Anexo 2
Tarea 3 - Disoluciones y gases
Tablas para el desarrollo de los ejercicios
Nombre y apellidos:
Gelen viviana
ramirez
Código (documento de
identidad)
1007182234
Nombre del tutor:
Camila Andrea rico
Páez
Programa académico:
Tecnología en regencia de
farmacia
Ejercicio 1. Leyes de los gases ideales (15 puntos).
Tabla 1. Leyes de los gases
Número de
estudiante
Ley de Boyle Ley de Charles Ley de Gay-Lussac
4 P2=
Ley de Boyle
Un gas ocupa un volumen de V1 a una presión de P1. Si la temperatura permanece constante, ¿Cuál es la
presión en atm, si se pasa a un recipiente de volumen V2?
Ley de Charles
Una llanta de un vehículo se llena con (V1) de aire a T1. Luego de rodar varios kilómetros la temperatura
sube a (T2) ¿Cuánto será el volumen de aire (V2) en la llanta?
Convertimos
ley de Gay-Lussac
Un gas se encuentra a una presión P1 y una T1 ¿Cuál será la presión si la temperatura se incrementa a T2?
Convertimos
Ejercicio 2: Gases ideales (15 puntos).
Tabla 2. Gases ideales
Número de
estudiante
Gases ideales
4
Masa del compuesto
618 g de NH3
Datos de la variable
Una cantidad X1 de gas ideal ocupa un volumen V1 a una temperatura T1. A partir de la
ecuación de gases ideales, calcule el valor de la P1.
Si el gas se pone en un nuevo tanque y se comprime a la mitad del V1, con una presión
máxima de 8,9 atm, ¿cuál sería la temperatura máxima en el tanque?
Ejercicio 3: Soluciones (15 puntos).
Tabla 3. Soluciones
Número de
estudiante
Datos del
ejercicio
I II III
4 % m/v = 4.90%
Se desea preparar 2500 mL de una solución de H 3PO4 0,5 M y cuya densidad es de 1,7 g/mL.
I. ¿Cuál es la concentración de la solución en porcentaje m/v?
Primero, calculemos la cantidad de H3PO4 necesaria para preparar la solución:
Ahora, calculemos la masa de H3PO4:
Con esta información, podemos calcular el porcentaje m/v:
II. ¿Cuál es la concentración de la solución en porcentaje m/m?
La concentración en porcentaje masa/masa se calcula como la masa del soluto (H 3PO4) dividida por la
masa total de la solución, multiplicada por 100.
Primero, calculemos la masa total de la solución:
Ahora, calculemos el porcentaje m/m:
III. ¿Cuál es la concentración de la solución expresada en N?
Para calcular la concentración de la solución expresada en N (normalidad), primero necesitamos
recordar que para el ácido fosfórico (H3PO4), que es un ácido tri-protico, la normalidad es igual a tres veces
la molaridad.
Entonces, para la solución de H3PO4 0.5 M, la concentración en N sería:
Ejercicio 4: Aplicación del tema (25 puntos).
Tabla 4. Aplicación del tema asignado
Número de
estudiante
4 Área de campo
asignada
Agroindustria
Title
Anaerobic Co-Digestion of Agro-Industrial Waste Mixtures for Biogas Production: An
Energetically Sustainable Solution
Abstract
In a climate crisis, searching for renewable energy sources is urgent and mandatory
to achieve a low-carbon society. The food industry is an attractive source for providing
different organic waste with great potential for energy generation, avoiding the
environmental impacts of its inadequate management at the disposal stage. This
manuscript determines the feasibility of using three agro-industrial byproducts for biogas
production with a mesophilic anaerobic digestion process. Three mixture samples such as
tomato pulp with olive cake (TP-OC), apple pomace with olive cake (AP-OC), and tomato
pulp with apple pomace (TP-AP) at a 1:1 w/w ratio were evaluated using bovine manure
as inoculum. During 7 to 12 days of operation, results indicate that TP-OC achieved the
highest biogas production yield with 1096 mL/L (with up to 70% methane), followed b y
AP-OC and TP-AP with 885 (62% methane) and 574 mL/L (69% methane), respectively.
Experimentally, TP-OC consistently encompassed the highest biogas and methane
production and fit the kinetic models, whereas the modified Gompertz model produced the
best fit (R2 = 99.7%). This manuscript supports the preference for mixing byproducts from
the agro-industrial sector rather than using them individually for biogas production.
Introduction
The text highlights the concern about the accumulation of organic waste in regions
where agri-food activity is predominant, due to the risks of contamination for health and
the environment. It is mentioned that food waste can be an attractive source for th e
generation of energy and value-added products.
In Chile, as one of the main agri-food producers in the southern hemisphere, high
levels of organic waste are generated, such as apple pomace, tomato pomace and olive
pomace. These byproducts have the potential to be used in energy production, especially
through biogas, which is obtained through a biological process called anaerobic digestion.
Various studies have explored the viability of using agroindustrial byproducts in
biogas production. The combination of pomace from different sources can be an interesting
strategy to guarantee a constant supply of raw materials and promote synergy between
food companies in regions with agroindustrial activity.
Discussion
The discussion focuses on the accumulation of organic waste in regions where the
agri-food sector is predominant. It is highlighted that this accumulation of waste can have
negative consequences for human health and the environment, such as pollution,
unpleasant odors and damage to soil and water sources.
Conclusion
This research evaluated the production of biogas, through an AD process, using
samples of mixtures from three byproducts of agroindustry in Chile under a waste -to-
energy philosophy. In this sense, this manuscript aims to provide a new valorization
strategy for an industry that generates high levels of byproducts, especially in countries
where the production and export of food products is a central point of their economy.
The AD process considers a hydraulic retention time of 25 total days, although it is
identified that biogas production is achieved in a shorter period (12 days). In this way, the
feasibility of producing biogas from different mixtures in less time than other AD processes
reported in the literature that used these raw materials individually is demonstrated. From
the results, the TP-OC sample was the alternative with the highest biogas production yield
(1096 mL/L) between the sixth and ninth day, followed by AP-OC (885 mL/L). The TP-AP
sample was the fastest to generate biogas (third day) but achieved the lowest yield (155
ml/l).
In addition, it would be advisable to carry out further studies to determine the
presence of other gases that could be contaminants of biogas (e.g., H 2 S, H 2 O, H 2,
among others). Furthermore, it would also be advisable to evaluate different proportions
of the raw materials used in the mixtures studied here to identify possible performance
variations in the generation of biogas. The seasonality of these raw materials and the
logistical plans are also relevant to determine the economic viability of this strategy, as
well as to analyze the amount of nutrients obtained in the digestate that could be another
co-product of this system (i.e., biofertilizer).
This research provides a solution to reduce and avoid the environmental impacts
caused by the accumulation of waste in the agroindustrial sector but at the same time
provides a strategy in favor of the decarbonization and diversification of the energy sector,
which plays a key role in the current climate crisis.
Reference
Hernández, D., Pinilla, F. G., Rebolledo-Leiva, R., Aburto-Hole, J., Díaz, J., Quijano,
G., González‐García, S., & Tenreiro, C. (2024). Anaerobic Co-Digestion of Agro-Industrial
Waste Mixtures for Biogas Production: An Energetically Sustainable Solution. Sustainability,
16(6), 2565. https://doi.org/10.3390/su16062565
Número de
estudiante
4 Área de campo
asignada
Agroindustria
Title
Removal of malachite green dye from aqueous solution by adsorption using agro-
industry waste: a case study of Prosopis cineraria
Abstract
Adsorbents prepared from Prosopis Cineraria sawdust —an agro-industry waste—
were successfully used to remove the malachite green from an aqueous solution in a batch
reactor. The adsorbents included formaldehyde -treated sawdust (PCSD) and sulphuric
acid-treated sawdust (PCSDC). The effects of adsorbent surface change, initial pH, initial
dye concentration, adsorbent mass and contact time on dye removal have been
determined. Similar experiments were carried out with commercially available coconut
based carbon (GAC) to evaluate the performance of PCSD and PCSDC. The adsorption
efficiency of different adsorbents was in the order GAC>PCSDC>PCSD. Kinetic parameters
of adsorption such as the Lagergren pseudo -first-order constant and the intra particle
diffusion were determined. An initial pH of the solution in the range 6–10 was favourable
for the malachite green removal for both the adsorbents. These experimental studies have
indicated that PCSD and PCSDC could be employed as low -cost alternatives in wastewater
treatment for the removal of dyes.
Introduction
the importance of controlling industrial pollution caused by dyes used in various
industries, such as textiles, cosmetics, food, among others. It is mentioned that effluents
from these industries can have negative impacts on the environment, such as affecting the
aesthetic quality of water and aquatic life, and even causing the formation of toxic
substances.
To treat dye-laden wastewater, different physical and chemical processes are used,
such as activated carbon adsorption, which is effective but expensive. For this reason, more
economical and accessible alternatives are being investigated, such as the use o f
agroindustrial waste for the adsorption of dyes.
In particular, the study on the use of Prosopis cineraria sawdust, a byproduct of the
logging industry, as a possible adsorbent to remove malachite green dye from aqueous
solutions is mentioned. This study seeks to evaluate the effectiveness of treated sawdust
compared to commercially available activated carbon.
Discussion
The environmental impact of the dye industry, especially in relation to water pollution
due to dye-laden effluents. These effluents can negatively affect aquatic ecosystems by
interfering with natural processes such as photosynthesis and the growth of aquatic biota,
in addition to potentially generating toxic and carcinogenic degradation products.
Conclusion
The result of present investigations showed that PCSD and PCSDC prepared from
Prosopis cineraria sawdust, have lower adsorption efficiency than GAC at higher dye
concentrations. The adsorption was highly dependent on pH, initial dye concentration and
adsorbent mass. The optimum pH for dye removal by PCSD and PCSDC was 6 –10. Higher
dye removal by PCSDC and PCSD was possible provided the initial dye concentration was
low in solution. Adsorption kinetics followed Lagergren first-order kinetics
Reference
Garg, V., Kumar, R., & Gupta, R. (2004). Removal of malachite green dye from
aqueous solution by adsorption using agro -industry waste: a case study of Prosopis
cineraria. Dyes And Pigments, 62(1), 1-10. https://doi.org/10.1016/j.dyepig.2003.10.016
Referencia (Normas APA):
Brown, T., Lemay, E., Murphy, C., Bursten, B., Woodward, P. (2014). Química, la ciencia central.
(pp. 383-402, 425-440, 513-529, 530-550). Biblioteca Virtual UNAD https://www-ebooks7-24-
com.bibliotecavirtual.unad.edu.co/?il=971
Chang, R. Goldsby, K. (2013). Química. (12a. ed.). (pp. 172-227, 465-517, 518-531, 532-546)
Biblioteca Virtual UNAD https://www-ebooks7-24-com.bibliotecavirtual.unad.edu.co/?il=10863
Giraldo, F. (2017). Unidades de Concentración. [Objeto_virtual_de_Informacion_OVI]. Repositorio
institucional UNAD https://repository.unad.edu.co/handle/10596/11562
Muñoz, D. M. (2022). Unidades de Concentración. [Objeto_virtual_de_aprendizaje_OVA].
Repositorio Institucional UNAD. https://repository.unad.edu.co/handle/10596/51266
Petrucci, R., Herring, F., Madura, J., Bissonnette, C. (2017). Química general principios y
aplicaciones modernas. (11a. ed.). (pp. 111-137, 465-480). Biblioteca Virtual UNAD https://www-
ebooks7-24-com.bibliotecavirtual.unad.edu.co/?il=5838