organic chemistry short notes pdf reactions

Rohanchavan9thF23 148 views 83 slides Nov 28, 2024
Slide 1
Slide 1 of 83
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83

About This Presentation

organic chemistry


Slide Content

Organic
Chemistry
Charts
For all competitive exams (Mains and NEET have lesser reactions in syllabus)

Homogeneous Equilibria
Heterogeneous equilibria
Equilibrium constant in gaseous system
Br—CH
2
—CH
2
Br—R (1° & 2°)
Br—R (2° & 3°)
Br—R (Wurtz reaction)
R
2
Zn
(Frankland reaction)
R
2
CuLi (Corey
house synthesis)
Alkanes
Zn-Cu couple EtOH
Zn/Ac. OH; Zn—NaOH
LiAlH
4
Et
2
O
NaBH
4
Na/Et
2
O
R"—X
R'—X
(R' 1°, 2°, cyclic)
CH
2
=CH
2
H
2
/Pt, Ni, Pd
200 °C
Raney Ni/250°C
Sabatier Senderens Reduction
H
2
N—NH
2
/H
2
O
2

Syn add
n
.
CH
2
=CH
2
Transfer
Hydrogenation
+ CH
2
=CH
2
/Pd—C/∆
CH
3
—CH=CH
2
B
2
H
6
/H
3
C—C—OH/H
2
O
O
||
Preparation of Alkanes

Homogeneous Equilibria
Heterogeneous equilibria
Equilibrium constant in gaseous system
H—C—CH
3
O
||
H
3
C—C—CH
3
O
||
HO—C—CH
3
O
||
Al
4
C
3
Alkanes
HI/Red P.
HI/Red P.
HI/Red P.
H
2
O
—4Al(OH)
3
CH
3
—C—R
O
|| Zn-Hg/HCl
(Clemmensen Reduction)
H
3
C—C—H
O
||
H
3
C—C—ONa
||
O
NH
2
NH
2
/EtO

Na
+
(Wolf kishner reduction)
Kolbe's electrolysis
HO—CH
2
—CH
3
HI/Red P.
H
3
C—C—OH
||
O
NaOH + CaO / heat
Properties of Alkanes

H
3
C—C—H
CH
3
|
|
CH
3
KMnO
4
H
3
C—C—OH
CH
3
|
|
CH
3
Oxidation:
Insertion:
CH
3
—CH
2
—H
CH
2
N
2
/∆
CH
2
=C=O/∆
CH
3
—CH
2
—CH
2
—H
CH
3
—CH₂—X [F₂>Cl₂>Br₂>I₂]
X
2
hv
Cl₂
Br₂
CH
3
—CH₂—Cl
HNO₃
H₂SO₄/400
CH
3
—CH₃
hv
hv
HIO₃
I₂
CH
3
—CH₂—Br
CH
3
—CH₂—I
H₂SO₄ + SO₃
SO₂Cl₂
hv
CH
3
—CH₂—Cl
(3
0
>2
0
>1
0
)CH
3
—CH₂—SO₃H
CH
3
—NO₂ + CH₃—CH₂—NO₂
CH
4
CH
3
—OH
O
2
, Cu tube
200°C, 100 atm
CO
2
+ H
2
Mo
2
O
3
/O
2

NH
3
/Al
2
O
3
700°C
H—C≡N
O=CH
2
Ni/Steam
Properties of Alkanes

Aromatization: ;
Cr
2
O
3
/Al
2
O
3
500°C
Cr
2
O
3
/Al
2
O
3
500°C
—CH
3
Isomerization :
Anh AlCl
3
HCl
CH
3
(CH
2
)
5
CH
3
Anh AlCl
3
HCl
CH
3
(CH
2
)
5
CH
3
Anh AlCl
3
HCl
(Triptane) (2,2,3-trimethyl butane)
; ;
Combustion :
C
n
H
2n+2
+
3n + 1
2
O
2

nCO
2
+ (n+1)H
2
O
CH
4
+ 2O
2
CO
2
+ 2H
2
O
CH
3
—CH
3
+
7
2
O
2
2CO
2
+ 3H
2
O
Pyrolysis :
2CH
3
—CH
2
—CH
3

600°C
CH
3
—CH=CH
2
+ CH
3
—CH
3
+ CH
4
+ H
2
CH
3
—CH
2
—CH
2
—CH
3

600°C
CH
3
—CH
2
—CH=CH
2
+ + +
Properties of Alkanes

O=C—R
H
|Ph
3
P=CH
2
(ylides)
Wittig Reaction
R—CH
2
—CH
2
X
|
R—CH—CH
2
X
|
X
|
R—CH
2
—CH
X
|
|
X
Alc. KOH
−HX
Zn dust
Δ
Zn dust
For Higher Alkene
R—CH=CH
2
(C
n
H
2n
)
R
2
CuLi
H
2
C=CH—Cl
(X:Cl, Br,l) ➝ Saytzeff Rule
Corey house
Preparation of Alkenes

Alkenes
R—CH=CH
2
Alkanes
Pyrolysis
600°C
R—C≡C—R
Na + liq. NH
3
Birch reduction
Pd + CaCO
3
/BaSO
4
Lindlar’s Catalyst
Ni
2
—B
Trans
Cis
Hoffman’s product,
i.e. less stable alkene
(major product)
Conc. H
2
SO
4
, Δ
H
3
PO
4
or P
2
O
5
, Δ
Al
2
O
3
, Δ
ThO
2
Δ
Cope’s
Elimination
Pyrolysis of ester
Pyrolysis of tri
alkyl amine oxide
Pyrolysis of tetra alkyl amm. ion
Kolbe’s
Electrolysis
R—OHalcohols
R—CH—COOK
|
R—CH—COOK
Preparation of Alkenes

Alkenes
R—CH=CH
2
H
2
R—CH—CH
X
| X
2
/CCl
4
|
X
R—CH—CH
3
|
X
R—CH—CH
2
X
|
|
OH
R—CH—CH
3
|
OH
R—CH
2
—CH
2
OH
R—CH—CH
3
OH
|
[No rearrangements]
[No rearrangements]
Alkanes
X
2
/H
2
O
No rearrangement
H
2
O/H
+
MK rule
rearrangement
BH
3
/H
2
O
2
,
OH
-
AMK rule
H—X
MK rule
rearrangement
(i) (AcO)
2
Hg/H
2
O
(ii) NaBH
4
/HO
-MK rule
Properties of Alkenes

CH
2
N
2

Cyclo addition of carbene
Alkenes
R—CH=CH
2
NO—Cl
MK rule
No rearrangement
R—CH—CH
2
CH
2
insertion of carbene
Cl
2
/500°C
N.B.S
Combustion
CO
2
+ H
2
O
K
2
Cr
2
O
7
KMnO
4
/ OH
-
OsO
4
/ H
2
O
Ag+1/2O
2
Followed by Hydrolysis
R—CO
2
OH
Followed by Hydrolysis
O
3
Zn/H
2
O
Allylic Substitution
Glycol (syn)
Glycol (anti)
Carbonyl
compounds
R—CH—CH
2
—NO
Cl
|
Properties of Alkenes

+
SeO₂ CO+H₂
CO(CO)₄
CH
3
—CH—CH₂
CH
3
—CH=CH₂
CH
2
—CH—CH₂
O—H
CO+H₂O
Co(CO)₄
AI₂(SO₄)₃
200-300℃
Isomerization
O₂
Δ
(Combustion) CO₂+H₂O
HCHO
CH
3
—CH—CH₂
HCOOH
H₃PO₄
CO/H₂O
CH
3
—C
+
H—CH₃
C≡O
+
H
3
C—CH—CH₃
C≡O
OH₂
H
3
C—CH—CH₃
C
O OH
Properties of Alkenes

CH—COOK
||
CH—COOK
CH
2
—CH
2
Br
|
Br
|
H
3
C—CH
Br
Br
Br—CH—CH—Br
Br
|
Br
|
HC—Br
||
HC—Br
H
2
C=CH—Cl
CH
3
MgI
(ii) RX
??????- ??????+
H
2
O
CaC
2
Electric arc/1200
o
C
H—C≡C—R
(i) NaNH
2
/or Na
(ii) R.X.
HCl
3
+ 6Ag + I
3
CH
Berthelot's process
Kolbe’s electrolysis
2C + H
2
H—C≡C—R
Alc. KOH
NaNH
2
liq. Paraffin
H—C≡C—H (C
n
H
2n—2
)
or
R—C≡C—H
or
R—C≡C—R
Isomerization
(i) Alc. KOH
(ii) NaNH
2
(i) Alc. KOH(ii) NaNH
2
Zn dust/MeOH150
o
C
Zn/MeOH150
o
C
Alc. KOH orNaNH
2
Preparation of Alkynes

Alkynes
R—C≡C—R
HCN
Ba(CN)
2
AgNO
3
/NH
4
OH
KMnO
4
H
+
or OH
-
R—C=CH—R
CN
|
BH
3
/H
2
O
2
,
OH
-
(3n-1)/2O
2
O
3
Zn/H
2
O
NaNH
2
-NH
3
Cu
2
Cl
2
NH
4
OH
R—CH
2
—C—R
||
O
nCO
2
+ (n-1)H
2
O
R—COOH + R—COOH
R—C—C—R
||
O
||
O
R—C≡CNa
R—C≡CAg
(White ppt)
R—C≡CCu
(Red ppt)
H
2
Ni/Pd/Pt
Alkane
HOX
Hg
+2
/dil. H
2
SO
4
Na/liq. NH
3
Birch reduction
Trans Alkene
Pd + CaCO
3
Pd + BaSO
4
Or Ni
2
B
Cis Alkene
(Major)
X
2
/CCl
4
R—C—C—R
|
X
|
X
|
X
|
X
H—X
R—C—CH
2
—R
|
X
|
X
R—C—CX
2
—R
||
O
R—C—CH
2
—R
||
O
Properties of Alkynes

R—C≡C—H
Or (C
2
H
2
)
R—C≡C—R
RMgBr
R—C≡CMgBr + R’—H
δ- δ+
Cl
|
- +
AsCl
3
CH=CHAsCl
2
Red hot
Cu / Fe
Ahy Ni(CN)
2
THF/Δ
(trimerisation) (tetramerisation)
R—C≡C—H
Or (C
2
H
2
)
R—C≡C—R
RMgBr
R—C≡CMgBr + R’—H
δ- δ+
Cl
|
- +
AsCl
3
CH=CHAsCl
2
Red hot
Cu / Fe
Ahy Ni(CN)
2
THF/Δ
(trimerisation)
(tetramerisation)
Properties of Alkynes

BENZENE
NaOH +CaO + ∆
H
2
O
COO
-
Na
+
OH
SO
3
H
MgBr
N
2
+
Cl
-
CH
3
CH
2
OH or H
3
PO
2
Or NaOH + SnCl
2
/Na
2
SnO
2
Cr
2
O
3
Al
2
O
3
(500
o
C)
Red hot Cu tube CH
3|||
CH
Zn/ ∆
H
+
/H
2
O/ ∆
Preparation of Benzene

NO
2
NO₂
+
HNO
3
+ H₂SO
4
SO
3
H
SO
3
, H₂SO
4
or
H₂SO
4
+ SO
3CH
3
+
CH
3
CH
3
Cl + AlCl
3
Friedel craft
Alkylation
Rate
C
6
H
6
>C
6
D
6
>C
6
T
6
[Sulphonation]
HC
+
E
+
H
+
E
H
2
/Pt
Cl
Cl₂ /
U.V.
Cl
Cl
Cl
Cl
Cl
(BHC)
O
3
Zn / H₂O
CHO
|
CHO
3 OZONOLYSIS
REDUCTION
O
2
Δ
CO
2
+ H
2
O
BENZENE
C
=O CH
3
CH
3
─C
+
=O
CH
3
C─Cl + AlCl
3
O
||
Friedel craft
Alkylation
OXIDATION
O
2
/V₂O
5
450
o
C
HC ||HC
O
||
C
O
C
||
O
Maleic
anhydride
CuCl
2
+ I₂
I
+
I
I
2
+ 2Cu
2+
2I
+
+ 2Cu
+
or
I
2
/HNO
3
HIO
3
or H
2
O
2
Properties of Benzene

COOH
CO₂
AlCl
3
CHO
HCN + HCl + ZnCl
H
3
O
+
Gattermann
aldehyde
synthesis
CrCl
3
AlCl
3
/ Al
2
O
3
Na
Liq. NH
3
Ni/H
2
Δ
BENZENE
C
=O Ph
Cl─C─NH
2
/AlCl
3
O
||
O=CH
2
H₂SO
4
C
=O H
CO + HCl
AlCl
3
Gattermann Koch
Aldehyde Synthesis
Ph─C─Cl + AlCl
3
O
||
C
NH
2
O
||
O
2
/V₂O
5
250
o
C
OH
Reduction
(C
6
H
6
)
2
Cr
Birch Reduction
CH
2
Properties of Benzene

PCl
5
HCl+POCl
3
+CH
3
-CH
2
-Cl
N
H
3
C−CH
2
−O
H
H
3
PO
3
+CH
3
-CH
2
-Cl
H
3
PO
3
+CH
3
-CH
2
-Br
H
3
PO
3
+CH
3
-CH
2
-l
HCl+SO
2
+CH
3
-CH
2
-Cl
PCl
3
PBr
3
Pl
3
SOCl
2
S
N
i
H
3
C-CH
2
-Cl
H
3
C-CH
2
-Br
H
3
C-CH
2
-l
H
3
C-CH
2
-Cl (S
N
2)
HCl
Lucas reagent
Δ
Prolong heating
2
o
(ROH)➝ 5 mins white turbidity
immediately (3
o
ROH)
HBr 48%
NaBr + H
2
SO
4
Hi(57%)
Kl/H
3
PO
4SOCl
2
Preparation of Haloalkanes
1
o

HBr
Peroxide
H
3
C-CH = CH
2
H
3
C−CH
2
−CH
2
Br
|
Cl
2
hv
H
3
C−CH
2
−H H
3
C-CH
2
Cl H
3
C-CH
2
-l (Finkelstein Reaction)
H
3
C−COAg H
3
C-Br+CO
2
↑ + AgBr ↓ (Hunsdiecker Reaction)
||
O
CH
2
-CH=CH
2
Br |
CH
2
-CH=CH
2
Br |
Br
2
/ 8OOK
Δ
NBS
CCl
4
H
3
C−CH−CH
3
Br |
H
3
C−CH−CH
3
Cl |
H
3
C−CH−CH
3
l
|
H
3
C-CH-CH
2
-Br
l
Br
Nal
Acetone
Br
2
CCl
4
H
3
C-CH
2
-Cl H
3
C-CH
2
-F(swarts reaction)
AgF
or Hg
2
F
2
HBr
CCl
4HCl
Hl
Br
2
/CCl
4
Preparation of Haloalkanes

NCS
NCO
Nal
Acetone
(C
2
H
5
)
2
CuLi
H
3
C - C - OAg
Na
2
SO
3
H
3
C - CH
2
- l
Finkelstein
Reaction
AgCN
KCN
OH
-
Aq. KOH
Or Moist Ag
2
O
K
+
O - N = O
Ag - O - N = O
O
H
3
C−CH
2
−N
O
O
||
H
3
C - CH
2
-N = C = O
CH
3
-
- CH
2
-S - C ≡ N
H
3
C - CH
2
- CH
2
- CH
3
H
3
C - CH
2
- O - C - CH
3
O
||
H
3
C - CH
2
- SO
3
-
Na
+
Corey house synthesis
EtOH
H
3
C - CH
2
- OH
H
3
C - CH
2
- C ≡ N
H
3
C - CH
2
- N ≡ C
+
H
3
C-CH
2
-O- N = O
CH
3
−CH
2
−Br
O
H
3
C−CH
2
−N
O


NaNO
2
DMF
Na
2
S
H
3
C−CH
2
−S−CH
2
−CH
3
Properties of Haloalkanes

S
+ H
3
C−CH
2
NH
2
CH
3
−CH
2
−Br
(H - C)
2
CHNa
O
||
H
3
C−CH
2
−CH
O
C−H
C−H
O
− +
S
Li
S
S
H
3
C−CH
2
C
O
− +
NK
C
O
C
OH
C
OH
O
||
||
O
Gabriel Phthalimide Synthesis
H
3
O
+
AgSCN
H
3
C-CH
2
-N=C=S
Alc. KOH
H
2
C=CH
2
H
3
C-CH
2
-O-CH
2
-CH
3
(R-Br➝ 1
o
)
CH
3
-CH
2
ONa
+
Dry Ag
2
O
NaSH
Alc.
H
3
C-CH
2
-SH
CH
3
SNa
H
3
C-CH
2
-S-CH
3
NH
3
excess
H
3
C-CH
2
-NH
2
(1
o
)
H
3
C-CH
2
-NH-CH
2
-CH
3
(2
o
)
CH
3
CH
2
NH
2
excess
(C
2
H
5
)
2
NH
(CH
3
-CH
2
)
3
N(3
o
)
Et
3
N
Et
4
+
NBr
Na
+
N
3
H
3
C-CH
2
-N=N=N
+
Properties of Haloalkanes

CH
3
−CH
2
−Br
H
3
C-CH
2
-C≡C-CH
3
LiAlH
4
/Et
2
O
H
3
C-CH
2
-H
(1
o
,2
o
not 3
o
R-X)
Br
AlCl
3
CH
2
−CH
3
Na/Et
2
O
H
3
C-CH
2
H
3
C−C−NHNa
O
||
− +
O
||
Wurtz
reaction
H-C≡CNa
+
H
3
C-CH
2
-C≡C-H
NaBH
4
/EtOH ⤑ 2
o
and 3
o
not 1
o
R - X
H
3
C-C≡CNa
+
Zn-Cu couple/EtOH
Zn-dil HCl; Na/EtOH
Na
Et
2
O
H
3
C-CH
2
-CH
2
-CH
3
Wurtz-Fittig
Reaction
F.C Alkylation
C
2
H
5
MgBr
Mg/Et
2
O
H
3
C-CH
2
NH-C-CH
3
H
3
C-CH
3
Properties of Haloalkanes

RMgX
H
2
CO/H
3
O
+
R - OH
RCH
2
- OH
R - CH
2
- CH
2
- OH
HCOOEt/H
3
O
+
RCOOEt/H
2
O
RCHO/H
3
O
+
HCOOEt
RCOR/H
2
O
RCN/H
2
O
RCOOEt
(i) O
2
(ii) H
3
O
+
O
CH
2
−CH
2
/H
3
O
+
R
2
CHOH
R
2
CHOH
R
3
C - OH
R
3
C - OH
RCHO
RCOR
RCOR
1° Alcohol
1° Alcohol
1° Alcohol
2° Alcohol
2° Alcohol
3° Alcohol
3° Alcohol
Aldehyde
Ketone
Ketone
R - X + Mg
(1 eq)
(1 eq)
Preparation & Properties of RMgX (Grignard Reagent)
dry
ether

RMgX
HOH or ROH or
NH
3
or Ph - OH
or R - NH
2
or RNH - R
or CH≡CH or Ph - NH
2
RCOOH
R
3
N
Cl - NH
2
R - X
Cl - CN
ClCH
2
-CH=CH
2
X
2
ClCOOEt
CO
2
+ H
2
O
R - H
R - R
No reaction
R - CH
2
- CH = CH
2
R - NH
2
R - CN
R - X
RCOOEt
Acids
Alkane
Alkane
Alkene
1° Amine
Cyanides
Alkyl halide
Ester
(1 eq)
Preparation & Properties of RMgX (Grignard Reagent)

I
Cl
BrCl
CH
3
Cl
AlCl
3
CH
3
KMnO
4
/ OH
-
COOH
Ag
2
O
COOAg
Br
2
CCl
4
Reflux
Br
HCl + 1/2O
2
CuCl + 300
0
C
I
2
,

HNO
3
Br
2
/ FeBr
3
Cl
2
/
FeCl
3
Raschig process
Hunsdiecker
reaction
Preparation of Haloarenes

N
+
≡NCl
Cl
Br
I
F
Aq. KI
HBF
4

CuBr + HBr
Cu/HBr
CuCl/HCl
or Cu/HCl
Sandmeyer Reaction
[CuX/HX]
Gattermann reaction
[Cu/HX]
Balz schiemann
reaction
HNO
3
H
2
SO
4
(i)
(ii) Sn/HCl
(iii) NaNO
2
/HCl/0
°
-5
°
Preparation of Haloarenes

Properties of Haloarenes
NH₂
ArSN
(via Benzyne)

NH₂
CH₃
Wurtz-Fittig Reaction
Ph
Fittig Reaction
COOH MgCl
CO₂
H₂O

NaNH₂
CH₃Br
Ph-Br
Na/Et₂O
Mg
THF
Ni-AI
NaOH
CI
CH₃

CI
CH₃
CI
C
CH
3
O

CI
C
CH₃O
CH₃C
H
DDT
2.2 bis(p-chlorophenyl) 1,1,1 -trichloroethane
(Dichloro diphenyl trichloro ethane)
CH₃CI
AICI₃
O
AICI₃
H₂C–C O
H
CI
CI
CI
Liq NH₃
Na/Et₂O
H₃C–C–CI
Conc H₂SO₄

OH
CN
NH₂
CI
NO₂

CI
NO₂
Aq.NaOH
300℃: pressure
NaCN+CuCN
200℃: atm
Aq.NH₂/Cu₂O
200℃: atm
Conc
HNO₃
H₂SO₄
CI
NO₂
NO₂
OH
NO₂
NO₂
Aq.Na₂CO₃
80℃ .100℃
CI
NO₂
NO₂
OH
NO₂
NO₂
H₂O
warm
O₂N
NO₂
O₂N
Cu/△
MeO-Na
OMe
NO₂

OMe
NO₂
CI
Ullmann Reaction
Cu/△
Properties of Haloarenes
Ullmann Reaction

NH₂
NO₂
OH
NO₂
NH₃/Cu₂O
100℃: atm
Aq. NaOH
200℃: 100 atm
Cl
CN
CN
NO₂
KCN/EtOH
Von-Richter
reaction
NaCN + CuCN
300℃/atm
CI
NaNH₂
Liq. NH₃
KCN
H₂O
NO₂
NH₂
NO₂
NH₂
C
OH
O
F CI Br I
>
NO₂NO₂NO₂NO₂
> >
(Reactivity toward Nucleophile)
MinorMajor
CI
NO₂
Properties of Haloarenes

B.p’s & Density
F CI Br I
<<<
CI
CI
>O & m:
CH₃
CI
>
CH₃ CH₃
>
CI
CI
m.p’s
F
NO
2
>
Cl
NO
2
>
Br
NO
2
>
I
NO
2
(Reactivity toward Nucleophile)
Properties of Haloarenes

Preparation of Alcohols
B
2
H
6
/THF
H
2
O
2
/NaOH
(CH
3
)C−CH−CH
2
H

OH
CH
3
−C − CH−CH
3
OHCH
3
CH
3
Dil. H
2
SO
4
CH
3
−C − CH−CH
3
OHCH
3
CH
3
Hg(OAc)
2
/H
2
O
NaBH
4
(Bayer’s Reagent)
H
3
C−CH−CH
2
OHH−O
Syn addition
Cold dil. alk. KMnO
4
H
3
C−CH−CH
2
OHH−O
Syn addition
ii) H
2
O
2
i) RCO
3
H (Epoxidation)
ii) H
3
O
+
H
3
C−CH−CH
2
OH
H−O
Anti addition
Markovnikov addition
S
N
1(C+ rearrangement)
Anti-markovnikov addition
No C+ rearrangement
Markovnikov addition
No C+ rearrangement
CH
3
−C−CH=CH
2
CH
3
|
|
CH
3
i) OsO
4
or Pb(O Ac)
4

CH
3
−C−O−Et
O
||
CH
3
−C−CH
3
O
CH
3
MgBr
H
3
O
+
CH
3
−C−CH
3
CH
3
OH
H−C−OEt
O
||
H
3
C−C−H
O
CH
3
MgBr
H
3
O
+
H
3
C−CH−CH
3
OH
O
2
/60°C
-2/H
3
O
+
CH
2
−CH
2
, H
3
O
+
O
CH
3
−CH
2
−CH
2
−OH
CH
2
−CH−CH
3
, H
3
O
+
O
CH
3
−CH
2
−CH−CH
3
OH
CH
3
−Br
Aq. KOH
Moist Ag
2
O
Et
2
O
Mg
2CH
3
OH
CH
3
−OH
Preparation of Alcohols
CH
3
MgBr
Grignard
Reagent

Preparation of Alcohols
H−C−H
O
||
H
3
C−C−H
O

MgBr
H
3
O
+
CH
3
−CH
2
−OH
H
CH
3
−C−CH
3
O
CH
3
MgBr
H
3
O
+
CH
3
MgBr
Grignard
Reagent
H
3
O
+

CH
3
−C−Cl
O
||
3° H
3
C−C−CH
3
OH
CH
3
CH
3
−C−H
O
||
H
3
O
+
2° H
3
C−C−CH
3
OH
H
CH
3
−C−CH
3
O
||
H
3
O
+
3° H
3
C−C−CH
3
OH
CH
3

Properties of Alcohols
PCl
5
- HCl
POCl
3
+CH
3
-CH
2
-Cl
CH
3
−CH
2
−OH
H
3
PO
3
+3CH
3
-CH
2
-C
l
H
3
PO
3
+3CH
3
-CH
2
-Br
H
3
PO
3
+3CH
3
-CH
2
-l
HCl+SO
2
+CH
3
-CH
2
-Cl
PCl
3
PBr
3
Pl
3
SOCl
2
SO
2
+CH
3
-CH
2
-Cl + HCl
SOCl
2
/
N
|
H
Cr
CH
3
-CH
2
-X + H
2
O
HX
S
N
2
S
N
2
S
N
2
S
N
2
S
N
1
S
N
2
2° & 3°→ S
N
1
1° → S
N
2

Conc.H
2
SO
4
or
Conc. H
3
PO
4
P
2
O
5
Δ
Al
2
O
3
Δ
400
0
C – 500
0
C
ThO
2
Δ
POCl
3
Δ
(Zaitsev)
(Zaitsev)
(Zaitsev)
(Hoffmann)
(Hoffmann)
Gaseous
state
E
1
Mechanism
E
2
Mechanism
R
H
H
H
R
H
H
H
R
H
H
H
R
H
H
H
R
H
H
H
R
H OH
Dehydration reaction
Properties of Alcohols

Alc. KMnO
4
(Purple/pink)
acidic K
2
Cr
2
O
7
(Orange)
CrO
3
+ aq.H
2
SO
4
Acetone (JONES REAGENT)
PCC
Pyridinium chlorochromate
PDC
Pyridinium dichromate
Cu, (350 – 400
0
C)
Collins Reagent
CrO
3
+ CH
2
Cl
2
+ pyridine
Strong
oxidizing
agent
Mild
oxidizing
agent
(Brown)
Green
Oxidizes olefinic
double bond
Does not oxidizes
olefinic double bond.
R ― COO
-
K
+
+ MnO
2
↓ + H
2
O
R ― COOH + Cr
2
(SO
4
)
3
+ H
2
O
+ K
2
SO
4
R ― COOH
R ― CHO
R ― CHO
R ― CHO
R ― CHO
R OH
Alcohol

Properties of Alcohols

Preparation of Ethers
H
2
SO
4
/140
o
C
2C
2
H
5
― OH
H
3
C−CH
2
−O−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R
CH
3
ー CH
2
ー I
(R
o
➝ 1
o
)
Dry Ag
2
O
2C
2
H
5
l
Hg(OAc)
2
C
2
H
5
OH/NaBH
4
CH
2
= CH
2
CH
2
N
2
/BF
3
CH
3
― CH
2

OCH
3
H
+
/CH
3
― CH
2
― OH
H
3
C ― CH
2
― ONa
+
CH
2
= CH
2
Williamson synthesis
Alkoxymercuration demercuration

Properties of Ethers
Cl
2
Dark
H
3
C―O―CH
3
ZnCl
2
H
3
C−CH−O−CH−CH
3
Cl
Cl
αβ
α
Cl
2
hv
Cl−C−C−O−C−CCl
3 Cl
Cl
Cl
Cl
Cl
Cl
HCl
H
3
C−C−O−C
2
H
5
+ C
2
H
5
Cl
O
CO/150°C
BF
3
/500°atm
H
3
C−CH
2
−C−O−CH
2
−CH
3
O
AC
2
O/
ZnCl
2
H
3
C−CH
2
−CO−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R H
3
C−C−OC
2
H
5
+ C
2
H
5
Cl
O
2C
2
H
5
OH

6O
2
Δ
Hl/cold
PCl
5
/POCl
3
4CO
2
+ H
2
O
H
3
C−CH
2
−O−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R
dil. H
2
SO
4
2C
2
H
5
― OH (Hl > HBr > HCl)
Hl/Δ
excess
CH
3
― CH
2
l + CH
3
― CH
2
― l
CH
3
― CH ― OH + CH
3
― l
2C
2
H
5
― Cl
Properties of Ethers

Preparation of Phenol
CI
NO₂
NO₂
O₂N
MgBr
Cl
H
CH
3
C HH
3
C
COOH
OHNaOH+CaO/Δ NaOH+Cu-Fe 300
o
C/200 atm
Aq. Na
2
CO
3
SiO
2
/460
o
C
H
2
O/H
+
O
2
/60
o
C/Δ
[O] V
2
O
5
(Dow’s process)
H
2
O/Δ
NaOH
Fused
200
o
C/HCl+ 1/2O
2
/Cu-Fe
250
o
C
O
2
/60
o
C
H
2
SO
4
N
2
Cl
+-
SO
3
Na
+-
OH
PHENOL

Properties of Phenol
OH
H
3
CCCl
=O
NH
3
ZnCl
2
/300
o
C
FeCl
3
Neutral
3HCl+[(Ph
3
O)
6
Fe]
-3
+

3H
+
(Violet Colour)
NH
2
OCCH
3
=O
60
o
C
120
o
C
200
o
C
C=
O
CH
OH
CH
C
=
O CH
3
CH
2
CHCH
2
Cl=
OCH
2
CH=
CH
2
O
H
CH
2
CH
=CH
2
Claisen Rearrangement
Fries
Rearrangement
PHENOL

No effervescence
ONa
+-
OCH
3
ONa
+-
CH
3
l
OCH
3
H
Cl
O
O
||
CPh
NaOH
NaHCO
3
+(Ph O)
3
PO
(Major)
NaOH
Na
2
CO
3
CH
2
N
2
BF
3
Zn
Δ
PCl
5
Ph
O
||
CCl
OH
PHENOL
Properties of Phenol

OH
NO₂O₂N
NO₂
(Oxidized P)

Phenol - Reaction due to Benzene Ring
Conc HNO₃
+ H₂SO₄
OH
BrBr
Ph
Br₂
H₂O
2.4.6- tribromophenol
Br₂
CS₂
OH
Br
OH
Br

93%
7%
Conc
H₂SO₄
100
o
C
OH
SO₃H
SO₃H
OH
SO₃H
SO₃H
OH
O₂N
OH
Br
OH
NO₂O₂N
NO₂
+NO₂
NO₂
HNO₃/H₂SO₄
2.H₂O/H
+
H₂SO₄
NaNO₂
OH
N=O
HNO₃
OH
NO₂
Blue
Green
Red
PhOH
H₂SO₄
H₂O
NaOH
Blue
OH
PHENOL
Properties of Phenol
1.Br₂/NaOH
access

CH₂=O
MeOH
OH
CH₂OH

OH
CH₂OH
NaOH

Bakelite
CO₂/NaOH
H
125℃
250℃
C
OH
O
OH
OH
COOH

OH
HO–C CO
2
CHCI₃ Reimer tiemann
ReactionO
KOH
KOH
OH
C
O
H
NaOH
OHN=N
N≡NCI
-

HCN+HCI
ZnCI₂/H₃O+
C
H
O
OH OH
CHO

(Major)
Gattermen
Reaction
C
C
O
O
O
Phenolphthalein
(Pink
colouration)
NaOH
C
Acetone
Conc HCl
CH₃
CH₃
OHHO
OH
PHENOL
(Reaction due to Benzene ring)
Properties of Phenol


K₂S₂O₈
OH
-
/H₂O
N=N
K
2
Cr
2
O
7
O(Benzoquinone)
OH(EIb’s Persulphate
Oxidation)
125℃
OH
C
O
OH
O
COH
AC
ACO MeOH
Aspirin
O
C
O
OMe
Oil of
wintergreen
air/O₂
H₂/Ni
Phenyl salicylate
OH
OO
Phenoquinone(red)
O--HOPh
CO₂/NaOH
125℃ /H

CO₂/KOH
H

HO
PhOH
OH
C
O
C
OH
O
(Major product)
O
+
OH
C
O
OH
O
OH
PHENOL
(Reaction due to Benzene ring)
CO₂/KOHH

Properties of Phenol
O
HO
CO₂/NaOH
POCI₃
Ph-OH--O
H

PCC/PDC
Preparation of Aldehydes
dil. H
2
SO
4
HgSO
4
SnCl
2
+ HCl
DIBAL-H
Pd-BaSO
4
Boiling xylene
Aq. KOH
2 molesO
||
C
H
Rosenmund Reduction
O
C
CH
3
Cl
+ H
2
CH
3
−CH
2
−OH
X
C
X
H
CH
3
H−C≡CH
O
C
CH
3
Cl
O
C
CH
3
O
C
2
H
5
CH
3
−C≡N
Stephen’s Reaction
Hexane - 78%
H
2
O
LTTBA L-H
Diethyl ether
DIBAL - H
CH
3
−C≡N
Hexane - 78%
H
2
O
CH
3

Preparation of Ketones
PCC/PDC
Aq. KOH
2 moles
O
||
C
R R’
X
C
R
X
R’
O
C
R Cl
R’C≡N
Dry ether
Ketone
RMgX
H
C
R
OH
R’
CdR’
2
R’COCl
Dry ether
RMgX
RCOOH +
R’COOH
MnO
300℃

Reductive Ozonolysis
(1) O
3
(2) Zn or Zn /
CH
3
COOH
O
3
H
2
O
2
OR
(CH
3
)
2
S
AldehydeKetone
Carboxylic Acid
Oxidative Ozonolysis
OO
HR’
R’’R
O
R’
R
O
H
R’’
+
Ketone
O
R’
R
O
OH
R’’
+
Preparation of Aldehyde & Ketones

C
HO
H
2
C−OH
BENZALDEHYDE
CO+HCl+Anh. AlCl
3
HCN+HCl+ZnCl
2
/H
2
O
Gattermann Aldehyde
Synthesis
CrO
2
Cl
2
/H
3
O
+
(Etard)
CrO
3
/AC
2
O/H
3
O
Gatterman KOCH
Aldehyde Synthesis
(CH
2
)
6
N
4
/EtOH
H
3
O
+
Pb(ONO
2
)
2
HNO
3
H
2
/Pd−BaSO
4
−Quinoline−S
Rosenmund Reduction
CH
2
=N−OH
CrO
3
/ N or MnO
2
H
2
O+
Mg/H−C −OC
2
H
3
CH
3
CH
2
Cl
C
ClO
O
||
BrN
2
Cl
+
_
Preparation of Benzaldehyde

Properties of Aldehydes and Ketones
OH
OH
R’R
H
2
O
OH
OR’’
R’R
OH
R’
SO
3

Na
+
R
OH
CN
R’R
R’’OH
Dry HCl, H
3
O
+
NaHSO
3
HCN
Mild alkaline
condition
R’’OH
Dry HCl, H
3
O
+ OR’’
R’R
OR’’
R’R
O
||
C
Aldehyde/ Ketone
Acetal/ Ketal
Cyanohydrin

H
2
, 1000 psi
Ni, 50°
Zn(Hg), HCl
Na/C
2
H
5
OH
LiAlH
4
/Et
2
O
NaBH
4
/EtOH
Al(i-PrO)
3
/Heat
Clemmensen reduction
NH
2
NH
2
KOH, Δ
Wolff-kishner reduction
O
||
C
R
1
R
2
OH
|
CH
R’ R’’
MPV Reduction Bouveault– Blanc
Réduction.
C
HH
C
HH
+ N
2
O
R
2
R
1
OH
CH
3
H
3
C
+R
2
H
OHR
1
R
1
−CH−R
2
OH
R
1
R
2
R
1
R
2
R
1
−CH−R
2
OH
Properties of Aldehydes and Ketones

Tollen’s reagent
Fehling’s solution
Benedict solution
Ag
2
O(moist)
NaOCl
O
RH
R ― COO
-
+ Ag↓
R ― COO
-
+ Cu
2
O↓
R ― COO
-
+ Cu
2
O↓
R ― COOH + Ag↓
R ― COOH + NaCl
(Silver mirror)
(Brick red)
(Brick red)
Properties of Aldehydes and Ketones
+ 3X
2
+ 4NaOH + 3 NaX + 3H
2
O + CHX
3
Alternative reagent : NaOX
O
RCH
3
O
RO
− +
Na
Haloform reaction:

C
HO
OH
C
H
NNH
2
H
CNOH
C
OH
H SO
3
Na
+
OH
3
O
+
OH
H−C−N
H−C≡N
OH
NaHSO
3
H
2
N−NH
H
2
N−NH
KOH
CCO
O
HNO
3
EtOH
KCN
2NH
3
Cl
2
Δ
CHC
O
OH
C
Ph
NC
H
NC
H
C
O
Cl
Benzylic acid rearrangements
Benzoin Condensation
OH
H−C−C
H
C
O
COK
+
_
Ph
HO
Properties of Benzaldehyde

H
CNH
O
2
N
NO
2
H
CNNC
O
NH
2
CH
2
OH
O C

ONaCH
2
OH
+
CH N Ph
CH CH C OEt
O
CH CH C CH
3
O
CH CH NO
2
H
2
N
NaOH
50%
Zn/HCl
LiAlH
4
/Et
2
O
H
2
N NH C NH
2

H
2
N NH NH
2

O
2
N
Δ
Zn-H
2
O/NH
4
Cl
O
CH C OEt
Br
CH
2
(COOEt)
2
CH=C
O
C OEt
C OEt
O
CH CH COH
O
Ac
2
O/AcONa
KOH
CH
3
NO
2
H
3
C C CH
3
O
Cannizzaro Reaction
Schiff base
Reformatsky Reaction
Knoevenagel
Reaction
Perkin Condensation
C
HO
O
Properties of Benzaldehyde

Tollen’s Reagent
Schiff Reagent
Fehling Soln.
+Ve Test
Pink color
No reaction
Conc . H₂SO₄
2Me₂N H
CH
Me₂N
Me₂N
Malachite green
PCI₅
C ─CI
CI
H
Conc . H₂SO₄
H₂SO₄/△
O=C─H
SO₃H
[O]/Air
C─ OH
O
PhMgBr
H₃O
+
C
H
OH
HNO₃
H₂SO₄
CHO
NO₂
1. LiAIH₄
2.H
3
O
+ CH₂ㅡOH
CI₂/AICI₃
CHO
CI
C
HO
Properties of Benzaldehyde

H
3
C−C−OH
O
H
3
C−CH
2
−C−OH
O
K
2
Cr
2
O
7
/H

KMnO
4
/H

H
3
C―CH
2
―OH
H
3
C―C―OH
O
[O]
[Ag(NH
3
)
2
]
+
,
2CuO
KMnO
4
/H

Δ
H
3
C―CH
2
―CH
2
―C
CH
3
O
dil. HCl
H
3
C―C≡N
dil HCl, dil HNO
2
dil NaOH/H
+H
3
C―C―NH
2
O
H
+
/H
2
O
H
3
C―C―OEt
O
H
3
C―C―Cl
O
H
+
/H
2
O
H
3
C―C―O―C―CH
3
O O
H
3
O
+
Cl
Cl
Aq.KOH
H
3
C―C―CH
3
O
NaOl/H
+
-CHl
3
CO+H
2
O
H
3
PO
4
H
2
C=CH
2
C = O/H
3
O
+
O
BrMgCH
3
CH
3
―C―Cl
O
SOCl
2
+CH
2
N
2
H
2
O/Ag
2
O
Arndt Eistert reaction
Cl―C―CH
3
Preparation of Carboxylic acid

Na
OHR
O
C
O

Na
+
R
O
C +H
2
1
2
O

Na
+
R
O
C +H
2
O
O

R
O
C+H
2
CO
3
H
2
O + CO
2
O

NH
4
+
R
O
C R−C≡N
Al
2
O
3
or P
4
O
10
or H
2
SO
4
Δ
OH
R
O
X
2
,RedP
X = Cl, Br OH
R
O
X
α
NaOH
HCO
3
-
NH
3
HN
3
RNH
2
+ CO
2
+ N
2
Hell volhard
zelinsky reaction ?????? - substitution
Properties of Carboxylic acid

PCl
5
SOCl
2
PCl
3
ClR
O
+ H
3
PO
4
OHR
O
ClR
O
+ POCl
3
+ HCl
ClR
O
+ SO
2
+ HCl
Acyl chloride
Conversion to carboxylic acid derivative :
Properties of Carboxylic acid

Preparation of Benzoic Acid
C
OHO
C
ClO
O C OC
2
H
5
CCl
3
SO
3
Na
+
_
MgBr
CH
3
COOH
OH
H
2
C X
C N
H
3
O
KMnO
4
/OH
_
Zn
Δ
CO
2
/H
3
O
KMnO
4
/OH
_
H
3
O
H
3
O
H
3
O
O CCl
2
/AlCl
3
aq.KOH
Δ
+
_
H C ONa
O
fused
Benzoic
Acid

Properties of Benzoic Acids
( )
C
OHO
O C ONa
NH
2
CH
2
OH
O
C O C
2
H
5
O
C NH
2
O
C O Ca
2+
O
C PhPh
C N
N
3
H/H
2
SO
4
LiAlH
4
/H
2
O
NH
3

Δ
Ca(OH)
2
NaHCO
3
NaOH/
C
2
H
5
OH
H
+
O C Cl
O
C O C
O
Br COOAg
BENZOIC
ACID
Ag
2
O
(i)SOCl
2
(ii)CH
2
N
2
(iii)H
2
O/Ag
2
O
C
O
OHCH
2
Br
2
/CCl
4
Reflux
Soda lime
Δ
Δ
P
2
O
5
PCl
3
or SOCl
2
PCl
5
Hunsdiecker
Reaction
Schmidt
Reaction
Arndt Eistert
Reaction

CI₂/FeCI₃
COOH
CI

COOH
NO₂
Conc. HNO₃
Conc. H₂SO₄
COOH
Br
Br₂/FeBr₃

Conc. H₂SO₄

COOH
SO₃H
OH
NO₂O₂N
NO₂
OH
BrBr
Br
OH
C
OH
O
Br₂
H₂O -CO₂
C
OHO
Conc. HNO₃
Properties of Benzoic Acids

PCl
5
SOCl
2
PCl
3
ClR
O
+ H
3
PO
4
OHR
O
ClR
O
+ POCl
3
+ HCl
ClR
O
+ SO
2
+ HCl
Preparation of Acid Chloride

Hydrolysis
R′OH
Pyridine
R′COOH
Pyridine
H
2
O
R′
2
NH
R
2
′CuLi
R′Mg X
Pyridine is used to absorb
HCl because reactivity of
ester & anhydride is fairly
high
ClR
O
OHR
O
+ HCl
OR’R
O
R
O
R’
+ HCl
+ HCl
NR’
2
R
O
+ HCl
R’R
O
O
O
R’R
O
Properties of Acid Chloride

R
2
′ Cd
LiAlH
4
/NaBH
4
LiAlH (OCMe
3
)
3
Et
2
O
H
2
/Pd – BaSO
4
Quinoline
(Lindlar's catalyst)
ArH, AlCl
3
ClR
O
R’R
O
HR
O
Rosenmund Reaction
HR
O
ArR
O
+ HClFriedel-Crafts Acylation
OHR
Properties of Acid Chloride

Vapour
phase esterification
H
3
C―C―O―H+CH
2
N
2
H
3
C―O―CH
3
O
H
3
C−C−OAg
H
3
C―C―O―CH
3
O
||
CH
3
C−
O−CH
2
−CH
3
O
O
H―C―CH
3
H
3
C−C−OH +
CH
3
−CH
2
−OH
O
H
2
SO
4
Δ
ThO
2
H
3
C−C−OH +
CH
3
−CH
2
−OH
O
H
3
C−CO−CH
3
H
3
C−C−O−CH
3
Peroxide
BF
3
/350K
O
Bayer villiger oxidation
H
3
C―CH
2
―l
―Agl
C
2
H
5
OH
or CH
3
―CH
2
―ONa
+
Al(OEt)
3
OO
Tishchenko Reaction
ether
Preparation of Esters

H
2
O/H
+
H
2
O/OH

irreversible
R′′ MgX
1eq.
LiAlH
4
(Saponification)
OHR
O
+ R’OH
OR’R
O O
-
R
O
+ R’OH
R”R
O
+ Mg(OR’)X
OHR
+ R’OH
Properties of Esters

TRANSESTERIFICATION
OC
2
H
5
R
O
+
Na

O–C
2
H
5
C
2
H
5
OH OC
2
H
5
R
OO
R
OH+
R
2
′′NH
PCl
5
R′′ OH
Na +
C
2
H
5
OH
OR’R
O
OR”R
O
ClR
O
+ R’ ― Cl + POCl
3 OH + R’―OHR
NR
O
|
R”
R’’
+ R’―OH
Claisen condensation :
Bouveault-Blanc reduction
Properties of Esters

OHR
O
I.
+NH
3
O

NH
4
R
O
+-
NH
2
R
O
+ H
2
O
II.
ClR
O
+NH
3
NH
2
R
O
+ HCl (3
0
amide) R’
3
N ⟶
No Reaction
III.
ClR
O
+R’―NH
2
+ HCl
NHR
O
R’
IV.
ClR
O
+R’―N―R’ + HCl
H
NR
O
R’
R’
R
O O
R
NH
3
NH
2
R
O
O

NH
4
R
O
+-
+
Δ
(Dehydration)
O
V.
Preparation of Amides

H
3
O
+
H
2
O
OH

NH
2
R
O
OHR
O
+
+
NH
4
O
-
R
O
+ NH
3
1
o
Amine
Amide
NH
2
R
O
+ X
2
+ 4NaOH NH
2
+ Na
2
CO
3
+ 2 NaX + 2H
2
O
|
R
Properties of Amides

P
4
O
10
Δ
OHR
O
+
RHO
O
R
O O
O R
+ H
2
O
PyridineClR
O
+
RHO
O
R
O O
O R
+ HCl
Carboxylic acid
Acid Chloride
Succinic Acid Cyclic anhydride
O
O
CH
2
OH
CH
2
OH
CH
2
CH
2
O
O
O + H
2
O
300°C
Preparation of Acid anhydride

H
2
O
R′ OH
R
2
′ NH
R
O O
R
NR’
2
R
O
+ O
-
[NH
2
R’
2
]
+R
O
OR’R
O
+
OHR
O
OHR
O
2
O
Properties Acid anhydride

R′MgX
(1 eq)
ArCl
AlCl
3
PCl
5
LiAlH
4
/Et
2
O
H
3
O

R
O
RO
O
ClR
O
2
+POCl
3
OHR
ArR
O
+ HCl
R’R
O
+
R
XMgO
O
CHO
OH
3
C
O O
CH
3
+
Cinnamic Acid
O
OH
CH
3
COOH/
CH
3
COONa
Δ
Perkin Reaction :
Properties Acid anhydride

H
|
N
H
2
/ Pd Or
Alkyl azide
i) LAH,Et
2
O
ii) H
3
O
+,
Cyanide 1
o
amine Isocyanide
i) LAH,Et
2
O
ii) H
3
O
+
R ― N
3
R ― NH
2
R ― C ≡ N R NH
2 R ― N ≡ C
-
+
i) LAH, Et
2
O
ii) H
3
O
+
2° Amine
R CH
3
R ― C ≡ N
Na/C
2
H
5
OH
C
2
H
5
OH
cyanide 1° Amine
R NH
2
1
o
amine1
o
amine
Sn / Zn / Fe
HCl
Nitroalkane
R ― NO
2
R ― NH
2
(NH
4
)
2
S
or
NH
4
HSR - Mg - Cl + Cl-NH
2
⟶ R - NH
2
+ MgCl
2
NO
2
NO
2
NH
2
NH
2
Mendius
Preparation of Amines

NaB(OAc)
3
H
LiAlH
4
Zn-HCl
H
2
-Pt/LiAlH
4
NH
2
OH
H
+
R”NH
2
H
+
R
2
NH
H
+
Oxime
Imine
Iminium salt

amine

amine

amine
N
R
R’’
R’
HN
R
R’’
R’
NH
2
RR’
N
R
R’’
R’
R’’
N
R
R’’
R’
R’’+
N
R
OH
R’
O
RR’
NaOH
Acyl chloride
−HCl
LiAlH
4
1
o
amine
Acylation-Reduction
N
H
O
R NH
R
Cl
O
R−NH
2
+
Preparation of Amines

Phthalimide Phthalic acid
1
o
Amine
(i) KOH (ii) R ― X
(iii) aq. NaOH (iv) H
3
O
+
O
||
C
N−H
O
||
C
C
||
O
H
H
+ R−NH
2
1
o
AmineAmide
NH
2
R
O
+ X
2
+ 4NaOH NH
2
+ Na
2
CO
3
+ 2 NaX + 2H
2
O
|
R
C
||
O
NaOH
Acyl chloride
−HCl
LiAlH
4
1
o
amine
NH
O
R NH
R
Cl
O
R−NH
2
+
Preparation of Amines

1° Amine1° Alkyl halide
1° Amine Acyl Chloride N-sub. Amide
N
H
R’
O
R
R ― NH
2
+ R’ ― X R ― NH ― R’ + HX
R ― NH
2
+
ClR’
O
+ HCl
R - NH
2
+ HNO
2
⟶ R - N
2
+ H
2
O
+
1° Amine Chloroform Carbylamine
R ― NH
2
+ CHCl
3
+ 3KOH R ― NC + 3KCl + 3H
2
O
RCH
2
NH
2
R - CH = NH R -CHO + NH
3
H
2
O
Aldimine Aldehyde
R
2
CHNH
2
R
2
C = NH R
2
C = O + NH
3
Ketimine Ketone
[O]
KMnO
4[O]
KMnO
4
H
2
O
2R
2
NH R
2
N - NR
2
(Tetra-alkyl hydrazine)
R
2
NH R
2
N-OH
(Dialkyl hydroxylamine)
[O]
KMnO
4
Caro’s
acid
Tertiary amine: No Oxidation with KMnO
4
Properties of Amines

RNH
2
R
2
NH
R
3
N
X No Reaction
PhSO
2
NHR (Soluble in NaOH)
PhSO
2
NR
2
(Insoluble in NaOH)
N - alkyl benzene sulphonamide
Acidic Hydrogen
N,N - dialkyl benzene sulphonamideAbsence of Acidic hydrogen
PhSO
2
Cl
R
3
N HNO
2
1° Alcohol
N-Nitroso amine
1° Alcohol
(yellow
oily
liquid)
R
2
NH
HNO
2
RNH
2
R
3
N
Δ
R ― OH + N
2
+ H
2
O
N ― N = O
R
R
N ― N = O + R ― OH
R
R
2RNH
2
+ S = C = S ⟶ S = C R - N = C = S + RNH
2
+ HgS + 2HCl
HgCl
2
NHR
SH
Alkyl isothiocyanate
Properties of Amines

Preparation of Aniline
Sn/HCl
2
/Fe/HCl
2,
HCl
2,
HCl,SnCl
2
/HCl,NaSo
4ANILINE
O=C−OH
(Reduction)
Hofmann Bromamide
Degradation
Schmidt Reaction
N
3
H/H
2
SO
4
Br
2
KOH
NH
3
/ZnCl
2
/300
o
C
NH
3
/Cu
2
O,200
o
C-300
o
C
Sn/HCl
2
,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl,HSO
4

Sn/HCl,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl
Sn/HCl,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl
LiAlH
4
/H
2
O
2,
H
2
/Ni
O
||NaN
3

H
3
O
+
H
2
N-NH
2
/
HONO/H
+
H
2
N-OH/AcOH
H
3
O
+
Zn/HCl
Cl-NH
2
NaNH
2
/
liq. NH
3
H
3
O
+
Curtius
Reaction
Lossen
Reaction
BrMg
+
_
δδ
O=C−NH
2
OH
Cl
N=N
NH-NH
NH−OH
NO
2
NH
2
Cl−C
O
||
Cl−C
O
||
Cl−C
Cl
-
N≡N
+
Br
O=C=N
Sn/HCl
2
,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl,HSO
4

H
2
SO
4
HAuCl
4
OH
NO
2
O
2
N
NO
2
NH
|
CH
3
Ph−N
CH
3
CH
3
Anilinium
Sulphate
Anilinium Chloroaurate
Anilinium
Picrate
Schotten Baumann Reactions
HCl
H
2
PtCl
6
or AC
2
O
PhSO
2
Cl
CS
2

HgCl
2
Ph−C=O
N=CH
N=C=S
SO
2
−NH
Anilinium Chloroplatinate
Phenyl Isothiocyanate
Benzalaniline [Schiff's base]
PtCl
6
2
2
+
H
|
C−CH
3
O
|| H
3
C−C−Cl
O
||
NH
3
Cl
-
+
ANILINE
NH
2
C−Cl
O
||
NH−C
O
||
H
3
C−IH
3
C−I
H
3
C−I
Ph−NMe
3
I
_
+
NO
2
O
2
N
O
2
N
-
O
+
AuCl
4
-
+
+
SO
4
2-
+
+
Properties of Aniline
NH
3
+
NH
3
NH
3
NH
3

Na
NHNa
+─
+
NΞC
+ ─CHCI₃
KOH
Br₂/H₂O
HNO₃ +
H₂SO₄
NH₂
Br Br
BrNH₂
+
NO₂
NH₂
NO₂
NH
+

CI-Ph
CuCI₂/200℃
H₃C─C─CI
HNO₃+H₂SO₄/H₃O
+
NH₂
NO₂
+
NH₂
NO₂
NaNO₂/HCI
0-5℃
N₂CI + 2H₂O
NaCr₂O₇
Conc. H₂SO₄
K₂Cr₂O₇/HH₂SO₄
180℃
SO
2
OHH₂N
+
OO
Aniline Black
Carbylamine Test
Br
2
/CCl
4
Diphenyl Urea
NH
2
Br
H
2
N +
C−Cl
|
Cl
O
||
NH−C−NH
O
||
O
||
ANILINE
NH
2
Br−
Properties of Aniline

(ANILINE)
NH
2
(A)
HA
NH
3
A
-
+
(B)
PhSO
2
Cl
NH − S − Ph
OO
(D)
HNO
2
Diazotization
Coupling
OH
/ OH

N
2
CI
+-
(E)
N=N OH
(F)
NC
(Carbylamine
rex
n
)
CH
3
Cl / KOH
(C)
Properties of Aniline

+-SO
3
Na
Reaction with CS₂
NH₂
N=C=S+HgS
black
AgNO₂
or HgCI

C
O
S
C
SH
HN S
NH─C─NH
C
O
S
Solid
KOH
S
HCI
NH₂, HCIN=C=S +
Phenyl isothiocyanate
Properties of Aniline

+-SO
3
Na
H
N≡NCI
+-
CuCI+HCI
CI
CuBr+HCI
Br
CuCN+HCN
CH₂=NOH
HO¯ /H₂O
O=C-H
OH
N=NHO
N=NH₂N
KI
Cu powder
N=NH
H
H₃C
Ni/H₂
200℃ 100 atm
NH₃
F₃C─C─OH
H₂SO
4
NO₂
N=O
Conc. HNO₃
O
||
ANILINE
NH
2
NH
2
CN
I
NH─CH
3
Properties of Diazonium compounds

+-SO
3
Na
Cu/HBr
Br
HBF₄
F
NaNO₂
NO₂
SnCI
2
/HCI
NH-NH₂
Δ
Cu₂O/Δ
C₂H
5
OH/△ H₃PO₂/△
SnCI₂/NaOH
H₂O/H

OH
OH
N=N N
OH
B-NaP
Cu/HCI
N≡NCI
+-
Cl
Properties of Diazonium compounds
Tags