P1
.
Motion
P1
.
1
.
Lengthand
time
stopwatch
[ruler trundlewheel analogue
/digital2
*
accuracy
:
Multiple
readings
•
e.
g.
:
•
thicknessofpaper
"¥
100sheets
•
time
periodof
a
pendulum
"¥
10swings
SIunits
=
LesystemInternationald.Unites
•
usedbyscientistsall
over
the
world
•
metrecm)
•
kilogramLkg
)
[
measuringcylinder
•
second
G)
•
ampere
(A)
•
KelvinCK
)
•
mole
(
Mot
)
micrometer
screw
gauge
*
accuracy
:
0
.
01mm
3
P
.
1.2
.
Motion
•
speed
=
distance
moved
O=¥
(mls)
o
=
gradient
=
rrisuen✓
timetaken
scalar
p
magnitude
•
velocity
=
speedywithdirectionvec.to
r
distance
=
area
•
acceleration
=
changeofvelocity
a
=
Cm/S2
)
gradient
=
rise
=
?
time t
run
acceleration
>4deceleration
/
retardation
velocity
-
time
graph
Freefall
:[
no
air
resistance
]
•
allobjectsfall
at
same
a
•
Aff
=
g
=
10
m/s
2
near
Earth
's
surface
•
UP
at
steady
rate
•
weight
=
forceofgravity
on
an
object
4
P
.
1.3
.
MassandWeight P
.
1.4
.
Density
•
mass
=
-
amountof
matter
in
an
objectCkg)
←
mass
-
a
property
thatresistsmotion
(
Ems
)
•
weight
=
forceofgravity
onmass
(N
)
f
=
←
volume
W
=
M
.
g
1cm
'
=
1mL
←
displacement
:forirregular
-
shaped
objects
forregularshaped
?
f
digitalcaliper
[
balancer
Floating
5
P1.5
.
Forces
P1
.
5.1
.
Effectsofforces
size
Forces
can
change
"n
shapeof
a
body Hooke'slaw
:
a
materialobeysHooke
'slawif
,
motion plastic
beneathitselasticlimit
,
theextension
is
proportional
totheload
Extension
-
loadgraph(springs
)
/
Spring
constant
F
:
load(N
)
F=K
.
K K
:
springconstant
limitof
R
:
extension(
mm
)
proportionality
f
unit
of
K
?
load
ResultantForce Friction
=
overallCnet)force
"¥
a
force
thatopposesthe
motionof
an
object
•
energyloss
:
KE
→
heat
•
e.g
:
airresistance
(drag)
-
surfacetexture
?
F-force
(
N
)
F-
=
m
.
A
m=mass
Ckg)
a
=
acceleration
(
mls2)
Ifresultantforce
=
0
,a
body
•
remainsatrestOR
•
continuesatconstantspeed
,
in
straight
line
6
P1.5.2
.
TurningEffect
•
moment
=
turningeffectof
a
force Equilibrium
=
an
objectkeepsdoingwhatit'sdoing
"¥
cause
objects
torotatearoundpivot
•
moving
→
continue
,
straightline
•
pushingopen
a
door
•
stationary
•
using
a
crowbartoopen
something
•
willnotstart
/
stopturning
*
conditions
:M=moment(
Nm
)
•
no
resultantforce
M
=
F.d
F
=
force
(
N
)
.
no
turningeffect
D=b-
distance
&MR
=
EMA
frompivot(
m
)
•
whensuspendedfrom
a
point
→
objectwillsettle
so
thatits
designing
a
shelfthat
c.
am
.
restsbelowpivotingpoint
doesn'tcollapse
P
.
1.5.3
.
Centreof
mass
=
thepointthroughwhichthe
weightofobjectacts
•
located
@
pointofsymmetry
P1.5.4
.
Pressure
=
concentrationof
a
force
*
in
solid
D=pressure
1Pa) Stability
:
moststable
:
c.am
.
liesabovebaseP
=
F
F
=
force(N
)
→
•
widebase reallifeA-
A
=
area
(m2
)
•
lower
c.
am
.
example
?
7
F-power
(
w
)
Watt
102.3
.
Power
P
=
A
F-=
energy
transferred(
J
)
P2
.
Work
,
energy
a
power
"n
timeis,
P2
.
/
.
Work
W
=
work(
J
)
f-
=
force(N
)W=Fxd
D=distance(
m
)
=
AE
=
energy
transferred
(
in
directionofforce
)
102.2
.
Energy
kineticenergydue
tomotion
Gravitational
potential
energy
spring/
due
to
position
elasticband
m=mass
1kg)
KE
=L
my
2
KELt)
m=mass
1kg) GPE
=
mgh
g-
-
gravitationalfieldg)
D=
speed(mls)
h
=
height(
m
)\
@
atom's
nucleus
Efficiency✓
Energytransferredduring
events
+
processes
•
forces
(mechanicalworking)
e.
g.
:
e.
g.
:
blacksmithhammers
metalsword
\ETLET
•
4currents
:
source→
components
•
heating
via
conduction
,
convection
,
thermal
radiation
=
usefulenergyoutput
✗
100%
•
wavesvia
tight
+
sound total
"
input
D)
ALSO
=
useful
poweroutput
✗
1001
.
total
"
input 8
P
.
2.4
.
Energy
sources
:
steam
:
reliability
g-
renewable
:
replenishedregularly
→
unlimitedsupply
:
turbine
:
environmentalimpact
"¥
solar
/
wind
/
hydraulic/geothermal
energy
:
cost
non
-
renewable
:
available
in
limitedsupply
:
scale
lsmall
or
large
)
"¥
fossilfuels
,
nuclearenergy
energy
source
description form advantages disadvantages
Fossilfuel
.
burnt
→
heat
•
reliable
•
lots
ofgreenhouse
gases
→
steam
→
turbines
=
+4chemical
.
largescale
+
pollution19
-9
.
)
•
cost
effective
water
.
hydroelectric
+
tidal
powerGPE
'
hydro
→
reliable
•
tidal
→
notreliable
→
turnsturbines
=
-14
•
can
producelargeamounts
•
mayfloodhabitats
•
no
pollution/
g.g.
.
dams
:
$$$
•
wave
KE
Geothermal
•
underground
heat
•
reliable
•
can
releasetoxicgases
→
steam
→
→
internal
.
can
becost
effective
•
limitedsuitablesites
•
smallscale
Nuclearfission
.
nuclearfuel
is
reacted nuclear
•
reliable
•
dangerous
radioactivewaste
→
steam
→
→
•
verylargescales
"¥
yearsto
decay
•no
g.g.
/pollution
•
powerstations
$$$
Solar
•
heating
:
sunlight
warms
light
•
no
g.g.
/pollution
•
notreliable
water
in
blackpipe
.
goodforremote
places
•
small
-
scale
s
cells
:
light
→
energy
•
solarpanels$$$
Wind
.
windturbines
=
+4
KE
•
no
g.g.
/pollution
•
notreliable
•
can
stillfarm
on
land
•
noisy
,
ugly(?
)
•
$$$
to
build
relative
toF-output
9
B.ThermalPhysics
Kinetictheory
P3.1
.
Simple
kineticmolecularmodelof
matter
-
gasmolecules
:
randommovement
,
highspeed
-
top
=
of
→
collidewithsurfaceofcontainerwalls
→
appliesforce
to
wall
=
pressure
exerted
Brownian
motion
:
shapefixed
containercontainer
-
smallparticles(pollen
,
smoke
)
suspended
in
liquid/
gas
volume
fixedfixed
no
fixed
. →
randommotionLthrumicroscope
)
highlycompressible
thighspeedmoleculescolliding
arrangementregular
separation
close close
widelyseparated
movement vibrateslide random
,
highspeeds
I
big
particles
can
be
movedbysmaller
,
light
,
fast-movingparticles
temperature
solidificationy y
-
thermometer
;
I[
Evaporation
:
occurs
@
anyto
Boiling
:
occurs
@fixed
t
\
energy>77
@
surfaceofliquid throughoutliquid
°strong enough
energy
i.m
.
bonds (
escapeof
more
energeticmolecules
)
intermolecularbonds
to
overcomei.
m .
bonds
"¥
gas
→
sliding
→
consequentcoolingeffect
-
factors
:
•
to(
=
energy
)
•
surface
area
(
for
molecules
toescape
)
•
draught
=
airmovesacross
liquidsurface
"¥
helps
remove
lessenergeticparticlesstrong
constantto
/
bonds
whenAstate
:
energyabsorbed
*
condensation
,
solidification
/
freezing
:
→
use
to
break
intermolecular
forcesweak←
-
particles
loseenergy
→
slowdown
insteadofTKE
1=1^1-4 bonds
→
formbonds
(
intermolecularforces
)
10
P3.2
.
Pressurechanges
•
tt
,
constantV
•
tconstant
,
V4(compressed
)
=
of
=
hardercollisions
=
PT
=
more
collisions
=
PT
=
PT
P3.3
.
Matter
✗
thermalproperties
Thermal
expansion
@
constantP Application
:
E
heated
→
particlesvibrate
faster
•
liquidexpands
in
thermometer
→
measure
to
→
knock
+
pusheachotherapart
•
bimetallicstrip
:
→
takesup
more
space
-
2
metals
;
expands
at
different
rates
(particles
remain
at
samesize
)
"¥
bendatcertainto
→
touch
=
t
'
-
activatedswitch
•
solids
:
expandslightly(
strongintermolecularforces
)
•
liquids
:
expand
77solids(weaker
" "
)
•
gases
:
expandsignificantly(
no
" "
)
•
Consequences
:
•
ifsolidmaterialsexpand
toomuch
→
buckle
•
metalrailwaytracks
•
roadsurfaces
•
bridge
→
built
-
in
gapsto
provide
room
forexpansion
11
P3.4
.
Measurementofto
toT
→
physicalchanges
:
assumption
:
propertieschangeatsteady
rate
•
V(and
f)
"¥
'
linear
'
•
electrical
resistance
→
easiertocreate
a
relationship
if
thesepropertieschange
in
well-definedway
,
butnot
entirely
accurateto
reallife
canmeasure
properties
→
determineto
whendesigning
a
device
leg
.:
thermometer
)
,
"¥
buildthermometer(based
on
properties
)
•
sensitivity
:more
sensitive
=
measure
smallerchanges
-
measure
property@
well
-
definedfixed-point
•
range
=
highest
+
lowestvalues?
=
towhere
easilyidentifiablechange
occurs
"¥
see
change
=
knowt
'
withoutmeasuring #
liquid
-
in
-
glassthermometer
-
chosenforthermalexpansionproperties
•
expandlinearly
with
to
•
wide
range
ofto
•
highsensitivity(
precision)
•
smaller
bulb
=
less
liquid
to
heatup
•
narrow
tube
=
smallAV
=
largeAd
usually
2
f.pt
.
J
H2Oboils
:
100°C
•
thinner
glass
bulbwall
melts
:
0°C
=
easier
heattransfer
"¥
plotgraph
"¥
workoutother
values
in
between
e.
g.
:
resistance
&
to
in
electrical
wire
.
go,
,
Thermocouples
\
f-wire
types
,
attached
•
junction
is
heated
→
creates
potentialdifference
to
T
=
p.d.tl
•
measure
highto
Lmetalshave
highm.pt)
•
responsivetofastchangingto
•
lesssensitivethanliquidthermometer
12
P3.5
.
Thermal
processes
A.Conduction B.Convection C.ThermalRadiation t°=??
•
main
energytransfer
in
solids
s
liquids
+
gases
•
allhotobjects
;no
mediumneeded
a.
•
✓
:
metals(
+
delocalized
e-
)
•
heat
→
expand
→
ft
thansurroundings
•
infrared
•
✗
:
non
-
metals
=
insulators
→
rises
up
=
howheattravels
through
vacuum
"¥
e.g.
:
trapped
air
•
colderparticlessinkconvectionf
current
*
heated
→
vibrate
→
bump
→
transfers
energy
black
silver
paintpaint
D.
Consequencesof
energy
transfer
kÉy
heated
,rises
w/
warm
water
e.
g.
:
Heatingwaterwithsolarpanels
"¥
apply
:
-
4ballbearingsstuckonto4
difmetal
•
heating
units
:
downlow
stripswith
wax
•
cooling
units
:
highup
-
heatup
metal
→
melts
wax
"¥
whichballdropsfirst?
13
P4.
Waves
+
light
and
sound
waveeffects
A)Reflection@planesurface
104.1
.
General
wave
properties angleof
-
waves
transferenergy Transverse
waves
angleof
Incidence
y
-
reflection
¢
matter
"¥
vibration
±
energitransfer
from1point
toanother
=
wave
motion
e.
g.
:
light
"¥
pointsvibrate@fixedpositions
✗
!
=
crest
:
¥0
i
=
r
B)Refractiondue
to
Av
"¥
waves
enter
new
medium
→
changesspeed
Longitudinal
waves
•
XTortr
ftrough
"¥
vibration
11
energi
>
transfer
•
Adirection
=
slower
•
wavefronts
:
waves
picturedfromabove
←
=
faster
←
1wavefront
=
1
wave
(refer
toequation
)
c)Diffraction
"¥
waves
pass
through
narrow
gapI
spreadout
(
✗
remains
constant
) Ripple
tankto
demonstrate
wave
effects
•
frequency
=
#
wavesper
second
*
feasiblewhen
gapis
smallerthanwavelength
V
=
f.✗
✓
=
speed
(F)
f-
=
frequency(Hz
)
Hertz
✗
=
wavelength(
m
)
✓
✗
14
P4.2
.
Light
1)Reflection 2)Refraction
"¥
Totalinternalreflection
i
=
r
Amedium
→
Aspeed
when
lighttravels
betweenmedia
:
more
dense
→
less
dense
glass
air
"¥
-
most
light
→
refracted
=i
/
r
\
some
light
→
internallyreflected
ithenormal
*
beyond
a
certainangle
,
c-
thecriticalangle
,
ALLlight
is
reflectedbackinto
glass
\vtt
hurt
lightbendslightbends
towards
normal
awayfrom
normal
(densermedium)
cglass
=
42°
ir
optical
image
is
:
•
same
size
as
object Application
:
opticalfibres
• "
distancebehind
mirror
refractiveindexofmaterial
•
highspeed
transmissionofInternetdata
•
directly
in
linewithobject
a
✓
light
in
material
n=
✓light
invacuum
✓
light
in
medium
n
always
>1
•
medicine
→
see
insidehuman
body
Investigatingrefraction✗
raybox%
glassblocks
;
varied
sizes
✓
ab
a
mark
+
connectabed
d
to
see
pathofray
IS
3)Thinconverginglenses
bringsparallellight
raysintofocus Virtualimages
+
magnifyingglasses
objectcloserthan
focallength
→
light
rays
diverge
→
can'tformrealimage
i. :
→
extendraysbackwards
=
virtualimage(upright
)
I
depends
oncurve
oflens
same
size
Formingrealimagesfromrealobjects
.
Images
maybe
:
•
enlarged
/
same
size
/
diminished
•
upright/
inverted
*
based
on
placementofobjectfrom
lens
*
realimages
can
be
projected
onto
screen
P4.3
.
Electromagneticspectrum
sharedpropertiesoflight
:
•
transverse
waves
•
travelsthrough
vacuum
@
same
speed
=
3.0
✗
108¥
•
speedoflight
inairis
similar
*
Safety
issues
:
-
microwaves
:
highlevels
*
→
heatingofinternal
organs
-
X
-
rays
,
gamma
,
UV
:
ionising
→
harm/killlivingcells
,
TV
+
radio
→ geneticmutation
→
cancer
-
UV
(
Sun
or
tanninglamps
)
:*
infrared
:
+
suntan
→
agesskin
prematurely
,
-
electricalappliances T
risk
of
skin
cancer
-
TVremote
controls
-
intruderalarms
16
P
4.4
.
Sound
sound
wavesare
vibratingmolecules
.
•
longitudinal
waves
consisting/ \
•
audiblerangeforhealthy
human
ears§
compressions
rare
fractions
20
-
20000Hz
a
bunchedtogether spread
out
•
sound
waves
needmedium
to
travelthrough→ travelsfaster
in
densermediumÉ
-
can't
in
vacuum
(
no
molecules
)
•
loudness
✗
amplitude
louder
=
greateramplitude
•
pitch
a
frequency
higher
=
greaterf-
•
can
be
reflected
,
likeall
waves
=
echo
Experiments
to
determinespeedofsound
•
measure
distance
:
trundlewheel
•
bangwoodenblockstogether
•
stopwatch
:
•
start
:
whenbanging
•
stop
:
when
hear
sound/
echo
•
repeatmultiple
times
→
taketime
average
'
calculate
a-
d-
t
17
Inducedmagnetism
PS
.
Electricity
•
Magnetism
-
place
magnetometer
in
a
magneticfield
"¥
temporarilymagnetised
W/N
+
S
poles
PS
.
1
.
Simplephenomenaofmagnetism
*remove
frommagneticfield?
+
-
ve
1
.
Strokingw/
a
magnet
ve
f1
Magneticfield
lines
:
-
showdirection
+
strength
-
always
N
→
s
-
never
touch
or
cross
-
2.Using
a
directcurrent(d.
c.)
in
coil
*
a
magnet
can
onlyrepelanothermagnet
Magneticmaterialsexperience
a
force
whenplaced
3
.
Hittingw/
hammer
INmagneticfield
ina
magneticfield
Iron(Fe
) Steel(Fe
+
c)
=
magneticallysoft
: =
magneticallyhard
:
•
easytomagnetism
•
hard
tomagnetism
•
easily
losetheir
magnetism
•
doesn'teasily
losetheir
magnetism
→
electromagnets
→
permanentmagnets
•
CuandAl
arenon
-
metallic
e.
g.
:
electricbells
,
hn
receivere.g
.
:
doorstop
,
compasses 18
P5.2
.
Electricalquantities
PS-2.2
.
Current
,
potentialdifference
,
electromotiveforce
P
5.2.1
.
Electricalcharge
•
current
=
rateofflowofcharge
likechargesrepel
•
in
metals
→
flowoffree
/
de
localised
e-
•
ammeter
④
connected
inseries
unlikechargesattract
.
unit
:
ampere
(A)
*
charging
a
body
=
addition
/
removal⑤
•
potentialdifference(p.d.
)
=
energy
transferred
between2points
I
=
current(A)
*
experimentw/friction[video
]
in
a
circuit
whenchargeflows
I
=
¥
Q
=
charge(c)
•
voltmeter
①
connected
in
parallel
t
=
time
Cs)
Electricfield
•
unit
:
volt(
V
)
=
regionwhereYchargeexperiences
a
force ←
e.
mf
.
•
electromotiveforce(
e.m .
f.)
=
energy
supplied
by
source
todrivechargearoundcircuit
A
SV FV
(
=
p.d.
of
power
source
←
resistor
→
unit
=L /
bulb V
P5.2.3
.
Resistance
R=resistance(
"
^
current
-
voltage(
N
)
graphs
R
=
I
✓
=
p.d.
(
V
)
f
electrical
I
I
=
current
(A)
← →
conductors insulators ✓
=
RxI
I
- -
i
;
=
allowscharge
=
doesn'tallowcharge
toflow
through
toflow
through
011
•
metal
•
plastics
12
•
graphite
°
glass
•
mostother
non
-
metals
6
constantR
€-0T
→
RT
→
I
✗
V
→
opposes
I
19
PG
.
Electriccircuits
106.1
.
Circuitdiagrams P6.2
.
Seriesandparallel
circuits
*
open
circuit
=
NOcurrent
+
-
I
=
I
,
=
Iz
I
=
I
,
+
Iz
V
=
V
,
+
V2
V
=
V
,
=
V2
•
Adv
.
ofconnectingbulbs
in
D:
-
can
individually
controlcomponents
-
1componentfails
,
theotherstillfunctions
=
45h
=
4th
In
=
1pm
+
trz
20
Thermistors lightdependentresistorsCLDRS) 106.4
.
Dangersof4
•
Hazards
:
-
damagedinsulation
-
cablesoverheating
-
damp
conditions
toT
→
Rt
:
T
→
Rt
Fuses
-
protects
a
circuit
€
e.
g.
:
? e.g
:
?
-
cutoffflowof4
to
an
appliance
if
currentbecomestoolarge
*
choosingfuses
"¥
tocreate
heat(
or
light)
sensitivecircuits
-
many
sizes3A
,
5A
,
15A
,
...
→
performs
certainactionswhen
-
useI
=
known
from
1-
°
or
:&?
reachescertainlevel appliance
-
choosethenextsizeup
*✓
=
I
✗
R
?
e.
g.
:
④
.
3AP6.3
.
Electrical
energy
y
watt
3.2A
•
5A
P=power(
w
)
•
13A
P=I.V
I
=
current
(A)
V=voltage(
V
)
"n
energy,
,yF
Joule
F-
=
I.
V.
t
1-
=
time(
s
)
21
107.2
.
Force
on
a
current
-
carryingconductor
TheMotorEffectI
PF
.
ElectromagneticEffects
107.1
.
Magneticeffectof
an
electriccurrent
wire
reversingdirection?
-
current
in
a
wire
137.6
.
Transformers
→
magneticfieldcreatedaround
"¥
can
1^14
Vof
a.c.
/
2coilsof
wire
w/RIGHThand
rule
wrappedaround
IOV
a
soft
iron
core
5
•
a.c.
to
1°coilcoil
,
sden
longcoil
→
induces
mag
.
-1
.
•
mag.f
moves
through
core
→
2°
coil
→
induces
e.
mf
.
I
stepup
:
TV
ofpower
source
stepdown
:
-
#
of
turnsin
coil
?
input✓
→
up
=
µp-f1°
turns
-
mag
.
fieldofsolenoid
is
identical
tomag
.
fieldof
a
magnet
-
VgNs
←
2°
turns
Magneticfieldstrength
+
direction output✓
I
-
current
-
Adirection
→
field? Iftransformer
is
100%efficient
:
inputpower
=
outputpower\
size
1^1
"¥
further
apart IpVp
=
IsVs
closertogether
22
P
.
7.4
.
Electromagneticinduction
e.
g.
:
batteries
e.
g.
:
mains
4
-
conductor
moves
through
mag
.
f.
→
cutsthroughfield
lines
→
inducesEMF
in
conductor
P7.3
.
d.
c.
motor reversal
•
movewire
/magnetfaster
T¥¥¥§
•
strongermagnet
•
T
turns
in
coil
P
.
7.5
.
a.c.
generator
•
coil
in
uniformmagneticfield
•
run
current
through
→
coilexperiencesturningeffect
•
generator
=
spunbymechanical
process
Voltageoutput
•
Teffectby
: →
produces4
-
Tcurrent
•
coil
rotates
→
cuts
through
mag
.
field
-
Tstrengthof
mag
.
field
→
produces
→
produces
current
-
+turnsin
coil
•
sliprings
@
endofcoil
*
split
-
ringcommutator
-
transfercurrenttometalbrushes
"¥
reverses
directionof
current
in
-
stillallowscoiltorotate
freely
coileveryhalf
-
turn
"¥
reverses
directionofforces
cut
through
more=
→
keepscoilspinning
→
higher✓
23
108
.
AtomicPhysics
P8
-1
.
Thenuclearatom
increase
decrease
nucleon
#
[
ionisingeffect
ionisingradiation
proton
#
•
whichmost
likely
to
penetrate
•
isotope
=
? humanbody?
•
nuclide
:
a
nucleus
w/specific
ptncombo
P8.2
.
Radioactivity deflection
in
P8.2.1
.
Characteristics electric
field
in
magnetic
field
2
Radiation
=
highenergyparticles(
orwaves
)
"¥
2-1emittedfrom
nucleus
of
unstableatom
"¥
RANDOMLY!
(
can't
predict)
-
I
✗
,
B-oppositecharge
which
ApplicationsofRadioactivity
→
oppositedirections
one
•
Measuringthicknessofmetals
•
tracers
(radioactiveisotopes
)
y
no
charge
→
?
more
?
→
monitor
a
fluid
•
medicine
:
checkbloodflow
/blockage
•
industry
:
oilpipeline
.
leaks?
*
-
use
minimally
•
Radiotherapy(
cancer
)
y
-
shorthalf
-
lives
-
8
:
Ihighlypenetrating
•
Sterilization
g
low
ionising
"¥
medicalinstruments
24
P8.2.2
.
Detectionofradioactivity
P
8.2.3
.
Radioactivedecay
P8.2.4
.
Half
-
life(
isotope
)
•
unstableisotopes
decay(
emitradiation
)
time
foractivity
to
reduce
sizeto
balanced
state
(
or
#
oforiginal
nuclei
)
→
isotope
becomes
different
element tohalveinitialvalue
✗
:
A
z
✗
→
A-4
2-2
Y
-1
(
✗
212
84
Po
→
2¥y
+
4
✗
2
B-
:
n
→
p
+
⑤
→
emitted
•
mostlynatural
•
some
artificial
:
medicalprocedures
(X-ray)-
Detecting
radiation :X
→
Ay
+"¥
bydetectingforionized
ions
2+1
or
chemicalchangestheyproduce
"c
→
IN
+
TB
6
•
photographicfilm
•
Geiger
-
Muller
tubes
P8.2.5
.
Safetyprecautions
-
•
Ionisationchambers Ionisationaffectslivingcells
:
\
.
Cloudchamber
•
cause
mutations
•
cellbecomescancerous
•
killscell
y
Minimizehandling
risks
:
•
store
sourcein
Pb
-
lined
boxes
•
minimizetime
•
keepyourself
+
others
as
far
away
as
possible
•
use
tongs
,
safetygoggles
,
gloves
25