Ch02-I045064.tex 27/6/2007 9: 34 Page 40
40 Imre Pázsit & Lénárd Pál
To be able to follow closely the evolution of the process, the intuitive method which was already used in
Section 1.2.1 will be followed. Then one can write
p
(1)
(n1,n2,t)=e
−Q1t
δn11δn20+Q1
θ
t
0
e
−Q1(t−t
δ
)
[f
(1)
0,0
δn10δn20
+S
(1)
(n1,n2,t
δ
)+S
(2)
(n1,n2,t
δ
)+S
(1,2)
(n1,n2,t
δ
)]dt
δ
,
where
S
(1)
(n1,n2,t
δ
)=
∞
∂
k=1
f
(1)
k,0
∂
a1+···+a k=n1
∂
b1+···+b k=n2
k
φ
u=1
p
(1)
(au,bu,t
δ
),
S
(2)
(n1,n2,t
δ
)=
∞
∂
l=1
f
(1)
0,l
∂
a1+···+a l=n1
∂
b1+···+b l=n2
l
φ
v=1
p
(1)
(av,bv,t
δ
),
and
S
(1,2)
(n1,n2,t
δ
)=
∞
∂
k=1
∞
∂
l=1
f
(1)
k,l
∂
a
(1)
1
+···+a
(1)
k
+a
(2)
1
+···+a
(2)
l
=n1
∂
b
(1)
1
+···+b
(1)
k
+b
(2)
1
+···+b
(2)
l
=n2
×
k
φ
u=1
l
φ
v=1
p
(1)
(a
(1)
u
,b
(1)
u
,t
δ
)p
(2)
(a
(2)
v
,b
(2)
v
,t
δ
).
Based on this, for the generating functiong
(1)
(z1,z2,t), one obtains the following equation:
g
(1)
(z1,z2,t)=e
−Q1t
z1+Q1
θ
t
0
e
−Q1(t−t
δ
)
∞
∂
k=0
∞
∂
l=0
f
(1)
k,l
[g
(1)
(z1,z2,t
δ
)]
k
[g
(2)
(z1,z2,t
δ
)]
l
dt
δ
,
which – by considering the definition (2.13) – can be written in the following form:
g
(1)
(z1,z2,t)=e
−Q1t
z1+Q1
θ
t
0
e
−Q1(t−t
δ
)
q
(1)
[g
(1)
(z1,z2,t
δ
),g
(2)
(z1,z2,t
δ
)]dt
δ
. (2.15)
In a completely analogous way, one can derive the generating function equation
g
(2)
(z1,z2,t)=e
−Q2t
z2+Q2
θ
t
0
e
−Q2(t−t
δ
)
q
(2)
[g
(1)
(z1,z2,t
δ
),g
(2)
(z1,z2,t
δ
)]dt
δ
. (2.16)
Differentiating with respect tot, from these equations one arrives at
∂g
(i)
∂t
=Q
i[q
(i)
(g
(1)
,g
(2)
)−g
(i)
],i=1, 2. (2.17)
By introducing the notations
s
(i)
(z1,z2)=Q i[q
(i)
(z1,z2)−z i],i=1, 2, (2.18)
the basic equations can be written in a rather simple form as
∂g
(i)
∂t
=s
(i)
(g
(1)
,g
(2)
),i=1, 2, (2.19)
together with the initial conditionsg
(i)
(z1,z2,0)=z i,i=1, 2.