Raweroopihgghggfcxdryujmloiggghjjjbvccfggh

bmxfrm 3 views 21 slides Aug 31, 2025
Slide 1
Slide 1 of 21
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21

About This Presentation

p


Slide Content

7. APPLICATIONS OF
THE DEFINED INTEGRAL
1

2
7.1 Area Between Two Curves
a. Let
{}
)( 0, |),(xf y bx ayx D≤ ≤ ≤ ≤ =
a
b
f(x)
D
Area of region D = ?
x∆
Steps :
1. Divided D into n pieces, the area of each piece
s
is approximated by area of rectangular
with height f(x) and length of base
x∆
xxf A∆ ≈∆)(
2. The area of D is approximated by sum area of rectangular .
If , The area of D is

b
a
dxxf)(
A =
0 x∆→

Example :Find the area of region that is bounded
by parabola
xaxis
, and
x
= 2.
3
8
3
1
2
0
3
2
0
2
=



= =

x dxx A
,
2
x y=
2
x y=
2
Area of pieces
x∆
2
x
x x A∆ ≈∆
2
Area of region

4
b) Let
{}
)( )(, |),(xhy xgbx ayx D≤ ≤ ≤≤ =
x∆
x xg xh A∆ − ≈∆))( )((
h(x)
g(x)
ab
Area of region D = ?
Steps:
1. Divided D into n pieces, the area of each
pieces is approximated by area of rectangular
with height h(x)-f(x) and length of base
x∆
2. The area of D is approximated by sum of area rectangular .
If , The area of D is
A =


b
a
dx xg xh))( )((
D
h(x)-g(x)
0 x∆→

5
Example:Find the area of region that is bounded by
y
=
x
+4
and parabola
2
2
− =x y
2 4
2
− = +x x
2
2
− =x y
0 6
2
= −−x x
0)2 )(3 (= + −x x
The straight line and parabola
intersects at
y=x+4
-23
x = -2, x = 3
x∆
)2 ()4 (
2
− − +x x
Area of pieces
x x x A∆ − − + ≈∆))2 ()4 ((
2

6
∫∫
−−
+ + − = − − + =
3
2
3
2
2 2
)6 ( ))2 ()4 ((dx x x dx x x A
6
125
6
2
1
3
1
3
2
2 3
=



+ + −=

x x x
Area of region :

7
Example : Find the area of region that is bounded by x axis,
2
x y=
And y = -x + 2
Answer
Intersection points
2
2
+−=x x
2
x y=
0 2
2
= −+x x
x x A∆ ≈ ∆
2
1
2
0)1 )(2 (= − +x x
x = -2, x = 1
y=-x+2
1
If pieces is vertical , then region must be
divided into 2 sub region
x∆
x∆
x x A∆ +−≈ ∆)2 (
2
Area of pieces I
Area of pieces II

8

= = =
1
0
1
0
3
3
1 2
1
3
1
|x dxx A
The area of region I
The area of region II
2
1
2
2
1
2
1
2
|2 2x x dx x A+ −= +−=

2
1
)2 ()42(
2
1
= +−− +−=
The area of region
6
5
2
1
3
1
2 1
= + = + =A A A

9
c). Let
{}
)( )(, |),(yhx ygdy cyx D≤ ≤ ≤ ≤ =
y∆


d
c
dy yg yh))( )((
h(y)
g(y)
c
d
D
Area of region D = ?
Langkah :
1. Divided D into n pieces, the area of each
pieces is approximated by area of rectangular
with height h(y)-f(y) and length of base
y∆
y yg yh A∆ − ≈∆))( )((
y∆
A =
h(y)-g(y)
2. The area of D is approximated by sum area of rectangulars .
If , The area of D is
0 y∆→

10
2
3y x−=
2
31y y−=+
02
2
=−+y y
2
3y x−=
Example
: Find the area of region that is bounded by
and
1− =x y
Answer :
The intersection point between
parabola and straight line are
0)1 )(2 (= − +y y
y = -2 dany = 1
1− =x y
-2
1
y∆
)1 () 3(
2
+ − −
y y
Area of pieces
y y y A∆ + − − =∆))1 () 3((
2

11
The area of region is :


+ − − =
1
2
2
))1 () 3((dy y y L


+ − − =
1
2
2
)2 (dy y y
.
2
9
2
2
1
3
1
1
2
2 3
=



+ − −=

y y y

12
7.2NN ilai rata-rata



b
a
dxxf
ab
value Average)(
1

Secara Geometri untuk
0)(xf
, maka
Luas daerah dibawah kurva y = f(x),
bx a


a b
0
y=f(x)
Average value
of f
gambar 6.9

25
7.3 The Length of Curve
A parameter form of curve on
x = f(t)
y = g(t)
bta≤≤,
Point A(f(a),g(a)) is called original point and B(f(b),g(b)) is called
terminal point of curve.
Definition: A curve is called smooth if
(1)
(i)
'f'g
andare continuous on [a,b]
(ii)
'f'g
andis not zero at the same time on (a,b)
2
R

26
Let a curve on parameter form (1), we will find length of that curve
Steps
1. Divided interval [a,b] into n subintervals
b t t t t a
n o
= < < < < =...
2 1
ab
●●●●
1
t
i
t
1−i
t
1−n
t
A partition on [a,b]
A partition on curve

1
Q

●●

o
Q
1−i
Q
i
Q
n
Q

27
2. Approximate length of curve
1−i
Q
i
Q
i
s∆
i
w∆
i
s∆
length of arc
i i
Q Q
1−
i
w∆
length of line segment
i i
Q Q
1−
i i
w s∆≈ ∆
The length of arc is approximated by length of line
segment
i
x∆
i
y∆
2 2
) ( ) (
i i
y x∆+ ∆ =
2
1
2
1
)] ( )([ )] ( )([
− −
− + − =
i i i i
tg tg tf tf
We apply mean value theorem to function f and g.
There are , such that
), ( ,ˆ
1i i i i
t t tt


t tf tf tf
i i i
∆ = −

)(' ) ( )(
1
t tg tg tg
i i i
∆ = −

)ˆ(' ) ( )(
1

Calculus I (MA 1114) - Faculty of Science
Telkom Institut of Technology28
where
1−
− = ∆
i i i
t t t
so
2 2
] )ˆ('[ ] )('[
i i i i i
t tg t tf w∆ + ∆ = ∆
i i i
t tg tf∆ + =
2 2
)]ˆ('[ )]('[
The length of curve is approximated by length of polygonal arc

=
∆ + ≈
n
i
i i i
t tg tf L
1
2 2
)]ˆ('[ )]('[
If ||P|| Æ0, the length of curve is
dt tg tf L
b
a

+ =
2 2
)]('[ )]('[

29
Remark:
For curve y=f(x),
bx a≤ ≤
dt tg tf L
b
a

+ =
2 2
)]('[ )]('[
dt
dt
dy
dt
dx
b
a

+ =
2 2
] [ ][
dt tg tf L
d
c

+ =
2 2
)]('[ )]('[
dx
dx
dy
dt
dx
dy
dt
dx
b
a
b
a
∫ ∫






+ = ⎟





+ =
2 2
2
1 ) 1()(
For curve x=g(y),
d y c≤ ≤
dt
dt
dy
dt
dx
d
c

+ =
2 2
] [ ][
dy
dy
dx
dt
dy
dx
dt
dy
d
c
d
c
∫ ∫








+ =
















+ =
2 2
2
1 1) (

30
Example : Find length of curve
4 0; ,
2 3
≤≤ = =t t ytx
1.
2
3)('t tx=
t ty2)(',=
dt t t L

+ =
4
0
2 22
)2( )3(
The length of curve
dtt t

+ =
4
0
2 4
4 9

+ =
4
0
2 2
)4 9(dt t t

+ =
4
0
2
4 9dt tt

+
+ =
4
0
2
2/1 2
18
)4 9(
)4 9(
t
td
tt
4
0
2/3 2
3
2
18
1
| )4 9(+ =t
)8 10 80( )8 40 40(
27
1
27
1
− = − =

31
2.
3/2
1
2, 7
3
yx x=≤≤
Answer :
2/1
3x
dx
dy
=
()
∫∫
+ = + =
7
3/1
7
3/1
2
2/1
91 3 1dxx dx x L
)91( )91(
7
3/1
2/1
9
1
x d x+ + =

3
1
27
2 7
3/1
2/3
27
2
37 )8 512( | )91(= − = + =x

32
Problems
A. Sketch and find area of region that is bounded by
2
2 and yx yx==+
1.
3
,, 8and yxy x y ==− =
2.
3.
y
=
x
,
y
= 4
x
,
y
= -
x
+2
4.
y
= sin
x
,
y
= cos
x
,
x
= 0 ,
x
= 2π.
2
270 6 0 xy andyyx −+= −−=
5.

35
E. Find length of curves
1 0,)2 (
3
1
2/3 2
≤ ≤ + =x x y
4 2,
4
ln
2
2
≤ ≤ − =x
x x
y
2/1 0), 1ln(
2
≤ ≤ − =x x y
9 0),3 (
3
1
≤ ≤ − =y yy x
4 1;2/1 2 ,2 3
3 2
≤≤ − = + =t t y t x
π
≤≤ − = =t t yt x0;5 cos 4 , sin 4
1.
2.
3.
4.
5.
6.
Tags