Sampling and sampling process

10,550 views 74 slides Feb 03, 2020
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

Sampling is a process of selecting representative units from an entire population of a study.
Two Types

Probability Sampling Techniques
Non- Probability sampling techniques


Slide Content

ravsa
Sampling
By
Mr. Ravi Rai Dangi
Assistant Professor
Fellowship in Neonatal Nursing
MSc. Child Health Nursing

ravsa
INTRODUCTION
Samplingisaprocessofselectingrepresentativeunitsfrom
anentirepopulationofastudy.
Sampleisnotalwayspossibletostudyanentirepopulation;
therefore,theresearcherdrawsarepresentativepartofa
populationthroughsamplingprocess.
Inotherwords,samplingistheselectionofsomepartofan
aggregateorawholeonthebasisofwhichjudgmentsor
inferencesabouttheaggregateormassismade.

ravsa
Population:
Populationistheaggregationofalltheunits
inwhicharesearcherisinterested.Inotherwords,
populationisthesetofpeopleorentiretowhichthe
resultsofaresearcharetobegeneralized.For
example,aresearcherneedstostudytheproblems
facedbypostgraduatenursesofIndia;inthisthe
‘population’willbeallthepostgraduatenurseswho
areIndiancitizen.

ravsa
TargetPopulation:
Atargetpopulationconsistofthetotalnumberof
peopleorobjectswhicharemeetingthedesignatedset
ofcriteria.Inotherwords,itistheaggregateofallthe
caseswithacertainphenomenonaboutwhichthe
researcherwouldliketomakeageneralization.
Accessiblepopulation:
Itistheaggregateofcasesthatconformto
designatedcriteria&arealsoaccessibleassubjectsfora
study.

ravsa

ravsa
Sample:
Samplemaybedefinedasrepresentativeunit
ofatargetpopulation,whichistobeworkedupon
byresearchersduringtheirstudy.Inotherwords,
sampleconsistsofasubsetofunitswhichcomprise
thepopulationselectedbyinvestigatorsor
researcherstoparticipatesintheirresearchproject

ravsa
Samplingerror:
Theremaybefluctuationinthevaluesofthe
statisticsofcharacteristicsfromonesampletoanother,
oreventhosedrawnfromthesamepopulation.
Samplingbias:
Distortionthatariseswhenasampleisnot
representativeofthepopulationfromwhichitwas
drawn.

ravsa
PURPOSES OF SAMPLING
Economical:Inmostcases,itisnotpossible&
economicalforresearcherstostudyanentire
population.Withthehelpofsampling,the
researchercansavelotsoftime,money,&resources
tostudyaphenomenon.
Improvedqualityofdata:Itisaprovenfactthat
whenapersonhandleslessamounttheworkof
fewernumberofpeople,thenitiseasiertoensure
thequalityoftheoutcome.

ravsa
Quickstudyresults:Studyinganentire
populationitselfwilltakealotoftime,&generating
researchresultsofalargemasswillbealmost
impossibleasmostresearchstudieshavetimelimits
Precisionandaccuracyofdata:Conductinga
studyonentirepopulationgiveryouavoluminous
dataandmaintaintheprecisionofthatdatabecome
morecomplextask.Sosamplingisnecessary.

ravsa
Characteristics of Good Sample
Representative
Freefrombiasanderrors
Nosubstitutionandincompleteness
Appropriatesamplesize

ravsa
Sampling Process
Sampling process of selecting a part of the assigned
population to represent the entire population.

ravsa
Identifying and defining the target population
Describing the accessible population &
ensuring sampling frame
Specifying the sampling unit
Specifying sampling selection methods
Determining the sample size
Specifying the sampling plan
Selecting a desired sample

ravsa
FACTORS INFLUENCING SAMPLINGPROCESS

ravsa
Sampling Techniques

ravsa
Two Types
•Probability Sampling Techniques
•Non-Probability sampling techniques

ravsa

ravsa
PROBABILITY SAMPLING TECHNIQUE
Itisbasedonthetheoryofprobability.
Itinvolverandomselectionoftheelements/members
ofthepopulation.
Inthis,everysubjectinapopulationhasequalchance
tobeselectedsamplingforastudy.
Inprobabilitysamplingtechniques,thechancesof
systematicbiasarerelativelylessbecausesubjectsare
randomlyselected.

ravsa
Features Of The Probability Sampling
Itisatechniquewhereinthesamplearegatheredina
processthatgivenalltheindividualsinthe
populationequalchancesofbeingselected.
Inthissamplingtechnique,theresearchermust
guaranteethateveryindividualhasanequal
opportunityforselection.

ravsa
Theadvantageofusingarandomsampleisthe
absenceofbothsystematic&samplingbias.
Theeffectofthisisaminimalorabsentsystematic
bias,whichisadifferencebetweentheresultsfrom
thesample&thosefromthepopulation.

ravsa
Simple random sampling
Thisisthemostpure&basicprobabilitysampling
design.
Inthistypeofsamplingdesign,everymemberof
populationhasanequalchanceofbeingselectedas
subject.
Theentireprocessofsamplingisdoneinasingle
step,witheachsubjectselectedindependentlyofthe
othermembersofthepopulation

ravsa
Thereisneedoftwoessentialprerequisitesto
implementthesimplerandomtechnique:population
mustbehomogeneous&researchermusthavelistof
theelements/membersoftheaccessiblepopulation

ravsa
Thefirststepofthesimplerandomsampling
techniqueistoidentifytheaccessiblepopulation&
preparealistofalltheelements/membersofthe
population.
Thelistofthesubjectsinpopulationiscalledas
samplingframe&sampledrawnfromsamplingframe
byusingfollowingmethods:

ravsa
The lottery method
Itismostprimitive&mechanicalmethod.
Eachmemberofthepopulationisassignedaunique
number.
Eachnumberisplacedinabowelorhat&mixed
thoroughly.

ravsa
The use of table of random numbers
Thisismostcommonly&accuratelyusedmethodin
simplerandomsampling.
Randomtablepresentseveralnumbersinrows&
columns.
Researcherinitiallyprepareanumberedlistofthe
membersofthepopulation,&thenwithablindfold
choosesanumberfromtherandomtable.

ravsa
Thesameprocedureiscontinueduntilthedesired
numberofthesubjectisachieved.
Ifrepeatedlysimilarnumbersareencountered,
they22areignored&nextnumbersareconsidered
untildesirednumberofsubjectareachieved.

ravsa

ravsa
The use of computer
Nowadaysrandomtablesmaybegeneratedfrom
thecomputer,&subjectsmaybeselectedas
describedintheuseofrandomtable.
Forpopulationswithasmallnumberofmembers,
itisadvisabletousethefirstmethod,butifthe
populationhasmanymembers,acomputer-aided
randomselectionispreferred.

ravsa
Merits
Everymemberhaveequalopportunitytoselect
Itrequiresminimumknowledgeaboutthe
populationinadvances.
Unbiased
Sampleerrorcanbecomputed

ravsa
Demerits
Requiresallmemberslist
Expensiveandtimeconsumingprocess

ravsa
Stratified Random Sampling
Thismethodisusedforheterogeneouspopulation.
Itisaprobabilitysamplingtechniquewhereinthe
researcherdividestheentirepopulationinto
differenthomogeneoussubgroupsorstrata,&then
randomlyselectsthefinalsubjectsproportionally
fromthedifferentstrata.

ravsa
Thestrataaredividedaccordingselectedtraitsof
thepopulationsuchasage,gender,religion,socio-
economicstatus,diagnosis,education,geographical
region,typeofinstitution,typeofcare,typeof
registerednurses,nursingarea.

ravsa

ravsa
Merits
Itensurestherepresentationofallgroup.
Toobservetheexistedfactwithtwoormoregroups.
Higherstatisticalprecision.
Savetime,moneyandefforts.

ravsa
Demerits
Itrequiresaccurateinformationontheportionof
populationineachstream
Largepopulationneeded
Possibilityoffaultyclassification

ravsa
Systematic Random Sampling
Itcanbelikenedtoanarithmeticprogression,
whereinthedifferencebetweenanytwoconsecutive
numbersisthesame.
ItinvolvestheselectionofeveryK
th
casefromlistof
group,suchasevery10
th
persononapatientlistor
every100thpersonfromaphonedirectory.
Systematicsamplingissometimesusedtosample
everyK
th
personenteringabookstore,orpassing
downthestreetorleavingahospital&soforth

ravsa
Systematicsamplingcanbeappliedsothatan
essentiallyrandomsampleisdrawn.
Ifwehadalistofsubjectsorsamplingframe,the
followingprocedurecouldbeadopted.
Thedesiredsamplesizeisestablishedatsomenumber
(n)&thesizeofpopulationmustknoworestimated
(N).

ravsa
Forexample,aresearcherwantstochooseabout100
subjectsfromatotaltargetpopulationof500people.
Therefore,
500/100=5.
Therefore,every5thpersonwillbeselected.

ravsa

ravsa
Merits
Convenientandsimpletocarryout.
Distributedofsampleisspreadevenlyovertheentire
population.
Lesstimeconsumingandcosteffectivealso.
Statisticallymoresignificant.

ravsa
Demerits
Subjectisnotrandomlyselectedsoitbecomenon
randomsamplingtechniques.
Sometimesthismayresultinbiasness

ravsa
Cluster or multistage Sampling
Itisdonewhensimplerandomsamplingisalmost
impossiblebecauseofthesizeofthepopulation.
Clustersamplingmeansrandomselectionofsampling
unitconsistingofpopulationelements.
Thenfromeachselectedsamplingunit,asampleof
populationelementsisdrawnbyeithersimplerandom
selectionorstratifiedrandomsampling.

ravsa
Thismethodisusedincaseswherethepopulation
elementsarescatteredoverawidearea,&itis
impossibletoobtainalistofalltheelements.
Theimportantthingtorememberaboutthis
samplingtechniqueistogivealltheclustersequal
chancesofbeingselected.

ravsa

ravsa
Merits
Cheap,quickandeasyforlargepopulation
Investigatorcanuseexistingdivisionlikedistrict,
villagesortowns.
Sameclusterscanbeusedforfurtherstudies.

ravsa
Demerits
Least representative
Some time same characteristics can present in two
clusters
Possibility of high sample error
If homogenous then not possible

ravsa
Sequential Sampling
Itisslightlydifferentfromothers.
Herethesamplesizeisnofixed.
Theresearcherinitiallyselectthesmallsampleand
triesouttomakeinferences;ifnotabletodrawthe
resultresearchercanaddmoresamples.

ravsa

ravsa
Merits
Bestpossiblesmallestrepresentativesample
Helpsinultimatelyfindingtheinferenceinthestudy.
Demerits
Onepointoftimestudycannonbedone
Requiresrepeatedentries

ravsa
Nonprobability Sampling Technique
Nonprobabilitysamplingisthetechniqueswherein
thesamplesaregatheredinaprocessthatdoesnot
givealltheindividualinthepopulationequalchance
ofbeingselectedinthesample.

ravsa
Features of the nonprobability sampling
Doesnotgiveequalchancetoselecteachsample.
Savestime,moneyandworkforce
Sampleswillbeselectedbypurposeorpersonal
judgement.
Ifpopulationisunknownthenresearchcannotbe
usedingeneralizedforentirepopulation.

ravsa
Uses of non probability sampling
Thistypeofsamplingcanbeusedwhen
demonstratingthataparticulartraitexistsinthe
population.
Itcanalsobeusedwhenresearcheraimstodoa
qualitative,pilot,orexploratorystudy.
Itcanbeusedwhenrandomizationisnotpossiblelike
whenthepopulationisalmostlimitless.

ravsa
Itcanbeusedwhentheresearchdoesnotaimto
generateresultsthatwillbeusedtocreate
generalizations.
Itisalsousefulwhentheresearcherhaslimited
budget,time,&workforce.
Thistechniquecanalsobeusedinaninitialstudy

ravsa
Purposive Sampling
Itismorecommonlyknownas‘judgmental’or
‘authoritativesampling’.
Inthistypeofsampling,subjectsarechosentobepart
ofthesamplewithaspecificpurposeinmind.
Inpurposivesampling,theresearcherbelievesthat
somesubjectsarefitforresearchcomparedtoother
individual.Thisisthereasonwhytheyarepurposively
chosenassubject.

ravsa

ravsa
Inthissamplingtechnique,samplesarechosenby
choicenotbychance,throughajudgmentmadethe
researcherbasedonhisorherknowledgeaboutthe
population
Forexample,aresearcherwantstostudythelived
experiencesofpostdisasterdepressionamongpeople
livinginearthquakeaffectedareasofGujarat.

ravsa
Merits
Simpletodraw
Usefulinexploratorystudies
Saveresources
Requireslessfieldwork.

ravsa
Demerits
Requires considerable knowledge abut the
population
Not always reliable sample
Purposiveness lead to biasness
Misrepresentation of sample may be possible

ravsa
Convenience Sampling
Itisprobablythemostcommonofallsampling
techniquesbecauseitisfast,inexpensive,easy,&the
subjectarereadilyavailable.
Itisanonprobabilitysamplingtechniquewhere
subjectsareselectedbecauseoftheirconvenient
accessibility&proximitytotheresearcher.

ravsa

ravsa
Thesubjectsareselectedjustbecausetheyare
easiesttorecruitforthestudy&theresearcherdid
notconsiderselectingsubjectsthatare
representativeoftheentirepopulation.
Itisalsoknownasanaccidentalsampling.
Subjectsarechosensimplybecausetheyareeasyto
recruit.

ravsa
Merits
Easiest,cheapestandleasttimeconsuming.
Inpilotsstudyweusethissamplingtechnique
Demerits
Sampleisnotrepresentativeofentirepopulation
Resultcannotbegeneralizedforentirepopulation.

ravsa
Consecutive Sampling
Itisverysimilartoconveniencesamplingexceptthatit
seekstoincludeallaccessiblesubjectsaspartofthe
sample.
Thisnonprobabilitysamplingtechniquecanbe
consideredasthebestofallnonprobabilitysamples
becauseitincludeallthesubjectsthatareavailable,
whichmakesthesampleabetterrepresentationofthe
entirepopulation.

ravsa

ravsa
Inthissamplingtechnique,theinvestigatorpickupall
theavailablesubjectswhoaremeetingthepreset
inclusion&exclusioncriteria.
Thistechniqueisgenerallyusedinsmall-sized
populations.
Forexample,ifaresearcherwantstostudytheactivity
patternofpostkidney-transplantpatient,hecanselects
allthepostkideneytransplantpatientswhomeetthe
designedinclusion&exclusioncriteria,&whoare
admittedinpost-transplantwardduringaspecific
timeperiod.

ravsa
Merits
Little effort
Saves time, money and material
Ensure more representative from population
Demerit
Researcher has not set sampling plans about the
sample
Not guarantee for representative sample
Sampling technique cannot be used to create
conclusion and interpretation for entire population.

ravsa
Quota Sampling
Itisnonprobabilitysamplingtechniquewhereinthe
researcherensuresequalorproportionate
representationofsubjects,dependingonwhichtraitis
consideredasthebasisofthequota.
Thebasesofthequotaareusuallyage,gender,
education,race,religion,&socio-economicstatus.

ravsa

ravsa
Forexample,
ifthebasisofthequotaiscollegelevel&theresearch
needsequalrepresentation,withasamplesizeof100,he
mustselect25first-yearstudents,another25second-
yearstudents,4925third-year,&25fourth-year
students.

ravsa
Merits
Economicallycheap,asthereisnoneedtoapproachall
thecandidates.
Suitableforstudieswherethefieldworkhastobe
carriedout,likestudiesrelatedtomarket&public
opinionpolls.
Demits
Notrepresenttheentirepopulation
Intheprocessofsamplingthesesubgroups,othertraits
inthesamplemaybeoverrepresented.
Biasispossible,asinvestigator/interviewercanselect
personsknowntohim.

ravsa
Snowball Sampling
Itisanonprobabilitysamplingtechniquethatisused
byresearcherstoidentifypotentialsubjectsinstudies
wheresubjectsarehardtolocatesuchascommercial
sexworkers,drugabusers,etc.
Forexample,aresearcherwantstoconductastudyon
theprevalenceofHIV/AIDSamongcommercialsex
workers.

ravsa

ravsa
Thistypeofsamplingtechniqueworkslikechain
Afterobservingtheinitialsubject,theresearcherasks
forassistancefromthesubjecttohelpinidentify
peoplewithasimilartraitofinterest.
Theprocessofsnowballsamplingismuchlikeasking
subjectstonominateanotherpersonwiththesame
trait.
Theresearcherthenobservesthenominatedsubjects
&continuesinthesamewayuntilobtaining
sufficientnumberofsubjects.

ravsa
Merits
Thechainreferralprocessallowstheresearcherto
reachpopulationsthataredifficulttosamplewhen
usingothersamplingmethods.
Theprocessischeap,simple,&cost-efficient.
Needlittleplanning&lesserworkforce
Demerits
Researcherhaslittlecontroloverthesampling
method.
Representativenessofthesampleisnotguaranteed.
Samplingbiasisalsoafearofresearcherswhenusing
thissamplingtechnique.

ravsa
Problems of sampling
Sampling errors
Lack of sample representativeness
Difficulty in estimation of sample size
Lack of knowledge about the sampling process
Lack of resources
Lack of cooperation
Lack of existing appropriate sampling frames for
larger population