Perancangan Sistem Distribusi Air Minum/Air Bersih

LusiUlisfah2 62 views 187 slides Sep 10, 2024
Slide 1
Slide 1 of 187
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187

About This Presentation

rencana sistem distribusi air minum.


Slide Content

ft - s pk fakultas teknik sipil , perencanaan , dan kebumian – ITS s urabaya http://www. its.ac.id Program S2 Teknik Sanitasi Lingkungan Evaluasi Kelayakan Sektor Air Minum Evaluation of Water Supply Feasibility 1 Ali Masduqi [email protected] Perancangan Sistem Distribusi

Sub Pokok Bahasan Penentuan daerah pelayanan Pembagian sub-pelayanan (blok pelayanan) Perhitungan kebutuhan air pada daerah pelayanan Perancangan jaringan perpipaan Analisis jaringan pipa: Hardy-cross Software Perlengkapan sistem transmisi dan distribusi Detail junction Penanaman pipa 2

Daerah pelayanan 3

Daerah pelayanan Data sekunder: peta administrasi peta sebaran penduduk peta topografi peta jaringan jalan jumlah dan kepadatan penduduk rencana tata ruang (trend perkembangan kota) 4

Data Primer: Survey kebutuhan nyata Kualitas air pada sumbernya Kuantitas sumber air 5

Peta Administrasi 6

Peta Kepadatan Penduduk 7

Peta Topografi 8

Peta Jaringan Jalan 9

Peta Fasilitas Pendidikan 10

11

Penentuan daerah pelayanan memperhatikan: Kondisi SPAM eksisting Kepadatan penduduk Keberadaan fasilitas kota Land use Perkembangan kota 12

Batas daerah pelayanan 13 Daerah Pelayanan

sub-pelayanan (blok pelayanan) Merupakan pembagian dari daerah pelayanan Untuk memudahkan perhitungan kebutuhan air, terutama bila kondisi daerah (fisik wilayah, demografi, sosial, fasilitas, dll) tidak homogen Akan memudahkan dalam penentuan simpul-simpul pelayanan air (titik tapping) 14

Penentuan sub-pelayanan: Bisa berdasarkan batas wilayah administrasi Bisa berdasarkan kondisi fisik wilayah (morfologi), seperti dibatasi oleh jalan, sungai, rel KA, bukit, dll Bisa berdasarkan kondisi sosial-ekonomi atau kawasan khusus 15

Sub-pelayanan 16 Sub-Pelayanan

Perhitungan kebutuhan air 17

Kebutuhan air per blok Merupakan pembagian kebutuhan air dalam daerah pelayanan Pembagiannya didasarkan pada sebaran penduduk dan fasilitas non-domestik

Blok pelayanan 19 Blok 1 Blok 2 Blok 3 Blok 4 Blok 5

Sebaran penduduk Blok Luas, km 2 Kepadatan penduduk, Jiwa/km 2 Jumlah penduduk, jiwa (1) (2) (3) (4) 1 5 2550 12750 2 12 2750 33000 3 7 1900 13300 4 8 3025 24200 5 7,6 2880 21888 Cara Data Data (2) * (3) 20

Penduduk terlayani Blok Jumlah penduduk, jiwa Persen Pelayanan Penduduk terlayani, jiwa Bentuk pelayanan SR HU % Jiwa % Jiwa (1) (2) (3) (4) (5) (6) (7) (8) 1 12750 75 9563 80 7650 20 1913 2 33000 80 26400 80 21120 20 5280 3 13300 70 9310 80 7448 20 1862 4 24200 70 16940 80 13552 20 3388 5 21888 65 14227 80 11382 20 2845 Cara Tabel di atas target (2) * (3) target (4) * (5) target (4) * (7) 21

Jumlah SR dan HU Blok Jumlah penduduk dengan SR, jiwa Jumlah penduduk dengan HU, jiwa Jumlah penduduk per SR Jumlah penduduk per HU Jumlah SR Jumlah HU (1) (2) (3) (4) (5) (6) (7) 1 7650 1913 5 100 1530 19 2 21120 5280 6 100 3520 53 3 7448 1862 4 100 1862 19 4 13552 3388 5 100 2710 34 5 11382 2845 5 100 2276 28 Cara Tabel di atas Tabel di atas data standar (2) / (4) (3) / (5) 22

Kebutuhan air domestik Blok SR HU Kebutuhan air domestik, L/detik Jumlah penduduk, jiwa Kebutuhan air, L/org.hari Jumlah penduduk, jiwa Kebutuhan air, L/org.hari (1) (2) (3) (4) (5) (6) 1 7650 150 1913 30 13,95 2 21120 150 5280 30 38,50 3 7448 150 1862 30 13,58 4 13552 150 3388 30 24,70 5 11382 150 2845 30 20,75 Cara Tabel di atas standar Tabel di atas standar 23

Kebutuhan air non-domestik Blok Rumah Sakit  dst. Jumlah, unit Jumlah bed per unit (rata2) Jumlah bed Kebutuhan air, L/bed.hari Kebutuhan air, L/detik (1) (2) (3) (4) (5) (6) 1 1 50 50 200 0,116 2 2 50 100 200 0,231 3 2 60 120 200 0,278 4 0,000 5 1 50 50 200 0,116 Cara data data (2)*(3) standar (4)*(5)/86400 24

N.Trifunovic Chapter 2 - Water Demand Slide 25 Non-domestic Consumption Industry Source: Brandon, 1984

N.Trifunovic Chapter 2 - Water Demand Slide 26 Non-domestic Consumption Agriculture Source: Brouwer, Heibloem,1986 Source: Brandon, 1984

N.Trifunovic Chapter 2 - Water Demand Slide 27 Non-domestic Consumption Institutions, Tourism Source: Brandon, 1984

Jumlah kebutuhan air Blok Kebutuhan air domestik, L/detik Kebutuhan air non-domestik, L/detik Jumlah Kebutuhan air , L/detik Kehilangan air , L/detik Kebutuhan air total , L/detik Kebutuhan air puncak , L/detik (1) (2) (3) (4) (5) (6) (7) 1 13,95 0,116 14,07 2,81 16,88 29,54 2 38,50 0,231 38,73 7,75 46,48 81,34 3 13,58 0,278 13,86 2,77 16,63 29,10 4 24,70 0,000 24,70 4,94 29,64 51,87 5 20,75 0,116 20,87 4,17 25,04 43,82 Cara Tabel di atas Tabel di atas (2)+(3) 20% *(4) (4)+(5) fp * (6) 28

Variasi debit Debit rata-rata : tidak digunakan untuk disain Debit hari maksimum : digunakan untuk disain reservoir distribusi Debit jam puncak : digunakan untuk disain jaringan pipa distribusi 29

N.Trifunovic Chapter 2 - Water Demand Slide 30 Annual Flow Range = Maximum consumption hour = Minimum consumption hour Annual flow range

Jaringan perpipaan 31

Langkah Siapkan peta jaringan jalan Plot jaringan pipa di peta jaringan jalan dengan memperhatikan peta blok pelayanan Tentukan lokasi titik simpul (node/junction), yang merupakan titik pertemuan dua pipa atau lebih. Beri nomor node dan nomor pipa

Networks of pipes Branching system Pipe networks

34

N.Trifunovic Chapter 1 - Introduction Slide 35 Network Configurations Serial/Branched simple layout, lower investment simple hydraulics, easy to design low reliability, danger of contamination water quality at the ends limited for extensions Grid (Looped) complex layout, more expensive complex hydraulics, computer model needed for design and operation more reliable, lower risk of water quality problems consumers less affected by maintenance easier for extension Computer model of a network combined of loops and branches

Peta Jaringan Jalan 36

Jaringan pipa 37

Nomor node dan pipa 38

Identitas jaringan pipa Nomor pipa dan node  tidak ada ketentuan Panjang tiap pipa  dari peta jar. jalan Elevasi tiap node  dari peta topografi Debit pengambilan air tiap node  dari tabel kebutuhan air tiap blok Buat asumsi debit yang mengalir pada tiap pipa 39

Metal Pipes Cast Iron (CI) - Unlined

Metal Pipes Ductile Iron (DI) - Lined

Metal Pipes Ductile Iron (DI) - Large Diameter

Metal Pipes Steel - Lined

Metal Pipes Steel - Lined

Metal Pipes Steel - Lined, Welded Joint

Metal Pipes Stainless Steel

Concrete Pipes Large Diameter

Concrete Pipes Bend

Concrete Pipes Reinforced with Steel Cylinder

Concrete Pipes Reinforced with Steel Net

Plastic Pipes Polyvinyl Chloride (PVC) & Polyethylene (PE)

Plastic Pipes Polyvinyl chloride (PVC) - Different Colours

Plastic Pipes Polyethylene (PE) - Large Diameter

Plastic Pipes Polyethylene (PE) - Small Diameter

Plastic Pipes Coated PE - Small Diameter

Plastic Pipes Glass Reinforced Plastic (GRP)

Flexible Metal Pipes Copper

Analisis jaringan pipa 58

Metoda dan Tools Hardy-cross Software

Network Interconnected pipes through which the flow to a given outlet may come from several circuits are called a network of pipes, in many ways analogous to flow through electric networks.

Hardy Cross Method (Cross, 1936) The Hardy Cross method is also known as the single path adjustment method and is a relaxation method.   The flowrate in each pipe is adjusted iteratively until all equations are satisfied. 

Hardy Cross Method (Cross, 1936) The method is based on two primary physical laws: The sum of pipe flows into and out of a node equals the flow entering or leaving the system through the node. The hydraulic head at a node is the same whether it is computed from upstream or downstream directions. (Hydraulic head = elevation head + pressure head, Z+P/S).

Hardy Cross Method (Cross, 1936) Step 1: Build up system configuration and make the first guess of flow distribution in the pipe network Step 2: Calculate head loss of each pipe section Step 3: Compute the algebraic sum of the head losses around each elementary loop. Step 4: Complete the mass and energy balance by an iterative procedure. Step 5: Compute the pressure distribution in the network and check on the pressure requirement.

Hardy Cross Methods: Step 1 By careful inspection we may assume the most reasonable distribution of flows in the pipe network and make the first guess of the flow pattern.

Step 1 : Sign Convention in Pipe Network Enter flows at nodes as positive for inflows and negative for outflows. Inflows plus outflows must sum to 0.  Enter one pressure in the system and all other pressures are computed.  You do not need to use all the pipes or nodes.  Enter a diameter of 0.0 if a pipe does not exist.  If a node is surrounded on all sides by non-existent pipes, the node's flow must be entered as 0.0. 

Step 1 : How to Handle Minor Losses Minor losses such as pipe elbows, bends, and valves may be included by using the equivalent length of pipe method (Mays, 1999).  Equivalent length (L eq ) may be computed using the following calculator which uses the formula L eq =KD/f. 

Step 1 : Summary of Minor Losses Calculation Enter node flows, elevations, pressure. Select Darcy Weisbach (Moody diagram) or Hazen Williams friction losses.   Include minor losses by equivalent length of pipe. 

Minor Losses If you go by a rigorous method, f is the Darcy-Weisbach friction factor for the pipe containing the fitting, and cannot be known with certainty until after the pipe network program is run. However, since you need to know f ahead of time, a reasonable value to use is f=0.02, which is the default value.

Hardy Cross Methods: Step 2 Write head loss condition for each pipe in the form: H i (or h L ) = K Q n n=2.0 for Darcy Weisbach losses n=1.85 for Hazen Williams losses.

Friction Losses, H Hazen Williams equation Darcy Weisbach equation

Hardy Cross Methods: Step 3 Compute the algebraic sum of the head losses around each elementary loop, Σ H i (or Σ h L,i ) = Σ K i Q i n Consider losses from clockwise flows as positive, counterclockwise negative. Be careful about the common pipe sections shared by two adjacent loops.

Hardy Cross Methods: Step 4 Adjust the flow in each loop by a correction Δ Q or Δ to balance the head in that loop and give Σ K Q n =0 The heart of this method lies in the following determination of Δ Q . For any pipe, we may write: Q=Q + Δ Q Where Q is the assumed discharge and Q is the corrected discharge.

Hardy Cross Methods: Step 4 Binomial series gives: If Δ Q is small compared with Q , we may neglect the terms of the binomial series after the second one:

Hardy Cross Methods: Step 4 For a loop, Σ H i (or Σ h L, i ) = Σ K i Q i n =0: We may solve this equation for Δ Q : # Sum the numerator algebraically with due account of each sign # Sum the denominator arithmetically

Hardy Cross Methods: Step 4 It indicates that clockwise flows may be considered as producing clockwise losses, and counterclockwise flows, counterclockwise losses. This means that the minus sign is assigned to all counterclockwise conditions in a loop, namely flow Q and lost head h L .

Friction Losses, H The calculation procedure gives you a choice of computing friction losses H using the Darcy-Weisbach (DW) or the Hazen-Williams (HW)  method.  The DW method can be used for any liquid or gas while the HW method can only be used for water at temperatures typical of municipal water supply systems.  n=2.0 for Darcy Weisbach losses n=1.85 for Hazen Williams losses.

Iteration After we have given each loop a first correction, the losses will still not balance, we need to repeat the procedure, arriving at a second correction, and so on, until the corrections become negligible.

Step 5: Pressure Computation After computing flowrate Q in each pipe and loss H in each pipe and using the input node elevations Z and known pressure at one node, pressure P at each node is computed around the network: P j = ρ (Z i - Z j - H pipe ) + P i      node j is down-gradient from node i.  ρ = fluid density [F/L 3 ].

Diasumsi aliran mengikuti arah jarum jam (+) dengan prosedur sbb : Asumsikan nilai Q,  Q = 0. Tentukan diameter setiap pipa , hitung kecepatan Hitung H L dari Q dengan salah satu rumus H L Jika  H L = 0, maka penyelesaian adalah benar . Jika  H L  0, maka gunakan faktor koreksi ,  Q, untuk semua Q dan ulangi dari langkah (2). Untuk tujuan praktis , perhitungan biasanya dihentikan bila  H L < 0.01 m atau  Q < 1 L/s. Nilai  Q dihitung sbb : 79

Tabel perhitungan Hardy-Cross Iterasi Loop Jalur Debit Panjang Diameter Kecepatan H L H L /Q Σ H L Σ H L /Q Δ Q I I A-B 4 3000 20 Q/A B-E 1 4000 16 F-E -2 3000 16 A-F -6 4000 24 II B-C 3 3000 20 C-D 2 4000 16 E-D -1,5 3000 12 B-E -1 4000 16 III F-E 2 3000 16 E-H 1 4000 12 G-H -2 3000 16 F-G -4 4000 16 IV E-D 1,5 3000 12 D-I 1 4000 12 H-I -1 3000 12 E-H -1 4000 12 80 D-W atau H-W atau Manning Lanjutkan iterasi ke-2, ke-3, .... ke-n dengan: Q n = Q n-1 + Δ Q pada setiap jalur pipa

PROSEDUR PEMODELAN EPANET Siapkan peta jaringan jalan dengan koordinat UTM Plot jaringan pipa pada peta jaringan jalan Masuk EPANET Setup Pilih menu File >> New untuk membuka project baru Pilih menu Project >> Defaults untuk melakukan setup Pilih menu View >> Options untuk mengatur tampilan yang dikehendaki Pilih menu View >> Dimensions untuk menentukan satuan ukuran peta 81

Menggambar jaringan Munculkan toolbar: dengan cara pilih menu View >> Toolbars >> Map. Toolbar ini digunakan untuk menggambar node (junction), jalur pipa (link), reservoir, tangki, pompa, dll. Buat node pada koordinat yang sesuai dengan peta Hubungkan antar node dengan jalur pipa Gambarkan pompa reservoir, tangki dll, bila ada, sesuai koordinatnya. Untuk mengatur properties dari tiap gambar, arahkan kursor tepat di gambar dan gunakan click kanan atau bisa juga menggunakan menu Browser . Masukkan data yang diperlukan 82

83

84 Masukkan karakteristik pompa dengan membuat curve editor: Menyimpan data yang telah dimasukkan: Pilih menu File >> Save atau Save As , akan tersimpan dalam format *.net Bila ingin menyimpan dalam format text, pilih menu File >> Export >> Network

Eksekusi/Run program: Pilih menu Project >> Run Analysis Bila running program berhasil, pilih menu Report >> Table , pilih Node atau Link untuk menampilkan hasilnya. Perhatikan nilai pada Tabel yang diperoleh: 85

86 Bila ingin menampilkan hasi dalam bentuk grafik , pilih menu Report >> Graph .

PRAKTEK EPANET/WATERCAD 87

Data yang harus disiapkan Peta jaringan pipa dengan koordinat UTM (rencana atau existing) Peta topografi Kebutuhan air Data hidrolis jaringan existing (khusus untuk evaluasi jaringan) 88

Persiapan Input Data 89

Tampilan output EPANET 90

Perlengkapan sistem transmisi dan distribusi 91

Fungsi dan perletakan Thrust block: menahan getaran pipa  di belokan, percabangan, jembatan, dekat pompa, dsb Air release valve: mengeluarkan udara dalam pipa  di titik tertinggi Blow off/Wash out: untuk pengurasan  di titik terendah Gate valve dan butterfly valve: mengatur aliran (buka/tutup)  di percabangan, tempat lain yg diperlukan Check valve: mengatur aliran searah  dekat pompa, tempat lain yg diperlukan Meter air: mengukur volume pemakaian air Pompa dan booster: menambah tekanan air Bak pelepas tekan dan Pressure Reducing Valve : mengurangi tekanan air Elevated reservoir: menyediakan cadangan air pada saat peak hour dll 92

Thrust block 93

Thrust block 94

Valves Gate Valve - Manual Operation

Valves Gate Valve - Automatic Operation

Valves Butterfly Valve - Automatic Operation

Valves Butterfly Valve - Small Size

Valves Butterfly Valve - Large Size

Valves Butterfly Valve - Large Size

Valves Butterfly Valve - Automatic Operation

Valves Butterfly Valve - Manual Operation

Valves Pressure Reducing Valve

Valves Various types

Valves Pressure Reducing Valve

Valves Flow Control Valve - Small Size

Valves Diaphragm Valve

Valves Air Valve - Dual Chamber

Valves Air Valve - Single Chamber

Valves Air Valve - Single Chamber

Valves Valve Blocks (Gate)

Water Meters Inferential Meter - Vertical Axis

Water Meters Inferential Meter - Horizontal Axis

Water Meters Inferential Meter - Horizontal Axis

Water Meters House Connections

Water Meters House Connections

Water Meters Magnetic Flow Meter

Water Meters Magnetic Flow Meter

Water Meters Sensor for Remote Reading

Water Meters Sensor for Remote Reading

Water Meters Sensor for Remote Reading

Water Meters Sensor for Remote Reading

Fire Hydrants Underground, Ground

Fire Hydrants Ground, Underground

Fire Hydrants Various

Fire Hydrants Underground

Fire Hydrants Underground Connectors

Service Connections Saddle for PVC Pipe

Service Connections Saddle for DI Pipe

Service Connections DI Saddle for Large Consumers

Service Connections House Connection

132

133

Indoor Installations Dual Water Quality Supply

Indoor Installations Dual Water Quality Supply - Rain Harvesting

Storage Water Towers

Storage Water Towers

Storage Water Towers - Small Volume

Storage Ground Level Reservoir

Pumping Stations Horizontal Axis

Pumping Stations Suction Pipe

Pumping Stations Horizontal Axis, Rubber Rings

Pumping Stations Horizontal Axis, Minor Losses

Pumping Stations Vertical Axis

Pumping Stations Pump House - Parallel Units of Different Size

Pumping Stations Pump House - Hydraulic Losses

Pumping Stations Pump House - Vertical Units

Pumping Stations Diesel Power Generator

Pumping Stations Diesel Power Generators

Detail junction 150

151

152

Pipe Jointing Welded Joints - Steel

Pipe Jointing Welding Equipment for PE Pipes

Pipe Jointing Welding Equipment for PE (Small) Pipes

Pipe Jointing Welding of PE Pipes

Pipe Jointing Welding of PE Pipes

Pipe Jointing Welding of PE Pipes

Pipe Jointing Tunnelling of Welded PE Pipes

Pipe Jointing Welding of PE Pipes

Pipe Jointing Flanged Joints - PE with DI

Pipe Jointing Flanged Joints - PE with DI

Pipe Jointing Flanged Joints - Tightening of Bolts

Pipe Jointing Flanged Joints - Tightening of Bolts

Pipe Jointing Flanged Joints - PE with DI, Dewatering

Pipe Jointing Gland & Push-in Joints - DI pipes

Pipe Jointing Push-in Joints - Cleaning, Gasket Placement

Pipe Jointing Push-in /Flanged Joints – Lubrication / Screwing

Pipe Jointing Sleeve Protection of Joints

Pipe Jointing Sleeve Protection of Joints

Pipe Jointing Sleeve Protection of Joints

Pipe Jointing Sleeve Protection of Joints

Pipe Jointing Sleeve Protection of Joints

Pipe Jointing Pipe Protection

Pipe Jointing Different Pipe Materials

Pipe Jointing Different Pipe Materials

Pipe Jointing Small Pipe Diameters

Penanaman pipa 178

179

180

Excavation Open Trench - Mechanical

Excavation Remote Control of Digging (Depth & Direction)

Excavation Remote Control - Central Device

Excavation Open Trench - Manual

Excavation Open Trench - Manual

Excavation Shoring - Wooden Panels

Terima Kasih Program Magister Teknik Sanitasi Lingkungan – ITS S urabaya http:// enviro. its.ac.id