Shallow Foundations ( Combined, Strap, Raft foundation)

4,362 views 69 slides May 22, 2016
Slide 1
Slide 1 of 69
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69

About This Presentation

presentation for 3 types of shallow foundations :
- combined footing
- strap beam footing (neighbor's footing)
- raft foundation


Slide Content

SHALLOW FOUNDATIONS 2 Design of combined, strap & raft footing

INTRODUCTION

Contents : 1 2 3

1. Combined Footing

Combined Footing A combined Footing is a long footing supporting two or more columns in (typically two) one row. A combined Footing is a rectangular or Trapezoidal shaped footing.

Using of Combined Footing Construction Practice may dictate using only one footing for two or more columns due to: Closeness of Columns Due to property line constraint, which may limit the size of footing at boundary.

The Design of Combined Footing requires that the centroid of the area be as close as possible to the resultant of the 2 column loads for uniform pressure and settlement. Which Means :

x y Eccentricity = ZERO

STEPS OF DESIGN

C1 C2 L

RC Max S.F.D B.M.D Zero shear

c1 c2

c1 c2 H.B.1 H.B.2

c1 c2

EXAMPLE C1 (30*70) C2 (30*90) 4 m Design a combined footing to support a working load of p1=160 ton & p2=220 ton. Bearing capacity: 12.5 ton/m2 Thickness of plain concrete 15 cm

Solution

1- Dimensions of footing : R = p 1+ p 2 = 160 + 220 = 380 ton  R . X = p 2 . S   380 x X = 220 x 4  X = 2.32 m   L pc / 2 = X + b 1 / 2 + 0.5 + t pc   L pc / 2 = 2.32 + 0.7 / 2 + 0.5 + 0.3 = 3.47m    Lpc = 6.94 m L Rc = L Pc - 2 x t PC = 6.94 - 2 X 0.3 = 6.34m A PC = 380 / 12.5 = 30.4 L Pc X B Pc = 30.4 6.34 x B Pc = 30.4 B Pc = 4.8m B Rc = 4.8 - 2 x 0.3 = 4.2m

2 Design of R.c footing   P 1u = 160 x 1.5 = 240 ton   P 2u = 220 x 1.5 = 330 ton   R u = 380 x 1.5 = 570 ton     W u = 570 / 6.34 = 89.9 ton   q u = 570 / 6.34 x 4.2 = 21.4 t/ ㎡

Design of Footing in Longitudinal Direction

At point of zero shear :   P 1u = w u . X 240 = 89.9 . X   X = 2.67m   M max = 89.9 x 7.1289 / 2 - 240 x 1.82 = 116.3   D =5 × √116.35×10^7 / 25 × 4200 = 526.3 ㎜   D = 530 ㎜

2- check shear   Q su = 0.16√25/1.5 = 0.653 N/m ㎡   Q sumax = 155.56 - 89.99 × 0.53/2 = 131.7365   Q s = 131.73×10^4 / 530×4200 = 0.59 ≤ q su    Safe

c1 c2 1.23 1.43 0.83 0.83

For c 1 ( 30x70)   Q pcu1 = 0.316 ( 0.5 + 300 / 700) √25/1.5 = 1.197 Q pu1 = 240 - 21.4 x (1.23x0.83)=218.15 ton   Q pu1 = 218.15 x 10^4 / 530x2 (1230+830) =0.99 ≤ q pcu1  Safe For c2 (30*90) Q pcu2 = 0.316 x (0.5 + 300/900) √25/1.5 = 1.07   Q pu2 = 220 -21.4 (1.43x0.83) = 194.6 Q pu2 = 194.6 x 10^4 / 530 (1430+830)x2 = 0.81 ≤ 1.07  safe

Design of Footing in Short Direction

c1 c2 1.73 m 1.96 m

For hidden Beam1   Q u1 = 240 / 4.2 x 1.73 = 33.03t/ ㎡ M 1 = 33.03 * 1.95^2 /2 = 62.9 t.m For hidden Beam 2   Q u2 = 330 / 4.2 x 1.96 = 40.1t/ ㎡   M 2 = 40.1 x 1.95^2 / 2 = 76.2 t.m   d = 530 = c 1 √ 76.2x10^7 / 25 x 1000   C 1 = 3.1≥ 2.3

Reinforcement

RFT in long direction Astop = 116.35 x 107 / 360 x 0.826 x 530 = 72382mm2/4.2m =1757.7 mm2  7 ϕ 18 Asbottom = 48.61 x 107 / 360x 0.826 x 530 = 3084mm2 /4.2 = 734.3 mm2  4 ϕ 16

RFT in short direction As1 = 62.79 X 107 / 360 X 0.826 X 530 = 3984 mm2  11 ϕ 22 As2 = 76.2 X 107 / 360 X 0.826 X 530 = 4835 mm2  10 ϕ 25

7 ϕ 18 4 ϕ 16 11 ϕ 22 10 ϕ 25 4 ϕ 16

c1 c2 7 ϕ 18 4 ϕ 16 4 ϕ 16 11 ϕ 22 4 ϕ 16 4 ϕ 16 10 ϕ 25 4 ϕ 16

2. Strap Footing

Design a strap footing to support an exterior column (30*50cm) and an interior column (30*90cm). The un factored Loads C1 =685 KN, C2 =1270 kN . Assume the allowable Bearing capacity is 150 kN/m2, fcu=25 N/mm2 and Fy = 360 N/mm2 , P.C. thickness = 40 cm EXAMPLE

C2 C1 0.5 0.9 4.9 m

Calculation of reaction: Assume e=0.1 to 0.2 (L) e = 0.5 to 1m (take it 1m) R1 = = 860.6 KN R2=685 + 1270 - 860.6 = 1094.4 KN   C2 C1 0.5 0.9 e

Area of plain concrete footing : A1 = = 5.73 Dimension ((1+0.25)*2 ) = 2.5 (2.5*2.3 ) A2 = = 7.29 Dimension = ( 2.7*2.7 ) = 7.29   R.C dimensions: F1 = ( 2.1*1.5 ) m F2 = ( 1.9*1.9 ) m

C2 C1 0.5 0.9 0.5 0.9 0.5 0.5 2.1 1.6 M = 602 720 695 432 262 B.M.D S.F.D

Design of strap beam: qu1= = 614 kN /m’ qu2 = = 864 kN /m’ Point of zero shear : 614X-1027=0 , X=1.67m , Mmax=602kN.m d = 5 * = 1227m t=130cm d=123cm  

Reinforcement: Astop = =1646 = 7 /m ’ Asbot = = 295 Asmin = 0.15 % b*d = 0.15 %* 400*1230 =738 = 4  

CHECK SHEAR: Qs = ( 720*0.55)/ 1.17 = 341.53kN qs = = 0.694N / qcu =0.24 = 0.98N / qs  use min stirrups 5   0.55 0.62 720

Design of Footings

Critical Sec Footing 1: q u = = 409.5 kN / L1 = ( 1.5-0.4)/ 2 = 0.55 m Mu = 409.5 *( /2 ) = 61.9kN.m d = 5 = 249mm t = 35cm d = 28cm  

Check shear: Qs = 409.5 *(0.55-(0.28/2 )) = 168kN q s = = 0.6 MPa q cu = 0.16 = 0.65 MPa qs  safe As = =743.44 = 5  

Footing 2: qu = =455kN/ L2= =0.75m Mu=455* =128kN.m d=5 =358mm t=45cm d=38cm   Critical Sec

Check shear: Qs = 455 *(0.75- ) = 255KN q s = =0.67N/ qcu =0.65N /  qs  unsafe 0.65= d=392mm t=50cm d=43cm As = =1001 =5 Asmin = 1.5d = 1.5*430 = 645  

3 ϕ 18 + 4 ϕ 18 = 7 ϕ 18 4 ϕ 16 5 ϕ 10 2 ϕ 12 2 ϕ 12

0.4 m 2.3 m 1.5 m 2.1 m 2.5 m 2.7 m 1.9 m 5 ϕ 12 5 ϕ 12 5 ϕ 14 5 ϕ 16

3. Raft Foundation