Projection of straight line engineering drawing

6,224 views 55 slides Oct 20, 2019
Slide 1
Slide 1 of 55
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55

About This Presentation

Description of basic engineering drawing


Slide Content

PROJECTIONS OF STRAIGHT LINES
DefinitionofStraightline:
Astraightlineistheshortestdistance
betweentwopoints.
-Topviewsoftwoendpointsofastraight
line,whenjoined,givethetopviewof
thestraightline.
-Frontviewsofthetwoendpointsofa
straightline,whenjoined,givethefront
viewofthestraightline.
-Boththeaboveprojectionsarestraight
lines.

Orientation of Straight Linein Space
-Alineinspace may beparallel,
perpendicularorinclinedtoeithertheH.P.
orV.P.orboth.
-Itmaybeinoneorboththereference
Planes.
-LineendsmaybeindifferentQuadrants.
-PositionofStraightLineinspacecanbe
fixedbyvariouscombinations ofdatalike
distanceofitsendpointsfromreference
planes,inclinationsofthelinewiththe
referenceplanes,distancebetween end
projectorsofthelineetc.

Notatioans used for Straight Line
Truelengthoftheline:
DenotedbyCapitalletters.e.g.AB=100mm,
meansthattruelengthofthelineis100mm.
FrontViewLength:
Denoted bysmallletters.e.g.a’b’=70mm,
meansthatFrontViewLengthis70mm.
TopViewLength:
Denoted bysmallletters.e.g.ab=80mm,
meansthatTopViewLengthis80mm.
InclinationofTrueLengthofLinewithH.P.:
Itisdenotedbyθ.e.g.Inclinationoftheline
withH.P.(orGround)isgivenas30ºmeans
thatθ=30º.

InclinationofFrontViewLengthwithXY:
Itisdenotedbyα.e.g.InclinationoftheFront
ViewofthelinewithXYisgivenas50ºmeans
thatα=50º.
InclinationofTopViewLengthwithXY:
Itisdenotedbyβ.e.g.InclinationoftheTop
ViewofthelinewithXYisgivenas30ºmeans
thatβ=30º.
EndProjectorDistance:
Itisthedistancebetween twoprojectors
passingthroughendpointsofF.V.&T.V.
measuredparalleltoXYline.
InclinationofTrueLengthofLinewithV.P.:
ItisdenotedbyΦ.e.g.Inclinationoftheline
withV.P.isgivenas40ºmeansthatΦ=40º.

Line in Different Positions with respect to H.P. & V.P.
CLASSA:Lineperpendicularto(orin)one
referenceplane&henceparallelto
boththeotherplanes
(1)Line perpendicular to P.P.& (hence) parallel
to both H.P. & V.P.
(2) Line perpendicular to V.P.& (hence) parallel
to both H.P. & P.P.
(3) Line perpendicular to H.P.& (hence) parallel
to both V.P. & P.P.

Line in Different Positions with respect to H.P. & V.P.
CLASSB:Lineparallelto(orin)one
referenceplane&inclinedtoother
twoplanes
(1)Line parallel to ( or in) V.P.& inclined to H.P.
by .
(2) Line parallel to ( or in) H.P.& inclined to V.P.
by .
(3) Line parallel to ( or in) P.P.& inclined to H.P.
by & V.P. by .

Line in Different Positions with respect to H.P. & V.P.
CLASSC:Lineinclinedtoallthreereference
planes(Obliquelines)
Line inclined to H.P. by , to V.P. by and also
inclined to profile plane.

.
ClassA(1):LineperpendiculartoP.P.&hence
paralleltoboththeotherplanes

a’
b’
ClassA(1):LineperpendiculartoP.P.&hence
paralleltoboththeotherplanes

Y
1
.
a’
b’
a
b
X
Y
ClassA(1):LineperpendiculartoP.P.&hence
paralleltoboththeotherplanes

a’ b’
a b
a”, b”
X Y
1
.
F.V.
L.H.S.V.
T.V.
Y
ClassA(1):LineperpendiculartoP.P.&hence
paralleltoboththeotherplanes

X Y
Profile
Plane
a’
b’
a
T.V.=T.L.
F.V.=T.L.
10
Y
1
Y
1
50
Data given:-
(1)T.L. = 50mm
(2)Point A
20 below H.P.
30mm Behind
V.P.
(3)Line is perpendicular
to P.P.
(4)Line is 10mm left of
P.P.
Scale :-1:1
Exercise1:-ALineAB,50mmlongisperpendiculartothe
profileplane.TheendAis20mmbelowH.P.,30mm
behindV.P.&10mmtotheleftofP.P.Drawthe
projectionsofstraightlineAB(i.e.FrontView&Top
View).
.
..
b
.

A
B
b
a
a’, b’
.
Y
X
ClassA(2):LineperpendiculartoV.P.&(hence)
paralleltoboththeotherPlanes
(i.e.H.P.&P.P.)

a’, b’
X
Y
a
b
.
ClassA(2):LineperpendiculartoV.P.&(hence)
paralleltoboththeotherPlanes

V.P.
H.P.
a’, b’
X Y
a
b
T.V.
F.V.
.
ClassA(2):LineperpendiculartoV.P.&(hence)
paralleltoboththeotherPlanes

.
50
a
b
c
a’,b’,c’
20
60
YX
Exercise2:-ALineABC,80mmlongisperpendicular
toV.P&50mmbelowH.P.PointB,20mmfromAison
V.P.Aisin4
th
quadrant.Drawtheprojectionsofline
ABC.
Data given :-
(1)T.L. = 80mm
(3)Point B is in V.P.
-Line is perpendicular to V.P.
(4)Line is 50mm below H.P.
Scale :-1:1
(2)AB = 20, BC = 60
-Point A is in 4
th
quadrant
.
.
.

a,b
.
A
B
a’
b’
X
Y
ClassA(3):LineperpendiculartoH.P.&(hence)
paralleltoboththeotherPlanes

a,b
.
ClassA(3):LineperpendiculartoH.P.&(hence)
paralleltoboththeotherPlanes
a’
b’

X Y
a’
b’
a, b
.
H.P.
V.P.
ClassA(3):LineperpendiculartoH.P.&(hence)
paralleltoboththeotherPlanes

Exercise3:-ALineAB,50mmlongisperpendicularto
H.P.&itisbelowH.P.PointAisonH.P.&30mm
behindV.P.DrawtheprojectionsofthelineAB.
a’
a,b
X Y
b’
F.V.=T.L.
Data given:-
(1)T.L. = 50mm
(2) Point A
On H.P.
30mm Behind
V.P.
(3) Line is perpendicular
to H.P.
Scale :-1:1
.
.

a’
b’
X
Y
a
b
X
Y
A
B
ClassB(1):Linecontainedby(orparallelto)
V.P.&inclinedtoH.P.by
θ

Y
X
b’
a’
a
b
θ
ClassB(1):Linecontainedby(orparallelto)V.P.
&inclinedtoH.P.by

V.P.
b’
a’
ba
V.P.
X Y
ClassB(1):Linecontainedby(orparallelto)V.P.
&inclinedtoH.P.by

==30º
b’
a’
ba
T.V.
X Y
Exercise4:-ALineAB,75mmlong,isinV.P.It
makesanangleof30ºwiththeH.P.PointAis
20mmaboveH.P.DrawtheprojectionsoflineAB.
Data given:-
(1)T.L. = 75mm
Scale :-1:1
(2)= 30º
(3)Point A = 20mm
above H.P.
-Line AB is in V.P.
.
.

A B
a’
H.P.
V.P.
=
a b
b’ a’ b’
a
b
ø
YX

X
Y
Class B(2) : Line parallel to (or contained by) H.P. &
inclined to V.P. by 

X Y
a
b
b’a’
=
F.V.
Data given:-
(1)T.L. = 120mm
(3)Point B
10 above H.P.
40mm in Front of
V.P.
-Line is parallel to H.P.
-Point A is behind V.P.
Scale :-1:1
(2)= 50º
Exercise5:-ALineAB,120mmlong,isparalleltoH.P.
andinclinedtoV.P.by50º.PointBis10mmaboveH.P.
and40mmoninfrontofV.P.PointAisbehindV.P.Draw
theprojectionoflineAB.
.
.
..

ClassB(3):Lineparallelto(orcontainedby)P.P.,
inclinedtoH.P.by&toV.P.by
Y
X
A
B
a”
b”


Y
X
Z
b
a
b’
a’

V.P.
H.P.
P.P.

ClassB(3):Lineparallelto(orcontainedby)P.P.,
inclinedtoH.P.by&toV.P.by

X
Y
a’
b’
a
b
b”
a”

Exercise6:-Thedistancebetweentheendprojectorsof
lineMNiszero.PointMis40mmbelowH.P.&25mm
behindV.P.PointNis15mmbelowH.P.&65mmbehind
V.P.Drawitsprojectionsandfindtheangleofthelinewith
H.P.andV.P.Alsofindthetruelengthoftheline.
Data given:-
(1)Point M
40 below H.P.
25 mm behind V.P.
(2)Point N
15 below H.P.
65 mm behind V.P.
(3) End projector dist. = 0
.
.
.
.
.
.
Y
X
25
65
15
40
n’
m’
m
n

n”
m”

45
T.L.
F.V.
T.V.

a b
a’
b’
Y
X
B
A
Class C:Line inclined to H.P. by & V.P. by 
( i.e. Line inclined to both the planes)

a
b
a’
b’
Class C:Line inclined to H.P. by & V.P. by (
i.e. Line inclined to both the planes)

X Y
a

b
b’
H.P.
V.P.
a’
Class C:Line inclined to H.P. by & V.P. by (
i.e. Line inclined to both the planes)

25
15
Φ
α
β
Exercise7:-ALineAB,90mmlong,isinclinedtoH.P.
by30°andinclinedtoV.P.by45º.Thelineisinfirst
quadrantwithPointA15mmaboveH.P.and25mmin
frontofV.P.DrawtheprojectionoflineAB.
a’
a
b’b
1’
Y
X
b b
2
θ
Locus of b’
Locus of b
Data Given :-
(1) T.L.=90 mm
(2) Θ =30°
(3) Φ =45°
(4)Point A
15 above H.P.
25 mm in Front of
V.P.
Answers :-
(1) F.V.= 64 mm
(2) T.V= 78 mm
(3) = 45°(4) = 55°
b
2’
b
1.
.

Exercise8:-Thedistancebetweentheendprojectorsofa
straightlineABis80mm.PointAis10mmaboveH.P.and
30mminfrontofV.P.PointBis40mmaboveH.P.and50mm
behindV.P.Drawtheprojectionsandfindtheinclinationof
straightlineABwithH.P&V.P.andthetruelengthofthe
line. Data given:-
(1)E.P.D. = 80mm
(3)Point B 40 above H.P.
50mm behind
V.P.
X Y
(2)Point A
10 above H.P.
30mm in front of
V.P.
80
30
10
a
a’
b
1
b
40
50
b’
Locus of b
b
2’

 Answers:-
(1)=
(2)=
(3)T.L. =
15º
43º
117mm
.
.
.
Locus of b’
.
b
2
b
1’

YX
b
2’
B
b’
a’
a
b
L
Data Given :-
(1) Length of the room=L=5m
(2) Breadth of the room=B=4.5m
(3) Height of the room=H=4m
Answer :-
(1)Diagonal distance between
opposite corners of the
room
Exersice9:Aroomis5mX4.5mX4mhigh.Determine
bymethodofprojectionsofstraightlines,distance
betweendiagonally(solid)oppositecornersoftheroom.
a’b
2’= 7.826m
Scale :-1:100
b
2
Locus of b’
θ

C
c
2’
Exercise10:-TwounequallegsABandAC,hingedatA
makeanangleof135ºbetweenthemintheirelevationand
plan.LegABisperpendiculartotheProfilePlane.
Determinetherealanglebetweenthem.
Data Given :-
(1) = 135º
(2) = 135º
-AB is perpendicular to P.P.
-Legs are unequal (AB > AC)
Answer :-
-The real angle between two
unequal legs = BAC=125º
B,b’ A,a’
a
b
c
c’
YX
Locus of c
Scale :-1:1


c
3’
Locus of c’
c
2
c
3
T.L.

0.5m
1m 1.25m
0.75m
q
2’
q
q’
p’
p
YX
G L
Exercise11:-TwoMangoesonatree,plantednearthe
compoundwallofabunglow,are1mand1.25mabovethe
groundand0.5m&0.75mfroma15cmthickcompoundwall
butontheoppositesidesofit.ThedistancebetweenMangoes
measuredalongthegroundandparalleltothewallis1m.
Determinetherealdistancebetweencentresoftwomangoes.
Data Given :-
(1) E.P.D. = 1m
Answer :-
-the real distance between
centres of two mangoes =
p’q
2’= 1.63m1m
Locus of q
Scale :-1:20
(2)Point P
1m above ground
0.5 behind wall
(3)Point Q
1.25m above ground
0.75m in front of
wall
15cm
(4) Wall thickness = 15cm
Locus of q’
q
2

Exercise 12 :The F.V. of a line MN, 90 mm long, measures
65 mm. Point M is in V.P. and 20 mm below H.P. Point N is
in the first quadrant. Draw the projections and find
inclinations of line with H.P. and V.P.Data Given:
(1)Point M
20mm below H.P.
In V.P.
(2)T.L.= 90 mm
(3)F.V.= 65 mm
(4)α =45°
(5)Point N is in
first Quadrant
X Y
m’
m
20
n’ n
1’
n
1
n
2
n
2’
n
θ
Answers:
(1)Θ = 31°
(2)Φ = 44°
T.V.
F.V.
.
.
α
Locus of n’
Locus of n
Φ
Scale:-1:1

TRACES OF A LINE
Definition:Whenalineisinclinedtoaplane,it
willmeet thatplane,produced if
necessary.Thepointwherethelineor
lineproducedmeetstheplaneiscalled
trace.
HorizontalTrace:Thepointofintersectionof
theinclinedlinewiththeH.P.iscalled
HorizontalTraceorsimplyH.T.
VerticalTrace:Thepointofintersectionofthe
inclinedlinewiththeV.P.iscalledVertical
TraceorsimplyV.T.

.
.
a
b
b’
a’
B
A
Y
X
Example to illustrate
the concept of traces


H.T.
h
v
V.T.

IMPORTANT POINTS REGARDING TRACES OF A LINE
-IfalineisinclinedtobothH.P.&V.P.then
itsFrontview,h’andV.T.mustbeonthe
samestraightline.
e.g.iffrontviewofalineABisa’b’,then
h,a’,b’andV.T.mustbeonasamestraight
line.
-IfalineisinclinedtobothH.P.&V.P.then
itsTopview,vandH.T.mustbeonthesame
straightline.
e.g.ifTopViewofalineABisab,thenv,a,b
andH.T.mustbeonasamestraightline.

IMPORTANT POINTS REGARDING
TRACES OF A LINE
(1)Ifalineisparalleltoanyoftheplane,ithasno
traceuponthatplane.
e.g.Ifthelineisparallelto
horizontalplanethen
thatlinewillnotmeet
H.Pandhencethere
willbenoH.T.and
onlyV.T.
A
B
b
a
a’, b’
.
V.T.

IMPORTANT POINTS REGARDING
TRACES OF A LINE
(1)Ifalineisparalleltoanyoftheplane,ithasno
traceuponthatplane.
e.g.Ifthelineisparallelto
horizontalplanethen
thatlinewillnotmeet
H.Pandhencethere
willbenoH.T.and
onlyV.T.
V.T.
A B
a’
a b
b’
ø

.

IMPORTANT POINTS REGARDING
TRACES OF A LINE
e.g.Ifthelineisparallelto
VerticalPlanethen
thatlinewillnotmeet
V.Pandhencethere
willbenoV.T.andonly
H.T.
a,b
.
A
B
a’
b’
H.T.

IMPORTANT POINTS REGARDING
TRACES OF A LINE
e.g.IfthelineisparalleltoVerticalPlane
thenthatlinewillnotmeetV.Pandhence
therewillbenoV.T.andonlyH.T.
= 
=30º
b’
a’
ba
T.V.
h’
H.T.

Exercise13:AlineAB,80mmlongisseenas
astraightlineoflength55mminitsfront
viewandoflength65mminitstopview.
ItsendAis10mmaboveH.P.&isinfirst
quadrantwhereasendBis25mmbehind
V.P.andisinSecondQuadrant.Drawits
projectionsandfindoutitsinclinations
withH.P.&V.P.andalsolocateitstraces.

Data Given:
(1) T.L.=80 mm(2) F.V. = 55mm(3) T.V. = 65mm
(4) End A
10 mm above H.P.
??? I.F.O V.P.
(5) End B
??? above H.P.
25mm behind V.P.
X Y
b’
b
Locus of b’
Locus of b
b
1’
25
b
1
65
H.T.
a
F.V.
V.T.
v
T.V.
10
a’
.
.
b
2’
b
2
h
Answers:
(1) = 36°
(2) = 46°
(3) H.T.=46mm
I.F.O. V.P.
(4) V.T.=36mm
above H.P.

Exercise14:Theendprojectorsdistanceofa
lineMNiszero.ItsendMis25mmbelow
H.P.&40mmbehindV.P.whereasendNis
10aboveH.P.&55mminfrontofV.P.
Drawitsprojectionsandfindoutits
inclinationswithH.P.&V.P.andalso
locateitstraces.

.
v
m’
.
.
.
.
.
X Y
m
n’
n
n”
m”
Z
Z
V.T. H.T.
h
.
.
Data Given:
(1) End M
25 below H.P.
40 behind V.P.
(2) End N
10 above H.P.
55mm I.F.O.V.P.
(3) E.P.D. = 0
Answers:
(1) = 20°
(2) = 70°
(4) H.T.=27mm
I.F.O. V.P.
(5) V.T.=12mm
below H.P.
..

(6) + = 90°
(3) T.L.= 101mm

Exercise15:Adividerinstrumentofacompassbox
havingtwoequalarmsAB&BChingedatBiskept
inH.P.onitsneedlepointA&Cwiththelinejoining
A&CisperpendiculartoV.P.Itisseeninfrontview
asastraightline100mmlonginclinedat30°toH.P.
whileitisseenintopviewasanangleabcwith<abc
=60°.Drawitsfrontviewandtopviewandfind;
(1)TheheightofpointBaboveH.P.
(2)Theapartdistancebetweentheneedlepoints
A&C
(3)ThelengthsofarmsAB&BCwithreal
betweenthem

Data Given:
(1) F.V.=100 mm
f
(2) = 30°
(3) <abc =2= 60°
(4) ac is perpendicular
to V.P. a,A
a’,c’
c,C
b
1’
b
1,B
b’
X Y
H
F.V.

60°
Locus of b’
Locus of b’
b
2
AB dist.
Answers:
(1) AB = 112mm
(2) 2= 53°
(3) AC = 100 mm

Exercise16:TheendAofastraightlineAB,
120mmlong,is50mmbehindV.P.&35mm
belowH.P.ThelineisinclinedtoH.P.by30°&
hasapointConitinboththereference
planes.Drawtheprojectionsofthelineand
findoutitsinclinationswithV.P.Alsolocateits
traces.

Data Given:
(2) T.L.=120 mm
(3) = 30°
(1) End A
35 below H.P.
50 behind V.P.
(4) C on AB in
both ref. Planes
Answers:
(1) = 45°
(2) H.T.= in
V.P.& H.P.
(3) V.T.= in V.P.
& H.P.
35
a’
a
b
b’
C,c’,c

c
1
50
b
2
X Y
c
1’
b
1’
b
1
b
2’

.
.
Locus of b’
Locus of b’
F.V. of AC
T.V. of AC
H.T. & V.T.
.

PROJECTIONS OF
STRAIGHT LINES