Basic information on Population pharmacokinetics, understanding bayesian theory, analysis of population pharmacokinetic data
Size: 853.88 KB
Language: en
Added: May 27, 2021
Slides: 39 pages
Slide Content
POPULATION
PHARMACOKINETICS
Dr. Ramesh Bhandari
Asst. Professor,
Department of Pharmacy Practice
KLE College of Pharmacy, Belagavi
Dr. RameshBhandari
Population Pharmacokinetics
ALL HUMANS ARE ALIKE
TRUE ONLY AS A SPECIES
DIFFERENCE EXISTS –including
their response to the drugs
Dr. RameshBhandari
Population Pharmacokinetics
Research has uncovered significant
differences among different populations
in:
Rate of drug metabolism
Responses to drugs
Side effects of drugs
Dr. RameshBhandari
Population Pharmacokinetics
Genetic Variations of different
racial and ethnic groups
Difference in proteins encoding
Difference in drug metabolism
Sub Therapeutic/toxic levels
Dosage adjustment is needed particularly for
Narrow therapeutic Index drugs.
Dr. RameshBhandari
Population Pharmacokinetics
Examples of different responses of drugs among
different population groups.
CYP2C19*2 & *3 is the phenotype for poor
metabolizer.
CYP2C19*17type results in ultra metabolizing
capacity.
Approx. 15% of Japanese, 5% of the Chinese, and
5% of the Australian populations are classified as
poor metabolizer.
Dr. RameshBhandari
Population Pharmacokinetics
AccordingtoFDA,PopulationPharmacokineticis
“thestudyofthesourcesandcorrelatesof
variabilityindrugconcentrationsamong
individualswhoarethetargetpatientpopulation
receivingclinicallyrelevantdosesofadrugof
interest”.
Populationpharmacokinetics(PopPK)isthestudy
ofvariabilityinplasmadrugconcentrations
betweenandwithinpatientpopulationsreceiving
therapeuticdosesofadrug.
Dr. RameshBhandari
Population PK Approach Vs
Classical PK Approach
Traditionalpharmacokineticstudiesareusually
performedonhealthyvolunteersorhighlyselected
patients,andtheaveragebehaviourofagroup(i.e,
themeanplasmaconcentration–timeprofile)isthe
mainfocusofinterest.
PopPKexaminestherelationshipofthe
demographic,genetic,pathophysiological,
environmental,andotherdrugrelatedfactorsthat
contributetothevariabilityobservedinsafetyand
efficacyofthedrug.
Dr. RameshBhandari
Population PK Approach Vs
Classical PK Approach
Drug
concentration
Time
Drug
concentration
Time
Drug
concentration
Time
Classical Approach
Pop PK Approach
Dr. RameshBhandari
Advantages of Population
pharmacokinetics
Providesbetterunderstandingofthedose-response
relationshipamongthetargetpopulation.
Samplepopulationmimicstherealtarget
populationatlarge.
Multiplefactorsmaybestudiedinonepopulation
PKstudy.
Diversityofpatientcharacteristicsandlarger
samplesizes.
Priordoseadjustmentcanbemadeusing
PopulationPKdata.
Introduction to
Bayesian Theory
Dr. RameshBhandari
BAYESIAN THEORY
Bayesiantheorywasoriginallydevelopedtoimprove
forecastaccuracybycombiningsubjectiveprediction
withimprovementfromnewlycollecteddata.
Inthediagnosisofdisease,thephysicianmaymakea
preliminarydiagnosisbasedonsymptomsand
physicalexamination.Later,theresultsoflaboratory
testsarereceived.Theclinicianthenmakesanew
diagnosticforecastbasedonbothsetsofinformation.
Bayesiantheoryprovidesamethodtoweightheprior
information(eg,physicaldiagnosis)andnew
information(eg,resultsfromlaboratorytests)to
estimateanewprobabilityforpredictingthedisease.
Dr. RameshBhandari
BAYESIAN THEORY
Indevelopingadrugdosageregimen,weassessthe
patient’smedicalhistoryandthenuseaverageor
populationpharmacokineticparametersappropriate
forthepatient’sconditiontocalculatetheinitialdose.
Aftertheinitialdose,plasmaorserumdrug
concentrationsareobtainedfromthepatientthat
providenewinformationtoassesstheadequacyofthe
dosage.
Thedosingapproachofcombiningoldinformation
withnewinvolvesa“feedback”processandis,to
somedegree,inherentinmanydosingmethods
involvingsomeparameterreadjustmentwhennew
serumdrugconcentrationsbecomeknown.
Dr. RameshBhandari
BAYESIAN THEORY
TheadvantageoftheBayesianapproachisthe
improvementinestimatingthepatient’s
pharmacokineticparametersbasedonBayesian
probabilityversusanordinaryleast-squares-based
program.
Themethodisparticularlyusefulwhenonlyafew
bloodsamplesareavailable
Dr. RameshBhandari
BAYESIAN THEORY
Bayesianprobabilitytheorywhenappliedtodosingofadrug
involvesagivenpharmacokineticparameter(P)andplasmaor
serumdrugconcentration(C),asshowninEquation22.11.The
probabilityofapatientwithagivenpharmacokinetic
parameterP,takingintoaccountthemeasuredconcentration,is
Prob(P/C):
Prob(P│C) = Prob(P) . Prob(C│P)
Prob(C)
Prob(P) = Probability of the patients parameter within the assumed
population distribution
Prob(C│P)= Probability of measured concentration within the
population
Prob(C)= unconditional probability of the observed concentration
Dr. RameshBhandari
BAYESIAN THEORY
Problem:
Afterdiagnosingapatient,thephysiciangavethepatienta
probabilityof0.4ofhavingadisease.Thephysicianthenordereda
clinicallaboratorytest.Apositivelaboratorytestvaluehada
probabilityof0.8ofpositivelyidentifyingthediseaseinpatients
withthedisease(truepositive)andaprobabilityof0.1ofpositive
identificationofthediseaseinsubjectswithoutthedisease(false
positive).Fromthepriorinformation(physician’sdiagnosis)and
currentpatient-specificdata(laboratorytest),whatistheposterior
probabilityofthepatienthavingthediseaseusingtheBayesian
method?
Dr. RameshBhandari
Problem solving:
Population
Disease
Test +ve
Test -ve
No
Disease
Test +ve
Test -ve
Prob(D│+) = Prob(D) . Prob(+│D)
Prob(+)
Dr. RameshBhandari
BayesianApproachwithOLSMethod:
C
i
=f(P,t
i)ℇ
i
OBJ
OLS
=σ
??????=1
????????????
??????
−??????ˆ
??????
2
σ
i
2
Dr. RameshBhandari
The Bayes Estimator
Whenthepharmacokineticparameter,P,isestimatedfroma
setofplasmadrugconcentrationdata(Ci)havingseveral
potentialsourcesoferrorwithdifferentvariance,theOLS
methodforparameterestimationisnolongeradequate(it
yieldstrivialestimates).
Theintersubjectvariation,intrasubjectvariance,and
randomerrormustbeminimizedproperlytoallowefficient
parameterestimation.
Theweightedleast-squaresfunctionwassuggestedby
SheinerandBeal.
Theequationrepresentstheleast-squaresestimationofthe
concentrationbyminimizingdeviationsquares,anddeviation
ofpopulationparametersquares.
Dr. RameshBhandari
The Bayes Estimator
Following equation is called the Bayes estimator.
This approach is frequently referred to as extended
least-squares (ELS).
IntrasubjectC
i= f(P,X
i) + ℇ
i
IntersubjectP
k= Pˆ
k+ n
k
OBJ
BAYES= σ
??????=1
????????????
??????
−??????ˆ
??????
2
σ
i
2
+ σ
??????=1
??????
??????
??????
−??????ˆ
??????
2
ω
??????
2
ANALYSIS OF POPULATION
PHARMACOKINETIC DATA
Dr. RameshBhandari
Traditional Pharmacokinetic
Studies
Involvetakingmultiplebloodsamplesperiodicallyovertime
inafewindividualpatients,and
characterizingbasicpharmacokineticparameterssuchask,
VD,andCl.
Becausethestudiesaregenerallywelldesigned,thereare
fewerparametersthandatapoints.
Traditionalpharmacokineticparameterestimationisvery
accurate,providedthatenoughsamplescanbetakenforthe
individualpatient.
Thedisadvantageisthatonlyafewrelativelyhomogeneous
healthysubjectsareincludedinpharmacokineticstudies,from
whichdosingindifferentpatientsmustbeprojected.
Dr. RameshBhandari
Traditional Pharmacokinetic
Studies
Intheclinicalsetting,patientsareusuallyless
homogeneous;patientsvaryinsex,age,andbodyweight.
Theymayhaveconcomitantdiseaseandmaybereceiving
multipledrugtreatments.
Eventhediet,lifestyle,ethnicity,andgeographiclocation
candifferfromaselectedgroupof“normal”subjects.
Further,itisoftennotpossibletotakemultiplesamplesfrom
thesamesubject,and,therefore,nodataareavailableto
reflectintra-subjectdifference,
Sothatiterativeproceduresforfindingthemaximum
likelihoodestimatecanbecomplexandunpredictabledue
toincompleteormissingdata.
Dr. RameshBhandari
Traditional Pharmacokinetic
Studies
However,thevitalinformationneededaboutthe
pharmacokineticsofdrugsinpatientsatdifferentstagesof
theirdiseasewithvarioustherapiescanonlybeobtainedfrom
thesamepopulation,orfromacollectionofpooledblood
samples.
Theadvantagesofpopulationpharmacokineticanalysisusing
pooleddatawerereviewedbySheinerandLudden(1992)
andincludedasummaryofpopulationpharmacokineticsfor
dozensofdrugs.
Pharmacokineticanalysisofpooleddataofplasmadrug
concentrationfromalargegroupofsubjectsmayrevealmuch
informationaboutthedispositionofadruginapopulation.
Dr. RameshBhandari
Traditional Pharmacokinetic
Studies
Unlikedatafromanindividualsubjectcollectedover
time,inter-andintra-subjectvariationsmustbe
considered.
Bothpharmacokineticandnon-pharmacokinetic
factors,suchasage,weight,sex,andcreatinine
concentration,shouldbeexaminedinthemodelto
determinetherelevancetotheestimationof
pharmacokineticparameters.
Dr. RameshBhandari
Population Pharmacokinetic
Data Analysis
1)NONMEM Method
2)Standard two stage (STS) method
3)First Order Method
Dr. RameshBhandari
Non-Linear Mixed Effect Model
(NONMEM)
The nonlinearmixed-effectmodel
(NONMEM)issocalledbecausethemodeluses
bothfixedandrandomfactorstodescribethe
data.
TheKnown,observablepropertiesof
individualsthatcausethePKparameterstovary
acrossthepopulationarecalledfixedeffects.
Fixedfactorssuchaspatientweight,age,
gender,andcreatinineclearanceareassumedto
havenoerror.
Dr. RameshBhandari
Non-Linear Mixed Effect Model
(NONMEM)
Whereas,randomfactorsincludeinter-and
intra-individualdifferences.
Randomeffectscan’tbepredictedin
advance.
Dr. RameshBhandari
Non-Linear Mixed Effect Model
(NONMEM)
NONMEM isastatisticalprogramwrittenin
FortranthatallowsBayesianpharmacokinetic
parameterstobeestimatedusinganefficient
algorithmcalledthefirst-order(FO)method.
Theparametersmaynowbeestimatedalsowitha
firstorderconditionalestimate(FOCE)algorithm.
Inaddition,topharmacokineticparameters,many
examplesofpopulationplasmadatahavebeen
analyzedtodeterminepopulationfactors.
Dr. RameshBhandari
Non-Linear Mixed Effect Model
(NONMEM)
NONMEM fitsplasmadrugconcentration
dataforallsubjectsinthegroups
simultaneouslyandestimatesthepopulation
parameteranditsvariance.
Theparametermaybeclearanceand/orVD.
Themodelmayalsotestforotherfixed
effectsonthedrugduetofactorssuchas
age,weight,andcreatinineclearance.