Rage against the machine learning 2023

MaartenvanSmeden 5,248 views 85 slides Feb 21, 2023
Slide 1
Slide 1 of 85
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85

About This Presentation

Talk for predictive analytics course in The Hague, 21 feb 2023


Slide Content

Maarten van Smeden, PhD
Predictive Analytics course
Den Haag
21feb 2023
Rage AgainstThe Machine Learning

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Terminology
In medical research, “artificial intelligence” usually
just means “machine learning” or “algorithm”

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2CwW43A

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Proportionof studies indexedin MedlinewiththeMedicalSubject Heading(MeSH) term “ArtificialIntelligence” dividedbythetotalnumberof publicationsper year.
Faeset al. doi: 10.3389/fdgth.2022.833912

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Reviewer#2

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2TOdd0F

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenForsting, J NucMed, 2017, DOI: 10.2967/jnumed.117.190397

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/2v2aokk

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Tech company business model

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Tech company business model
https://bit.ly/2HSp8X5; https://bit.ly/2Z0Pfop; https://bit.ly/2KIcpHG; https://bit.ly/33IJhr9

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Other success stories
https://go.nature.com/2VG2hS7; https://bbc.in/2Z1drXQ; https://bit.ly/2TAfRIP

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
IBM Watson winning Jeopardy! (2011)
https://bbc.in/2TMvV8I

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
IBM Watson for oncology
https://bit.ly/2LxiWGj

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Machine learningeverywhere
https://bit.ly/2ka0HLq; https://go.nature.com/33TQgO6; https://bit.ly/2kp6X23; https://bit.ly/2lZuKWt; https://bit.ly/2lI298g

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“As of today, we have deployed the system in 16 hospitals, and
it is performing over 1,300 screenings per day”
MedRxivpre-print only, 23 March 2020,
doi.org/10.1101/2020.03.19.20039354

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
FDA APPROVED
FDA APPROVED

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Living review (update 4)
doi: 10.1136/bmj.m1328

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Living review (update 4)
doi: 10.1136/bmj.m1328

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedendoi: 10.1136/bmj-2021-069881

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedendoi: 10.1136/bmj-2021-069881

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

https://twitter.com/AndrewLBeam/status/1620855064033382401?s=20&t=VO9_LdFFCj_wcwIQLvKcIQ

Source: Ilse Kant (UMC Utrecht)

what are these
machine learning methods?

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://bit.ly/38A1ng0

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“Everythingis anML method”
https://bit.ly/2lEVn33

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“ML methods come from computer science”
https://bit.ly/2zhbwPv; https://stanford.io/2TVp1xK; https://stanford.io/2ZfED0k
Leo BreimanJerome H FriedmanTrevor Hastie
CART, random forestGradientboostingElements of statistical learning
EducationPhysics/MathPhysicsStatistics
Job titleProfessor of StatisticsProfessor of StatisticsProfessor of Statistics

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
“ML methods for prediction, statistics for explaining”
1See further: KreiffandDiaz Ordaz; https://bit.ly/2m1eYdK
ML and causal inference, small selection1
•Superlearner(e.g.van der Laan)
•High dimensional propensity scores (e.g.Schneeweiss)
•The book of why (Pearl)

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Twocultures
Breiman, Stat Sci, 2001, DOI: 10.1214/ss/1009213726

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenFaeset al. doi: 10.3389/fdgth.2022.833912
Language

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenRobert Tibshirani: https://stanford.io/2zqEGfr
Machine learning: large grant = $1,000,000
Statistics: large grant = $50,000

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
ML referstoa culture, nottomethods
Distinguishing between statistics and machine learning
•Substantial overlap methods used by both cultures
•Substantial overlap analysis goals
•Attempts to separate the two frequently result in disagreement
Pragmatic approach:
I’ll use “ML” to refer to models roughly outside of the traditional regression
types of analysis: decision trees (and descendants), SVMs, neural networks
(including Deep learning), boosting etc.

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenBeam & Kohane, JAMA, 2018, doi: 10.1001/jama.2017.18391

Examples where
“ML” has done well

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Example: retinaldisease
Gulshanet al, JAMA, 2016, 10.1001/jama.2016.17216; Picture retinopathy: https://bit.ly/2kB3X2w
Diabeticretinopathy
Deep learning (= Neural network)
•128,000 images
•Transfer learning(preinitialization)
•Sensitivityandspecificity> .90
•Estimatedfromtraining data

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Example: lymphnode metastases
Bejnordiet al, JAMA, 2018, doi: 10.1001/jama.2017.14585. See ourletter totheeditor fora criticaldiscussion: https://bit.ly/2kcYS0e
Deep learning competition
But:
•390 teams signedup, 23 submitted
•“Only” 270 images fortraining
•Test AUC range: 0.56 to0.99

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Primary outcome: time to TB treatment.
Time to TB treatment lowered from a median of 11 days in
standard of care to 1 day with computer aided X-ray screening

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden10.1016/j.cell.2020.01.021

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Examples where
“ML” has done poorly

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://tinyurl.com/3knkuzs3

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Adversarialexamples
https://bit.ly/2N4mQFo; https://bit.ly/2W7X9rF

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
RecidivismAlgorithm
Pro-publica(2016) https://bit.ly/1XMKh5R

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Skin cancerandrulers
Estevaet al., Nature, 2016, DOI: 10.1038/nature21056; https://bit.ly/2lE0vV0

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–theconclusion
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–theresults
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Predictingmortality–themedia
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344; https://bit.ly/2Q6H41R; https://bit.ly/2m3RLrn

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
HYPE!

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Systematicreview clinicalpredictionmodels
Christodoulouet al. Journal of ClinicalEpidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
overfittingunderfitting”just right”

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Sources of predictionerror
Y=#$+&
For a model 'theexpectedtest predictionerror is:
σ!+bias!-#"$+var-#"$
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible errorMeansquaredpredictionerror
(withE'=0,var'=.!,valuesin4arenotrandom)
Whatwe don’t modelHowwe model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
•Irreducible error
•Not under direct control of the modeler

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Bias-variance trade-off

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Irreducibleerror is oftenlarge
•Health and lack thereof complex to measure (‘no gold standard’)
•Predictors of diseases are often imperfectly and partly
measured
•We often don’t know all the causal mechanisms at play
•much easier to predict if you know the causal mechanisms!
•“Prediction is very difficult, especially if it’s about the future!”
(Niels Bohr might have said this first)
CourtesyCecile Janssens: https://bit.ly/2Jf5ft6

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
What can we do to reduce “irreducible” error?
•Changingtheinformation
•Prognosticationbytextminingelectronichealth records
•e.g. predictinglife expectancy
https://bit.ly/2k8Ao8e
•Analyzingsocialmedia posts
•e.g. pharmacovigilance, adverse events monitoring via Twitter posts
https://bit.ly/2m0KKrg
•Speech signalprocessing
•e.g. Parkinson‟sdisease,
https://bit.ly/2v3ZdHR
•Medicalimaging

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Bias-variance trade-off revisited: double descent

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
But…

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Flexiblealgorithmsare data hungry
Fromslide deck Ben van Calster: https://bit.ly/38Aqmjs

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Flexiblealgorithmsare energy hungry
The costsof running (cloudcomputing) theTransformer
algorithmare estimatedat 1 to3 millionDollars
https://bit.ly/33Dj38X

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Algorithmbasedmedicine
•Algorithms are high maintenance
•Developed models need repeated testing and updatingto
remain useful over time and place
•Many new barriers: black box proprietary algorithms,
computing costs
•Regulationand quality control of algorithms
•Algorithms need testing, preferably in experimental fashion

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenhttps://twitter.com/DrHughHarvey/status/1230218991026819077

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Old statistics wine in new machine learning bottles?
Lots of…
•Hype
•Rebrandingtraditional analysis as ML and AI
•Methodological reinventions
•Traditional issues such as low sample size, lack of adequate
validation, poor reporting
Also, real developments in…
•Methodsand architectures, allowing for modeling (unstructured)
data that could previously not easily be used
•Software
•Computingpower
•Clinical trials showing benefit of AI assistance

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmedenSource: Ilse Kant (UMC Utrecht), adaptedfromdoi: 10.1080/08956308.1997.11671126
30001001021
IdeasExplorationsLauncheswell defined
projectsSucces
From research AI model to implemented AI application,innovation is ….

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML MODELS USED IN PRACTICE
AI/ML MODELS THAT WILL NEVER BE USED IN PRACTICE

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Pipeline of algorithmic medicine failure
Van Royen et al, ERJ, 2922, doi:10.1183/13993003.00250-2022, alsocreditstoLaure Wynants

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Utopia
CourtesyAnna Lohmann
“SOMETHING USEFUL”Multivariable
model

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML modelsare…

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
AI/ML modelsare…
•Expensive
•Not one-size-fits-all
•Many alternatives usually available
•Need crash testing (“impact”)
•Require regular MOT (“validation”)
•Require regular maintenance (”updating”)
•Require people to be trained how to operate them
•Can be dangerous when wrongly used
•Regulations apply

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Step 2: fromreview tonationalguideline
www.leidraad-ai.nl

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
The guideline fordiagnostic/prognosticapplications
•Whatthehealthcarefield considersgoodprofessional
conductin thedevelopment, testingandimplementationof AI-
basedpredictionmodelsin themedicalsector, including
public healthcare.
•Startingpoint: stakeholder opinionsandreview
•Useof theguideline can(hopefully) improvequalityandlower
costsof healthcare
•Guideline is notlegallybinding

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
https://www.leidraad-ai.nl/

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden
Email: [email protected]
Twitter: @MaartenvSmeden

Den Haag, 21 Feb 2022 Twitter: @MaartenvSmeden