Presentation Azure Chat Bot Project.pptx

AnupamaKate 93 views 64 slides Oct 16, 2024
Slide 1
Slide 1 of 64
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64

About This Presentation

this presentation is regarding the Indian polity chatbot deployed on azure openAI cloud platform


Slide Content

Indian Polity Chatbot Presented by:Anupama

Project Requirement Objective – Easy to access terms and concepts of Indian polity standard reference book by M. Lakshmikant Use case- Content generation interactive QA chat User Interactions – Chat interface

Project overview

Prerequisite

Planning and Design

Project Workflow

Data Import and Data Creation Data Source/ Raw data Records Creation /Ground Truth

Set Up Infrastructure

Setup Azure Subscription Azure Services Azure OpenAI : Create an instance for using OpenAI models (GPT-4) Azure Blob Storage : Set up Blob Storage for storing documents, datasets, and configuration files. Azure Cognitive Search : Create a search index for document search functionality if needed.

Crete a resource group on azure fig1 fig3 fig2

Azure Storage Account fig1 fig3 fig2 Blob Storage Account

Function App

All Azure Services

Azure Search Service

Create index

Azure OpenAI service for model

Azure Infrastructure to VS Code Cloud Connect

Install Azure Development Workload Open Visual Studio Installer . Click on Modify next to your installed version of Visual Studio. Select Azure Development workload. Click Modify to install the workload. Sign in to Azure in Visual Studio Launch Visual Studio . Go to the top-right corner of Visual Studio, where your profile is displayed. Click on Sign In . In the pop-up window, sign in with your Azure account credentials. View Azure Resources in Cloud Explorer Go to View in the top menu. Select Cloud Explorer . In the Cloud Explorer, you should see all the resources associated with your Azure account once you're logged in. Manage Azure Resources Use Cloud Explorer to view, monitor, and manage your Azure resources like Web Apps, Virtual Machines, and more. You can deploy your applications directly to Azure by right-clicking your projects and selecting Publish . Create or Manage Azure Resources From Cloud Explorer , you can also manage existing resources or create new ones like App Services, SQL Databases, and Azure Functions.

Python Program

Ingest Backend S erver-side system or service responsible for collecting, processing, and storing data from various sources Data ingestion is the process of moving and replicating data from data sources to destination such as a  cloud data lake  or  cloud data warehouse . 

Listing Project Dependencies requirements.txt Python Packages : to install all necessary dependencies with a single command:

LangChain Framework

Ingest_AP.py Functions: Get_file_names () download_blob_to_tem_file () load_from_azure () ingest()

Role of LangChain in Azure Chatbot Project

Data_management.py Functions: Get_file_names () Download_blob ()

LLM Models for chatbot Projects

Why OpenAI GPT-4.0?

Config.py function: get_custom_field ()

Create a vector index :vector fields &their data types Vector fields are characterized by  their data type , a  dimensions  property based on the embedding model used to output the vectors, and a vector profile.

OpenAI GPT-4.0 Specifications

Local machine load function

Chat_read_retrieve.py function: openai_completion () vector_serach () get_final_results ()

Optimization Paraments in GPT-4 model via Azure Services openai.ChatCompletion.create ()

engine

messages

max_tokens

temperature

n

stop

Other paraments

APIs

Deployment process on Azure with APIs

While deploying on Azure

The role of APIs in deploying a chatbot on Azure

how your chatbot interacts with backend services in an Azure-based project?

flask._app.py functions: Home() chatbot()

Function_app.py function: chat_function ()

Role of function app in chatbot

Front end

Frontend code

Testing & Monitoring

Best practice to follow

Best Practice ?

Any Questions ?