Piping components, materials, codes and standards part 1- pipe

46,210 views 72 slides Jan 09, 2016
Slide 1
Slide 1 of 72
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72

About This Presentation

The course is focused on four areas: piping components, pipe materials and manufacture, sizes, codes and standards. Applicable piping codes for oil and gas facilities (ISO, B31.3, B31.4, B31.8, etc.), pipe sizing calculations, pipe installation, and materials selection are an integral part of the co...


Slide Content

`
PIPING SYSTEM DESIGN I –
PIPING COMPONENTS, MATERIALS, CODES AND
STANDARDS - PART 1 - PIPE
Engineering and Management Solutions REBIS ACADEMY
Presented By Alireza Niakani

REBIS ACADEMY OF TECHNOLOGY We are a top-levelCanadian Engineering Training Center in Toronto. We offers more than 300 career-focused training courses
form introductory to advanced in the key areas of engineering includingPetroleum Engineering,Chemical Engineering,Piping
Engineering,Instrumentation & Control Engineering,Mechanical Engineering,Electrical Engineering,Civil & Structural Engineering,Inspection & Maintenance Engineering,Safety EngineeringandProject Management. Our training programs and courses are useful to university or college graduates, entry-level engineers, technologists or technicians,
designers and drafters, experienced engineers and managers, who are willing to work inengineering consulting firms, construction
and operation, technical support and sales companies in the different industrial sectors, including oil, gas and petrochemical
companies, chemical and pharmaceutical plants, power, gas, water and waste water utilities, pulp and paper mills, food & beverage
processors, mining, metals and minerals companies.
We are constantly in touch with employers and strives to ensure that our training materials are consistent with what are required in
the marketplace. Our training programs and courses either helpuniversities’ graduatesto be more marketable and competitive in
the workforce orexperienced engineersto update their professional skills to be as productive as possible in their work competitive
environment.
Our training programs and courses are delivered by instructors who have the knowledge and experience to understand your
challenges, ensuring content is relevant, up to date and practice wherever possible and are highly respected professionals in their
fields from all over the globe.
We are dedicated to preparing you to succeed in the global marketplace and business world.
We are sure, you will leave REBIS ACADEMY with the knowledge and skills that employers want.
1

PIPE
Engineering and Management Solutions REBIS ACADEMY
2

MINIMUM REQUIREMENT FOR PIPE
•Pipe types
•Pipe manufacturing and fabrication
•Pipe size
•Pipe wall thickness, schedule and weight
•Pipe material
•Pipe End preparation (End furnished)
•Pipe length
•Pipe Insulation, Coating and lining
•Pipe Standards
Engineering and Management Solutions REBIS ACADEMY
3

PIPE TYPES
Metallic
Non‐Metallic
Ferrous
Non‐Ferrous
Cast Iron
Carbon Steel
Alloy Steel
Stainless Steel
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions REBIS ACADEMY
4

PIPE MANUFACTURING AND FABRICATION
Rolled & Weld
Spiral (Helical) 
welded pipe
U & O
Seamless
pipe
Seam welded 
pipe
Steel pipe
Longitudinal (Straight) 
welded pipe
Engineering and Management Solutions REBIS ACADEMY
5

PIPE MANUFACTURING AND FABRICATION
Seamless
Seam welded
Steel (Metallic) Pipe
Coal, Iron Ore, Coke and Scrap are melted to form
Ingots
Billets
Slabs
Blooms
Plate
Coil
Engineering and Management Solutions REBIS ACADEMY
6

SEAMLESS PIPE MANUFACTURING 
Seamless pipeis made when steel in a solid, round cylindrical shape,
called a “billet” or a “tube round” is heated and then either pushed or
pulled (while being rapidly rotated) over a mandrel with a piercing point
positioned in the center of the billet. This activity produces a hollow tube
or“shell”.Seamlesspipeismadeinsizesfrom1/8”to26”.
Mandrel Mill Processis used to make smaller sizes of
seamlesspipeform1/8”to26”.
Plug Mill Processis used to make larger sizes of
seamlesspipefrom6”to26”diameter.
ExtrusionProcessisusedfortubesonly. Seamless pipes are stronger and more reliable,
however, expensive, in short supply and unavailable in
longlengths.
Engineering and Management Solutions REBIS ACADEMY
7

SEAMLESS PIPES MANUFACTURING 
Engineering and Management Solutions REBIS ACADEMY
8

WELDED PIPE MANUFACTURING
Seam welded pipe
Submerged Arc Weld Pipe
(SAW)
Electric Fusion Weld Pipe
(EFW)
Fusion weld (FW) Pipe
Or Continues Weld (CW) Electric Resistance Weld Pipe
(ERW)
Longitudinal Submerged Arc Weld Pipe
(LSAW)
Spiral Submerged Arc Weld Pipe
(SSAW)
Engineering and Management Solutions REBIS ACADEMY
9

FUSION WELD (FW) / CONTINUES WELD (CW) FW or CW pipesis used in sizes1/8” to 4‐1/2”. The ribbon of steel is fed
into a leveler and then into a gas furnace where it is heated to the
requiredtemperatureforformingandfusing.Theformingrollsattheend
ofthefurnaceshapetheheatedskelpintoanoval.
Theedgesoftheskelparethenfirmlypressedtogetherbyrollstoobtaina
forgedweld.Theheatoftheskelp,combinedwiththepressureexertedby
therolls,formtheweld.
Synchronized with the speed of the pipe as it emerges from the final rolls
is a rotary saw which cuts the pipe to its desired length. The pipe is then
cooled,descaled,straightened,inspected.testedhydrostatically,coatedas
requiredandendfinished.Nometalisaddedintotheoperation.
Continuous weld pipe is commonly used for the conveyance of water. air.
gas,steam;forsprinklingsystems,waterwells.fencing .andamultitudeof
structuralapplications.
Thesepipesaregenerallythelowestcoststeelpipingmaterialavailable.
Engineering and Management Solutions REBIS ACADEMY
10

ELECTRIC RESISTANCE WELD (ERW)
ERW pipesis used in sizes2” to 24”. The coils of strip steel or skelp is
pulled through a series of rollers that gradually form it into a cylindrical
tube. As the edges of the now cylindrical plate come together, an electric
currentisappliedattheproperpointstoheattheedgessotheycanbe
weldedtogether.
As in CW pipe,no extraneous metal is added; in fact, due to the extreme
pressure of the rolls, steel is extrud ed on both the inside and outside of
the pipe at the point of the weld. This is called flashand is removed by
stationary cutters while still white hot. This process leads to coalescence
ormerging.Itproducesuniformwallthicknessesandoutsidedimensions.
TheHighFrequencyInductionTechnology(HFI)weldingprocessisusedfor
manufacturing ERW pipes as well. HFI is generally considered to be
technically superiorto “ordinary” ERW when manufacturing pipes for
criticalapplications .
Engineering and Management Solutions REBIS ACADEMY
11

ERW PIPE MANUFACTURING
Engineering and Management Solutions REBIS ACADEMY
12

SUBMERGED ARC WELD (SAW)
SAW pipesis used in sizes10” to up. Submerged Arc Welded (SAW) pipe
derives its name from the process wherein the welding arc is submerged
in fluxwhile the welding takes place. The flux protectsthe steel in the
weld area from any impurities in the air when heated to welding
temperatures.
The two types of pipes produced through these technologies are
Longitudinal Submerged Arc Welded(LSAW) andSpiral Submerged Arc
Welded(SSAW)pipes.
Due to their high cost,LSAW pipes are seldom used in lower value non ‐
energy applicationssuch as water pipelines. SSAW pipes are produced by
spiral (helicoidal) welding of steel coil and have a cost advantage over
LSAWpipesastheprocessusescoilsratherthansteelplates.
Both LSAW pipes and SSAW pipes compete against ERW pipes and
seamlesspipesinthediameterrangesof16”‐24”.
Engineering and Management Solutions REBIS ACADEMY
13

SAW PIPE MANUFACTURING 
Engineering and Management Solutions REBIS ACADEMY
14

PIPE MANUFACTURING COMPARATIVE NOTES
Pipe size: 
Seamless < Spiral Welded Pipe < Longitudinal welded pipe
Wall Thickness:
Seamless < Spiral Welded Pipe < Longitudinal welded pipe
Length:
Seamless < Longitudinal welded pipe< Spiral Welded Pipe
Price:
Spiral Welded Pipe< Longitudinal welded pipe<Seamless
Joint efficiency E:
joint efficiency E used in pressure design equation, where for Seamless E =
 1.0, and for 
Longitudinal Seam Welded E = 1.0 in case of full radiography and may be = 0.85 for other 
cases, and for spiral E = 0.65 or 0.60
Method:
Seamless used hot process, Spiral used cold rolling with extrusion process while 
longitudinal used cold process with bend and rolled.
Engineering and Management Solutions REBIS ACADEMY
15

PIPE SIZE
IPS:IronPipesize= 1/8”,3/8”,1/2”,3/4”,1”,11/2”,2”,….,80”
NPS:NominalPipesize= 1/8,3/8,1/2,3/4,1,11/2,2,….,80
DN:DiametreNominel= 6,8,10,15,20,25,32,40,50,….,2000
OD
Outside Diameter
ID
Inside Diameter
(Bore)
OD ID
Wall thickness
Engineering and Management Solutions REBIS ACADEMY
16

PIPE SIZE
NPS (in) 1/8 1/4 3/8 1/2 3/4 1 1‐1/4 1‐1/222‐1/2 3 3‐1/245681012
OD (in) 0.405 0.540 0.675 0.840 1.050 1.315 1.660 1.900 2.375 2.875 3.500 4.00 4.500 5.563 6.625 8.625 10.750 10.750
NPS (in) 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
OD (in) 14.000 16.000 18.000 20.000 22.000 24.000 26.000 28.000 30.000 32.000 34.000 36.000 38.000 40.000 42.000 44.000 46.000 48.000
DN (mm) 6 8 10 15 20 25 32 40 50 65 80 90 100 125 150 200 250 300
OD (mm) 10.290 13.720 17.150 21.340 26.670 33.400 42.160 48.260 60.330 73.020 88.900 101.60 114.30 141.30 168.27 219.08 273.05 323.85
DN (mm) 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200
OD (mm) 355.60 406.40 457.20 508.00 559.00 609.60 660.04 711.20 762.00 812.80 863.60 914.40 965.20 1016.0 1066.8 117.6 1168.4 1219.2
Nominal Pipe Size(NPS) is a American (ASA) set of standard sizes for pipes used
forhighorlowpressuresandtemperatures.TheEuropeandesignationequivalent
to NPS isDN(diamètre nominal/nominal diameter/Durchmesser nach Norm), in
whichsizesaremeasuredinmillimetres.
•ForNPS⅛to12inches,theNPSandODvaluesaredifferent.
•ForNPS14inchesandup,theNPSandODvaluesareequal.
Engineering and Management Solutions REBIS ACADEMY
17

PIPE SCHEDULE AND WALL THICKNESS
NPS
(in)
OD
(in)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 8.625 0.109 0.148 0.250 0.277 0.322 0.322 0.406 0.500 0.500 0.594 0.719 0.812 0.906 0.875
12 12.750 0.165 0.180 0.250 0.330 0.406 0.375 0.562 0.688 0.500 0.844 1.000 1.125 1.312 1.000
14 14.000 0.156 0.250 0.312 0.375 0.438 0.375 0.594 0.750 0.500 0.938 1.094 1.250 1.406
24 24.000 0.218 0.250 0.375 0.562 0.687 0.375 0.968 1.218 0.500 1.531 1.812 2.062 2.343
Imperial & Metric
•The ASME/ANSI B 36.10 is for Steel Pipe, ASME/ANSI B36.19 for StainlessSteel Pipe and
API5L forline pipe.
•The formulato approximate calculate of ScheduleNumber= (1,000)(P/S)
Where,P = the internal working pressure ,psig andS = the allowable stress (psi)
For example, the schedule number of ordinary steel pipe having an allowable stress of
10,000 psi for use at a working pressure of 350 psig would be:
Schedule Number = (1,000)(350/10,000) = 35 (approx.40)
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225
12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400
14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712
24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512
Engineering and Management Solutions REBIS ACADEMY
18

PIPE SCHEDULE VS. WEIGHT
Metric
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 15.09 20.37 33.31 36.81 42.55 42.55 64.4 64.4 107.92
10 273.100 23.08 28.34 41.77 51.03 60.31 60.31 83.19 81.55 155.15
12 323.850 31.89 36.73 49.73 65.20 79.73 73.88 132.08 97.46 186.97
14 355.600 35.06 54.69 67.90 81.33 94.55 93.27 158.10 107.39
The formula to approximate calculate of the steel pipe nominal weight per unit length is: 
Approx. weight per unit length (kg/m) = [O.D.(mm) – W.T(mm)] x W.T.(mm) x 0.02466 
Approx. weight per unit length (Ib/ft) = [O.D.(inch) – W.T(inch)] x W.T.(inch) x 10.69 for 
C.S. or 10.68 for S.S
Where, O.D. is Outside 
Diameter and W.T. is Wall Thickness
1 inch=25.4 mm and         1Ib/ft=1.4895 kg/m
NPS
(in)
OD
(mm)
Pipe Schedule (SCH)
5 10 20 30 40 STD 60 80 XS 100 120 140 160 XXS
8 219.080 2.769 3.759 6.350 7.036 8.179 8.179 10.312 12.700 12.700 15.062 18.237 20.625 23.012 22.225
12 323.850 4.191 4.572 6.350 8.382 10.312 9.525 12.700 17.450 12.700 21.412 25.4 28.575 33.325 25.400
14 355.600 3.962 6.350 7.925 9.525 11.100 9.525 15.062 19.50 12.700 23.800 27.762 31.750 35.712
24 609.600 5.537 6.350 9.525 14.275 17.450 9.525 24.587 30.937 12.700 38.887 46.025 52.375 59.512
Engineering and Management Solutions REBIS ACADEMY
19

PIPE WALL THICKNESS CALCULATION
t= Pressure design thickness
d= Inside diameter of pipe
D= Outside diameter of pipe
P= Internal design pressure
E= Quality factor (Basic quality factor “E” for 
longitudinal weld joints in stainless steel 
pipes, tubes and fittings)
S= Stress value for material (Basic allowable 
stress “S”)
Y= Coefficient factor
Engineering and Management Solutions REBIS ACADEMY
20

Engineering and Management Solutions REBIS ACADEMY
PIPE WALL THICKNESS CALCULATION
21

Engineering and Management Solutions REBIS ACADEMY
PIPE WALL THICKNESS CALCULATION
22

PIPE MATERIAL
The most comprehensive reference for material isASTM.American
Society for Testing and Materials(ASTM), is an international standards
organization that develops and publ ishes technical standards for a wide
rangeofmaterials,products,systems,andservices.
The ASTM Standardscovers 15 sections:
1. Iron and Steel Products
2. Nonferrous Metal Products
3. Metals Test Methods and Analytical Procedures
4. Construction
5. Petroleum Products, Lubricants,  and Fossil Fuels
6. Paints, Related Coatings, and Aromatics
7. Textiles
8. Plastics
9. Rubber
10. Electrical Insulation and  Electronics
11. Water and Environmental Technology
12. Nuclear, Solar, and Geothermal Energy
13. Medical Devices and Services
14. General Methods and Instrumentation
15. General Products,
 Chemical Specialties
16. Index to all sections and volumes
Engineering and Management Solutions REBIS ACADEMY
23

FLUID SERVICE CATEGORY (B31.3 DEFINITION)
B31.3recognizesthefollowingfluidservicecategoriesandaspecial
design considerationbased on pressure. With the fluid service
category known, then the designer can make proper material and
component selection, as well as employ the code required
fabricationandinspectionrequirements.
Thesefluidcategoriesandpressureconcernare:
1.NormalFluidService(ASMEB31.3,Chapter7)
2.CategoryDFluidService
3.CategoryMFluidService(ASMEB31.3,Chapter8)
4.HighPressurePiping(ASMEB31.3,Chapter9)
5.SevereCyclicConditions
Engineering and Management Solutions REBIS ACADEMY
24

FLUID SERVICE CATEGORY
1.NormalFluidService(ASMEB31.3,Chapter7)
A fluid service pertaining to most piping covered by this code,
notsubjecttotherulesofCategoryD,MorHighPressureFluid
Service.
Oftencharacterizedas“Process”
Engineering and Management Solutions REBIS ACADEMY
25

FLUID SERVICE CATEGORY
2.CategoryDFluidService
Thefluidhandledis:
•nonflammable
•nontoxic
•notdamagingtohumantissue
•Thedesigngagepressuredoesnotexceed150psig
•The design temperature is greater than‐20°F (‐29°C) and
dose not exceed 366°F (‐186°C). 366°F is the saturation
temperatureofsteamat150psig.
•Oftencharacterizedas“Utility”
Example: Steam condensate with max temp. 212°F (100°C) and
maxpress.90psig(6bar)
Engineering and Management Solutions REBIS ACADEMY
26

FLUID SERVICE CATEGORY
3.CategoryMFluidService(ASMEB31.3,ChapterVIII)
A fluid service in which the potential for personnel exposure is
judgedtobesignificantandinwhichasingleexposuretoavery
small quantity of a toxic fluid, caused by leakage , can produce
seriousirreversibleharmtopersonsuponbreathingoronbodily
contact,evenwhenpromptrestorativemeasuresaretaken.
Oftencharacterizedas“lethal”
Example:
Phosgene(NerveGas)
HydrofluoricAcid
HydrogenSulfideGas
Engineering and Management Solutions REBIS ACADEMY
27

FLUID SERVICE CATEGORY
4.HighPressurePiping(ASMEB31.3,ChapterIX)
AserviceforwhichtheownerspecifiestheuseofChapterIXof
ASME B31.3 for piping design and construction and etc.
consideredtobeinexcessofclass2500(PN420).
Oftencharacterizedas“HighPressure”
Engineering and Management Solutions REBIS ACADEMY
28

FLUID SERVICE CONTAINMENT SYSTEM
B31.3 Fluid Service Containment System
CategoryD [Utility] Lowest cost
Usually not fire resistant 
Usually not blow‐out resistant
Normal [Process] Moderate cost
May be fire resistant or not
May be not blow‐out resistant or not
Category M [Lathal]
High Pressure
High cost
Usually fire resistant 
Usually blow‐out resistant
Engineering and Management Solutions REBIS ACADEMY
29

ASTM DESIGNATION SYSTEM
Example 1‐ASTMA582/A582M‐95b (2000), Grade 303Se‐Free‐Machining Stainless Steel
Bars:
‘A’describes aferrous metal, but does not sub classify it as cast iron, carbon steel, alloy
steel, tool steel, or stainless steel;
582is asequential numberwithoutany relationship to the metal’s properties;
Mindicates that the standard A582M is written in rationalized SI units(the M comes from
the word Metric), hence together A582/A582Mincludes both inch ‐pound and SI units;
95indicates theyear of adoption or last revision and a letterbfollowing the year indicates
thethirdrevisionof thestandardin1995;
(2000), a number in parentheses, indicates the year of last re‐approval;
Grade 300Seindicatesthe grade of the steel, and in this case, it has a Se (selenium)
addition.
Note:Gradeis used to describechemical composition;Typeis used to define the
deoxidation practice;andClassis used to indicate other characteristics such as strength
levelorsurfacefinish.
Engineering and Management Solutions REBIS ACADEMY
30

ASTM DESIGNATION SYSTEM
Example 2‐ASTM A 106‐02a Grade A, Grade B, Grade C ‐Seamless Carbon Steel Pipe for 
High‐Temperature Service: 
Typically an increase in alphabet (such as letters A, B, C) results in higher tensile or yield 
strengthsteels, and if it’s an unalloyed carbon steel, an increase in carbon 
content; 
In this case: Grade A:0.25%C (max), 48 ksi tensile strength (min); Grade B: 0.30%C (max), 
60 ksi tensile strength (min); Grade C 0.35%C (max), 70 ksi tensile strength (min). 
Example 3‐ASTM A 276‐03, Type 304, 316, 410 – Stainless and Heat Resisting Steel Bars
and Shapes:
Types 304, 316, 410 and others are based on theSAE designation systemfor stainless
steels.
Engineering and Management Solutions REBIS ACADEMY
31

SAE DESIGNATION SYSTEM
Carbon steels
10XX Plain carbon, Mn 1.00% max
11XX Resulfurized free machining
12XX Resulfurized/rephosphorized free machining
15XX Plain carbon, Mn 1.00-1.65%
Manganese steels13XX Mn 1.75%
Nickel steels
23XX Ni 3.50%
25XX Ni 5.00%
Nickel-chromium steels
31XX Ni 1.25%, Cr 0.65-0.80%
32XX Ni 1.75%, Cr 1.07%
33XX Ni 3.50%, Cr 1.50-1.57%
34XX Ni 3.00%, Cr 0.77%
Molybdenum steels
40XX Mo 0.20-0.25%
44XX Mo 0.40-0.52%
Chromium-molybdenum steels41XX Cr 0.50-0.95%, Mo 0.12-0.30%
Nickel-chromium-molybdenum steels
43XX Ni 1.82%, Cr 0.50-0.80%, Mo 0.25%
47XX Ni 1.05%, Cr 0.45%, Mo 0.20-0.35%
Nickel-molybdenum steels
46XX Ni 0.85-1.82%, Mo 0.20-0.25%
48XX Ni 3.50%, Mo 0.25%
Chromium steels
50XX Cr 0.27-0.65%
51XX Cr 0.80-1.05%
50XXX Cr 0.50%, C 1.00% min
51XXX Cr 1.02%, C 1.00% min
52XXX Cr 1.45%, C 1.00% min
Chromium-vanadium steels61XX Cr 0.60-0.95%, V 0.10-0.015%
Tungsten-chromium steels72XX W 1.75%, Cr 0.75%
Nickel-chromium-molybdenum steels
81XX Ni 0.30%, Cr 0.40%, Mo 0.12%
86XX Ni 0.55%, Cr 0.50%, Mo 0.20%
87XX Ni 0.55%, Cr 0.50%, Mo 0.25%
88XX Ni 0.55%, Cr 0.50%, Mo 0.35%
Silicon-manganese steels92XX Si 1.40-2.00%, Mn 0.65-0.85%, Cr 0-0.65%
Nickel-chromium-molybdenum steels
93XX Ni 3.25%, Cr 1.20%, Mo 0.12%
94XX Ni 0.45%, Cr 0.40%, Mo 0.12%
97XX Ni 0.55%, Cr 0.20%, Mo 0.20%
98XX Ni 1.00%, Cr 0.80%, Mo 0.25%
1 ‐Carbon Steel,
2 ‐Nickel steels;
3 ‐Nickel‐chromium steels;
4 ‐Molybdenum steels;
5 ‐Chromium steels;
6 ‐Chromium‐vanadium steels;
7 ‐Tungsten‐chromium steels;
9 ‐Silicon‐manganese steels. 
Example:
SAE 5130 indicates a chromium 
steel alloy, containing 1% of 
chromium and 0.30% of carbon. 
Engineering and Management Solutions REBIS ACADEMY
32

ASTM DESIGNATION SYSTEM
Example 4:Another use of ASTM grade designators is found in pipe, tube, and forging
products, where the first letter Preferstopipe,T refers to tube,TP may refer to tube or
pipe,andFreferstoforging.
•ASTM A 335/A335‐03, GradeP22; Seamless Ferritic Alloy‐SteelPipefor High
Temperature Service;
•ASTM A 213/A213M‐03a, GradeT22; Seamless Ferritic and Austenitic Alloy Steel Boiler,
Superheater and Heat‐ExchangerTubes;
•ASTM A 312/A312M‐03, GradeTP304; Seamless and Welded Austenitic Stainless Steel
Pipe;
•ASTM A 336/A336M‐03a, ClassF22‐SteelForgings, Alloy, for Pressure and High‐
Temperature Parts.
Engineering and Management Solutions REBIS ACADEMY
33

EFFECTS OF ALLOYING ELEMENTS IN STEEL
Steel is basically iron alloyed to carbon with certain additional elements to give
the required properties to the finished melt. Listed below is a summary of the
effectsvariousalloyingelementsinsteel.
‐Carbon‐Tantalum 
‐Manganese‐Selenium
‐Chromium‐Niobium
‐Nickel‐Nitrogen
‐Molybdenum‐Silicon
‐Titanium‐Cobalt
‐Phosphorus‐Copper
‐Sulfur
Engineering and Management Solutions REBIS ACADEMY
34

EFFECTS OF ALLOYING ELEMENTS IN STEEL
•Carbon Increases the hardness and strength by heat treatment •Manganese Improveshot working properties and increases strength, toughness and hardenability •Chromium Increases resistance to oxidation and also improve hardenability and strength •Nickel Improvesresistance to oxidation, corrosion, toughness and temperature strengths •Molybdenum Improvesresistance to pitting corrosion especially by chlorides and sulphur chemicals •Titanium
Minimisestheoccurrenceofinter‐granularcorrosionbycarbidestabilisation
•Phosphorus Improvesmachinability and also strength and corrosion resistance •Sulphur Improvesmachinability
Engineering and Management Solutions REBIS ACADEMY
35

EFFECTS OF ALLOYING ELEMENTS IN STEEL
•Tantalum
Stabilises carbon and also strengthens steels and alloys for high temperature service
•Selenium
Improves machinability
•Niobium (Columbium)
Chemically similar to Tantalum and has similar effects
•Nitrogen
Improves yield strength and also increases the austenitic stability of stainless steels 
•Silicon
Improve hardness  and silicon is used as a deoxidising (killing) agent in 
the melting of steel
•Cobalt
Cobalt becomes highly radioactive when exposed to the intense radiation of nuclear 
reactors, and as a result, any stainless steel that is in nuclear service will have a cobalt 
restriction, usually approximately 0.2% maximum. 
•Copper
Produces precipitation hardening properties
Engineering and Management Solutions REBIS ACADEMY
36

HEAT TREATMENT
The purpose of heat treating carbon steel is to change the mechanical properties of steel, 
usually ductility, hardness, yield strength, or impact resistance. The following is a list of the 
types of heat treatments possible:
Spheroidizing:
The purpose isto softenhigher carbon steels and allow more formability.
Fullannealing:
Fully annealed steel is soft and ductile, with no internal stresses, which is often necessary
for cost‐effective forming.
Normalizing:
Normalized steel has a fine pearlitic structure, and a more ‐uniform structure. it has a
higher strength than annealed steel and a relatively high strength and ductility.
Quenching:
This quenched steel is extremely hard but brittle, usually too brittle forpractical purposes.
Martempering(Marquenching)andAustempering:
In industry, this is a process used to control the ductility and hardness of a material. With
longer marquenching, the ductility increases with a minimalloss in strength.
Engineering and Management Solutions REBIS ACADEMY
37

PIPE MATERIAL
Metallic
Non‐Metallic
Ferrous
Non‐Ferrous
Cast Iron
Fe+2‐4% C+1‐3%Si Fe+1.95% CNi, Cu, Ti, Cr, Mo, Al
Inconel
Hastelloy
Monel
Carbon Steel
Alloy Steel
Stainless Steel
Fe+C
Fe+C+Cr< 10%
Fe+C+Cr> 10.5%
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions REBIS ACADEMY
38

CAST IRON PIPE
It is usually made from pig iron. Cast iron tends to be brittle,exceptformalleable
cast irons. With its relatively low melting point,good fluidity,castability,excellent
machinabilityandresistance to deformation. Cast irons are used in pipes,
machines and automotive industry parts, such as cylinder heads, cylinder
blocks and gearbox cases. It is resistant to destruction and weakening
byoxidation(rust).
Hardness  Tensile strength [ksi]
Nominal composition
[% by weight]
Name
260 50
C3.4, Si 1.8,Mn0.5 Grey cast iron (ASTM A48)
450 25
C3.4, Si 0.7, Mn 0.6 White cast iron
130 52
C2.5, Si 1.0, Mn 0.55 Malleable iron (ASTM A47)
70 70
C3.4, P0.1, Mn 0.4, Ni 1.0, Mg 0.06 Ductile or nodular iron (ASTM A339)
550 55
C2.7, Si 0.6, Mn 0.5, Ni 4.5, Cr 2.0 Ni‐hard type 2
140 27
C3.0, Si 2.0
, Mn 1.0, Ni 20.0, Cr 2.5 Ni‐resist type 2
Engineering and Management Solutions REBIS ACADEMY
39

CARBON STEEL PIPE
Carbon steelissteelin which the main alloyingconstituent iscarbonin the range 
of 0.12–2.0%. As the carbon percentage content rises, steel has the ability to 
becomeharderandstrongerthroughheat treating, however it becomes 
lessductile with the lower melting point. It also reduces weldability.
Example: ASTM A53, A105 , A106
Medium carbon steel: 
0.30–0.59% carbon content.Balances ductility 
and strength and has good wear 
resistance; used for large parts, forging and automotive components.
High‐carbon steel: 
0.6–0.99% carbon content.Very strong, used for springs and high‐strength wires.
Ultra‐high‐carbon steel: 
1.0–2.0% carbon content.Steels that can be tempered to great hardness. Used 
for special purposes like knives, axles orpunches. 
Engineering and Management Solutions REBIS ACADEMY
40

CARBON STEEL PIPE
Composition, max, %
ElementCMnP SCu(1)Ni(1)Cr(1)Mo(1)V(1)
TypeS(Seamless Pipe)
GradeA0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08
GradeB0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
TypeE(Electric-Resistance-Welded)
GradeA0.25 0.95 0.05 0.045 0.40 0.40 0.40 0.15 0.08
GradeB0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
TypeF(Furnace-Welded Pipe)
GradeA0.30 1.20 0.05 0.045 0.40 0.40 0.40 0.15 0.08
(1) The total composition for these five elements shall not exceed 1.00%.
ASTM A53
Specification for seamless and welded black and hot-dipped galvanized steel pipe
ASTM A105: Specification for Carbon Steel Forgings for Piping Applications
ASTM A106: Specification for Seamless Carbon Steel Pipe for High‐Temperature Service
Engineering and Management Solutions REBIS ACADEMY
41

ALLOY STEEL PIPE
Composition, max, %
ElementCMnPSSICrMoothers
Grade P20.10-0.20 0.30-0.610.025 0.0250.10-0.30 0.50-0.81 0.44-0.65 ….
Grade P50.15 max 0.30-0.600.025 0.0250.5 max 4.00-6.00 0.45-0.65 ….
Grade P90.15 max 0.30-0.600.025 0.0250.25-1.00 8.00-10.00 0.90-1.10 ….
Grade P9110.09-0.13 0.30-0.600.0200.010 0.10-0.50 8.50-9.50 0.90-1.10V 0.18-0.25
Ni 0.40 max
Al 0.20 max
Ti 0.01 max
Zr 0.01 max
ASTM A335
Specification for seamless ferritic alloy-steel pipe for high-temperature service
All grades: P1, P2, P5, P5B, P5C, P9, P11,P12,P15,P21,P22,P23, P24,P36,P91,P92, P122, P911
Engineering and Management Solutions REBIS ACADEMY
42

STAINLESS STEEL
Stainless steelis a name given to a group of steel alloys with many differences in
properties and behaviour having one property in common‐resistance to
corrosion.
WhenanAlloyofSteelcontainsmorethanapproximately10.5%Chromiumitcan
be classed as a stainless steel. The large group of stainless steels can be divided
intothreemajorgroups,namely:
•Austenitic
Chromiumnormallyin the range 17‐25% andnickelin a range 8‐20%
•Ferritic
Minimumof 17% chrome and carbon in the range of 0.08% ‐2.00%
•Martensitic
Minimum of 12% chrome and usually a maximum of 14% with carbon in the range of
0.08%‐2.00%.
•Duplex(SupperAlloy)(Austenitic+Ferritic)
Engineering and Management Solutions REBIS ACADEMY
43

STAINLESS STEEL PIPE
•Austenitic
•A312‐A312/A312M‐00‐Specification for Seamless and Welded Austenitic Stainless Steel Pipes
•A813‐A813/A813M‐95e2‐Specification for Single ‐or Double‐Welded Austenitic Stainless Steel Pipe
•A814‐A814/A814M‐96 (1998)‐Specification for Cold ‐Worked Welded Austenitic Stainless Steel Pipe
Others: SAE: Type 201, 202,,205, 254, 301, 302, 302B, 303, 303Se, 304, 304L, 304Cu, 304N, 304, 308, 309,
309S, 310, 310S, 314, 316, 316L, 316F, 316N, 317, 317L, 321, 329, 330, 347, 348, 384
•Ferritic
•A790‐A790/A790M‐99‐Specification for Seamless and Welded Ferritic/Austenitic Stainless Steel Pipe
•A872‐A872‐91 (1997)‐Specification for Centrifugally Cast Ferritic/Austenitic Stainless Steel Pipe for
Corrosive Environments
Others: SAE: 405, 409, 429, 430, 430F, 430FSe, 434, 436, 442, 446
•Martensitic
•ASTM A1053 / A1053M‐12 Standard Specification for Welded Ferritic ‐Martensitic Stainless Steel Pipe
Others: SAE: 403, 410, 414, 416, 416Se, 420, 420F, 422,431,440A, 440B, 440C
•Duplex(SupperAlloy)
Engineering and Management Solutions REBIS ACADEMY
44

PIPE MATERIAL VS. OTHER PIPING COMPONENTS
ASTM Grades
Material Pipes Fittings Flanges Valves Bolts & Nuts
Carbon Steel
A106 Gr A A234 Gr WPA A105 A216 Gr WCB
A193 Gr B7
A194 Gr 2H
A106 Gr B A234 Gr WPB A105 A216 Gr WCB
A106 Gr C A234 Gr WPC A105 A216 Gr WCB
Carbon Alloy Steel
High‐Temp
A335 Gr P1 A234 Gr WP1 A182 Gr F1 A217 Gr WC1
A193 Gr B7
A194 Gr 2H
A335 Gr P11 A234 Gr WP11 A182 Gr F11 A217 Gr WC6
A335 Gr P12 A234 Gr WP12 A182 Gr F12 A217 Gr WC6
A335 Gr P22 A234 Gr WP22 A182 Gr F22 A217 Gr WC9
A335 Gr P5 A234 Gr WP5 A182 Gr F5 A217 Gr C5
A335 Gr P9 A234 
Gr WP9 A182 Gr F9 A217 Gr C12
Carbon Alloy Steel
Low‐Temp
A333 GR 6 A420 Gr WPL6 A350 Gr LF2 A352 Gr LCB
A320 Gr L7
A194 Gr 7
A333 Gr 3 A420 Gr WPL3 A350 Gr LF3 A352 Gr LC3
Austenitic
Stainless Steel
A312 Gr TP304 A403 Gr WP304 A182 Gr F304 A182 Gr F304
A193 Gr B8
A194 Gr 8 
A312 Gr TP316 A403 Gr WP316 A182 Gr F316 A182 Gr F316
A312 Gr TP321 A403 Gr WP321 A182 Gr F321 A182 Gr F321
A312 Gr TP347 A403 Gr WP347 A182 Gr F347 A182 Gr F347
Engineering and Management Solutions REBIS ACADEMY
45

Pipes A106= This specification covers carbon steel pipe for high‐temperature service.
A335= This specification covers seamless ferritic alloy ‐steel pipe for high‐temperature service.
A333= This specification covers wall seamless and welded carbon and alloy steel pipe intended for use at low temperatures.
A312= Standard specification for seamless, straight‐seam welded, 
and cold worked welded austenitic stainless steel pipe intended for high‐
temperature and general corrosive service.
Fittings A234= This specification covers wrought carbon steel and alloy steel fittings of seamless and welded construction.
A420= Standard specification for piping fittings of wrought carbon steel and alloy steel for low‐temperature service.
A403= Standard specification for wrought austenitic stainless steel piping fittings. Flanges A105= This specification covers standards for forged carbon steel piping components, that is, flanges, fittings, Valves, and similar parts, for use in 
pressure systems at ambient and higher‐temperature service conditions.
A182= This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and Valves and parts for 
high‐temperature 
service.
A350= This specification covers several grades of carbon and low alloy steel forged or ring‐rolled flanges, forged fittings and Valves for low‐
temperature service.
Valves A216= This specification covers carbon steel castings for Valves, flanges, fittings, or other pressure‐containing parts for high‐temperature service and 
of quality suitable for assembly with other castings or wrought‐steel parts by fusion welding.
A217= This specification covers steel castings, martensitic stainless steel and alloys steel castings for 
Valves, flanges, fittings, and other pressure‐
containing parts intended primarily for high‐temperature and corrosive service.
A352= This specification covers steel castings for Valves, flanges, fittings, and other pressure‐containing parts intended primarily for low‐
temperature service.
A182= This specification covers forged or rolled alloy and stainless steel pipe flanges, forged fittings, and
 Valves and parts for high‐temperature 
service.
Bolds & Nuts A193= This specification covers alloy and stainless steel bolting material for pressure vessels, Valves, flanges, and fittings for high temperature or 
high pressure service, or other special purpose applications.
A320= Standard Specification for Alloy‐Steel and Stainless Steel Bolting Materials for Low‐Temperature Service.
A194= Standard specification for nuts in 
many different material types.
Engineering and Management Solutions REBIS ACADEMY
PIPE MATERIAL VS. OTHER PIPING COMPONENTS
46

PIPE ENDS
Thethreestandardtypesofpipeendsusedinthepipingindustries
are;
•PlainEnds(PE)JointType:SocketWeld
•ThreadedEnds(TE)JointType:ThreadorScrew
•BeveledEnds(BE)JointType:ButtWeld
Theendtypeforpipingcomponentsarebasedonthetypeofjoint
usedinthatparticularpipingsystem.Thearelistedbelow;
‐Threadedjoint‐GroovedJoints
‐FlangeJoints‐CaulkedJoints
‐ButtJoints‐BondedJoints
‐SocketJoints
Engineering and Management Solutions REBIS ACADEMY
47

PIPE ENDS ABBREVIATIONS
•Bevel End (BE) 
•Bevel Both Ends (BBE) 
•Bevel Large End (BLE) 
•Bevel One End (BOE) 
•Bevel Small End (BSE) 
•Bevel for Welding (BFW) 
•Butt‐weld End (BE) 
•End of Pipe (EOP) 
•Flange One End (FOE) 
•Plain End (PE) 
•Plain Both Ends (PBE) 
•Plain One End
 (POE) 
•Thread End (TE) 
•Thread Both Ends (TBE) 
•Thread Large End (TLE) 
•Thread One End (TOE) 
•Thread Small End (TSE) 
•Threads Only (TO) 
•Threads per Inch (TPI) 
Common abbreviations for the types of pipe ends are as follows:
Engineering and Management Solutions REBIS ACADEMY
48

PIPE ENDS
•PlainEnds(PE)
A pain end pipe is a pipe that has been cut at 90°perpendicular to 
the pipe run. The reason pipe would be specified as plain end rather 
than beveled end is when the pipe will be used in a Socket Weld 
connection or for use with a Slip‐on Flange.
 
Engineering and Management Solutions REBIS ACADEMY
49

PIPE ENDS
•BevelEnds(BE)
A bevel is a surface that is not at a right angle (perpendicular) to
another surface. The standard angle on a pipe bevel is 37.5° but
other non standard angles can be produced. Beveling of pipe or
tubingistopreparetheendsforwelding.
Engineering and Management Solutions REBIS ACADEMY
50

PIPE ENDS
•ThreadedEnds(TE)
Typically used on pipe 3" and smaller, threaded connections are
referredtoasscrewedpipe.IntheUnitedStates,thestandardpipe
threadisNationalPipeThread(NPT).
Threaded fittings have threads that are either male or female. As
screwed pipe and fittings are assembled, two pieces are pulled
together. The distance that is pulled together is called the thread
engagement.
Engineering and Management Solutions REBIS ACADEMY
51

PIPE ENDS
•ThreadedEnds(TE) Standards:
NPT‐NationalPipeThreadTaper,ANSI/ASMEB1.20.1
NPTF ‐DrysealAmerican National Standard Taper Pipe Thread (ANSI B1.20.3)
Note: For NPT threads a sealant compound or Teflon tape must be used for a
leak‐freeseal.ForNPTFnosealantisneededforasealing.
Characteristics:
•taperedthread1
o
47‘(1.7899
o
)
•truncationofrootsandcrestsareflat
•60
o
threadangle
•pitchismeasuredinthreadsperinch
Engineering and Management Solutions REBIS ACADEMY
52

PIPE ENDS
NPT ‐American Standard Pipe Thread Taper 
1)
Pipe Size
(inches)
Threads per Inch
TPI ‐pitch
Approximate 
Length of Thread 
(inches)
Approximate 
Number of Threads 
to be Cut
Approximate Total 
thread Makeup, 
Hand and Wrench
(inches)
Nominal Outside 
Pipe Diameter
OD
(inches)
Tap Drill
(inches)
1/16" 270.313
1/8" 27 3/8 10 1/4 0.405 R
1/4" 18 5/8 11 3/8 0.540 7/16
3/8" 18 5/8 11 3/8 0.675 37/64
1/2" 14 3/4 10 7/16 0.840 23/32
3/4" 14 3/4 10 1/2 1.050 59/64
1" 11‐1/2 7/8 10 9/16 1.315 1‐5/32
1‐1/4" 11‐1/2 1 11 9/16 1.660 1‐1/2
1‐1/2" 11‐1/2 1 11 9/16 1.900 1‐47/64
2" 11‐1/2 1 11 5/8 2.375 2‐7/32
2‐1/2" 8 1 1/2 12 7/8 2.875 2‐5/8
3" 8 1 1/2 12 1 3.500 3‐
1/4
3‐1/2" 8 1 5/8 13 1 1/16 4.000 3‐3/4
4" 8 1 5/8 13 1 1/16 4.500 4‐1/4
4 1/2" 85.000 4‐3/4
5" 8 1 3/4 14 1 3/16 5.563 5‐9/32
6" 8 1 3/4 14 1 3/16 6.625 6‐11/32
8" 8 1 7/8 15 1 5/16 8.625
10" 8 2 16 1 1/2 10.750
12" 8 2 1/8171 5/8 12.750
14" 814.000
16" 816.000
Engineering and Management Solutions REBIS ACADEMY
53

NON METALLIC PIPES
References:
ChapterVII:
Nonmetallicpipingandpipinglinedwith
nonmetals:
Design, Fabrication, Installation
andlimitation
AppendixB:
Stress tables and allowable pressure
tablefornonmetals
Thermosetting
Thermoplastic
Concrete
Vitrified Clay
Glass
Engineering and Management Solutions REBIS ACADEMY
54

NON‐METALLIC PIPE ADVANTAGES
Advantages:
•Typically has a lower installed and maintenance cost and lower 
total cost of ownership. 
•Will not corrode if the correct material is selected. This means: 
•No cathodicprotection or corrosion monitoring 
•No chemical inhibitors are required. 
•Corrosion allowance is avoided (Note: if the service is an 
erosive service, an
 erosion allowance may be required) 
•Flow properties are superior to steel pipe 
•Lower pumping costs 
•Consistent friction factor through the life of the pipe 
•More flexible than steel pipe. 
Engineering and Management Solutions REBIS ACADEMY
55

NON‐METALLIC DISADVANTAGES
Disadvantages:
•Temperature limits are usually lower than steel pipe. As 
temperatures increase, the maximum pressure will decrease. 
•Maximum pressure is lower than steel pipe. 
•Material is very process dependent. That is, hydrocarbons cannot 
always flow through nonmetalliclines. 
•Non metallic lines will degrade in sunlight without a Ultraviolet 
inhibitor. 
•Very
 susceptible to mechanical damage. 
•More flexible than steel pipe. Requires more supporting than 
steel piping. 
Engineering and Management Solutions REBIS ACADEMY
56

NON METALLIC PIPES
Thermoplastic:
Is a plastic which is thermoplastic in behavior, capable of being repeatedly
softened by increasing of temperature (heating) and hardened by decreasing of
temperature(cooling).Example:HDPE,PVC,ABS,PP
Manufacturing:
Pipeisextruded
Fittingsareusuallyinjectionmoldedandsometimesfabricated
Valvepartsareusuallyinjectionmolded
Limitation:
Thermoplasticscannotbeusedwhentheserviceisaflammableserviceandwhen
the piping isabove ground. Thermoplastics also must be safeguarded when in all
services (except in Category D fluids). While safeguarding is not defined, it could
mean that additional pressure & temperature protection is required. It could also
mean that physical barriers be installed to prevent unintentional rupture.
Engineering and Management Solutions REBIS ACADEMY
57

THERMOPLASTICS PRESSURE DESIGN THICKNESS
T = PD / 2 (S + P)]
Where:
t=pressuredesignthickness
P=designpressure
D=outsidepressure
S=HDS(HydrostaticDesignStress)Value[Allowablestress]
HDS: this is defined as the maximum hoop stress in the pipe wall due to internal
hydrostatic pressure that can be applied continuously with great certainty that
failureofthepipewillnotoccurinalongperiodoftime(50‐yearperiod).
Example:HDSformaterialfromAppendixB
CPVC 2.00ksi 13.8Mpa
PE 0.80ksi 5.5Mpa
PVC 2.00ksi 13.8Mpa
Engineering and Management Solutions REBIS ACADEMY
58

THERMOPLASTICS PIPES ASSEMBLY
1.Buttfusionwelding
Butt fusion or butt welding, which is a type of hot plate welding. This technique
involves heating two planed surfaces of thermoplastic material against a heated
surface. After a specified amount of time, the heating plate is removed and the
two pieces are pressed together and allowed to cool under pressure, forming the
desiredbond.
Heater
Engineering and Management Solutions REBIS ACADEMY
59

THERMOPLASTICS PIPES ASSEMBLY
2.Electrofusionwelding
The pipes to be joined are cleaned, inserted into the electrofusion fitting (with a
temporary clamp if required) and a voltage (typically 40V) is applied for a fixed
timedependingonthefittinginuse.The built inheater coils then meltthe inside
of the fitting and the outside of the pipe wall, which weld together producing a
verystronghomogeneousjoint.
Engineering and Management Solutions REBIS ACADEMY
60

THERMOPLASTICS PIPES ASSEMBLY
3.Socketfusionwelding
Itisdistinguishedfrombutt‐weldingbyusingcustom‐shapedand‐sizedheating
plates rather than a basic flat surface. These heads allow for more surface
contact, reducing the time needed to heat and fuse the pipe. Socket fusion
joins pipe and fittings together, rather than simply joining pipe to pipe. It
requires less pressure than butt‐welding and is more commonly used on
smaller sizes of pipe(4" or less). Socket welding has additional advantages of
requiring less machinery and is more portable than the heavier equipment
requiredforbuttfusion.PE,PP,PVDFarejoinedbythisprocess.
Spigot
Heating Plate
Socket
Preparation of the weldingAlignment and Pre‐heating Joining and Cooling
Fitting
Pipe
Engineering and Management Solutions REBIS ACADEMY
61

THERMOPLASTICS PIPES ASSEMBLY
4.HotGaswelding
Hot gas welding, also known ashot air welding, is a plastic welding technique
usingheat.Aspeciallydesignedheatgun,calledahotairwelder,producesajet
of hot air that softens both the parts to be joined and a plastic filler rod, all of
whichmustbeofthesameoraverysimilarplastic.
Welding Rod
Heat Gun
Engineering and Management Solutions REBIS ACADEMY
62

THERMOPLASTICS PIPES ASSEMBLY
5.Solventwelding
Solvent welding, also known as solvent cementing or solvent bonding, is the
process of joining articles made of ther moplastic resins by applying a solvent
capable of softening the surfaces to be joined, and pressing the softened
surfaces together. Pipe and fittings are bonded together by means of chemical
fusion. ABS, CPVC, and PVC plastic pipes are primarily joined by solvent
cementing, though mechanical joints are also available. PE pipe cannot be
joinedwithsolventcements.
Engineering and Management Solutions REBIS ACADEMY
63

NON METALLIC PIPES
SDR:
Many PE pipe manufacturers use the "Standard Dimension Ratio" ‐SDR‐method
ofratingpressurepiping.StandardDimensionRatio(SDR)isamethodofratinga
pipe'sdurabilityagainstpressure.
SDR=D/s
D
=
Pipeoutsidediameter
s=Pipewallthickness
Common nominations are SDR11, SDR17 and SDR34. Pipes with a lower SDR can
withstandhigherpressures.ASDR11meansthattheoutsidediameter‐D‐ofthe
pipeiseleventimesthethickness‐s‐ofthewall.
withahighSDRratiothepipewallisthincomparedtothepipediameter
withalowSDRratiothepipewallisthickcomparedtothepipediameter
Engineering and Management Solutions REBIS ACADEMY
64

NON METALLIC PIPES
Thermosetting:
Material
Description Recommended Temperature limits
Minimum Maximum
ABS Acrylonitrile butadiene styrene ‐40 °F‐40°C 176°F 80°C
CPVC Chlorinated polyvinyl chloride 0 °F‐18°C 210°F 99°C
FEP Fluorinated ethylene propylene ‐325 °F‐198°C 400°F 204°C
(HD)PE (High density) polyethylene ‐30 °F‐34°C 180°F 82°C
PFA Perfluoroalkoxy Alkane ‐40 °F‐40°C 450°F 250°C
PP Polypropylene 30 °F‐1°C 210°F 99°C
PVC Polyvinyl chloride 0 °F‐18°C 150°F 66°C
PVDF Polyvinylidene fluoride 0 °F‐18°C 275°F 135°C
Thermoplastic:(B31.3 recommendedtemperaturelimits)
Material Recommended Temperature limits
Resin Reinforcing Minimum Maximum
Epoxy Glass Fiber‐20 °F‐29°C 300 °F 149°C
Furan Carbon‐20 °F‐29°C 200 °F 93°C
Furan Glass Fiber‐20 °F‐29°C 200 °F 93°C
Phenolic Glass Fiber‐20 °F‐29°C 300 °F 149°C
Polyester Glass Fiber‐20 °F‐29°C 200 °F 93°C
Vinylester Glass Fiber‐20 °F‐29°C 200 °F 93°C
Engineering and Management Solutions REBIS ACADEMY
65

NON METALLIC PIPES
Thermosetting:
They are composed of plastic materials and are identified by being permanently
set, cured or hardened in to shape when heated and cannot be re ‐melted. They
arecombinationofresinsandreinforcing.Example:GRP,GRVE,GREPipes
Commonlyusedresins:Polyester,Vinylester,EpoxyandFuran
Commonlyusedreinforcements:FiberglassandCarbonfiber
Manufacturing:
Pipeisfilamentwound,contactmoldedorcentrifugallycast.
Fittingsarefilamentwound,moldedandsometimesfabricated.
Fewvalveareavailable.
Limitation:
Thermosets can be installed above ground if they are safeguarded when the
serviceisflammableortoxic.
Engineering and Management Solutions REBIS ACADEMY
66

PIPES TEST
Hydrostatictest:
Ahydrostatic testis a way in which pressure vessels such as pipelines, plumbing,
gas cylinders, boilers and fuel tanks can be tested for strength and leaks. Using
this test helps maintain safety standards and durability of a vessel or pipe over
time. Water is used mainly because it is cheap and easily available. Red or
fluorescentdyesmaybeaddedtothewatertomakeleakseasiertosee.
•This margin of safety is typically 166.66%, 143% or 150% of the designed
pressure,dependingontheregulationsthatapply.
•Buried high pressure oil and gas pipelines are tested for strength by
pressurizing them to at least 125% of their maximum operating pressure
(MAOP)atanypointalongtheirlength.
•Test pressures need not exceed a value that would produce a stress higher
thanyieldstressattesttemperature.ASMEB31.3section345.4.2(c)
•The vessel or pipe is pressurized for a specified period, usually 10 to 30
seconds
Engineering and Management Solutions REBIS ACADEMY
67

PIPES TEST
Yieldstrength:
Theyield strengthoryield pointof a material is defined in engineering and
materials science as the stress at which a material begins to deform plastically .
Prior to the yield point the material will deform elastically and will return to its
originalshapewhentheappliedstressisremoved.Oncetheyieldpointispassed,
somefractionofthedeformationwillbepermanentandnon‐reversible.
testing involves taking a small sample with a fixed cross ‐sectionarea,andthen
pulling it with a controlled, gradually increasing force until the sample changes
shapeorbreaks.
Material Yield strength (Mpa) Material Yield strength (Mpa)
ASTM A36 steel 250 Cast iron 4.5% C, ASTM A‐48 172
Steel, API 5L X65 448 Titanium alloy (6% Al, 4% V) 830
Piano wire 2200 Aluminum alloy 2014‐T6 400
HDPE 26‐33 Copper 99.9% Cu 70
Engineering and Management Solutions REBIS ACADEMY
68

ALLOY STEEL
ASTM A234
Specification for Piping Fittingsof Wrought Carbon Steel and Alloy Steel for Moderate and
High Temperature Service
Composition, %
GradeCMn
P
max
S
max
Si Cr Mo Ni CuOthers
WPB
(1,2,3,4,5)
0.30
max
0.29 - 1.06 0.050 0.058
0.10
min
0.40
max
0.15
max
0.40
max
0.40
max
V0.08
max
WPC
(2,3,4,5)
0.35
max
0.29 - 1.06 0.050 0.058
0.10
min
0.40
max
0.15
max
0.40
max
0.40
max
V0.08
max
WP11 CL10.05 - 0.15 0.30- 0.60 0.030 0.030 0.50- 1.00 1.00- 1.50 0.44- 0.65
WP11 CL20.05 - 0.20 0.30- 0.80 0.040 0.040 0.50- 1.00 1.00- 1.50 0.44- 0.65
WP11 CL30.05 - 0.20 0.30- 0.80 0.040 0.040 0.50- 1.00 1.00- 1.50 0.44- 0.65
WP22 CL10.05 - 0.15 0.30- 0.60 0.040 0.040
0.50
max
1.90 -
2.60 0.87- 1.13
WP5 CL1
0.15
max
0.30 - 0.60 0.040 0.030
0.50
max
4.0-6.0 0.44- 0.65
WP9 CL1
0.15
max
0.30 - 0.60 0.030 0.030
1.00
max
8.0- 10.0 0.90- 1.10
(1) Fittings made from bar or plate may have 0.35 max carbon.
(2) Fittings made from forgings may have 0. 35 max Carbon and 0.35 max Silicon with no minimum.
(3) For each reduction of 0.01% below the specified Carbon maximum, an increase of 0.06% Manganese above the
specified maximum will be permitted, up to a maximum of 1.35%.
(4) The sum of Copper, Nickel, Niobium, and Molybdenum shall not exceed 1.00%.
(5) The sum of Niobium and Molybdenum shall not exceed 0.32%.
(6) Applies both to heat and product analyses.
Engineering and Management Solutions REBIS ACADEMY
69

70
Engineering and Management Solutions REBIS ACADEMY
SESSION SUMMARY

71
Engineering and Management Solutions REBIS ACADEMY
QUESTIONS AND FEEDBACK REBIS ACADEMY OF TECHNOLOGY
1 Dundas Street West, Suite 2500
Toronto, ON, Canada M5g 1z3
Tel: +1 416 365 5685
Website: http://rebisacademy.com/
Email:[email protected]
Fallow us on:
https://www.linkedin.com/company/rebis-academy-of-technology
https://www.facebook.com/RebisAcademy/
https://twitter.com/RebisAcademy