1.2 Moduli of smoothness |7
For a bounded domain Ω, we denote
K
r(f,Ω)
p:=K(f,diam(Ω)
r
)
p
. (1.10)
It is important to note that the K-functional is unsuitable as a measure of smooth-
ness if 0<p<1. In fact, it is shown in [36] that for any finite interval[a,b]⊂ℝ,
0<p<1, 0<q≤∞,r≥1, andt>0,K
r(f,t
r
,L
q([a,b]),W
r
p
([a,b]))=0 for any
f∈L
q([a,b]). This necessitates using other forms of smoothness in the range 0<p<1.
Forf:Ω→ℂ,f∈L
p(Ω), 0<p≤∞,h∈ℝ
n
, andr∈ℕ, we define therth order
difference operator Δ
r
h
:L
p(Ω)→L
p(Ω)by
Δ
r
h
(f,x) :=Δ
r
h
(f,Ω,x) :={
∑
r
k=0
(−1)
r+k
(
r
k
)f(x+kh), [x ,x+rh]⊂Ω,
0, otherwise,
(1.11)
where[x,y]denotes the line segment connecting any two pointsx,y∈ℝ
n
.
Definition 1.13.Themodulus of smoothness of orderris defined by
ω
r(f,t)
p=ω
r(f,Ω,t)
p:=sup
|h|≤t
�
�
�
�
Δ
r
h
(f,Ω, ⋅)
�
�
�
�L
p(Ω)
,t>0, (1.12)
where|h|denotes thel
2-norm of a vectorh∈ℝ
n
. For a bounded domain Ω, we also
denote
ω
r(f,Ω)
p:=ω
r(f,diam(Ω))
p
. (1.13)
We list some of the properties of the modulus of smoothness that we will use
throughout the book (see [35]) for more detail),
Proposition 1.14.LetΩ⊆ℝ
n
and f,g∈L
p(Ω),0<p≤∞. Then, for any t>0:
(i)ω
r(f,t)
p≤c(r,p)‖f‖
p. In a more general form, for any0≤k<r, ω
r(f,t)
p≤
c(r,k,p)ω
k(f,t)
p(where ω
0(f, ⋅)
p=‖f‖
p).
(ii)ω
r(f+g,t)
p≤c(p)(ω
r(f,t)
p+ω
r(g,t)
p).
(iii)For any λ≥1, ω
r(f,λt)
p≤(λ+1)
r
ω
r(f,t)
pfor1≤p≤∞, and ω
r(f,λt)
p
p
≤(λ+
1)
r
ω
r(f,t)
p
p
for0<p<1.
(iv)IfΩ
1⊆Ω
2⊆ℝ
n
, then
ω
r(f,Ω
1,t)
p≤ω
r(f,Ω
2,t)
p.
Also, for any vector h∈ℝ
n
and domainΩ⊆ℝ
n
,
�
�
�
�
Δ
r
h
(f,Ω
1, ⋅)
�
�
�
�L
p(Ω)
≤
�
�
�
�
Δ
r
h
(f,Ω
2, ⋅)
�
�
�
�L
p(Ω)
. (1.14)