References World Health Organization. Cardiovascular Diseases (accessed 15.01.2021.). Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). Berkaya , S. K., Uysal , A. K., Gunal , E. S., Ergin , S., Gunal , S., & Gulmezoglu , M. B. (2018). A survey on ECG analysis. Biomedical Signal Processing and Control, 43, 216-235. Agarwal, S., Krishnamoorthy , V., & Pratiher , S. (2016, September). ECG signal analysis using wavelet coherence and s-transform for classification of cardiovascular diseases. In 2016 International conference on advances in computing, communications and informatics (ICACCI) (pp. 2765-2770). IEEE. Elhaj , F. A., Salim , N., Harris, A. R., Swee , T. T., & Ahmed, T. (2016). Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Computer methods and programs in biomedicine, 127, 52-63. Pławiak , P. (2018). Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system. Expert Systems with Applications, 92, 334-349. Raj, S., & Ray, K. C. (2018). Sparse representation of ECG signals for automated recognition of cardiac arrhythmias. Expert systems with applications, 105, 49-64 . Iqbal, U., Wah , T. Y., ur Rehman , M. H., Mujtaba , G., Imran, M., & Shoaib , M. (2018). Deep deterministic learning for pattern recognition of different cardiac diseases through the internet of medical things. Journal of medical systems, 42(12), 252. Chen, X., Wang, Y., & Wang, L. (2018). Arrhythmia recognition and classification using ECG morphology and segment feature analysis. IEEE/ACM transactions on computational biology and bioinformatics, 16(1), 131-138.