Physics Velocity transformation msc 2nd year

IshaNandwani1 9 views 15 slides Aug 21, 2024
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

Velocity transformation


Slide Content

Velocity
Transformation
We know the components of
velocity a particle in S iend want to
find the same in S' for the same
particle.
,..,."

Notations
V Relative velocity between frames.
Constant as a function of time.
ii Instantaneous velocity of particle
is S. Need not be constant.
il Instantaneous velocity of particle
r: is S'. Need not be constant.

s

Special Theorv ol Belalivttv
Events Related to
Displacement
Imagine that a particle is moving
in x--direction in a frame S.
E 1: Particle found at x
1 at t
1

E2: Particle found at x
2 at t
2

~

Even if the velocity of particle! is
not constant
aX x
2
-x
1
~t ; t2 -~I
in the 1:imit flt tending to zero
would give the instantaneous
'Jelocity of particle in S.
:)

If the motion is in three­
dimension, in generat
Ll X
u ... = Lt
_ r-.o Ll t
u = Lt Ll y
,, ~ r .a Ll t
u = Lt Ll z
(◄ : ..1 r -o Ll t

Similarly looking at the same
particle in S ', we can define:
Ll x
1
u' -Lt
~ - JI t'
1 r~o u
u· = Lt Ll y'
Y l1 r-.o Ll t•
u: = Lt Ll z'
• .1 r·-.o Ll t'

Lorentz Transformation in
differential form .
.... \X' = r(&lX -v~t)
.~y· = .~y
._\Z' = ll'
~t• = r ~t -V dX
c2

I
X ~ X-Vt.
I I
I
X
2
: f (Xl-Vl:,
1
I I
)(2,_ }(I : 1 { Jt, .. >r, • \' ( irtJ
I
61' :: 1 [6>c. -~At
\..

Lorentz Transformation in
differential form.
AX'= y(.\X-V.. )
t\y' = t\y
~·=~
!.\t' = r l_\t -V -~
._ c·

\x
':\X' ~t -V
- -V -~t
- -·--------
~t· ~t _ V L\X l _ V dX
c
2
c
2
L
, U)c. -V
U:.i. = ---
l-vu,,,
c2

.\y
.~y' .\y ~t
= -----= , _______ _
~t·
0
1-V ~
r c2 _
u' = __ u ..... r __
V
1-vu,
r c2

Soec1ali Theorv ol RelaUvltJ
Velocity Transformation
Equations
, _ U,.-V
U~. ----
u' =
V
::)
l-vu.,.,
Cl
u,,
r 1-
VU,
c2
. u'
,· =
z
r
~-.

l
ti, ..
vu!t.
1-
c2
.I
.,..
:1
j

Inverse Velocity
Transformation
U' + V
u = ----· -
~- vu'
1 + 11
c2
u'
y
U =,----·u , • =
y vu' ·
u:
,
1
~
y + 2
C
1
VUK
y + ')

)

Comment
One c.an show that
• If u<c in S, u<c in S' also
irrespective of v.
• If u=c in 5, u=c in S' also
' irrespective of v.
Tags