MaartenvanSmeden
5,248 views
85 slides
Feb 21, 2023
Slide 1 of 85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
About This Presentation
Talk for predictive analytics course in The Hague, 21 feb 2023
Size: 18.4 MB
Language: en
Added: Feb 21, 2023
Slides: 85 pages
Slide Content
Maarten van Smeden, PhD
Predictive Analytics course
Den Haag
21feb 2023
Rage AgainstThe Machine Learning
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Terminology
In medical research, “artificial intelligence” usually
just means “machine learning” or “algorithm”
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2CwW43A
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Proportionof studies indexedin MedlinewiththeMedicalSubject Heading(MeSH) term “ArtificialIntelligence” dividedbythetotalnumberof publicationsper year.
Faeset al. doi: 10.3389/fdgth.2022.833912
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Reviewer#2
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2TOdd0F
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenForsting, J NucMed, 2017, DOI: 10.2967/jnumed.117.190397
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2v2aokk
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Tech company business model
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Tech company business model
https://bit.ly/2HSp8X5; https://bit.ly/2Z0Pfop; https://bit.ly/2KIcpHG; https://bit.ly/33IJhr9
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Other success stories
https://go.nature.com/2VG2hS7; https://bbc.in/2Z1drXQ; https://bit.ly/2TAfRIP
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
IBM Watson winning Jeopardy! (2011)
https://bbc.in/2TMvV8I
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
IBM Watson for oncology
https://bit.ly/2LxiWGj
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Machine learningeverywhere
https://bit.ly/2ka0HLq; https://go.nature.com/33TQgO6; https://bit.ly/2kp6X23; https://bit.ly/2lZuKWt; https://bit.ly/2lI298g
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“As of today, we have deployed the system in 16 hospitals, and
it is performing over 1,300 screenings per day”
MedRxivpre-print only, 23 March 2020,
doi.org/10.1101/2020.03.19.20039354
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
FDA APPROVED
FDA APPROVED
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Living review (update 4)
doi: 10.1136/bmj.m1328
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Living review (update 4)
doi: 10.1136/bmj.m1328
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedendoi: 10.1136/bmj-2021-069881
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedendoi: 10.1136/bmj-2021-069881
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/38A1ng0
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“Everythingis anML method”
https://bit.ly/2lEVn33
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“ML methods come from computer science”
https://bit.ly/2zhbwPv; https://stanford.io/2TVp1xK; https://stanford.io/2ZfED0k
Leo BreimanJerome H FriedmanTrevor Hastie
CART, random forestGradientboostingElements of statistical learning
EducationPhysics/MathPhysicsStatistics
Job titleProfessor of StatisticsProfessor of StatisticsProfessor of Statistics
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“ML methods for prediction, statistics for explaining”
1See further: KreiffandDiaz Ordaz; https://bit.ly/2m1eYdK
ML and causal inference, small selection1
•Superlearner(e.g.van der Laan)
•High dimensional propensity scores (e.g.Schneeweiss)
•The book of why (Pearl)
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Twocultures
Breiman, Stat Sci, 2001, DOI: 10.1214/ss/1009213726
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenFaeset al. doi: 10.3389/fdgth.2022.833912
Language
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenRobert Tibshirani: https://stanford.io/2zqEGfr
Machine learning: large grant = $1,000,000
Statistics: large grant = $50,000
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
ML referstoa culture, nottomethods
Distinguishing between statistics and machine learning
•Substantial overlap methods used by both cultures
•Substantial overlap analysis goals
•Attempts to separate the two frequently result in disagreement
Pragmatic approach:
I’ll use “ML” to refer to models roughly outside of the traditional regression
types of analysis: decision trees (and descendants), SVMs, neural networks
(including Deep learning), boosting etc.
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenBeam & Kohane, JAMA, 2018, doi: 10.1001/jama.2017.18391
Examples where
“ML” has done well
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Example: retinaldisease
Gulshanet al, JAMA, 2016, 10.1001/jama.2016.17216; Picture retinopathy: https://bit.ly/2kB3X2w
Diabeticretinopathy
Deep learning (= Neural network)
•128,000 images
•Transfer learning(preinitialization)
•Sensitivityandspecificity> .90
•Estimatedfromtraining data
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Example: lymphnode metastases
Bejnordiet al, JAMA, 2018, doi: 10.1001/jama.2017.14585. See ourletter totheeditor fora criticaldiscussion: https://bit.ly/2kcYS0e
Deep learning competition
But:
•390 teams signedup, 23 submitted
•“Only” 270 images fortraining
•Test AUC range: 0.56 to0.99
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Primary outcome: time to TB treatment.
Time to TB treatment lowered from a median of 11 days in
standard of care to 1 day with computer aided X-ray screening
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden10.1016/j.cell.2020.01.021
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Examples where
“ML” has done poorly
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://tinyurl.com/3knkuzs3
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Adversarialexamples
https://bit.ly/2N4mQFo; https://bit.ly/2W7X9rF
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
RecidivismAlgorithm
Pro-publica(2016) https://bit.ly/1XMKh5R
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Skin cancerandrulers
Estevaet al., Nature, 2016, DOI: 10.1038/nature21056; https://bit.ly/2lE0vV0
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–theconclusion
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–theresults
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–themedia
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344; https://bit.ly/2Q6H41R; https://bit.ly/2m3RLrn
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
HYPE!
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Systematicreview clinicalpredictionmodels
Christodoulouet al. Journal of ClinicalEpidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
overfittingunderfitting”just right”
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
•Irreducible error
•Not under direct control of the modeler
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Bias-variance trade-off
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Irreducibleerror is oftenlarge
•Health and lack thereof complex to measure (‘no gold standard’)
•Predictors of diseases are often imperfectly and partly
measured
•We often don’t know all the causal mechanisms at play
•much easier to predict if you know the causal mechanisms!
•“Prediction is very difficult, especially if it’s about the future!”
(Niels Bohr might have said this first)
CourtesyCecile Janssens: https://bit.ly/2Jf5ft6
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
What can we do to reduce “irreducible” error?
•Changingtheinformation
•Prognosticationbytextminingelectronichealth records
•e.g. predictinglife expectancy
https://bit.ly/2k8Ao8e
•Analyzingsocialmedia posts
•e.g. pharmacovigilance, adverse events monitoring via Twitter posts
https://bit.ly/2m0KKrg
•Speech signalprocessing
•e.g. Parkinson‟sdisease,
https://bit.ly/2v3ZdHR
•Medicalimaging
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Bias-variance trade-off revisited: double descent
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
But…
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Flexiblealgorithmsare data hungry
Fromslide deck Ben van Calster: https://bit.ly/38Aqmjs
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Flexiblealgorithmsare energy hungry
The costsof running (cloudcomputing) theTransformer
algorithmare estimatedat 1 to3 millionDollars
https://bit.ly/33Dj38X
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Algorithmbasedmedicine
•Algorithms are high maintenance
•Developed models need repeated testing and updatingto
remain useful over time and place
•Many new barriers: black box proprietary algorithms,
computing costs
•Regulationand quality control of algorithms
•Algorithms need testing, preferably in experimental fashion
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://twitter.com/DrHughHarvey/status/1230218991026819077
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Old statistics wine in new machine learning bottles?
Lots of…
•Hype
•Rebrandingtraditional analysis as ML and AI
•Methodological reinventions
•Traditional issues such as low sample size, lack of adequate
validation, poor reporting
Also, real developments in…
•Methodsand architectures, allowing for modeling (unstructured)
data that could previously not easily be used
•Software
•Computingpower
•Clinical trials showing benefit of AI assistance
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenSource: Ilse Kant (UMC Utrecht), adaptedfromdoi: 10.1080/08956308.1997.11671126
30001001021
IdeasExplorationsLauncheswell defined
projectsSucces
From research AI model to implemented AI application,innovation is ….
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML MODELS USED IN PRACTICE
AI/ML MODELS THAT WILL NEVER BE USED IN PRACTICE
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Pipeline of algorithmic medicine failure
Van Royen et al, ERJ, 2922, doi:10.1183/13993003.00250-2022, alsocreditstoLaure Wynants
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Utopia
CourtesyAnna Lohmann
“SOMETHING USEFUL”Multivariable
model
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML modelsare…
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML modelsare…
•Expensive
•Not one-size-fits-all
•Many alternatives usually available
•Need crash testing (“impact”)
•Require regular MOT (“validation”)
•Require regular maintenance (”updating”)
•Require people to be trained how to operate them
•Can be dangerous when wrongly used
•Regulations apply
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Step 2: fromreview tonationalguideline
www.leidraad-ai.nl
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
The guideline fordiagnostic/prognosticapplications
•Whatthehealthcarefield considersgoodprofessional
conductin thedevelopment, testingandimplementationof AI-
basedpredictionmodelsin themedicalsector, including
public healthcare.
•Startingpoint: stakeholder opinionsandreview
•Useof theguideline can(hopefully) improvequalityandlower
costsof healthcare
•Guideline is notlegallybinding
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
https://www.leidraad-ai.nl/
Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Email: [email protected]
Twitter: @MaartenvSmeden