Physics notes for JEE and CBSE board student.pdf

thakurvinaysingh836 15 views 150 slides Mar 02, 2025
Slide 1
Slide 1 of 150
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150

About This Presentation

physics notes for jee and boards


Slide Content

Units L Mea suremends

Q zn UL ©) Plane 2 Solid Arpa have
uuts but No Dimmstors

6) Left Most Zus are
Cant

Fe A” 2? pi
Ve. wot rg fit

< Qs Pr Y

Deumol are Syufiot

24.4 —» 3 Hg Ugit

2401 — 4 “9 digit

i Ur — 2 ug digit

Signi fitad Frguñes 900 39

O AL Non Le UN EE l5200> 3 sig digit

o Diagts Me ) a

Sa flag (52:00 + 5 sis digit
®) 23 8 blu NON- 2903 Wo N
Arts. U

2 y Eh Er SONG
Be 2¢

re
>|

Bao da Na PE ADD) Ton A SUBTA ACTION

A O

143. 2 143-2
ca A one g4 937

UD) Dat 7S - 364° Qe

(43-2 = 143-3
$ MULTIPLICATION joo
Ui) “Bret = 5 ee No Y Least Sii
Sy S
143: 26) 143: sx 0834 = 2-54

+

X
Ir AY Ea «20

KINEMATICS PROJECTILE

veshicol M oTi on
~~ MoT oN var
ent
| |.
A ®
Trop
Te
$

BE Varios Forte
O
Jr doc fy 4g fe

We + Wag + Wert = sk

: Wag + Wert > AUTDK

$
A. Fiz] Ed Wave = Wark 0
É

W= F.d

W a
W- FA CBO ome
Lis racer] ,

N
CIRCULAR MoTio
ER

= MIN
Faz a

Safe Spad For Tarima BANKED RoAD
WITH FRICTIoW

BANKED Ro#D
without Fach

N = fre) Nanay = [Ry sted

\- MEA
Vir E

mes A

[FM tong

Vehcnt Cinodos |(ji) Sprue UN Bop
ee RE RER et AO

MoTiowv Ja TT ES,
a / \
LooPinG the Loop | Be
3, 7
SW
O ha y
a
ETS 4gL.
E UV) Motuow PE
ET

X A) (X, 2.

i? CN | Fam = met mars
A Mom Neon 209)
—>

Diem = M2 MLZ, +0 Zs
Mack Mit M

Also y Masses cao m Moht
Eno 9 Com y also im Mon

> >
A | Such thar

=> > >» —
My Em Ma com = MU AMAN MN

@

X, Myth My

Im = MX ty AM
ae <=

Rooms Moth te
mem +h Com SATA TTA

Mm, +My,

SEMI- SoLID Shhng

38
BES E
LILI LA

Hollow CoN E

Ls

SOLID CONE

SEMI- Disc

8

Sem - we FOL ne

ES

CAVITY PROBLEMS Disc with

ow 5

Ky x
Ky
Ke 5 AX _ Art
MA Km WR) (0) Hey
A, = Total Asana & body, hr AH
Fang Cavity WR TR
=

A, : Alza A (i by

17 (Fret) u
Pa Pos = Costa
> =>

NE
ENT

m ZN VW,
Sy Tees
Before | af

2.2 Elashe (allions
ezo? dy Trelushic

de.
MM, Mr Y ble < | Posrrally belt

eno PEREMCOLA e
Mor PARALLEL Axis Axis THEOREM
~~ THEOREM LL

Ho LLow CYLINDER Solid CYLIWDER
T= MR?

I= mk-

(12,1)

MU Sim e

Gir)

2 MR”, > u
2 H El
z (eR) pgs MÉS

SoLidD SPHERE
Umer | mor Abd ALL

R
5 Axis in Hama ve

Masa dr O

e

HoLLow
CowE

MR

YE
,

CoRQVE = pgime= En

ANGULAR

MoME NTUM

Tí _ (EN
=>
> Ä
4.03
Loz AMP

Loe APEHAD

| Lye b= Arba)

FixeD Axis

RofATiov
DES
Le

gr


Rs

Al
al!

2

AL

F7

2

E

MoViNG Axis RoTATion

BER |
= Ar Rx

Efectivo Mage a Vath

L'un > Asp = Bien > Ario > À ana Kr
s phen O7 SPHERE #

t id < ka 2 =
Se ada ~ tpise < ht € tain En
Cd eek SO

—>
ser = sk

G & AVI TATION
Super postion Principe
RE

= tom Ee
yo
AE
x $
\ Ay a.
Gz 66140 Nw ts
Forte Y wdifudos A

Me dim Bla Masses

J Vanatren [vv xp]
ee hR<<R

GRAVITATIONAL FIELD
Z PoTENTIAL
poten es

POINT MASS
V

Ty | NA
A
j
xl
| | EN

e. —
m Ty
= aM
ao
Can
ges
Se

Solin SERE

POTENTIAL

Este
VELOCITY

ia

R
[Vo Wr a A

KEPLER Laws

Pp
- Ÿ Aou Velocu dy =, de
9 N dt
ES VAR Lf hey
d+ 2 m Le
a a y? el
oS LES

A ELASTICITY

E

Shar Stress

ELasTic PoTENTAL

F 10% €) x Volume

Pr

P,=*+99H

runs
Pressure Variahm
a ee a iad

at
et

A qu
| Eg 2 he
Pea 6(q4a)y ee

hak A

BAROMETER
\

RE"
P,= £94 A
4

BUOYANCY

HYpeavtie

CRT 5
A A,
bi
EE Fi
G A, Ar h - WU qd hr Liq, AN es
INP O Net ubwod

ech An

For Acclersted in [ fo< f]

Cases
Fleas

Sinkna U (ar S A]

Sima

E

¿loko Dia

SE cog Hie y
AÑO dV = Volume Rote CE)
d+

AV = À Y, = Av, = (otek
h (dt

Pr gue) 20 Gabe

it x For TEE mn

VetociTt or Efflux

Ve ET

Tz Pe

Rage 1g Maxima

VISCOSITY TERMINAL
E an VEUT

fv STOKE

AER NE
LEN

af a A =0)

= 7A av u |

We loefiüns RN stos, Le
La Char sd
| Poisumbies NS

Poiesenbie Equation

(aes
A — Pa.
ee)
Aeon
NV TAR
dt 8 mí

NES

SURFACE _ SURFACE TEnsion on

RS O N~ dro Exc Ess
pers CR ESSURE

O
gent 00 “À

AP

P, oMlavı- ÿ eden

LiQuiD DRoP

AIR BvuBBLE

SAP BUBBLE

CAPILLARY PILLARY

E 25 C8 |, 5
o ex Aeculaaded
6) LES take

Az en af

Teme

HEAT

SCALE
ANS of Division

us

Laztiltt<oT) 3x)

A, Ai Ci+687]
Mas a Dr va ES
A - 4

[awl

Li,

Le, a

las dite

Lithe

HD sem
ak, ot
glode 100%

some Are et Resisten le
R
K > Coe fiver ¡vit

Lis" le 1

+_- AT] [AL - KA VAT
A | ahs
Re dt =

SERIES PARALLEL
m —,

Ir = San AT: Swe

Toth
Poo À
Con: aba) = “Eon

Lada ¿AR
SANS E ~

Kit ke

K LK Ll,

Time Im WMA RADIATION mh av,
Lake frees E Emmisive Powe, AR At
[IR]
p AV
BE
AR at

Non- BLACK
BLACK BX —=—

BoDY

Ter S mol =
“rab
;
Me Da ptr of Lal e= issih,

. SpeckoL Emissive
To = Suaromobing Per Spe Pott.

THER MODYNA Mics GAs

Meom Free Path eee
——————— Va © - Avg Shed | À > J
Ann
ann d Vavg : = ie a {
N = No y Moleulas fat
Umit Volume N
Amy I Root Meow Sama

dz d amo, of Mobunk

A 1

N

WORK Cy bre Ca 00% FIRST law

ta
a Le

Nerv
V | supAbied
5 uk 2
M VE x \ pase d a AR : 18
Ve fo CLW u
q VÍ = w=+ve Ve fos, ACW

o
Hest
\ Y Wa [ Mas) Raeuka

W o D +- Constat
ISo-CHoklc — cb PV = Costd+

Vz
Wyco- gare © PAV it + Va
W zcotueemar = MAT aka = MAT = 3

Hahn = -AV= Rte 4: AV - Au

ADI8 BATIC

(C Pe = nCe Am

MA ML

PoLy TROPIC
PROLESS

Ley” ce]

Ea Cy + A
Ve

ENTROPY

Xz A Sin(wt +7
mP ¿o ¡a )
D 1 . too,
to ++: ASin (wt tf)
Xe A Sin (wt B)) "o exo Par (utka)
Za \

t
\
| \ !
1

®, + Tritrat Phase

SHM of BoD) ES

= 2K) MA
J K

Se
Ya Me M 2
u ehe:

SIMPLE PEnDuLum fa
DIMPLE TENDULUV
EMM
t

FnYsicaL FewsiLun,

5.
_---€- a Te an ey

D T= mol abn Axis
— = =~ Ls res

Ber
Fram Com

WAVES
Vv
ADIN, ltr
+
Wi =

T= Intensity (Ie)
Ve Lou ty Ÿ Wave

_ T _ Fe ¡q are
om stated == | [T= 3 Sh 0 IES
Stay

z
Mz Mass pa it O
(as LONGITUDINAL
LE WAVES

Es aX . =
Ama | LP a Pe Sn CRAN

‘| Pox Max = RAK

eN Passau
ta B= QAR Modus

In TEwsiTY of
Long ok
Erz

- yu A7
Te if

tlt ined STANDING ME
a ONE Enp Resomamte Columv

p eect > EXPERIMENT
/
OR

que | EE]
FN TR)

MEN; 2,3. Nils,

BEATS
US,
oh
Se het]
Filing + 4 P
hava $ y

ELECTROSTATICS
CHARGE
Cou tombs [Aw

Nelly Wo

Sfar BE,
Laut & Comer

À C2 MO Sie
Comllemb

Kz Ex = Dieleduc (ak) Y, z DS Bols

oe I. > Bemsily of Lidl

ELECTRIC iKe
FIELD Like A _ A
Ta
E ES

ot ee e
ENS) Poiws ( Bl)
UNLIKE CHARGES

Vecte, Baath

— E=A8
y E qn
V= RB
<=
8
Y In v
E Sign must
-8 be Takon
Vz aka

Fr
eL
D
_Hoilow SPHERE
olLow SP
HE
RE
Po
T
EN
Ti
A
L.

NEL
¿RE
| s GG:
Compo > <
A
ke
A! #

y,

SoLID SPHERE

PoTENT IA
Mane == .
LE ka
2R| 3 A
Rg
Al

RING

SEMI
Sir

IN AY: 4—v
a =a a a
PUR -
Dr E:2k ET
ER Rin D
OATES Enh e .
Tr

En E,= ha | Sin K+ SP)
d

En 7 1 Ss
JRE [Eos ba Lard rt)
# y o
/ 1 ‘

POTENTIAL

ENERGY

Fa Mult pe CHA yes
Take ut pres

AVE (av RTE] 3-3 TEE |
Ex

Can

a teh, yd co

San e Loge
Must Seen

AV - Wext
Vo

DE = Uniform

As.

I, lav qm E ll coso)

\ Dis m
of

Ge \d

4 Es NON Union

5
ba

Ex=-dv

SELF - ENERO Y

L
HiLow — BR
Sp pure 2
Soul» ELIO

Di PoLE

E ! | EQUATORIAL Ent
an 31, pal
ae E E 3(x0+]

Eux AP =

E =
_ É
b= E A Ces ©

E = Non -Uait dn,
7 fe IR

Gauss LAW

CONDVL TORS

P

CAPACITORS
A

ze Bscv/ PorsDll Pine, (c= sé
qe
Ge RR,
= Tsol ATED

S phos — |C=4rar

C Ze DIV | rdsin_,
ES

uti Gh

RALLEL
fa

ci
on Pp

Es Un balance

CE}

ke

ciét

An

uns

In Passence ES

Laude =P V = Same

In A bene

— QS

Fs &obv = Esby [A]!

TE ae Width af
AN

— CURRENT
Y Vos [E € JE
me”


For, Conductorg

tree Ti=>RÍ?
R, Au #1)

SERIES PARALLEL
T Same Ty Ry vor

Rz
a a,
A by 2 :
3 A E BA,
FR LR es RER + CRT RRs
LR ERA

ni

H = Pxt: rat ENIS = E

ye
R

ly Mi
ry

gor” CB im Series

ar Er Eze --.

E eg =
An, = Art Asie age --.

meter budge A MMETER
ri x | ns T, 1, -L)s
Di a |
Ta- Ty
LS
“To — a)
ne VOLT METER

a & Vos E (LEO)

A= x &— CIA
Q +e, Tot, | Vox ES

MAGWETIC FIELD
_STRM GT MIRE

N

at : Y

av

¿E b= Mot [SharQ
Vir d Ur
Moz UR Ky. Tw y id

Semi - Infinite

loe. CIRCULAR
a Coll
E ae
TE
©

SoLEwolp

SOLID CYLINDER
ae

Bias [MT &
Zeh
Granda Not
b Era,
%
A i} x \
NUE
(
A

«E

MAGNETIC Face

qe a LV xe]

Pia 2 vb Sins

Ge

eee = ©

wee
Qo

(ae

PARALLEL Cormk

MAGNETIC T
ABAD B
Mom En T

Tire Period
mol :\ Teer]
osulleha M

V- en
= M- Bz Mec

£:-4g
d+

Magmahc

cs = may = NBAW
(E

MoTlowAL
— EnF—
er

Os
És

L Va

EE
Serer

SELF LIwpvctiov

—— eae

Loa aad tro, L ads og Chon cha
L ack os She cht

N 5 At ti.
lie nan || E
€ cui ire
ay [ee
AL E=0 C Ak cS Shar chi

Fu, C pels où Alo CRE

MUTUAL Indutlonce
—— mm

supprHS.

[Lez isla 2m]

c= acs OR omg
AS pd
ne

[ost st]

SERIES RUC

Y T= A+ 4 Siw t)
For full cycle
La = À

Tan =|A +

Ze fet [rer]
V+ [xx]

Aw I
wa
A, © US À

Power =
= Vans Teams Co p

Cos $ Power _ >

At Som to l Cc ]
Ro am Ku
- = AL

AW al a A
ESA Bandwidth

L-c Oscillahms | TR AWS FORMERS
ta >

Yy

Em Waves
MAXWELL EgvAaTions

“Le = Dishlawront OL? >
LusAmt be dA = ES
Loy = €. db O) 6% ie - 0
dt s

eb Heh Ke M Moby Coba.

Eek, Sin( Kx- wt) M = Re fanchve Index

br Le Sin (Kx-wt)

Energy density Intensity [Te I

Robinho
Pressure (Pa)

Mt ~ 2 Es Be
“9 an | AZ la
5

Re Fa
a) (se

Ey

Los 2 Cry
[1 __
Em
Speckuwm Cv
v hp)

(ae
J )
ing e uw. y. 27
Ross a. —
VAN a
AR
Mia
| N e— Rad
\BoYo RA |
î

( Udo
Mm) E DO vw)

WAVE OPTICS

Eo Cons tanchve
co MATARO
Fa = | AU + Az + 28,8, Cosh

Las T+ Er, 2311, ==

20d)

520,222. -)
[xem (£
F Ur EL

==,
Les dy, Cor AL

Destauchtve
pe

[a$:ev-) ñ

Un=1, 2, y 4--

2
LA ES

110,9 )

z

vi

Aia = Aı- Ar
ES
14 TI-1,-0

PSE S, PSP ]

ast Assuphm

bere.

ZA Assujpht»
Yala
A kz dkengz dy
D

bai Prima | DARK FRwGEs

4X= mA AR yA
dy -nA 2
D -@r-)AD
| y= 748)
N
Nel, 2, a,

(nz, Wry 3-)

Ber img wid
+

XDSE m water
par I

A sed = Derr
A

ß — dec
Pattern Asumks
Ny Maxime À

Mina mc.

DIFFRACTION
maxim A

“Ne Ic =

Me Le, 3,4 oe

pe it sl m4

Pe \ \
N ie PARA TIO: Ani a à wry
VU yy

Polani 24. mph | u €
+ Er ~
Es) |


Polop AO] Polar, =| 2 ze

Es à
Lo

Cia ESA

RAY OPTICS

Ref leche S= 180-20]

D NY Eevm,

Y obpect No of Trogs = 921
Y nu oda

ETE ENS
No Y Toys he Nees (
Ford Be Lisectos
N= 360

= M1 T, ~
ERE

7%
UY

¿S
SEAS
¿SE
mA

d
Lak
al
= +
US
ar
- x

COMBINATION OF Uns

A

SILVERIO 0€

At Min Bevichen Y eu
as A, A Van Smet

Com Pound Mic RoSCoPE

Micro scope
Stressed Vist oy
IN = Be À
| lt]
Staesged Us .
Relaxed VEE E €
MESA TO À Ema
fo fe

Adgs
Relaxed visi

Telescope NEA

AAA une Vision
Om = Ev fe) fas de
fe D fe

Ls for fe

Ez

[Kane gr ver) = a M [Kane gr ver)
Era sv)
À Era ev] = [Fe = BE)

[P= y= BE)

kw

6 A
Vr 22x10 Z E mé)
ug!
Tr

2 (0: ES (4) Es
FBS 2 (e)

-e,

NWVLLEUS
>
Ans ME Defect

AM = Meaty Mobsrwed

ane
I

= Comstud Eg = ame)
AS H ane 4 amy
Kal EL = GUS men!
Tags