Radiciação

13,842 views 16 slides May 14, 2013
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Radiciação, simplificação de radicais, operações com radicais (adição, subtração, multiplicação, divisão, potenciação e radiciação) , racionalização de radicais. Relação de exercícios. Conteúdo completo sobre radicais para o 9 ano e ensino médio.


Slide Content

1
RADICIAÇÃO
A radiciação é a operação inversa da potenciação.
Sabemos que:a)
b)
c)
Sendo a e b números reais positivos e n um número inteiro maior que 1, temos, por definição:
sinal do radical
n  índice Quando o índice é 2, normalmente não se escreve.
a  radicando
b  raiz
Raiz de um número real
ÍNDICE PAR
Se n é par, todo número real positivo tem duas raízes.
Exemplo:
Como o resultado de uma operação deve ser único, determinaremos que:

Exemplos:
a) c)
b) d)
4
16-
O B S E R V A Ç Ã O

2
NÃO existe raiz real de um número negativo se o índice do radical for par.
ÍNDICE ÍMPAR
Se n é impar, cada número real tem apenas uma única raiz.
EXERCÍCIOS
1- Complete a tabela:
radical
índice 2 3
radicando 5 9
2- Determine as raízes:
a) f) l)
b) g) m)
c) h) n)
d) i) o)
e) j) p)
3- Calcule, caso exista em
a) e) i)
b) f) j)
c) g) l)

3
d) h) m)
4- Calcule:
a) b) c)
d) e) f)
g) h) i)
POTÊNCIA COM EXPOENTE FRACIONÁRIO
Se a é um número real positivo e é um número racional, com m e n inteiros e n > 0, definimos:
EXEMPLOS:
a) b)
Exercícios
5- Escreva em forma de potência com expoente fracionário.
=
6- Escreva em forma de radical.
c) =
b) d) f)
SIMPLIFICAÇÃO DE RADICAIS

39
124
515
315
) 5
) 7
) 9
) 4
b
c
d
e
=
=
=
=
20
2
4
6
) 9
)
)
)
g
h x
i x
j a
=
=
=
=
84
4 2
6 6
8 4
)
)
)
) a
m a
n a x
o a x
p x
=
=
=
=
4
Simplificar um radical significa reescrevê-lo sob uma forma mais simples e equivalente ao que foi
dado.
Veja a seguir alguns casos de simplificação:
1º caso: O índice do radical e o expoente do radicando são divisíveis por um mesmo número
(diferente de zero).
Exemplo: a) = b)
c) d)
7- Simplifique os radicais
a) = b) c) d)
e) f) g) h)
i) j) l) m)
2º caso: O expoente do radicando é um múltiplo do índice.
Divide-se o expoente do radicando pelo índice do radical, extraindo o radicando.
Exemplos:a) = 7
5
b) = 7
4
c) = 7
5
d) a³
e) = x
5
8- Simplifique os radicais.
a) = f) = l) =
3º caso: O expoente do radicando é maior que o índice.

5
Nesse caso, decompomos o expoente do radicando em fatores de modo que se tenha expoentes
múltiplos do índice.
Exemplos:
9- Simplifique os radicais.
10- Simplifique os radicais.
Ex.: a)
33 5
x a=
2 3 2 7
4 5 6
) c) a
) d)
a a m m
b a x a
= =
=
3 7
m=
11-Simplifique os radicais.
3
5
3 4
54
) 49
) 9x
) 8a
) 16
a m
b
c
d m
=
=
=
=
3 8
3 10
5
4
) 27a
) 8m
) 4
) 25
e
f
g a
h a x
=
=
=
=
12- Calcule.
11
74
35
)
)
)
a x
b a
c m
=
=
=
7
37
74
56
79
)
)
)
) x
)
a a
b m
c m
d
e a
=
=
=
=
=
5
9
310
94
58
) 7
) 2
) 5
) 7
) 6
f
g
h
i
j
=
=
=
=
=

6
3
3
33
5 3
5 6
7 54
5 5
) 36 49
) 8 64
) 100 64
) 125 1
) 1 9 8
) 100 32 0
) 16 1 1
) 2. 49 3. 1 0
a
b
c
d
e
f
g
h
- =
+ =
- - =
- - - =
+ - =
+ - + =
+ - - =
- + =
13- Determine as raízes.
3
49
)
25
121
)
100
1
)
8
a
b
c
=
- =
- =
3
4
5
27
)
1000
16
)
81
32
)
243
d
e
f
=
=
=
14- Qual o valor da expressão
1
5,5
2
?
9
+
15- Simplifique os radicais.

7
( )
2
6
2
2 6
) 121x
) 225
)
) 16m
a
b x
c x y
d y
=
=
+ =
=
6 4
3 6
3 4
4 10
) 81
) 27
) 8
) 49
e x y
f x
g m
h a x
=
=
=
=
16- Qual o valor de expressão
( )
2
3
0
2 27
5 2
- - - -
-
?
17- Qual o valor de expressão
3 3
1 8 4
?
9 16
- + +
+
18- Qual o valor de expressão
22 7 2 4 ?+ + +
19- Simplificando o radical
10
1024, temos:
a) 6 b) 4 c) 2 d) 0
20- Simplifique o radical 3
32
.
4
21- Simplifique o radical
75
12
.
22- Qual o valor numérico da expressão
2
2. . 21.x y x y- - , para x = 12 e y = 3.
23- Use propriedades dos radicais e consulte a tabela para achar um valor aproximado dos radicais:
) 12
) 18
) 63
) 80
) 54
a
b
c
d
e
@
@
@
@
@
2 1,41
3 1,73
5 2,23
6 2,44
7 2,64
@
@
@
@
@
OPERAÇÕES COM RADICAIS

8
Para adicionar ou subtrair, os radicais precisam ser semelhantes.
Dois ou mais radicais são semelhantes quando possuem o mesmo indicie e o mesmo radicando.
Exemplos:
 RADICAIS SEMELHANTES
( ) (
 RADICAIS NÃO-SEMELHANTES
 os radicandos são diferentes
(  os índices são diferentes
Exercícios:
24- Responda em quais itens abaixo os radicais são semelhantes.
3 3
4
) 5 2 e 3 2
) 2 7 e 5 7
) 4 3 3
) 5 e 2 5
a
b
c e
d
-
3
) 7 2 e 7 3
) 3 2 e 6 2
) 4 2, 5 2 e 2
) 7 5, 2 5 e 5
e
f
g
h
-
-
ADIÇÃO E SUBTRAÇÃO
1º caso: Os radicais não são semelhantes.
 Deve-se extrair as raízes (exatas ou aproximadas)
 Somar ou subtrair os radicais.
Exemplos:
16 9
49 25
2 3
+ =
- =
+ =
25- Calcule:
) 4 9
) 25 16
) 49 16
) 100 36
) 4 1
a
b
c
d
e
+ =
- =
- =
- =
- =
3
3 4
3 3
3
) 25 8
) 27 16
) 125 8
) 25 4 16
) 49 25 64
f
g
h
i
j
- =
+ =
- =
- + =
+ - =

9
26- Coloque = ou ≠ para tornar a sentença verdadeira.
) 2 5.......... 7 c) 9 4..........5
b) 9 4........... 13 d) 16 9..
a + +
+ - ...... 7
2º caso: Os radicais são semelhantes.
Exemplos:
3 3
5 2 3 2
6 7 2 7 7
6 5 2 5
+ =
- + + =
- =
27- Efetue as adições e subtrações.
4 4
3 3 3 3
4 4 4
) 2 7 3 7 7 7
) 8 3 10 3 5 3 2 3 6 3
) 9 5 5 2 5 9 5 5
) 5 2 5
) 10 5 10 2 10
) 3 2 8 2 2 2 2
) 8 8 4 8
) 7 2 3 2 2 2
a
b
c
d
e
f
g
h
+ + + =
- + - - =
- + + + =
+ =
+ - =
- + - =
+ - =
- + =
3 3 3 3
4 4 4 4 4
5 5 5
3 3
) 4 6 6 6 2 6 7 6
) 25 12 16 12 12 4 12
) 27 2 27 3 27 5 27 15 27
) 8 8 8 12 8
) 6 9 3 9 10 9
) 3 16 2 8 3 10 2
) 8 10 4 8 4 10 8 8
) 6 5 2 6 5 9 6
i
j
l
m
n
o
p
q
- + - =
- + - =
+ + + - =
+ - =
- + =
- + - =
+ - - =
+ - + =
MULTIPLICAÇÃO E DIVISÃO DE RADICAIS
Há duas situações em que se pode multiplicar ou dividir radicais: quando os índices são iguais e quando são
diferentes. Iremos estudar somente os índices iguais.
Exemplos:
44
5. 7
4 2.5 3
10 : 2
15 6 :3 2
=
=
=
=

10
Exercícios
28- Efetue as multiplicações e divisões.
3 3
44
33
3 3
) 2. 7
) 5. 10
) 6. 2
) 15. 2
) 7. 4
) 2 3.5 7
) 3 7.2 5
) 2 5.3 6
) 5 3. 7
a
b
c
d
e
f
g
h
i
=
=
=
=
=
=
=
=
33
4 4
3 3
4 4
3 3
) 15 : 3
) 20 : 2
) 15 : 5
) 40 : 8
) 30 : 10
) 12 25 : 2 5
) 18 14 :6 7
) 10 8 : 2 2
) 20 2 :5 3
j
l
m
n
o
p
q
r
s
=
=
=
=
=
=
=
=
=
29- Multiplique os radicais e simplifique os produtos obtidos.
55
3 3
) 2. 18
) 32. 2
) 8. 4
) 49. 7
a
b
c
d
=
=
=
=
3 3
) 4. 2
) 3. 12
) 3. 75
) 2. 3. 6
e
f
g
h
=
=
=
=
30- Efetue as multiplicações e divisões.

11
5 5
9 95 3
3 3
) .
) a :
) a.
a a am
b a
c a
=
=
=
7 7
4 4
3 3
) 5 : 15
) 25. 5
) 12 : 2
d
e
f
=
=
=
POTENCIAÇÃO
Observe: 
Aplicando a definição de potência, temos:
= =
 =
 =
Conclusão:    conservamos o índice e elevamos o radicando à potência indicada.
Exemplo:
31- Efetue a potenciação de radicais.
( ) ( )
( ) ( )
( )
2 2
3 3
23
525
5
6
) 7 d) a
) 2 e) m
) 5
a
b
c
= =
= =
= ( )
3
72
f) m =
32- Calcule as seguintes situações:
Exemplo:  ( )
4
4 2
3 3 3= =
( ) ( )
( ) ( )
( )
4 9
3
6 4
3
6
) 5 d) 3
) 3 e) 5
) 5
a
b
c
= =
= =
= ( )
7
5
f) 2=
( ) ( )
( ) ( )
4 2
7 3
2 3
32 7
3 5. 7
2.2m
= =
= =

12
33- Efetue as potências.
( ) ( )
( ) ( )
( )
2 2
3
2 3
35
3
7
) 3 7 d) 3 5
) 4 3 e) 2 2
) 2 5
a
b
c
= =
= =
= ( )
3
f) 5 3=
RADICIAÇÃO
Vejamos:

333 3
666
) 64 8 2 2
) 64 2 2
a
b
= = =
= =
Conclusão:  conservamos o radicando e multiplicamos os expoentes.
Simplificando, temos:
.mn m n
a a=
Exemplos: 
3 3.2 6
2.2 4
5 5 5
7 7 7
= =
= =
34- Escreva, usando um único radical.
3
43
53
) 8
) 5
) 2
) 3
a
b
c
d
=
=
=
=
3
45
3
) 5
) 7
)
) 8
e
f
g a
h
=
=
=
=
35- Calcule e simplifique os radicais abaixo.
a)

13
b)
c)
d)
RACIONALIZAÇÃO DE DENOMINADORES
FATOR RACIONALIZANTE  é uma expressão com radical, cujo produto com outro radical torna uma
expressão sem radical.
Exemplo  Qual é o fator racionalizante de ?__________________________________________
 Qual é o fator racionalizante de 5?_________________________________________
 Qual é o fator racionalizante de ?________________________________________
 Qual é o fator racionalizante de ?_____________________________________
 Qual é o fator racionalizante de 3 - 2?_______________________________________
36- Escreva o fator racionalizante de cada expressão.
) 5 d) 3 7
) 10 e) 8 3
) 12
a
b
c f) 8 11
37- Escreva o fator racionalizante de cada expressão.
323
5 52 3
4
) 5 d) 8 7
) 6 e) 4 8
) 9
a
b
c
65
f) 9 2
38- Escreva o fator racionalizante de cada expressão.
) 8 5 d) 3 1
) 6 2 e) 5 2 7
) 7 5 f) 2 3 5
a
b
c
+ +
- +
- -

14
39- Efetue as multiplicações.
3 5 52 2 33
3 6 62 4 23
7 74 3
) 5. 5 d) 6 . 6
) 8 7 . 7 e) 4 8 . 8
) 5 2 . 2
a
b
c
344
f) 9 3. 3
40- Efetue as multiplicações.
( )( )
( )( )
( )( )
) 6 2 . 6 2 =
) 3 1 . 3 1 =
c) 5+2 7 . 5 2 7 =
a
b
- +
+ -
-
RACIONALIZAÇÃO DE DENOMINADORES
RACIONALIZAR o denominador de uma fração é obter uma fração equivalente com denominador sem
radical, ou seja, racional.
Uma fração não se altera quando numerador e denominador são multiplicados ou divididos por um
mesmo número, diferente de zero.
1º caso:
 O denominador é um radical de índice 2.
3
5
5
3 7
41- Racionalize os denominadores das frações.
4 4
) e)
3 3 2
7 5
) f)
2 2 6
1
)
5
a
b
c
2
g)
7 3
6 7
) h)
5 2 3
d
2º caso:
 O denominador é um radical com índice diferente de 2.

15
53
3
7
6
8
5
42- Racionalize os denominadores das frações:
3 3
3 24
54
7 2
) f)
7 3 5
5 8
) g)
2 5 3
2
)
3
a
b
c
4
5 72 3
3 62
7
h)
3 10
10 1
) i)
4 a
5 9
) j)
6 x
d
e
3º caso:
 O denominador é uma soma ou diferença de dois termos, sendo pelo menos um dos termos um radical.
4

5 2
5

3 2
+
-
43- Racionalize os denominadores das frações.

16
8
)
7 2
1
)
5 3
2
)
7 5
4
)
5 3
1
)
5 1
3
)
5 3
6
)
5 3 2
7
)
3 5 2
4 3
)
4 3
3
)
5 7
5
)
3 2 2
10
)
2 3
a
b
c
d
e
f
g
h
i
j
l
m
-
+
-
-
-
+
-
-
+
-
+
-
-
-
Tags