Physics Full is great with a lot of drawings

biologyexpert158 7 views 25 slides Jun 10, 2024
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

Cool physics


Slide Content

air
resistance
¥wt
- "
EE
,
i
÷¥"¥ÉÑiyj$$ "n•
"
¥
.
of
*

¥*


equilibrium
-
-
-
- -
y
------=☒ free
fall
Notes"
¥%¥wrÑ
for

¥
W-¥
"
a.
*
!
"

,
_
ordinated
>
Sciences(
0654
)
É
J
.
. createdby
:
EmmaLe
manygraphics
:
SaveMyExams

table
d-
Contents
P1
.
Motion
3
P2
.
Work
,
energyandpower 8
P3
.
Thermalphysics 10
P4
.
Waves
,
includinglightandsound
14
PS
.
Electricity
andMagnetism
18
PG
.
Electriccircuits
20
P7
.
Electromagneticeffects
22
P8
.
AtomicPhysics 24

P1
.
Motion
P1
.
1
.
Lengthand
time
stopwatch
[ruler trundlewheel analogue
/digital2
*
accuracy
:
Multiple
readings

e.
g.
:

thicknessofpaper

100sheets

time
periodof
a
pendulum

10swings
SIunits
=
LesystemInternationald.Unites

usedbyscientistsall
over
the
world

metrecm)

kilogramLkg
)
[
measuringcylinder

second
G)

ampere
(A)

KelvinCK
)

mole
(
Mot
)
micrometer
screw
gauge
*
accuracy
:
0
.
01mm
3

P
.
1.2
.
Motion

speed
=
distance
moved
O=¥
(mls)
o
=
gradient
=
rrisuen✓
timetaken
scalar
p
magnitude

velocity
=
speedywithdirectionvec.to
r
distance
=
area

acceleration
=
changeofvelocity
a
=
Cm/S2
)
gradient
=
rise
=
?
time t
run
acceleration
>4deceleration
/
retardation
velocity
-
time
graph
Freefall
:[
no
air
resistance
]

allobjectsfall
at
same
a

Aff
=
g
=
10
m/s
2
near
Earth
's
surface

UP
at
steady
rate

weight
=
forceofgravity
on
an
object
4

P
.
1.3
.
MassandWeight P
.
1.4
.
Density

mass
=
-
amountof
matter
in
an
objectCkg)

mass
-
a
property
thatresistsmotion
(
Ems
)

weight
=
forceofgravity
onmass
(N
)
f
=

volume
W
=
M
.
g
1cm
'
=
1mL

displacement
:forirregular
-
shaped
objects
forregularshaped
?
f
digitalcaliper
[
balancer
Floating
5

P1.5
.
Forces
P1
.
5.1
.
Effectsofforces
size
Forces
can
change
"n
shapeof
a
body Hooke'slaw
:
a
materialobeysHooke
'slawif
,
motion plastic
beneathitselasticlimit
,
theextension
is
proportional
totheload
Extension
-
loadgraph(springs
)
/
Spring
constant
F
:
load(N
)
F=K
.
K K
:
springconstant
limitof
R
:
extension(
mm
)
proportionality
f
unit
of
K
?
load
ResultantForce Friction
=
overallCnet)force

a
force
thatopposesthe
motionof
an
object

energyloss
:
KE

heat

e.g
:
airresistance
(drag)
-
surfacetexture
?
F-force
(
N
)
F-
=
m
.
A
m=mass
Ckg)
a
=
acceleration
(
mls2)
Ifresultantforce
=
0
,a
body

remainsatrestOR

continuesatconstantspeed
,
in
straight
line
6

P1.5.2
.
TurningEffect

moment
=
turningeffectof
a
force Equilibrium
=
an
objectkeepsdoingwhatit'sdoing

cause
objects
torotatearoundpivot

moving

continue
,
straightline

pushingopen
a
door

stationary

using
a
crowbartoopen
something

willnotstart
/
stopturning
*
conditions
:M=moment(
Nm
)

no
resultantforce
M
=
F.d
F
=
force
(
N
)
.
no
turningeffect
D=b-
distance
&MR
=
EMA
frompivot(
m
)

whensuspendedfrom
a
point

objectwillsettle
so
thatits
designing
a
shelfthat
c.
am
.
restsbelowpivotingpoint
doesn'tcollapse
P
.
1.5.3
.
Centreof
mass
=
thepointthroughwhichthe
weightofobjectacts

located
@
pointofsymmetry
P1.5.4
.
Pressure
=
concentrationof
a
force
*
in
solid
D=pressure
1Pa) Stability
:
moststable
:
c.am
.
liesabovebaseP
=
F
F
=
force(N
)


widebase reallifeA-
A
=
area
(m2
)

lower
c.
am
.
example
?
7

F-power
(
w
)
Watt
102.3
.
Power
P
=
A
F-=
energy
transferred(
J
)
P2
.
Work
,
energy
a
power
"n
timeis,
P2
.
/
.
Work
W
=
work(
J
)
f-
=
force(N
)W=Fxd
D=distance(
m
)
=
AE
=
energy
transferred
(
in
directionofforce
)
102.2
.
Energy
kineticenergydue
tomotion
Gravitational
potential
energy
spring/
due
to
position
elasticband
m=mass
1kg)
KE
=L
my
2
KELt)
m=mass
1kg) GPE
=
mgh
g-
-
gravitationalfieldg)
D=
speed(mls)
h
=
height(
m
)\
@
atom's
nucleus
Efficiency✓
Energytransferredduring
events
+
processes

forces
(mechanicalworking)
e.
g.
:
e.
g.
:
blacksmithhammers
metalsword
\ETLET

4currents
:
source→
components

heating
via
conduction
,
convection
,
thermal
radiation
=
usefulenergyoutput

100%

wavesvia
tight
+
sound total
"
input
D)
ALSO
=
useful
poweroutput

1001
.
total
"
input 8

P
.
2.4
.
Energy
sources
:
steam
:
reliability
g-
renewable
:
replenishedregularly

unlimitedsupply
:
turbine
:
environmentalimpact

solar
/
wind
/
hydraulic/geothermal
energy
:
cost
non
-
renewable
:
available
in
limitedsupply
:
scale
lsmall
or
large
)

fossilfuels
,
nuclearenergy
energy
source
description form advantages disadvantages
Fossilfuel
.
burnt

heat

reliable

lots
ofgreenhouse
gases

steam

turbines
=
+4chemical
.
largescale
+
pollution19
-9
.
)

cost
effective
water
.
hydroelectric
+
tidal
powerGPE
'
hydro

reliable

tidal

notreliable

turnsturbines
=
-14

can
producelargeamounts

mayfloodhabitats

no
pollution/
g.g.
.
dams
:
$$$

wave
KE
Geothermal

underground
heat

reliable

can
releasetoxicgases

steam


internal
.
can
becost
effective

limitedsuitablesites

smallscale
Nuclearfission
.
nuclearfuel
is
reacted nuclear

reliable

dangerous
radioactivewaste

steam



verylargescales

yearsto
decay
•no
g.g.
/pollution

powerstations
$$$
Solar

heating
:
sunlight
warms
light

no
g.g.
/pollution

notreliable
water
in
blackpipe
.
goodforremote
places

small
-
scale
s
cells
:
light

energy

solarpanels$$$
Wind
.
windturbines
=
+4
KE

no
g.g.
/pollution

notreliable

can
stillfarm
on
land

noisy
,
ugly(?
)

$$$
to
build
relative
toF-output
9

B.ThermalPhysics
Kinetictheory
P3.1
.
Simple
kineticmolecularmodelof
matter
-
gasmolecules
:
randommovement
,
highspeed
-
top
=
of

collidewithsurfaceofcontainerwalls

appliesforce
to
wall
=
pressure
exerted
Brownian
motion
:
shapefixed
containercontainer
-
smallparticles(pollen
,
smoke
)
suspended
in
liquid/
gas
volume
fixedfixed
no
fixed
. →
randommotionLthrumicroscope
)
highlycompressible
thighspeedmoleculescolliding
arrangementregular
separation
close close
widelyseparated
movement vibrateslide random
,
highspeeds
I
big
particles
can
be
movedbysmaller
,
light
,
fast-movingparticles
temperature
solidificationy y
-
thermometer
;
I[
Evaporation
:
occurs
@
anyto
Boiling
:
occurs
@fixed
t
\
energy>77
@
surfaceofliquid throughoutliquid
°strong enough
energy
i.m
.
bonds (
escapeof
more
energeticmolecules
)
intermolecularbonds
to
overcomei.
m .
bonds

gas

sliding

consequentcoolingeffect
-
factors
:

to(
=
energy
)

surface
area
(
for
molecules
toescape
)

draught
=
airmovesacross
liquidsurface

helps
remove
lessenergeticparticlesstrong
constantto
/
bonds
whenAstate
:
energyabsorbed
*
condensation
,
solidification
/
freezing
:

use
to
break
intermolecular
forcesweak←
-
particles
loseenergy

slowdown
insteadofTKE
1=1^1-4 bonds

formbonds
(
intermolecularforces
)
10

P3.2
.
Pressurechanges

tt
,
constantV

tconstant
,
V4(compressed
)
=
of
=
hardercollisions
=
PT
=
more
collisions
=
PT
=
PT
P3.3
.
Matter

thermalproperties
Thermal
expansion
@
constantP Application
:
E
heated

particlesvibrate
faster

liquidexpands
in
thermometer

measure
to

knock
+
pusheachotherapart

bimetallicstrip
:

takesup
more
space
-
2
metals
;
expands
at
different
rates
(particles
remain
at
samesize
)

bendatcertainto

touch
=
t
'
-
activatedswitch

solids
:
expandslightly(
strongintermolecularforces
)

liquids
:
expand
77solids(weaker
" "
)

gases
:
expandsignificantly(
no
" "
)

Consequences
:

ifsolidmaterialsexpand
toomuch

buckle

metalrailwaytracks

roadsurfaces

bridge

built
-
in
gapsto
provide
room
forexpansion
11

P3.4
.
Measurementofto
toT

physicalchanges
:
assumption
:
propertieschangeatsteady
rate

V(and
f)

'
linear
'

electrical
resistance

easiertocreate
a
relationship
if
thesepropertieschange
in
well-definedway
,
butnot
entirely
accurateto
reallife
canmeasure
properties

determineto
whendesigning
a
device
leg
.:
thermometer
)
,

buildthermometer(based
on
properties
)

sensitivity
:more
sensitive
=
measure
smallerchanges
-
measure
property@
well
-
definedfixed-point

range
=
highest
+
lowestvalues?
=
towhere
easilyidentifiablechange
occurs

see
change
=
knowt
'
withoutmeasuring #
liquid
-
in
-
glassthermometer
-
chosenforthermalexpansionproperties

expandlinearly
with
to

wide
range
ofto

highsensitivity(
precision)

smaller
bulb
=
less
liquid
to
heatup

narrow
tube
=
smallAV
=
largeAd
usually
2
f.pt
.
J
H2Oboils
:
100°C

thinner
glass
bulbwall
melts
:
0°C
=
easier
heattransfer

plotgraph

workoutother
values
in
between
e.
g.
:
resistance
&
to
in
electrical
wire
.
go,
,
Thermocouples
\
f-wire
types
,
attached

junction
is
heated

creates
potentialdifference
to
T
=
p.d.tl

measure
highto
Lmetalshave
highm.pt)

responsivetofastchangingto

lesssensitivethanliquidthermometer
12

P3.5
.
Thermal
processes
A.Conduction B.Convection C.ThermalRadiation t°=??

main
energytransfer
in
solids
s
liquids
+
gases

allhotobjects
;no
mediumneeded
a.


:
metals(
+
delocalized
e-
)

heat

expand

ft
thansurroundings

infrared


:
non
-
metals
=
insulators

rises
up
=
howheattravels
through
vacuum

e.g.
:
trapped
air

colderparticlessinkconvectionf
current
*
heated

vibrate

bump

transfers
energy
black
silver
paintpaint
D.
Consequencesof
energy
transfer
kÉy
heated
,rises
w/
warm
water
e.
g.
:
Heatingwaterwithsolarpanels

apply
:
-
4ballbearingsstuckonto4
difmetal

heating
units
:
downlow
stripswith
wax

cooling
units
:
highup
-
heatup
metal

melts
wax

whichballdropsfirst?
13

P4.
Waves
+
light
and
sound
waveeffects
A)Reflection@planesurface
104.1
.
General
wave
properties angleof
-
waves
transferenergy Transverse
waves
angleof
Incidence
y
-
reflection
¢
matter

vibration
±
energitransfer
from1point
toanother
=
wave
motion
e.
g.
:
light

pointsvibrate@fixedpositions

!
=
crest
:
¥0
i
=
r
B)Refractiondue
to
Av

waves
enter
new
medium

changesspeed
Longitudinal
waves

XTortr
ftrough

vibration
11
energi
>
transfer

Adirection
=
slower

wavefronts
:
waves
picturedfromabove

=
faster

1wavefront
=
1
wave
(refer
toequation
)
c)Diffraction

waves
pass
through
narrow
gapI
spreadout
(

remains
constant
) Ripple
tankto
demonstrate
wave
effects

frequency
=
#
wavesper
second
*
feasiblewhen
gapis
smallerthanwavelength
V
=
f.✗

=
speed
(F)
f-
=
frequency(Hz
)
Hertz

=
wavelength(
m
)


14

P4.2
.
Light
1)Reflection 2)Refraction

Totalinternalreflection
i
=
r
Amedium

Aspeed
when
lighttravels
betweenmedia
:
more
dense

less
dense
glass
air

-
most
light

refracted
=i
/
r
\
some
light

internallyreflected
ithenormal
*
beyond
a
certainangle
,
c-
thecriticalangle
,
ALLlight
is
reflectedbackinto
glass
\vtt
hurt
lightbendslightbends
towards
normal
awayfrom
normal
(densermedium)
cglass
=
42°
ir
optical
image
is
:

same
size
as
object Application
:
opticalfibres
• "
distancebehind
mirror
refractiveindexofmaterial

highspeed
transmissionofInternetdata

directly
in
linewithobject
a

light
in
material
n=
✓light
invacuum

light
in
medium
n
always
>1

medicine

see
insidehuman
body
Investigatingrefraction✗
raybox%
glassblocks
;
varied
sizes

ab
a
mark
+
connectabed
d
to
see
pathofray
IS

3)Thinconverginglenses
bringsparallellight
raysintofocus Virtualimages
+
magnifyingglasses
objectcloserthan
focallength

light
rays
diverge

can'tformrealimage
i. :

extendraysbackwards
=
virtualimage(upright
)
I
depends
oncurve
oflens
same
size
Formingrealimagesfromrealobjects
.
Images
maybe
:

enlarged
/
same
size
/
diminished

upright/
inverted
*
based
on
placementofobjectfrom
lens
*
realimages
can
be
projected
onto
screen
P4.3
.
Electromagneticspectrum
sharedpropertiesoflight
:

transverse
waves

travelsthrough
vacuum
@
same
speed
=
3.0

108¥

speedoflight
inairis
similar
*
Safety
issues
:
-
microwaves
:
highlevels
*

heatingofinternal
organs
-
X
-
rays
,
gamma
,
UV
:
ionising

harm/killlivingcells
,
TV
+
radio
→ geneticmutation

cancer
-
UV
(
Sun
or
tanninglamps
)
:*
infrared
:
+
suntan

agesskin
prematurely
,
-
electricalappliances T
risk
of
skin
cancer
-
TVremote
controls
-
intruderalarms
16

P
4.4
.
Sound
sound
wavesare
vibratingmolecules
.

longitudinal
waves
consisting/ \

audiblerangeforhealthy
human
ears§
compressions
rare
fractions
20
-
20000Hz
a
bunchedtogether spread
out

sound
waves
needmedium
to
travelthrough→ travelsfaster
in
densermediumÉ
-
can't
in
vacuum
(
no
molecules
)

loudness

amplitude
louder
=
greateramplitude

pitch
a
frequency
higher
=
greaterf-

can
be
reflected
,
likeall
waves
=
echo
Experiments
to
determinespeedofsound

measure
distance
:
trundlewheel

bangwoodenblockstogether

stopwatch
:

start
:
whenbanging

stop
:
when
hear
sound/
echo

repeatmultiple
times

taketime
average
'
calculate
a-
d-
t
17

Inducedmagnetism
PS
.
Electricity

Magnetism
-
place
magnetometer
in
a
magneticfield

temporarilymagnetised
W/N
+
S
poles
PS
.
1
.
Simplephenomenaofmagnetism
*remove
frommagneticfield?
+
-
ve
1
.
Strokingw/
a
magnet
ve
f1
Magneticfield
lines
:
-
showdirection
+
strength
-
always
N

s
-
never
touch
or
cross
-
2.Using
a
directcurrent(d.
c.)
in
coil
*
a
magnet
can
onlyrepelanothermagnet
Magneticmaterialsexperience
a
force
whenplaced
3
.
Hittingw/
hammer
INmagneticfield
ina
magneticfield
Iron(Fe
) Steel(Fe
+
c)
=
magneticallysoft
: =
magneticallyhard
:

easytomagnetism

hard
tomagnetism

easily
losetheir
magnetism

doesn'teasily
losetheir
magnetism

electromagnets

permanentmagnets

CuandAl
arenon
-
metallic
e.
g.
:
electricbells
,
hn
receivere.g
.
:
doorstop
,
compasses 18

P5.2
.
Electricalquantities
PS-2.2
.
Current
,
potentialdifference
,
electromotiveforce
P
5.2.1
.
Electricalcharge

current
=
rateofflowofcharge
likechargesrepel

in
metals

flowoffree
/
de
localised
e-

ammeter

connected
inseries
unlikechargesattract
.
unit
:
ampere
(A)
*
charging
a
body
=
addition
/
removal⑤

potentialdifference(p.d.
)
=
energy
transferred
between2points
I
=
current(A)
*
experimentw/friction[video
]
in
a
circuit
whenchargeflows
I
=
¥
Q
=
charge(c)

voltmeter

connected
in
parallel
t
=
time
Cs)
Electricfield

unit
:
volt(
V
)
=
regionwhereYchargeexperiences
a
force ←
e.
mf
.

electromotiveforce(
e.m .
f.)
=
energy
supplied
by
source
todrivechargearoundcircuit
A
SV FV
(
=
p.d.
of
power
source

resistor

unit
=L /
bulb V
P5.2.3
.
Resistance
R=resistance(
"
^
current
-
voltage(
N
)
graphs
R
=
I

=
p.d.
(
V
)
f
electrical
I
I
=
current
(A)
← →
conductors insulators ✓
=
RxI
I
- -
i
;
=
allowscharge
=
doesn'tallowcharge
toflow
through
toflow
through
011

metal

plastics
12

graphite
°
glass

mostother
non
-
metals
6
constantR
€-0T

RT

I

V

opposes
I
19

PG
.
Electriccircuits
106.1
.
Circuitdiagrams P6.2
.
Seriesandparallel
circuits
*
open
circuit
=
NOcurrent
+
-
I
=
I
,
=
Iz
I
=
I
,
+
Iz
V
=
V
,
+
V2
V
=
V
,
=
V2

Adv
.
ofconnectingbulbs
in
D:
-
can
individually
controlcomponents
-
1componentfails
,
theotherstillfunctions
=
45h
=
4th
In
=
1pm
+
trz
20

Thermistors lightdependentresistorsCLDRS) 106.4
.
Dangersof4

Hazards
:
-
damagedinsulation
-
cablesoverheating
-
damp
conditions
toT

Rt
:
T

Rt
Fuses
-
protects
a
circuit

e.
g.
:
? e.g
:
?
-
cutoffflowof4
to
an
appliance
if
currentbecomestoolarge
*
choosingfuses

tocreate
heat(
or
light)
sensitivecircuits
-
many
sizes3A
,
5A
,
15A
,
...

performs
certainactionswhen
-
useI
=
known
from
1-
°
or
:&?
reachescertainlevel appliance
-
choosethenextsizeup
*✓
=
I

R
?
e.
g.
:

.
3AP6.3
.
Electrical
energy
y
watt
3.2A

5A
P=power(
w
)

13A
P=I.V
I
=
current
(A)
V=voltage(
V
)
"n
energy,
,yF
Joule
F-
=
I.
V.
t
1-
=
time(
s
)
21

107.2
.
Force
on
a
current
-
carryingconductor
TheMotorEffectI
PF
.
ElectromagneticEffects
107.1
.
Magneticeffectof
an
electriccurrent
wire
reversingdirection?
-
current
in
a
wire
137.6
.
Transformers

magneticfieldcreatedaround

can
1^14
Vof
a.c.
/
2coilsof
wire
w/RIGHThand
rule
wrappedaround
IOV
a
soft
iron
core
5

a.c.
to
1°coilcoil
,
sden
longcoil

induces
mag
.
-1
.

mag.f
moves
through
core


coil

induces
e.
mf
.
I
stepup
:
TV
ofpower
source
stepdown
:
-
#
of
turnsin
coil
?
input✓

up
=
µp-f1°
turns
-
mag
.
fieldofsolenoid
is
identical
tomag
.
fieldof
a
magnet
-
VgNs


turns
Magneticfieldstrength
+
direction output✓
I
-
current
-
Adirection

field? Iftransformer
is
100%efficient
:
inputpower
=
outputpower\
size
1^1

further
apart IpVp
=
IsVs
closertogether
22

P
.
7.4
.
Electromagneticinduction
e.
g.
:
batteries
e.
g.
:
mains
4
-
conductor
moves
through
mag
.
f.

cutsthroughfield
lines

inducesEMF
in
conductor
P7.3
.
d.
c.
motor reversal

movewire
/magnetfaster
T¥¥¥§

strongermagnet

T
turns
in
coil
P
.
7.5
.
a.c.
generator

coil
in
uniformmagneticfield

run
current
through

coilexperiencesturningeffect

generator
=
spunbymechanical
process
Voltageoutput

Teffectby
: →
produces4
-
Tcurrent

coil
rotates

cuts
through
mag
.
field
-
Tstrengthof
mag
.
field

produces

produces
current
-
+turnsin
coil

sliprings
@
endofcoil
*
split
-
ringcommutator
-
transfercurrenttometalbrushes

reverses
directionof
current
in
-
stillallowscoiltorotate
freely
coileveryhalf
-
turn

reverses
directionofforces
cut
through
more=

keepscoilspinning

higher✓
23

108
.
AtomicPhysics
P8
-1
.
Thenuclearatom
increase
decrease
nucleon
#
[
ionisingeffect
ionisingradiation
proton
#

whichmost
likely
to
penetrate

isotope
=
? humanbody?

nuclide
:
a
nucleus
w/specific
ptncombo
P8.2
.
Radioactivity deflection
in
P8.2.1
.
Characteristics electric
field
in
magnetic
field
2
Radiation
=
highenergyparticles(
orwaves
)

2-1emittedfrom
nucleus
of
unstableatom

RANDOMLY!
(
can't
predict)
-
I

,
B-oppositecharge
which
ApplicationsofRadioactivity

oppositedirections
one

Measuringthicknessofmetals

tracers
(radioactiveisotopes
)
y
no
charge

?
more
?

monitor
a
fluid

medicine
:
checkbloodflow
/blockage

industry
:
oilpipeline
.
leaks?
*
-
use
minimally

Radiotherapy(
cancer
)
y
-
shorthalf
-
lives
-
8
:
Ihighlypenetrating

Sterilization
g
low
ionising

medicalinstruments
24

P8.2.2
.
Detectionofradioactivity
P
8.2.3
.
Radioactivedecay
P8.2.4
.
Half
-
life(
isotope
)

unstableisotopes
decay(
emitradiation
)
time
foractivity
to
reduce
sizeto
balanced
state
(
or
#
oforiginal
nuclei
)

isotope
becomes
different
element tohalveinitialvalue

:
A
z


A-4
2-2
Y
-1
(

212
84
Po

2¥y
+
4

2
B-
:
n

p
+


emitted

mostlynatural

some
artificial
:
medicalprocedures
(X-ray)-
Detecting
radiation :X

Ay
+"¥
bydetectingforionized
ions
2+1
or
chemicalchangestheyproduce
"c

IN
+
TB
6

photographicfilm

Geiger
-
Muller
tubes
P8.2.5
.
Safetyprecautions
-

Ionisationchambers Ionisationaffectslivingcells
:
\
.
Cloudchamber

cause
mutations

cellbecomescancerous

killscell
y
Minimizehandling
risks
:

store
sourcein
Pb
-
lined
boxes

minimizetime

keepyourself
+
others
as
far
away
as
possible

use
tongs
,
safetygoggles
,
gloves
25