ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 23, No. 4, August 2025: 1058-1068
1066
REFERENCES
[1] J. Yang et al., “Fast and High-Precision Shape Sensing Based on Dual-Comb Fiber Bragg Grating Array Demodulation,” J. Light.
Technol., 2024, doi: 10.1109/JLT.2024.3451053.
[2] Y. Yu, B. Liu, and F. Xia, “Design optimization of sensitivity-enhanced structure for fiber Bragg grating acoustic emission sensor based
on additive manufacturing,” Sensors, vol. 22, no. 2, p. 416, 2022, doi: https://doi.org/10.3390/s22020416.
[3] B. Li et al., “Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscope,” Fundam. Res., 2022, doi:
10.1016/j.fmre.2022.05.026.
[4] R. Guo, P. Zhou, W. Zhang, H. Song, and S. Liu, “Study on the Thermal Radiation Characteristics of Tungsten Surface Grating
Structures Prepared by Femtosecond Laser Direct Writing,” Coatings, vol. 14, no. 8, p. 1045, 2024, doi: 10.3390/coatings14081045.
[5] W. Lei and H. Chen, “Reflectivity measurement of fiber Bragg grating by cavity ring-down spectroscopy technique,” Optik (Stuttg).,
vol. 172, pp. 526–530, 2018, doi: 10.1016/j.ijleo.2018.07.063.
[6] J. E. Gómez-Correa et al., “Roadmap on Advances in Visual and Physiological Optics,” arXiv Prepr. arXiv2411.14606, 2024, doi:
10.48550/arXiv.2411.14606.
[7] B. Sarkar, D. K. Mishra, C. Koley, N. K. Roy, and P. Biswas, “Intensity-modulated fiber Bragg grating sensor for detection of partial
discharges inside high-voltage apparatus,” IEEE Sens. J., vol. 16, no. 22, pp. 7950–7957, 2016, doi: 10.1109/JSEN.2016.2608743.
[8] S. Kanakambaran, R. Sarathi, and B. Srinivasan, “Identification and localization of partial discharge in transformer insulation adopting
cross recurrence plot analysis of acoustic signals detected using fiber Bragg gratings,” IEEE Trans. Dielectr. Electr. Insul., vol. 24, no.
3, pp. 1773–1780, 2017, doi: 10.1109/TDEI.2017.006407.
[9] H. Kwon, S. Kim, and D. Kim, “Fiber-optic strain sensor based on FBG and InGaAs photodiode for structural health monitoring of
wind turbine blades,” IEEE Sens. J., vol. 20, no. 20, pp. 11908–11916, 2020, doi: 10.1109/JSEN.2020.3016283.
[10] N. A. Ushakov and L. B. Liokumovich, “Multiplexed extrinsic fiber Fabry–Perot interferometric sensors: resolution limits,” J. Light.
Technol., vol. 33, no. 9, pp. 1683–1690, 2015, doi: 10.1109/JLT.2015.2396201.
[11] Z. Gong et al., “Wearable fiber optic technology based on smart textile: A review,” Materials (Basel)., vol. 12, no. 20, p. 3311, 2019,
doi: 10.3390/ma12203311.
[12] Q. Song et al., “Improved localization algorithm for distributed fiber-optic sensor based on merged Michelson-Sagnac interferometer,”
Opt. Express, vol. 28, no. 5, pp. 7207–7220, 2020, doi: 10.1364/OE.384728.
[13] J. M. Lukens, N. A. Peters, and R. C. Pooser, “Naturally stable Sagnac–Michelson nonlinear interferometer,” Opt. Lett., vol. 41, no. 23,
pp. 5438–5441, 2016, doi: 10.1364/OL.41.005438.
[14] J. Cheng, Q. Song, H. Peng, J. Huang, H. Wu, and B. Jia, “Optimization of VGG16 algorithm pattern recognition for signals of
Michelson–Sagnac interference vibration sensing system,” in Photonics, MDPI, 2022, p. 535. doi: 10.3390/photonics9080535.
[15] M. Ghorat, G. B. Gharehpetian, H. Latifi, M. A. Hejazi, and A. Layeghi, “Partial discharge acoustic emission detector using mandrel-
connected fiber Bragg grating sensor,” Opt. Eng., vol. 57, no. 7, p. 74107, 2018, doi: 10.1117/1.OE.57.7.074107.
[16] M. Pisco, D. Darwich, A. Youssef, H. Zaraket, and A. Cusano, “Fiber Bragg grating interrogation system based on the laser wavelength
modulation in a digital supermode-distributed Bragg reflector laser,” J. Light. Technol., vol. 41, no. 2, pp. 684–694, 2023, doi:
10.1109/JLT.2022.3216268.
[17] H. T. Tung, N. Le Thai, M. H. N. Thi, and H. T. Thien, “The design and optical properties of orthosilicate phosphor-bredigite-like
structure as a green light component in WLED device,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 22, no.
2, pp. 454–461, 2024, doi: 10.12928/telkomnika.v22i2.25286.
[18] D. Hanto and R. K. Ula, “Characterization of transimpedance amplifier as optical to electrical converter on designing optical
instrumentation,” in Journal of Physics: Conference Series, IOP Publishing, 2017, p. 12022. doi: 10.1088/1742-6596/853/1/012022.
[19] M. Y. Rofianingrum, Y. Otagaki, and H. Murata, “Electro-optic MMI coupler as wavelength demultiplexer for advanced SDM wireless-
WDM optical signal converter,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 22, no. 4, pp. 822–829, 2024,
doi: 10.12928/telkomnika.v22i4.25950.
[20] S. Kumar, B. Amrutur, and S. Asokan, “Evaluation of fiber Bragg grating sensor interrogation using InGaAs linear detector arrays and
Gaussian approximation on embedded hardware,” Rev. Sci. Instrum., vol. 89, no. 2, 2018, doi: 10.1063/1.5022548.
[21] D. Tosi, “Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications,” Sensors, vol. 18, no. 7, p. 2147,
2018, doi: 10.3390/s18072147.
[22] F. Mumtaz, B. Zhang, J. D. Smith, R. J. O’Malley, R. Gerald, and J. Huang, “Ultra-Fast Annealing Improves SNR and Long-term
stability of a Highly Multiplexed Line-by-Line FBG Array Inscribed by Femtosecond Laser in a Coreless Fiber for Extreme-
Temperature Applications,” IEEE Trans. Instrum. Meas., 2024, doi: 10.1109/TIM.2024.3370806.
[23] R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express,
vol. 26, no. 4, pp. 4411–4420, 2018, doi: 10.1364/OE.26.004411.
[24] L. G. Wright et al., “Multimode nonlinear fiber optics: massively parallel numerical solver, tutorial, and outlook,” IEEE J. Sel. Top.
Quantum Electron., vol. 24, no. 3, pp. 1–16, 2017, doi: 10.1109/JSTQE.2017.2779749.
[25] K. Pereira, W. Coimbra, R. Lazaro, A. Frizera-Neto, C. Marques, and A. G. Leal-Junior, “FBG-based temperature sensors for liquid
identification and liquid level estimation via random forest,” Sensors, vol. 21, no. 13, p. 4568, 2021, doi: 10.3390/s21134568.
[26] R. Lazaro, A. Frizera-Neto, C. Marques, C. E. S. Castellani, and A. Leal-Junior, “Fbg-based sensor for the assessment of heat transfer
rate of liquids in a forced convective environment,” Sensors, vol. 21, no. 20, p. 6922, 2021, doi: 10.3390/s21206922.
[27] B. Meyzia, M. Hamdi, Saktioto, and R. Amelia, “Imaging Analysis of Thresholding Image Filtering, Brain Abnormalities Morphology,
and Dose Report CT Scan Records,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Nov. 2020. doi: 10.1088/1742-
6596/1655/1/012155.
[28] Y. Ye et al., “Flexible InGaAs Photodetector With High-Speed Detection and Long-Term Stability,” IEEE J. Sel. Top. Quantum
Electron., 2024, doi: 10.1109/JSTQE.2024.3350431.
[29] R. Rohan, K. Venkadeshwaran, and P. Ranjan, “Recent advancements of fiber Bragg grating sensors in biomedical application: a
review,” J. Opt., vol. 53, no. 1, pp. 282–293, 2024, doi: 10.1007/s12596-023-01134-9.
[30] M. A. Riza, Y. I. Go, S. W. Harun, and R. R. J. Maier, “FBG sensors for environmental and biochemical applications—A review,”
IEEE Sens. J., vol. 20, no. 14, pp. 7614–7627, 2020, doi: 10.1109/JSEN.2020.2982446.
[31] R. Gao et al., “Temperature compensated three-dimension fiber optic vector magnetic field sensor based on an elliptical core micro
fiber Bragg grating,” Opt. Express, vol. 28, no. 5, p. 7721, Feb. 2020, doi: 10.1364/oe.384926.
[32] E. Liokumovitch, Z. Glasser, L. Singh, R. Abramov, and S. Sternklar, “Optoelectronic chromatic dispersion in germanium PN
photodiodes: wavelength monitoring and FBG interrogation,” Opt. Lett., vol. 46, no. 16, pp. 4061–4064, 2021, doi: 10.1364/OL.435159.
[33] H. Dong et al., “Design and Simulation of a High-Responsivity Dielectric Metasurface Si-Based InGaAs Photodetector,” in Photonics,
MDPI AG, 2024, p. 906. doi: 10.3390/photonics11100906.