Disclaimer:
2
•Manyslidesinthispresentationareadaptedfrom 2007PCABridge
Professors'SeminarbyDr.Cole in MississippiState University.
•All the slides areONLYforeducationalpurposein this class by registered
students.DoNOTcopy, reviseordisseminatepartiallyoraswholefor
any otherpurposeortoanyotherpeoplewhoarenot registeredin this
class. Each student is personally responsiblefor theconsequenceifhe
(she)failsto doso.
August
2007
3
Material
properties
Loads
Load
combinations
Philosophy/methodology
LRFD,ASD,LFD, etc.
Models
Available
shapes
"Analysis" "Design"
Structural "Analysis"/ "Design"Overview
5
LIMIT STATES
Alimit stateisaconditionbeyondwhichasystem(oracomponent
ofasystem) ceasestofulfillthefunctionfor whichitwasdesigned.
Thesystemorcomponentisloaded beyond its capability to resist.
6
Types and examplesof commonlimit states
Type: Consequence: Example:
STRENGTH Collapse Exceedcrushingstrengthof concrete
ExceedbreakingstrengthofPSstrands
Buckling ofcompressioncomponent
Fatiguefailureof component
SERVICE Unacceptable
behaviornotinvolving
collapse
Excessivedeflectionatworkingloads
CrackingofPSconcretebeams
Slipof steelboltedconnections
Other"improperbehavior" Excessivefoundationsettlement
Squashingof bearingpads
7
AASHTOLRFDservicelimitstates
AASHTOdesignation Limit state objective Loads
Service I
Limitcompressivestressingirder
and deckto maintainadequate
factor of safetyagainst concrete
crushing
Full value of service
(unfactored ) dead and
liveloadswith55mphwind
Service II
Limit tensile stressin girder to
maintain factor of safety against
steelstructure yielding and slipping
Similar to service I except
for steel
Service III
Limit tensile stressin girder to
maintain factor of safety against
concrete tension cracking
Full service dead load, but
reduced service live load
ServiceIV
Tension inP/S for crack controlw/
10-yr meanoccurrence wind
Full service dead load, but
reduced service live load
8
AASHTOdesignation Limit state objective Loads
Strength I
Provide adequate resistanceto
girder "breaking" failure
Factored live and dead
Loads.w/owind
StrengthII
Provide adequate resistanceto
girder "breaking" failure
Special vehicle
StrengthIII
Provide adequate resistanceto
girder "breaking" failure
W/ wind exceeding 55 mph.
NoLL.
Strength IV Same as above For large-span bridge (high
DL/LL ratio), replace SLS I.
StrengthV Same as above Normal vehicle use with
wind=55mph.
AASHTOdesignation Limit state objective Loads
9
Fatigue
Limitstressescaused by repetitive
vehicleliveload
Loads producedby "fatigue
truck"
AASHTOdesignation Limit state objective Loads
ExtremeeventI Earthquake Load combination
Extreme event II Other hazards Load combination
32328 kips
14'14'
0.64kips/ft
140'
V
LL=liveloadshear
V
Lane
i=1 i=6 i=11
89.4
mirrorimagesym.
79.8
70.2
60.6
51.1
41.5IM•V
Truck=1.33• V
Truck
V
LL=V
Lane+1.33• V
Truck
i=1 i=6 i=11
134.2
116.1
96.9
mirrorimagesym.
82.5
67.2
52.7
i=1 i=6 i=11
44.8
36.3
26.7
21.916.1
mirrorimagesym.
11.2
Simply-supported single-spanbridge:Numerical example (continued )
Similar for Dual Tandem + Lane loads
25
Step1:Liveloadmomentdiagramsandenvelopes(continued)
Multi-spanindeterminatebridges
32328 kips
14'14'
0.64kips/ft
L
1 L
2
Loads:
Truckload( similarfortandem load)-trucksononeormorespans
Laneload-loadonall orselectedspansegments
Computeranalysisgenerallyrequired:
RecommendQConBridge*,availableatnocostfromtheWashingtonStateDOT:
www.wsdot.wa.gov/eesc/bridge/software/index.cfm?fuseaction=download&software_id=48
26
Multi-span indeterminatebridges -overview(continued )
ApplicationofVehicularLiveLoads:
For negativemomentbetweenpointsof contraflexurecausedbyauniformloadonall
spans,andreactionsatinteriorpiersonly,use:
Case1(S3.6.1.3.1)
•90percentoftheeffectoftwodesigntrucksspacedaminimumof50.0ft.between
theleadaxleofonetruckandtherearaxleoftheothertruck(thedistancebetween
the32-kipaxlesofeachtruckshallbetakenas14.0ft.),
PLUS
•90percentoftheeffectofthedesignlaneload
Case2(notstatedinS3.6.1.3.1):
•100percentofonedesigntruck( varyspacingbetween32-kipaxles),
PLUS
•100percentofthedesignlaneload
Forallothereffects,useonetruckperspanpluslaneload.
27
32328 kips
14'14'
0.64kips/ft
L L
Multi-span indeterminatebridges -overview(continued )
Usethetwo-spancontinuous bridgeshownbelowtoillustratethese requirements:
Fortheuniformly-distributedloadonbothspans:
Pointsofcontraflexure
0.25L 0.25L
Region1
Region2
28
Positive live load moment:
1.33• maximummomentproducedbymovingtruckthroughIL-peak( bothdirections)
PLUS
momentcausedbyuniformloadoverfullspanlengthL
29
August
2007
Multi-span indeterminatebridges -overview(continued )
Positivemoment(sameforRegions1and2):
Example: M
x
+
(0xL)
x
L
InfluencelineforM
x
32 k 32 k 8 k
14'14'
8k 32k 32k
14'14'
Multi-span indeterminatebridges -overview(continued )
Negativemoment( Region1 ):
Example: M
x
-
( 0x0.75L)
Negativeliveloadmoment:
1.33• maximummomentproducedbymovingtruck(bothdirections)
PLUS
momentcausedbyuniformloadoverfullspanlengthL
x
L
InfluencelineforM
x
32 k 32 k 8 k
14'14'
8k 32k 32k
14'14'
L
30
Multi-span indeterminatebridges -overview(continued )
Negativemoment( Region 2 ):
Example: M
L
-
(0.75L<xL)
x=L
InfluencelineforM
x=L
L
32 k 32 k 8 k
14'14'
32 k 32 k 8 k
14'14'
spacing 50'
Negativeliveloadmoment:
1.33• maximummomentproducedbymovingtrucktrain( varyspacing)
90% PLUS
momentcausedbyuniformloadoverfullspanlengthL
Case1
31
Multi-span indeterminatebridges -overview(continued )
Negativemoment( Region 2 ):
Example: M
L
-
(0.75L<xL)
x=L
InfluencelineforM
x=L
L
32 k 32k 8 k
14'-30'14'
Negativeliveloadmoment:
1.33• maximummomentproducedby truck( varyaxlespacing)
100% PLUS
momentcausedbyuniformloadoverfullspanlengthL
Note:Theonlytimethatthiscasemaycontrolthenegativesupportmoment
and/ortheinteriorpierreaction isifthetwospans L areveryshort.
32
Case 2
32k 32k 8k
14'14'
0.64k/foot
Vary spacing
from 50' to
140'in ten
steps of 9'
32k 32k 8k
EA B C D
0.25L 0.25L
Negative
moment
inBCD:
90% *
(1.33M
T2
+ M
LANE)
1.33M
T1
+ M
LANE
M
T2=momentcausedby
twodesigntrucks
Multi-span indeterminatebridges:Example
2-spancontinuousbridgespan
33
32k 32k 8k
14'14'
Positive
moment
inABCDE
and
Negative
momentin
ABandDE:
M
T1=momentcausedby
onedesigntruck
140' 140'
QConBridgemomentenvelopeonnextslide
Multi-span indeterminatebridges:Example( continued )
FromQConBridge:
34
Design Lane Number
Designlanevs.trafficlane
No. of design lanes=w/12.0
W=clearroadwaywidthinft.between
curbs/barriers.
If the actual trafficlanes arelessthan12ft
wide, No. of design lanes=No. of traffic
lanes; width of design lanes =width of traffic
lane
Step2-Girdermomentsandshears
36
Girder moments and shears
TheDesignTruck (or,alternately,theDesignTandem)andtheDesignLane
loadsare defined to act in a 10-ft-wideDesignLane. They do notaccount for:
•Where thedesignlaneis placedwithintheroadwaywidthofthebridge
•Where thedesignlaneis placedrelativetothegirders
• Thenumber oflanesthatfitwithintheroadwaywidth
ofthebridge
•Theprobabilitythattwoormoreadjacentlaneswillbeloaded
simultaneously
• Theabilityofthebridgedeckto laterallydistribute
theloadinone ormorelane(s)tomorethanone
girder
37
deflect+twist
deflect
deflect+twist
Girder flexuralandtorsionalstiffness-functionsofgirder length,momentofinertia(
flexure)and area(torsion):
• Longgirdersaremoreflexiblethanshortgirders, which tends to increaseload
distributionbetweengirders
• Girderswithsmallmomentsofinertiadeflectverticallymorethangirderswith
large momentsofinertia,whichtendstoincreaseloaddistributionbetween
girders
• Girderswithsmallareastwistmorethangirderswithlarge
areas,whichtendsto increaseloaddistributionbetween
girders
41
Example:Singleloadsymmetricallyplacedoverinteriorgirder
Numberof adjacentloadedlanes:
TheAASHTOloadingmodelassumesthattherecanbedistributionofvehiclesona
bridge at anygiven time (a"vehicle"is representedby a combinationof a truckor
tandemload,plusalaneload):
•TheDesignVehicleloads(A)arethenominal (reference)loads
•Therecanbeanoccasionalsinglevehicleload( B) greaterthanthe
DesignVehicleloads
•Somevehicleloads(C,D) will belessthantheDesignVehicle loads
A =DesignVehicle load
B
A AA
C
D
C
A
D D
C
42
A
C
A
A
D
C
C
Twoadjacent
loads@A
C
D
C
D
A
A
D
D
A
C
D
C
A
A
C
C
C
C
D
D
D
C
C
C
D
C
D
C
Fouradjacent [email protected]
D
D
D
D
A
C
C
C
D
C
D
D
C
A
A
C
C
C
Threeadjacent [email protected]
C
D
D
D
A
Singleload
B=1.2A
A
D
A
C
C
D
Multiplepresence factor for adjacent loaded lanes:
43
B= 1.20•AA =DesignValue( reference)
C = 0.85•A
44
D = 0.65•A
Multiplepresence factor for adjacent loaded lanes -AASHTOload model:
TheAASHTOloadmodelsassumethatthereis thesame probabilitythattherecan be:
•Onevehiclethatis120%heavierthantheDesignVehiclein one lane
•TwoDesignVehiclesin two adjacentlanes
•Threevehiclesthatareeach85%oftheDesignVehicleloadinthreeadjacentlanes
•Fourormorevehiclesthatareeach65% oftheDesignVehicle loadinadjacentlanes
Multiplepresencefactors:
TheAASHTOSpecification(S3.6.1.1.2) usesmultiplepresencefactorstoaccountfor
theprobabilitythatvehiclesofthesefourloadclasseswilloccurinadjacentlanes.
Table3.6.1.1.2-1-MultiplePresenceFactors,m
45
Number of
loaded lanes
Multiple presence
factors, m
1 1.20
2 1.00
3 0.85
3 0.65
14'
14'
GirderMomentsandShearsbytheAASHTO"SimplifiedMethod":
DistributionFactors
Formostprestressedgirder/slabbridges,permits"distribution"ofliveload per
lanemomentsandsheartogirdersthroughtheuseofdistribution factors.
46
Laneloadmomentdiagram
Truckloadmomentenvelope
(Dual tandemsimilar )
Totalliveloadmomentfor10'lane
M
LL M
Lane= + ( 1+IM) • M
Truck
Shearsimilar
47
1. Totalliveloadmomentfor10'lane(frompreviousslides)
M
LL=M
Lane+ ( 1 + IM ) • M
Truck
"Distribute"
M
L(int)=M
LL• DF
M(int)
M
L(ext)=M
LL• DF
M(ext)
M
L(int)=designlive load
momentfor
interior girders
designlive load
momentfor
exteriorgirder
M
L(ext)=
DF
M(int),DF
M(ext)=
"distributionfactors"
formoment-AASHTO
Tables4.6.2.2.2b-1,
4.6.2.2.2d-1
(DFlabeled"g"inSpec.)
Note:"Distribution"assignsaportionof theliveload
momentM
LLtoindividualgirders (itdoesnotdivide
theliveloadmomentbetweengirders).
2. Usedistributionfactors(DF) obtainliveloadmomentorshearinindividualgirders
Liveloadmomentfor10'lane:
48
TheAASHTOSimplifiedMethod( distribution factors ) may be used when:
•Thedeckwidthisconstant
•Thereareatleastfourgirders
•Thegirdersareparallelandhaveapproximatelythesamestiffnesses
•Bridge curvature islimited (see S4.6.1.2)
•The roadwaypart of the overhang,d
de3.0 ft:
49
•Thebridgecross-sectionisoneof thoseshowninTable4.6.2.2.1-1
e
Example:
The "One DesignLaneLoaded"distribution
factorincludesthe1.20multiplepresence
factorshownearlierforasingleloadedlane.
52
Multiplepresencefactorreferencecondition
(multiplepresencefactor=1.0).
DF
M(int)(moment,interior girder,twolanes loaded ):
t
s
2
e
g= y
t+ t
h+
t
s
2
c.g.(girder)
y
t
t
s
t
h
L=girderlength,ft
S=center-centergirderspacing,ft
t
s=slabthickness,in
A=girderarea, in
2
I=girdermomentof inertia,in
2
n=modularratio( girderE/ slabE)
e
g =distancebetweencentersof gravityofgirderanddeck,in
K
g=n( I +Ae
g)
2
DF
M(int)= 0.075+
0.1
53
3L12.0Lt
s
Kg
0.2
0.6
S S
9.5
Numericalexample: Span:L =140' Girderspacing:S = 8.0'
Slabthickness:t
s=7.5"
Girder:E
g=4,800ksi
Haunchthickness:t
h=1.5"
Slab:E
s
y
t=35.40in.
=4,000ksi
I
g=545,850in
4BT-72girder:A
g=767in
2
Interiorgirder( twoloadedlanes)
t
s
2
e
g= y
t+ t
h+
2
t
s
c.g.(girder)
35.4"
7.5"
1.5"
= 3.75"
= 35.4" + 1.5" + 3.75" =40.65"
n= 1.20
4,800ksi
4,000ksi
E
g
E
s
K
g=n( I +Ae
g)
2
=1.20 (545,850in
4+767in
2( 40.65in)
2)=2,175,910in
4
DF
M(int)=0.075 +
0.1
K
g
3
0.2
0.6
12.0Lt
9.5 L
S S
=0.075+
0.1
54
3
0.6 0.2
8.08.0
12.0140(7.5)
2,175,910
9.5 140
=0.6443
DF
M(int)(moment,interiorgirder,onelaneloaded):
DF
M(int)= 0.06 +
0.1
3
g
0.3
0.4
12.0Lt
K
14 L
SS
Numericalexample-continued(seepreviousslide):
n= 1.20
4,800ksi
4,000ksi
E
g
E
s
K
g=n( I +Ae
2)=1.20(545,850in
4+767in
2( 40.65in)
2)=2,175,910in
4
g
DF
M(int)=0.06+
0.1
3
0.4 0.3
8.08.0
12.0140(7.5)
2,175,910
14 140
=0.4390
For two loadedlanes(previousslide):
DF
M(int)=0.6443>0.4390
Use
NOTE: Donotapplymulti-presencefactor=1.20(itis includedintheDFexpression)
Numericalexample-conclusion:
55
56
DF
M(ext)(moment,exteriorgirder,onelaneloaded):
Leverrule:
P
P
2
P
2
10'lane
6'3' 1'
S+d
e7':
P
2
R
S
d
e
DF
M(ext)=
RS d
e 1
2SP
S+d
e7':
R
S
d
e
P
DF
M(ext)=
RS d
e 4
SP
Assumedhinge
57
P
R
S
P
2
P
2
d
e
1.0'
truckpositionedat
outsideedgeoflane
58
August
2007
Numericalexample: Girderspacing:S=8.0ft d
e=1' -9"=1.75ft
Exteriorgirder,onelaneloaded
S + d
e=8.0ft+1.75ft=9.75ft>7.0 ft
DF
M(ext)=
S d
e 4
S
R
P
8.0 1.754
8.0
=0.7188
R
8.0'
1.75
P
1.0'