Data Preparation Image loading, (image augmentation), pre-processing, training:validation:testing = 60:10:30 There is 8 classes : Gametocyte (100, 100), Ring (50,45), Schizont (200, 205), Trophozoite (53, 200) MalariaNet = googlenet ; % make dataset image [ MimdsTrain , MimdsVal , MimdsTest ] = splitEachLabel (Mimds,0.6, 0.1, 0.3); lgraph = layerGraph ( MalariaNet ); numClasses = numel (categories( MimdsTrain.Labels )); newFC = fullyConnectedLayer (numClasses, 'Name' , 'fc8' , ... 'WeightLearnRateFactor' ,10, ... 'BiasLearnRateFactor' ,10); lgraph = replaceLayer (lgraph, 'loss3-classifier' ,newFC); newClassLayer = classificationLayer ( ' name' , 'Malaria Class Output' ); lgraph = replaceLayer ( lgraph , 'output' , newClassLayer );