Rohanchavan9thF23
148 views
83 slides
Nov 28, 2024
Slide 1 of 83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
About This Presentation
organic chemistry
Size: 2.24 MB
Language: en
Added: Nov 28, 2024
Slides: 83 pages
Slide Content
Organic
Chemistry
Charts
For all competitive exams (Mains and NEET have lesser reactions in syllabus)
Homogeneous Equilibria
Heterogeneous equilibria
Equilibrium constant in gaseous system
Br—CH
2
—CH
2
Br—R (1° & 2°)
Br—R (2° & 3°)
Br—R (Wurtz reaction)
R
2
Zn
(Frankland reaction)
R
2
CuLi (Corey
house synthesis)
Alkanes
Zn-Cu couple EtOH
Zn/Ac. OH; Zn—NaOH
LiAlH
4
Et
2
O
NaBH
4
Na/Et
2
O
R"—X
R'—X
(R' 1°, 2°, cyclic)
CH
2
=CH
2
H
2
/Pt, Ni, Pd
200 °C
Raney Ni/250°C
Sabatier Senderens Reduction
H
2
N—NH
2
/H
2
O
2
Syn add
n
.
CH
2
=CH
2
Transfer
Hydrogenation
+ CH
2
=CH
2
/Pd—C/∆
CH
3
—CH=CH
2
B
2
H
6
/H
3
C—C—OH/H
2
O
O
||
Preparation of Alkanes
Homogeneous Equilibria
Heterogeneous equilibria
Equilibrium constant in gaseous system
H—C—CH
3
O
||
H
3
C—C—CH
3
O
||
HO—C—CH
3
O
||
Al
4
C
3
Alkanes
HI/Red P.
HI/Red P.
HI/Red P.
H
2
O
—4Al(OH)
3
CH
3
—C—R
O
|| Zn-Hg/HCl
(Clemmensen Reduction)
H
3
C—C—H
O
||
H
3
C—C—ONa
||
O
NH
2
NH
2
/EtO
—
Na
+
(Wolf kishner reduction)
Kolbe's electrolysis
HO—CH
2
—CH
3
HI/Red P.
H
3
C—C—OH
||
O
NaOH + CaO / heat
Properties of Alkanes
Aromatization: ;
Cr
2
O
3
/Al
2
O
3
500°C
Cr
2
O
3
/Al
2
O
3
500°C
—CH
3
Isomerization :
Anh AlCl
3
HCl
CH
3
(CH
2
)
5
CH
3
Anh AlCl
3
HCl
CH
3
(CH
2
)
5
CH
3
Anh AlCl
3
HCl
(Triptane) (2,2,3-trimethyl butane)
; ;
Combustion :
C
n
H
2n+2
+
3n + 1
2
O
2
∆
nCO
2
+ (n+1)H
2
O
CH
4
+ 2O
2
CO
2
+ 2H
2
O
CH
3
—CH
3
+
7
2
O
2
2CO
2
+ 3H
2
O
Pyrolysis :
2CH
3
—CH
2
—CH
3
∆
600°C
CH
3
—CH=CH
2
+ CH
3
—CH
3
+ CH
4
+ H
2
CH
3
—CH
2
—CH
2
—CH
3
∆
600°C
CH
3
—CH
2
—CH=CH
2
+ + +
Properties of Alkanes
O=C—R
H
|Ph
3
P=CH
2
(ylides)
Wittig Reaction
R—CH
2
—CH
2
X
|
R—CH—CH
2
X
|
X
|
R—CH
2
—CH
X
|
|
X
Alc. KOH
−HX
Zn dust
Δ
Zn dust
For Higher Alkene
R—CH=CH
2
(C
n
H
2n
)
R
2
CuLi
H
2
C=CH—Cl
(X:Cl, Br,l) ➝ Saytzeff Rule
Corey house
Preparation of Alkenes
Alkenes
R—CH=CH
2
Alkanes
Pyrolysis
600°C
R—C≡C—R
Na + liq. NH
3
Birch reduction
Pd + CaCO
3
/BaSO
4
Lindlar’s Catalyst
Ni
2
—B
Trans
Cis
Hoffman’s product,
i.e. less stable alkene
(major product)
Conc. H
2
SO
4
, Δ
H
3
PO
4
or P
2
O
5
, Δ
Al
2
O
3
, Δ
ThO
2
Δ
Cope’s
Elimination
Pyrolysis of ester
Pyrolysis of tri
alkyl amine oxide
Pyrolysis of tetra alkyl amm. ion
Kolbe’s
Electrolysis
R—OHalcohols
R—CH—COOK
|
R—CH—COOK
Preparation of Alkenes
Alkenes
R—CH=CH
2
H
2
R—CH—CH
X
| X
2
/CCl
4
|
X
R—CH—CH
3
|
X
R—CH—CH
2
X
|
|
OH
R—CH—CH
3
|
OH
R—CH
2
—CH
2
OH
R—CH—CH
3
OH
|
[No rearrangements]
[No rearrangements]
Alkanes
X
2
/H
2
O
No rearrangement
H
2
O/H
+
MK rule
rearrangement
BH
3
/H
2
O
2
,
OH
-
AMK rule
H—X
MK rule
rearrangement
(i) (AcO)
2
Hg/H
2
O
(ii) NaBH
4
/HO
-MK rule
Properties of Alkenes
CH
2
N
2
/Δ
Cyclo addition of carbene
Alkenes
R—CH=CH
2
NO—Cl
MK rule
No rearrangement
R—CH—CH
2
CH
2
insertion of carbene
Cl
2
/500°C
N.B.S
Combustion
CO
2
+ H
2
O
K
2
Cr
2
O
7
KMnO
4
/ OH
-
OsO
4
/ H
2
O
Ag+1/2O
2
Followed by Hydrolysis
R—CO
2
OH
Followed by Hydrolysis
O
3
Zn/H
2
O
Allylic Substitution
Glycol (syn)
Glycol (anti)
Carbonyl
compounds
R—CH—CH
2
—NO
Cl
|
Properties of Alkenes
CH—COOK
||
CH—COOK
CH
2
—CH
2
Br
|
Br
|
H
3
C—CH
Br
Br
Br—CH—CH—Br
Br
|
Br
|
HC—Br
||
HC—Br
H
2
C=CH—Cl
CH
3
MgI
(ii) RX
??????- ??????+
H
2
O
CaC
2
Electric arc/1200
o
C
H—C≡C—R
(i) NaNH
2
/or Na
(ii) R.X.
HCl
3
+ 6Ag + I
3
CH
Berthelot's process
Kolbe’s electrolysis
2C + H
2
H—C≡C—R
Alc. KOH
NaNH
2
liq. Paraffin
H—C≡C—H (C
n
H
2n—2
)
or
R—C≡C—H
or
R—C≡C—R
Isomerization
(i) Alc. KOH
(ii) NaNH
2
(i) Alc. KOH(ii) NaNH
2
Zn dust/MeOH150
o
C
Zn/MeOH150
o
C
Alc. KOH orNaNH
2
Preparation of Alkynes
Alkynes
R—C≡C—R
HCN
Ba(CN)
2
AgNO
3
/NH
4
OH
KMnO
4
H
+
or OH
-
R—C=CH—R
CN
|
BH
3
/H
2
O
2
,
OH
-
(3n-1)/2O
2
O
3
Zn/H
2
O
NaNH
2
-NH
3
Cu
2
Cl
2
NH
4
OH
R—CH
2
—C—R
||
O
nCO
2
+ (n-1)H
2
O
R—COOH + R—COOH
R—C—C—R
||
O
||
O
R—C≡CNa
R—C≡CAg
(White ppt)
R—C≡CCu
(Red ppt)
H
2
Ni/Pd/Pt
Alkane
HOX
Hg
+2
/dil. H
2
SO
4
Na/liq. NH
3
Birch reduction
Trans Alkene
Pd + CaCO
3
Pd + BaSO
4
Or Ni
2
B
Cis Alkene
(Major)
X
2
/CCl
4
R—C—C—R
|
X
|
X
|
X
|
X
H—X
R—C—CH
2
—R
|
X
|
X
R—C—CX
2
—R
||
O
R—C—CH
2
—R
||
O
Properties of Alkynes
R—C≡C—H
Or (C
2
H
2
)
R—C≡C—R
RMgBr
R—C≡CMgBr + R’—H
δ- δ+
Cl
|
- +
AsCl
3
CH=CHAsCl
2
Red hot
Cu / Fe
Ahy Ni(CN)
2
THF/Δ
(trimerisation) (tetramerisation)
R—C≡C—H
Or (C
2
H
2
)
R—C≡C—R
RMgBr
R—C≡CMgBr + R’—H
δ- δ+
Cl
|
- +
AsCl
3
CH=CHAsCl
2
Red hot
Cu / Fe
Ahy Ni(CN)
2
THF/Δ
(trimerisation)
(tetramerisation)
Properties of Alkynes
BENZENE
NaOH +CaO + ∆
H
2
O
COO
-
Na
+
OH
SO
3
H
MgBr
N
2
+
Cl
-
CH
3
CH
2
OH or H
3
PO
2
Or NaOH + SnCl
2
/Na
2
SnO
2
Cr
2
O
3
Al
2
O
3
(500
o
C)
Red hot Cu tube CH
3|||
CH
Zn/ ∆
H
+
/H
2
O/ ∆
Preparation of Benzene
NO
2
NO₂
+
HNO
3
+ H₂SO
4
SO
3
H
SO
3
, H₂SO
4
or
H₂SO
4
+ SO
3CH
3
+
CH
3
CH
3
Cl + AlCl
3
Friedel craft
Alkylation
Rate
C
6
H
6
>C
6
D
6
>C
6
T
6
[Sulphonation]
HC
+
E
+
H
+
E
H
2
/Pt
Cl
Cl₂ /
U.V.
Cl
Cl
Cl
Cl
Cl
(BHC)
O
3
Zn / H₂O
CHO
|
CHO
3 OZONOLYSIS
REDUCTION
O
2
Δ
CO
2
+ H
2
O
BENZENE
C
=O CH
3
CH
3
─C
+
=O
CH
3
C─Cl + AlCl
3
O
||
Friedel craft
Alkylation
OXIDATION
O
2
/V₂O
5
450
o
C
HC ||HC
O
||
C
O
C
||
O
Maleic
anhydride
CuCl
2
+ I₂
I
+
I
I
2
+ 2Cu
2+
2I
+
+ 2Cu
+
or
I
2
/HNO
3
HIO
3
or H
2
O
2
Properties of Benzene
COOH
CO₂
AlCl
3
CHO
HCN + HCl + ZnCl
H
3
O
+
Gattermann
aldehyde
synthesis
CrCl
3
AlCl
3
/ Al
2
O
3
Na
Liq. NH
3
Ni/H
2
Δ
BENZENE
C
=O Ph
Cl─C─NH
2
/AlCl
3
O
||
O=CH
2
H₂SO
4
C
=O H
CO + HCl
AlCl
3
Gattermann Koch
Aldehyde Synthesis
Ph─C─Cl + AlCl
3
O
||
C
NH
2
O
||
O
2
/V₂O
5
250
o
C
OH
Reduction
(C
6
H
6
)
2
Cr
Birch Reduction
CH
2
Properties of Benzene
PCl
5
HCl+POCl
3
+CH
3
-CH
2
-Cl
N
H
3
C−CH
2
−O
H
H
3
PO
3
+CH
3
-CH
2
-Cl
H
3
PO
3
+CH
3
-CH
2
-Br
H
3
PO
3
+CH
3
-CH
2
-l
HCl+SO
2
+CH
3
-CH
2
-Cl
PCl
3
PBr
3
Pl
3
SOCl
2
S
N
i
H
3
C-CH
2
-Cl
H
3
C-CH
2
-Br
H
3
C-CH
2
-l
H
3
C-CH
2
-Cl (S
N
2)
HCl
Lucas reagent
Δ
Prolong heating
2
o
(ROH)➝ 5 mins white turbidity
immediately (3
o
ROH)
HBr 48%
NaBr + H
2
SO
4
Hi(57%)
Kl/H
3
PO
4SOCl
2
Preparation of Haloalkanes
1
o
HBr
Peroxide
H
3
C-CH = CH
2
H
3
C−CH
2
−CH
2
Br
|
Cl
2
hv
H
3
C−CH
2
−H H
3
C-CH
2
Cl H
3
C-CH
2
-l (Finkelstein Reaction)
H
3
C−COAg H
3
C-Br+CO
2
↑ + AgBr ↓ (Hunsdiecker Reaction)
||
O
CH
2
-CH=CH
2
Br |
CH
2
-CH=CH
2
Br |
Br
2
/ 8OOK
Δ
NBS
CCl
4
H
3
C−CH−CH
3
Br |
H
3
C−CH−CH
3
Cl |
H
3
C−CH−CH
3
l
|
H
3
C-CH-CH
2
-Br
l
Br
Nal
Acetone
Br
2
CCl
4
H
3
C-CH
2
-Cl H
3
C-CH
2
-F(swarts reaction)
AgF
or Hg
2
F
2
HBr
CCl
4HCl
Hl
Br
2
/CCl
4
Preparation of Haloalkanes
NCS
NCO
Nal
Acetone
(C
2
H
5
)
2
CuLi
H
3
C - C - OAg
Na
2
SO
3
H
3
C - CH
2
- l
Finkelstein
Reaction
AgCN
KCN
OH
-
Aq. KOH
Or Moist Ag
2
O
K
+
O - N = O
Ag - O - N = O
O
H
3
C−CH
2
−N
O
O
||
H
3
C - CH
2
-N = C = O
CH
3
-
- CH
2
-S - C ≡ N
H
3
C - CH
2
- CH
2
- CH
3
H
3
C - CH
2
- O - C - CH
3
O
||
H
3
C - CH
2
- SO
3
-
Na
+
Corey house synthesis
EtOH
H
3
C - CH
2
- OH
H
3
C - CH
2
- C ≡ N
H
3
C - CH
2
- N ≡ C
+
H
3
C-CH
2
-O- N = O
CH
3
−CH
2
−Br
O
H
3
C−CH
2
−N
O
−
NaNO
2
DMF
Na
2
S
H
3
C−CH
2
−S−CH
2
−CH
3
Properties of Haloalkanes
S
+ H
3
C−CH
2
NH
2
CH
3
−CH
2
−Br
(H - C)
2
CHNa
O
||
H
3
C−CH
2
−CH
O
C−H
C−H
O
− +
S
Li
S
S
H
3
C−CH
2
C
O
− +
NK
C
O
C
OH
C
OH
O
||
||
O
Gabriel Phthalimide Synthesis
H
3
O
+
AgSCN
H
3
C-CH
2
-N=C=S
Alc. KOH
H
2
C=CH
2
H
3
C-CH
2
-O-CH
2
-CH
3
(R-Br➝ 1
o
)
CH
3
-CH
2
ONa
+
Dry Ag
2
O
NaSH
Alc.
H
3
C-CH
2
-SH
CH
3
SNa
H
3
C-CH
2
-S-CH
3
NH
3
excess
H
3
C-CH
2
-NH
2
(1
o
)
H
3
C-CH
2
-NH-CH
2
-CH
3
(2
o
)
CH
3
CH
2
NH
2
excess
(C
2
H
5
)
2
NH
(CH
3
-CH
2
)
3
N(3
o
)
Et
3
N
Et
4
+
NBr
Na
+
N
3
H
3
C-CH
2
-N=N=N
+
Properties of Haloalkanes
CH
3
−CH
2
−Br
H
3
C-CH
2
-C≡C-CH
3
LiAlH
4
/Et
2
O
H
3
C-CH
2
-H
(1
o
,2
o
not 3
o
R-X)
Br
AlCl
3
CH
2
−CH
3
Na/Et
2
O
H
3
C-CH
2
H
3
C−C−NHNa
O
||
− +
O
||
Wurtz
reaction
H-C≡CNa
+
H
3
C-CH
2
-C≡C-H
NaBH
4
/EtOH ⤑ 2
o
and 3
o
not 1
o
R - X
H
3
C-C≡CNa
+
Zn-Cu couple/EtOH
Zn-dil HCl; Na/EtOH
Na
Et
2
O
H
3
C-CH
2
-CH
2
-CH
3
Wurtz-Fittig
Reaction
F.C Alkylation
C
2
H
5
MgBr
Mg/Et
2
O
H
3
C-CH
2
NH-C-CH
3
H
3
C-CH
3
Properties of Haloalkanes
RMgX
H
2
CO/H
3
O
+
R - OH
RCH
2
- OH
R - CH
2
- CH
2
- OH
HCOOEt/H
3
O
+
RCOOEt/H
2
O
RCHO/H
3
O
+
HCOOEt
RCOR/H
2
O
RCN/H
2
O
RCOOEt
(i) O
2
(ii) H
3
O
+
O
CH
2
−CH
2
/H
3
O
+
R
2
CHOH
R
2
CHOH
R
3
C - OH
R
3
C - OH
RCHO
RCOR
RCOR
1° Alcohol
1° Alcohol
1° Alcohol
2° Alcohol
2° Alcohol
3° Alcohol
3° Alcohol
Aldehyde
Ketone
Ketone
R - X + Mg
(1 eq)
(1 eq)
Preparation & Properties of RMgX (Grignard Reagent)
dry
ether
RMgX
HOH or ROH or
NH
3
or Ph - OH
or R - NH
2
or RNH - R
or CH≡CH or Ph - NH
2
RCOOH
R
3
N
Cl - NH
2
R - X
Cl - CN
ClCH
2
-CH=CH
2
X
2
ClCOOEt
CO
2
+ H
2
O
R - H
R - R
No reaction
R - CH
2
- CH = CH
2
R - NH
2
R - CN
R - X
RCOOEt
Acids
Alkane
Alkane
Alkene
1° Amine
Cyanides
Alkyl halide
Ester
(1 eq)
Preparation & Properties of RMgX (Grignard Reagent)
I
Cl
BrCl
CH
3
Cl
AlCl
3
CH
3
KMnO
4
/ OH
-
COOH
Ag
2
O
COOAg
Br
2
CCl
4
Reflux
Br
HCl + 1/2O
2
CuCl + 300
0
C
I
2
,
HNO
3
Br
2
/ FeBr
3
Cl
2
/
FeCl
3
Raschig process
Hunsdiecker
reaction
Preparation of Haloarenes
N
+
≡NCl
Cl
Br
I
F
Aq. KI
HBF
4
/Δ
CuBr + HBr
Cu/HBr
CuCl/HCl
or Cu/HCl
Sandmeyer Reaction
[CuX/HX]
Gattermann reaction
[Cu/HX]
Balz schiemann
reaction
HNO
3
H
2
SO
4
(i)
(ii) Sn/HCl
(iii) NaNO
2
/HCl/0
°
-5
°
Preparation of Haloarenes
Properties of Haloarenes
NH₂
ArSN
(via Benzyne)
+
NH₂
CH₃
Wurtz-Fittig Reaction
Ph
Fittig Reaction
COOH MgCl
CO₂
H₂O
⊕
NaNH₂
CH₃Br
Ph-Br
Na/Et₂O
Mg
THF
Ni-AI
NaOH
CI
CH₃
+
CI
CH₃
CI
C
CH
3
O
+
CI
C
CH₃O
CH₃C
H
DDT
2.2 bis(p-chlorophenyl) 1,1,1 -trichloroethane
(Dichloro diphenyl trichloro ethane)
CH₃CI
AICI₃
O
AICI₃
H₂C–C O
H
CI
CI
CI
Liq NH₃
Na/Et₂O
H₃C–C–CI
Conc H₂SO₄
OH
CN
NH₂
CI
NO₂
+
CI
NO₂
Aq.NaOH
300℃: pressure
NaCN+CuCN
200℃: atm
Aq.NH₂/Cu₂O
200℃: atm
Conc
HNO₃
H₂SO₄
CI
NO₂
NO₂
OH
NO₂
NO₂
Aq.Na₂CO₃
80℃ .100℃
CI
NO₂
NO₂
OH
NO₂
NO₂
H₂O
warm
O₂N
NO₂
O₂N
Cu/△
MeO-Na
OMe
NO₂
+
OMe
NO₂
CI
Ullmann Reaction
Cu/△
Properties of Haloarenes
Ullmann Reaction
NH₂
NO₂
OH
NO₂
NH₃/Cu₂O
100℃: atm
Aq. NaOH
200℃: 100 atm
Cl
CN
CN
NO₂
KCN/EtOH
Von-Richter
reaction
NaCN + CuCN
300℃/atm
CI
NaNH₂
Liq. NH₃
KCN
H₂O
NO₂
NH₂
NO₂
NH₂
C
OH
O
F CI Br I
>
NO₂NO₂NO₂NO₂
> >
(Reactivity toward Nucleophile)
MinorMajor
CI
NO₂
Properties of Haloarenes
B.p’s & Density
F CI Br I
<<<
CI
CI
>O & m:
CH₃
CI
>
CH₃ CH₃
>
CI
CI
m.p’s
F
NO
2
>
Cl
NO
2
>
Br
NO
2
>
I
NO
2
(Reactivity toward Nucleophile)
Properties of Haloarenes
Preparation of Alcohols
B
2
H
6
/THF
H
2
O
2
/NaOH
(CH
3
)C−CH−CH
2
H
OH
CH
3
−C − CH−CH
3
OHCH
3
CH
3
Dil. H
2
SO
4
CH
3
−C − CH−CH
3
OHCH
3
CH
3
Hg(OAc)
2
/H
2
O
NaBH
4
(Bayer’s Reagent)
H
3
C−CH−CH
2
OHH−O
Syn addition
Cold dil. alk. KMnO
4
H
3
C−CH−CH
2
OHH−O
Syn addition
ii) H
2
O
2
i) RCO
3
H (Epoxidation)
ii) H
3
O
+
H
3
C−CH−CH
2
OH
H−O
Anti addition
Markovnikov addition
S
N
1(C+ rearrangement)
Anti-markovnikov addition
No C+ rearrangement
Markovnikov addition
No C+ rearrangement
CH
3
−C−CH=CH
2
CH
3
|
|
CH
3
i) OsO
4
or Pb(O Ac)
4
CH
3
−C−O−Et
O
||
CH
3
−C−CH
3
O
CH
3
MgBr
H
3
O
+
CH
3
−C−CH
3
CH
3
OH
H−C−OEt
O
||
H
3
C−C−H
O
CH
3
MgBr
H
3
O
+
H
3
C−CH−CH
3
OH
O
2
/60°C
-2/H
3
O
+
CH
2
−CH
2
, H
3
O
+
O
CH
3
−CH
2
−CH
2
−OH
CH
2
−CH−CH
3
, H
3
O
+
O
CH
3
−CH
2
−CH−CH
3
OH
CH
3
−Br
Aq. KOH
Moist Ag
2
O
Et
2
O
Mg
2CH
3
OH
CH
3
−OH
Preparation of Alcohols
CH
3
MgBr
Grignard
Reagent
Preparation of Alcohols
H−C−H
O
||
H
3
C−C−H
O
−
MgBr
H
3
O
+
CH
3
−CH
2
−OH
H
CH
3
−C−CH
3
O
CH
3
MgBr
H
3
O
+
CH
3
MgBr
Grignard
Reagent
H
3
O
+
⊕
CH
3
−C−Cl
O
||
3° H
3
C−C−CH
3
OH
CH
3
CH
3
−C−H
O
||
H
3
O
+
2° H
3
C−C−CH
3
OH
H
CH
3
−C−CH
3
O
||
H
3
O
+
3° H
3
C−C−CH
3
OH
CH
3
1°
Properties of Alcohols
PCl
5
- HCl
POCl
3
+CH
3
-CH
2
-Cl
CH
3
−CH
2
−OH
H
3
PO
3
+3CH
3
-CH
2
-C
l
H
3
PO
3
+3CH
3
-CH
2
-Br
H
3
PO
3
+3CH
3
-CH
2
-l
HCl+SO
2
+CH
3
-CH
2
-Cl
PCl
3
PBr
3
Pl
3
SOCl
2
SO
2
+CH
3
-CH
2
-Cl + HCl
SOCl
2
/
N
|
H
Cr
CH
3
-CH
2
-X + H
2
O
HX
S
N
2
S
N
2
S
N
2
S
N
2
S
N
1
S
N
2
2° & 3°→ S
N
1
1° → S
N
2
Conc.H
2
SO
4
or
Conc. H
3
PO
4
P
2
O
5
Δ
Al
2
O
3
Δ
400
0
C – 500
0
C
ThO
2
Δ
POCl
3
Δ
(Zaitsev)
(Zaitsev)
(Zaitsev)
(Hoffmann)
(Hoffmann)
Gaseous
state
E
1
Mechanism
E
2
Mechanism
R
H
H
H
R
H
H
H
R
H
H
H
R
H
H
H
R
H
H
H
R
H OH
Dehydration reaction
Properties of Alcohols
Alc. KMnO
4
(Purple/pink)
acidic K
2
Cr
2
O
7
(Orange)
CrO
3
+ aq.H
2
SO
4
Acetone (JONES REAGENT)
PCC
Pyridinium chlorochromate
PDC
Pyridinium dichromate
Cu, (350 – 400
0
C)
Collins Reagent
CrO
3
+ CH
2
Cl
2
+ pyridine
Strong
oxidizing
agent
Mild
oxidizing
agent
(Brown)
Green
Oxidizes olefinic
double bond
Does not oxidizes
olefinic double bond.
R ― COO
-
K
+
+ MnO
2
↓ + H
2
O
R ― COOH + Cr
2
(SO
4
)
3
+ H
2
O
+ K
2
SO
4
R ― COOH
R ― CHO
R ― CHO
R ― CHO
R ― CHO
R OH
Alcohol
1°
Properties of Alcohols
Preparation of Ethers
H
2
SO
4
/140
o
C
2C
2
H
5
― OH
H
3
C−CH
2
−O−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R
CH
3
ー CH
2
ー I
(R
o
➝ 1
o
)
Dry Ag
2
O
2C
2
H
5
l
Hg(OAc)
2
C
2
H
5
OH/NaBH
4
CH
2
= CH
2
CH
2
N
2
/BF
3
CH
3
― CH
2
―
OCH
3
H
+
/CH
3
― CH
2
― OH
H
3
C ― CH
2
― ONa
+
CH
2
= CH
2
Williamson synthesis
Alkoxymercuration demercuration
Properties of Ethers
Cl
2
Dark
H
3
C―O―CH
3
ZnCl
2
H
3
C−CH−O−CH−CH
3
Cl
Cl
αβ
α
Cl
2
hv
Cl−C−C−O−C−CCl
3 Cl
Cl
Cl
Cl
Cl
Cl
HCl
H
3
C−C−O−C
2
H
5
+ C
2
H
5
Cl
O
CO/150°C
BF
3
/500°atm
H
3
C−CH
2
−C−O−CH
2
−CH
3
O
AC
2
O/
ZnCl
2
H
3
C−CH
2
−CO−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R H
3
C−C−OC
2
H
5
+ C
2
H
5
Cl
O
2C
2
H
5
OH
6O
2
Δ
Hl/cold
PCl
5
/POCl
3
4CO
2
+ H
2
O
H
3
C−CH
2
−O−CH
2
−CH
3
H
3
C−CH
2
−O−CH
3
R−O−R
dil. H
2
SO
4
2C
2
H
5
― OH (Hl > HBr > HCl)
Hl/Δ
excess
CH
3
― CH
2
l + CH
3
― CH
2
― l
CH
3
― CH ― OH + CH
3
― l
2C
2
H
5
― Cl
Properties of Ethers
Preparation of Phenol
CI
NO₂
NO₂
O₂N
MgBr
Cl
H
CH
3
C HH
3
C
COOH
OHNaOH+CaO/Δ NaOH+Cu-Fe 300
o
C/200 atm
Aq. Na
2
CO
3
SiO
2
/460
o
C
H
2
O/H
+
O
2
/60
o
C/Δ
[O] V
2
O
5
(Dow’s process)
H
2
O/Δ
NaOH
Fused
200
o
C/HCl+ 1/2O
2
/Cu-Fe
250
o
C
O
2
/60
o
C
H
2
SO
4
N
2
Cl
+-
SO
3
Na
+-
OH
PHENOL
Properties of Phenol
OH
H
3
CCCl
=O
NH
3
ZnCl
2
/300
o
C
FeCl
3
Neutral
3HCl+[(Ph
3
O)
6
Fe]
-3
+
3H
+
(Violet Colour)
NH
2
OCCH
3
=O
60
o
C
120
o
C
200
o
C
C=
O
CH
OH
CH
C
=
O CH
3
CH
2
CHCH
2
Cl=
OCH
2
CH=
CH
2
O
H
CH
2
CH
=CH
2
Claisen Rearrangement
Fries
Rearrangement
PHENOL
No effervescence
ONa
+-
OCH
3
ONa
+-
CH
3
l
OCH
3
H
Cl
O
O
||
CPh
NaOH
NaHCO
3
+(Ph O)
3
PO
(Major)
NaOH
Na
2
CO
3
CH
2
N
2
BF
3
Zn
Δ
PCl
5
Ph
O
||
CCl
OH
PHENOL
Properties of Phenol
OH
NO₂O₂N
NO₂
(Oxidized P)
+
Phenol - Reaction due to Benzene Ring
Conc HNO₃
+ H₂SO₄
OH
BrBr
Ph
Br₂
H₂O
2.4.6- tribromophenol
Br₂
CS₂
OH
Br
OH
Br
+
93%
7%
Conc
H₂SO₄
100
o
C
OH
SO₃H
SO₃H
OH
SO₃H
SO₃H
OH
O₂N
OH
Br
OH
NO₂O₂N
NO₂
+NO₂
NO₂
HNO₃/H₂SO₄
2.H₂O/H
+
H₂SO₄
NaNO₂
OH
N=O
HNO₃
OH
NO₂
Blue
Green
Red
PhOH
H₂SO₄
H₂O
NaOH
Blue
OH
PHENOL
Properties of Phenol
1.Br₂/NaOH
access
CH₂=O
MeOH
OH
CH₂OH
+
OH
CH₂OH
NaOH
△
Bakelite
CO₂/NaOH
H
125℃
250℃
C
OH
O
OH
OH
COOH
+
OH
HO–C CO
2
CHCI₃ Reimer tiemann
ReactionO
KOH
KOH
OH
C
O
H
NaOH
OHN=N
N≡NCI
-
⊕
HCN+HCI
ZnCI₂/H₃O+
C
H
O
OH OH
CHO
+
(Major)
Gattermen
Reaction
C
C
O
O
O
Phenolphthalein
(Pink
colouration)
NaOH
C
Acetone
Conc HCl
CH₃
CH₃
OHHO
OH
PHENOL
(Reaction due to Benzene ring)
Properties of Phenol
+
K₂S₂O₈
OH
-
/H₂O
N=N
K
2
Cr
2
O
7
O(Benzoquinone)
OH(EIb’s Persulphate
Oxidation)
125℃
OH
C
O
OH
O
COH
AC
ACO MeOH
Aspirin
O
C
O
OMe
Oil of
wintergreen
air/O₂
H₂/Ni
Phenyl salicylate
OH
OO
Phenoquinone(red)
O--HOPh
CO₂/NaOH
125℃ /H
+
CO₂/KOH
H
+
HO
PhOH
OH
C
O
C
OH
O
(Major product)
O
+
OH
C
O
OH
O
OH
PHENOL
(Reaction due to Benzene ring)
CO₂/KOHH
+
Properties of Phenol
O
HO
CO₂/NaOH
POCI₃
Ph-OH--O
H
PCC/PDC
Preparation of Aldehydes
dil. H
2
SO
4
HgSO
4
SnCl
2
+ HCl
DIBAL-H
Pd-BaSO
4
Boiling xylene
Aq. KOH
2 molesO
||
C
H
Rosenmund Reduction
O
C
CH
3
Cl
+ H
2
CH
3
−CH
2
−OH
X
C
X
H
CH
3
H−C≡CH
O
C
CH
3
Cl
O
C
CH
3
O
C
2
H
5
CH
3
−C≡N
Stephen’s Reaction
Hexane - 78%
H
2
O
LTTBA L-H
Diethyl ether
DIBAL - H
CH
3
−C≡N
Hexane - 78%
H
2
O
CH
3
Preparation of Ketones
PCC/PDC
Aq. KOH
2 moles
O
||
C
R R’
X
C
R
X
R’
O
C
R Cl
R’C≡N
Dry ether
Ketone
RMgX
H
C
R
OH
R’
CdR’
2
R’COCl
Dry ether
RMgX
RCOOH +
R’COOH
MnO
300℃
Reductive Ozonolysis
(1) O
3
(2) Zn or Zn /
CH
3
COOH
O
3
H
2
O
2
OR
(CH
3
)
2
S
AldehydeKetone
Carboxylic Acid
Oxidative Ozonolysis
OO
HR’
R’’R
O
R’
R
O
H
R’’
+
Ketone
O
R’
R
O
OH
R’’
+
Preparation of Aldehyde & Ketones
C
HO
H
2
C−OH
BENZALDEHYDE
CO+HCl+Anh. AlCl
3
HCN+HCl+ZnCl
2
/H
2
O
Gattermann Aldehyde
Synthesis
CrO
2
Cl
2
/H
3
O
+
(Etard)
CrO
3
/AC
2
O/H
3
O
Gatterman KOCH
Aldehyde Synthesis
(CH
2
)
6
N
4
/EtOH
H
3
O
+
Pb(ONO
2
)
2
HNO
3
H
2
/Pd−BaSO
4
−Quinoline−S
Rosenmund Reduction
CH
2
=N−OH
CrO
3
/ N or MnO
2
H
2
O+
Mg/H−C −OC
2
H
3
CH
3
CH
2
Cl
C
ClO
O
||
BrN
2
Cl
+
_
Preparation of Benzaldehyde
Properties of Aldehydes and Ketones
OH
OH
R’R
H
2
O
OH
OR’’
R’R
OH
R’
SO
3
−
Na
+
R
OH
CN
R’R
R’’OH
Dry HCl, H
3
O
+
NaHSO
3
HCN
Mild alkaline
condition
R’’OH
Dry HCl, H
3
O
+ OR’’
R’R
OR’’
R’R
O
||
C
Aldehyde/ Ketone
Acetal/ Ketal
Cyanohydrin
H
2
, 1000 psi
Ni, 50°
Zn(Hg), HCl
Na/C
2
H
5
OH
LiAlH
4
/Et
2
O
NaBH
4
/EtOH
Al(i-PrO)
3
/Heat
Clemmensen reduction
NH
2
NH
2
KOH, Δ
Wolff-kishner reduction
O
||
C
R
1
R
2
OH
|
CH
R’ R’’
MPV Reduction Bouveault– Blanc
Réduction.
C
HH
C
HH
+ N
2
O
R
2
R
1
OH
CH
3
H
3
C
+R
2
H
OHR
1
R
1
−CH−R
2
OH
R
1
R
2
R
1
R
2
R
1
−CH−R
2
OH
Properties of Aldehydes and Ketones
Tollen’s reagent
Fehling’s solution
Benedict solution
Ag
2
O(moist)
NaOCl
O
RH
R ― COO
-
+ Ag↓
R ― COO
-
+ Cu
2
O↓
R ― COO
-
+ Cu
2
O↓
R ― COOH + Ag↓
R ― COOH + NaCl
(Silver mirror)
(Brick red)
(Brick red)
Properties of Aldehydes and Ketones
+ 3X
2
+ 4NaOH + 3 NaX + 3H
2
O + CHX
3
Alternative reagent : NaOX
O
RCH
3
O
RO
− +
Na
Haloform reaction:
C
HO
OH
C
H
NNH
2
H
CNOH
C
OH
H SO
3
Na
+
OH
3
O
+
OH
H−C−N
H−C≡N
OH
NaHSO
3
H
2
N−NH
H
2
N−NH
KOH
CCO
O
HNO
3
EtOH
KCN
2NH
3
Cl
2
Δ
CHC
O
OH
C
Ph
NC
H
NC
H
C
O
Cl
Benzylic acid rearrangements
Benzoin Condensation
OH
H−C−C
H
C
O
COK
+
_
Ph
HO
Properties of Benzaldehyde
H
CNH
O
2
N
NO
2
H
CNNC
O
NH
2
CH
2
OH
O C
ONaCH
2
OH
+
CH N Ph
CH CH C OEt
O
CH CH C CH
3
O
CH CH NO
2
H
2
N
NaOH
50%
Zn/HCl
LiAlH
4
/Et
2
O
H
2
N NH C NH
2
H
2
N NH NH
2
O
2
N
Δ
Zn-H
2
O/NH
4
Cl
O
CH C OEt
Br
CH
2
(COOEt)
2
CH=C
O
C OEt
C OEt
O
CH CH COH
O
Ac
2
O/AcONa
KOH
CH
3
NO
2
H
3
C C CH
3
O
Cannizzaro Reaction
Schiff base
Reformatsky Reaction
Knoevenagel
Reaction
Perkin Condensation
C
HO
O
Properties of Benzaldehyde
Tollen’s Reagent
Schiff Reagent
Fehling Soln.
+Ve Test
Pink color
No reaction
Conc . H₂SO₄
2Me₂N H
CH
Me₂N
Me₂N
Malachite green
PCI₅
C ─CI
CI
H
Conc . H₂SO₄
H₂SO₄/△
O=C─H
SO₃H
[O]/Air
C─ OH
O
PhMgBr
H₃O
+
C
H
OH
HNO₃
H₂SO₄
CHO
NO₂
1. LiAIH₄
2.H
3
O
+ CH₂ㅡOH
CI₂/AICI₃
CHO
CI
C
HO
Properties of Benzaldehyde
H
3
C−C−OH
O
H
3
C−CH
2
−C−OH
O
K
2
Cr
2
O
7
/H
⊕
KMnO
4
/H
⊕
H
3
C―CH
2
―OH
H
3
C―C―OH
O
[O]
[Ag(NH
3
)
2
]
+
,
2CuO
KMnO
4
/H
⊕
Δ
H
3
C―CH
2
―CH
2
―C
CH
3
O
dil. HCl
H
3
C―C≡N
dil HCl, dil HNO
2
dil NaOH/H
+H
3
C―C―NH
2
O
H
+
/H
2
O
H
3
C―C―OEt
O
H
3
C―C―Cl
O
H
+
/H
2
O
H
3
C―C―O―C―CH
3
O O
H
3
O
+
Cl
Cl
Aq.KOH
H
3
C―C―CH
3
O
NaOl/H
+
-CHl
3
CO+H
2
O
H
3
PO
4
H
2
C=CH
2
C = O/H
3
O
+
O
BrMgCH
3
CH
3
―C―Cl
O
SOCl
2
+CH
2
N
2
H
2
O/Ag
2
O
Arndt Eistert reaction
Cl―C―CH
3
Preparation of Carboxylic acid
Na
OHR
O
C
O
−
Na
+
R
O
C +H
2
1
2
O
−
Na
+
R
O
C +H
2
O
O
−
R
O
C+H
2
CO
3
H
2
O + CO
2
O
−
NH
4
+
R
O
C R−C≡N
Al
2
O
3
or P
4
O
10
or H
2
SO
4
Δ
OH
R
O
X
2
,RedP
X = Cl, Br OH
R
O
X
α
NaOH
HCO
3
-
NH
3
HN
3
RNH
2
+ CO
2
+ N
2
Hell volhard
zelinsky reaction ?????? - substitution
Properties of Carboxylic acid
PCl
5
SOCl
2
PCl
3
ClR
O
+ H
3
PO
4
OHR
O
ClR
O
+ POCl
3
+ HCl
ClR
O
+ SO
2
+ HCl
Acyl chloride
Conversion to carboxylic acid derivative :
Properties of Carboxylic acid
Preparation of Benzoic Acid
C
OHO
C
ClO
O C OC
2
H
5
CCl
3
SO
3
Na
+
_
MgBr
CH
3
COOH
OH
H
2
C X
C N
H
3
O
KMnO
4
/OH
_
Zn
Δ
CO
2
/H
3
O
KMnO
4
/OH
_
H
3
O
H
3
O
H
3
O
O CCl
2
/AlCl
3
aq.KOH
Δ
+
_
H C ONa
O
fused
Benzoic
Acid
Properties of Benzoic Acids
( )
C
OHO
O C ONa
NH
2
CH
2
OH
O
C O C
2
H
5
O
C NH
2
O
C O Ca
2+
O
C PhPh
C N
N
3
H/H
2
SO
4
LiAlH
4
/H
2
O
NH
3
/Δ
Δ
Ca(OH)
2
NaHCO
3
NaOH/
C
2
H
5
OH
H
+
O C Cl
O
C O C
O
Br COOAg
BENZOIC
ACID
Ag
2
O
(i)SOCl
2
(ii)CH
2
N
2
(iii)H
2
O/Ag
2
O
C
O
OHCH
2
Br
2
/CCl
4
Reflux
Soda lime
Δ
Δ
P
2
O
5
PCl
3
or SOCl
2
PCl
5
Hunsdiecker
Reaction
Schmidt
Reaction
Arndt Eistert
Reaction
CI₂/FeCI₃
COOH
CI
△
COOH
NO₂
Conc. HNO₃
Conc. H₂SO₄
COOH
Br
Br₂/FeBr₃
△
Conc. H₂SO₄
△
COOH
SO₃H
OH
NO₂O₂N
NO₂
OH
BrBr
Br
OH
C
OH
O
Br₂
H₂O -CO₂
C
OHO
Conc. HNO₃
Properties of Benzoic Acids
PCl
5
SOCl
2
PCl
3
ClR
O
+ H
3
PO
4
OHR
O
ClR
O
+ POCl
3
+ HCl
ClR
O
+ SO
2
+ HCl
Preparation of Acid Chloride
Hydrolysis
R′OH
Pyridine
R′COOH
Pyridine
H
2
O
R′
2
NH
R
2
′CuLi
R′Mg X
Pyridine is used to absorb
HCl because reactivity of
ester & anhydride is fairly
high
ClR
O
OHR
O
+ HCl
OR’R
O
R
O
R’
+ HCl
+ HCl
NR’
2
R
O
+ HCl
R’R
O
O
O
R’R
O
Properties of Acid Chloride
R
2
′ Cd
LiAlH
4
/NaBH
4
LiAlH (OCMe
3
)
3
Et
2
O
H
2
/Pd – BaSO
4
Quinoline
(Lindlar's catalyst)
ArH, AlCl
3
ClR
O
R’R
O
HR
O
Rosenmund Reaction
HR
O
ArR
O
+ HClFriedel-Crafts Acylation
OHR
Properties of Acid Chloride
Vapour
phase esterification
H
3
C―C―O―H+CH
2
N
2
H
3
C―O―CH
3
O
H
3
C−C−OAg
H
3
C―C―O―CH
3
O
||
CH
3
C−
O−CH
2
−CH
3
O
O
H―C―CH
3
H
3
C−C−OH +
CH
3
−CH
2
−OH
O
H
2
SO
4
Δ
ThO
2
H
3
C−C−OH +
CH
3
−CH
2
−OH
O
H
3
C−CO−CH
3
H
3
C−C−O−CH
3
Peroxide
BF
3
/350K
O
Bayer villiger oxidation
H
3
C―CH
2
―l
―Agl
C
2
H
5
OH
or CH
3
―CH
2
―ONa
+
Al(OEt)
3
OO
Tishchenko Reaction
ether
Preparation of Esters
H
2
O/H
+
H
2
O/OH
–
irreversible
R′′ MgX
1eq.
LiAlH
4
(Saponification)
OHR
O
+ R’OH
OR’R
O O
-
R
O
+ R’OH
R”R
O
+ Mg(OR’)X
OHR
+ R’OH
Properties of Esters
TRANSESTERIFICATION
OC
2
H
5
R
O
+
Na
–
O–C
2
H
5
C
2
H
5
OH OC
2
H
5
R
OO
R
OH+
R
2
′′NH
PCl
5
R′′ OH
Na +
C
2
H
5
OH
OR’R
O
OR”R
O
ClR
O
+ R’ ― Cl + POCl
3 OH + R’―OHR
NR
O
|
R”
R’’
+ R’―OH
Claisen condensation :
Bouveault-Blanc reduction
Properties of Esters
OHR
O
I.
+NH
3
O
NH
4
R
O
+-
NH
2
R
O
+ H
2
O
II.
ClR
O
+NH
3
NH
2
R
O
+ HCl (3
0
amide) R’
3
N ⟶
No Reaction
III.
ClR
O
+R’―NH
2
+ HCl
NHR
O
R’
IV.
ClR
O
+R’―N―R’ + HCl
H
NR
O
R’
R’
R
O O
R
NH
3
NH
2
R
O
O
NH
4
R
O
+-
+
Δ
(Dehydration)
O
V.
Preparation of Amides
H
3
O
+
H
2
O
OH
–
NH
2
R
O
OHR
O
+
+
NH
4
O
-
R
O
+ NH
3
1
o
Amine
Amide
NH
2
R
O
+ X
2
+ 4NaOH NH
2
+ Na
2
CO
3
+ 2 NaX + 2H
2
O
|
R
Properties of Amides
P
4
O
10
Δ
OHR
O
+
RHO
O
R
O O
O R
+ H
2
O
PyridineClR
O
+
RHO
O
R
O O
O R
+ HCl
Carboxylic acid
Acid Chloride
Succinic Acid Cyclic anhydride
O
O
CH
2
OH
CH
2
OH
CH
2
CH
2
O
O
O + H
2
O
300°C
Preparation of Acid anhydride
H
2
O
R′ OH
R
2
′ NH
R
O O
R
NR’
2
R
O
+ O
-
[NH
2
R’
2
]
+R
O
OR’R
O
+
OHR
O
OHR
O
2
O
Properties Acid anhydride
R′MgX
(1 eq)
ArCl
AlCl
3
PCl
5
LiAlH
4
/Et
2
O
H
3
O
⊕
R
O
RO
O
ClR
O
2
+POCl
3
OHR
ArR
O
+ HCl
R’R
O
+
R
XMgO
O
CHO
OH
3
C
O O
CH
3
+
Cinnamic Acid
O
OH
CH
3
COOH/
CH
3
COONa
Δ
Perkin Reaction :
Properties Acid anhydride
H
|
N
H
2
/ Pd Or
Alkyl azide
i) LAH,Et
2
O
ii) H
3
O
+,
Cyanide 1
o
amine Isocyanide
i) LAH,Et
2
O
ii) H
3
O
+
R ― N
3
R ― NH
2
R ― C ≡ N R NH
2 R ― N ≡ C
-
+
i) LAH, Et
2
O
ii) H
3
O
+
2° Amine
R CH
3
R ― C ≡ N
Na/C
2
H
5
OH
C
2
H
5
OH
cyanide 1° Amine
R NH
2
1
o
amine1
o
amine
Sn / Zn / Fe
HCl
Nitroalkane
R ― NO
2
R ― NH
2
(NH
4
)
2
S
or
NH
4
HSR - Mg - Cl + Cl-NH
2
⟶ R - NH
2
+ MgCl
2
NO
2
NO
2
NH
2
NH
2
Mendius
Preparation of Amines
NaB(OAc)
3
H
LiAlH
4
Zn-HCl
H
2
-Pt/LiAlH
4
NH
2
OH
H
+
R”NH
2
H
+
R
2
NH
H
+
Oxime
Imine
Iminium salt
1°
amine
2°
amine
3°
amine
N
R
R’’
R’
HN
R
R’’
R’
NH
2
RR’
N
R
R’’
R’
R’’
N
R
R’’
R’
R’’+
N
R
OH
R’
O
RR’
NaOH
Acyl chloride
−HCl
LiAlH
4
1
o
amine
Acylation-Reduction
N
H
O
R NH
R
Cl
O
R−NH
2
+
Preparation of Amines
Phthalimide Phthalic acid
1
o
Amine
(i) KOH (ii) R ― X
(iii) aq. NaOH (iv) H
3
O
+
O
||
C
N−H
O
||
C
C
||
O
H
H
+ R−NH
2
1
o
AmineAmide
NH
2
R
O
+ X
2
+ 4NaOH NH
2
+ Na
2
CO
3
+ 2 NaX + 2H
2
O
|
R
C
||
O
NaOH
Acyl chloride
−HCl
LiAlH
4
1
o
amine
NH
O
R NH
R
Cl
O
R−NH
2
+
Preparation of Amines
1° Amine1° Alkyl halide
1° Amine Acyl Chloride N-sub. Amide
N
H
R’
O
R
R ― NH
2
+ R’ ― X R ― NH ― R’ + HX
R ― NH
2
+
ClR’
O
+ HCl
R - NH
2
+ HNO
2
⟶ R - N
2
+ H
2
O
+
1° Amine Chloroform Carbylamine
R ― NH
2
+ CHCl
3
+ 3KOH R ― NC + 3KCl + 3H
2
O
RCH
2
NH
2
R - CH = NH R -CHO + NH
3
H
2
O
Aldimine Aldehyde
R
2
CHNH
2
R
2
C = NH R
2
C = O + NH
3
Ketimine Ketone
[O]
KMnO
4[O]
KMnO
4
H
2
O
2R
2
NH R
2
N - NR
2
(Tetra-alkyl hydrazine)
R
2
NH R
2
N-OH
(Dialkyl hydroxylamine)
[O]
KMnO
4
Caro’s
acid
Tertiary amine: No Oxidation with KMnO
4
Properties of Amines
RNH
2
R
2
NH
R
3
N
X No Reaction
PhSO
2
NHR (Soluble in NaOH)
PhSO
2
NR
2
(Insoluble in NaOH)
N - alkyl benzene sulphonamide
Acidic Hydrogen
N,N - dialkyl benzene sulphonamideAbsence of Acidic hydrogen
PhSO
2
Cl
R
3
N HNO
2
1° Alcohol
N-Nitroso amine
1° Alcohol
(yellow
oily
liquid)
R
2
NH
HNO
2
RNH
2
R
3
N
Δ
R ― OH + N
2
+ H
2
O
N ― N = O
R
R
N ― N = O + R ― OH
R
R
2RNH
2
+ S = C = S ⟶ S = C R - N = C = S + RNH
2
+ HgS + 2HCl
HgCl
2
NHR
SH
Alkyl isothiocyanate
Properties of Amines
Preparation of Aniline
Sn/HCl
2
/Fe/HCl
2,
HCl
2,
HCl,SnCl
2
/HCl,NaSo
4ANILINE
O=C−OH
(Reduction)
Hofmann Bromamide
Degradation
Schmidt Reaction
N
3
H/H
2
SO
4
Br
2
KOH
NH
3
/ZnCl
2
/300
o
C
NH
3
/Cu
2
O,200
o
C-300
o
C
Sn/HCl
2
,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl,HSO
4
Sn/HCl,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl
Sn/HCl,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl
LiAlH
4
/H
2
O
2,
H
2
/Ni
O
||NaN
3
/Δ
H
3
O
+
H
2
N-NH
2
/
HONO/H
+
H
2
N-OH/AcOH
H
3
O
+
Zn/HCl
Cl-NH
2
NaNH
2
/
liq. NH
3
H
3
O
+
Curtius
Reaction
Lossen
Reaction
BrMg
+
_
δδ
O=C−NH
2
OH
Cl
N=N
NH-NH
NH−OH
NO
2
NH
2
Cl−C
O
||
Cl−C
O
||
Cl−C
Cl
-
N≡N
+
Br
O=C=N
Sn/HCl
2
,Fe/HCl,TiCl
2
/HCl,SnCl
2
/HCl,HSO
4
H
2
SO
4
HAuCl
4
OH
NO
2
O
2
N
NO
2
NH
|
CH
3
Ph−N
CH
3
CH
3
Anilinium
Sulphate
Anilinium Chloroaurate
Anilinium
Picrate
Schotten Baumann Reactions
HCl
H
2
PtCl
6
or AC
2
O
PhSO
2
Cl
CS
2
/Δ
HgCl
2
Ph−C=O
N=CH
N=C=S
SO
2
−NH
Anilinium Chloroplatinate
Phenyl Isothiocyanate
Benzalaniline [Schiff's base]
PtCl
6
2
2
+
H
|
C−CH
3
O
|| H
3
C−C−Cl
O
||
NH
3
Cl
-
+
ANILINE
NH
2
C−Cl
O
||
NH−C
O
||
H
3
C−IH
3
C−I
H
3
C−I
Ph−NMe
3
I
_
+
NO
2
O
2
N
O
2
N
-
O
+
AuCl
4
-
+
+
SO
4
2-
+
+
Properties of Aniline
NH
3
+
NH
3
NH
3
NH
3
Na
NHNa
+─
+
NΞC
+ ─CHCI₃
KOH
Br₂/H₂O
HNO₃ +
H₂SO₄
NH₂
Br Br
BrNH₂
+
NO₂
NH₂
NO₂
NH
+
─
CI-Ph
CuCI₂/200℃
H₃C─C─CI
HNO₃+H₂SO₄/H₃O
+
NH₂
NO₂
+
NH₂
NO₂
NaNO₂/HCI
0-5℃
N₂CI + 2H₂O
NaCr₂O₇
Conc. H₂SO₄
K₂Cr₂O₇/HH₂SO₄
180℃
SO
2
OHH₂N
+
OO
Aniline Black
Carbylamine Test
Br
2
/CCl
4
Diphenyl Urea
NH
2
Br
H
2
N +
C−Cl
|
Cl
O
||
NH−C−NH
O
||
O
||
ANILINE
NH
2
Br−
Properties of Aniline
(ANILINE)
NH
2
(A)
HA
NH
3
A
-
+
(B)
PhSO
2
Cl
NH − S − Ph
OO
(D)
HNO
2
Diazotization
Coupling
OH
/ OH
−
N
2
CI
+-
(E)
N=N OH
(F)
NC
(Carbylamine
rex
n
)
CH
3
Cl / KOH
(C)
Properties of Aniline
+-SO
3
Na
Reaction with CS₂
NH₂
N=C=S+HgS
black
AgNO₂
or HgCI
△
C
O
S
C
SH
HN S
NH─C─NH
C
O
S
Solid
KOH
S
HCI
NH₂, HCIN=C=S +
Phenyl isothiocyanate
Properties of Aniline
+-SO
3
Na
H
N≡NCI
+-
CuCI+HCI
CI
CuBr+HCI
Br
CuCN+HCN
CH₂=NOH
HO¯ /H₂O
O=C-H
OH
N=NHO
N=NH₂N
KI
Cu powder
N=NH
H
H₃C
Ni/H₂
200℃ 100 atm
NH₃
F₃C─C─OH
H₂SO
4
NO₂
N=O
Conc. HNO₃
O
||
ANILINE
NH
2
NH
2
CN
I
NH─CH
3
Properties of Diazonium compounds
+-SO
3
Na
Cu/HBr
Br
HBF₄
F
NaNO₂
NO₂
SnCI
2
/HCI
NH-NH₂
Δ
Cu₂O/Δ
C₂H
5
OH/△ H₃PO₂/△
SnCI₂/NaOH
H₂O/H
+
OH
OH
N=N N
OH
B-NaP
Cu/HCI
N≡NCI
+-
Cl
Properties of Diazonium compounds