Overview of Inference in Linear Chain CRF's

duffauchristian 6 views 25 slides Jun 20, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Overview of inference in linear chain conditional random fields (CRF's)


Slide Content

INFERENCE IN LINEAR CHAIN
CRF’S
Christian Duff au-Rasmussen
16. August 2022
1

DISCRIMINATIV VS GENERATIVE MODEL
Generative model: A model of
(Probabilistic) discriminative model: A model of
P(Y,X)=P(X|Y)P(Y).
P(Y|X).
2

DISCRIMINATIV VS GENERATIVE MODEL
3

NAIVE BAYES - GENERATIVE EXAMPLE
4

HMM - GENERATIVE EXAMPLE
5

LOGISTIC REGRESSION - DISCRIMINATIVE
6

LINEAR CHAIN CRF - DISCRIMINATIVE
7

LINEAR CHAIN CRF - DISCRIMINATIVE
8

LINEAR CHAIN CRF - DISCRIMINATIVE
Mimicking HMM assumptions of P(yt|x)=P(yt|xt)
9

LOGISTIC REGRESSION AS A CRF
10

HMM AS A LINEAR CHAIN CRF
θij=logp(y

=i|y=j)
μoi=logp(x=o|y=i)
11

COMPUTING MARGINAL PROBS - HUGO
LAROCHELLE
12

COMPUTING MARGINAL PROBS - HUGO
LAROCHELLE

13

COMPUTING MARGINAL PROBS - HUGO
LAROCHELLE

14

A 3X3 EXAMPLE - FORWARD-BACKWARD
15

A 3X3 EXAMPLE - FORWARD-BACKWARD
16

A 3X3 EXAMPLE - FORWARD-BACKWARD
17

A 3X3 EXAMPLE - FORWARD-BACKWARD
Computing the partition function
Great unit test.
18

THE ISSUE WITH start AND end
TRANSITIONS
How to include start and end transition weights?
How to check the calculations are correct?
19

THE HMM AS A LINEAR CHAIN CRF
Stationary distribution:
: Transitions probabilities
: Matrix of ones.
: Row vector of ones.
: The identity matrix.
δ=1C(IC−Γ+U)
−1
Γ
U
1C
IC
20

EXPERIMENTS - NO START OR END
21

EXPERIMENTS - INCLUDING START, NO END
22

EXPERIMENTS - INCLUDING START AND END
23