Ocean Thermal Energy Conversion (OTEC) : Methods & Benefits.

ManojPralhadsaMule 180 views 14 slides Sep 30, 2024
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

Topic: Ocean Thermal Energy Conversion (OTEC)

Overview:
The presentation introduces OTEC, a renewable energy technology that uses the temperature difference between warmer surface ocean water and colder deep ocean water to generate electricity. It highlights OTEC's ability to provide base-load ...


Slide Content

Sanjivani Rural Education Society’s
Sanjivani College of Engineering, Kopargaon-423 603
(An Autonomous Institute, Affiliated to Savitribai Phule Pune University, Pune)
NAAC ‘A’ Grade Accredited, ISO 9001:2015 Certified
Department of Electrical Engineering
Ocean-ThermalEnergy Conversion (OTEC) :
Methods and Benefits
Roll No. Name PRN No.
40 RushikeshKshirsagar UEE22M1039
42 PremMule UEE22M1044
43 AdityaNaikwade UEE22M1045
44 ShrihariPakhale UEE22M1046
Guided By -
Name –Prof. P.S. Chobe
Designation –Asst. Professor
Course –RES (EE305A)
Presented By –Group No: 07
DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon
Self Learning Activity

Introduction to OTEC
2
❑Ocean-ThermalEnergyConversion(OTEC)isarenewableenergytechnologythatutilizesthe
temperaturedifferencebetweenthewarmersurfacewatersoftheoceanandthecolderdeep
waterstogenerateelectricity.
❑OTECcanoperatecontinuously,providingbase-loadpowerunlikeintermittentsourcessuchas
windorsolar.Thetemperaturedifferencerequiredisusuallyabout20degreeCelsiusormore,
whichoccursintropicalregions.
❑OTECisfirmpower(24/7),acleanenergysource,environmentallysustainableandcapableof
providingmassivelevelsofenergy.
DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Heat Exchange: OTEC takes advantage of the natural thermal gradient between warm surface water (about 25-30°C)
and cold deep water (about 5°C or less).
3
Basic Working Principle
DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon
EnergyGeneration:Thewarmwaterheatsaworkingfluid,
suchasammonia,whichvaporizesandspinsaturbine
connectedtoagenerator,producingelectricity.
Cooling:Coldwaterfromthedeepoceanispumpedtothe
surfacetocoolandcondensethevaporizedworkingfluid,
completingthecycle.

❑Thistemperaturegradientis
relativelysmall,soOTECplants
requirelargevolumesofwater
toproduceelectricity.
❑Thedeeperthewater,thecolder
itbecomes,usuallysourced
fromdepthsof600-1,000
meters.
4
Basic Working Principle
DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Types of OTEC Systems
1)Closed-cycleOTEC:Aworkingfluid(ammonia,propane,orotherlow-boilingpointfluids)
circulatesinaclosedloop.Thefluidisvaporizedbywarmsurfacewaterandcondensedbycool
deepwater.Thevaporizedfluiddrivesaturbinetogenerateelectricity,andthefluidisthen
cooledandrecycled.
2)Open-cycleOTEC:Seawateritselfactsastheworkingfluid.Warmseawaterisevaporatedina
low-pressureenvironment,creatingsteamthatdrivesaturbine.Thesteamiscondensedbycold
seawater,producingfreshwaterasaby-product.
3)HybridOTEC:Itcombinesfeaturesofbothclosedandopen-cyclesystems.Itusesopen-cycle
togeneratesteamfromseawater,thenutilizesaclosed-cyclelooptoboostefficiencyandpower
output.
❑Closed-cycleOTECismoreefficientandstablebutrequirestheuseofaworkingfluid.
❑Open-cycleOTECislessefficientbutcanprovidedesalinatedwater.
5DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Closed-cycle OTEC
1)Inaclosed‐cycleOTEC(CC‐OTEC)system,warmsurfaceseawaterprovidesheattoaworkingfluidwith
alowboilingpointtovaporizetheworkingfluidtodriveaturbinegenerator.
2)Hybridsystemscombinecomponentsofbothopen‐cycleandclosed‐cyclesystemstomaximizetheuseof
thepumpedseawaterthermalresourceavailabletoproducebothpowerandwater.Forexample,thesteam
generatedbyflashevaporationinOC‐OTECcanthenbeusedastheheattodriveCC‐OTECprocesses.
6DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Open-cycle OTEC
1)Open‐cycleOTEC(OC‐OTEC)useswarmsurfaceseawaterastheworkingfluid,injectedintoavacuum
chamberwherethepressureisreducedbelowthesaturationvaluecorrespondingtoitstemperature,thus
causingflashevaporation.Theresultinglow‐pressuresteamexpandstodriveaturbinegenerator.
7DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

❑OffshoreOTECreferstoOceanThermalEnergyConversion
systemsthatarelocatedawayfromthecoast,typicallyindeep
oceanwaterswherethetemperaturedifferencebetweenwarm
surfacewaterandcolddeepwaterissufficientforefficientenergy
conversion.OffshoreOTECsystemsareoftenmountedonfloating
platformsoranchoredstructures,allowingthemtoaccessdeeper,
colderwaters.
8
Offshore OTEC
DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon
Benefits of Offshore OTEC:
❑Access to Greater Temperature Gradients
❑Minimal Land Use
❑Energy Independence

Benefits of OTEC
❑ImmenseResource
❑BaseloadPower
❑DispatchablePower
❑Security
❑Renewable
❑LowRisk
❑CleanEnergy
❑Offshore
9DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Environmental and Economic Impact
1)MinimalEnvironmentalFootprint:OTECplantshavealowimpactonmarineecosystems
whendesignedproperly.Theyavoidharmfulemissionsanddonotrequirefuel.
2)EnergyforRemoteLocations:OTECisparticularlyusefulfortropicalislandsandcoastal
regionsthatlackaccesstotraditionalenergygrids.
3)EconomicDevelopment:Byreducingrelianceonfossilfuels,OTECcanhelpislandnations
andtropicalcountriesachieveenergyindependence,loweringimportcosts.
❑Thepotentialenvironmentaleffects,suchasalteringoceancurrentsoraffectingmarinelife,are
minimalifdesignedwithcare.
❑OTECcandiversifyenergysources,makingeconomiesmoreresilienttoenergyprice
fluctuations.
10DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Challenges of OTEC
1)HighInitialCosts.
2)LocationConstraints.
3)EnergyEfficiency.
4)TechnologicalBarriers.
❑OTECtechnologyisstillinthedevelopmentalphase,andcommercialviabilitydependson
overcomingtechnicalchallengesandimprovingefficiency.
11DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

Conclusion
❑OTECrepresentsapromisingrenewableenergytechnology,particularlyfortropicalregions,
offeringbothenergyproductionanddesalinatedwater.
❑Whiletherearechallenges,suchashighcostsandtechnicalbarriers,ongoingresearchandpilot
projectsshowthatOTEChassignificantpotentialtocontributetoglobalsustainabilityefforts.
12DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

References
1)A.Hossain,A.Azhim,A.B.Jaafar,M.N.Musa,S.A.ZakiandD.N.Fazreen,"Oceanthermalenergy
conversion:Thepromiseofacleanfuture,"2013IEEEConferenceonCleanEnergyandTechnology
(CEAT),Langkawi,Malaysia,2013,pp.23-26,doi:10.1109/CEAT.2013.6775593.
2)2)L.Meegahapola,L.UdawattaandS.Witharana,"TheOceanThermalEnergyConversionstrategiesand
analysisofcurrentchallenges,"2007InternationalConferenceonIndustrialandInformationSystems,
Peradeniya,SriLanka,2007,pp.123-128,doi:10.1109/ICIINFS.2007.4579160.
3)3)S.K.WangandT.C.Hung,"Renewableenergyfromthesea-organicRankineCycleusingocean
thermalenergyconversion,"ProceedingsoftheInternationalConferenceonEnergyandSustainable
Development:IssuesandStrategies(ESD2010),ChiangMai,Thailand,2010,pp.1-8,doi:
10.1109/ESD.2010.5598775.
4)4)A.Najafi,S.RezaeeandF.Torabi,"Sensitivityanalysisofaclosedcycleoceanthermalenergy
conversionpowerplant,"2012SecondIranianConferenceonRenewableEnergyandDistributed
Generation,Tehran,Iran,2012,pp.1-6,doi:10.1109/ICREDG.2012.6190461.
5)5)BimalK.Bose,"OCEANANDGEOTHERMAL RENEWABLE ENERGYSYSTEMS,"inPower
ElectronicsinRenewableEnergySystemsandSmartGrid:TechnologyandApplications,IEEE,2019,
pp.391-441,doi:10.1002/9781119515661.ch8.
13DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon

DEPARTMENT OF ELECTRICAL ENGINEERING, Sanjivani COE, Kopargaon 14
THANK
YOU…!