Remote Sensing Big Data Analytics with GIS

sayyadshafi 76 views 19 slides Oct 01, 2024
Slide 1
Slide 1 of 19
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19

About This Presentation

Remote Sensing and GIS


Slide Content

Remote Sensing Big Data Analytics with GIS 1

The Five V’s 2 Scale of Data Analysis of Data Flow Structured and Unstructured Data Uncertainty of Data

Big Remote Sensing Data

Earth Observation Satellites

Need of Earth Observation 5 Natural Hazard Monitoring, Global Climate Change Soil Conservation Volcanic Phenomenon Water Pollution

Earth Observation Data 6 Source: https://commons.wikimedia.org/w/index.php?search=earth+observation+data&title=Special:MediaSearch&go=Go&type=image

Features of Remote-sensing Big Data 7 Collect Manage Store Archive Analyse Visualize Distribute Ground, Aerial, Satellite, UAV Large achieve, Real time Optical, Microwave, Hyperspectral, LiDAR Data Enhance Through Visualization

Features of Remote-sensing Big Data 8 Quick Bird II: Resolution.: 0.61 meter panchromatic 2.4 meter multispectral Source: https://www.satimagingcorp.com/gallery/quickbird/quickbird-umbrella-cay-bahamas/ Source: https://nara.getarchive.net/media/ert-landsat-satellite-and-lake-michigan-a8eb2b Landsat 8 images have 15-meter panchromatic and 30-meter multi-spectral spatial resolutions along a 185 km (115 mi) swath.

The Dynamic state of Remote Sensing Big Data 9

Raster Data/ Vector Data 10

What is GIS? 11 What is GIS?: “A computer - assisted system for the capture, storage retrieval, analysis and display of spatial data, within a particular Organization”. (Clarke, 1986) A GIS is a computer-based system that provides the four sets of capabilities to handle geo-referenced data:

How GIS Used 12 Identify Problems Monitor Change Manage and Respond to Events Perform forecasting Set priorities Understand trends

Planetary-scale Geospatial Analysis 13 Google Earth Engine: Next Generation Digital Earth “Big Data,” paradigm of science that emphasizes international collaboration, data-intensive analysis, huge computing resources, and high-end visualization.” Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0 33 years Of satellite data Over 5,000,000 Landsat and Sentinel scenes analysed 3 Quadrillion Pixels (3,000,000,000,000,000)

Planetary-scale Geospatial Analysis 14 Google Earth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0

Planetary-scale Geospatial Analysis 15 Google Earth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0

Planetary-scale Geospatial Analysis 16 Google Earth Engine: Next Generation Digital Earth Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0

Planetary-scale Geospatial Analysis 17 Google Earth Engine coder Source: https://docs.google.com/presentation/d/1hT9q6kWigM1MM3p7IEcvNQlpPvkedW-lgCCrIqbNeis/edit#slide=id.g4e98c855a5_0_0 https://code.earthengine.google.com/

Future of big data analytics in remote sensing and GIS? 18

19