Pratt truss optimization using

HarishKantSoni1 2,208 views 19 slides Nov 16, 2016
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Pratt truss optimization using


Slide Content

Pratt Truss Optimization Using Genetic Algorithm By :- Harish Kant Soni Roll No:- 12CE31004

Use of Pratt truss Fig :- Gatton Railway Bridge, Queensland, Australia Image Source :- https://commons.wikimedia.org/wiki/File:Gatton_Railway_Bridge.JPG

Forces in P ratt truss Image source :-http://www.slideshare.net/sheikhjunaidyawar/trusses-28955458 F

18 m 7 m

Loading Train’s engine has highest weight as compared to other coaches Indian locomotive class WAP-5 Length = 18.16 m Weight = 79251.7 kg Source :- https://en.wikipedia.org/wiki/Indian_locomotive_class_WAP-5

18 m 7 m

18 m 7 m Dead Load = 150 kN / meter/ side Total dead load = 150 x 18 = 2700 KN Live load = 800 KN 550 KN 550 KN 550 KN 550 KN 550 KN 1 2 3 4 5 6 7 12 11 10 9 8

Objective Function :- min. total Area = min A(1 )+A(2)+A(3)+A(4)+A(5)+A(6)+A(7)+A(8 ) + A(9)+A(10)+A(11 )+A(12 )+A(13 )+A(14 )+A(15)+ +A(16 )+A(17)+A(18)+A(19)+A(20)+A(21)+A(22 ) Constraints :- min. Area = 0.0010 m^2 = 10 cm^2 disp at any node < 50 mm

clc ; clear all; % initial cromosome having area in the range 0.002 to 0.02 m^2- C = 2e-3*[1 2 4 10 3 9 10 7 1 5 1 1 2 4 10 3 9 10 7 1 5 2; 9 3 7 9 4 7 5 2 4 9 1 9 3 7 9 4 7 5 2 4 9 3; 7 3 4 1 1 7 3 2 4 9 8 7 3 4 1 1 7 3 2 4 9 4; 1 5 7 9 4 9 5 2 4 9 6 1 5 7 9 4 9 5 2 4 9 5; 4 10 6 2 2 2 3 2 4 1 9 4 10 6 2 2 2 3 2 4 1 6; 9 3 5 9 5 7 5 1 4 9 1 9 3 5 9 5 7 5 1 4 9 7; 9 9 4 1 4 3 1 2 4 9 8 9 9 4 1 4 3 1 2 4 9 8; 1 3 7 9 1 7 5 5 4 4 1 1 3 7 9 1 7 5 5 4 4 9; 9 8 3 1 2 4 2 2 4 9 6 9 8 3 1 2 4 2 2 4 9 10; 2 3 7 9 3 7 5 9 4 3 1 2 3 7 9 3 7 5 9 4 3 1; 8 7 2 10 4 5 3 10 4 7 4 8 7 2 10 4 5 3 10 4 7 2; 1 2 4 10 3 9 10 7 1 5 1 1 2 4 10 3 9 10 7 1 5 3; 9 3 7 9 4 7 5 2 4 9 1 9 3 7 9 4 7 5 2 4 9 4; 7 3 4 1 1 7 3 2 4 9 8 7 3 4 1 1 7 3 2 4 9 5; 1 5 7 9 4 9 5 2 4 9 6 1 5 7 9 4 9 5 2 4 9 6; 4 10 6 2 2 2 3 2 4 1 9 4 10 6 2 2 2 3 2 4 1 7; 9 3 5 9 5 7 5 1 4 9 1 9 3 5 9 5 7 5 1 4 9 8; 9 9 4 1 4 3 1 2 4 9 8 9 9 4 1 4 3 1 2 4 9 9; 1 3 7 9 1 7 5 5 4 4 1 1 3 7 9 1 7 5 5 4 4 10; 9 8 3 1 2 4 2 2 4 9 6 9 8 3 1 2 4 2 2 4 9 1; 2 3 7 9 3 7 5 9 4 3 1 2 3 7 9 3 7 5 9 4 3 2; 2 3 7 9 3 7 5 9 4 3 1 2 3 7 9 3 7 5 9 4 3 3];

F_obj = sum(C,2); % return sum of rows in a column matrix of 22 X 1 %% selection Fitness = zeros(22,1); for a = 1:22 Fitness(a) = (1/(1+F_obj(a))) ; end S = sum(Fitness); Prob_of_cromosome = Fitness/S; roullet = zeros(22,1); roullet (1) = Prob_of_cromosome (1); for a = 2:22; roullet (a) = roullet (a-1) + Prob_of_cromosome (a ); %CDF end

%% new set of cromosome for a = 1 : 22 r = rand; if (r <= roullet (1)) new_cromosome_id = 1; else for b = 1 : 21 if (r > roullet (b) & r <= roullet (b+1)) new_cromosome_id = b+1; end end end C(a,:) = C ( new_cromosome_id ,:); end

%% Cross Over C_new = C; for a= 1:22 r_crossover = rand(); if( r_crossover < 0.7) r_location = 10*round(rand(),1); % generates random number between 0 to 10. It selects location for crossover for b = r_location+1 : 22 if (a==22) C_new ( a,b )= C(1,b); C_new (1,b) = C(22,b); else C_new ( a,b )= C(a+1,b); C_new (a+1,b) = C( a,b ); end end end end

%% Mutation Probability 0.1 for a=1:22 for b=1:22 if(rand < 0.1) C_new ( a,b )= round(((0.02-0.001)*rand+0.001),3); end end end

%% Truss code coordinate=[0 0 ;3 0 ;6 0;9 0; 12 0; 15 0; 18 0;15 7; 12 7; 9 7; 6 7; 3 7;]; connectivity=[1 2;2 3;3 4;4 5;5 6; 6 7; 7 8;8 9; 9 10;10 11; 11 12;1 12; 2 12;3 12;3 11; 4 11;4 9; 4 10; 5 9; 5 8;6 8; 7 8]; boundary=[1 1 ; 0 0 ; 0 0 ;0 0 ;0 0;0 0; 1 1;0 0; 0 0;0 0;0 0;0 0]; load=[0 0 0 -550e3 0 -550e3 0 -550e3 0 -550e3 0 -550e3 0 0 0 0 0 0 0 0 0 0 0 0]; Elasticity=2.E+11*[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];

%% Penalty abs_unknown_displacement = abs( unknown_displacement ); count = 0; for k = 1 : 22 for l = 1:20 if( abs_unknown_displacement ( k,l )-0.050 > 0) count = count + 1; end C_new (k,:)= (1+0.05*count)* C_new (k,:); end end

Results

Results

member 1 2 3 4 5 6 7 8 9 10 11 0.019 0.004 0.016 0.015 0.019 0.008 0.005 0.008 0.012 0.014 0.019 0.019 0.015 0.016 0.003 0.009 0.015 0.005 0.008 0.003 0.014 0.003 0.019 0.015 0.016 0.017 0.009 0.008 0.005 0.006 0.01 0.008 0.019 0.019 0.015 0.016 0.003 0.005 0.014 0.005 0.011 0.003 0.014 0.003 0.019 0.004 0.016 0.015 0.019 0.019 0.005 0.006 0.01 0.008 0.015 0.019 0.015 0.016 0.003 0.005 0.016 0.013 0.008 0.003 0.014 0.003 0.019 0.011 0.016 0.003 0.005 0.016 0.009 0.008 0.003 0.014 0.003 0.019 0.004 0.016 0.003 0.005 0.016 0.013 0.017 0.003 0.003 0.003 0.019 0.015 0.016 0.015 0.019 0.008 0.005 0.008 0.012 0.014 0.003 0.019 0.004 0.016 0.019 0.011 0.008 0.005 0.006 0.01 0.008 0.005 0.008 0.015 0.016 0.015 0.019 0.008 0.005 0.008 0.016 0.014 0.003 0.019 0.015 0.016 0.009 0.005 0.016 0.013 0.008 0.003 0.014 0.003 0.006 0.004 0.016 0.015 0.019 0.008 0.005 0.008 0.012 0.014 0.016 0.019 0.015 0.016 0.003 0.005 0.016 0.013 0.008 0.003 0.014 0.016 0.019 0.015 0.016 0.007 0.019 0.014 0.019 0.008 0.019 0.014 0.003 0.019 0.002 0.016 0.015 0.005 0.016 0.013 0.008 0.003 0.014 0.003 0.019 0.004 0.016 0.015 0.019 0.014 0.005 0.008 0.019 0.014 0.003 0.019 0.015 0.016 0.003 0.005 0.015 0.005 0.008 0.003 0.016 0.003 0.019 0.015 0.006 0.003 0.009 0.016 0.013 0.008 0.003 0.014 0.003 0.019 0.015 0.009 0.017 0.009 0.002 0.009 0.009 0.01 0.015 0.016 0.019 0.015 0.016 0.014 0.005 0.016 0.013 0.008 0.003 0.014 0.003 0.019 0.015 0.016 0.003 0.005 0.016 0.013 0.008 0.003 0.014 0.003 value 0.019 0.015 0.016 0.003 0.005 0.015 0.005 0.008 0.003 0.014 0.003 times 20 14 20 9 6 14 10 16 12 17 15

12 13 14 15 16 17 18 19 20 21 22 0.008 0.014 0.016 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.011 0.016 0.008 0.017 0.006 0.002 0.004 0.014 0.012 0.016 0.002 0.013 0.017 0.003 0.016 0.012 0.006 0.008 0.014 0.012 0.008 0.002 0.018 0.016 0.014 0.01 0.006 0.008 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.012 0.016 0.014 0.02 0.006 0.002 0.008 0.014 0.019 0.007 0.002 0.018 0.016 0.014 0.01 0.019 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.016 0.007 0.002 0.018 0.016 0.014 0.017 0.006 0.002 0.004 0.014 0.012 0.016 0.002 0.012 0.017 0.003 0.016 0.012 0.006 0.008 0.014 0.002 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.02 0.016 0.001 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.019 0.017 0.007 0.002 0.018 0.019 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.001 0.012 0.007 0.002 0.018 0.011 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.004 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.008 0.013 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.015 0.012 0.016 0.002 0.002 0.017 0.017 0.007 0.012 0.002 0.008 0.014 0.012 0.007 0.014 0.018 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.006 0.002 0.004 0.016 0.014 0.01 0.006 0.002 0.008 0.014 0.012 0.007 0.002 0.018 0.016 0.014 0.01 0.006 0.002 20 19 17 18 21 16 20 16 15 18 19
Tags