Perimetry is the technique of evaluating the Visual field .

drbrijeshbhu 39 views 117 slides Jul 18, 2024
Slide 1
Slide 1 of 117
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117

About This Presentation

Perimetry is the technique of evaluating the Visual field of patient to know about effect of ant optic nerve or retinal damage. It is the functional changes in the Visual field due to any structural changes in Ganglion cell complex and optic nerve due to Ischemic or non Ischemic or pressure ind...


Slide Content

“The ideal glaucoma screening test is portable, easy to operate, highly
sensitive and specific, quick and patient friendly”
Johnson, et al, Glaucoma,2000

Octopus Perimetry Systems
OCTOPUSPerimetrycomprisesstandardwhite-on-
white(SAP),blue-on-yellow(SWAP),Flicker(CFF),
manualandautomatedGOLDMANN kinetic
perimetry.

SEVEN IN ONE GRAPH -OCTOPUS

Octopus Vs HFA

Octopus Global Indices

Octopus Visual Field Defect

HFA Criteria For Field Defect

Patient Data, Strategy and Test
Parameters

Grey Scale

Octopus: Comparision Table

HFA: Total And Pattern Deviation

Progression of a field
NEW DEFECT:
1.Anewclusterofatleast3nonedgeabnormalpoints
arisesinatypicallocation,eachwiththreshold
sensitivitiesoccurringinfewerthan5%ofthenormal
population(p<5%),andwithasensitivitythatoccursin
fewerthan1%ofthepopulation(p<1%)atoneofthe
points

Progression of a field
DEEPENING OF A PREEXISTING
DEFECT:adefecthasdeepenedorenlargedif2
ormorepointswithinoradjacenttoanexisting
scotomahaveworsenedbyatleast10dBor3times
theaverageofSF,whicheverislarger.
GENERALIZED DEPRESSION :
1.DeclineinMDthatissignificantatp<1%levelOR
2.CPSDshowinganobvioustrendbasedonlast5
consecutivefieldsOR
3.Declineof>3dBatallpointsontwoconsecutive
fields.

Procedures used for progression
Clinical judgment.
Defect classification systems.
Trend analyses
Event analyses

Trend analyses
Useoflinearregressionforpredictionforpredictionof
progress.
Adv:candeterminetemporalpatternsandhavethe
potentialtodetectsubtleprogressivelossfromtest
variability.
Disadv:
1)minimum7-8visualfieldsrequiredforadequate
sensitivity.
2)normalageingnotconsidered.

Event analyses
Useofpairedt-testtodeterminewhethersignificant
differencesarepresentbetweenonetestresultand
another.
Examplesare:
1)DELTAprogrammeonOCTOPUSperimeter.
2)GCPonSTATPAC2analysissoftwareofHFA.

How to follow up?
Establishabaselinefield/fields
Twoorthreesuccessivefields4weeksapartthatare
reproduciblearetakenasrepresentativebaseline
Incaseofseverelycontractedfieldsconcentrateonthe
central20or10degwiththe10-2orthemaculartests
Usageofalargerpatternofpoints.Eg.Ifthediagnosis
wasmadewitha24-2patternwithmostpoints
abnormal,convertingtoa30-2maybehelpful
UsageofalargersizeVstimulusincaseswithhigh
visualloss

Change analysis printout
Providesavisualdisplayofadditionaldescriptive
statisticswithlargenumberofexaminationsona
singlepage
Includesaboxplotpanelacrossthetopandseveral
graphsofglobalindicesofaseriesofexaminations
belowthepanel
Thevisualfieldsaredisplayedwitharegularinterval
betweenthemnotcommensuratewiththeactualtime
scale

The box plot
Themajorityofthresholdsensitivityestimationsare
closetothemidnormalvalueandthedeviationis
typicallynear0dB(the50
th
percentile)pointinthe
normalfield
Forthe30-2pattern70%ofthepointsliebetween3dB
and-3dBoftheaveragenormalvalues
Alltherestareexpectedtofallbetween4dBand-6dB

The box plot

Change analysis printout
Foreachexaminationthedeviationsaredeterminedat
eachpoint,thesearethetotaldeviationplotvalues
Averticalrectanglerepresentsrangeofdeviationfor
70%ofalllocations
Themeandeviationismarkedbyaflankedheavy
horizontalbar
Theendsoftheverticalbarsindicatethetotalrangeof
deviationsofallthepoints

Interpreting the box plot for progression
Ashortboxthatremainsofthesameheightbut
shiftsdownwardsindicatesprogressivegeneralised
depression.HereMDdecreasesbutPSDremains
unaffected
Lengtheningoftheboxespeciallyintheinferior
armindicatesdevelopmentanddeepeningof
localiseddefects.PSDbecomesincreasingly
abnormal
Alongboxatinitialexaminationthatstaysthe
samelengthandmovesdownwardindicates
progressivegeneralizeddepressionsuperimposed
onalocalizeddefect

The global indices on the C.A.P.

Mean deviation index
Observeitfirst
Ifalmostsameinmultipleexaminations,neithera
generaliseddepressionnoradeepfocaldefectis
occuring
HighlyvariableMDindexmeansexaminationisnot
reproducible
Steadyimprovementmeanslearningcurve
Steadydownwardtrendmeansprogressivelossof
fields

Other indices
ThePSDandCPSDincreaseasscotomasfirstdevelop
Theirprogressivedeteriorationishelpfulinearlyfield
losses
Aslossesbecomeadvancedtheymaystabilise(false
security)
HereSFtendstoincreaseasvariabilityatabnormal
pointsincreases

Glaucoma change probabilty
Itcameintovoguetodecidehowmuchof
variabilityfrombaselineisnormal.
Patientswererepeatedlytestedatvariousstagesof
glaucomaoveraperiodof<onemonth
Itwasobservedthatamountbywhichthe
thresholdfluctuatesintheabsenceofprogression
isaffectedbyhowabnormalthetestpointinitially
is
Onfollowupwedeterminehowunlikelyitisthat
theobtainedvalueatagivenlocationcouldhave
occurredasarandomfluctuation

Baseline field

Follow up fields

Follow up field

Follow up fields

Glaucoma progression analysis
Itisanadvancedsoftwaremodulethatupgrades
STATPACtoassistdetectionoffielddefectprogression
CanbeusedwithSITAstd,SITAfastandfullthreshold
algorithms
TheGPAhighlightsanychangefrombaselinethatare
largerthanexpectedclinicalvariability
DoesnotsupportFASTPACorcentral10-2

GPA print out components
LookssimilartotheroutineHVFprintout
Baselineisintheroutineoverviewformat
Followupprintoutsincludegraytone,pattern
deviationplots,deviationfrombaselineplotand
progressionanalysisprobabilityplot

Deviation from baseline plot
ThethirdcolomnintheGPAprintout
ComparesthePDofthefollowupfieldswiththatof
thebaseline
IndicateschangesateachtestedpointindBnotation

Progression analysis probability plot
FourthcolumnintheGPAprintout
Givesthestatisticalsignificanceofthedecibelchange
showninthedeviationfrombaselineplot
Compareschangesinthebaselineandfollowupfields
totheintertestvariabilitytypicalofstableglaucoma
andshowstheplotofpointsthathavechanged
significantly

A clinical example
77 yr old male diagnosed with POAG. The IOP in rt eye
was 28 mm and lt was 26 mm
CCT were 525 and 523 microns respectively
He was put on latanoprost both eyes with IOP
reducing to 16-18mm in both eyes

Rt eye field

Left eye field

He was lost to follow up for 2 yrs during which time he
defaulted on his therapy
Patient was folloed up on return with pressures of
18mm on latanoprost

Rt eye GPA single field analysis

Lt eye GPA single field analysis

J Glaucoma. 2006 Jun;15(3):206-12
Keratometry, optic disc dimensions, and
degree and progression of glaucomatous optic
nerve damage.
Jonas JB, Stroux A, Martus P, Budde W.
Large optic disc area is statistically significantly,
but clinically weakly, correlated with low
keratometric readings (diopters).

Invest Ophthalmol Vis Sci. 2005 Apr;46(4):1269-74
Central corneal thickness correlated with glaucoma
damage and rate of progression.
Jonas JB, Stroux A, Velten I, Juenemann A, Martus P,
Budde WM.
At the time of patient referral, the amount of
glaucomatous optic nerve damage correlated significantly
with a thin central cornea. Progression of glaucomatous
optic nerve neuropathy was independent of central corneal
thickness, suggesting that central corneal thickness may
not play a major role in the pathogenesis of progressive
glaucomatous optic nerve damage.

Graefes Arch Clin Exp Ophthalmol. 2005 Aug;243(8):741-7. Epub 2005
Feb 8
Progression of visual field defects and visual loss in
trabeculectomized eyes.
Ehrnrooth P, Puska P, Lehto I, Laatikainen L.
Progression of VF defects and development of visual impairment due
to glaucoma was fairly common despite trabeculectomy. Both were
associated with severity of initial VF defect. In this series, no significant
correlation appeared between defect progression and the last IOP, but
association between stability of VF and the amount of IOP reduction
after surgery indicate that a lower target IOP level particularly in eyes
with initially severe VF defect would, however, be needed.

Ophthalmology. 2004 Nov;111(11):2117-25.
Statistical evaluation of the diagnostic accuracy of
methods used to determine the progression of visual
field defects in glaucoma.
Mayama C, Araie M, Suzuki Y, Ishida K, Yamamoto T,
Kitazawa Y, Shirakashi M, Abe H, Tsukamoto H,
Mishima HK, Yoshimura K, Ohashi Y.
Most of the methods using the TD slope were
characterized by high sensitivity, the AGIS method had a
very high specificity, and those using VF sectors had
reasonable sensitivity and specificity.

Ophthalmology. 2002 May;109(5):1009-17.
Short wavelength automated perimetry, frequency doubling
technology perimetry, and pattern electroretinography for
prediction of progressive glaucomatous standard visual field
defects.
Bayer AU, Erb C
All three tests (SWAP, FDT, and PERG) have been successful in
detecting glaucoma eyes with a future progression of standard visual
field defects. A test battery of SWAP and PERG P1N2-amplitude
improved the power to predict these progressive defects on SAP. It
remains to be seen whether the long-term follow-up in POAG eyes will
improve the false-positive rate of SWAP and FDT.

Newer techniques-Need
Toidentifyglaucomatousdamagepriorto
conventionalwhite-on-whiteperimetry
BecausetraditionalAutomatedPerimetrywill
notrevealascotomauntil25-40%ofnerve
fibersaredamaged
Motionattributesofvisionareinvolvedearlyin
glaucomaandnotpickedupbyconventional
perimetry

Newer Perimetry Techniques
Short wave automated perimetry (S.W.A.P)
High pass resolution perimetry (H.P.R.P)
Frequency doubling perimetry (F.D.P)
Flicker perimetry
Motion perimetry
Detection and resolution perimetry

L-cones
M-cones
S-cones
Rods
Visual
Processing
P-Cells
K-Cells
M-Cells
Visual Acuity
HRP
Flicker
Motion
FDP
BY
Swap

Short Wave Automated Perimetry
Developed by Stiles
Also called Blue on yellow perimetry
Software incorporated into Humphrey’s Field
Analyser II (30-2, 24-2 programs)
Intense yellow background with blue stimulus

S.W.A.P.The Principle:
Concept of reduced redundancy
Stimulate one color-vision mechanism
Large blue target stimulate short wave sensitive
mechanism
Isolate the short–wave sensitive pathways

S.W.A.PSalient Features:
Stimulus Goldman size V,blue light (440 nm),
200 ms duration
Background-100 cd/m2 intensity yellow light
(500-700 nm)
Instrumentation and software same as W-W-
perimetry

S.W.A.P.
Advantages
Detectglaucomatousvisualfieldlosspriorto
conventionalwhite-on-white(W-W)perimetry
(3-5yrsinadvance)
Predictfuturevisualfeiddefectsforstandard
W-W
Morerapidglaucomatousprogressionseen,
earlier
Correlatewellwithearlyopticnervehead
changes

S.W.A.P
Advantages:
SWAPshownmoreextensivevisualfieldloss
thanW-Wperimetryinopticneuritisandin
diabeticmaculaoedema(blueconesaremore
susceptibletodamageindiabetes)
SWAPpathwaydeficitsprecedeluminance
pathwaydeficitsinage-relatedmaculopathy,
centralserouschoroidopathyandretinitis
pigmentosa.

Progressive glaucomatous loss on HFA ® and Swap (L)

S.W.A.P
Disadvantages:
Affectedbyabsorptionofshortwavelength
stimulibytheaginglens
Influencedbymacularpigmentabsorption
causingadepressioninthefovealpeak
Takesapprox15%longerthanW-Wperimetry,
30-2usingtheFullThresholdstrategyand
approx17%withtheFASTPACstrategy
Between-subjectnormalvariabilityisgreater
forSWAPthanforconventionalperimetry

Principle
M-cellneuronsub-setcomprisingathirdtoahalfof
theM-cellneurons(called"non-linear"My-cells)are
firstinvoledinglaucoma,basisforfrequencydoubling
testing(25%)
Whenalowspatialfrequencysinusoidalgratingwith
alternatingwidelightanddarkbarsundergoeshigh
temporal-frequencycounterphaseflicker,(i.e.,the
blackbandsreversetobecomewhiteandthewhite
bandsreversetobecomebecomeblackinrapid
sequence)gratingsappeartwiceasmanylight/dark
bars(spatialfrequencyappearsdoubled)calledthe
“frequencydoublingillusion”

Highfrequency(e.g.,20-30Hz)alternationbetween
lightanddarkbars(e.g.,1cycleperdegree)shownon
thelefttwoimagescreatesthedoublingillusion(2
cyclesperdegreegrating)shownontherightimage.
(Onecycle=light+darkbar.)

Non-linear M-cell neurons transmit signals related to
this illusion. These neurons are the first involved in
glaucoma, tests presenting alternate grating stimuli
attempt to identify neuron loss earlier

Salient Features
FDT perimetry tolerates up to 6 D of refractive
error
Not affected by external room illumination
Not affected by variations in the pupil size,the
pupil diameter should be greater than 2 mm
Instructions to the patient are also quite simple:
look at a black dot in the center of the screen
and press a button any time a grating pattern is
seen
A 10-degree square pattern is presented at 17
different locations within the central 20 * 20
degrees visual field

Testoptionsincludeaascreeningfield
(ScreeningC-20-1)inwhich5-degreegratings
withthreecontrastlevelsareshowat17locations
inthecentral20degreefield
FDTscreeningmodeperimetryisconsidered
abnormalwhenthefollowingarepresent:
Anydefectinthecentralfivelocations
Twomildormoderatedefectsinthe
outer 12 squares
Oneseveredefectintheouter12squares
Screeningtesttimegreaterthan90seconds
pereye
FDT screening mode perimetry

C-20 and N-30 for FDT Perimetry

N-30 FULL THRESHOLD R/E Glaucoma

Screening 20-1
Glaucoma---R/E

Full threshold
N-30
B/E Normal
Study

Two full threshold test options: Full Threshold N-20 and Full Threshold N-30. Each
grating is 5 degrees square, but in the N-30 test the horizontal area tested is extended to
include an extra portion of the nasal visual field, resulting in a total 30 degree horizontal
field.
FDT perimeter uses central static fixation with classic Heijl-Krakau (blind spot) fixation
checks
Defects are noted as varied gray scale depths called probability symbols
The darker the depth of gray, the less probable (based on age-related norms) that the
defect is a normal occurrence, probability varies from 5% (somewhat unlikely that the
defect is normal) to <0.5% (very unlikely that the defect is normal).

Reliability indices (fixation errors, false positive errors, and false negative errors) are
provided, as well as Mean Deviation (average deviation from a normal visual field based on
age-related norm) and Pattern Standard Deviation Indices (a measure of how locations
differ from each other in the overall field) for the threshold tests, similar to the indices
provided with traditional automated threshold perimetry statistical analyses.
Commercially available versions are being produced by Humphrey and Welch Allyn

F.D.P.
Advantages:
Short test duration( 4-5 min for full threshold)
Not affected by blur upto 6 D
Not affected by pupil size
Minimal training required

An example of a
superior arcuatedeficit
for Frequency
Doubling Technology
(FDT) perimetryin
comparison to the
results obtained for
standard automated
perimetrywith the
Humphrey Field
Analyzer. FDT deficit is
more extensive than
those obtained with
standard automated
perimetry.

Humphrey Matrix FDT
Using the
24-2 test
presentation
pattern, the
Humphrey
Matrix
yielded
these results
for the left
eye of the
same patient

High-Pass Resolution
Perimetry
HPRP

Principle
Ring-shapedstimuliarepresentedona
computerscreen
Theinnerandouterbordersoftheringare
darker,andtheareabetweenislighter,thanthe
background.theaveragecontrastofthe
stimulusisidenticaltothatofthebackground,
andismaintainedataconstantlevelwhile
stimulussizeisaltered

Thecomputergeneratedstimuliare"highpass
filtered";thatis,alllowspatialfrequency
informationisremoved
Thethresholdsforthedetectionofanobjectas
presentandforrecognitionofwhatitisbecome
simultaneous-ifthetargetcannotbe
recognized,itwillnotevenbeseen
Stimulusdesignisthuschosenbecauseit
correspondstocenter-surroundarrangementof
retinalganglionsreceptivefield

HRP
Salient Features
TestavailableinOphthimus(HighTechVision)
14targetsizesin1dbstepsareavailable
ParametersobtainedareGlobaldeviation,
Localdeviation,neuralcapacityindex,etc
TheOphthimusprovidesglobalindicesand
statisticalanalysesconceptuallysimilartothose
producedbytheHumphrey.Inaddition,the
Ophthimusprovides,asauniqueparameter,the
estimatedneuralcapacity

Ring Stimulus used in HRP

Ophthimusprovidesaprintoutthatincludes
theringtargetsizesseengraphicallyaswellas
dataabouttheoveralldeviationandfluctuation
oftheresponses
Subjectreliabilityisalsoassessed
Central30degreesvisualfieldisexamined,50
locationstested
Adaptsautomaticallytothepatient´sreaction
timeaswelltoresponsestofixationcontrol
testsand"blank"and"catch"targets
Thepatientcan,atanytime,requestapause

Superior Field Defect on HRP

HRP
Advantages
Quickerexamination(5minduration)
Excellenttest-retestreliability
Earlierdetectionofprogression
Continuous feedback helps to improve
concentration

HRP
Advantages:
Early detection and monitoring of glaucomatous
damage
Useful for neurophthalmologic conditions

HRP
Disadvantages
Limitedcommercialdistributionand
representation
Requiresnearcorrectionof6Dgreaterthan
patientsdistancecorrection,specialtriallens
needed
Useofringtargetsmakesitdifficulttoshowthe
linearnatureofdefectssuchasahemianopia
thatrespectstheverticalmidlineoranerve
fiberlayerdefectthatsplitsfixation
Theexactlocationanddimensionsoftheblind
spotarenotdelineated,thisisrarelya
significantproblem

Normal Examination ----Right eye

Glaucoma-------Right eye

Flicker Perimetry

Principle
Detectionofrapidlyflickeringstimulidepends
onthemagnocellularmechanisms(M-cells)
Tylersuggestedthatdeficitsinflicker
sensitivity(forhightemporalfreq)waslost
earlyinglaucomaandocularhypertensives
Threedifferentmethodsareemployedfor
flickerperimetry-(a)contrastmodulation
flicker,(b)criticalflickerfusion,and(c)
luminancepedestalflickerforsinusoidal
temporalstimulusmodulation.

Salient Features
Employslightemittingdiodes
Uniformbackgroundof50cd
Stimuliarebrieflyflickered,patientisaskedto
respondifflickerdetected
Temporalfrequencyofflickerisvariedto
determinehighestrateatwhichitisdetected
(CFF,criticalflickerfusion)

Flicker perimetry frequency and contrast

Flicker Perimetry
Advantages:
Normal aging appear later than in HFA
More resistant to optical degradation (from Blur,
cataract, etc)

Flicker Perimetry
Disadvantages:
Still experimental
Lack of standardization
Not too patient-friendly

Theconnectionbetween
theCFFFandthe
luminousthresholdin
Glaucomapatientsand
inpatientswithretinal
detachement.Asone
wouldexpect,theCFFF
showslargedeviations
inearlyGlaucoma
comparedtostandard
perimetrywhilethe
relationofthetwo
methodsinretinal
detachmentismore
linear.

Motion Perimetry
Principle:
M-cellsandlargeneuronsmaybedamaged
earlyinglaucomaleadingtodegradationin
motionperception
Involvesdetectionofdirectionofmotionof
smalldot/linestimulus
Detectsthemindisplacementrequiredto
detectmovement(Motiondisplacement
thresholdsarefoundelevatedinptatriskof
glaucomawithnormalvisualfields)

Anothertechniqueformotionperimetryuses
randompatternoflightanddarkdots,‘snow
pattern’,thisportionisthanmovedina
particulardirection,ptdetectsthedirectionof
movement
Minimumpercentageofdots(coherence)
neededtodetectthedirectionisdetermined

Thecentral21degreesofthevisualfieldare
tested
Tocompleteatesttakes3-8minutes
Movingstimuliareverticalbarsasdescribedin
detailbyFitzkeetal
Testrandomlyexamines16locationswithone
displacementdistance(amplitude)andthen
theprocedureisrepeatedfivetimes
Motionsensitivityscorearebasedonthe
percentageofresponsefromatotalof
84movementsover14locations(excludingtwo
closepointstotheblindspot)

Stimulus used for random dot coherence perimetry

Motion perimetryshows an inferior nasal nerve fiber bundle defect not present on
conventional automated or luminance size threshold perimetry

RareBit Perimetry (RBP)
RareBit Perimetry depends
on minute stimuli ("rare"
bits or "microdots") and it
replaces the conventional
thresholding approach with
simple checks for the
presence of function

White Noise Field Campimetry
(Aulhorn'ssnow field campimetry)
White noise field campimetry –also called snowfield
campimetry –is a method directly visualizing
scotomas, thus enabling patients to immediately
detect and interactively describe their visual field
defects (VFDs).
Scotomas are usually described as “clouds”, which are
differentiated from the surrounding normal noise field
by an apparent change in brightness perception and /
or change in noise perception.

Typical finding in glaucomatous visual
field loss.
Top: Conventional, automated
threshold-related slightly supraliminal
static perimetry(30°Tuebigen
Automated Perimeter), showing an
inferior arcuatenerve fiber bundedefect
Bottom: Corresponding result of white
noise field campimetry. According to
the description of the patient the noise
field defect is described as a “cloud”,
which is darker than the surrounding
normal snowfield and characterisedby a
reduced apparent movement of the dots
within this area

Multifocal Visual Evoked Potential
Therearetwomultifocaltechniquesthatarepresently
beingused,themultifocalelectroretinogram
(mfERG),whichmeasuresthelocalelectricalresponses
oftheretinathroughoutthecentral(26degrees
radius)visualfieldandthemultifocalvisualevoked
potential(mfVEP),whichmeasuresthelocalized
electricalresponsesfromtheprimaryvisualportionof
thebrain(occipitalcortex)forthecentral(26degree
radius)visualfield

Example of
correspondence of
visually evoked
potential perimetry
with standard
automated
perimetry in a
glaucoma patient
with a superior
paracentral arcuate
defect

Test Merit Pt
friendl
Learn Admin
-istrati
Stand
-ardis
Varia-
bility
HFA N/A No Yes Yes Yes No
SWAP YES No Yes Yes Yes No
HRP NO Yes Min Yes No Yes
FDP NO Yes Min Yes Yes Yes
Motio
n
NO - Yes Yes No No
Flicke
r
YES No Yes Yes No No

How the tests measure up?