Regioselective Multiboration and Hydroboration of Alkenes and Alkynes Enabled by a Platinum Single-Atom Catalyst

pawankumar325 1 views 14 slides Oct 08, 2025
Slide 1
Slide 1 of 14
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14

About This Presentation

Selective multiboration including di- and triboration and hydroboration of alkynes and alkenes face significant challenges in organic synthesis, including achieving high regioselectivity, functional group tolerance, and catalyst stability while requiring mild conditions to maintain reactivity. These...


Slide Content

RegioselectiveMultiborationandHydroborationofAlkenesand
AlkynesEnabledbyaPlatinumSingle-AtomCatalyst
PawełHuninik,

PritiSharma,

VitthalB.Saptal,* MartinSlaby,RostislavLanger,PawanKumar,
AliShayestehZeraati,XiyangWang,MartinPetr,MichalOtyepka,ManojB.Gawande,RadekZbořil,*
StepanKment,* andJędrzejWalkowiak*
CiteThis:ACSCatal.2025,15,17347−17360 ReadOnline
ACCESS
Metrics&More ArticleRecommendations
*

SupportingInformation
ABSTRACT:Selectivemultiborationincludingdi-andtriborationand
hydroborationofalkynesandalkenesfacesignificantchallengesinorganic
synthesis,includingachievinghighregioselectivity,functionalgrouptolerance,
andcatalyststabilitywhilerequiringmildconditionstomaintainreactivity.
Thesetransformationshavebeenpredominantlyexploredbyusing
homogeneouscatalysts.Inthisstudy,wereportthescalablesynthesisof
heterogeneousplatinumsingle-atomcatalyst(Pt-SAC)supportedonultrathin
nanosheetsofgraphiticcarbonnitrideviaarapidmicrowave-assistedmethod.
ThePt-SACenables1,2-diborationofstericallyhinderedalkenesand1,2,2-
triborationofalkyneswithB
2
pin
2
undermildconditions.Forthediborationofstyrene,thecatalystachieves99%yieldwith95%
selectivity,aturnovernumber(TON)of3711,andaturnoverfrequency(TOF)of247h
−1
.Thecatalystalsopromotesthe
regioselectivehydroborationofalkenesandalkynes,yieldinganti-Markovnikovalkylboranesandvinylboranes,respectively.
ComputationalcalculationsrevealthattheenhancedreactivityonthePt-SACcatalystarisesfromadsorption-inducedweakeningof
keybonds(C=CandB−H),therebysignificantlyloweringtheactivationenergybarriers.ThePt-SACexhibitsstabilityand
recyclability,maintainingperformanceoveratleasteightconsecutiverunswithoutdetectablePtleaching.Thisstudyhighlightsthe
potentialofPt-SACasarobustandversatileplatformfororganoborontransformationsundermildconditions,withrelevanceto
applicationsinpharmaceutical,agrochemical,andpolymersynthesis.
KEYWORDS:heterogeneouscatalysis,single-atomcatalyst(SAC),diboration,triboration,hydroboration

INTRODUCTION
Organoboroncompoundsareavitalreagentinmodern
organicsynthesis,servingasversatilecarbonnucleophilesfor
thestrategicinstallationoffunctionalgroupsandforming
diversechemicalbondssuchasC−C,C−N,C−O,andC−
S.
1−4
Theirremarkableversatility,easeofhandling,andpivotal
roleinsynthesizingnaturalproducts,pharmaceuticals,agro-
chemicals,andpolymersestablishthemashighlyvalued
intermediates.
5−8
Amongthediverseclassesoforganoborons,
theselectivesynthesisofmultiboratedscaffolds,suchas1,2-
diboratedand1,2,2-triboratedcompounds,whichfeaturing
multipleboronatemoietieswithinasinglemolecularframe-
work,standsasafundamentallysignificantyetsynthetically
challengingobjective
9,10
Thesecompoundsareindispensable
buildingblocksfortheconstructionofcomplexmoleculesvia
precise,stereodefinedcross-couplingreactions,facilitatingthe
formationofmultipleC−C bondsinasinglesynthetic
operation.
11
Thesemoleculescanbeaccessedthroughthe
borylationofpremonoborylatedintermediateorviathe
diborationofC−Cmultiplebonds.
12−15
Thepioneeringdiscoveryofplatinum-catalyzedalkyne
diborationbySuzukiandMiyaurain1993laidthefoundation
forsignificantadvancementsindiborationreactions,which
pavedthewayfortheextensiveapplicationofhomogeneous
transition-metalcatalysts.
16,17
Thesecatalystshavesincebeen
employedtodiboratealkynes,diynes,dienes,alkenes,and
alkenes,yieldingawiderangeofbis(boronate)com-
pounds.
18−22
Whiletriborationissyntheticallyattractivedue
toitsabilitytogeneratetri(boryl)alkanes-versatilebuilding
blocksinorganicsynthesis,itremainssignificantlymore
challenging.
23
Onlyalimitednumberofhomogeneous
catalyticsystemshavebeenreported,whereissuessuchas
reactivity,regioselectivity,useofequivalentamountof
additives/bases,andchemoselectivitypersist.
24−28
However,
whilehomogeneouscatalystsfordiborationarewell-
developed,progressinthedevelopmentofheterogeneous
catalysisremainscruciallylimited.
29,30
Thisdisparityarises
fromthechallengesofachievingselectivitywithheterogeneous
Received:June3,2025
Revised:August18,2025
Accepted:August18,2025
ResearchArticlepubs.acs.org/acscatalysis
©XXXXTheAuthors.Publishedby
AmericanChemicalSociety
17347
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
This article is licensed under CC-BY 4.0Downloaded via 64.180.73.75 on October 8, 2025 at 04:03:12 (UTC). See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

systems,wheremultipleactivesitescancomplicatecontrol
overreactionpathways.
31
Heterogeneousdiborationfocuses
primarilyonalkynes,whilethereisonlyonereportonalkene
diborationusingaheterogeneousnanocatalyst,specificallyPt/
TiO
2
,whichdemonstratedalimitedsubstratescope.
32,33
Thesechallengeshighlighttheneedforadvancementsin
designingandoptimizingheterogeneoussystemsforbroader
diborationapplications.
Inthefieldofmetal-catalyzedhydroborationreactions,
severalsignificantadvancementshavebeenachievedrecently.
Theseincludethedevelopmentofcopper-clustercatalystsfor
thehydroborationofalkynes,aswellascobalt(II)-catalyzed
asymmetrichydroborationofalkenes,andthedihydroboration
ofnitriles,deliveringdiversehydroborationproductsingood
yields.
34,35
Acopper-catalyzedenantioselectivehydroboration
methodhasbeendevelopedforconstructingdiversechiral1,2-
benzazaborines,offeringhighyieldsandenantioselectivityfor
over>60examples.
36
Additionally,acobalt-catalyzedsystem
withaCNCpincerligandallowstheZ-selectivehydroboration
ofterminalalkyneswithhighefficiency,scalability,andrare
time-dependentstereoselectivity.
37
However,challengesre-
maininthedevelopmentofheterogeneouscatalysts,including
achievinghighactivityandselectivityfordiverseand
inactivatedsubstrates,stillratherelevatedreactiontemper-
ature,reducingrelianceortheamountonpreciousmetals,and
designinguniversalcatalyticsystemsthattoleratecomplex
molecularenvironmentswhilemaintainingefficiencyand
stability.
RecentadvancementsinSACsprovideapromisingsolution
totheabove-mentionedlimitationsbyservingasabridge
betweenhomogeneousandheterogeneouscatalysts.By
exposingnearly100%ofmetalatoms,SACsmaximizethe
utilizationofcatalyticactivesites,offeringuniquecoordination
environmentsaswellasdistinctgeometricandelectronic
propertiesthatenableefficientandhighlyselectivecataly-
sis.
38−40
Furthermore,whenfirmlyanchoredtoasuitable
support,SACsexhibitthermalstability,easeofrecovery,and
significantlyreducedpreciousmetalusage,makingthema
sustainablechoiceformoderncatalysis.
41−44
Therefore,SACs
havedemonstratedremarkableperformanceinvarious
applications,includingorganicsynthesis,electrochemistry,
energy,andphotocatalysis.
45−47
Notably,SACshaveshown
potentialindiborationreactions.Forexample,Pt-SACs
supportedonnickelhydroxidenanoboards(Pt
1
/Ni(OH)x)
andpolyoxometalateframeworks(Pt
1
-PMo@MIL-101)out-
performednanoparticlecounterpartsforalkynediboration.
48
AnotherexamplereportedPt-SACssupportedonacomposite
materialofreducedgrapheneoxideandFe
2
O
3
foralkyne
diboration.
49
Despitetheseadvantages,reportedSACsface
challenges,suchasundefinedcoordinationenvironments,
harshreactionconditions,andlimitedsubstratecompatibility,
restrictingtheirapplicationprimarilytothereactivealkynes.
Theseissuesunderscoretheneedformoreefficientand
selectiveheterogeneousSACsfordiboration,particularlyfor
challengingsubstratessuchassubstitutedalkenes.
Inthisstudy,wereportthefirstexampleofaPt-basedsingle-
atomcatalystthatenableshighlyregioselective1,2-diboration
ofsubstitutedalkenes,1,2,2-triborationofalkynes,and
monohydroborationofelectronicallyandstericallychallenging
alkenesandalkynes.Thecatalyst,Pt
1
-UNSC
3
N
4
,features
platinumsingleatomsuniformlyanchoredonultrathin
nanosheetsofgraphiticcarbonnitrideandwassynthesized
usingascalablemicrowave-assistedmethod.ThisSACexhibits
exceptionalcatalyticactivityandselectivityundermild
conditions,enablingefficienthydroborationanddiboration
ofalkenesaswellashydroborationandtriborationofalkynes.
Pt
1
-UNSC
3
N
4
demonstratesabroadsubstratescope,high
turnover,andexcellentrecyclabilityovereightconsecutive
cycleswithnegligiblelossofperformance.Thesefeatures
representasignificantadvancementtowardpracticaldesign
catalystsforsustainablemultiborationandhydroboration
reactionsusingarobustandfullyrecoverableactivecatalyst
ofpreciousmetals.Ourapproachtomultiborationand
hydroborationissummarizedinScheme1andbenchmarked
againstpreviouslyreported,lessefficientcatalyticsystems.

RESULTSANDDISCUSSION
SynthesisandCharacterizationofthePt
1
-UNSC
3
N
4
Catalyst.Thepreparationofthecatalyst,featuringhomoge-
neouslydistributedsinglePtatomsembeddedwithin2D
graphiticcarbonnitride(g-C
3
N
4
)sheets,involvedasequential
processillustratedinFigure1a.Thismethodspecifically
employsathree-stepmildmicrowavetreatment,duringwhich
thebulkg-C
3
N
4
isexfoliatedintoC
3
N
4
nanosheetsand
ultimatelyintoultrasmallnanosheets(ultrananosheets,
UNSC
3
N
4
).Inthefinalstep,Ptsalt(hexachloroplatinic
acid)isaddedundersonication,resultingintheformationofa
single-atomPtcatalystassignedasPt
1
-UNSC
3
N
4
.For
comparison,aPtcatalystdepositedontoC
3
N
4
intheform
ofPt(0)nanoparticleswasalsopreparedusingahighPt
precursorloading;thissampleiscodedasPt
N
-UNSC
3
N
4
(detailedexperimentalproceduresareprovidedinthe
SupportingInformation,Section2.1).
Scheme1.(a)SchematicRepresentationofDiborationof
AlkynesandAlkenes,(b)PreviouslyUtilizedPt-SACsfor
AlkyneDiboration,and(c)OurInnovativeApproachfor
thePtSingle-Atom-CatalyzedDiborationofAlkene,
TriborationofAlkyne,andHydroborationofAlkeneand
AlkyneFunctionalGroups
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17348

Thescanningtransmissionelectronmicroscopy(STEM)
imageinFigure1bclearlydemonstratesthatthePt
1
-UNSC
3
N
4
samplesexhibitauniformandhomogeneousdistributionofPt
singleatomsacrosstheUNC
3
N
4
support.TheTEMimageof
thecatalyst(Figure2c)confirmstheabsenceofPtnano-
particles(NPs).TheTEMcomparisonofPt
1
-UNSC
3
N
4
and
Pt
N
-UNSC
3
N
4
(FigureS1)furtherclearlyillustratesthe
structuraldifferencesbetweenthesamples,specificallyhigh-
lightingthepresenceofPtinsingle-atomformversusNPs
form.TofurtherconfirmthepresenceofPtsingleatomsand
thechemicalcompositionofPt
1
-UNSC
3
N
4
,aberration-
correctedhigh-angleannulardark-fieldSTEM(HAADF-
STEM)measurementswereperformed(Figure1d).These
measurementsdemonstratethatallPtspeciesexistexclusively
asisolatedsingleatoms,withnoevidenceofNPsformation.
Finally,energy-dispersiveX-ray(EDX)elementalmapping
(Figure1d,d
1
−d
4
)providesthechemicalmapsforPt,N,and
C,confirmingtheiruniformdistributionacrossthecatalyst.
TheX-raydiffraction(XRD)patternswererecordedto
analyzethebulkcomposition,phasepurity,andpossible
reflectionsassociatedwithPtspeciesinthesynthesized
samples,includingbulkC
3
N
4
,nanosheetsofUNSC
3
N
4
,Pt
1
-
UNSC
3
N
4
,andPt
N
-UNSC
3
N
4
(Figure2a).Twodistinct
diffractionpeaksat2θvaluesof15.15and32.00° correspond
tothe(100)and(002)planesofgraphite-likecarbonnitridein
aplanar-packedsystem(JCPDS87-1526).
50
Thesharp
diffractionpeakat32.00° signifiestheinterplanarstackingof
aromaticstructures(π−π stackedsheets),whiletheweaker
peakat15.15° correspondstointerplanarstructuralpacking
involvingthetrigonalnitrogenlinkageofthetris-triazine
motif.
42,50
Comparedtog-C
3
N
4
,the(002)diffractionpeak
shiftsslightlytohigher2θvaluesinPt
1
-UNSC
3
N
4
(seethe
insetinFigure2a),suggestinganincreasedinterplanardistance
duetotheincorporationofPtintotheUNSC
3
N
4
scaffold
duringthemicrowave-assistedprocess.
51
Furthermore,the
(100)peakat15.15° nearlydisappearsinPt
1
-UNSC
3
N
4
,
indicatingalossoflong-rangeorderingduetotheformationof
2Dultrasmallsheets.
52
Notably,noadditionalpeaks
correspondingtometallicoroxidizedPtspeciesareobserved
inPt
1
-UNSC
3
N
4
,indicatingauniformdispersionofPtsingle
atoms.WhilePt
N
-UNSC
3
N
4
exhibitsasmallreflectionat
46.12°, whichisattributedtometallicPtnanoparticles.TheX-
rayphotoelectronspectroscopy(XPS)ofthePt2pregion
(Figure2b)forPt
1
-UNSC
3
N
4
showedtwodistinctpeaksat
72.58and75.90eV,correspondingtoPt
2+
4f
7/2
andPt
2+
4f
5/2
,
respectively,confirmingthedominantpresenceofsingleatoms
Pt
2+
species.TheintensesatellitepeakssuggestthatPt
2+
is
coordinatedwithnitrogeninthecarbonnitridestructure.
53,54
InadditiontoPt
2+
,minorcontributionofPt
4+
speciesis
evidentinthePt2pXPSspectrum,asdemonstratedviapeaks
at74.80and78.20eV.Notably,theabsenceofthePt(0)
oxidationstateinXPSanalysisalignswithfindingsfrom
microscopicanalysesXRD,EXAFS,andwavelettransform
(WT)EXAFSspectra(Figure2a−g).DetailedXPSanalysisof
thesamplesisfurtherprovidedinFigureS2andTablesS1−S4.
TheX-bandelectronparamagneticresonance(EPR)spectrum
ofthecatalyst,recordedinpowderformatT=90K,isshown
inFigure2c(lowerspectrum)anddisplaysastrongand
isotropicresonancesignalatg=2.00.Thissignalremains
unchangedupondispersionofthepowderindrytetrahy-
drofuran(THF)(Figure2c,uppertrace).TheEPRsignalin
THFis,however,lowerinintensityduetodiamagnetic
dilution;thesignalisconsistentwithanS=1/2system
centeredonthecarbonsupport.Noothersignalsascribableto
paramagneticPtcentersweredetected;therefore,thePt-SA
catalyst,besidesspindefectscontainedinthesupport,includes
metalcentersadoptingtheclosed-shellasexpectedforPt(II)
orPt(IV)configurations,inlinewithXPSresults.
Toinvestigatetheoxidationstate,electroniccharge
distribution,andcoordinationenvironmentofthePtsingle
atoms,X-rayabsorptionnear-edgestructure(XANES)spectra
ofPt
1
-UNSC
3
N
4
wererecordedinPtL
3
-edge(Figure2d).The
XANESspectraoriginatefromunoccupiedPt5dstates.A
significantlyhighwhitelineintensityforPt
1
-UNSC
3
N
4
comparedtoPtfoil(Pt
0
)demonstratesareducedelectronic
concentrationon5dorbitals.Theseobservationscorroborate
thatthepresenceofelectrondeficientPtsitesoriginatesfrom
metaltoligandchargetransfer(MLCT)inthePt−N-bonded
state.Theabsenceofanypre-edgefeatureandsignificantly
intensewhitelineintensityalsosuggeststhepresenceofPtin
the(II)oxidationstate.
Thepresenceofsingle-atomicPtsiteswasfurtherconfirmed
byFourier-transformextendedX-rayabsorptionfinestructure
(EXAFS)spectroscopy(Figure2g).TheFT-EXAFSspectrum
ofPt
1
-UNSC
3
N
4
displayedasharppeakat∼1.6Åattributedto
Pt−N first-shellscatteringsuggestingPtatomscoordinatedto
secondarynitrogens(C
2
N:)inC
6
N
7
(tri-s-triazine)composed
cavityofCNsheets.Notably,nosecond-shellpeak
correspondingtoPt−Pt(2.39Å)scatteringorPt−O−Pt
wasdetecteddecipheringtheabsenceofanyPt/PtO
2
NPsand
validatingthatthePtsiteexistsasisolatedatoms.
55
EXAFS
fittingofPt
1
-UNSC
3
N
4
spectrarevealedPt−N coordination
number(CN)of4.77(±0.02)withauniformbondlengthof
2.14ÅsuggestPt−N
4
coordination(seeTableS5).The
slightlyelevatedcoordinationnumbermighthavearisendueto
weakcoordinationofelectrondeficientPtsiteswithoxygen/
H
2
Olowelectrondensity5dorbitals.Wavelettransform(WT)
EXAFSanalysisofPt
1
-UNSC
3
N
4
(Figure2e)exhibitsasingle
sharpscatteringzonecenteredatK=6.86A
−1
andR=1.66A,
attributedtoPt−N coordination.TheabsenceofanyPt−Pt
scattering(observedatK=9.97Å
−1
andR=2.67Åas
observedforPtfoil)furtherconfirmsthatPtexistsassingle-
atomspecies(Figure2f).
56,57
Basedonthesefindings,a
Figure1.(a)Schematicillustrationofthesyntheticprotocolforthe
platinumsingle-atomcatalyst(Pt
1
-UNSC
3
N
4
)supportedonultrathin
nanosheetsofgraphiticcarbonnitride(C
3
N
4
).(b)STEMimage
(scalebar:5nm)highlightingatomicallydispersedPtsingleatomson
theC
3
N
4
nanosheets(isolatedatomsindicatedbyyellowcircles).(c)
TEMimage(scalebar:20nm)showingtheabsenceofPt
nanoparticlesoraggregates.(d)HAADF-TEMimagealongwith
HAADF-STEMelementalmappingillustratingthespatialdistribution
ofPt(d1),N(d2),andC(d3),withthecombinedelementalmap
showninpanel(d4).
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17349

structuralmodelofPt
1
-UNSC
3
N
4
isproposedinFigure2h,
depictingPtsingleatomsinatetracoordinatedconfiguration
withinthecarbonnitridematrix.
CatalyticPerformanceofPt
1
-UNSC
3
N
4
forDiboration
Reactions.ToevaluatethecatalyticactivityofthePt
1
-
UNSC
3
N
4
catalyst,weinitiallytesteditsperformanceinthe
diborationofstyrene(1)usingbis(pinacolato)diboron
(B
2
pin
2
)astheborylatingreagent(Figure3).The
optimizationprocessbeganwiththeuseof10mgofPt
1
-
UNSC
3
N
4
(5.0×10
−4
mol%Pt)at100°C,areactiontimeof
15h,andtolueneasthesolvent(Figure3aandTableS6).
Undertheseconditions,styreneconversionreached20%(2),
withanexceptionalselectivityof99%forthediboration
productand1%fortheolefinreductionproduct(4).Switching
totheTHFsolventledtoloweryieldsandpoorselectivityfor
product2.Wethentestedbinarysolventmixturesoftoluene
andpolarsolvents(ethanol,water,ormethanol)ina3:1ratio.
Thetoluene−ethanol mixtureprovidedimproved50%
conversionwithaselectivityof57%fordiborationand43%
forthemonoborylationproduct(3).Incontrast,thetoluene−
watermixtureyieldedonly12%conversion,albeitwith99%
selectivityforthediborationproduct.Notably,usinga
toluene−methanol mixtureresultedinover99%conversion,
withaselectivityratioof86:14:0fordiboration,monobor-
ylation,andolefinreduction,respectively.Importantly,when
methanolwasusedasthesolesolventat70°C,weachieved
99%conversionwith99%selectivityforthediboration
product.Evenatareducedtemperatureof50°C,conversion
remainedhigh(95%),withaselectivityof99%(Figure3b,also
seeTableS7).Furtherloweringthetemperatureresultedin
decreasedconversions.
Wealsoinvestigatedtheeffectofthecatalystloading.
IncreasingthePt
1
-UNSC
3
N
4
catalystamountto20mg
resultedinexcellentconversionandselectivitywithin10h
(Figure3candTableS8),whereasreducingthecatalyst
loadingto5mgledtoa78%conversion.Catalystefficiency
Figure2.CharacterizationsofPt
1
-UNSC
3
N
4
andrelatedmaterials.(a)Wide-angleXRDpatternswithaninsetshowingtheshiftofthe(002)peak
tohigherangles.(b)Pt2pXPSspectrumofPt
1
-UNSC
3
N
4
.(c)X-bandEPRspectraofthePt
1
-UNSC
3
N
4
recordedinapowderformandupon
dispersionindryTHF.Experimentalacquisitionparameters:∼9.08−9.09 GHz,2.00mWappliedmicrowavepower,0.03stimeconstant,1.0mT
modulationwidth,8minacquisitiontime,T=90K,structuremodelPt
1
-UNSC
3
N
4
single-atomcatalyst.(d)XANESspectrumofPt
1
-UNSC
3
N
4
andPtfoil.(e,f)WTEXAFSmapsofPt
1
-UNSC
3
N
4
andPtfoil.(g)FT-EXAFSspectrumofPt
1
-UNSC
3
N
4
andPtfoil.(h)StructuralmodelofPt
1
-
UNSC
3
N
4
asderivedfromexperimentaldata.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17350

wasfurtherevaluatedbycalculatingtheturnovernumber
(TON)andturnoverfrequency(TOF).Using10mgof
catalyst(5.0ppmPt)ledtoa95%yield,withaTONof3711
andaTOFof247h
−1
.Reducingthecatalystloadingto5mg
(2.5ppmofPt)resultedina78%yield,withasignificantly
higherTONof7143andaTOFof476h
−1
,highlightingthe
catalyst’sefficiencyevenatlowerloadings.Noconversionwas
observedintheabsenceofPt
1
-UNSC
3
N
4
,showcasingthe
essentialroleofthecatalyst(TableS8,entry1).Theeffectof
B
2
pin
2
loadingwasalsoexamined.Increasingitsamountto1.2
equivresultedinexcellentconversion,whereasreducingitto
0.5equivledtoloweryieldandselectivity(TableS9).
Interestingly,nodiborationoccurredwhenalternativediboron
reagentbis(catecholato)diboron(B
2
cat
2
)wasused.However,
bis(neopentylglycolato)diboron(B
2
neop
2
)gavea40%
diborationyield(TableS10).Weevaluatedtherecyclability
ofPt
1
-UNSC
3
N
4
forthediborationofstyrene(Figure3d).The
catalystdemonstratedexcellentrecyclability,maintainingits
activityforuptoeightcycleswithanegligiblelossin
performance.Furthermore,inductivelycoupledplasmamass
spectrometry(ICP-MS)analysisconfirmedthatnodetectable
platinumleachingoccurredduringtherecyclingprocess,
underscoringtherobustnessoftheheterogeneouscatalyst
system.Finally,wecomparedcatalyticactivityofPtnano-
particlessupportedonPt
N
-UNSC
3
N
4
whereloweryieldsnoted
andnosignificantproductformationwasobservedwhen
employedapureUNSC
3
N
4
(TableS11).Theseobservations
underscoretheimportanceofthepresenceofsingle-atomPt
speciesforactivityandsustainability.Theeasyrecoveryand
reuseoftheheterogeneouscatalystnotonlyreduceprecious
metalwasteandcontaminationbutalsosimplifyproduct
isolation,representingkeypracticaladvantagesoverhomoge-
neoussystems.Thesefeaturescollectivelydemonstratethe
potentialofourcatalystforscalable,sustainableapplicationsin
selectiveborylationreactions.
Afteroptimizingthereactionconditions,weextensively
exploredthepotentialofPt
1
-UNSC
3
N
4
acrossvariousalkenes
underanairatmosphere(Scheme2).Styreneachieved95%
Figure3.ReactionschemeforthediborationofstyrenewithB
2
pin
2
catalyzedbyPt
1
-UNSC
3
N
4
.Optimizationofreactionconditions:(a)effectof
solvent,(b)effectoftemperature,(c)catalystloadingeffect,and(d)recyclabilityofPt
1
-UNSC
3
N
4
.Reactionconditions:alldiborationreactions
wereperformedinadramvialunderanairatmosphere,styrene(1.0mmol),B
2
pin
2
(1.0equiv),solvent(0.25mL),andPt
1
-UNSC
3
N
4
asacatalyst.
Yieldsweredeterminedby
1
HNMRanalysesusingmesityleneastheinternalstandard.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17351

conversionwithanisolatedyieldof88%(2a).Additionally,
arylalkenesbearingelectron-donatingfunctionalgroups,such
as4-tert-butylstyreneand4-methoxystyrene,exhibitedhigh
tolerance,resultedin94%(2b)and86%(2c)conversions,
respectively.Similarly,halide-substitutedstyrenes,suchas
para-bromostyreneandortho-chlorostyrene,gaveconversions
of90and84%respectively(2d,2e).Internalalkenessuchas
trans-β-methylstyrene(1f)andtrans-stilbene(1g)exhibited
highreactivity,achievingconversionsof87and85%,
respectively.Thecyclicaromaticalkenelike1H-indene(1h)
alsoshowedgoodconversionat84%.Additionally,the
aliphaticcyclicolefinlikecyclohexene(1i)underwentefficient
diborationandaffordedthecorrespondingproduct(2i)witha
highconversionof90%.Importantly,thePt
1
-UNSC
3
N
4
catalystexhibitedimpressiveconversionsreachingupto91%
evenforchallenging1,1-disubstitutedalkenessuchasα-
methylstyrene(1j),whichcontainsbothstericphenyland
methylgroupsaroundtheolefinicbond.Itsderivatives
including4-Meand4-Falsodisplayedgoodconversions(1k,
1l),showcasingthecatalyst’srobustnessandversatilitywith
1,1-disubstitutedaromaticalkenes.Notably,thenaturally
availableallylfunctionalgroupsuchaseugenol(1m),which
comprisesahydroxylfunctionalgroup,achievedanexcellent
conversionof97%.Inthecaseof4-vinylaniline(1n),the
presenceofafreeaminesignificantlysuppressedthereactivity,
resultinginonly35%conversion.Incontrast,theprotected
aminederivativeallylisoindoline-1,3-dione,despiteitssteric
bulkandelectroniccomplexity,achievedaconversionof69%
(2o).However,astyrenederivativebearingacyanogroup
(1p)wasproventobeunreactiveunderthestandardreaction
conditions,withnodetectableformationofthediborylated
product(2p).Thecatalystefficientlyfacilitatedthediboration
ofpinacolvinylboronate(1q),affordingproduct2qinahigh
isolatedyieldof86%.Foraliphaticalkenessuchasallylbenzene
(1r)and1-octene(1s),conversionsweresimilarlyhigh,
achieving96%(2r)and94%(2s),respectively.Importantly,
thecatalystdemonstratedchemoselectivity:inthecaseof
allylacetone,onlytheC=Cbondwastransformed,affording
thediborationproductin85%isolatedyield(2t).
Scheme2.SubstrateScopefortheDiborationofOlefins
a
a
Isolatedyieldsarepresentedinparentheses.Alldiborationreactionswereperformedindramvialsunderanairatmospherein50°Cfor15h,
usingareactionmixturecontainingtheparticularolefin(1.0mmol),B
2
pin
2
(1.0equiv),MeOH(0.25mL),andPt
1
-UNSC
3
N
4
asacatalyst(5.0×
10
−4
mol%Pt,10mg).Conversionwasdeterminedby
1
HNMRanalysisusingmesityleneasaninternalstandard.
a
TheProductwasnotisolated,
andyielddeterminedby
1
HNMRanalysisusingmesityleneasaninternalstandardispresented.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17352

CatalyticPerformanceofPt
1
-UNSC
3
N
4
forTriboration
Reactions.AfterestablishinganefficientPt
1
-UNSC
3
N
4
-
catalyzedprotocolforthediborationofalkenes,wenext
extendedourinvestigationtothetriborationofalkynesto
evaluatethebroaderutilityofthedescribedmethodology.To
thebestofourknowledge,therearenopriorreportsonthe
triborationofalkynesemployingaheterogeneouscatalyst.This
workthereforerepresentsthefirstexampleofsucha
transformation,highlightinganewavenueformetal-catalyzed
C−Bbondformationunderheterogeneousconditions.The
reactionwascarriedoutusinga1.5-foldexcessofthediboron
reagentrelativetothealkyneunderthesameconditions
previouslyoptimizedforthediborationofalkenes(Scheme3).
Buildingonthebroadsubstratescopealreadyestablishedfor
alkenediboration,weinvestigatedatargetedsetofsixalkyne
substratesfortriboration.Terminalaromaticalkynes,suchas
phenylacetylene,yieldedthedesiredtriborylatedproductin
81%.Substituentsonthearomaticringwerewelltolerated,
withpara-OMe, ortho-Me, andpara-Br phenylacetylenes
furnishingproducts7bin73%,7cin71%,and7din79%
yields.Thealiphaticterminalalkyne1-octyne(6e)gavethe
highestyieldat88%.However,internalalkynessuchas
diphenylacetylene(6f)and4-octyne(6g)didnotaffordthe
triborylatedproductsunderthesamereactionconditions,
underscoringacurrentlimitationofthemethodology.
CatalyticApplicationofPt
1
-UNSC
3
N
4
forHydro-
boration.GiventhehighcatalyticactivityofPt
1
-UNSC
3
N
4
foralkeneandalkynedi-andtriboration,weenvisioned
synthesizingmonoborylatedproductsviaahydroboration
reaction.WeexpandedtheapplicationofPt
1
-UNSC
3
N
4
to
facilitatethehydroborationofalkenes,producingmonobory-
latedalkylboranesusingpinacolborane(HBpin)asthe
hydroborationreagent(Scheme4).Thismethodoffersa
powerfulstrategyfortheselectivesynthesisofmonosubsti-
tutedalkylboranes.Whileawiderangeofhomogeneous
catalysts,includingbothnobleandfirst-rowtransitionmetals,
havebeenexploredforalkenehydroboration,achievinghigh
yieldsandselectivityundermildconditionswithheteroge-
neouscatalystsremainsasignificantchallenge.Weconducteda
meticulousoptimizationofreactionconditionsforthe
hydroborationofstyrene(1,1.0mmol)withHBpin(1.0
mmol)inthepresenceofPt
1
-UNSC
3
N
4
s(TablesS12−S15).
Whenweutilized10mgofPt
1
-UNSC
3
N
4
inTHFasthe
solventat80°C,after15h,weachievedatotalconversionof
99%withaselectivitybreakdownofanti-Markovnikov=95%
(3),Markovnikov=1%(5),andethylbenzene=4%(4)
(TableS12).Interestingly,employinganonpolarsolventlike
tolueneresultedinaloweryieldandwithaslightshiftin
selectivitytowardethylbenzene(yield=62%,anti-Markovni-
kov=92%,Markovnikov=2%,ethylbenzene=6%).Onthe
otherhand,theuseofpolarproticsolventslikeMeOHfailed
toinitiatethehydroborationreaction(TableS12,entry5).
Whenwereducedthereactiontemperaturefrom80to25°C,
whilekeepingTHFasthesolvent,weachieveda98%yieldof
thehydroboratedproductwithanexceptionalselectivityof
99%towardtheanti-Markovnikovproduct.Weobtainedthe
bestoptimizationresultsperformingthereactionin18hat25
°Cwith98%conversionandselectivityof99%(TableS13,
Scheme3.SubstrateScopefortheTriborationofAlkynes
a
a
Isolatedyieldsarepresentedinparentheses.Alltriborationreactionswereperformedindramvialsunderanairatmospherein50°Cfor15h,
usingareactionmixturecontainingtheparticularolefin(1.0mmol),B
2
pin
2
(1.5equiv),MeOH(0.25mL),andPt
1
-UNSC
3
N
4
asacatalyst(5.0×
10
−4
mol%Pt,10mg).Conversionwasdeterminedby
1
HNMRanalysisusingmesityleneasaninternalstandard.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17353

Scheme4.SubstrateScopefortheHydroborationofAlkenes
a
a
Isolatedyieldsarepresentedinparentheses.Reactionswerecarriedoutatoptimizedconditions:alkene(1.0mmol),HBpin(1.0equiv),THF
(0.25mL),Pt
1
-UNSC
3
N
4
(5.0×10
−4
mol%Pt,10mg),18hreactiontime,temp.(25°C),argonatmosphere.Conversionwasdeterminedby
1
H
NMRanalysisusingmesityleneasaninternalstandard.
Scheme5.SubstrateScopefortheHydroborationofAlkynes
a
a
Isolatedyieldsarepresentedinparentheses.Reactionconditions:alkyne(1.0mmol),HBpin(1.0equiv),THF(0.25mL),Pt
1
-UNSC
3
N
4
(5.0×
10
−4
mol%Pt,10mg),18hreactiontime,temp.(25°C),argonatmosphere.Conversionandselectivityweredeterminedby
1
HNMRanalysis
usingmesityleneasaninternalstandard.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17354

entry4).WealsoinvestigatedtheeffectofHBpinloadingon
thehydroborationreactionofalkeneandobservedthattheuse
of1.5equivofHBpinresultedinthehighestconversionin15
hofreactiontime(TableS14,entry1).Increasingthecatalyst
loadingto20mgresultedinasubstantialimprovementin
yield,reaching99%,andanotableincreaseinanti-
Markovnikov(3)selectivityto99%(TableS15).Additionally,
increasedcatalystloading(20mg)reducedthereactiontime
to10h(TableS15,entry2).However,whenthecatalyst
loadingwasreducedfrom7to5mg(2.5ppmofPt),agradual
decreaseinconversionwasobserved,whileselectivity
remainedconsistent.Thissuggeststhatthereactionstill
proceedsefficientlyevenwithapartspermillionlevelof
catalystloading(TableS15,entries4and5).
Followingtheoptimizationofreactionconditions(1.0mmol
ofalkene,1.0equivofHBpin,0.25mLofTHF,temperatureof
25°C,and10mgofPt
1
-UNSC
3
N
4
catalystinanargon
atmosphere),weexpandedthescopeofourstudytoexplorea
varietyofstyrenesforhydroborationreaction(Scheme4).
Simplestyrene(1a)reached98%conversionand90%isolation
yield(3a).Wethenexaminedstyrenewithelectron-donating
groups,suchasbulky1,3,5-trimethyland2-methoxystyrene,
bothofthemprovidedexcellentyields(3u,3v),82and90%,
respectively.Next,N,N-dimethyl-4-vinylanilinewastested
leadingto77%conversion(3w).Weproceededtoinvestigate
substrateswithpara-substitutedhalides,includingfluoroand
bromo(3x,3y),whichexhibitedexcellentisolatedyields,
reachingupto84and86%,respectively.Furthermore,a
substratewithanelectron-withdrawinggroup,suchasmethyl
4-vinylbenzoatewasfoundtotoleratethereactionwitha72%
yield(3z).Whenwetestedallylbenzeneasasubstrate,
selectivehydroborationoccurredatthebetapositionwithan
impressive89%yield(3aa). Alkenesubstitutedwitha
naphthalenegroupwasefficientlyhydroborated,resultingin
an85%yield(3ab). Remarkably,evenstericallyhindered
alkenesbearingamethylsubstituent,suchasα-methylstyrene
(3j)anditspara-substitutedderivativeswithmethyl(3k)and
chloro(3ac) groups,werewelltolerated,affordingisolated
yieldsrangingfrom77to81%.
Furthermore,weappliedthePt
1
-UNSC
3
N
4
catalysttothe
selectivehydroborationofalkynes,successfullysynthesizing
vinylboranesusingthesamereactionconditionsasthosefor
alkenes(Scheme5).Thesevinylboranesserveasessential
buildingblocksinorganicsynthesis.Usingphenylacetylene,we
achieved95%conversion(8a).Wealsoscreenedsubstituted
arylalkyneswithelectron-donatingand-withdrawinggroups
suchas−OMe,−CN,and−3,5-bis(trifluoromethyl),obtain-
ingexcellentyieldsfortherespectivevinylboranes(8h−8j).
Additionally,thecatalystproduceda3-thiophenevinylborane
with90%conversion,demonstratingitsefficacyinhydro-
boratingheterocycliccompounds(8k).Thecatalystshowed
outstandingperformancenotonlyforterminalalkynesbutalso
forinternalalkynes.Forinstance,thehydroborationof
diphenylacetylenegaveanimpressive91%conversion(8f).
Inthecaseof3-phenyl-1-propyne(6l),product8lwas
obtainedin83%isolatedyieldasamixtureofα-andβ-
isomers.Moreover,aliphaticandsilyl-substitutedalkynesalso
Figure4.MolecularstructuresandcorrespondingenergyprofilesofthediborationandhydroborationofstyrenecatalyzedbyPt
1
-UNSC
3
N
4
.Left
panelsshowtheoptimizedgeometriesofreactants,products,andTSsadsorbedatthecatalyst.Thelabelingofthestructuresisconsistentwiththe
labelingofthesynthesizedproducts.Platinumshownasalightgrayball,carbonatomsindarkgray,hydrogeninwhite,boroningreen,andoxygen
inred.TherightpanelsshowassociatedreactionprofileswithcalculatedstandardGibbsenergies(323K,1atm)inmethanol.Thereaction
involvesadsorptionofthereactanttothecatalyst,chemicaltransformationtotheproductviatheTS,andproductdesorption,i.e.,thecatalyst
regeneration.(a)InitialadsorptionofeitherstyreneorB
2
pin
2
ontoPt
1
-UNSC
3
N
4
(denotedascat)followedbythereactionwiththeotherreactant
(eitherstyreneorB
2
pin
2
)towardproduct2viaTS.(b)InitialadsorptionofeitherstyreneorHBpinontoPt
1
-UNSC
3
N
4
followedbythereaction
withtheotherreactant(eitherstyreneorHBpin)towardproduct3viaTS.(c)InitialadsorptionofeitherstyreneorHBpinontoPt
1
-UNSC
3
N
4
followedbythereactionwiththeotherreactant(eitherstyreneorHBpin)towardproduct5viaTS.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17355

toleratedthereactionconditions,deliveringexcellentyieldsof
thedesiredproducts(8e,8m).
MechanisticInvestigations.Togainmechanisticinsights
intothecatalyzedreaction,weperformeddensityfunctional
theory(DFT)calculationstocomputetheGibbsfreeenergy
profilesalongthereactionpathways.Wecomparedreaction
profilesofthePt
1
-UNSC
3
N
4
-catalyzeddiborationandhydro-
borationinmethanolwiththeuncatalyzedreferencereaction,
whichdisplayedhighreactionbarriersreachingupto73kcal/
mol(FigureS4).
Thecatalyticcyclebeginswiththeadsorptionofreactants
ontothePt
1
-UNSC
3
N
4
activesite(Figure4).Specifically,we
investigatedtheadsorptionofstyrene,B
2
pin
2
,andHBpinonto
Pt
1
-UNSC
3
N
4
todetermine,whichreactantinteractsmost
stronglywiththecatalyst,identifyingthepreferredadsorbate.
Styrenehasshownthestrongestadsorptionof−24.3kcal/mol,
followedbyB
2
pin
2
(−22.8kcal/mol)andHBpin(−6.3kcal/
mol),indicatingthatstyrenepreferentiallybindstothe
catalyticcenter.Thispreferentialadsorptionofstyrene
activatesthedoublebond,asevidencedbytheWibergbond
index(WBI)analysis,whichshowsadecreaseintheC
α
−C
β
bondorderfrom1.92inthefreemoleculeto1.46when
adsorbed.Thisactivationisfacilitatedbyπ-electrondonation
toPt(II)orbitals,renderingthestyrenedoublebondmore
susceptibletodiborationandhydroborationreactions.Forthe
sakeofcompleteness,itshouldbenotedthatfortheboron-
containingreagents,theB−BbondorderinadsorbedB
2
pin
2
remainednearlyconstant(0.95vs0.96),whiletheB−Hbond
orderinadsorbedHBpindecreasedfrom0.96to0.68,
weakeningisattributedtotheinteractionbetweenthe
hydrogenatomandthePtion,assupportedbyaPt−H
WBIof0.23andanincreaseintheB−Hbondlengthfrom
1.20to1.33Å.
Sinceallreactantsdemonstratednegativeadsorption
energiesonthecatalyst,twopossiblemechanisticpathways
wereconsidered;(i)theinteractionofadsorbedstyreneon
Pt
1
-UNSC
3
N
4
withB
2
pin
2
orHBpin,and(ii)theinteractionof
eitheradsorbedB
2
pin
2
oradsorbedHBpinonPt
1
-UNSC
3
N
4
withstyrene.Adsorptionenergyevaluationssuggestthatthe
firstscenarioismorefavorable.TheenergybarriersforthePt
1
-
UNSC
3
N
4
catalyzedreactionsrangedfrom10to40kcal/mol
(Figure4),beingsignificantlyreducedcomparedtothe
referencereactionsintheabsenceofthecatalyst(FigureS4).
Thedecreaseinreactionbarriersisattributedtotheweakening
oftheC
α
−C
β
doublebondofstyreneandtheB−Hbondin
HBpinduetotheirinteractionswiththecatalyst(videsupra).
Thedesorptionenergiesrequiredforproductreleaseand
catalystregenerationrangedfrom20to26kcal/mol(Figure
4).
Insummary,althoughstyreneexhibitedstrongeradsorption
onthecatalyst,energybarrierswereloweredwhenHBpinwas
adsorbedontoPt
1
-UNSC
3
N
4
first,followedbytheinteraction
withstyrene.Therefore,weproposeamechanisminwhich
Pt(II)weakensboththedoublebondinstyreneandtheH−B
bondinHBpin,therebyfacilitatingthereaction.Theproposed
reactionschemes,illustratingpossiblereactionmechanisms,
arepresentedinScheme6forthediborationreactionandfor
hydroborationinSchemeS1.
ApplicationsofthePt
1
-UNSC
3
N
4
Catalyst.Todemon-
stratetheutilityofthePt
1
-UNSC
3
N
4
-catalyzeddiborationof
alkenes,weconductedagram-scalereactionusingthe
challengingalkeneα-methylstyreneandB
2
pin
2
(Scheme7a).
Thedesiredproduct2jwasobtainedinan81%yield.
Furthermore,thismethodologyprovedtobehighlyeffective
forthesynthesisofchallengingsubstituteddiols,delivering
product2jainanexcellentyieldof92%(Scheme7b).
Additionally,theprotocolwassuccessfullyextendedtoother
transformations,suchastheone-pothydroborationofalkynes
andatandemSuzuki-Miyauracouplingreaction(Scheme7c),
bothofwhichprovidedexcellentyieldsforthecorresponding
C−Ccoupledproduct(6ia).

CONCLUSIONS
Thisstudyintroducesthefirstheterogeneousplatinumsingle-
atomcatalystcapableofachievingthehighlyregioselective
multiborationandhydroborationofalkenesandalkynesunder
exceptionallymildconditions.Thecatalystenables1,2-
diborationofalkenes,1,2,2-triborationofalkynes,andselective
anti-Markovnikovhydroborationreactionsacrossawiderange
ofsubstitutedandstericallychallengingsubstrates,tolerating
diversefunctionalgroupsandhighlightingitsbroadapplic-
abilityandpotentialforsustainablesynthesis.ThePt-SAC,
Scheme6.PossibleReactionMechanismfortheDiborationofStyreneCatalyzedbyPt
1
-UNSC
3
N
4
,BasedonDFT
Calculations
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17356

supportedonultrathinnanosheetsofC
3
N
4
,isscalable,stable,
andrecyclable-operatingeffectivelyevenatextremelylow
platinumloadings.Notably,itretainsexceptionalefficiency
evenatverylowcatalystloading,withouttheuseofbaseand
anyotheractivatororadditive.Usingjust10mg(5.0ppmPt),
a95%yieldwasachievedwithaTONof3711andTOFof247
h
−1
.Whenthecatalystloadingwasfurtherreducedto5mg
(2.5ppmofPt),thereactionstillproceededefficiently,
achievinga78%yieldwithanimpressiveTONof7143and
TOF476h
−1
.Theseresultshighlightthecatalyst’s
sustainability,efficiency,andscalabilityforpotentialindustrial
applications.Theoreticalinsightsrevealedthattheenhanced
reactivityofPt-SACarisesfromadsorption-inducedweakening
ofkeybonds(C=CandB−H),significantlyreducingreaction
barriers.Additionally,thecatalystexhibitsexcellentrecycla-
bility,maintainingitssingle-atomcharacterandactivityover
eightcycleswithoutanyPtleachingorlossofefficiency.The
protocolsdevelopedinthisworkarecompatiblewithlarge-
scaleapplications,asdemonstratedbygram-scaleproduction
andthesynthesisofsubstituteddiolsandothercomplex
molecules.Furthermore,thisheterogeneouscatalystuniquely
enablestheselective1,2,2-triborylationofalkynes,atrans-
formationnotpreviouslyachievedusinganyotherheteroge-
neoussystem.Overall,thesefindingsunderscorethepotential
ofPt-SACstoadvanceorganoboronchemistry,with
immediateimplicationsforpharmaceutical,polymer,and
agrochemicalindustries.TheseresultspositionPt-SACasa
promisingplatformforsustainableandhighlyefficientcatalytic
transformations.

METHODS
Asequentialsynthesisapproachwasemployedtopreparethe
g-C
3
N
4
,UNSC
3
N
4
,Pt
1
-UNSC
3
N
4
,andPt
N
-UNSC
3
N
4
cata-
lysts.Bulkg-C
3
N
4
wassynthesizedviathermalpolymerization
ofdicyandiamide,followedbyexfoliationintonanosheets
(nC
3
N
4
)throughcontrolledheating.Furthersonicationof
nC
3
N
4
ledtotheformationofultrananosheets(UNSC
3
N
4
),
whichservedasaphotoactivesupportforplatinumdispersion.
ThePt
1
-UNSC
3
N
4
single-atomcatalystwasobtainedbythe
dropwiseadditionofhexachloroplatinicacidtoUNSC
3
N
4
,
followedbysonication,reductionwithNaBH
4
,andmicrowave
treatment.Ananoparticle-basedPtcatalyst(Pt
N
-UNSC
3
N
4
)
wassynthesizedbyusingincipientwetnessimpregnation.A
completelistofreagentscanbefoundintheSupporting
Information,Section1,whichalsodetailsthecharacterization
techniques(XRD,XPS,XANES,EXAFS,TEM,ICP-MS.
NMR,GCMS.HRMS.FT-IR,etc.)andinstrumentsused.A
step-by-stepdescriptionofthesyntheticprocedureisprovided
intheSupportingInformation,Section2.1.

ASSOCIATEDCONTENT
*

SupportingInformation
TheSupportingInformationisavailablefreeofchargeat
https://pubs.acs.org/doi/10.1021/acscatal.5c03767.
Additionalexperimentaldetails,optimizationofreaction
conditions,catalystcharacterizationdata,NMRspectra
andDFTcalculationdetails,materials,methods,
compoundcharacterization(PDF)

AUTHORINFORMATION
CorrespondingAuthors
VitthalB.Saptal−CenterforAdvancedTechnologies,Adam
MickiewiczUniversity,Poznań61-614,Poland;
orcid.org/0000-0002-3840-6538;
Email:[email protected]
RadekZbořil−RegionalCentreofAdvancedTechnologies
andMaterials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic;NanotechnologyCentre,Centrefor
EnergyandEnvironmentalTechnologies,VSB−Technical
UniversityofOstrava,Ostrava-Poruba70800,Czech
Republic;
orcid.org/0000-0002-3147-2196;
Email:[email protected]
StepanKment−RegionalCentreofAdvancedTechnologies
andMaterials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic;NanotechnologyCentre,Centrefor
EnergyandEnvironmentalTechnologies,VSB−Technical
UniversityofOstrava,Ostrava-Poruba70800,Czech
Republic;
orcid.org/0000-0002-6381-5093;
Email:[email protected]
JędrzejWalkowiak−CenterforAdvancedTechnologies,
AdamMickiewiczUniversity,Poznań61-614,Poland;
Email:[email protected]
Authors
PawełHuninik−CenterforAdvancedTechnologies,Adam
MickiewiczUniversity,Poznań61-614,Poland;Facultyof
Chemistry,AdamMickiewiczUniversity,Poznań61-614,
Poland;
orcid.org/0000-0002-0305-1319
PritiSharma−RegionalCentreofAdvancedTechnologiesand
Materials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic;JerzyHaberInstituteofCatalysis
andSurfaceChemistry,PolishAcademyofSciences,Krakow
30-239,Poland;
orcid.org/0000-0003-3197-7079
Scheme7.ApplicationsofthePt
1
-UNSC
3
N
4
Catalystforthe
(a)Large-ScaleApplicationsofDevelopedProtocolto
SynthesizeChallengingDiboron;(b)One-PotSynthesisof
SubstitutedDiols;and(c)One-PotHydroborationand
SuzukiCouplingReaction,6i(1.0mmol),HBpin(1.0
equiv),Pd(PPh
3
)
4
(5mol%),4-Iodotoluene(1.2equiv),
THF(1M),3MCs
2
CO
3
,70°C,24h,ArgonAtmosphere;
IsolatedYieldsArePresented
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17357

MartinSlaby−RegionalCentreofAdvancedTechnologiesand
Materials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic
RostislavLanger−IT4Innovations,VSB-TechnicalUniversity
ofOstrava,Ostrava-Poruba70800,CzechRepublic
PawanKumar−DepartmentofMechanical&Industrial
Engineering,UniversityofToronto,Toronto,OntarioM5S
3G8,Canada;
orcid.org/0000-0003-2804-9298
AliShayestehZeraati−DepartmentofMechanical&
IndustrialEngineering,UniversityofToronto,Toronto,
OntarioM5S3G8,Canada;
orcid.org/0000-0003-3534-
6792
XiyangWang−DepartmentofMechanicalandMechatronics
Engineering,WaterlooInstituteforNanotechnology,
MaterialsInterfaceFoundry,UniversityofWaterloo,
Waterloo,OntarioN2L3G1,Canada;
orcid.org/0000-
0002-7591-6676
MartinPetr−RegionalCentreofAdvancedTechnologiesand
Materials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic
MichalOtyepka−RegionalCentreofAdvancedTechnologies
andMaterials,CzechAdvancedTechnologyandResearch
Institute(CATRIN),PalackýUniversityOlomouc,Olomouc
77900,CzechRepublic;IT4Innovations,VSB-Technical
UniversityofOstrava,Ostrava-Poruba70800,Czech
Republic;
orcid.org/0000-0002-1066-5677
ManojB.Gawande−NanotechnologyCentre,Centrefor
EnergyandEnvironmentalTechnologies,VSB−Technical
UniversityofOstrava,Ostrava-Poruba70800,Czech
Republic
Completecontactinformationisavailableat:
https://pubs.acs.org/10.1021/acscatal.5c03767
AuthorContributions

P.H.andP.S.contributedequallytothiswork.V.B.S.
conceptualizedthestudyandsupervisedtheoverallresearch
activities.P.H.performedthecatalyticexperiments,products
characterization,anddataanalysis.P.S.wasresponsibleforthe
synthesisandcharacterizationofthecatalyst.M.S.contributed
tothecatalystformulation.R.L.andM.O.carriedouttheDFT
calculations.M.P.performedtheXPSanalysis.P.K.,A.S.Z.,and
X.W.assistedwiththeXASmeasurements.J.W.,M.B.G.,R.Z.,
andS.K.providedlaboratoryfacilitiesandofferedguidance
throughouttheproject.Themanuscriptwaswrittenthrough
contributionsofallauthors.Allauthorshavegivenapprovalto
thefinalversionofthemanuscript.
Notes
Theauthorsdeclarenocompetingfinancialinterest.

ACKNOWLEDGMENTS
Computationalresourceswereprovidedbythee-INFRACZ
project(ID:90254),supportedbytheMinistryofEducation,
YouthandSportsoftheCzechRepublic.Wealsoacknowledge
thefinancialsupportfromERDF/ESFprojectTECHSCALE
(no.CZ.02.01.01/00/22_008/0004587)andfromtheEuro-
peanUnionundertheREFRESH-ResearchExcellencefor
RegionSustainabilityandHigh-techIndustriesprojectnumber
CZ.10.03.01/00/22_003/0000048viatheOperationalPro-
grammeJustTransition,andtheNationalScienceCentrein
Poland,grantno.UMO-2019/34/E/ST4/00068.S.K.grate-
fullyacknowledgesupportbytheCzechScienceFoundation,
projectGACR23-07971SandtheEuropeanUnion’sHorizon
2020projectSAN4Fuel(no.101079384,Horizon-Widera-
2021).

REFERENCES
(1)Yoshida,H.BorylationofAlkynesunderBase/CoinageMetal
Catalysis:SomeRecentDevelopments.ACSCatal.2016, 6(3),
1799−1811.
(2)Magre,M.;Szewczyk,M.;Rueping,M.S-BlockMetalCatalysts
fortheHydroborationofUnsaturatedBonds.Chem.Rev.2022, 122
(9),8261−8312.
(3)Chaves-Pouso,A.;Rivera-Chao,E.;Fañanás-Mastral,M.
CatalyticAlkyneAllylboration:AQuestforSelectivity.ACSCatal.
2023, 13(19),12656−12664.
(4)Tian,Y.-M.;Guo,X.-N.;Braunschweig,H.;Radius,U.;Marder,
T.B.PhotoinducedBorylationfortheSynthesisofOrganoboron
Compounds.Chem.Rev.2021, 121(7),3561−3597.
(5)Mkhalid,I.A.I.;Barnard,J.H.;Marder,T.B.;Murphy,J.M.;
Hartwig,J.F.C−HActivationfortheConstructionofC−BBonds.
Chem.Rev.2010, 110(2),890−931.
(6)Yu,I.F.;Wilson,J.W.;Hartwig,J.F.Transition-Metal-Catalyzed
SilylationandBorylationofC−H BondsfortheSynthesisand
FunctionalizationofComplexMolecules.Chem.Rev.2023,123(19),
11619−11663.
(7)Saptal,V.B.;Wang,R.;Park,S.RecentAdvancesinTransition
Metal-FreeCatalyticHydroelementation(E=B,Si,Ge,andSn)of
Alkynes.RSCAdv.2020, 10(71),43539−43565.
(8)Geier,S.J.;Vogels,C.M.;Melanson,J.A.;Westcott,S.A.The
TransitionMetal-CatalysedHydroborationReaction.Chem.Soc.Rev.
2022, 51(21),8877−8922.
(9)Neeve,E.C.;Geier,S.J.;Mkhalid,I.A.I.;Westcott,S.A.;
Marder,T.B.Diboron(4)Compounds:FromStructuralCuriosityto
SyntheticWorkhorse.Chem.Rev.2016, 116(16),9091−9161.
(10)Zheng,W.;Tan,B.B.;Ge,S.;Lu,Y.EnantioselectiveCopper-
CatalyzedRing-OpeningDiborationofArylidenecyclopropanesto
AccessChiralSkipped1,4-and1,3-Diboronates.J.Am.Chem.Soc.
2024, 146(8),5366−5374.
(11)Bose,S.K.;Mao,L.;Kuehn,L.;Radius,U.;Nekvinda,J.;
Santos,W.L.;Westcott,S.A.;Steel,P.G.;Marder,T.B.First-Rowd-
BlockElement-CatalyzedCarbon−Boron BondFormationand
RelatedProcesses.Chem.Rev.2021, 121(21),13238−13341.
(12)Kong,Z.;Hu,W.;Morken,J.P.1,2-Diborylsilanes:Catalytic
EnantioselectiveSynthesisandSite-SelectiveCross-Coupling.ACS
Catal.2023, 13(17),11522−11527.
(13)Takaya,J.;Iwasawa,N.Catalytic,DirectSynthesisof
Bis(Boronate)Compounds.ACSCatal.2012, 2(9),1993−2006.
(14)Zhao,F.;Jia,X.;Li,P.;Zhao,J.;Zhou,Y.;Wang,J.;Liu,H.
CatalyticandCatalyst-FreeDiborationofAlkynes.Org.Chem.Front.
2017, 4(11),2235−2255.
(15)Eghbarieh,N.;Hanania,N.;Masarwa,A.Stereodefined
PolymetalloidAlkenesSynthesisviaStereoselectiveBoron-Masking
ofPolyborylatedAlkenes.Nat.Commun.2023, 14(1),2022.
(16)Ishiyama,T.;Matsuda,N.;Miyaura,N.;Suzuki,A.Platinum-
(0)-CatalyzedDiborationofAlkynes.J.Am.Chem.Soc.1993, 115
(23),11018−11019.
(17)Coombs,J.R.;Haeffner,F.;Kliman,L.T.;Morken,J.P.Scope
andMechanismofthePt-CatalyzedEnantioselectiveDiborationof
MonosubstitutedAlkenes.J.Am.Chem.Soc.2013,135(30),11222−
11231.
(18)Gao,C.;Lee,P.S.;Morken,J.P.Platinum-Catalyzed
EnantioselectiveDiborationofMonosubstitutedAlkenes.Org.Synth
2024, 101,229−241.
(19)Vendola,A.J.;Allais,C.;Dechert-Schmitt,A.-M.R.;Lee,J.T.;
Singer,R.A.;Morken,J.P.DiastereoselectiveDiborationofCyclic
Alkenes:ApplicationtotheSynthesisofAristeromycin.Org.Lett.
2021, 23(8),2863−2867.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17358

(20)Wang,X.;Wang,Y.;Huang,W.;Xia,C.;Wu,L.Direct
SynthesisofMulti(Boronate)EstersfromAlkenesandAlkynesvia
HydroborationandBorationReactions.ACSCatal.2021,11(1),1−
18.
(21)Szyling,J.;Szymańska,A.;Walkowiak,J.SelectiveSynthesisof
Boron-SubstitutedEnynesviaaOne-PotDiboration/Protodeboration
Sequence.Chem.Commun.2023, 59(62),9541−9544.
(22)Szyling,J.;Szymańska,A.;Franczyk,A.;Walkowiak,J.
[Pt(PPh3)4]-CatalyzedSelectiveDiborationofSymmetricaland
Unsymmetrical1,3-Diynes.J.Org.Chem.2022, 87(16),10651−
10663.
(23)Salvadó,O.;Fernández,E.Tri(Boryl)AlkanesandTri(Boryl)-
Alkenes:TheVersatileReagents.Molecules2020, 25(7),1758.
(24)Yang,X.;Ge,S.Cobalt-Catalyzed1,1,3-Triborylationof
TerminalAlkynes.Organometallics2022, 41(14),1823−1828.
(25)Liu,X.;Ming,W.;Friedrich,A.;Kerner,F.;Marder,T.B.
Copper-CatalyzedTriborationofTerminalAlkynesUsingB2pin2:
EfficientSynthesisof1,1,2-Triborylalkenes.Angew.Chem.,Int.Ed.
2020, 59(1),304−309.
(26)Doan,S.H.;Mai,B.K.;Nguyen,T.V.AUniversal
OrganocatalystforSelectiveMono-,Di-,andTriborationofTerminal
Alkynes.ACSCatal.2023, 13(12),8099−8105.
(27)Liu,K.;Liang,M.;Song,Q.Zr-CatalyzedAssemblyof1,1,1-
TriborylalkanesfromAlkenesandHBpin.J.Am.Chem.Soc.2025,147
(20),17539−17548.
(28)Liu,X.;Ming,W.;Zhang,Y.;Friedrich,A.;Marder,T.B.
Copper-CatalyzedTriboration:Straightforward,Atom-Economical
Synthesisof1,1,1-TriborylalkanesfromTerminalAlkynesand
HBpin.Angew.Chem.,Int.Ed.2019, 58(52),18923−18927.
(29)Grirrane,A.;Corma,A.;Garcia,H.StereoselectiveSingle
(Copper)orDouble(Platinum)BoronationofAlkynesCatalyzedby
Magnesia-SupportedCopperOxideorPlatinumNanoparticles.Chem.
−Eur.J.2011, 17(8),2467−2478.
(30)Chen,Q.;Zhao,J.;Ishikawa,Y.;Asao,N.;Yamamoto,Y.;Jin,
T.RemarkableCatalyticPropertyofNanoporousGoldonActivation
ofDiboronsforDirectDiborationofAlkynes.Org.Lett.2013, 15
(22),5766−5769.
(31)Li,L.;Gong,T.;Lu,X.;Xiao,B.;Fu,Y.Nickel-Catalyzed
Synthesisof1,1-DiborylalkanesfromTerminalAlkenes.Nat.
Commun.2017, 8(1),345.
(32)Alonso,F.;Moglie,Y.;Pastor-Pérez,L.;Sepúlveda-Escribano,
A.Solvent-andLigand-FreeDiborationofAlkynesandAlkenes
CatalyzedbyPlatinumNanoparticlesonTitania.ChemCatChem.
2014, 6(3),857−865.
(33)Zhang,J.;Wu,X.;Cheong,W.-C.;Chen,W.;Lin,R.;Li,J.;
Zheng,L.;Yan,W.;Gu,L.;Chen,C.;Peng,Q.;Wang,D.;Li,Y.
CationVacancyStabilizationofSingle-Atomic-SitePt1/Ni(OH)x
CatalystforDiborationofAlkynesandAlkenes.Nat.Commun.2018,
9(1),1002.
(34)Jia,T.;Ai,J.;Li,X.;Zhang,M.-M.;Hua,Y.;Li,Y.-X.;Sun,C.-
F.;Liu,F.;Huang,R.-W.;Wang,Z.;Zang,S.-Q.AtomicallyPrecise
CopperClusterswithDualSitesforHighlyChemoselectiveand
EfficientHydroboration.Nat.Commun.2024, 15(1),9551.
(35)Li,C.;Song,S.;Li,Y.;Xu,C.;Luo,Q.;Guo,Y.;Wang,X.
SelectiveHydroborationofUnsaturatedBondsbyanEasily
AccessibleHeterotopicCobaltCatalyst.Nat.Commun.2021, 12
(1),3813.
(36)Qiu,W.;Tao,R.;He,Y.;Zhou,Y.;Yang,K.;Song,Q.
EnantioselectiveConstructionofC-BAxiallyChiralAlkenylboronsby
Nickel-CatalyzedRadicalRelayedReductiveCoupling.Nat.Commun.
2024, 15(1),10432.
(37)Wen,J.;Huang,Y.;Zhang,Y.;Grützmacher,H.;Hu,P.Cobalt
CatalyzedPracticalHydroborationofTerminalAlkyneswithTime-
DependentStereoselectivity.Nat.Commun.2024, 15(1),2208.
(38)Kaiser,S.K.;Chen,Z.;FaustAkl,D.;Mitchell,S.;Pérez-
Ramírez,J.Single-AtomCatalystsacrossthePeriodicTable.Chem.
Rev.2020, 120(21),11703−11809.
(39)Sarma,B.B.;Maurer,F.;Doronkin,D.E.;Grunwaldt,J.-D.
DesignofSingle-AtomCatalystsandTrackingTheirFateUsing
OperandoandAdvancedX-RaySpectroscopicTools.Chem.Rev.
2023, 123(1),379−444.
(40)Liu,L.;Corma,A.MetalCatalystsforHeterogeneousCatalysis:
FromSingleAtomstoNanoclustersandNanoparticles.Chem.Rev.
2018, 118(10),4981−5079.
(41)Liang,X.;Fu,N.;Yao,S.;Li,Z.;Li,Y.TheProgressand
OutlookofMetalSingle-Atom-SiteCatalysis.J.Am.Chem.Soc.2022,
144(40),18155−18174.
(42)Zhang,H.;Liu,G.;Shi,L.;Ye,J.Single-AtomCatalysts:
EmergingMultifunctionalMaterialsinHeterogeneousCatalysis.Adv.
EnergyMater.2018, 8(1),1701343.
(43)Yang,X.-F.;Wang,A.;Qiao,B.;Li,J.;Liu,J.;Zhang,T.Single-
AtomCatalysts:ANewFrontierinHeterogeneousCatalysis.Acc.
Chem.Res.2013, 46(8),1740−1748.
(44)Lang,R.;Du,X.;Huang,Y.;Jiang,X.;Zhang,Q.;Guo,Y.;Liu,
K.;Qiao,B.;Wang,A.;Zhang,T.Single-AtomCatalystsBasedonthe
Metal−Oxide Interaction.Chem.Rev.2020,120(21),11986−12043.
(45)Chen,J.-Y.;Xiao,Y.;Guo,F.-S.;Li,K.-M.;Huang,Y.-B.;Lu,Q.
Single-AtomMetalCatalystsforCatalyticChemicalConversionof
BiomasstoChemicalsandFuels.ACSCatal.2024, 14(7),5198−
5226.
(46)Kment,S
̌
.;Bakandritsos,A.;Tantis,I.;Kmentová,H.;Zuo,Y.;
Henrotte,O.;Naldoni,A.;Otyepka,M.;Varma,R.S.;Zbořil,R.
SingleAtomCatalystsBasedonEarth-AbundantMetalsforEnergy-
RelatedApplications.Chem.Rev.2024, 124(21),11767−11847.
(47)Singh,B.;Gawande,M.B.;Kute,A.D.;Varma,R.S.;
Fornasiero,P.;McNeice,P.;Jagadeesh,R.V.;Beller,M.;Zbořil,R.
Single-Atom(Iron-Based)Catalysts:SynthesisandApplications.
Chem.Rev.2021, 121(21),13620−13697.
(48)Liu,Y.;Wu,X.;Li,Z.;Zhang,J.;Liu,S.-X.;Liu,S.;Gu,L.;
Zheng,L.R.;Li,J.;Wang,D.;Li,Y.FabricatingPolyoxometalates-
StabilizedSingle-AtomSiteCatalystsinConfinedSpacewith
EnhancedActivityforAlkynesDiboration.Nat.Commun.2021, 12
(1),4205.
(49)Miao,X.;Chen,W.;Lv,S.;Li,A.;Li,Y.;Zhang,Q.;Yue,Y.;
Zhao,H.;Liu,L.;Guo,S.;Guo,L.StabilizingSingle-AtomicPtby
FormingPt−Fe BondsforEfficientDiborationofAlkynes.Adv.
Mater.2023, 35(14),2211790.
(50)Lin,Q.;Li,L.;Liang,S.;Liu,M.;Bi,J.;Wu,L.Efficient
SynthesisofMonolayerCarbonNitride2DNanosheetwithTunable
ConcentrationandEnhancedVisible-LightPhotocatalyticActivities.
Appl.Catal.BEnviron.2015, 163,135−142.
(51)Kumar,P.;Askar,A.;Wang,J.;Roy,S.;Kancharlapalli,S.;
Wang,X.;Joshi,V.;Hu,H.;Kannimuthu,K.;Trivedi,D.;Bollini,P.;
Wu,Y.A.;Ajayan,P.M.;Adachi,M.M.;Hu,J.;Kibria,M.G.Isolated
IridiumSitesonPotassium-DopedCarbon-NitrideWrapped
TelluriumNanostructuresforEnhancedGlycerolPhotooxidation.
Adv.Funct.Mater.2024, 34(29),2313793.
(52)Kumar,P.;Antal,P.;Wang,X.;Wang,J.;Trivedi,D.;Fellner,
O.F.;Wu,Y.A.;Nemec,I.;Santana,V.T.;Kopp,J.;Neugebauer,P.;
Hu,J.;Kibria,M.G.;Kumar,S.PartialThermalCondensation
MediatedSynthesisofHigh-DensityNickelSingleAtomSiteson
CarbonNitrideforSelectivePhotooxidationofMethaneinto
Methanol.Small2024, 20(15),2304574.
(53)Gao,G.;Jiao,Y.;Waclawik,E.R.;Du,A.SingleAtom(Pd/Pt)
SupportedonGraphiticCarbonNitrideasanEfficientPhotocatalyst
forVisible-LightReductionofCarbonDioxide.J.Am.Chem.Soc.
2016, 138(19),6292−6297.
(54)Lazaar,N.;Wu,S.;Qin,S.;Hamrouni,A.;BikashSarma,B.;
Doronkin,D.E.;Denisov,N.;Lachheb,H.;Schmuki,P.Single-Atom
CatalystsonC3N4:MinimizingSingleAtomPtLoadingfor
MaximizedPhotocatalyticHydrogenProductionEfficiency.Angew.
Chem.,Int.Ed.2025, 64(6),No.e202416453.
(55)Wang,Y.;Wang,M.;Mou,X.;Wang,S.;Jiang,X.;Chen,Z.;
Jiang,Z.;Lin,R.;Ding,Y.Host-InducedAlterationoftheNeighbors
ofSinglePlatinumAtomsEnablesSelectiveandStableHydro-
genationofButadiene.Nanoscale2022, 14(29),10506−10513.
(56)Tian,S.;Wang,B.;Gong,W.;He,Z.;Xu,Q.;Chen,W.;Zhang,
Q.;Zhu,Y.;Yang,J.;Fu,Q.;Chen,C.;Bu,Y.;Gu,L.;Sun,X.;Zhao,
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17359

H.;Wang,D.;Li,Y.Dual-AtomPtHeterogeneousCatalystwith
ExcellentCatalyticPerformancesfortheSelectiveHydrogenationand
Epoxidation.Nat.Commun.2021, 12(1),3181.
(57)Li,J.;Jiang,Y.;Wang,Q.;Xu,C.-Q.;Wu,D.;Banis,M.N.;
Adair,K.R.;Doyle-Davis,K.;Meira,D.M.;Finfrock,Y.Z.;Li,W.;
Zhang,L.;Sham,T.-K.;Li,R.;Chen,N.;Gu,M.;Li,J.;Sun,X.A
GeneralStrategyforPreparingPyrrolic-N4TypeSingle-Atom
CatalystsviaPre-LocatedIsolatedAtoms.Nat.Commun.2021, 12
(1),6806.
ACSCatalysis pubs.acs.org/acscatalysis ResearchArticle
https://doi.org/10.1021/acscatal.5c03767
ACSCatal.2025,15,17347−17360
17360
Tags