationisatransferfunctionofthesecondorderelectricalsystem.Thetransfer function model of this system is shownbelow.
Here, we show a second order electrical system with a block having the transfer function inside it. And this block has an input
????????????(�) & an output ????????????(�).
14

Analogous Systems:
14
➢Mostfeedbackcontrolsystemscontainmechanicalaswellaselectrical
components.
➢Fromamathematicalviewpoint,thedescriptionsofelectricalandmechanical
elementsareanalogous.Infact,wecanshowthatgivenanelectricaldevice,thereis
usuallyananalogousmechanicalcounterpart,andviceversa.
➢Theanalogy,ofcourse,isamathematicalone;thatis,twosystemsareanalogousto
eachotheriftheyaredescribedmathematicallybysimilarequations.
➢Themotionofmechanicalelementscanbedescribedinvariousdimensionsas
translational,rotational,oracombinationofboth.
➢Theequationsgoverningthemotionsofmechanicalsystemsareoftendirectlyor
indirectlyformulatedfromNewton’slawofmotion.

Themotionofmechanicalelementscanbedescribedinvariousdimensionsastranslational,
rotational,oracombinationofboth.Theequationsgoverningthemotionsofmechanicalsystemsare
oftendirectlyorindirectlyformulatedfromNewton’slawofmotion.
Letusdiscussthedifferentialequationmodelingofmechanicalsystems.
Therearetwotypesofmechanicalsystemsbasedonthetypeofmotion.
I.Translationalmechanicalsystems
II.Rotationalmechanicalsystems
15
MECHANICAL SYSTEMS

16
I. ModelingofTranslational MechanicalSystems
➢Translationalmotiontakesplacealongastraightlineandthevariablesinvolvedindescribingastraight-line
motionaredisplacement,velocityandacceleration.
➢Newton’slawofmotiongovernsthelinearmotion.Accordingtothislaw,theproductofmassandacceleration
isequaltothealgebraicsumofforcesactingonit.
➢Newton’slawofmotionstatesthatthealgebraicsumofforcesactingonarigidbodyinagivendirectionisequal
totheproductofthemassofthebodyanditsaccelerationinthesamedirection.
➢ThelawcanbeexpressedasΣforces=Ma
whereMdenotesthemassandaistheaccelerationinthedirectionconsidered.

Translationalmechanicalsystemsmovealongastraightline.Thesesystemsmainlyconsistofthreebasic
elements:
Thoseare(1)mass(M),
(2)spring(K)and
(3)dashpotordamper(B).
➢Ifaforceisappliedtoatranslationalmechanicalsystem,thenitisopposedbyopposingforcesduetomass,
elasticityandfrictionofthesystem.
➢Sincetheappliedforceandtheopposingforcesareinoppositedirections,thealgebraicsumoftheforces
actingonthesystemiszero.
15
TranslationalmechanicalsystemsCont….

Translational Mechanical systems Cont….
18
Let us now see the force opposed by these three elements individually.
1.Mass:
➢The function of mass in linear motion is to store kinetic energy. Mass cannot store potential energy.
➢SupposeaforceisappliedtomassMasshowninFigure,themassstartsmovinginxdirectionasshown.
➢Forthetimebeing,wewillassumeotherforcessuchasfriction,etc.tobezero.Hence,accordingto
Newton’slaw,
•??????ismass
•�isacceleration
•??????isdisplacement
Note: Mass shouldn't be between two forces

2.Spring:
➢Springisanelement,whichstorespotentialenergy.
➢IfaforceisappliedonspringK,thenitisopposedbyanopposingforceduetoelasticityofspring.
Thisopposingforceisproportionaltothedisplacementofthespring.
➢Assumemassandfrictionarenegligible.
F
k∝�
=> F
k= ??????�
??????= F
k= ??????�
Where,
•??????is the appliedforce
•????????????is the opposing force due to elasticity ofspring
•??????is springconstant
•??????isdisplacement
Two-mass–spring system:
16
Translational Mechanical systems Cont….
F
F
k= ??????(x
1–x
2)

20
3.Friction :
➢Frictionis the force resisting the relative motion of solid surfaces, fluid layers, and material elements
sliding against each other.
➢Adashpotis a mechanical device, a damper which resists motion via viscous friction. The resulting force
is proportional to the velocity, but acts in the opposite direction, slowing the motion and absorbing energy.
➢It is commonly used in conjunction with a spring (which acts to resist displacement).
https://youtu.be/H877C_5BMkI
Translational Mechanical systems Cont….

17
➢If a force is applied on dashpot B, then it is opposed by an opposing force due to friction
of the dashpot.
➢This opposing force is proportional to the velocity of the body. Assume mass and
elasticity are negligible.
????????????∝??????
Translational Mechanical systems Cont….

22
Twoblocksm1andm2areconnectedbyadashpotwithdampingcoefficientB
F
The reaction force due to dashpot
between two masses, on either side of
dashpot is the displacements are
different i.e, x1 and x2
F
F
Translational Mechanical systems Cont….

23
ForceF)-velocity(v), force(F)-displacement(x), and impedance
translationalrelationshipsforsprings(K),viscousdampers(B),and
mass(M):

24
II.ModelingofRotationalMechanicalSystems
➢Rotationalmechanicalsystemsmoveaboutafixedaxis.
➢Thesesystemsmainlyconsistofthreebasicelements.
(1)momentofinertia(J)
(2)torsionalspring(K)
(3)dashpot(B)
➢Ifatorque(T)isappliedtoarotationalmechanicalsystem,thenitisopposedbyopposingtorquesdueto
momentofinertia,elasticityandfrictionofthesystem.
➢Sincetheappliedtorqueandtheopposingtorquesareinoppositedirections,thealgebraicsumoftorques
actingonthesystemiszero.
➢Letusnowseethetorqueopposedbythesethreeelementsindividually.

25
1.MomentofInertia(J):
➢Intranslationalmechanicalsystem,massstoreskineticenergy.Similarly,in
rotationalmechanicalsystem,momentofinertiastoreskineticenergy.
➢IfatorqueisappliedonabodyhavingmomentofinertiaJ,thenitisopposedbyan
opposingtorqueduetothemomentofinertia.
➢Thisopposingtorqueisproportionaltoangularaccelerationofthebody.Assume
elasticityandfrictionarenegligible.

26
2. Torsional Spring (K):
➢Intranslationalmechanicalsystem,springstorespotentialenergy.Similarly,inrotational
mechanicalsystem,torsionalspringstorespotentialenergy.
➢IfatorqueisappliedontorsionalspringK,thenitisopposedbyanopposingtorquedueto
theelasticityoftorsionalspring.
➢Thisopposingtorqueisproportionaltotheangulardisplacementofthetorsionalspring.
Assumethatthemomentofinertiaandfrictionarenegligible.

27
J1
J2
Θ
1
Θ
2
Two inertia system with a torsional spring
)))

28
3.Dashpot(B):
➢IfatorqueisappliedondashpotB,thenitisopposedbyanopposingtorqueduetothe
rotationalfrictionofthedashpot.
➢Thisopposingtorqueisproportionaltotheangularvelocityofthebody.Assumethe
momentofinertiaandelasticityarenegligible.
Where,
➢??????�is the opposing torque due to the rotational friction of the
dashpot
➢??????is the rotational friction coefficient
➢??????is the angular velocity
➢??????is the angular displacement.

29
T
Two inertia system with a friction

30
B
B
B
Torque(T)—angularvelocity(dθ/dt),
Torque(T)—angulardisplacement(θ),andimpedancerotationalrelationshipsfor
spring(K),viscousdampers(B),andInertia(J):

31

32
Procedure for writing differential equation for a complete mechanical system:
▪Identifynumberofdisplacements.
▪Markindependentnodesforeachdisplacement.
▪displacement=node
▪Markalltheelementsinparallelundertherespectivenodewhichareundertheinfluenceof
respectivedisplacement.
▪Now,drawthemechanicalnetworkandwriteForce/Torqueequationsateachnodebyequating
sumofforces/Torquesateachnodetozero.
Note:
➢NumberofMasses=Numberofdisplacements=NumberofNodes
➢(ApplicableifandonlyifwhenForce/Torqueisdirectlyappliedtomassorinertia
respectively)
➢Displacementoneithersideofdamper(dashpot)orspringmustbedifferentiftheyarebetween
movingbodies.
➢Mass/Inertiashouldnotbeconnectedbetweennodes.

33
When f(t) is applied to mass M, it vibrates.
The displacement is x(t).
When f(t) is applied to mass M,itvibrates, due to
this there is a existence of friction between a body
with mass M and ground and frictional coefficient
is indicated by B.
The spring also experiences a displacement x(t)
and spring constant is K.
B
Note:Numberofdisplacementequaltonumber
nodesbecauseforceisappliedtoabodywithmassM

34
For this problem, since force is directly
applied to a body with mass M,
Number of Masses = Number of
displacement
=Number of node(mechanical
network)= 1
i.e., x(t) and all three elements M,B,K
have same displacement x(t).
Therefore we have to connect all the
elements under node x(t) in parallel.
B

35

▪When Torque T(t) is applied to mass Inertia J,it rotates with
angular displacement is θ(t).
▪When T(t) is applied to J , it rotates, due to this there is a existence
of friction between a body with Inertia J and ground and frictional
coefficient is indicated by B.
▪The spring also experiences a angular displacement θ(t) and spring
constant is K.
For this problem, since force is directly applied to a body with Torque T,
▪Number of Inertia = Number of angular displacement
=Number of node(mechanical network)= 1
i.e., θ(t) and all three elements J,B,K have same displacement θ(t) .
Therefore we have to connect all the elements under node θ(t) in
parallel. 36
B

37

38
Number of displacement equal to number nodes
because force is applied to a body with mass M
When f(t) is applied to mass M1,it vibrates
and the displacement is x1(t), due to this there
is a existence of friction between a body with
mass M1 and ground and represented by
frictional coefficient is B1 and B1 is between
node x1 and reference.
K1 is between node x1 and reference.
Indirect force transferred to M2 through B3
and B3 connected between node x1 and x2.
M2,B2 and K2 have displacement of x2.
f(t),M1,B1 and K1 are under node x1.
M2 ,B2 and K2 are under node x2.
B3 is between x1 and x2.
B3

39

40

41

42

43
Solution:
➢Number of displacement equal to number nodes because force is
applied to a body with mass M.
➢Therefore number of displacements= number of nodes= 2
i.e.,x1 (t) and x2 (t)
➢When f(t) is applied to mass M,it vibrates and the
displacement is xt), due to this there is a existence of friction
between a body with mass Mand ground and represented by
frictional coefficient is B and B is between node xt) and
reference.
➢K1 is between node xt)) and reference.
➢Indirect force transferred to M2through K2and M2
has displacement of x2 (t).
▪f(t),M1,B and K1 are under node x1.
▪M2 is under node x2.
▪K2 is between x1and x2.

44

45

46

47
➢NumberofdisplacementequaltonumbernodesbecausetorqueisappliedtoabodywithinertiaJ.
➢Therefore,
numberofangulardisplacements=numberofnodes=2
i.e.,ϴ1(t)andϴ2(t)
➢WhentorqueT(t)isappliedtoinertiaJ,itrotatesandtheangulardisplacementisϴ(t),duetothisthereisaexistenceoffriction
betweenabodywithinertiaJandgroundandrepresentedbyfrictionalcoefficientisB1andB1isbetweennodeϴ1(t)andreference.
➢IndirectforcetransferredtoJ2throughK1.
➢J2hasdisplacementofϴ2(t).
▪T(t),J,B1areundernodeϴ1(t)
▪J,B2,K2areundernodeϴ2(t).
▪K1isbetweennodesϴ1(t)andϴ2(t).
Mechanical
Network

48
Thedifferentialequationsfornodesϴ1(t)andϴ2(t)arewrittenasfollows

49

50
➢Itisalwaysadvantageoustoobtainelectricalanalogousofthegivenmechanicalsystemas
wearewellfamiliarwiththemethodsofanalyzingelectricalnetworkthanmechanical
systems.
➢Therearetwomethodsofobtainingelectricalanalogousnetworksofmechanicalsystems,
namely,
1.Force-voltageAnalogy,i.e.DirectAnalogy.
2.Force-currentAnalogy,i.e.InverseAnalogy
➢Twosystemsaresaidtobeanalogoustoeachotherifthefollowingtwo
conditionsaresatisfied.
•The two systems are physically different.
•Differential equation modeling of these two systems are same.

51
ConsidersimplemechanicalsystemasshownintheFig.
Duetotheappliedforce,massMwilldisplacebyanamountx(t)in
thedirectionoftheforcef(t)asshownintheFig.
AccordingtoNewton’slawofmotion,appliedforcewillcause
displacementx(t)inspring,accelerationtomassMagainst
frictionalforcehavingconstantB.
TheforceFandTorqueTbalancedequationsare
I
B
II

52
Inthismethod,totheforcein
mechanicalsystem,voltageisassumed
tobeanalogousone.
Accordinglywewilltrytoderiveother
analogousterms.
Considerelectricnetworkasshownin
theFig.
TheequationaccordingtoKirchhoff’slawcanbe
writtenas,
We know that ʃ idt = q and
where q is charge.
Substituting the above values in V equation
III

53
➢BycomparingEquationIandIIwithEquationIII,wewillgettheanalogousquantitiesof
thetranslational(Rotational)mechanicalsystemandelectricalsystembasedon
Force/Torque-Voltageanalogyasindicatedinthefollowingtable.
III
I
II

54
In force current analogy, the mathematical equations of the translational and rotational mechanical system
are compared with the nodal equations of the electrical system.
Consider the following electrical system as shown in the following figure.
This circuit consists of current source i(t) , resistor( R), inductor(L) ,capacitor(C) and node voltage v(t). All
these electrical elements are connected in parallel.
The equation according to Kirchhoff’s current law for above system
is,
We know that and ψ(t) = ʃ v(t) dt where ψis flux.
Substituting v(t) and ʃ v(t) values in above equation ,we get
IV

55
IV