multivariate-CalculusCHAP1_Complex_Analysis.pdf

Maaz609108 13 views 33 slides Sep 12, 2024
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Multivariate calculator


Slide Content

Department of Electronic Engineering
The IslamiaUniversity of Bahawalpur, Pakistan
Complex Numbers
MATH-00208 Multivariate Calculus & Complex Analysis

2
Chapter Outline
1.1 -The Real Number System
1.2 -Graphical Representation of Real Numbers
1.3 -The Complex Number System
1.4 -Fundamental Operations with Complex Numbers
1.5 -Absolute Value
1.6 -Axiomatic Foundation of the Complex Number System
1.7 -Graphical Representation of Complex Numbers
1.8 -Polar Form of Complex Numbers
1.9 -De Moivre’sTheorem
1.10 -Roots of Complex Numbers
1.11 -Euler’s Formula
1.12 -Polynomial Equations
1.13 -The nth Roots of Unity
1.14 -Vector Interpretation of Complex Numbers
1.15 -Stereographic Projection
1.16 -Dot and Cross Product
1.17 -Complex Conjugate Coordinates

3
1.1 The Real Number System
Thenumbersystemasweknowittodayisaresultofgradual
developmentasindicatedinthefollowinglist.
1)Naturalnumbers1,2,3,4,...,alsocalledpositiveintegers,werefirst
usedincounting.
Ifaandbarenaturalnumbers,thesuma+bandproducta‧b,(a)(b)
orabarealsonaturalnumbers.
Forthisreason,thesetofnaturalnumbersissaidtobeclosedunder
theoperationsofadditionandmultiplicationortosatisfytheclosure
propertywithrespecttotheseoperations.
2)Negativeintegersandzero,denotedby-1,-2,-3,...and0,
respectively,permitsolutionsofequationssuchasx+b=awherea
andbareanynaturalnumbers.
Thisleadstotheoperationofsubtraction,orinverseofaddition,and
wewritex=a-b.
Thesetofpositiveandnegativeintegersandzeroiscalledthesetof
integersandisclosedundertheoperationsofaddition,multiplication,
andsubtraction.

4
1.1 The Real Number System
3)Rationalnumbersorfractionssuchas3/4,-8/3,...permitsolutionsof
equationssuchasbx=aforallintegersaandbwhereb≠0.
Thisleadstotheoperationofdivisionorinverseofmultiplication,and
wewritex=a/bora
¼
b(calledthequotientofaandb)whereais
thenumeratorandbisthedenominator.
Thesetofintegersisapartorsubsetoftherationalnumbers,since
integerscorrespondtorationalnumbersa/bwhereb=1.
Thesetofrationalnumbersisclosedundertheoperationsofaddition,
subtraction,multiplication,anddivision,solongasdivisionbyzerois
excluded.
4)Irrationalnumberssuchas
 
andarenumbersthatcannotbe
expressedasa/bwhereaandbareintegersandb≠0.
Thesetofrationalandirrationalnumbersiscalledthesetofreal
numbers.

5
1.2 Graphical Representation of Real Numbers
Realnumberscanberepresentedbypointsonalinecalledthereal
axis,asindicatedinFig.1-1.
Thepointcorrespondingtozeroiscalledtheorigin.
Conversely,toeachpointonthelinethereisoneandonlyonereal
number.
IfapointAcorrespondingtoarealnumberaliestotherightofa
pointBcorrespondingtoarealnumberb,wesaythataisgreaterthan
borbislessthanaandwritea>borb<a,respectively.
Thesetofallvaluesofxsuchthata<x<biscalledanopeninterval
ontherealaxiswhilea≤x≤b,whichalsoincludestheendpointsa
andb,iscalledaclosedinterval.

6
1.2 Graphical Representation of Real Numbers
Thesymbolx,whichcanstandforanyrealnumber,iscalledareal
variable.
Theabsolutevalueofarealnumbera,denotedby|a|,isequaltoaifa
>0,to-aifa<0andto0ifa=0.
Thedistancebetweentwopointsaandbontherealaxisis|a–b|.

7
Thereisnorealnumberxthatsatisfiesthepolynomialequationx
2
+1
=0.
Topermitsolutionsofthisandsimilarequations,thesetofcomplex
numbersisintroduced.
Wecanconsideracomplexnumberashavingtheforma+biwherea
andbarerealnumbersandi,whichiscalledtheimaginaryunit,has
thepropertythati
2
=-1.
Ifz=a+bi,thenaiscalledtherealpartofzandbiscalledthe
imaginarypartofzandaredenotedbyRe{z}andIm{z},respectively.
Thesymbolz,whichcanstandforanycomplexnumber,iscalleda
complexvariable.
Twocomplexnumbersa+biandc+diareequalifandonlyifa=c
andb=d.
Wecanconsiderrealnumbersasasubsetofthesetofcomplex
numberswithb=0.
1.3 The Complex Number System

8
Accordinglythecomplexnumbers0+0iand-3+0irepresentthereal
numbers0and-3,respectively.
Ifa=0,thecomplexnumber0+biorbiiscalledapureimaginary
number.
Thecomplexconjugate,orbrieflyconjugate,ofacomplexnumbera
+biisa-bi.
Thecomplexconjugateofacomplexnumberzisoftenindicatedby
orz*.
1.3 The Complex Number System

9
Inperformingoperationswithcomplexnumbers,wecanproceedasin
thealgebraofrealnumbers,replacingi
2
by-1whenitoccurs.
1.4 Fundamental Operations with Complex Numbers

10
Theabsolutevalueormodulusofacomplexnumbera+biisdefined
as
1.5 Absolute Value
Ifz
1
,z
2
,z
3
,...,z
m
arecomplexnumbers,thefollowingpropertieshold.
5
6
5
6

11
Fromastrictlylogicalpointofview,itisdesirabletodefinea
complexnumberasanorderedpair(a,b)ofrealnumbersaandb
subjecttocertainoperationaldefinitions,whichturnouttobe
equivalenttothosedefinedinlasttopics.
Thesedefinitionsareasfollows,wherealllettersrepresentreal
numbers.
1.6 Axiomatic Foundation of the Complex Number System
Fromthesewecanshow[Problem1.14]that
(a, b) = a(1, 0) + b(0, 1)
andweassociatethiswitha+biwhereiisthesymbolfor(0,1)and
hasthepropertythati
2
=(0,1)(0,1)=(-1,0)
and(1,0)canbeconsideredequivalenttotherealnumber1.
Theorderedpair(0,0)correspondstotherealnumber0.

12
1.6 Axiomatic Foundation of the Complex Number System

13
Fromtheabove,wecanprovethefollowing.
1.6 Axiomatic Foundation of the Complex Number System
Ingeneral,anysetsuchasS,whosememberssatisfytheabove,is
calledafield.
0iscalledtheidentitywithrespecttoaddition,1iscalledtheidentitywithrespect
tomultiplication.

14
1.7 Graphical Representation of Complex Numbers
Supposerealscalesarechosenontwomutuallyperpendicularaxes
X΄OXandY΄OY[calledthexandyaxes,respectively]asinFig.1-2.
Wecanlocateanypointintheplanedeterminedbytheselinesbythe
orderedpairofrealnumbers(x,y)calledrectangularcoordinatesof
thepoint.
ExamplesofthelocationofsuchpointsareindicatedbyP,Q,R,S,
andTinFig.1-2.

15
1.7 Graphical Representation of Complex Numbers
Sinceacomplexnumberx+iycanbeconsideredasanorderedpairof
realnumbers,wecanrepresentsuchnumbersbypointsinanxyplane
calledthecomplexplaneorArganddiagram.
ThecomplexnumberrepresentedbyP,forexample,couldthenbe
readaseither(3,4)or3+4i.
Toeachcomplexnumbertherecorrespondsoneandonlyonepointin
theplane,andconverselytoeachpointintheplanetherecorresponds
oneandonlyonecomplexnumber.
Becauseofthisweoftenrefertothecomplexnumberzasthepointz.
Sometimes,werefertothexandyaxesastherealandimaginary
axes,respectively,andtothecomplexplaneasthezplane.
Thedistancebetweentwopoints,z
1
=x
1
+iy
1
andz
2
=x
2
+iy
2
,inthe
complexplaneisgivenby

16
1.8 Polar Form of Complex Numbers
LetPbeapointinthecomplexplanecorrespondingtothecomplex
number(x,y)orx+iy.
ThenweseefromFig.1-3that
where
 
iscalledthe
modulusorabsolutevalueofz=x+iy
[denotedbymodzor|z|]
θ,calledtheamplitudeorargumentof
z=x+iy[denotedbyargz],isthe
anglethatlineOPmakeswiththe
positivexaxis.
whichiscalledthepolarformofthecomplexnumber,andrandθare
calledpolarcoordinates.
Itfollowsthat

17
1.8 Polar Form of Complex Numbers
Itissometimesconvenienttowritetheabbreviationcisθforcosθ+
isinθ.
Foranycomplexnumberz≠0therecorrespondsonlyonevalueofθ
in0≤θ≤2π.
However,anyotherintervaloflength2π,forexample-π≤θ<πcan
beused.
Anyparticularchoice,decideduponinadvance,iscalledtheprincipal
range,andthevalueofθiscalleditsprincipalvalue.

18
1.9 De Moivre’sTheorem
Let
then we can show that [see Problem 1.19]
A generalization of (1.2) leads to
and if z
1
= z
2
= … = z
n
= zthis becomes
which is often called De Moivre’stheorem.

19
1.9 De Moivre’sTheorem

20
1.10 Roots of Complex Numbers
Anumberwiscalledannthrootofacomplexnumberzifw
n
=z,and
wewritew=z
1/n
.
FromDeMoivre’stheoremwecanshowthatifnisapositiveinteger,
fromwhichitfollowsthattherearendifferentvaluesforz
1/n
,i.e.,n
differentnthrootsofz,providedz≠0.
De Moivre’stheorem

21
1.10 Roots of Complex Numbers
Comparing above two equations

22
1.10 Roots of Complex Numbers
Byconsideringk=5,6,...aswellasnegativevalues,-1,-2,...
repetitionsoftheabovefivevaluesofzareobtained.
Hence,thesearetheonlysolutionsorrootsofthegivenequation.
Thesefiverootsarecalledthefifthrootsof-32andarecollectively
denotedby(-32)
1/5
.
Ingeneral,a
1/n
representsthenthrootsofaandtherearensuchroots.

23
1.11 Euler’s Formula
Byassumingthattheinfiniteseriesexpansion
of elementary calculus holds when x= iθ, we can arrive at the result
whichiscalledEuler’sformula.
Ingeneral,wedefine
Inthespecialcasewherey=0thisreducestoe
x
.
Notethatintermsof(1.7)DeMoivre’stheoremreducesto(e

)
n
=
e
inθ
.
Itismoreconvenient,however,simplytotake(1.7)asadefinitionof
e

.
De Moivre’stheorem

24
1.12 Polynomial Equations
Ofteninpracticewerequiresolutionsofpolynomialequationshaving
theform
Suchsolutionsarealsocalledzerosofthepolynomialontheleftof
(1.9)orrootsoftheequation.
Averyimportanttheoremcalledthefundamentaltheoremofalgebra
statesthateverypolynomialequationoftheform(1.9)hasatleastone
rootinthecomplexplane.
Fromthiswecanshowthatithasinfactncomplexroots,someorall
ofwhichmaybeidentical.
Ifz
1
,z
2
,...,z
n
arethenroots,then(1.9)canbewritten
wherea
0
≠0,a
1
,...,a
n
aregivencomplexnumbersandnisapositive
integercalledthedegreeoftheequation.
whichiscalledthefactoredformofthepolynomialequation.

25
1.13 The nth Roots of Unity
Thesolutionsoftheequationz
n
=1wherenisapositiveintegerare
calledthenthrootsofunityandaregivenby
Ifwelet
Geometrically,theyrepresentthenverticesofaregularpolygonofn
sidesinscribedinacircleofradiusonewithcenterattheorigin.
Thiscirclehastheequation|z|=1andisoftencalledtheunitcircle.
thenrootsare1,ω,ω
2
,...,ω
n-1
.

26
1.14 Vector Interpretation of Complex Numbers
Acomplexnumberz=x+iycanbeconsideredasavectorOP
whoseinitialpointistheoriginOandwhoseterminalpointPisthe
point(x,y)asinFig.1-4.
WesometimescallOP=x+iythepositionvectorofP.
Twovectorshavingthesamelengthormagnitudeanddirectionbut
differentinitialpoints,suchasOPandABinFig.1-4,areconsidered
equal.
HencewewriteOP=AB=x+iy.

27
1.14 Vector Interpretation of Complex Numbers
Additionofcomplexnumberscorrespondstotheparallelogramlaw
foradditionofvectors[seeFig.1-5].
Thustoaddthecomplexnumbers z
1
andz
2
,wecompletethe
parallelogramOABCwhosesidesOAandOCcorrespondtoz
1
andz
2
.
ThediagonalOBofthisparallelogramcorrespondstoz
1
+z
2
.See
Problem1.5.

28
1.14 Vector Interpretation of Complex Numbers

29
1.15 Stereographic Projection
Letƿ[Fig.1-6]bethecomplexplaneandconsiderasphereStangent
toPatz=0.
ThediameterNSisperpendiculartoƿandwecallpointsNandSthe
northandsouthpolesofS.
CorrespondingtoanypointAonƿwecanconstructlineNA
intersectingSatpointA΄.
Thustoeachpointofthecomplexplaneƿtherecorrespondsoneand
onlyonepointofthesphereS,andwecanrepresentanycomplex
numberbyapointonthesphere.

30
1.15 Stereographic Projection
ForcompletenesswesaythatthepointNitselfcorrespondstothe
“pointatinfinity”oftheplane.
Thesetofallpointsofthecomplexplaneincludingthepointat
infinityiscalledtheentirecomplexplane,theentirezplane,orthe
extendedcomplexplane.
Theabovemethodformappingtheplaneontothesphereiscalled
stereographicprojection.
ThesphereissometimescalledtheRiemannsphere.
WhenthediameteroftheRiemannsphereischosentobeunity,the
equatorcorrespondstotheunitcircleofthecomplexplane.

31
1.16 Dot and Cross Product
Letz
1
=x
1
+iy
1
andz
2
=x
2
+iy
2
betwocomplexnumbers[vectors].
Thedotproduct[alsocalledthescalarproduct]ofz
1
andz
2
isdefined
astherealnumber
whereθistheanglebetweenz
1
andz
2
whichliesbetween0andπ.
Thecrossproductofz
1
andz
2
isdefinedasthevectorz
1
z
2
=(0,0,
x
1
y
2
-y
1
x
2
)perpendiculartothecomplexplanehavingmagnitude
1)Anecessaryandsufficientconditionthat z
1
andz
2
be
perpendicularisthatz
1
‧z
2
=0.
2)Anecessaryandsufficientconditionthatz
1
andz
2
beparallelis
that|z
1
z
2
|=0.
3)Themagnitudeoftheprojectionofz
1
onz
2
is|z
1
‧z
2
|/|z
2
|.
4)Theareaofaparallelogramhavingsidesz
1
andz
2
is|z
1
z
2
|.

32
1.17 Complex Conjugate Coordinates
Apointinthecomplexplanecanbelocatedbyrectangular
coordinates(x,y)orpolarcoordinates(r,θ).
Manyotherpossibilitiesexist.
Onesuchpossibilityusesthefactthat
Thecoordinates(z,)thatlocateapointarecalledcomplex
conjugatecoordinatesorbrieflyconjugatecoordinatesofthepoint
[seeProblem1.43].
where

33
1.17 Complex Conjugate Coordinates