PBig data refers to massive, complex datasets that traditional data processing systems cannot handle, characterized by their Volume, Velocity, Variety, Veracity, and Value

amali46 2 views 10 slides Sep 16, 2025
Slide 1
Slide 1 of 10
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10

About This Presentation

Big data refers to massive, complex datasets that traditional data processing systems cannot handle, characterized by their Volume, Velocity, Variety, Veracity, and Value. The core purpose of big data is to extract meaningful insights and patterns through analysis, enabling organizations to make bet...


Slide Content

Introduction to Big Data Ecosystem Pertemuan 1 Program Studi Teknik Informatika Corporate Minimalist Deck

Learning Outcomes Memahami definisi dan karakteristik 5V Big Data Membedakan OLTP vs OLAP dalam konteks data Menjelaskan perbedaan Data Warehouse, Data Lake, dan Lakehouse Mengidentifikasi arsitektur Lambda dan Kappa Menganalisis dampak Big Data pada industri modern

Peta Konsep Sesi 1. Big Data & 5V 2. OLTP vs OLAP 3. Data Warehouse vs Data Lake vs Lakehouse 4. Arsitektur Lambda & Kappa 5. Studi Kasus Industri 6. Tren & Update 2025

Big Data & The 5V Volume Velocity Variety Veracity Value

OLTP vs OLAP OLTP: Online Transaction Processing (operasional, real-time) OLAP: Online Analytical Processing (analitik, historical, agregasi) Perbedaan utama: tujuan, jenis query, volume data

DW vs DL vs Lakehouse Data Warehouse: terstruktur, untuk BI/OLAP Data Lake: menyimpan semua jenis data (structured, semi-structured, unstructured) Lakehouse: menggabungkan fleksibilitas DL dengan keandalan DW

Arsitektur Big Data Lambda Architecture: batch + streaming layer Kappa Architecture: hanya streaming layer (lebih sederhana)

Dampak Big Data pada Industri Netflix: personalisasi rekomendasi film Tokopedia: analitik perilaku belanja real-time Gojek: optimasi order dan pricing secara real-time

Update Tren 2025 AI-augmented Data Engineering Adopsi Lakehouse (Delta, Iceberg, Hudi) semakin dominan Integrasi Big Data dengan LLM dan RAG (Retrieval-Augmented Generation) Rise of DuckDB & Polars untuk analitik cepat

Ringkasan & Tugas Ringkasan: Big Data = 5V, DW vs DL vs Lakehouse, Lambda/Kappa, dampak industri. Tugas: Cari studi kasus Big Data terbaru (2024–2025) dan buat analisis singkat (max 2 halaman).
Tags