Named reactions Advanced Organic Chemistry.Debus radziszewski.Knorr pyrimidine.Combes synthesis.Pinneer pyrimidine.e.pdf

siddiqes71 1 views 25 slides Oct 13, 2025
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

This presentation provides a detailed overview of four major named reactions used in Heterocyclic Chemistry, specifically focusing on the synthesis of pharmaceutically important heterocyclic rings. SLIDESHARE SUMMARY: Organic Named Reactions
Slide 1: Title & Introduction

Title: Heterocyclic Che...


Slide Content

HETEROCYCLIC
CHEMISTRY
ORGANIC NAMED REACTIONS,
MECHANISM AND APPLICATIONS
PRESENTED BY
SAJNA K S
1
st
SEM M.PHARM
DEPARTMENT OF PHARMACEUTICAL
CHEMISTRY
ST. JAMES COLLEGE OF
PHARMACEUTICAL SCIENCES
1

CONTENTS
•DEBUS-RADZISZEWSKI IMIDAZOLE SYNTHESIS
•KNORR PYRAZOLE SYNTHESIS
•PINNER PYRIMIDINE SYNTHESIS
•COMBES QUINOLINE SYNTHESIS
•CONCLUSION
•REFERENCES
2

DEBUS-RADZISZEWSKI IMIDAZOLE
SYNTHESIS
•Consists of condensing a dicarbonyl compound such as
glyoxal, ketoaldehydes or diketones with an aldehyde
in the presence of ammonia.
•The reaction is named after Heinrich Debus and
Bronistaw Leonard Radziszewski's discovery.
32
N
3
N
H
1
5
4
Dicarbonyl Ammonia Aldehyde

•The method is used commercially to produce several imidazoles.
•The process is an example of a multicomponent reaction.
4
dicarbonyl and ammonia condenses to give a diimineStep 1
DICARBONYL
Ammonia
Diimine

.

5
Diimine condenses with the aldehyde and gives imidazole.Step 2
Diimine Aldehyde
Imidazole

O
O
R
1
R
2
O

O

R
1
R
2
+
N
H
H
H
N
H
H
H
O

O

R
1
R
2
NH
3
+
NH
3
+
O

O

NH
3
+
NH
3
+
R
1
R
2
OH
OH
NH
2
NH
2
R
1
R
2
OH
2
NH
NH
R
1
R
2 6
STEP 1:
PROTON
TRANSFER
Nucleophilic attack
-H20
DIIMINE

NH
NH
R
1
R
2
+
O
R
3
H
NH
NH
R
1
R
2
+
O
R
3
H
R
2
R
1
N
N
R
3
H
R
1
R
2
NH
NH R
3
R
1
R
2
N
NH R
3 7
STEP 2:
-2H20
IMIDAZOLE

O
O
+ NH
3+
CH
3
O
H
acetaldehyde
ammonia
oxaldehyde
N NH
CH
3
2-methyl-1H-imidazole
N NH
CH
3
NO
2
N N
CH
3
NO
2
OH
OH
OH
ethane-1,2-diol 8
APPLICATIONS
SYNTHESIS OF METRONIDAZOLE:
Metronidazole
HNO3/H2SO4
2
Glyoxal
USE:
ANTIBIOTIC
Debus Radiszewski
synthesis

APPLICATIONS
•Synthesis of Ornidazole
9O
O
+ NH
3+
CH
3
O
H
acetaldehyde
ammonia
oxaldehyde
N NH
CH
3
2-methyl-1H-imidazole
N NH
CH
3
NO
2
N N
CH
3
NO
2
Cl
OH
O
Cl
2
HNO3/H2SO4
Ornidazole
Glyoxal
Debus Radiszewski
synthesis

KNORR PYRAZOLE SYNTHESIS
•Organic reaction used to convert a hydrazine or its derivatives and a
1,3-dicarbonyl compound to a pyrazole using an acid catalyst.
10
Hydrazine
1,3 dicarbonyl
compound
PyrazoleN
2
3
N
H
1
5
4

MECHANISM
11
IMINE
Protonation
of oxygen
Proton shift
Protonation
of oxygen
Nucleophilic
attack
Nucleophilic
attackProton shift
Removal of
proton

APPLICATIONS
•Synthesis of antipyrine from phenyl hydrazine
12
USE:
TREAT EAR INFECTION
Knorr pyrazole
synthesis

•Synthesis of celecoxib
13
CelecoxibO
CH
3
1-phenylethan-1-one1-phenylethan-1-one
+
F
F
F
O
O CH
3
ethyl trifluoroacetate
CH
3
O
O
F
F
F
+
SO O
NH
2
NH
NH
2
4-hydrazinylbenzene-1-sulfonamide
N
N
F
F
F
CH
3
S
O
O
NH
2
NSAID
Knorr pyrazole
synthesis

PINNER PYRIMIDINE SYNTHESIS
•The condensation of 1,3-dicarbonyl compounds with amidines
catalysed by acids or bases to give pyrimidine derivatives.
14N
1
2
6
N
3
5
4

MECHANISM
15
Protonation Attack by amidine
Proton transfer
DehydrationProton transfer
Nucleophile attack/
cyclization
Dehydration
Deprotonation
protonation

•Synthesis of trimethoprim
16Trimethoprim
POCl3NH
2
O CH
3
O O
ethyl 3-amino-3-oxopropanoate
+
NH
2
NH
2
NH
guanidine
N
NH NH
2
NH
2
O
N
NCl
NH
2
NH
2
CH
3
O
O
O
CH3
CH3
CH3
1,2,3-trimethoxy-4-methylbenzene
N
N
NH
2
NH
2
OH
O
O
CH
3
CH
3
APPLICATIONS
USE:
ANTIBIOTIC (UTI)

APPLICATIONS
•Synthesis of sulfamerazine
17
USE:
ANTIBIOTIC

COMBES-QUINOLINE SYNTHESIS
•It involves the condensation of unsubstituted anilines (1) with β-
diketones (2) to form substituted quinolines (4) after an acid-catalyzed
ring closure of an intermediate Schiff base (3).
18
Aniline Intermediate
Quinolines
Diketones2
3
N
1
4
10
5
7
6
8
9

MECHANISM
19
Protonation of
oxygen
Nucleophilic
attachment of
aniline
-H2O
Formation
of schiffs
base

MECHANISM
20
Cyclisation
-H+
-H20

Synthesis of 4,7-dichloroquinoline
21

1.Synthesis of chloroquine
22
Chloroquine
USE:
ANTIMALARIAL

2. Synthesis of Hydroxychloroquine
23
Hydroxychloroquine
4-[ethyl(2-hydroxymethyl)amino]-
1-methyl butylamine
USE:
ANTIMALARIAL

24
1.July A Hernandez Munoz, Joel J Junior, Flavia Martins da Silva. Radziszewski
reaction: an elegant, easy, simple and efficient method to synthesise imidazoles
Current Organic Synthesis.2014; 11 (6):824-834.
2.Mahfoudh M, Abderrahim R, Leclerc E, Campagne JM. Recent approaches to
the synthesis of pyrimidine derivatives. Eur J Org Chem. 2017;(20):2856-2865.
3.Hill MD, Movassaghi M. New strategies for the synthesis of pyrimidine
derivatives. Chemistry. 2008;14(23):6836-6844.
4.Jie Jack Li. Knorr pyrazole synthesis. In: Name Reactions: A Collection of
Detailed Reaction Mechanisms.2006:331-334.
5.Dalal M. A textbook of organic chemistry - volume 1. Dalal Institute;2019:233-
244.
6.SA Yamashkin, LG Yudin, AN Kost. Closure of the pyridine ring in the combes
quinoline synthesis. Chemistry of Heterocyclic compounds.1992; 28 (8):845-
855.
REFERENCES

THANK YOU
25