motion in 2 dimension.pptxxxxxxxxxxxxxxxxxxxxxxx

AliceRivera13 25 views 22 slides Sep 29, 2024
Slide 1
Slide 1 of 22
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22

About This Presentation

xxcxcxcxcxc


Slide Content

Kinematics Motion in two and three dimensions

All previous motion has been expressed in one dimension Our position functions are … d(t) = c = vt + c = 1 /2at 2 + vt + c x y

Now we can express motion in two and three dimensions x y z

To understand motion in 2/3 dimensions, distance, velocity and acceleration need to be divided into 3 directions: x, y and z x y z d d x d y d z v v x v y v z a a x a y a z These can be grouped in two ways …

x y z d d x d y d z v v x v y v z a a x a y a z Each displacement, velocity and acceleration vector can be divided into their x, y and z components … d = (d x , d y , d z ) v = (v x , v y , v z ) a = (a x , a y , a z )

x y z d d x d y d z v v x v y v z a a x a y a z …or, a position function can be found for each dimension: x, y and z. x(t) = ½a x t 2 + v x t + d x y(t) = ½a y t 2 + v y t + d y z(t) = ½a z t 2 + v z t + d z

y x z What is the position function for each dimension Divide each vector, (d, v and a) into it’s component for each dimension. A ball is thrown horizontally from a height of 10 metres and at a velocity of 15 metres per second

Vector components (0, 0, 0) (15, 0, 0) (0, -g, 0) y x z d = v = a =

Position functions dx(t) = dy(t) = dz(t) = 15t - 1 /2gt 2 + 10 y x z d(t) = 1 / 2 at 2 + vt + c Our position function is:

Problem The motion of a creature can be described in 3 dimensions by the following equations for the position in the x, y and z directions: x(t) = 3t 2 + 5 y(t) = -t 2 + 3t – 2 z(t) = 2t + 1 Find the magnitude of the acceleration, velocity and position vectors when t=2.

x(t) = 3t 2 + 5 y(t) = -t 2 + 3t – 2 z(t) = 2t + 1 x(2) = 17 y(2) = 0 z(2) = 5 IdI= (17 2 +5 2 ) 314 vx(t) = 6t vy(t) = -2t + 3 vz(t) = 2 vx(2) = 12 vy(2) = -1 vz(2) = 2 IvI= (12 2 +(-1) 2 + 2 2 ) 149 a x (t) = 6 a y (t) = -2 a z (t) = 0 a x (2) = 6 a y (2) = -2 a z (2) = 0 IaI= (6 2 +(-2) 2 ) 40 = 2 10

Alternatively … x(t) = 3t 2 + 5 y(t) = -t 2 + 3t – 2 z(t) = 2t + 1 d (t) = (3,-1,0)t 2 + (0,3,2)t + (5,-2,1) v (t) = 2(3,-1,0)t + (0,3,2) a (t) = 2(3,-1,0) = (6,-2,0)

d (t) = (3,-1,0)t 2 + (0,3,2)t + (5,-2,1) v (t) = 2(3,-1,0)t + (0,3,2) a (t) = (6,-2,0) d (2) = (3,-1,0)2 2 + (0,3,2)2 + (5,-2,1) v (2) = 2(3,-1,0)2 + (0,3,2) a (2) = (6,-2,0) d (2) = (12,-4,0) + (0,6,4) + (5,-2,1) = (17,0,5) v (2) = (12,-4,0) + (0,3,2) = (12,-1,2) a (2) = (6,-2,0) = (6,-2,0)

Projectile motion A ball is kicked with a velocity ‘v’ at an angle of ‘  ’.Write a position function for each the x and z direction.

ax(t) = vx(t) = dx(t) = v.cos  v.sin  a y (t) = v y (t) = d y (t) = v.cos  -g v.sin 

So our position functions for x and y: v.cos(  t - 1 /2gt 2 + v.sin(  t … or … 1 /2(0,-g,0)t 2 +(v.cos(  v.sin(  ,0)t + (0,0,0) x(t) = y(t) = d (t) =

Write a vector position function for the situation below: y x z d (t) = 1 / 2 (0,-g,0)t 2 +(v.cos(  ), ,0)t + (0, h ,0)

Problem How far will the ball travel if kicked at velocity ‘v’ and at angle ‘  ’? distance

Position function: y(t) = - 1 /2gt 2 + v.sin(  t Distance travelled occurs when height (y)=0 0 = - 1 /2gt 2 + v.sin(  t The time (t) when height (y)=0: t1(- 1 /2gt2 + v.sin(  ) = 0 t1= 0 - 1 /2gt2 + v.sin(  = 0 t2 = - v.sin(  = t2= 2v.sin(  - 1 /2g g

We can now find the distance travelled by … substituting ‘t2’ into the ‘x’ position function. x(t) = v.cos(  t x(t2) = v.cos(  (2v.sin(   g = v 2 .2cos(  )sin(  g = v 2 .sin(2  g

Problem 2 What is the speed (m/sec) needed for a stunt driver to launch from a 20 degree ramp to land 15 m away? What is his maximum height?

dy(t) = -0.5gt^2 + u.sin(20)t 0 = -0.5gt^2 + u.sin(20)t t(u.sin(20) – 0.5gt) = 0 u.sin(20) – 0.5gt = 0 0.5gt = u.sin(20) t = 2u.sin(20)/g dx(t) = u.cos(20)t 15 = u.cos(20)t u = 15 / (cos20.t) = 15 cos20( 2u.sin(20)/g ) u^2 = 15g 2.cos20.sin20 u = [15g / (2.cos20.sin20)]^0.5
Tags