Retaining wall analysis and design according to aci
structuralengfatima
594 views
36 slides
Aug 04, 2024
Slide 1 of 36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
About This Presentation
retaining wall
Size: 2.22 MB
Language: en
Added: Aug 04, 2024
Slides: 36 pages
Slide Content
DESIGN OF REINFORCED
CONCRETE RETAINING WALL
Dr. ZainorizuanMohdJaini
Faculty of Civil and Environmental Engneering
UniversitiTunHussein OnnMalaysia
86400 ParitRaja, BatuPahat, Johor, Malaysia
Semester 2 2017/2018
Design Consideration
6
❑Component:
Steel reinforcement
50mm weep hole
@ 1-2m
Frostline
Drainage mat with
filter fabric
Porous backfill
50mm minimum
cover
Perforated drainpipe
sloped to drain away
from the wall
75mm minimum
cover
Design Consideration
7
❑Typicalsize:
Design Consideration
❑Designprocedure(cantileverretainingwall):
−Assumeabreathforthebaseis0.75ofthewallheight.The
preliminarythicknessforthewallandbasesectioncanbe
assumed.
−Calculatethehorizontalpressureonthewall.Then,
consideringallforces,checkstabilityagainstoverturning
andtheverticalpressureunderthebaseofthewall.
8Horizontal
pressure
Net pressure
Pressure
Inner footingouter footing
Pressure on the wall
and base
Earth Pressure
11
Ground pressure (passive)
or subsoil reaction
Active earth
pressure
behind wall
–wedge or
retained
earth plus
any
hydrostatic
pressurePassive earth pressure in
front of wall
Mass of wall acts downward
Earth Pressure
❑Verticalpressureunderthebase:
−Theverticalpressureunderthebaseincalculatedforthe
serviceload.
−Foracantileverwall,1mlengthofwallwithbasedwidthbis
consider;thentheareaandmodulusofsectionarea:
−Thesumofthemomentofallverticalforcesaboutthe
centerofthebaseandactivepressureonthewallis:
−Thepassiveearthpressureinfrontofthebasehasbeen
neglected.Themaximumpressureis:
14( )( )
11/ 2 / 3M W x b P H= − − 2 2 3
1 m m ; /6 mA b b Z b= = = max
WM
P
AZ
=
This should not exceed the
safe bearing pressure on
the soil
Stability
❑Wallstability
−Theverticalloadsaremadeupoftheweightofthewalland
base,andtheweightofthebackfillonthebase.Frontfillon
theouterbasecanbeneglected.
−Surchargewouldneedtobeincludedifpresent.
−Thecriticalconditionforoverturningiswhenamaximum
horizontalforceactswithminimumverticalload.
15
Overturning
about its toe
Slidingalong
the base
Bearing
capacity
failureof
supporting
base
*Excessivesettlementmayoccurifweaksoillayer
*islocatedbelowthefoundationwithin1.5times
*foundationwidth
Stability
❑Resistancetosliding
−Cohesionlesssoil:ThefrictionRbetweenthebaseandthe
soilisμΣMwhereμisthecoefficientoffrictionbetweenthe
baseandthesoil(μ=tanø).Thepassiveearthforceagainst
thefrontofthewallfromadepthH
2soilis:
−Cohesivesoils:TheadhesionRbetweenthebaseandthe
soilisβ
bwhereβistheadhesioninkN/m
2
.Thepassive
earthpressureis .
−Anibcanbeaddedtoincreasetheresistancetosliding
throughpassiveearthpressure.
−Forthewalltobesafeagainstsliding, where
H
kisthehorizontalactiveearthpressureonwall
172
22
1sin
0.5
1sin
PH
+
=
− 2
2 2 20.5 2P H cH=+ 1.0
k f kGH
Detailing
18
❑Reinforcementarrangement:
Detailing
19
❑Reinforcementarrangement:
Design of Retaining Wall
20
Example 5.1:
Cantilever Retaining Wall
Example 5.1
❑CantileverretainingwallsasinFigure1supportabankofearth
4.5mheight.Thesoilbehindthewalliswell-drainedsandwith
thefollowingproperties:
-Density,γ
soil=2000kg/m
3
=20kN/m
3
-Angleofinternalfriction,ø=30
o
Thematerialunderthewallhasasafebearingpressureof
110kN/m
2
.Thecoefficientoffrictionbetweenthebaseandthe
soilis0.45.
Designthewallusinggrade30concreteandgrade500
reinforcement.
21
Example 5.1
22P1
H
2
P2
98.15 kN/m
2
59.73 kN/m
2
2200800
400
400
4500
600
3400
134.2 kN
B
C
1700
Example 5.1
❑Checkwallstability
Earthpressure,
For1mlengthofwall,
Horizontalload
❑Maximumsoilpressure
The base properties area
Modulus
Maximum soil pressure at toe is:
231sin 1sin30
20(4.9)
1sin 1sin30
z
−−
==
++ 2
32.34kN/m= ( )()0.532.34 4.9 79.23kN== 2
3.41m (width) 3.4 m= = 22
99.6kN/m 110kN/m (OK) 23
3.4/6=1.93m= 2
max
271.4 129.4191.22
99.6kN/m
3.4 1.93
WM
P
AZ
−
= + = + =
Example 5.1
24
Load
Horizontal load
(kN)
Distance from
C (m)
Moment about
C (kNm)
Active
pressure
79.23 1/3(4.9) = 1.63 -129.41
Vertical load
(kN)
Distance from
B (m)
Moment about
B (kNm)
Wall
0.5 (0.3+0.4)4.5 x 25 = 39.4-0.7 -27.58
Footing 0.4 x 3.4 x 25 = 34 0 0
Backfill 2.2 x 4.5 x 20 = 198 0.6 118.8
Total 271.4 91.22
Example 5.2
34
Load
Horizontal load
(kN)
Distance from
C (m)
Moment about
C (kNm)
Active
pressure
5 x 3.75 = 18.75
0.5 x 22 x 3.75 = 41.25
1.875
1.25
-35.08
-51.56
Total 59.98 -86.64
Vertical load
(kN)
Distance from
B (m)
Moment about
B (kNm)
Wall 4.1 x 0.25 x 25 = 25.6 -0.5 -12.8
Footing2.85 x 0.25 x 25 = 17.81 0 0
Backfill1.8 x 3.5 x 17.6 = 110.88 0.525 58.21
Surcharge 15 x 1.8 = 27 0.525 14.18
Total 181.29 59.59
Example 5.2
Maximumsoilpressureatserviceload:
❑Checkstabilityandoverturning
ThestabilitymomentaboutthetoeAofthewallforapartial
safetyfactorγ
f=0.9is:
1
59.59+[181.29x(2.85/2)]=317.9x0.9=286.11kNm
1
Theoverturningmomentforapartialsafetyfactorγ
f=1.1is:
1
1.1x86.64=95.3kNm1
Thestabilityofthewallisadequate
3522
83.76kN/m 110kN/m (OK) 2
max
181.29 86.6759.59
83.76kN/m
2.85 1.35
WM
P
AZ
−
= + = + =
Example 5.1
❑Checkresistancetosliding
Theforcesresistingslidingarethefrictionunderthebaseand
thepassiveresistanceforadepthofearthof850mmtothetop
ofthebase.
Passive force,
Friction force = 0.45 x 181.29 = 81.58kN
Total friction force = 19.51 + 81.85 = 101.36kN
Sliding force = 1.4 x 59.98 = 83.97kN
The resistance to sliding is satisfactory
362
22
1sin
0.5
1sin
PH
+
=
− ()( )()
2
0.518 0.85 3 19.51==