Reference C. Banapuram , A. C. Naik, M. K. Vanteru , V. S. Kumar, and K. K. Vaigandla , “A Comprehensive Survey of Machine Learning in Healthcare: Predicting Heart and Liver Disease, Tuberculosis Detection in Chest X-Ray Images,” SSRG Int. J. Electron. Commun. Eng., vol. 11, no. 5, pp. 155–169, 2024, https://doi.org/10.14445/23488549/IJECE-V11I5P116 . V. Sharma, S. K. Gupta, and K. K. Shukla, “Deep learning models for tuberculosis detection and infected region visualization in chest X-ray images,” Intell . Med., vol. 4, no. 2, pp. 104–113, 2024, https://doi.org/10.1016/j.imed.2023.06.001 . D. Li, C. Deng, S. Wang, Y. Li, Y. Zhang, and H. Chen, “Ten-year follow-up results of pure ground-glass opacity–featured lung adenocarcinomas after surgery,” Ann. Thorac . Surg., vol. 116, no. 2, pp. 230–237, 2023, https://doi.org/10.1016/j.athoracsur.2023.01.014 H. Herath, G. Karunasena , and B. Madhusanka , “Early detection of COVID-19 pneumonia based on ground-glass opacity (GGO) features of computerized tomography (CT) angiography,” in 5G IoT and Edge Computing for Smart Healthcare, Elsevier, 2022, pp. 257–277, https://doi.org/10.1016/B978-0-323-90548-0.00013-9 H. Qureshi, Z. Shah, M. A. Z. Raja, M. Y. Alshahrani, W. A. Khan, and M. Shoaib, “Machine learning investigation of tuberculosis with medicine immunity impact,” Diagn . Microbiol . Infect. Dis., vol. 110, no. 3, p. 116472, 2024.