Numerical Taxonomy & Biometrics.pdf

4,501 views 26 slides Jun 23, 2023
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

This PPT wants to explore the road of numerical taxonomy and its potential in Cladestics & Phenetics in Plant taxonomy.


Slide Content

PLANT TAXONOMY
NUMERICAL TAXONOMY &
BIOMETRICS

WELCOME TO THIS DOMAIN
Biometrics,NumericalTaxonomy and
Cladistics,Characters;Variations;OTUs,
CharacterWeightingandCoding;Cluster
Analysis;Phenograms,Cladograms–ABird’s
eyeViewoftheissue
APresentationBy
Dr.N.Sannigrahi,AssociateProfessor,
DepartmentofBotany,
NistariniCollege,Purulia,
D.B.Road,Purulia(W.B)India723101

BIOMETRICS
Increasingly,quantitativeapproachestoplantmorphologyare
changingthelandscapeofresearchforplantecology,physiology,and
evolution.Advancesinmicroscopy,imaging,andcomputational
analysespotentiallyallowmoredetailedinvestigationsthanhave
previouslybeenpossible.Thishasincreasedthevarietyandquantity
ofdataavailableforphenotypicanalysis,andisstimulatingnew
directionsandapplicationsinthestudyofplantmorphology.The
increasedspeedanddetailthatcanbecapturedbythesenew
technologiesalsomeansthattheinformationrepresentedbyshape
andformcanpotentiallybeasrichabioinformaticsdatasourceas
geneticdata.Theobjectofthescienceistobringtogetherplant
morphologists,systematists,andpaleobotanists,alongsidecomputer
scientists,appliedmathematicians,andinformaticians,whowere
unitedintheirinterestindevelopingorapplyingnovelbiometricor
bio-informaticsmethodstotheformandfunctionofplants.
Biometricsthusanapproachtopaylightontheunitcharacterswhich
likelytobetwostatesthatcannotbesubdividedlogically.

BIOMETRICS
Verificationsystemseitherrejectoracceptthesubmittedclaimofidentity
bycomparingitwiththepre-storedbiometricsofthesameindividual
whileidentificationsystemsrecognizeanindividualbysearchingthe
matchingqueriedbiometricintheentiredatabase.Biometricidentification
isapatternrecognitionbasedclassificationsystemthatrecognizesan
individualbydeterminingitsauthenticityusingaspecificphysiologicalor
behavioralcharacteristic.Biometricauthenticationsystemsgenerallyusea
patternrecognitionapproachthatverifiesoridentifiesanindividual’s
authenticityofitsuniquelyidentifiablephysiologicalorbehavioral
characteristic,whichiscalledabiometric.
Therearetwomethodsusedtoestablishingtherelationshipsbetweenthe
organisms-Pheneticmethod&PhylogeneticorCladisticsmethod.
PHENETIC-Hereoverallsimilarityoftaxabasedontheoverall
similarityoftaxaregardlesswhethertheirsimilaritiesare
symplesiomorphies(Sharedprimitivecharacters)orSynapomorphies(
sharedderivedcharacters)inapohylogeneticsense.
CLADISTIC-Strictlyphylogeneticandonlysynapomorphiesareusedto
assessthephylogeneticrelationshipwhilesharedsymplesiomorphieshave
nouse.AphylogenetictreeorCladogramisdevelopedandtheapproachis
calledCladistics.

NUMERICAL TAXONOMY
Numericaltaxonomyortaximetrics,nowadaysfrequentlyandperhaps
moreappropriatelyreferredtoasphenetics,referstotheapplicationof
variousmathematicalprocedurestonumericallyencodedcharacter
statedatafororganismsunderstudy.
Thus,itistheanalysisofvarioustypesoftaxonomicdataby
mathematicalorcomputerizedmethodsandnumericalevaluationof
thesimilaritiesoraffinitiesbetweentaxonomicunits,whicharethen
arrangedintotaxaonthebasisoftheiraffinities.
AccordingtoHeywoodthenumericaltaxonomymaybedefinedasthe
numericalevaluationofthesimilaritybetweengroupsoforganisms
andtheorderingofthesegroupsintohigherrankingtaxaonthebasis
ofthesesimilarities.
Numericaltaxonomyinvolvestwoaspects-
i.Constructionoftaxonomicgroupsbyinvolvingthelargernumberof
charactersandtheresemblanceonthebasisofclusteranalysis,
Ii.Discriminationofthetaxonomicgroupstoshowtheoverlappingof
charactersandthediscriminationisusedtoselectthem.

WHAT IS NUMERICAL TAXONOMY?
Theperiodfrom1957to1961sawthedevelopmentoffirstmethodsand
oftheoryofnumericaltaxonomy.Plantsasweallknowareclassified
basedontheircharacters.ItwasMichelAdanson,aFrenchbotanist,who
forthefirsttimeputforwardaplanforassigningnumericalvaluestothe
similaritybetweenorganismsandproposedthatequalweightageshould
begiventoallthecharacterswhileclassifyingplants.
Heusedasmanycharactersaspossiblefortheclassification,andsuch
classificationscametobeknownasAdansonianclassifications.
Numericaltaxonomywashoweverlargelydevelopedandpopularizedby
SneathandSokal.
TheapplicationofAdansonianprinciplesanduseofmodernmethodsand
electronicdata-processingtechniques,havehelpedintheevolutionof
severalnewclassificationsofplantsduringthepastfewdecades.
Phylogeneticconclusionscanbedrawnfromthetaxonomicstructureofa
groupandfromcharactercorrelationsassumingsomeevolutionary
mechanismsandpathways.
Thescienceoftaxonomyisviewedandpracticedasanempiricalscience

PRINCIPLES OF NUMERICAL TAXONOMY
PRINCIPLES:
i.Themoretheselectionofcharacters,themoretheclarity&authentic
theclassification,
ii.EveryCharactersshouldbegivenequalweightage,
iii.Theentireclassificationbasicallyshouldbedoneontheirbasisof
pheneticapproach.
(a)ConstructionofTaxonomicGroups:
i.Anysample,item,individualisselectedtoanalyzeOUTwhichisthe
basicunitofNumericalTaxonomy
ii.Innumericaltaxonomy,first,individualsareselectedandtheir
charactersspottedout.Thereisnolimitationtothenumberofcharacters
tobeconsidered.However,thelargerthenumberofcharacters,betteris
theapproachforgeneralizationofthetaxa.
ii.Theresemblancesamongtheindividualsarethenestablishedonthe
basisofcharacteranalysis,whichcanoftenbeworkedoutwiththehelp
ofcomputers,theaccuracyofwhichdependsontheappropriatenessin
character.Thebestwaytodelimitatetaxais,toutilizemaximumnumber
ofcharacters,withsimilarweightagegiventoallofthem.

PRINCIPLES OF NUMERICAL TAXONOMY
(b)DiscriminationoftheTaxonomicGroups:
Whenthetaxonomicgroupschosenforthestudyshowoverlappingof
characters,discriminationshouldbeusedtoselectthem.
Discriminationanalysiscanbedonebyvarioustechniques,specially
devisedforsuchpurposes.Numericaltaxonomyisthus,basedon
certainprinciples,alsocalledneoAdansonianprinciples.
Principles of numerical taxonomy have been enumerated by
Sneath and Sokal:
(i) The greater the content of information in the taxa, and more the
characters taken into consideration, the better a given classification
system will be.
(ii) Every character should be given equal weightage in creating new
taxa.
(iii) The overall similarity between any two entities is a function of
the individual similarities in each of the many characters, which are
considered for comparison.

PRINCIPLES OF NUMERICAL TAXONOMY
(iv)Correlationofcharactersdifferinthegroupsoforganismsunder
study.Thusdistincttaxacanberecognized.
(v)Phylogeneticconclusionscanbedrawnfromthetaxonomicstructure
ofagroupandfromcharactercorrelations,assumingsomeevolutionary
mechanismsandpathways.
(vi)Thescienceoftaxonomyisviewedandpracticedasanempirical
science.
(vii)Pheneticsimilarityisthebaseofclassifications.
SLECTIONOFCHARACTERS:
Theunitcharactersmaybetwoormorestatesdependinguponthenature
ofthecharacterstakenintoaccountsuccessiveweightageshouldbe
employedforhomoplasywhichartebasicallyuniqueinallrespect.
A.BinaryCharacters:Thischaractersbasicallydenoteonlytwostates-
presentorabsentdenotedby+/-or1/0,ifmissingdenotedwithNC
B.MultistateCharacters:Moredifferentstatesofcharactersareexplored
eitherqualitativeorquantitative.Itisdenotedwith0,1,2,3,4,5,6,7etc.
Forexamplecoloroftheflowertobedenotedbydifferentassigned
valuesforeachcolor.

PRINCIPLES OF NUMERICAL TAXONOMY
RULES:
Therearenumberofrulesarefollowedinthisregardasstatedbelow.
i.Thecharactersmusttobechosenalmostallpartsoftheorganism
irrespectiveoftheoccurrence,
Ii.Notlessthan50charactersaretobeconsideredinthisanalysis,
Thecharactersmustcomprisealmostallthestagesofthelifecycleof
theplants,
Attentiontobegiveninalltherespectswithspecialreferenceto
morphology,physiology,ecologyetc.
CHARACTERS WEIGHTING:
1.Equalweightage–Allthecharactersshouldbegivenequalweightage
asthenumericaltaxonomydeservesequalimportanceofallthe
measurableunits,
Ii.SuccessiveWeightage-Homoplasycharacterswhichareuniquein
realsenselikethorns,spinesetcshouldbegivenmoreweightagefor
consideration

CLUSTER ANALYSIS
Itisastatisticaltoolinwhichmoresimilarelementsareplacedinone
groupratherdifferentfromobjectsbelongingtoothergroupsusedfor
theexploratorydataanalysis.Here,mostlycomputerdrivensoftware
sortouttheOTUsaccordingtotheiroverallsimilarityandproducesa
phenogram,akindofdendogramwhichshowsthetaxonomic
relationshipbetweenthetwoorganisms.
Itcanbedonebytwocategoriesmethods-
A.Hierarchicalclusteranalysismethod-twotypes.Agglomerativeand
divisivemethod.Intheagglomerativemethod,allobjectsstartin
separateclusterstillslowlythesimilarobjectsarecombinedandthe
optimumnumberischosenfromamongalloptions.
Indivisivemethod,allobjectsstartinthesameclusteranditisreverse
ofagglomerativemethod
B.Non-hierarchicalclusteranalysismethod.

CLUSTERING METHODS
Clusteringcanbedonebytwomethods-
Monolethicsystem-thissystememploystheattributesoneatatime.
Thismethodleadstotheartificialclustering.
Consideringalltheirattributessimultaneously,thismethodgivesa
naturalgrouping.Oneclustergroupisseparatedfromtheotherby
dividinglinewhichindicatesadistinctgapbetweenthetwo.
PheneticClusteringmethods:
Itismostlypheneticapproachesandisnowrarelyemployedin
taxonomyastheyoftenleadtosubstantiallydifferentclusterswhen
appliedtorealdata.Thefollowingmethodismostlyusedinthiscase.
Nearestneighborclusteringmethod:Itiscalledasinglelinkage
clustering.HerephenogramsareconstructedbyjoiningOTUsand
groupsonthebasisoftheirsimilarmembersi.ealmostshortest
distance.WhetheranOUTwilljoinanexistingclusterdependsonits
maximumsimilarity(orminimumdistancefrom)anymemberofthat
cluster.APhenogramisinitiatedbyjoiningthetwomostsimilarOTUs.
Thefollowingexamplecanimpregnatetheconcept.

SIMILARITY MATRIX
C B A
A 0.40 0.63 1.0
B 0.53 1.0
C 1.0

Sequence Procedure involved in the Phenetic Clustering of the
aforesaid three taxa:
STEP ACTION RESULT ACTION TREE
1. Find greatest
similarity less
than unity
0.63( A-B)Join A to B at
level 0.63
See on the
next page
2. Find the next
highest
similarity
0.53 ( B-C) Join C to
A+B Cluster
at level 0.53
See on the
next page

Sequence Procedure involved in the Phenetic Clustering of the aforesaid
three taxa.

I-Cladograms, II-Phylogram, III-Dendrogram

ADVANTAGES
a.Thedataofconventionaltaxonomyisimprovedbynumerical
taxonomyasitutilizesbetterandmorenumberofdescribed
characters.Thedataarecollectedfromavarietyofsources,suchas
morphology,chemistry,physiology,etc.
b.Asnumericalmethodsaremoresensitiveindelimitingtaxa,the
dataobtainedcanbeefficientlyusedintheconstructionofbetterkeys
andclassificationsystems,creationofmaps,descriptions,catalogues,
etc.withthehelpofelectronicdataprocessingsystems.Numerical
taxonomyhasinfactsuggestedseveralfundamentalchangesinthe
conventionalclassificationsystems.c.Thenumberofexisting
biologicalconceptshavebeenreinterpretedinthelightofnumerical
taxonomy.
C.
d.Numericaltaxonomyallowsmoretaxonomicworktobedoneby
lesshighlyskilledworkers.

DISADVANTAGES
a.Thenumericalmethodsareusefulinpheneticclassifications
andnotphylogeneticclassifications.
b.Theproponentsof“biological”speciesconcept,maynot
acceptthespecificlimitsboundbythesemethods.
c.Characterselectionisthegreatestdisadvantageinthis
approach.Ifcharacterschosenforcomparisonareinadequate,
thestatisticalmethodsmaygivelesssatisfactorysolution.
d.AccordingtoSteam,differenttaxonometricproceduresmay
yielddifferentresults.Amajordifficultyistochoosea
procedureforthepurposeandthenumberofcharactersneeded
inordertoobtainsatisfactoryresultsbythesemechanicalaids.
Itisnecessarytoascertainwhetheralargenumberof
characterswouldreallygivesatisfactoryresultsthanthose
usingasmallernumber.

APPLICATIONS OF NT
a.Studyofsimilaritiesanddifferencesinbacteria,othermicro-
organismsandseveralanimalgroups.
b.DelimitationofseveralangiospermicgeneralikeOryza,
SarcostemmaSolarium,andothergroupsincludingFarinosaeof
Englerandafewothers.
c.Inthestudyofseveralotherangiospermgeneraincluding
Apocynum,Chenopodium,Crotalaria,Cucurbita,Oenothera,Salix,
Zinnia,wheatcultivars,Maizecultivars,etc.
d.Phyto-chemicaldatafromseedproteinandmitochondrialDNA
RELPstudieshasbeennumericallyanalyzedbyMondaletal.tostudy
theinter-specificvariationsamongeightspeciesofcassiaL.Basedon
theresultsofelectrophoresispatterns,thedegreeofpairingaffinity
(PA)orsimilarityindexwascalculatedbythefollowingformula,
accordingtothemethodofSokal&SnethandRomeroLopesetal.:

PHENOGRAM
Phenogramsatypeofdendrogramwhichisbasedonpheneticdata.
Linescalledphenonlines,drawnatrightanglestothedichotomously
branchingdendrogram,representlinesofpercentagesimilarityof
pheneticfeaturesbetweenorganisms.APhenogramismainlybuiltup
onthedataofthenumericalanalysisofpheneticdata.Duringthe
constructionofdiagram,resultsoflargenumberofcharactersdatafrom
allavailablefieldaretaken.Itincludescalculatingthesimilarity
betweentaxaandconstructingadiagramthroughclusteranalysis.
Phenogramisveryusefulasitinvolvesalargenumberofcharacters.
Further,hierarchicalclassificationcanbeachievedbydecidingupon
thesimilaritybetweentaxaassignedtovariousrank.

PHENOGRAM

CLADOGRAM
ACladogramisadiagramusedincladisticstoshowrelationships
amongorganisms.Acladogramisnot,however,anevolutionarytree
becauseitdoesnotshowhowancestorsarerelatedtothedescendents,
nordoesitshowhowmuchtheyhavechanged;manyevolutionary
treescanbeinferredfromasinglecladogram.ACladogramuseslines
thatbranchoffindifferentdirectionsendingatclade,agroupof
organismsderivedfromalastcommonancestor.Therearemanyshapes
ofcladogramsbutallhavelinesthatbranchofffromothers.Thelines
canbetracedbacktowheretheybranchoff.Thesebranchingpoint
representsahypotheticalancestorwhichcanbeinferredtoexhibitthe
traitssharedamongtheterminaltaxaaboveit.Thehypothetical
ancestormightthenprovidecluesabouttheorderofevolutionof
variousfeatures,adaptationandotherevolutionarynarrativesaboutthe
ancestor.Primarily,themorphologicaldataaremostlyusedbutwiththe
passageoftime,DNA,RNAsequencingdataarenowcommonlyused
inthegenerationofcladograminadditiontotheconventionaldata.

CLADOGRAM

DIFFERENCE BETWEEN CLADISTICS & PHENETICS
Cladistics Phenetics
It is the method of the classifying
organisms on the basis of their
ancestry & evolutionary relationships.
It is the method of the classifying
organisms based on the structural &
morphologicalcharacters that are
observable.
Mostly evolutionary relationships,
genetic similarity & ancestry related
characters are taken into account
Structure , morphology and ecological
characters are taken into account .
Cladograms of phylogenetic tree is
considered to describe relationship.
Phenograms areused to describe
relationship
High accuracy & high reproducibilityLow accuracy & low reproducibility.
Taxamaybegroupedtogetherby
sharedgroupcharacterstates
(Synapomorphies)Only
Taxamaybegroupedtogetherby
shared ancestral features
(Symplesiomorphies)aswellshared
derivedcharacterstates(
Synapomorphies)

HOPE, YOU HAVE
ENJOYED THE JOURNEY
THANK YOU TO EXPLORE
THE ROAD

ACKNOWLEDGEMENT
Googleforimages
CollegeBotany-B.P.Pandey
AdvancedPlantTaxonomybyA.K.Mondal
ATextbookofBotany-Hait,Bhattacharya&Ghosh
PlantTaxonomy–O.P.Sharma
TextBookofPlantSystematics-ChittaranjanMohanty
TaxonomyofVascularplants-H.G.Lawrence.
Disclaimer:
Thispresentationhasbeendevelopedfortheenrichmentofonline
learningwithoutanyfinancialinterest.Theauthorisgratefulforallfor
havingthepleasureofusesofthecontentusedinthispresentation.