Department of Electronic Engineering
The IslamiaUniversity of Bahawalpur, Pakistan
Complex Numbers
MATH-00208 Multivariate Calculus & Complex Analysis
2
Chapter Outline
1.1 -The Real Number System
1.2 -Graphical Representation of Real Numbers
1.3 -The Complex Number System
1.4 -Fundamental Operations with Complex Numbers
1.5 -Absolute Value
1.6 -Axiomatic Foundation of the Complex Number System
1.7 -Graphical Representation of Complex Numbers
1.8 -Polar Form of Complex Numbers
1.9 -De Moivre’sTheorem
1.10 -Roots of Complex Numbers
1.11 -Euler’s Formula
1.12 -Polynomial Equations
1.13 -The nth Roots of Unity
1.14 -Vector Interpretation of Complex Numbers
1.15 -Stereographic Projection
1.16 -Dot and Cross Product
1.17 -Complex Conjugate Coordinates
3
1.1 The Real Number System
Thenumbersystemasweknowittodayisaresultofgradual
developmentasindicatedinthefollowinglist.
1)Naturalnumbers1,2,3,4,...,alsocalledpositiveintegers,werefirst
usedincounting.
Ifaandbarenaturalnumbers,thesuma+bandproducta‧b,(a)(b)
orabarealsonaturalnumbers.
Forthisreason,thesetofnaturalnumbersissaidtobeclosedunder
theoperationsofadditionandmultiplicationortosatisfytheclosure
propertywithrespecttotheseoperations.
2)Negativeintegersandzero,denotedby-1,-2,-3,...and0,
respectively,permitsolutionsofequationssuchasx+b=awherea
andbareanynaturalnumbers.
Thisleadstotheoperationofsubtraction,orinverseofaddition,and
wewritex=a-b.
Thesetofpositiveandnegativeintegersandzeroiscalledthesetof
integersandisclosedundertheoperationsofaddition,multiplication,
andsubtraction.
4
1.1 The Real Number System
3)Rationalnumbersorfractionssuchas3/4,-8/3,...permitsolutionsof
equationssuchasbx=aforallintegersaandbwhereb≠0.
Thisleadstotheoperationofdivisionorinverseofmultiplication,and
wewritex=a/bora
¼
b(calledthequotientofaandb)whereais
thenumeratorandbisthedenominator.
Thesetofintegersisapartorsubsetoftherationalnumbers,since
integerscorrespondtorationalnumbersa/bwhereb=1.
Thesetofrationalnumbersisclosedundertheoperationsofaddition,
subtraction,multiplication,anddivision,solongasdivisionbyzerois
excluded.
4)Irrationalnumberssuchas
5
1.2 Graphical Representation of Real Numbers
Realnumberscanberepresentedbypointsonalinecalledthereal
axis,asindicatedinFig.1-1.
Thepointcorrespondingtozeroiscalledtheorigin.
Conversely,toeachpointonthelinethereisoneandonlyonereal
number.
IfapointAcorrespondingtoarealnumberaliestotherightofa
pointBcorrespondingtoarealnumberb,wesaythataisgreaterthan
borbislessthanaandwritea>borb<a,respectively.
Thesetofallvaluesofxsuchthata<x<biscalledanopeninterval
ontherealaxiswhilea≤x≤b,whichalsoincludestheendpointsa
andb,iscalledaclosedinterval.
6
1.2 Graphical Representation of Real Numbers
Thesymbolx,whichcanstandforanyrealnumber,iscalledareal
variable.
Theabsolutevalueofarealnumbera,denotedby|a|,isequaltoaifa
>0,to-aifa<0andto0ifa=0.
Thedistancebetweentwopointsaandbontherealaxisis|a–b|.
7
Thereisnorealnumberxthatsatisfiesthepolynomialequationx
2
+1
=0.
Topermitsolutionsofthisandsimilarequations,thesetofcomplex
numbersisintroduced.
Wecanconsideracomplexnumberashavingtheforma+biwherea
andbarerealnumbersandi,whichiscalledtheimaginaryunit,has
thepropertythati
2
=-1.
Ifz=a+bi,thenaiscalledtherealpartofzandbiscalledthe
imaginarypartofzandaredenotedbyRe{z}andIm{z},respectively.
Thesymbolz,whichcanstandforanycomplexnumber,iscalleda
complexvariable.
Twocomplexnumbersa+biandc+diareequalifandonlyifa=c
andb=d.
Wecanconsiderrealnumbersasasubsetofthesetofcomplex
numberswithb=0.
1.3 The Complex Number System
8
Accordinglythecomplexnumbers0+0iand-3+0irepresentthereal
numbers0and-3,respectively.
Ifa=0,thecomplexnumber0+biorbiiscalledapureimaginary
number.
Thecomplexconjugate,orbrieflyconjugate,ofacomplexnumbera
+biisa-bi.
Thecomplexconjugateofacomplexnumberzisoftenindicatedby
orz*.
1.3 The Complex Number System
9
Inperformingoperationswithcomplexnumbers,wecanproceedasin
thealgebraofrealnumbers,replacingi
2
by-1whenitoccurs.
1.4 Fundamental Operations with Complex Numbers
10
Theabsolutevalueormodulusofacomplexnumbera+biisdefined
as
1.5 Absolute Value
Ifz
1
,z
2
,z
3
,...,z
m
arecomplexnumbers,thefollowingpropertieshold.
5
6
5
6
11
Fromastrictlylogicalpointofview,itisdesirabletodefinea
complexnumberasanorderedpair(a,b)ofrealnumbersaandb
subjecttocertainoperationaldefinitions,whichturnouttobe
equivalenttothosedefinedinlasttopics.
Thesedefinitionsareasfollows,wherealllettersrepresentreal
numbers.
1.6 Axiomatic Foundation of the Complex Number System
Fromthesewecanshow[Problem1.14]that
(a, b) = a(1, 0) + b(0, 1)
andweassociatethiswitha+biwhereiisthesymbolfor(0,1)and
hasthepropertythati
2
=(0,1)(0,1)=(-1,0)
and(1,0)canbeconsideredequivalenttotherealnumber1.
Theorderedpair(0,0)correspondstotherealnumber0.
12
1.6 Axiomatic Foundation of the Complex Number System
13
Fromtheabove,wecanprovethefollowing.
1.6 Axiomatic Foundation of the Complex Number System
Ingeneral,anysetsuchasS,whosememberssatisfytheabove,is
calledafield.
0iscalledtheidentitywithrespecttoaddition,1iscalledtheidentitywithrespect
tomultiplication.
17
1.8 Polar Form of Complex Numbers
Itissometimesconvenienttowritetheabbreviationcisθforcosθ+
isinθ.
Foranycomplexnumberz≠0therecorrespondsonlyonevalueofθ
in0≤θ≤2π.
However,anyotherintervaloflength2π,forexample-π≤θ<πcan
beused.
Anyparticularchoice,decideduponinadvance,iscalledtheprincipal
range,andthevalueofθiscalleditsprincipalvalue.
18
1.9 De Moivre’sTheorem
Let
then we can show that [see Problem 1.19]
A generalization of (1.2) leads to
and if z
1
= z
2
= … = z
n
= zthis becomes
which is often called De Moivre’stheorem.
19
1.9 De Moivre’sTheorem
20
1.10 Roots of Complex Numbers
Anumberwiscalledannthrootofacomplexnumberzifw
n
=z,and
wewritew=z
1/n
.
FromDeMoivre’stheoremwecanshowthatifnisapositiveinteger,
fromwhichitfollowsthattherearendifferentvaluesforz
1/n
,i.e.,n
differentnthrootsofz,providedz≠0.
De Moivre’stheorem
21
1.10 Roots of Complex Numbers
Comparing above two equations
23
1.11 Euler’s Formula
Byassumingthattheinfiniteseriesexpansion
of elementary calculus holds when x= iθ, we can arrive at the result
whichiscalledEuler’sformula.
Ingeneral,wedefine
Inthespecialcasewherey=0thisreducestoe
x
.
Notethatintermsof(1.7)DeMoivre’stheoremreducesto(e
iθ
)
n
=
e
inθ
.
Itismoreconvenient,however,simplytotake(1.7)asadefinitionof
e
iθ
.
De Moivre’stheorem