P1.Fungsi_Linear kalkulus 2 aljabar fung

FLIMTYPapua 38 views 17 slides Aug 06, 2024
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

kalkulus


Slide Content

Bab-1
Fungsi Linear dan
Fungsi Non Linear

Linear functions
06/08/24 copyright 2006 www.brainybetty.com 2

A. Linear functions
Equation
Caution: m and b FIXED: parameters
x and y: VARIABLES!
The graph of a linear function with equation y=mx +b is
- a STRAIGHT LINE
3.1 p138)
A function f is a linear function if and only if
f(x) can be written in the form
f(x)=y=mx + b
where m, b are constants.

A. Linear functions
Fs : y = 2x + 5 merupakan grs lurus, gambar dicari dengan mengambil
2 titik. Misal x = 0 , y = 5 dan jika x = 1, y = 7, Melalui titik (0,5) dan
(1,7) garis lurusnya bis digambar.
y = 2x + 5

1 5
2
14
x
y

A. Linear functions
Significance of the parameter m
•Graphically:
if x is increased by 1 unit,
y is increased by m units
m is the SLOPE of the straight line

A. Linear functions
Significance of the parameter m
•Taxi company A: y = 2x + 5, m = 2: the price per
km.
•Numerically: m is CHANGE OF y WHEN x IS
INCREASED BY 1
INPUT OUTPUT
x y
3 11
4 13
x = 1 y = 2
m is the RATE OF CHANGE of
the linear function

INPUT OUTPUT
x y
3 11
6 17
•Always:
A. Linear functions
Significance of the parameter m
•Taxi company A: y = 2x + 5, m = 2: the price per
km.
•If x is increased by e.g. 3 (the ride is 3 km longer),
y will be increased by 2  3 = 6 (we have to pay 6
Euro more).
y = mx
(INCREASE FORMULA)
x = 3 y = 3x2=6

A. Linear functions
Significance of the parameters b and m
The graph of a linear function with equation
y=mx +b is
- a STRAIGHT LINE
- with y-intercept b
- and slope m
The equation y=mx +b is called the slope-
intercept form of the line with slope m and
intercept b. It is also called an explicit
equation of the line.

A. Linear functions
Slope of the line m
Sign of m determines whether the linear function is
- increasing / constant(!!) / decreasing
-Note: what about a vertical line ?
(Section 3.1 p128-129)
-2 2
-2
2
x
y
m < 0
-2 2
-2
2
x
y
m = 0
-2 2
-2
2
x
y
m > 0
(Section 3.1 p131-
Example 6)

A. Linear functions
Equation of lines
A straight line through a given point (x
0, y
0)
and
with a given slope m satisfies the equation:
This equation is called the point-
slope form of the line
(Section 3.1 p129-131)
The equation y=mx+b is called the slope-intercept
form of the line
Remember:
 
0 0
y y m x x  
 
0 0
y y m x x  

A. Linear functions
Equation of lines
Note that e.g. the vertical line with equation x=2 can
not be written in the slope-intercept form nor in the
slope-point form
(Section 3.1 p129-131)
The equation of a straight line can always be written
using the general linear form Ax+By+C=0 or Ax + By
= C (A and B not both 0).

A. Linear functions
Exercises 1.
Tentukan pers. Garis lurus dengan gradien 2 dan
melalui titik (1, -3) dengan
- Point-slope form
- Slope-intercept form
- General linear form

Fungsi Linear
Membentuk persamaan fungsi linear :
Melalui 2 titik, yaitu A(x
1,y
1) dan B(x
2,y
2) ?

Fungsi Linear (2)
Apabila melalui dua titik:

Dua grafik fungsi linear y = a
1
+b
1
x dan
y = a
2 + b
2x, akan :
1.Sejajar (//) jika b
1= b
2 dan
a
1 ≠ a
2`
2. Berpot. tegak lurus (
┴) jika
b
1.b
2=-1
3.Berimpit, dua buah garis akan berimpit
apabila persamaan garis yang satu
merupakan kelipatan dari (proporsional
terhadap) persamaan garis yang lain
Hubungan Dua Garis Lurus

Soal persamaan fungsi linear
1.Grs lurus K melalui titik A(60,50) dan grs K
sejajar dgn grafik y = ½ x +790. Grs L
melalui titik B(10,50) dan grs K
berpotongan tegak lurus dgn grs L.
Tentukan persamaan grs K & L
2.Grs lurus p dan q berpotongan tegak lurus
di titik A(10,5). Grs p sejajar dg grafik
fungsi y=- ½x +5. Tentukan bentuk
persamaan grs lurus p dan q.

Referensi
•https://byjus.com/maths/linear-functions/
•https://www.cuemath.com/calculus/linear-functions/
•https://www.turito.com/learn/math/linear-functions
•https://physicscatalyst.com/maths/linear-function.php
06/08/24 copyright 2006 www.brainybetty.com 17
Tags