rEMOTE sENSING AND GIS _11-converted.pdf

JefrilCuregSingunGui 11 views 49 slides Aug 30, 2025
Slide 1
Slide 1 of 49
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49

About This Presentation

RS AND GIS


Slide Content

ES 7-Principles of
REMOTE SENSING
AND GEOGRAPHIC
INFORMATION
SYSTEM
Engr. Erwin C. Torio, Ph.D.

Remote Sensing Course
Module-11
High Resolution Satellite Imagery (HRSI)

Learning Objectives of Module 11
“HRSI”
To learn the state-of-the-art of HRSI
To understand the mapping capability
of HRSI
To learn the prospects of HSRI
applications

Outline of Module –11 HRSI
Contents:
1.Road map toward HRSI
2.Characteristics of HRSI
3.Provided products of HRSI
4.Imaging geometry for satellite
line scanners
5.Metric performance of different
satellite sensors

6.Requirements for topographic maps
7.Control points for HRSI
8.2D Geo-positioning
9.3D modeling
10.Applications of HRSI
Contents (2)
QuickBird
©DigitalGlobe

Road map toward HRSI
1972: Landsat MSS, 80m
1982: Landsat TM, 30m
1986: Spot, 10m Pan
1991: KVA 1000, 2m
1996: IRS 1C/D, 6m
1999: IKONOS 1, 1m
2000: EROS A1, 1.8m
2001: QuickBird, 0.6m
2002: Spot 5, 2.5m
2003: Orbview, 1m
Landsat TM
IKONOS
QuickBird

Launched 1 meter Resolution
Satellites
Satellite IKONOS EROS QuickBird Orbview
Ground 0.82m Pan 1.8m Pan 0.61m Pan 1m Pan
Resolution 3.28m MS 2.5m MS 4m MS
Repeat
cycles
14 days 15 days 20 days 16 days
Launched 1999 2000 2001 2003

Operator
Space
Imaging
West
Indian
Space
Digital
Globe
Orbital
Sciences
© Shunji Murai 2004

Characteristics of HRSI
Mapping capability
High geometric fidelity
Highly automated product generation
Potentially very rapid cycle of image
collection to customer delivery
IKONOS
©SpaceImaging

Sensor and Mission Parameters
Item IKONOS QuickBird
Focal Length 10m 9m
Altitude 680km 450km
No of pixel/l 13,800 27,500
FOV 0.93deg. 2.1deg.
Resolution 0.82m 0.61m
Revisit 1~3 days 1~3.5 days
Coverage 11x11km 16.5x16.5km

Provided Products of HRSI
Geocoded Image: Pan, MSS, Pan sharpened
Orthoimage: corrected for topography
DSM/DEM: from stereo imagery
Contour line map: to be generated from
DEM
Land cover map: auto/semi-auto
Overlay on GIS: background image
3D landscape: animation

Downtown Tokyo
Example of IKONOS Image
1meter
resolution
Panchromatic
image

©Copyright
Japan Space
Imaging

Example of IKONOS Image
4m multi-
spectral
image of
Mt. Everest
©SpaceImaging

Pan-sharpened Imagery
4-Meter Multispectral
Image
1-Meter Panchromatic
Image
1-Meter Pan-Sharpened
Image
IKONOS example

13
Saitama, Japan
Example of
IKONOS
Image
Pan sharpened
1meter
resolution

©Copyright
Japan Space
Imaging

Example of QuickBird Image
Diet in Tokyo ©Copyright DigitalGlobe

Example of
QuickBird
Image
Pan sharpened
0.7 meter
resolution

©DigitalGlobe
Yokohama
Japan

QuickBird versus IKONOS
QuickBird 70cm Pan IKONOS 1m Pan
Tennis Centre, Melbourne © Clive Fraser

Conducive to
building feature
measurement
Comparative Resolution
Aerial Photography (1:15K) Ikonos Pan Ikonos Pan-Sharpened
© Clive Fraser

18
Comparison of Scene Coverage
QuickBird – 16.5km
Eros 1A – 12.5km
Landsat 7 Image of Washington D.C
Ikonos – 11km
© DigitalGlobe

19
Orthoimage overlaid by Vector Layers
Automated
generation
of ortho-
imagery,
but no fully
automated
feature
extraction
© Clive Fraser

20
Pan-sharpened IKONOS 1m Ortho-image
draped over a DTM
© Clive Fraser

Potential of HRSI
Mapping ( to 1:5K-1:10K)
GIS
Provision of DTMs
Automated Feature Extraction
Fused Data Products
Visualization & 3D Fly Through

Mapping Capability of HRSI
1m ground resolution with 0.3 pixel
pointing accuracy will provide 1:10,000
line drawing map with the contour
interval of 2.5-5m
Background image map will be possible
at the scale of 1:5,000 including
orthoimage

Imaging geometry for satellite
line scanners
Strip
Ground
Swath
Along track
motion
X Y
H
Detector
f Optics
FOV
Different exterior
orientation for every line
Transformation from
Image to Object Space
(x,y)  (X,Y,Z)
Where
•x is the line number (function
of time)
•Object Points (X,Y,Z)
j, j = 1, n
•Images(X
ct,Y
ct,Z
ct)
ik , k = 1,
number of scan lines; i =1,m
•Image Points: (x,y)
ijk
© Clive Fraser

Concept of Stereo or Multi-stations

XY
© Clive Fraser
= S 
xy

Z = (H/B) S 
px
S = H/c
(alititude/focal
length)
px = parallax meas.
B = base length

Metric Performance of
Different Satellite Sensors
Satellite Resolution Map scale
Landsat 30 m 1: 250K
SPOT 10 m 1: 100K
IRS 6 m 1: 50K
IKONOS below 1 m 1: 10K
QuickBird below 1 m 1: 10K

Requirements for Topographic
maps
Scale Planimetric Vertical Contour int.
1:50K 10m 3-6m 10-20m
1:25K 5m 3m 10m
1:10K 2m 1.7m 5m
1: 5K 1m 0.3-0.6m 1-2m

Control Points for HRSI
Round target with more than 5 pixels in
diameter
Pointing accuracy: 0.05-0.1 pixel
Required Accuracy
 Scale Resolution GCP’s Accur.
1:50K 5m 1.2m
1:25K 2.5m 1m
1:10K 1m 0.5m
1:5K 0.5m 0.1m

Control Points: roundabout center
©Copyright Clive Fraser

Best-fitting ellipse to edge points in both object & image space
Least-squares template matching
©Copyright Clive Fraser

Examples of Roundabout Targets

XY RMS discrepancies in pixels
2D Geo-positioning
Object point XYZ coordinates ‘rectified’
to a ‘projection plane’ based on satellite
position to remove height effects

Image; points
Similarity Affine Projective
X Y XY X Y XY X Y XY
Nadir; 31 0.27 0.33 0.30 0.26 0.32 0.29 0.23 0.30 0.27
‘Left’ steo;26 0.35 0.39 0.37 0.33 0.37 0.35 0.33 0.36 0.35
‘Right’ steo;28 0.39 0.37 0.38 0.38 0.36 0.37 0.39 0.35 0.37
© Clive Fraser

3D Modeling
Stereo imagery needed
Photogrammetric theory unnecessary due
to very narrow FOV (less than 2 degree)
Two methods developed
Affine transformation with 4 parameters
Rational function with 80 parameters
which are provided by HRSI distributor

Affine Transformation
x1 = a1X + a2Y + a3Z + a4
y1 = a5X + a6Y + a7Z + a8
x2 = b1X +b2Y + b3Z + b4
y2 = b5X + b6Y + b7Z + b8
x, y: image coordinate
X,Y,Z: ground coordinate

Accuracy Check by Affine Model
© Clive Fraser

GCPs

RMS of xy
residuals
(pixels)
Standard err.
(m)
RMS
discrepancies at
checkpoints(m)
xy z Sxy Sz
4 0.14 0.51 1.02 0.49 0.76
6 0.15 0.43 0.88 0.43 0.74
8 0.16 0.40 0.80 0.43 0.74
Example of 2-image IKONOS configurations

Rational Function
P
i 4 ( X ,Y ,Z ) j ij
ij P
i 2 ( X ,Y ,Z ) j
P
i 3 ( X ,Y ,Z )
j
P
i1 ( X ,Y ,Z )
j
y 
x 
20 1 19
Z
3
X
2
Z  d  d
2Y  d
3 X  d
4 Z  ...  d P
i 4 ( X ,Y , Z )
j  d
i 3 j 1 2 3 4 19 20
P ( X ,Y , Z )  c  c Y  c X  c Z  ...  c X
2
Z  c Z
3
P ( X ,Y , Z )  a  a Y  a X  a Z  ...  a X
2
Z  a Z
3
i1 j 1 2 3 4 19 20
P ( X ,Y , Z )  b  b Y  b X  b Z  ...  b X
2
Z  b Z
3
i 2 j 1 2 3 4 19 20
where
x
ij , y
ij
normalized image
coordinate
object point coordinate
(normalized lat. Long.
&height)
X,Y,Z

Bias Compensation
Each HRSI has always bias of different
size
For Rational Function model, at least a
GCP is needed for bias compensation
80 parameters provided by HRSI
distributor are not compensated for bias

Melbourne Ikonos Test Field
Univ. of Melbourne
©Copyright Clive Fraser
3-fold image coverage
7km x 7km area (Dh <
100m)
40 GPS surveyed GCPs
19 building control pts.
sub-pixel, multi-
measurements to image
features
2D & 3D point
determination tests
‘planes of control’ for 2D
tests
building extraction tests

37
Object XYZ Coordinates Transformed
to Pixel Coordinates via Ikonos RPCs
Image Mean
dx
Mean
dy
dx dy
L. Steo. 29.0 16.1 0.41 0.47
Nadir 69.7 -20.6 0.43 0.49
R. Steo. 28.1 16.6 0.46 0.48
Mean and standard error
values for RPC bias-induced
image point perturbations
dx and dy. Units are pixels.
Image coordinate biases (perturbations dx and dy) in RPC
orientation for the stereo and nadir images
Left Nadir Right
©Copyright Clive Fraser
© Clive Fraser

Computed Image Coordinate Biases
and RMS Values of Checkpoint
Discrepancies for Ikonos Stereo
Computed image coord.
Biases (pixels)
RMS of checkpoint coord.
(meters)
x y Sx Sy Sz
1 L 27.7 16.7 0.64 0.59 0.90
R 28.4 16.1
2 L 27.7 16.3 0.59 0.61 0.90
R 28.3 15.7
4 L 27.9 16.4 0.59 0.53 0.92
R 28.6 15.8
6 L 28.0 16.4 0.62 0.46 0.90
R 28.8 15.9


No. of
GCPs

©Copyright Clive Fraser

Bias Corrected RPCs
RPCs
(provided)
RMS ~ 4–70 (m)
RPCs
(provided)
RMS ~ 4–70 (m)
RPCs
(corrected)
RMS < 1 (m)
RPCs
(corrected)
RMS < 1 (m)
Suited for immediate application with standard DPWs!

Advantages of HRSI
Effective processing with wide coverage
Frequent data acquisition
Good image quality
Simple 3D modeling
Access possibility (high mountain, pole,
boundary etc.)
Less GCPs
No special skill

Disadvantages of HRSI
High cost
Cloud coverage
Limited resolution
Fixed frequency and acquisition time
Less experience

Applications to Forestry
Broad-leaved forest




Coniferous forest




Broad-leaved forest
Forestry
Classification
of forest tree
© DigitalGlobe. QuickBird image of Kumamoto, Japan

Red:Grown-up Crop, Black:Water, White:Crop land

Application to Agriculture
Agriculture
Monitoring
© DigitalGlobe.
False Color True Color

44
Application to Facility Management
QuickBird
image

© DigitalGlobe.

Application to Environmental Monitoring
With QuickBird 2.4 m
multispectral
imagery it is possible
for detection of
environmental
problems.
With QuickBird 2.4 m
multispectral
imagery it is possible
for detection of
environmental
problems.
Damaged
Vegetation
from Possible
Oil Leak
© DigitalGlobe

Application to 3D City Modeling
3D Model of University of Melbourne Campus
from Ikonos 1m B&W Stereo
© Clive Fraser

Comparison of 3D Modeling from
Aerial Photo and HRSI
Aerial Photography (1:15K) Ikonos 1m Stereo Imagery
© Clive Fraser

Thank you !
“QuickBird”
Tags