Perfect numbers and mersenne primes

pasarhizne 2,242 views 19 slides Feb 26, 2015
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Perfect numbers and mersenne primes


Slide Content

University of Zakho Dept : Mathematics Name : Pasar H.Ibrahim Subject : Perfect Number

Perfect Numbers Abundant Numbers Deficient Numbers Perfect Number: The proper divisors of a number are all its divisors excluding the number itself. Mersenne Primes

12 1, 2, 3, 4, 6, 12 1 + 2 + 3 + 4 + 6 = 16 16 > 12 18 1, 2, 3, 6, 9, 18 1 + 2 + 3 + 6 + 9 = 21 21 > 18 15 1, 3, 5, 15 1 + 3 + 5 = 9 9 < 15 Abundant Number Abundant Number Deficient Number

12 18 15 Abundant Abundant Deficient 6 1, 2, 3, 6 1 + 2 + 3 = 6 6 = 6  Perfect Number Perfect Number P 1 = 6

The Mathematicians of Ancient Greece. Pythagoras ( 570 – 500 BC.) Euclid of ( 325 – 265 BC.) Archimedes ( 287 – 212 BC.) Eratosthenes ( 275-192 BC.) P 1 = 6 P 2 = 28 P 3 = 496 P 4 = 8128 1 + 2 + 3 = 6 1 + 2 + 4 + 7 + 14 = 28 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 496 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254 + 508 + 1016 + 2032 + 4064 = 8128 The mathematicians of Ancient Greece knew the first 4 perfect numbers and the search was on for the P 5

The Mathematicians of Ancient Greece. Pythagoras ( 570 – 500 BC.) Euclid of ( 325 – 265 BC.) Archimedes ( 287 – 212 BC.) Eratosthenes ( 275-192 BC.) P 1 = 6 P 2 = 28 P 3 = 496 P 4 = 8128 P 5 =? (a 5 digit number?) P 5 = 33 550 336 (8 digits)

P 5 = 33 550 336 (1456 Not Known) 8 digits P 6 = 8 589 869 056 (1588 Cataldi ) 10 digits P 7 = 137 438 691 328 (1588 Cataldi ) 12 digits P 8 = 2 305 843 008 139 952 128 (1772 Euler) 19 digits P 9 = 2 658 455 991 569 831 744 654 692 615 953 842 176 (1883 Pervushin ) 37 digits P 10 = 191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216 (1911: Powers) 54 digits P 11 =13 164 036 458 569 648 337 239 753 460 458 722 910 223 472 318 386 943 117 783 728 128 (1914 Powers) 65 digits P 12 =14 474 011 154 664 524 427 946 373 126 085 988 481 573 677 491 474 835 889 066 354 349 131 199 152 128 (1876 Edouard Lucas) 77 digits P 13 =23562723457267347065789548996709904988477547858392600710143020528925780432155433824984287771524270103944969186640286445341759750633728317862223973036553960260056136025556646250327017528033831439790236838624033171435922356643219703101720713163527487298747400647801939587165936401087419375649057918549492160555646 976 (1952 Robinson) 314 digits P 1 = 6 P 2 = 28 P 3 = 496 P 4 = 8128

Mersenne Primes A Mersenne number is any number of the form 2 n – 1 2 1 – 1 = 1 2 2 – 1 =3 2 3 – 1 =7 2 4 – 1 =15 2 5 – 1 =31 2 6 – 1 = 63 2 7 – 1 = 127 2 8 – 1 = 255 2 9 – 1 = 511 2 10 – 1 = 1023 2 11 – 1 = 2047 2 12 – 1 = 4095

Mersenne Primes A Mersenne number is any number of the form 2 n – 1 2 1 – 1 = 1 2 2 – 1 = 3 2 3 – 1 = 7 2 4 – 1 = 15 2 5 – 1 = 31 2 6 – 1 = 63 2 7 – 1 = 127 2 8 – 1 = 255 2 9 – 1 = 511 2 10 – 1 = 1023 2 11 – 1 = 2047 2 12 – 1 = 4095

Mersenne Primes A French monk called Marin Mersenne stated in one of his books in 1644 that for the primes: 2 n – 1 n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644

Mersenne Primes 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 n = 2, 3, 5, 7 , 13 , 17 , 19, 31 , 61 , 89 , 107 , 127, n = 2, 3, 5, 7 , 13 , 17 , 19, 31 , 67, 127, and 257 Mersenne’s List Completed List 2 61 – 1 2 89 – 1 2 107 – 1 In subsequent years various mathematicians showed that his conjecture was not correct.

Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1 There is a formula linking a Mersenne Prime to its corresponding perfect number by multiplication. Use the table below to help you find it. n 2 n -1 x 2 n-1 Perfect Number 2 3 x ? 6 3 7 x ? 28 5 31 x ? 496 7 127 x ? 8128

Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1 n 2 n -1 x 2 n-1 Perfect Number 2 3 x 2 6 3 7 x 4 28 5 31 x 16 496 7 127 x 64 8128 Write as a power of 2 There is a formula linking a Mersenne Prime to its corresponding perfect number by multiplication. Use the table below to help you find it.

Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1 n 2 n -1 x 2 n-1 Perfect Number 2 3 x 2 6 2 1 3 7 x 4 28 2 2 5 31 x 16 496 2 4 7 127 x 64 8128 2 6 Write as a power of 2 There is a formula linking a Mersenne Prime to its corresponding perfect number by multiplication. Use the table below to help you find it.

Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1 If 2 n -1 is a Mersenne prime then 2 n – 1 x 2 n-1 is a perfect number. Check this for the first few. 2 2 – 1 x 2 1 = 3 x 2 = 6 2 3 – 1 x 2 2 = 7 x 4 = 28 2 5 – 1 x 2 4 = 31 x 16 = 496 2 7 – 1 x 2 6 = 127 x 64 = 8128

NEWS FLASH 4 th September 2006 44 th Mersenne Prime Found. 2 32 582 657 – 1 has 9,808,358 digits Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1

Mersenne Primes and Perfect Numbers 2 2 – 1 = 3 2 3 – 1 = 7 2 5 – 1 = 31 2 7 – 1 = 127 1588 - 1644 2 13 – 1 2 17 – 1 2 19 – 1 2 31 – 1 2 127 – 1 2 61 – 1 2 89 – 1 2 107 – 1 Research other information about Mersenne Primes and Perfect Numbers http://www.mersenne.org/

Thank you For listening By:Pasar H.Ibrahim

? By:Pasar H.Ibrahim