Session-5 .pptx

invadersfive 8 views 40 slides May 08, 2025
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

TOC Session 5 finite state systems- non deterministic finite automation- NDFA


Slide Content

Session 5: Finite State systems – Non Deterministic Finite Automaton – NDFA By Dr. Ashok Kumar

Formal Definition of NFAs Set of states, i.e. Input alphabet , i.e. Transition function Initial state Final states

3 Alphabet = Nondeterministic Finite Accepter (NFA)

4 Two choices Alphabet = Nondeterministic Finite Accepter (NFA)

5 No transition Two choices No transition Alphabet = Nondeterministic Finite Accepter (NFA)

6 First Choice

7 First Choice

8 First Choice

9 “accept” First Choice All input is consumed

10 Second Choice

11 Second Choice

Second Choice No transition: the automaton hangs

13 Second Choice “reject” Input cannot be consumed

14 An NFA accepts a string: when there is a computation of the NFA that accepts the string all the input is consumed and the automaton is in a final state AND

15 Example is accepted by the NFA: “accept” “reject” because this computation accepts

16 Rejection example

17 First Choice

18 First Choice “reject”

19 Second Choice

20 Second Choice

21 Second Choice “reject”

22 An NFA rejects a string: when there is no computation of the NFA that accepts the string: All the input is consumed and the automaton is in a non final state The input cannot be consumed OR

23 Example is rejected by the NFA: “reject” “reject” All possible computations lead to rejection

24 Language accepted:

Language accepted:

Language accepted (redundant state)

Formal Definition The language accepted by NFA        is: where and there is some    (final state)

Remarks: The symbol never appears on the input tape Simple automata:

NFA DFA NFAs are interesting because we can express languages easier than DFAs