Densitydrivenflowinfracturedporousmedia.UncertaintyquantificationviaMLMC.
AlexanderLitvinenko
1
,D.Logashenko
2
,R.Tempone
1,2
,G.Wittum
2
1
RWTHAachen,Germany,
2
KAUST,SaudiArabia
[email protected]
Abstract
Problem:Henry-likesaltwaterintrusioninfracturedmedia(nonlinear, time-
dependent,two-phaseflow)
Inputuncertainty:fracturewidth,porosity,permeability,andrecharge(mod-
elledbyrandomfields)
Solution:thesaltmassfraction(uncertainandtime-dependent)
Method:MultiLevelMonteCarlo(MLMC)method
Deterministicsolver:parallelmultigridsolverug4
Questions:
1.
2.
3.
variations?
4.
5.
time?ˆqin c= 0 c= 1 p=−ρ1gy 0 −1m 2m y x (2,−0.5) (1,−0.7) 1 2 3 4 5 6
(left)Henryproblemwithafracture.
(right)Massfractioncm(redforcm=1)
1.Henry-likeproblemsettings
Denote: the whole domainD, porous mediumM⊂ D, fracture porosityϕmand permeabilityKm, salt mass
fractioncm(t,x)andpressurepm(t,x). TheflowinMsatisfiesconservationlaws:
∂t(ϕmρm)+∇·(ρmqm)=0
∂t(ϕmρmcm)+∇·(ρmcmqm−ρmDm∇cm)=0
∑
x∈M (1)
withtheDarcy’slawforthevelocity:
qm=−
Km
µm
(∇pm−ρmg), x∈M, (2)
whereρm=ρ(cm)andµm=µ(cm)indicatethedensityandtheviscosityoftheliquidphase,Dm(t,x)denotesthe
moleculardiffusionandmechanicaldispersiontensor.
Thefractureisassumedtobefilledwithaporousmedium,too. Thefractureisrepresentedbyasurface S⊂D,
M∪S=D,M∩S=∅.
∂t(ϕ
fϵρ
f)+∇
S
·(ϵρ
fq
f)+Q
(1)
fn
+Q
(2)
fn
=0
∂t(ϕ
fϵρ
fc
f)+∇
S
·(ϵρ
fc
fq
f−ϵρ
fD
f∇
S
c
f)+P
(1)
fn
+P
(2)
fn
=0
x∈S, (3)
whereϵisthefracturewidth. TheDarcyvelocityalongthefractureis
q
f=−
K
f
µ
f
(∇
S
p
f−ρ
fg), x∈S. (4)
ThetermsQ
(k)
fn
andP
(k)
fn
,k∈{1,2},arethemassfluxesthroughthefacesS
(k)
ofthefracture:
Q
(k)
fn
:=ρ(c
(k)
m)q
(k)
fn
P
(k)
fn
:=ρ(c
(k)
m)c
(k)
upwind
q
(k)
fn
−ρ(c
(k)
m)D
(k)
fn
c
(k)
m−c
f
ϵ/2
x∈S
(k)
, (5)
Theuncertainwidthofthefracture,therecharge,andtheporosity ξ1,ξ2,ξ3∈U[−1,1],
ϵ(ξ1)=0.01·((1−0.01)·ξ1+(1+0.01))/2, (6)
ˆqx(t,ξ3)=3.3·10
−6
·(1+0.1ξ3)(1+0.1sin(πt/40)), (7)
ϕm(x,y,ξ2)=0.35·(1+0.02·(ξ2cos(πx/2)+ξ2sin(2πy)). (8)
Tocompute:cm.
Comput. domain:D×[0,T]. Wesetρ(c)=ρ0+(ρ1−ρ0)c,andD=ϕDI,
I.C.:c|t=0=0, c|x=2=1,p|x=2=−ρ1gy.c|x=0=0,ρq·ex|x=0=ˆqin.
Methods:Newton method, BiCGStab, preconditioned with the geometric multigrid method (V-cycle), ILU
β-
smoothersandGaussianelimination.
MultiLevelMonteCarlo(MLMC)method
SpatialandtemporalgridhierarchiesD0,D1,...,D
L,andT0,T1,...,T
L;n0=512,n
ℓ≈n0·4
ℓ
,τ
ℓ+1=
1
2
τ
ℓ,number
oftimestepsr
ℓ+1=2r
ℓorr
ℓ=r02
ℓ
. Computationcomplexityiss
ℓ=O(n
ℓr
ℓ)=O(2
3ℓγ
n0·r0)
MLMCapproximatesE[g
L]≈E[g]usingthefollowingtelescopicsum:
E[g
L]≈m
−1
0
m0X
i=1
g
(0,i)
0
+
L
X
ℓ=1
m
−1
ℓ
mℓX
i=1
(g
(ℓ,i)
ℓ
−g
(ℓ,i)
ℓ−1
)
.
MinimizeF(m0,...,m
L):=
P
L
ℓ=0
m
ℓs
ℓ+µ
2Vℓ
mℓ
,obtainm
ℓ=ε
−2
q
Vℓ
sℓ
P
L
i=0
√
Visi.
2.Numerics
Figure2:ThemeanvalueE[cm(t,x)]att={7τ,19τ,40τ,94τ}. Inallcases,E[cm](t,x)∈[0,1].
Figure3:ThevarianceV[cm(t,x)]att={7τ,19τ,40τ,94τ}. Maximalvalues(darkredcolour)ofV[cm]are1.9·10
−3
,
3.4·10
−3
,2.9·10
−3
,2.4·10
−3
respectively. Thedarkbluecolourcorrespondstoazerovalue.g 0
g 1
- g
0
g 2
- g
1
g 3
- g
2
g 4
- g
3
-6
-4
-2
0 g 0
g 1
- g
0
g 2
- g
1
g 3
- g
2
g 4
- g
3
-16
-14
-12
-10
-8
-6
-4 0 1 2 3 4
10
-3
10
-2 0 1 2 3 4
10
-8
10
-7
10
-6
10
-5
10
-4
Figure 4:(1-2)The weak and the strong convergences, QoI isg:=cm(t15,x1),α= 1.07,ζ1=−1.1,β= 1.97,
ζ2=−8. (3-4) Decay comparison of (left)E[g
ℓ−g
ℓ−1]andE[g
ℓ]vs.ℓ; (right)V[g
ℓ−g
ℓ−1]andV[g
ℓ]. QoI
g=cm(t18,x1),x1=(1.1,−0.8).
Levelℓnℓ,(
nℓ
nℓ−1
)rℓ,(
rℓ
rℓ−1
)τℓ=6016/rℓ
Computingtimes(sℓ),(
sℓ
sℓ−1
)
averagemin.max.
0 608 188 32 3 2.43.4
1 2368(3.9)376(2)16 22(7.3)15.527.8
2 9344(3.9)752(2)8 189(8.6)115237
3 37120(4)1504(2)4 1831(10)8822363
4 147968(4)3008(2)2 18580(10)786525418
Table1:#ndofsnℓ,numberoftimestepsrℓ,stepsizeintimeτℓ,average,minimal,andmaxi-
malcomp.times.
Estimatedtheweakandstrongconvergenceratesαandβ,andconstantsC1andC2fordifferentQoIs. QoIareso-
lutioninapointxiandanintegralIi(t,ω):=
R
x∈∆i
cm(t,x,ω)ρ(cm(t,x,ω))dx,∆i:=[xi−0.1,xi+0.1]×[yi−0.1,yi+0.1],
i=1,...,6.
QoI αc1β C2
cm(x1,15τ)-1.070.47-1.974·10
−3
I2(cm)-1.58.3-2.60.4
εm0m1m2m3m4
0.2280000
0.1101000
0.05574100
0.02534222410
0.01327820535610 10 20 30 40
0.05
0.1
0.15
0.2
0.25
0.3
0.35 0 10 20 30 40
0
1
2
3
4
5
10
-4 0 10 20 30 40
-8
-6
-4
-2
0
10
-3 0 10 20 30 40
0
0.2
0.4
0.6
0.8
1
10
-6
Figure5:(1)ThecoefficientofvarianceCV
ℓ:=CV(g
ℓ),(2)thevarianceV[g
ℓ],(3)themeanE[g
ℓ−g
ℓ−1],(4)the
varianceV[g
ℓ−g
ℓ−1]. The QoI isg=cm(t,x1). The small oscillations in the two lower pictures are due to the
dependenceoftherechargeˆqxonthetime,cf.(7).10
-2
10
-1
10
0
10
5
10
10
ComplexitycomparisonofMLandMLMCvs. accuracy ε(horizontalaxis)inlog-logscale.
Acknowledgements:AlexandervonHumboldtfoundationandKAUSTHPC.
1. D. Logashenko, A. Litvinenko, R. Tempone, E. Vasilyeva, G. Wittum, Uncertainty quantification in the Henry problem using the multilevel Monte Carlo method,
Journal of Computational Physics, Vol. 503, 2024, 112854,https://doi.org/10.1016/j.jcp.2024.112854
2. D. Logashenko, A. Litvinenko, R. Tempone, G. Wittum, Estimation of uncertainties in the density driven flow in fractured porous media using MLMC,
arXiv:2404.18003, 2024