Produced by
Omar Ghazi Abbood Khukre
Master Student in Department of Information
Technology, Institute of Graduate Studies and Research,
Alexandria University, Egypt
.
Methodology(cont.)
Step 3
Zigzag Scan
In this step we convert the matrix
from 2-D to 1-D by zigzag scan.
Zigzagscansorderingconvertinga
2-Dmatrixintoa1-Darray,sothat
thefrequency(horizontal+vertical)
increaseinthisorderandthe
coefficientvariancedecreasesinthis
orderasfigure.
Methodology(cont.)
Compression Ratio
Compression Ratio: is the ratio of size of the compressed database
system with the original size of the uncompressed database
systems. Also known as compression power is a computer-science
term used to quantify the reduction in data-representation size
produced by a data compression algorithm. Compression ratio is
defined as follows:
Compression Time
•CompressionTime=representstheelapsedtimeduringthe
compressionprocess.
Experiments and Results Analysis
Experiments
Inthissectionoftheperformanceofthreetypesofwavelettransform
(SWT,DWT,andLWT)andtheimpactofeachtypeontheimage
lossycompressionperformancealsoitshowsthelossyusingvector
quantization(LBG)andlosslesscompressionusingArithmeticcoding
andHuffmancoding.
The First Experiment
In this experiment, four operations:
1-DWT-Zigzag-Arithmetic
2-DWT-Zigzag-LBG–Arithmetic
3-DWT-Zigzag-Huffman
4-DWT-Zigzag-LBG–Huffman
Table1showingresultsfortheprocesslossyandlosslessimage
compressiontothefiveimagesusingthediscretewavelettransform
witharithmeticcodingandhuffmancodingwithouttheuseofthe
LBG,aswellaswiththeuseoftheLBGandthatusingthree
decompositionlevels.
Experiments (cont.)
The SecondExperiment
In this experiment, four operations:
1-LWT-Zigzag-Arithmetic
2-LWT-Zigzag-LBG–Arithmetic
3-LWT-Zigzag-Huffman
4-LWT-Zigzag-LBG–Huffman
Table2showingresultsfortheprocesslossyandlossless
imagecompressiontothefiveimagesusingthelifting
wavelettransformwitharithmeticcodingandhuffman
codingwithouttheuseoftheLBG,aswellaswiththe
useoftheLBGandthatusingthreedecompositionlevels
.
Experiments (cont.)
Lifting wavelet transform, vector quantization (LBG), Arithmetic and Huffman coding
LWT
LWT Zigzag
Arithmetic
LWT Zigzag LBG &
Arithmetic
LWT Zigzag
Huffman
LWT Zigzag LBG &
Huffman
Image LevelC.Ratio
Running
time (Sec)
C.Ratiopsnr
Running
time (Sec)
C.Ratio
Running
time (Sec)
C.Ratio psnr
Running
time (Sec)
Lena
1 1.40650.31771.684213.18760.00811.37630.06741.454513.18760.0216
2 1.37630.42311.64111.97840.00971.1130.05271.471211.97840.0162
3 1.16360.04891.684217.43940.00731.0940.07081.454517.43940.0154
Camera
man
1 1.54210.06581.64113.68950.00761.26730.05111.471213.68950.017
2 1.24270.03261.753412.70650.00931.13270.04011.422212.70650.0155
3 1.14280.03761.662316.96490.00741.12280.08361.422216.96490.0204
Tulips
1 1.02750.09471.777716.29790.01221.37630.13571.454517.00320.0196
2 1.43820.13361.64112.26710.01111.0940.10541.471212.26710.0225
3 1.25490.11741.684219.54650.00731.05780.10671.454519.54650.0162
White
flower
1 1.3913 0.04 1.64115.46610.00731.37630.05371.471215.46610.0182
2 1.30610.04731.706614.37030.01181.25490.05281.454514.37030.0186
3 1.16360.08271.64116.12410.00741.25490.05991.471216.12410.0162
Fruits
1 1.23970.04531.777712.33940.00911.12280.05571.406512.33940.016
2 1.3763 0.079 1.64112.22890.00891.1130.09021.471212.22890.0164
3 1.19620.08741.620218.16020.00741.07560.06521.406518.16020.0164
Experiments (cont.)
The ThirdExperiment
In this experiment, four operations:
1-SWT-Zigzag-Arithmetic
2-SWT–Zigzag-LBG–Arithmetic
3-SWT-Zigzag-Huffman
4-SWT–Zigzag-LBG–Huffman
Inthetable3,showingresultsfortheprocesslossyandlossless
imagecompressiontofiveimagesusingstationarywavelet
transformwitharithmeticcodingandHuffmancodingwithoutthe
useoftheLBG,aswellaswiththeuseoftheLBGandthatusing
threedecompositionlevels.