Distance vector example: computation DV in a: D a (a)=0 D a (b) = 8 D a (c) = ∞ D a (d) = 1 D a (e) = ∞ D a (f) = ∞ D a (g) = ∞ D a (h) = ∞ D a (i) = ∞ DV in b: D b (f) = ∞ D b (g) = ∞ D b (h) = ∞ D b (i) = ∞ D b (a) = 8 D b (c) = 1 D b (d) = ∞ D b (e) = 1 DV in c: D c (a) = ∞ D c (b) = 1 D c (c) = 0 D c (d) = ∞ D c (e) = ∞ D c (f) = ∞ D c (g) = ∞ D c (h) = ∞ D c (i) = ∞ DV in e: D e (a) = ∞ D e (b) = 1 D e (c) = ∞ D e (d) = 1 D e (e) = 0 D e (f) = 1 D e (g) = ∞ D e (h) = 1 D e (i) = ∞ Network Layer: 5- 33 g h i 1 1 1 1 1 1 1 1 1 8 1 t=1 b receives DVs from a, c, e, computes: a b c d e f DV in b: D b (f) = 2 D b (g) = ∞ D b (h) = 2 D b (i) = ∞ D b (a) = 8 D b (c) = 1 D b (d) = 2 D b (e) = 1 e compute b D b (a) = min{c b,a +D a (a), c b,c +D c (a), c b,e +D e (a)} = min{8, ∞,∞} = 8 D b (c) = min{c b,a +D a (c), c b,c +D c (c), c b,e +D e (c)} = min{ ∞,1,∞} = 1 D b (d) = min{c b,a +D a (d), c b,c +D c (d), c b,e +D e (d)} = min{ 9,2,∞} = 2 D b (f) = min{c b,a +D a (f), c b,c +D c (f), c b,e +D e (f)} = min{ ∞,∞,2} = 2 D b (i) = min{c b,a +D a (i), c b,c +D c (i), c b,e +D e (i)} = min{ ∞, ∞, ∞} = ∞ D b (h) = min{c b,a +D a (h), c b,c +D c (h), c b,e +D e (h)} = min{ ∞, ∞, 2} = 2 D b (e) = min{c b,a +D a (e), c b,c +D c (e), c b,e +D e (e)} = min{ ∞,∞,1} = 1 D b (g) = min{c b,a +D a (g), c b,c +D c (g), c b,e +D e (g)} = min{ ∞, ∞, ∞} = ∞