SHIP HANDLING AND MANOEUVERING BASICS.pptx

gpdevmarineacademy 119 views 184 slides Jun 17, 2024
Slide 1
Slide 1 of 312
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311
Slide 312
312

About This Presentation

SHIP HANDLING AND MANOEUVERING


Slide Content

S h i p M a n e u v e r i n g T e c h n i ca l R e f e r e n c e P a n a m a C a n al G a t u n L o c k

SH I P TE RM I N O L O GY Sh i p h a n d li n g

SH I P TE RM I N O L O GY B o w S t e m F o r ec a s tl e H a w se pip e W e a t h e r d e c k s D ra f t F r e e bo a r d Su p e r s t r u c t u re P ilo t h o u se M a st Y a r d a r m T r u ck S t a ck K e e l Sh a ft P r o p e l l e r R u d d e r S t e r n T r a n s o m W a t e r li n e Sh i p h a n d li n g

L e ss on C o n t e n ts Sh ip h a n d li n g T h e o ry L a w s o f M o t io n Co nt r o l labl e F o rc e s U n c o n t r ollabl e F o rc e s Sh ip h a n d li n g T e r m i n olo g y G ro u n d T a c k l e G ett i ng U n de r w a y Si n gl e Sc r e w C h a r a c t e r i st i cs Tw in S c r e w C h ar a c t e ri s t ic s T ug H a n dl i ng M a n O v e r b o a r d R e c o v e r y

S hi p han d lin g Th e o r y : M o t i on Va r i ou s f o r ce s a c ti ng on t h e s h i p c r e ate mo v e m e n t. N e wt o n’ s L a w s o f Mo ti on Un l e s s a c t e d u p o n b y a n o u t sid e f o r c e : An o b j e ct in m o t i o n t en d s t o st ay in m o t io n. An o b j e ct at r es t ten d s t o st ay at r es t . T h e r e s u l t i n g mo t i o n o f an o b j e c t i s t h e su m o f a l l f o r ce s a c t i n g on i t . E v e ry act ion h a s a n e q u a l a n d o p p o si te r e act io n .

W h a t i s V e ss e l H a n d l i n g ? V e ss e l h a n d li n g i s b a s e d o n t h e b a s i c k n o w l e d g e t h a t a v e s s e l f l o a t s i n t h e w a t e r a n d r e tu r n s t o i t s or i g i n a l p o s iti o n a f t er a li s t . I t i s ma n e u v e re d w i t h t h e as s i s t a n c e of t h e r u d d e r , ma i n e n g i n e ( s ) a n d o t h er a u x i l i a ry e q u i p m e nt , u s i n g k n o w l e d g e of t h e r o lli n g , p i t c h i n g a n d y a w i n g c h a r a c t er i s ti c s of t h e v e s s e l i n w a v e s . In h a nd li n g t h e v e ss e l i t i s n e c e s s ary t o c o n s i d er th e e f f e c t s of e n v i r o n m e n t a l c o n d i t i o n s w h il e c o nt r o lli n g t h e p o s i t i o n of t h e v e s s e l , i t s a t ti tu d e, a n d i t s s p ee d , t o m o ve t h e v e s s e l i n t h e d e s i g n e d d i r e c t i o n i n a s a f e a n d e ff i c i e n t m a n n e r , a n d t o s t o p a t t h e i n t e n d e d p o s i t i o n . ( T h eory a n d P r a c t i c e of S h i p H a n d li n g , Ki n z o I n o u e , H o n o r a r y P r o f e s s o r , K o b e U n i v e r s i t y) . ̎

Ship Handling and Maneuvering Shi p H a n dlin g a n d M an e u v eri ng i s d e f i ne d as t h e ar t of pr o p e r c o n t rol o f a s hi p w hil e u nd e r w a y , e s p e c iall y in ha r b o r s , a r o u n d d o c k s a n d pi e r s . I t i s on e o f t h e sk il l s t ha t an y s hi p h a nd l e r f i nd s v er y s a t i sf y in g w he n w ell a cc o m pli s h e d . T h e m o s t b a s i c t h i n g t o b e u n d e r st o o d in s hi p h a n dlin g is t o k n o w an d a n t i c ip a te h o w a s hi p b e h a v e s u n d e r a ll c i r c u m s t a n c e s a n d w ha t o r de r s s h oul d b e gi v e n in o r de r to m a k e t h e s hi p b e ha v e an d m o v e e x a ct l y t h e w a y y o u w ant he r t o . T h e d i f f e r en ce be t w ee n t h e sh i ps’ h e a din g a n d t h e a c t u a l di r e c t i o n o f mo v emen t o f t h e s hi p s hou l d a l so be c o n s t a n t l y a t t e nd e d t o a s t h i s i s e ss e n t iall y imp o r t a n t at s lo w s peed s an d w he n t her e ar e w in d an d c urren t .

V e s s e l w i t h S t a b i li t y M e a n s R u d d e r , m a i n e n g i ne, t hr u s t e r s , a n c h o r s, mo o r i n g l i n e s, t u g s e t c . V e ss el ma n e u v e r a bil i t y R olli n g , P i t c h i n g a n d Y a w i n g c h a r a c t e ri s t i c s in w a v e s E n v i r o n m e n t al c o nd i t io n s G eo g r a p h y ( e x i s t e n c e of s h allow a r eas a n d w a t er d e pt h e t c . ) F a c ili t i e s ( p ort f a c ili t i e s ) N a v i ga t ion ( bu o y s , f i s h i n g b o a t s , m ari n e t r a f f ic e t c . ) So c ial ( r e g u l a t io n s , n a v i ga t ion r e g u l a t io n s e t c . ) N a tu r e ( w i nd , t i d al f l o w s , v i s i b ili t y , w a v es e t c. ) S hi p N a v i g a t o r C o n t r o l of v e ss el p o s it io n , a t t i t ud e , a n d s p e e d f or s a f e a n d e f f i c i e n t m o v e m e n t i n th e r e qui r ed di r e c ti o n s t o p p i n g a t t h e r e q ui r ed p o s it i o n O p e r a t e v e s s e l a s d e sc r i b e d ̏

S hi p han d lin g T h e o r y : F o r c es C on t r o ll a b l e P r op e l l e r R u d d e r B o w T h r u s t e r / A P U Moo r i n g L i n e s A n ch o rs T u g s Un c on tr o ll a b l e W i n d Cu r r e n t / T id e s Se as W a t e r D e p t h

Co n tr o ll ab l e F o r c e s

P r o p e ll e rs P r o v i d e s t he mo s t i mpo r t an t s o u r c e o f f o r c e on a s h i p. (U s ua ll y ) mak e s s h i p g o f o r w a r d. Most s h i p s ha v e 2 p r o p e ll e r s . A i r c r aft c a rri e r s / P at r ol C r aft ha v e 4. F r i g a t e s ha v e 1. C o n t r oll a bl e F o r c e s

P r o p e ll e rs F o r c e s r e s u lti ng f r om t h e u se o f t he p r op e l l e r s : F o r wa r d ( o r r e v e r s e ) t h r u st S id e F or ce C o n t r oll a bl e F o r c e s

P r o p e l l er T h r u s t A r e s u l t o f t h e p r op e ll e r s p i n n i ng on i ts s h a f t. C au s e d b y a p r e ss u r e d i f f e r e n tial b e t wee n t h e o p po s i t e s i d e s o f t h e p r op e l l e r b l ad e . C o n t r oll a bl e F o r c e s

P r o p e l l er T h r u s t R o t a t i o n o f p ro p e ll e r b lad e W a t e r Fl o w Lo w P r e s s u r e P ro p e l l e r B lad e H igh P r es s u r e R e s ul t ing T h r u s t C o n t r oll a bl e F o r c e s

C o n t r o ll in g P r o p e l l er T h r u s t D e p e nd s on t y p e o f p r o p e l l e r s Fixe d P i t c h P r o p e l l e r s C o n t r o l la b l e P i t c h P r op e ll e rs C o n t r oll a bl e F o r c e s

C o n t r o ll a b l e P i t c h Pr o p e ll e r s F o u nd on a l l g a s t u r b i n e s h i p s and s o m e d i e s e l am p h i b s • - 12 kts sh a f t r o t a t e s a t 55 R P M t h r u s t ( s p e e d) c o n t r o l l e d b y ch a n g i n g t h e pi t c h o f t h e pr o p e l l e r bl a d e C o n t r oll a bl e F o r c e s

C o n t r o ll a b l e P i t c h Pr o p e ll e r s >12 kts t h r u s t c o n tr ol l e d b y c h a n gi n g t h e s p e e d (R P M) o f t h e sh af t . The s h aft a l w a y s sp i n s i n s a m e d i r ec ti on w h e t h e r g o i ng f o r w a r d o r b a ck w a r d. C o n t r oll a bl e F o r c e s

F i x e d P itc h P r o p e ll e rs F o u nd on s t e am s h i p s ( c a rr i e r s , s u bs, amph i b s ) C ann o t c han g e p i t c h o f p r o p e l l e r Th r u st ( s p ee d ) c o n tr o l l e d b y c han g i ng s p e e d o f t he s h aft To go b a c k w a r d s , m u st s t o p s h aft and s p i n t h e s h aft i n t he o pp o s i t e d i r ec tion. C o n t r oll a bl e F o r c e s

S i d e F o r ce C au s e s s t e r n t o mo v e s i d ew a y s i n t he d i r ec ti on o f p r op e l l e r r o t a ti o n . P ro p e l l e r C o n t r oll a bl e F o r c e s

S i d e F o r c e A s t e rn A h ea d T wi n S c r e w S i d e F o r c e B o tt o m S i ng l e S c r ew G oi n g A hea d S i d e F o r c e S i d e F o r c e C o n t r oll a bl e F o r c e s

Sc r ew C u r r e n t C on s i s t s o f t w o p a rts Su c t i o n C u rr e n t - g o i n g i n t o t h e p r o p e l l e r Di sch a r g e Cu r r e n t ( P r o p W a sh) - c o m e s o u t o f t h e p r o p e l l e r S u c t i o n C u r r e n t D i s c h a r g e C u r r en t A c t s o n Ru d d e r P ro p e l l e r C o n t r oll a bl e F o r c e s

Ru d d e r s Us e d t o c on tr ol s h i p ’ s h e ad i ng b y mo v i ng t he s t e r n. To h a v e an e f f e c t , mu st h a v e a f l o w o f w at e r a c r o ss t he r ud d e r . N o r m all y t h i s f l o w o f w ater i s t he d i s c h a r g e c u rr e n t o f t he s c r e w . C o n t r oll a bl e F o r c e s

Rud d e r F o rc e H L i o g w h P r e s s s s u r e A r e a H L i o g w h P r e s s s s u u r e A r e a A c t s a w i ng R u d d er W a t e r Fl o w Rud de r F o rc e C o n t r oll a bl e F o r c e s

Pr o p e l l e r s / R u dd e rs P r i m a r y m e an s o f c on tr o ll i n g t h e s t e r n T h r u st S i d e F o r ce Rud de r F o r c e C o n t r oll a bl e F o r c e s

P i v o t p oin t concept

P iv ot P o in t I mag i n a r y po i n t on t he s h i p ’ s ce n t e rl i n e abou t w h i c h t he s h i p p i v o ts P i v o t P oin t T h r u st Si d e F o r ce Rud d e r F or ce C o n t r oll a bl e F o r c e s

T h e s h i p ’ s p i v o t p o i n t The turning ef f ect of a v essel will ta k e ef f ect ab o ut the shi p ’s ‘p i v ot poin t ’ and th i s posit i on, with the a v e r age design v essel, lies at about the sh i p ’s Cent r e of G ra vit y , w hi c h is gene r al l y nea r l y amidsh i p s (assum ing th e v essel is on e v en k eel in calm w a t er con d itions). A s the ship m o v es f or w a r d unde r engine po w e r , th e p i v ot p o int wil l b e caused t o m o v e f or w a r d with th e m o ment u m on th e v essel. I f th e w a t er d oes not e x ert r esistan c e on th e hull th e p i v ot p o int w ould assum e a p o sition in the bo w r egion. H o w e v e r , p r ac t ica l l y th e p i v ot p o int m o v es t o a p o sition a p p r o xima t e l y .25 of th e ships length (L ) f r om the f or w a r d positio n . Sim ila r l y , if th e v essel is m o v ed as t ern, th e s t ern m otion w ould cause th e P i v ot P oint t o m o v e af t and adop t a ne w posit i on app r o xim a t e l y 0.25 of the shi p ’s length f r om the ri g ht af t posi t ion. I f th e turning mot i on of t h e v essel is conside r ed, with us e of th e rudd e r , w hile th e v essel is m o v ed ahe a d b y engines, it can b e seen tha t t he p i v ot poin t w ill f oll o w th e a r c of th e turn.

I f th e turnin g motion of th e v essel is conside r ed, with us e of th e rud d e r , w hile th e v essel is m o v ed ah e ad b y engines, it can b e seen th at th e p i v ot p o int will f oll o w the a r c of the tur n .

The c o mb i ned f o r ces of w a t er r esistan ce, f or w a r d of the p i v ot p o int and the op posing t urning f o r ces f r om the rud d e r , aft of the p i v ot poin t , cause a ‘couple ef f ec t ’ t o ta k e pla ce. The r esult a nt turning mot i on on the v essel sees the p i v ot p o int f oll o win g th e a r c of the turn.

P i v ot poin t mea n s th e cen t er o f a n y r ota t i onal s y s t em. I t is v ery vi t a l t o kn o w th e lo c a t ion o f th e p iv ot p o int a s th e ship h andli n g depends g r ea t l y on kn o wi n g th e lo c a tion of th e same. The p i v ot poin t is n ot a f i x ed poin t . I t c h a n g e s th e loca t ion dependi n g on th e bel o w f ac t ors ; - W h en t he v essel is a t r est or static, th e p iv ot p o int is alm o st th e same a s tha t of th e cen t er of G ra vi t y , w hich is de n o t ed b y G. W h en th e v ess e l m o v es f or w a r d, th e posi t ion of p i v ot poin t shif t s f or w a r d. The n ew p i v ot p o int wil l b e ab o u t 1 / 4 t h of th e Length of th e v essel f r om th e f or w a r d.

W h en t he v essel m o v es as t er n , th e po s ition of th e p iv ot p o int shifts t o w a r ds th e s t er n . The n e w p iv ot poin t wil l b e abo u t 1/4 t h of t he Leng t h of th e v ess e l f r om th e s t er n . w hile t he v ess e l m o v es as ter n , th e p i v ot poin t m o v es t o w a r ds th e s t er n . This shi f t o f the p iv ot p o int can b e mad e t o a dv an t ag e . Let's ass u m e tha t b oth t he tug s a r e p u llin g wi t h t h e same f o r ce. Si n ce th e p i v ot poin t has shif t ed m o r e t o w a r ds th e s t er n , th e ef f ect of t he F or w a r d tu g w i l l b e in c r e a sed au t o m a t ical l y . The r e a son bei n g tha t th e t urn in g l e v er f or th e F or w a r d tu g has bee n in c r e a sed, becaus e of th e shi f t o f th e p i v ot poin t . The r e f o r e the act i on of th e f or w a r d tu g wil l b e do m in an t o v er th e s t ern tug . The r e f o r e th e b o w wil l m o v e t o PO R T .

T h e p i v o t p o i n t a t a nc h o r I t sho u l d b e no t ed th a t w hen th e v essel goe s t o a ncho r t h e p i v ot poin t m ov es r i g ht f or w a r d an d e f f ect i v e l y h olds t h e b o w in one po s ition. A n y f o r ces a cting on t h e h u ll , such a s f r om win d or cur r ents, w ould cause t he v essel t o m o v e abo u t t h e h a w se pip e position. Use of t h e r u dder can ho we v e r , b e empl oy ed w hen a t ancho r , t o p r o vide a ‘shee r ’ t o t h e v essel, w hich could b e a usefu l actio n t o an g l e t h e l e ngt h of th e v essel a w a y f r om loca l i z ed dange r s.

P i v o t P o i nt S h i p t wi st i n g w i t h n o w a y o n. C o n t r oll a bl e F o r c e s

P iv ot P o in t Us u a l l y l o c ate d 1 / 3 t he l e n g t h o f t he s h i p f r om t he b o w . ( J u st b e h i nd t he b r i d g e .) Piv o t po i n t i s no t f i xe d C o n t r oll a bl e F o r c e s

F o r c es w hi c h a f f e c t l o c a t i on o f t h e P iv ot P o i n t H e a d w ay o r S t e r n w ay S h i p’ s S p e e d An c ho r s Moo r i ng Li n e s Tu g s C o n t r oll a bl e F o r c e s

W in d A c t s on t he s a i l a r e a o f t he s h i p E x po s e d sup e r s t r u c t u re H u ll s t r u c t u re S h i p s t e n d t o b a c k i n t o t he w i nd 30 k t s o f wi n d = 1 k t s o f c u rr e n t C u r re n t A c t s on t h e un d e rw at e r p a r t o f t he s h i p. C r e ates s e t and d r i f t. U n c o n t r o l l a bl e F or ce s

D e p t h o f W a t e r S qu at - O c c u r s a h i gh s p ee d s bo w o f a sh ip r id e s u p o n t o t h e bo w w a v e s t e r n o f a sh ip t e n d s t o si n k S h a l l o w w ater e ff ec t s . U n c o n tr ol l ab l e F or c e s

SH I P TE RM I N O L O GY B o w S t e m F o r ec a s tl e H a w se pip e W e a t h e r d e c k s D ra f t F r e e bo a r d Su p e r s t r u c t u re P ilo t h o u se M a st Y a r d a r m T r u ck S t a ck K e e l Sh a ft P r o p e l l e r R u d d e r S t e r n T r a n s o m W a t e r li n e Sh i p h a n d li n g

H e a d w ay m o vi n g f or w a r d t h r u t h e w a t e r S t e r n w ay m o vi n g b ack w ar d s t h r u t h e wa t e r B a r e S t eer a g ew ay t h e m i n i m um s p e e d a sh ip c a n pr o c e e d a n d s t i l l ma i n t a in c o u r s e u si n g t h e r u d d e rs Sh i p h a n d li n g: T e r m s

S t a nd b y l i n e s Ta k e i n t he s l a c k Ta k e a s tr a i n H e a v e a r o u nd A v ast h e a v i ng H o l d C h e c k D o ub l e up S i ng l e up Ta k e i n S l a c k E a s e Ta k e t o t h e c ap s t a i n Gr o u n d Ta c kl e , M o o r i n g L i n e s Se q u e n c e : Command s : Sh i p h a n d li n g:

S a f e ty B att l e d re ss S n a p b a c k z on e Tu g s Pi l o t s l a d d e r Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

L e ss on C o n t e n ts Sh ip h a n d li n g T h e o ry L a w s o f M o t io n Co nt r o l labl e F o rc e s U n c o n t r ollabl e F o rc e s Sh ip h a n d li n g T e r m i n olo g y G ro u n d T a c k l e G ett i ng U n de r w a y Si n gl e Sc r e w C h a r a c t e r i st i cs Tw in S c r e w C h ar a c t e ri s t ic s T ug H a n dl i ng M a n O v e r b o a r d R e c o v e r y

S hi p han d lin g Th e o r y : M o t i on Va r i ou s f o r ce s a c ti ng on t h e s h i p c r e ate mo v e m e n t. N e wt o n’ s L a w s o f Mo ti on Un l e s s a c t e d u p o n b y a n o u t sid e f o r c e : An o b j e ct in m o t i o n t en d s t o st ay in m o t io n. An o b j e ct at r es t ten d s t o st ay at r es t . T h e r e s u l t i n g mo t i o n o f an o b j e c t i s t h e su m o f a l l f o r ce s a c t i n g on i t . E v e ry act ion h a s a n e q u a l a n d o p p o si te r e act io n .

S hi p han d lin g T h e o r y : F o r c es C on t r o ll a b l e P r op e l l e r R u d d e r B o w T h r u s t e r / A P U Moo r i n g L i n e s A n ch o rs T u g s Un c on tr o ll a b l e W i n d Cu r r e n t / T id e s Se as W a t e r D e p t h

Co n tr o ll ab l e F o r c e s

P r o p e ll e rs P r o v i d e s t he mo s t i mpo r t an t s o u r c e o f f o r c e on a s h i p. (U s ua ll y ) mak e s s h i p g o f o r w a r d. Most s h i p s ha v e 2 p r o p e ll e r s . A i r c r aft c a rri e r s / P at r ol C r aft ha v e 4. F r i g a t e s ha v e 1. C o n t r oll a bl e F o r c e s

P r o p e ll e rs F o r c e s r e s u lti ng f r om t h e u se o f t he p r op e l l e r s : F o r wa r d ( o r r e v e r s e ) t h r u st S id e F or ce C o n t r oll a bl e F o r c e s

P r o p e l l er T h r u s t A r e s u l t o f t h e p r op e ll e r s p i n n i ng on i ts s h a f t. C au s e d b y a p r e ss u r e d i f f e r e n tial b e t wee n t h e o p po s i t e s i d e s o f t h e p r op e l l e r b l ad e . C o n t r oll a bl e F o r c e s

P r o p e l l er T h r u s t R o t a t i o n o f p ro p e ll e r b lad e W a t e r Fl o w Lo w P r e s s u r e P ro p e l l e r B lad e H igh P r es s u r e R e s ul t ing T h r u s t C o n t r oll a bl e F o r c e s

C o n t r o ll in g P r o p e l l er T h r u s t D e p e nd s on t y p e o f p r o p e l l e r s Fixe d P i t c h P r o p e l l e r s C o n t r o l la b l e P i t c h P r op e ll e rs C o n t r oll a bl e F o r c e s

C o n t r o ll a b l e P i t c h Pr o p e ll e r s F o u nd on a l l g a s t u r b i n e s h i p s and s o m e d i e s e l am p h i b s • - 12 kts sh a f t r o t a t e s a t 55 R P M t h r u s t ( s p e e d) c o n t r o l l e d b y ch a n g i n g t h e pi t c h o f t h e pr o p e l l e r bl a d e C o n t r oll a bl e F o r c e s

C o n t r o ll a b l e P i t c h Pr o p e ll e r s >12 kts t h r u s t c o n tr ol l e d b y c h a n gi n g t h e s p e e d (R P M) o f t h e sh af t . The s h aft a l w a y s sp i n s i n s a m e d i r ec ti on w h e t h e r g o i ng f o r w a r d o r b a ck w a r d. C o n t r oll a bl e F o r c e s

F i x e d P itc h P r o p e ll e rs F o u nd on s t e am s h i p s ( c a rr i e r s , s u bs, amph i b s ) C ann o t c han g e p i t c h o f p r o p e l l e r Th r u st ( s p ee d ) c o n tr o l l e d b y c han g i ng s p e e d o f t he s h aft To go b a c k w a r d s , m u st s t o p s h aft and s p i n t h e s h aft i n t he o pp o s i t e d i r ec tion. C o n t r oll a bl e F o r c e s

S i d e F o r ce C au s e s s t e r n t o mo v e s i d ew a y s i n t he d i r ec ti on o f p r op e l l e r r o t a ti o n . P ro p e l l e r C o n t r oll a bl e F o r c e s

S i d e F o r c e A s t e rn A h ea d T wi n S c r e w S i d e F o r c e B o tt o m S i ng l e S c r ew G oi n g A hea d S i d e F o r c e S i d e F o r c e C o n t r oll a bl e F o r c e s

Sc r ew C u r r e n t C on s i s t s o f t w o p a rts Su c t i o n C u rr e n t - g o i n g i n t o t h e p r o p e l l e r Di sch a r g e Cu r r e n t ( P r o p W a sh) - c o m e s o u t o f t h e p r o p e l l e r S u c t i o n C u r r e n t D i s c h a r g e C u r r en t A c t s o n Ru d d e r P ro p e l l e r C o n t r oll a bl e F o r c e s

Ru d d e r s Us e d t o c on tr ol s h i p ’ s h e ad i ng b y mo v i ng t he s t e r n. To h a v e an e f f e c t , mu st h a v e a f l o w o f w at e r a c r o ss t he r ud d e r . N o r m all y t h i s f l o w o f w ater i s t he d i s c h a r g e c u rr e n t o f t he s c r e w . C o n t r oll a bl e F o r c e s

Rud d e r F o rc e H l iog wh P r e s s s s u r e A r e a HLiogwh Pressssuure Area A c t s a w i ng R u d d er W a t e r Fl o w Rud de r F o rc e C o n t r oll a bl e F o r c e s

Pr o p e l l e r s / R u dd e rs P r i m a r y m e an s o f c on tr o ll i n g t h e s t e r n T h r u st S i d e F o r ce Rud de r F o r c e C o n t r oll a bl e F o r c e s

P iv ot P o in t I mag i n a r y po i n t on t he s h i p ’ s ce n t e rl i n e abou t w h i c h t he s h i p p i v o ts P i v o t P oin t T h r u st Si d e F o r ce Rud d e r F or ce C o n t r oll a bl e F o r c e s

P i v o t P o i nt S h i p t wi st i n g w i t h n o w a y o n. C o n t r oll a bl e F o r c e s

P iv ot P o in t Us u a l l y l o c ate d 1 / 3 t he l e n g t h o f t he s h i p f r om t he b o w . ( J u st b e h i nd t he b r i d g e .) Piv o t po i n t i s no t f i xe d C o n t r oll a bl e F o r c e s

F o r c es w hi c h a f f e c t l o c a t i on o f t h e P iv ot P o i n t H e a d w ay o r S t e r n w ay S h i p’ s S p e e d An c ho r s Moo r i ng Li n e s Tu g s C o n t r oll a bl e F o r c e s

Internal and External Factors In t e r n al Fac tors/For c e s T h e se a r e t h e f a c t o rs o r f or c e s I N S I D E t h e s hi p t h a t a f f e c t s h o w t h e v e s s e l b eha v e s o r pe r f or m s dur in g m an e u v erin g , s o m e e x ampl e s a r e : E n gin e P o w er , S p e c i f i c a t i o n o f P r opel l e r an d R u d d e r , M o or i n g L i n e s an d Anc hor , T hru st er s an d Vess e l Speed . Ext e r n al Fac tors/For c e s T h e se a r e t h e f a ct o r s o r f o r c e s t h a t ha p p e n s O UT SI D E t h e s hi p t h a t af f e c t s t h e m an e u v eri n g o f t h e v e ss e l w hil e under w a y , approachi n g a por t o r bei ng do ck ed , s o m e e x a m ple s are : T id e , A s u d d e n c h a ng e in w in d v elo c i ty a n d d i r e c t io n ( g u s t ), S e t a n d dr i f t, T h e p r o x i m i ty o f o t h e r v e s s e l s , T h e dept h o f harbor s.

External F actors/forces T i de - A t lo w ti de , the w a ter w il l be too sh a l l o w for the sh i p to m ov e and she w il l h i t the b o t t o m o f the h a rb or. T h i s me a n s th a t shi p s n e e d to sche d u l e th e i r a rri va l a t o r depa rture fro m some p orts ar o u n d the h i g h tides a t th o se p orts. S h i ps' mo o ring l i ne s tig h te n a s the tide ris es, and sl a cken w hen the ti d e g oe s o u t. H ig h tides h e l p i n n a vigati o n. T h e y ra i s e the w at e r l eve l cl o se to the sh o re s. T h i s h e l p s t h e sh i p s to arr i ve at h a rbor m o re ea si l y .

A sudde n chang e i n w i nd v elo c i t y an d dire c tion ( gus t ) - The Wind F orc e w il l develo p a s ide w a y s f o r ce on t h e v essel, a w a y f rom the expos e d sid e . Ma k i n g He a d w a y wit h S te r n to W in d , the ve s s e l lose s “co ur se s tabilit y ” a n d i s di f f ic ul t t o s t e e r, this ef f e c t i s g r e at e r whe n th e re i s al so a following Sea or Swel l .

Set an d dr i f t - Ign o ring s e t and d r if t can ca u se a m a r ine r t o get of f t hei r d e si r e d co u rse, s o m etim e s b y hun d re d s o f mi l e s . A m a rin e r n ee d s t o b e abl e to s te e r t h e ship and c o mp ensate for the e f f e c t s of s e t an d d rift the i r v e s sel while upon u n der w a y . T h e a ctual cou r se a ve s sel trave l s i s r ef e rred t o as the cou r se o v e r the groun d .

The p r ox i mit y of other v e s s els

Th e d e pth o f h a rbor s - Sh al l o w wa t er a f fe c ts the m aneu v er a b il ity o f ships limited con s i d era b l y . The wate r de pth wi l l change the pr essu r e d i s t ri b ution ar o u n d the vessel an d lead t o a n i n cr e a se in hydrodynami c force s .

Int erna l Factors/ force s un d e r the c ontro l o f the S h i p ha n d l er En g i n e p o w e r cha l l engin g to keeping co n t r o l . - It c a n be sl o w d o w n w h ile Th i s i s b ec a use reduction i n p r o p elle r speed r e d uc e s w a t e r fl o w o v e r the r u d de r an d the rudd e r b ec o m e s l e ss effectiv e . The conventi ona l a p pr o a c h for h a lti n g is to pu t e n g i n e s aste r n. Th e s h i p w ill b e l e ss r e s po nsi v e to ste e ri n g w h e n a pr o pell e r i s r ot a ting aste rn b e ca u s e the w a t e r fl o w acr o ss the ru d d e r is d i sr upt e d . In a d d i t i o n , th e re i s the d i sruptive e ff e ct o f tra n sv e rse thr u st.

Speed - T h e tur n i n g ci r cle w il l no t i n cre a se b y any therefore consid era b l e mar g i n w it h a n increa se i n spee d , b e c a us e the ste e r in g effect i s i n cr ea s e d ov e r the s a me pe rio d . G en e ra ll y s pe ak i n g , h i g h e r sp e e d s mean mo r e fo rce o n the rudd e r but a l so more mom e nt u m . S o , t h e h e a d w i l l turn fast e r, bu t the s h i p w i l l trav e l fart he r a l o n g i t s pr e vious trac k . The h i g h e r momentum a l so m e a n s more he e l i n g .

Ef f ec t o f t h e t y pe o f pr o pe l ler - Pr o p e lle r af f e c t s ev e r y p has e of p e r fo r m a nc e - ha n dling , ridin g, c o m f o rt, e n gi n e s af e t y . s p eed , a cceler a t i on, li f e , fuel e c o n o m y and I n b o a t a re de t er m ining p r o pellers p e r fo r m a nce, s e c o n d i n i m po r ta n ce onl y t o t he p ow e r avail a bl e f r o m t h e engi ne its e l f . With o u t t h e pr o pelle r 's thru s t, nothin g happen s .

R udder m o v e m en t an d t y pe - The ru d d e r a c t s as a h ydro f oil . B y itself , i t i s a passive in s t r um e n t a n d relies on wat e r p a ssi n g ov e r i t t o giv e i t ‘li f t ’ . R u d de r s a re pla c e d at t h e st e rn of a s h i p f o r this r e aso n and to take ad v a n t a g e of t h e f orwa r d pivo t point , w h ic h e n ha n ces t h e effe c t .

Thrusters - The t h r u st e r t a k e s s u c tion f r o m one side and th r o ws i t out at t h e oth e r side of the vessel, th u s mo v in g t h e ship in the o p p o site directio n. T hi s can be op e ra t e d i n bot h the di r e c tions, i. e . , p o rt t o s ta rb o ard and s t a rb o a r d t o p o r t . T h e b o w thru s t er s a re pla c e d b elo w t h e w ate r lin e of the s h i p.

A n c h ors a nd m o o r i n g li ne s - T h e p urpo s e o f an a n c ho r i s to k ee p a s h ip s af e and s e c ur e at a d e s ired l o c at i o n or to he lp c ontro l the s h ip durin g bad w e ath e r . H o w e v er , to a cc omp l i s h the s e vit a l purpo s e s, j u st ha vi n g an a n c ho r is not enough. T h e an c ho r mu st be s o l id, dependable, a n d u s e d properl y at the rig h t time and p l a ce. O n the o t h e r hand, an ancho r m o or i n g fi x e s a v es s e l ' s p o si t i o n relat i ve to a po i n t on the bottom of a w a te r w a y w ithout c onne cti n g the v e ss e l to s h o re. As a v e rb, mo o ring ref e rs to the ac t o f a ttachi n g a v es s e l to a mo ori n g .

Tugb o ats - T u g b oa t s are s m a l l, cap a b le p owe rful bo ats l a r g e o f steering sh i p s b y p u l l in g o r p u shi n g th e m . The y are use d to assis t these shi p s i n places w h er e they ar e un a bl e to m aneu v e r themselv es, such a s n a rr o w w a ter channels an d port s .

W in d A c t s on t he s a i l a r e a o f t he s h i p E x po s e d sup e r s t r u c t u re H u ll s t r u c t u re S h i p s t e n d t o b a c k i n t o t he w i nd 30 k t s o f wi n d = 1 k t s o f c u rr e n t C u r re n t A c t s on t h e un d e rw at e r p a r t o f t he s h i p. C r e ates s e t and d r i f t. U n c o n t r o l l a bl e F or ce s

D e p t h o f W a t e r S qu at - O c c u r s a h i gh s p ee d s bo w o f a sh ip r id e s u p o n t o t h e bo w w a v e s t e r n o f a sh ip t e n d s t o si n k S h a l l o w w ater e ff ec t s . U n c o n tr ol l ab l e F or c e s

Thre e Type s of Basic S h ip Mo t ion Lon gitud ina l mot i o n ( forwar d o r aste r n ) . Later al mot i o n (s i dew ays ) . Rotati o na l o r turni n g mot i on .

SHIP FACTORS THA T A FFECT MANUEVERI N G H a n d l i ng c ha racter i stics w i l l v a r y from ship t y pe to s h i p t y pe an d from s h i p to sh i p. H a ndl i n g q u a l i ties a r e d e termined b y s h i p d e s i g n , w h i c h i n turn d e pen d s o n the sh i p ’s i n tende d fu n cti o n. T y p i cal l y , d e s i g n rati os, such a s a sh i p ’ s l e n gth to it s b e am , determin e it s w i l l i n g n es s to tur n . H o w e v er , d e si r a b l e h a n d l i n g q u alitie s ar e a ch i eve d o n l y w h e n th e r e i s a b a l a nc e b e t w e e n d i recti o n a l sta b i l it y an d d i recti o n a l i n sta b i l it y .

Other Variable f a ctors af f ec t ing ship handl i ng. Huma n f ac tor – A del a y in time bet w een your g iv e n ord e r and the e x e c ut i o n of the or d e r w i l l affe ct how y o u i nten d to mo v e your s h ip. This i s c au s e d b y human fa c tors be c au s e the i nd i v i du a ls y o u a re or d er i n g m a y h a ve d iffere nt r e s pon s es d e p e n di n g on the i r train i n g and abil i t y to p erf o rm the j ob , or th a t o rde r s h a ve to be re la y e d b y an o ffic e r to the he lm s man, w h ic h is a ba d pract i ce that s houl d be a v o i d ed s o that t h e c onn i n g off i c e r s hou l d be ab le to g ive h is order s d irect l y to the h elm s man .

Wind an d c urre n t a r e u sual ly ass o ci a ted as b oth be i ng forces no t under cont r ol of the s hip h andle r. Th e t wo forces hav e , ho w ev e r , a d i ffe r e nt effe c t on t he sh i p because o f t he d if fe r en c e i n natu r e o f the t w o . When t h e shi p i s a f fected b y wi n d alon e an d move s th r ough the w a ter, the hull me e ts u n der wa ter r es is t anc e. When, o n t h e other hand, the ship ’ s moti on or i g i nates f r o m curre nt , the r e i s p r a ct i cal l y n o r esi s tan c e o f t h e ab o v e- w a t e r a rea to air . As w a t e r i s eigh t hundred t i me s de n se r t h a n sea level a tm o sphere , c u rre n t mu s t, than b y n a tu r e , ha v e w i nd, es p ecia l l y on cons i de r ab l y s t ronge r e f fe c t loaded ship s.

OCE A N CURR E NT Oc e a n c u r r e n t s a re t h e c o n t i n uo u s , p r edic t abl e , di re ct i o n al m o v e m en t o f s e a w a t e r d ri v e n b y gra v i t y , w in d ( C or io lis Ef f e ct ), a nd dir e c t io n s : m o v e m en t s w a t e r d en s i t y . O c e a n w a t e r m o v e s i n t w o hor i z o n t all y an d v er t i c all y . H or i z on t al a r e r e f er r e d t o a s c ur re n t s, w hil e v ertical c hange s ar e c alle d up w elling s o r do w n w ellin g. Oc e a n c u r r e n ts a c t m u ch l i ke a c o n v e y o r be l t , t ra n s p o r t i n g w ar m w a t e r an d pr e c ip i t a t i o n f rom t h e e q u a t o r t o w ar d t h e pol e s an d c ol d w ate r from t h e pol e s ba c k t o t h e tro pi c s .

Curr e nt has a direc t e f f e ct o n the unde r- wat er p a r t o f the ship a nd a n i ndirec t ef- fect ex p re s se d in mom e n t um a ft e r the ship al t e r s cours e o r come s ou t o f a cu r- r ent, wh e n the s hip wi l l carry momen t um in the dir e c t ion o f the cur r en t that t h e ship was previously sub j e cte d t o .

Effe c t of W ind an d C urre nt Where a s th e e f f ec t o f wind o n th e s h ip h a s t o b e co nsi dere d wi t h respe c t to th e pi v ot p oint, curre n t a f f e ct s a freely mo v i ng sh i p a s a w h ole a n d cons e que n tly i t s e f fect is o n t he cente r o f g r avit y . H o w eve r, w h e n w e try to keep th e shi p sta t io n a r y r e la t ive t o th e gro u nd, w e must a r r es t t he s hip ’s mov e me n t a nd l e t t he s h ip m ak e spee d t hr o ugh th e w a ter co n trary t o t he cu r r ent , in w hich case th e shi p meet s u n der w ate r resi sta n c e. Al l freely mo vi ng sh i ps, n ot b ein g s u b jected t o wind a nd d e a d in th e w a te r , have th e s a m e spee d as th e curren t, w h e th e r th e s hi p s a r e big o r sm al l , loaded o r lig h t. Shi p s n ot free l y m ovi n g, as s hips a t a n ch or o r mo o re d, are subj e c ted t o p res sure exe r t e d b y t he c urr e nt, pres s ure which is dire c t ly propo r t i on a te t o t he expos e d u n de r w ate r are a an d t o th e sq u a r e o f th e cu r re n t v elocit y .

I n a st ro n g t i d e w e s e e t h a t s hi p s a t a n c h o r , or m oo r e d t o a s i ngl e p oi n t , a r e h ea d ing i n to t h e t i de ; w he n it is n earl y s l a c k w a t e r ball a s t e d s hi p s w il l be m or e a ff e c t e d b y w in d w hil e t h e l oa de d t a n k e r s s t ill re m ai n headin g in to t h e t id e. W h e n w e ap p r o a c h t h e m o n ob u o y w i th a b all a s t e d t a n k e r in w in d a n d t i d e c o nd i t i o n , t h e dir e c t io n o f t h e loa d e d t a n k e r s , m oo r e d o n s i ngl e p oi n ts n e a r b y , gi v e s u s a n i n di c a t i o n o f t h e di r ecti o n o f t h e c u r re n t . H o w e v er , t h e h e a din g o f t h e b a l laste d s h i p , a f t e r ha v in g b e e n t i e d u p t o t h e b uo y , m a y b e qu i te di ff ere n t from t h e headin g o f t h e loaded s hip

Wi n d Ve s s e l s s u ch a s C on t ai n e r a n d R o - R o Shi p s ha v e l a rge f r ee b o a rd an d a r e t h u s m o r e a f f e c t e d b y w ind s . T h i s e x p o s ed ar e a o f t h e s hi p i s al so k no w n a s w ind a g e a rea a s t h e e f f e ct of w in d i s m or e pro m ine n t o v e r i t . T h e w in d e f f e c t o n t h e s a m e s h i p w il l b e d i f f e r e n t a t d i f f e re n t pla c e s, de p e n din g up o n t h e d r a u g h t c ond i t i o n o f t h e s hi p . A w ind w i th f o r ce o f 3 - 4 o n t h e B e a u f o rt s ca l e w il l h a v e s i m i l a r e f f e c t in ligh t c o n dit i o n a s w i th w in d f o r c e o f 7 - 8 w he n t h e s hi p i s d o w n to he r m ar k s . W h e n s h i p i s a t s l o w s pee d s d u ri n g m an e u v erin g o r n e a r t o t h e c o a st , w in d di r e c t i o n is e a sy t o f i n d; b u t t h i s is n o t t h e c a s e w hen o u t a t hi g h s e a. T h e di r e c t i o n of t h e w in d pe r c ei v e d w hen s t a n din g o n d e c k i s i ts re l a t i v e di re ct i o n . T h i s i s t h e r e s ul t a n t of t h e true dir e c t io n o f t h e w in d an d t h e c our se st eere d b y t h e s hi p.

EFFECT OF WIND Nee dl e s s to s a y , w ith no tug as s istance, it is w is e to g et this a r e a o f s hi p handl i ng rig h t first time and a lso a p pr e ci at e w ha t the lim i ts are . N a vi g at o rs can us e the w i nd : A s a goo d br a ke As a d e vice for mak i n g a tig h t tur n . T o ma n e u ver com p a r ative l y e a s il y a s l on g a s the w i n d r em a i n s a b o u t two to thr e e po i n ts o n the bo w .

Vessel Stop p ed w e ha v e a sh i p o n e v e n k ee l , s t oppe d dea d i n t h e w ate r . I t has t h e f a mi li a r a l l a ft ac c o m mo d a t i o n an d w e w il l a ss u m e , a t t h i s s t a g e , t ha t t h e w i n d i s r ou g h l y o n t h e bea m. W h il st t h e l a r g e a r e a o f su p e r s t r u c t u re an d f unne l o f f e r a considera bl e c r os s -se c t i o n t o t h e w i nd , i t i s a l s o ne c e ss a ry to t a k e i nt o ac c ou n t t h e a r e a o f f r e e b o a rd fr o m f o r w ar d o f t h e b r i d ge t o t h e bo w . O n a VL C C t h i s co u l d be a n a r e a a s l on g a s 28 x 10 m e t e r s . T h e ce n t e r o f e f f o r t o f t h e wi n d ( W ) i s t hu s a ct i n g upo n t he co m bina t i o n o f t he se t w o a r ea s an d i s m uc h f u rt he r f o r w ar d t ha n i s s o m et i m e s e x pe ct e d . T h i s no w needs t o b e c o m p a r e d wi th t he unde r w a t e r p r o f il e o f t h e sh i p an d t h e po s i t i o n o f t h e p i v o t po i nt ( P ). W i t h t h e sh i p i n i t i a l l y s t oppe d i n t h e w at e r t h i s w a s se e n t o be close t o a m i dsh i p s. T h e ce n t e r o f e f f o r t o f t h e wi n d ( W ) an d t he p i v o t po i n t ( P ) a re t h u s q u i te c l os e t o g e t h e r an d t h e r e f o re d o n o t c r e a te a t urnin g i n f l ue n ce upo n t h e sh i p . A l t h o u g h i t wi l l v ary sl i g h t l y f r o m sh i p t o s h i p , g en e r a l l y sp ea k i ng , m o s t w i l l l a y st oppe d w i th t h e w i n d j us t f or w ar d o r j us t a b a f t t h e bea m.

Vessel Making He a dway W h e n t he s a m e s h i p i s m ak i ng h e a d w a y , t h e s h i f t o f t h e p i v o t p o i n t u pse ts t h e pre v i o us b a l a n c e a tt a i ne d w h ilst st o ppe d , f i g ure 2 . W it h t h e w i n d o n t h e be a m, t h e c e n t er of ef fo rt o f t h e w i n d r e m a in s w h e r e i t i s b u t th e p i v o t p o i n t mo v e s fo r w ard . T h i s crea t es a s u b st a nt i a l tu r n in g l e v er b e t w e e n P a n d W an d , dep e n d i ng o n w i n d stre n g th, t h e s h i p w il l de v e lo p a s w in g of th e bo w in to th e w in d . At lo w er sp ee ds t h e p iv o t po i n t sh i f ts e v en furt h er fo r w a rd, th e r e b y i mpro v in g t h e w in d 's tu r n i ng le v er a n d e ff e c t . W he n a pp r o a ch i n g a b e r t h with t h e w i nd up on or ab af t t h e beam th a t as s pee d i s r e d uc e d t he e ff e ct o f th e w i n d g e ts p rog r e ss i v e l y g rea te r a nd r e q u i r es c o ns i d er a b l e cor r ecti v e action. W h e n ap pr o a c h in g a b e rth or a b u oy w it h th e w i n d dead a h ea d an d t he sh i p o n an e v e n k e el s u c h a n a p p r o ach sho ul d b e e asi l y c o n trol l e d . E v e n at v ery lo w sp e eds t h e s h i p i s st a b l e an d w il l w is h to st a y w it h th e wi n d ahe ad u ntil st oppe d .

Vessel Making Sternway The e f f ec t o f t h e w i n d o n a ship m a ki n g s t e r n w a y is gene r a lly m o r e co m p l e x and l es s pre d ic t ab l e. I n par t t h i s i s due t o t h e add i t i onal co m p lica t i o n o f t rans v ers e t hrus t w he n assoc i ate d w i t h si ng l e sc rew sh i p s. F i gur e 3, w e ha v e a l rea d y seen t ha t w i t h s t ern w a y t h e p i v o t po i nt m o v e s a f t t o a pos i t i o n approx i m ate l y 1 / 4 L f r o m t h e s t er n . Ass u m i n g t hat t h e cen tr e of e f f or t ( W ) r e m a i n s i n t h e sa m e pos i t i on, w i t h t h e w i n d s t ill o n t h e bea m, t h e sh i ft o f p i v o t po i n t ( P) ha s now c reate d a t ota l ly d i f f eren t t urn i n g l e v e r ( W P ) . This wi ll now cause t he s t er n t o s w i n g i nt o t h e w i n d. S o m e cau t i o n i s nece s s a r y , h o w e v e r , as t h e t u rn i n g l e v e r can be qu i t e s m a l l and t h e e f f ec t d i sappoi nt i ng , par ti cu l arl y on e v e n k ee l . In such cases, t h e s t er n m a y on l y par t i a l ly seek t he wi nd , w i t h t h e sh i p m a ki n g s t e r n w a y ' f l opp e d ' ac r os s t h e w i n d. T h i s si t ua t i o n is not he l pe d by t he cen te r of ef f or t ( W ) m o v i n g a f t as t h e w i n d co m es roun d ont o t he quar t er . This, i n t urn , t end s t o r ed u ce t h e m agn i t ude of t h e t urn i n g l e v e r W P. The othe r c o m plica t ing f a c t o r i s t rans v ers e t hrus t . I f t h e w i n d i s on t h e por t be a m , t her e i s e v e r y l i k e l i hoo d t ha t t he t rans v ers e t hrust and ef f e c t of w i n d w ill c o m b i n e and i nde ed ta k e t h e s t er n s m ar t ly i n t o t h e w i n d. I f, ho w e v e r , t h e w i n d is o n t h e s t arb o ar d be a m , it can be seen t ha t t rans v ers e t h rus t and e f f ec t o f w i n d o p pos e each other . W h i ch f or c e w i n s t h e d a y i s t here f or e v er y m uch dependent upon w i n d s t rengt h v ersu s s t er n power , un l e ss y o u k n o w t he sh i p ex c ept i ona l ly w e l l, t h er e m a y be n o guarante e as t o w h i ch w ay t h e s t er n w ill s w i n g w he n bac k i n g.

Trim an d Headway So far w e ha v e o nl y c o ns i d er e d a sh i p o n e ve n k e e l. A lar g e tr i m by t h e s t ern m a y ch a n g e t h e s h i p 's w in d h a n d l i ng cha ract er i stics q u it e sub sta ntia l l y . F i g ure 4 sho w s t h e s a m e s h i p , b u t thi s t i me i n b a ll a st and tr i m m e d by th e ste r n . T h e i ncr e a s e i n f r ee b o ard for w ard h as m o ve d W fo r w a r d an d v er y c los e to P. W it h t h e t urn i ng le v er t h us r e d u c e d t h e sh i p i s n o t so i ncl i ne d to r u n u p in t o th e w i n d w it h h ea d w a y , pref e r r in g i n st e a d to fal l o f f , or lay across t h e w i n d . B e c a u s e t h e s h i p i s d i f f i c u l t to k e e p he ad to w in d , s o m e p i l o ts w il l not ac c e p t a sh i p t h a t has an e x cessi v e tr i m by th e stern, p art i cu l ar l y w it h re g a r ds SBM operati o ns .

Vess e l He a d to Wind with He a dway T h e m i d d l e d i agra m i n F ig u r e 6 s h o w s a v ess el m a k ing H ea d w ay th r o u g h t h e w a ter, an d H ea d i ng d i rectl y in to t h e W i nd . W i s n ow w e l l fo r w ard o f a m i d s h i p s, a nd i n fact v ery clo s e to P; t h e w i n d i s e x ert i ng n o tu rn i n g m o m e n t, or si d e w a y s f o rce , o n t h e v esse l . A co m pa rati v e l y s m a ll c h an g e i n r e l ati v e w i n d d i r ect i o n ( e it h er b y a lt erat i o n of c o urse , or w in d f l uc tu a t i o n) , w i l l pl a c e t h e w in d o n t h e v esse l' s b o w ; th e w ho l e o f on e s i d e o f the v es s el w il l n ow b e e x po s e d to t h e w i n d , a n d W w il l m o v e a ft as s ho w n in th e s i d e d iag r a m s o f F i g ure 6 . Th e fol l o w in g e ff e cts w il l now be e x per i enc e d : - a) T h e Tu r n in g F orce w il l now d e v e l op a t urn i ng m o m e n t about P, te nd in g to tu rn th e v essel in to th e w in d a g a i n . b) T h e W i n d Fo rce w il l a ls o d e v e l o p a s i de w a y s force on th e v esse l , a w ay from th e e x posed sid e . H ea d to W i n d t he r e fore, t h e v ess e l i s " c o urse st a b l e ", pro v id e d th a t she m a in ta i n s He a d w ay th rou g h th e w a ter. If t he s h i p h as a l ar g e T r i m by t h e s t ern W w il l be furt h er fo r w a rd, w it h a re d uct i o n , or e v en l o ss, o f " c o urse st a b ilit y " . T h i s c a n so m e times r e s u l t i n a r a p i d an d v iol e n t los s of con tro l .

Vess e l He a d to Wind with Sternway. Conside r t h e s i t u a t i o n w he n o u r v es s e l r e m a i n s H ea d t o W i n d , bu t no w sta r ts to m a k e S t ern w a y t hro u g h t h e w at e r . W r e ma i ns f o r w a r d , w hi l st P ha s m ov e d a f t , as sh o w n i n t h e m i dd l e d i a g r a m o f f i g ur e 7 : t h e w i n d i s e x er t i n g no t urnin g m o m en t o r s i d e w a y s f o rce. A c o m p a r a t i v el y s m a l l ch an g e i n t h e r e l ati v e d i r ectio n o f t h e wi nd w i l l m o v e W a f t , a s s h o w n i n t h e s i d e d i ag r a ms o f F i g u re 7 : h o w e v e r P r e m a i n s a ft o f W . Th e f o ll o w i n g e f f e cts w i l l n o w be e x perience d :- a) T h e W i n d F o rce wi l l d e v e l o p a st r on g t u r n i n g m o m e n t abou t P, t endin g t o t ur n t h e v esse l 's bo w f urthe r a w a y f r o m t h e w i nd . b) T h e W i n d F o rce w il l de v e l o p a s i de w a y s f o r c e o n t h e v esse l , a w a y f r o m t h e e x po sed s i de . Hea d t o W i n d , a s so o n a s t h e v es s e l s t a r ts t o m a k e S t ern w ay t h r o u g h t h e w ate r , s h e l ose s "co u rse s t a bi l i t y " a n d t h e bo w w i l l pay o f f a w a y f r o m t h e w i nd , somet i m e s q u i te r ap i d l y . I f t h e sh i p ha s a l ar g e Trim b y t h e s t e rn W m a y m o v e f u r t h e r f o r w a r d , p e r hap s q u i c k l y , an d t h e l os s o f "co u rses s t ab i l i t y " is e v e n m o re p r onounce d . T h i s can so m e t i m e s r es u l t i n a r ap i d and vi olen t l os s o f co n tr o l .

Vess e l Ste r n to Wind with He a dway T h e m i d d l e d i a g ram o f f i g u r e 8 s h o w s a v essel m a k ing H ea d w ay th ro u g h t h e w a t er , a n d w it h the W i n d direc t ly Ast e rn. P i s fo r w a rd, a l o ng d ist a n c e f r om W , w h ic h i s w e ll a f t. A c o m p arati v e l y s m a l l c ha n g e i n r e l ati v e w in d d i r ect i o n w il l m o v e W fo r w ards as s h o w n i n t h e si d e d i a g r a m s of Fi g u re 8 : h o w e v er W i s still s o me d is t an c e a ba f t P. T h e f o ll o w i ng eff ects w il l now be e x per i enced : - a ) T h e W i n d For c e w i l l d e v e l o p a st r o n g t u rni ng mo m e nt a b o u t P, t e n d i ng to tu rn t he v e s s e l' s S t ern furt h er a w ay from th e W i n d. b ) T h e W i n d F orce w il l d e v e l op a s i d e w a y s fo rce o n t h e v e ss e l , a w ay from th e e x posed si d e . Maki n g H ea d w ay w i t h S t ern t o W i nd , t h e v ess e l l oses "c o u r s e st a bili t y " an d i s dif f i c ul t t o st e er , th i s e f f ec t i s g r e a t e r w he n th ere i s a ls o a fo ll o w in g S e a or S w e ll. If t h e s h i p h as a l ar g e T r i m b y th e S t e r n , W m ay m o v e furt h e r fo r w a rd, an d los s o f " c o urse s t a b ilit y " m ay be g ene rally les s pronou n c ed , but stil l a po te nti a l dan g er .

Vessel Stern to Wind making Sternway T h e m i d d l e d i a g r a m o f F i g ure 9 s h o w s a v essel m ak i ng St e r n w ay th r o u g h t h e w a t er , a n d w it h t h e W i n d di r ec t ly Ast e rn. P has m o v e d a f t, fai r l y close to W , w h ic h r e m a i n s e v e n fur t her a f t. A c h an g e i n r e l ati v e w i n d d i r ect i o n w il l e v en t u a ll y m o v e W fo r w ard o f P, as s h o w n i n t h e si d e d i a g ra m s of F i g ure 9 , w it h th e f o ll o w i ng effe cts: - a ) Th e W i n d Fo r c e w il l de v e l o p a tu r n in g m o m e n t a bo u t P, t e nd in g to tu r n the v ess e l' s St er n b a ck int o the W i n d . b ) T h e W i n d F orce w il l d e v e l op a s i d e w a y s fo rce o n t h e v e ss e l , a w ay from th e e x posed si d e . Maki n g St e r n w ay th r o u g h t h e w a t e r, w it h S t ern t o W i n d , t h e v e ss e l i s a g a i n " course sta b le " . If t h e sh i p h as a lar g e T r i m b y th e S t ern W m ay m o v e f u r t h er fo r w ard , gen era l l y im p ro v in g "c o urs e s t a bili t y " ; h o w e v e r w it h such a Tr i m , t h ere i s a l w a y s th e p oss i b i l it y of a n unpre d ict ab l e los s of con tro l .

Wind force Wind force d e pend s o n - w i n dage , w i n d vel o ci t y ( w in d pr e ssur e), the a n gle be t w e e n a p pare n t w i nd , an d h e a d ing. W i n d pr e s s ur e i s prop o rti on a l to w i nd ve l oc i ty s qua r ed . T h e C e ntr e o f w i n d p r ess u r e d e pen d s o n the d i str i b u t i o n o f w i n d a g e a l ongs i d e the sh i p.

Ship in a beam wind Ship s t o pped T he w in d f orc e i s lar g e. T he re i s no lo n g it ud i na l co m po n e n t . T h e b e h a v io r o f t he sh i p dep e n ds o n t h e c e n te r of w i n d p res s u r e , w h ic h c o u l d b e i n f r on t o f or b e h i n d t h e p o in t of a p pli c a t i o n o f tr a ns v erse resis t a n c e for c e (p iv o t po i n t). Th i s po i n t i s appro x i m a tel y at m ids h i p . Sh i p i s dr i f t i n g a n d t u rni ng ei th e r w a y , de pe ndin g o n t h e rel a ti v e position of th ese po in ts .

Ship with headway Point of a p plicatio n of wi n d f o rce is b e hi n d the pivo t poin t. Ship h a s tend e n c y t o s w ing to w a r d s the win d lin e.

Ship with sternway Point o f a pplicati o n o f w i nd fo r c e i s i n f ron t o f t h e p i vot point . Ship h a s t e n d e n cy to swing ou t o f the w i n d lin e .

Wind from bow quarter Sh i p w i t h hea d w ay The poin t of appli c atio n of wind fo rc e i s behi nd the pivo t point . The s h i p h a s a tend e n c y t o s w ing towar d s the win d line.

Ship with sternway Poin t of ap pli c at i o n of wi n d fo r c e is b e h i n d the p i v ot po i n t . Sh i p s wi n g l i n e . h a s t e n d e n cy to towa r ds the wi n d

Q U E S T I ON : W H A T A R E THE FOR CE S I N A T U RN ? C AP T R A JIV K V IG

T urnin g c i r cle and dynamic stability

C ou r se k ee p i n g a b i l it y is re l a t e d to d yn a mic s ta b i l i t y o n s t r ai g h t c o u rse . Sh i p s ca n b e d yn a mic a ll y s t a b l e o r d y n a m i c a ll y un s t a b l e Sh ip is dy n a m i c a ll y s t a b l e if a f te r sm a l l d i s t urb a n c e w i l l r e m a in on t h e n e w s t r ai gh t co u r se s l i g h tl y de v i a t e d fro m t h e p r e vio u s on e w i t hou t u s i n g ru d d er. C AP T R A JIV K V IG

Dy n a m i cal l y u n s t a b le s h i p w i l l ma k e a tur nin g ci r cle wit h r u dde r a mi d s hip s Dy n a m i cal l y u n s t a b le s h i p s a r e m o r e di ffi c u lt t o h a n d le , a n d i f t he a m o u n t o f d y n a m i cal inst a bi l it y i s l ar ge , t he y m i g h t b e d a nge r o u s T h e re is , h ow e v e r , no f or c e th at ca n b r in g th e s hi p t o th e or igin al c o u rs e with o u t usin g ru dde r . C AP T R A JIV K V IG

I L L US TRA T E D IR E CTI ONAL L Y S TA B LE A N D D IR E CTI ONAL L Y U N S T A B LE S H I P C AP T R A JIV K V IG

I L L U S TRAT E D R IF T A N GL E A ND S TAT E I M O C R IT E RI A F O R T A C T IC A L D I AM E T E R A N D AD V A NCE C AP T R A JIV K V IG

Initia l t ur ni n g t e st Initia l t ur ni n g a b i l it y i s a mea sur e o f t h e r e a cti o n o f th e s hi p t o s m al l a n g le o f ru d d e r ; I s de fi n e d b y t h e di s tanc e t r a v el l e d b ef o r e r eali z i n g c e r tai n he a d in g d e viati o n w h e n ru d d e r i s ap p l ied . C AP T R A JIV K V IG W HAT IS INI T I A L T U R NI NG A B I L I T Y O F A S H I P A ND I MO CR I T E R I A

C AP T R A JIV K V IG

C AP T R A JIV K V IG

S h ip is mo v i n g al o n g t h e c u r v i l i n e a r p at h w i th t h e c e n t r e a t p oi n t O . T h e d i s t a n c e b e t w e e n t h e c e n t r e o f c u r v a t u re a n d t h e cen t re o f g r a v i t y of t h e s h ip is r a diu s o f i n s ta n tan eo u s tu r n . S h ip ’ s c e n t rep l an e d e via te s f r o m t h e tan g e n t t o t h e p a t h of t h e ce n t r e of g r a v i t y b y t h e d r i f t an g l e. C AP T R A JIV K V IG • Th e l i n e p e rpe n dic u l a r t o t h e s h i p’ s ce n t r ep l a n e t h ro u g h th e c e n t r e o f ro t a t i on, m a rk s p iv o t po i n t ( P P). A t t h is p o i nt , t h e r e i s n o t r ans v e rse v e l o ci t y in t u r n i ng ; f o r pe o p l e o n b oa rd it ap p e a r s th a t t h e s h i p r ot a t e s a ro u n d t h is p oi n t (Fi g . 2 . 8). T r an s v e rse vel oci t y is gre a t e s t a t s te r n . • •

q u e s tio n : C o m p a r e t h e t u rn i n g charac t e ris t i c s w r f l e n g th , b e a m o f sh i p s Tw o s h i p s o f t h e s a m e l e n g t h ha ve n e arl y t h e s am e T r a n s f e r T a c t i ca l D i am e te r f o r bo th s h i p s is al m o st t h e s a me R a di u s of t he s t e a dy t urn i n g c i r c l e i s m u ch sm a ller f o r t a n k er Dr i f t a ng l e i s m u ch lar g e r f or tan k e r P i v o t p o i n t i s c l o s e r to t h e b ow i n t a n k er C AP T R A JIV K V IG C o m p a r i s o n of Tu r n i n g c h a r a c t erist i c s o f Ful l a n d Sl en d er s h ip

E ff e c t o f s h i p s i ze on tu r n i n g p er fo r m a n c e C AP T R A JIV K V IG Tu r n i n g c h a r ac t e r i s t i cs d e p en d o n t h e s h i p s i z e . Th e t ac ti c a l d i a m e t e r i s n o t p r o po r ti on a l to t h e d i s p l a c e me n t o f t h e s h i p b u t r e l at i v e t a c ti c a l diam e t e r D/ L i s e q u a l f o r s h i p s g e o m e t r i c a l l y s i m il a r o f diff e r e n t s i z e a s w e ll a s f o r f u ll - s c a le s h i p a n d it s m o d e l .

E f f e c t o f s hi p p a r a m et e r s o n tu rnin g a n d co u r s e k e e pin g Man o e u v r i n g p e r f or ma n c e d e p e n d s on s hi p fo r m a n d p r op o r t i o ns . Ta b l e b el o w sh o ws the e f f e c t of s h i p p e r f or manc e o n m an o e u v r ing c h a r a c t e r isti c s C AP T R A JIV K V IG

Sh i p h a n d li n g: T e r m s T u r nin g C i r c l e : T h e p a t h d es c r ib e d b y a s h ip ’ s pi v o t p oi n t as i t e x e c u te s a 360° tu r n . T ac t i cal D ia m ete r (180°) Final Di a m et e r ( 3 6 0°)

Kic k Final Di a m et e r T a c t i c al D ia m e te r T u r nin g C i r c l e Sh i p h a n d li n g: T e r m s

Ad v an c e Di s t a n c e g a i n e d t o w a r d t h e di r e c t ion o f t h e o r i g i n a l c o u r s e af t e r t h e r u d d e r i s p u t o v e r. T r an sf e r Di s t a n c e g a i n e d p e r p e n di cu l ar t o t h e o r i g i n a l c o u r s e af t e r t h e r u d d e r i s p u t o v e r. Sh i p h a n d li n g: T e r m s Ad v a n c e a n d T r an s f er

A d v an c e & T r a n s f er 9 ° T u r n Kic k Advan c e T ra n sfe r Sh i p h a n d li n g: T e r m s

A d v an c e & T r a ns f e r 180 ° T u r n Kic k Advan c e Tr a nsfe r Sh i p h a n d li n g: T e r m s

A d v an c e & T r a ns f e r 360 ° T u r n Kic k Advance T ra n sfe r Sh i p h a n d li n g: T e r m s

Sh i p h a n d li n g: T e r m s T u r nin g C i r c l e : T h e p a t h d es c r ib e d b y a s h ip ’ s pi v o t p oi n t as i t e x e c u te s a 360° tu r n . T ac t i cal D ia m ete r (180°) Final Di a m et e r ( 3 6 0°)

T u r n i n g c i r c l e The turnin g ci r cle of a v essel is t he ci r cle th e v essel wil l d escribe w hen her helm is pu t , ha r d o v er t o s t a r boa r d or ha r d o v er t o por t , usual l y wit h her eng i ne s full ahead. The de t erminat i on of th e turn i n g ci r cle of a v es s el is normal l y carried out dur i ng th e sea trial s of th e v essel prio r t o hand o v er f r om th e builder s t o th e o wners. The turnin g ci r cle, t i g h t er w i t h s t opping d i s t ance , a r e place d on boa r d of th e v essel in t he tr i a l papers , so tha t th e y can b e c o nsul t ed b y t he sh i p ’ s Mas t e r , t he w a t ch officers an d e v entual l y th e pilot s . Wit h r e g a r d t o th e turnin g ci r cle th e f oll o win g s t a t em e nt s a r e u s ual l y s t a t ed in the tr i a l papers: - The a d v anc e of th e v essel. The t r ans f er of th e v essel. The tact i cal diame t er tha t th e v es s el scribe s . The final d iame t er tha t th e v essel has scribed.

T u rni n g c i r c le T urnin g ci r cle in f ormation f r om trials or e stima t es f or v ario us lo a ded/ballast conditions; T est condition r esults r eflec t ing ‘ a dv anc e’ and ‘ t r ans f e r ’ and the sta t ed max i mum rud d er an g le emp l o y ed in th e t es t , t ogether with t i me s and spe e ds a t 90° , 180° , 27 0° and 360° ; details shoul d be in diag r amm a tic f ormat with shi p ’ s outline. T urnin g ci r cle mane u v er is th e mane u v er t o b e p e r f ormed t o both sta r bo a r d and por t with 35 ° rud d er an g le or the m a xim um rud d er an g le p e rmissible at th e t est spe e d, f oll o win g a s t ea d y a p p r oa c h with ze r o y a w r a t e. A shi p ’ s tur n ing ci r cle is th e path f oll o w ed b y th e shi p ’ s p i v ot poin t w hen makin g a 360 ° turn with o u t r eturning t o th e initia l course. I f th e v essel is fi t t ed with a ri g h t -hand fi x ed p r op ell e r , she w ould b e nef i t f r om th e t r an s v erse thrus t ef f ec t , and her t urnin g ci r cle, in gen e r al , wil l be quic k er and ti g h t er w hen turnin g t o por t than t o sta r bo a r d. A v essel lis t ed wil l turn mo r e r eadi l y t o w a r ds her hi g h side with smaller turnin g ci r cle on th at side.

The diame t er of th e turn i n g ci r cle is eq u a l t o ab o u t 4 shi p ’ s len g th s ( 4L). I n posit i on 1 , th e helm is p u t ha r d t o sta r b o a r d a n d th e v ess e l wil l f i rst m o v e t o p o rt of her in i t i a l co u rse. The v essel als o start t o tur n t o sta r b o a r d. D u e t o the posit i on of her tur n in g poin t ( p i v ot poin t ) a t abo u t ¼ f r om th e b o w , th e b o w wil l ha r d l y b e m o vin g in side th e i n it i a l co u rse b u t t he a f t of t he v ess e l will s wi n g t o p or t . On l y in p o sit i on 4, a f t er 4 shi p ’ s len g th s on th e i n it i a l co u rse, t he a f t o f th e v ess e l will sta rt t o m o v e t o th e in side of th e i n it i a l co u rse. I n posit i on 5 , th e shi p ’ s co u rse wil l h a v e chan g e d abo u t 90° t o sta r b o a r d. C on c lusi o n: I f the r e is a n o b stacle st r a i g ht ahe a d of th e v ess e l at a d i sta nc e o f less t han 4 shi p ’ s len g ths , this o b stacle can no t b e a v oided b y a helm act i on on l y . The port q u ar ter o f th e v ess e l wil l hit t he o b stacle.

A d v a n c e - A d v a nc e is the dis t a nc e t r a v e l l e d in the di r e c t ion of th e orig i na l course b y th e m i dship poin t of a ship f r om the po s ition at w h i ch t he rudder o r der is g i v en t o the po s ition at w h i ch t he h e ading has ch a nged 90 ° f r om the original c o urs e ., measu r ed f r om the point w h e r e the rudder is first pu t o v er a n d should not e x ce e d 4 . 5 ship l e ng t hs T r a n s f e r - T r ans f e r is th e am o u n t of dista nc e g ain e d t o w a r ds the n e w c o urs e (sh o w n h e r e f or 9 ° h e ading ch a nge). T a c t i ca l D i a m e t e r - T ac t ical diamet e r is the dis t a nce t r a v e l l e d b y t he midshi p poin t of a ship f r om the po s ition at w h i ch the rudder o r der is g i v en t o the positio n a t w h i ch th e h e a d i n g has changed 18 0° f r om the original c o urs e . I t i s measu r ed in a di r ection perp e ndicula r t o the original h e ading of the ship.. F i n a l D i a m e t e r - Final diamet e r is the dis t a nce perp e ndicula r t o the original c o urs e measu r ed f r om th e 180 ° poin t th r ou g h 36 ° (s h o w n h e r e f or st e a d y turn i n g r a d i u s, R). P i v o t P o i n t - A shi p ’s p iv ot point is a point on the cen t e r l i n e a bou t w h i ch the ship t urn s w h e n the rudder is pu t o v e r . D r if t A n g l e - D r i ft a n g l e is an a n g l e at a n y poin t on the turn i n g ci r cle b e t w ee n th e i n te rs e c t ion of th e t a nge n t at that point and the shi p ’s k e e l l i n e .

M a x . Ad v a n c e Ad v an c e R e a c h K i c k T ra n s f e r M a x . T r a ns f e r T a c t i c a l D i am e t e r F i n a l D i am e t e r Tu r n i n g C i r c l e ̓ ̒ R e g a r din g th e m e th o d of t u r ni n g c i r c l e , w h i c h is m e a s u r ed d u r i n g a s ea t rial a n d d i s p l a y ed in t h e b r i d g e , in t h e e v e n t t h at i t i s a c o n t a i n er s h i p : M a x . A d v a n c e o r a M a x . T r a n sf er e t c. , t h e Fi n al D iam e t e r at t h e t i me w h e n r u dd e r is s t ee r e d t o full, is g e n e r al l y 3 . 5 t o 4 t i m es t h at of t h e h ull le n g th . H owe v e r , this i n f o rm a t ion is b a s e d o n a v e ss el c arr y in g b a l la s t ( ball a s t c o n dit io n) a n d m o s t of t h em n a v i g a t e a t a s p eed of a pp r o x im a t ely 1 5 k t s . T h er e is n o d a t a a v a i la b le f or w h en a v e ss el is f ul l y loa d e d a n d a t full s p ee d . T he s e s pe c i f icat io n s a r e i n v al u a b l e f o r t h e h e l m s m an in t h e e v ent of r a p i d t ur n i n g a t S / B b e i n g ne c e s s a ry (e . g . t o p r e v ent a c ol l i s ion o r g r o un d i n g ) . M a n e u v er i ng w i t h r u d d er H a r d O v er a t F u l l S p ee d is n o t r e ali st i c be c a u s e t he a b o v e -d e s c r i b e d t r o ub l e m a y o cc u r . I n s u c h a s i t u a t i o n , in o r der t o c a r r y o u t a v oi d a n c e m a ne u v e r i n g s a f e l y a t fu l l s p ee d a n d t o r em ain a t a s a f e d is t a n c e f r o m t he s h o r e, t a k e i n t o a c c o u nt t he s e a a r e a w h i l e p a y i n g c a r e fu l a tt en t i on t o r a t e - o f - t u r n s p ee d .

A d v a n c e : 2. 1 m i l es F i na l D i a m e t er : 4. 2 m il es 1 8 m i n . ̓ ̓ F o c u s on t h e r a t e - o f- t u r n s p ee d d ur i ng t h e s h i p ' s h u ll t u r n i ng r o u n d m o me nt Al th o u g h it w i l l di f f er d e p e n d i n g on a s h i p 's h u l l c o n s t r u c t io n , s p e e d a n d s t a bil i t y , t h e r a t e - o f - t u rn s p e e d , whi c h n e i t h er c a u s e s d e c ele r a t i o n or e n g in e h ar m , is a p p r o x im a t ely 1 d e g r e es p e r mi n ut e . C o nd i t io n s ɿ S t e er a t a c o n t ro l l e d li m it of 2 2 k t s a n d 10 d e g r e e s p e r m i nut e f or r a t e - o f- tu rn s p e e d . - Ti me r e qu i r e d f o r t ur n i n g r o u n d a t 3 6 d e g r ee s ʹ 3 6 m i nu t e s ( . 6 h o u r s ) - R u nn i n g d i s t a n c e ov er 3 6 m i nu t e s ʹ 1 3 . 2 n a u t ic al m i l e s ( 2 2 k n o t s ͇ 5 V S O 3 B U F ̍ ̌ E F H S FF N J O V U F T 4 I J Q T T Q F F E L U T 0. 6 h o u r s ʣ F or e x a m p le, in th e e v e n t o f a v oi din g a c r o ss in g v e ss e l , it is n e c e ss ary t o c o n s id e r t h e s e a a r ea a n d t ime r e q ui r ed f or t u r n i n g r o u n d at 9 d e g r e e s . O th e r w i s e, c a l c ul a t e e s t im a t ed s i z e of s ea a r e a , r e q ui r ed f or o n e tu r nin g r o u nd, b y d r a w in g a n d f o r m u la a n d c h e c kin g i t b y d r aw i n g i t on t h e n a u t i c al c h a r t . To t a l r u n : 13 . 2 m i le ʢ ̏ ̒ ෼ʣ T r an s fe r : 2 .1 m i l es 9 m i n . 2 7 m i n .

Gene r a l r ema r ks The turnin g ci r cle conduc t ed in shall o w w a t er w ill b e conside r ab l y inc r ease com p a r ed with a turnin g ci r cle condu c t ed in deep w a t e r . T urnin g a v essel with h e r h e l m ha r d o v er wil l cause th e v esse l ’ s speed t o dec r ease conside r ab l y . A de e p laden v essel p e r f orming a turnin g ci r cle (e.g. in c a se of man o v e r b o a r d) wil l e x perience les s ef f ect f r om the wind or sea condit i on th a n in li g ht ballas t condition. A v essel trimmed b y th e s t ern wil l gene r al l y s t eer mo r e easi l y bu t th e tac t ica l diame t er of the turn wil l be e x pec t ed t o inc r ease. A v essel trimmed b y th e h e ad wil l dec r ease th e size of th e turn b u t wil l b e mo r e dif f ic ul t t o s t ee r . A v essel condu c tin g a turnin g ci r cle with a lis t c o uld n o rmal l y b e del ay ed.

T urnin g t o w a r ds a lis t w ould normal l y gene r a t e a la r g e turnin g ci r cle. T urnin g a w a y f r om a lis t w ould normal l y gene r a t e a smaller t urnin g ci r cle. A v essel t ends t o heel t o w a r ds th e di r ection of turn once helm is ap plied. A v essel turnin g with an e xis t ing lis t and no t b e ing in an u p ri g ht p o sition coul d in shall o w w a t ers e x perience an inc r ease in d r au g h t . The typ e or rud d er can h a v e influence on th e tu r nin g ci r cle of a v essel. A n a r r ow b eam v essel normal l y ma k e a ti g h t er t urnin g ci r cle th e n a wide b e a m ci r cle. A v essel equip p e d w ith a ri g ht hand f i x ed p r opeller w ould normal l y turn ti g h t er t o p o rt than sta r b o a r d.

F a c to r s w i l l af f e c t t h e r a t e o f t u r n a n d t h e s i z e o f t u r n i n g c i r c l e Structu r a l design a n d leng t h of th e v es s el. D r au g ht a n d t r im of v es s el. Siz e an d mo t iv e p o w er of mai n machiner y . D i str i butio n an d s t o w ag e of ca r go. E v en k eel or ca r ry i n g a li s t . P os i tio n o f turnin g in r elat ion to th e a v ailabl e depth of w a t e r . Amou n t o f rudder an g l e r equi r ed to comple t e th e turn. Ex t ernal f o r ces af f ecting th e d r ift a n g le.

1 . S t r u c t u r a l d e s i g n a n d l e n g t h . The longe r th e sh i p gene r al l y , th e g r ea t er th e turnin g ci r cle . The typ e of r udde r an d t he r esulting s t eer i n g ef f ect wil l decide t he final diame t e r , wit h t he clea r anc e bet w een rudder and hull h a ving a majo r influence . T h e s m alle r th e clea r anc e bet w een rudder an d hull th e mo r e ef f ect i v e th e turnin g actio n . 2 . D r a u g h t a n d t r i m . The deeper a v essel lie s in t he w a t e r , th e mo r e slugg i s h wil l b e her r esponse to th e helm. O n th e other hand, the supe r structu r e of a v es s el in a li g ht condition an d shall o w in d r au g ht i s cons i de r ab l y influenced b y th e wind . The t r im of a v es s el wil l influence th e s ize o f th e turnin g ci r cle in su c h a w a y tha t it wil l dec r ease if the v es s el is trimme d b y th e head. Ho w e v e r , v es s els n ormal l y tri m b y the s t ern f or bet ter s t ee r ag e an d imp r o v ed hea d w a y an d i t w ould be unusua l f or a v es s el t o b e trimme d in n ormal c i r cum s tance s b y the head.

M o t iv e p o w e r . The r elation bet w een p o w er an d d i spla c ement w i ll af f ect t he turnin g c i r cle per f ormance of a n y v es s el in th e s am e w a y tha t a li g ht speedboat has g r ea t er a c cele r atio n tha n a he a vi l y lade n o r e ca rr i e r . I t should b e r emembe r ed tha t th e rudder is on l y ef f ect i v e w hen the r e is a flow of w a t er pas t it . The turnin g ci r cle wil l t he r e f o r e n o t inc r ease b y a n y conside r abl e ma r gi n wit h a n inc r ease in speed, becaus e t he s t eer i n g ef f ect is inc r eased o v er th e same period . (The rudder s t ee r ing ef f ect wil l inc r ea s e wit h th e squa r e of th e fl o w of w a t er pas t th e r udd e r .) D i s t r i b u t i o n a nd s t o w a g e o f c a r g o . Ge n e r al l y thi s wi l l n ot af f ect t h e turnin g ci r cle in a n y w a y , b u t th e v es s el wil l r es p ond mo r e r eadi l y if loa d s a r e s to w ed amids hips ins t ead of a t t he e x t r emitie s . M e r chant sh i p design tends to di s tribu t e w ei g ht t h r ou g hout th e v es s e l ’ s le n g t h . The r eader m a y b e abl e t o im a gin e a v es s el loade d he a vi l y f o r e an d aft r esponding sl o w l y an d slug gish l y to th e helm.

E v e n k e e l o r li s t e d o v e r . A ne w v es s el w hen en g age d on tri a l s wil l b e on a n e v en k eel when ca r ry i n g out turnin g c i r cles f or r eco r ding th e s hi p ’ s dat a . This con dition of e v en k eel can n o t , h o w e v e r , a l w a y s be gua r an t eed once th e v es s el is comm i s s ioned an d loa d ed. I f a v es s el is ca r ry i n g a li s t , it can b e e xpec ted to ma k e a la r ge r turnin g c i r cle when turnin g t o w a r ds th e l i s t , an d v i c e- v ersa. A v a i l a b l e d e p t h of w a t e r . The m ajorit y of v es s els, depending on hull f orm, wil l e xperi ence g r ea t er r es i stance when n a vi g atin g in shall o w w a t e r . A f orm of in t e r actio n ta k es plac e be t w een th e hull an d t he sea be d w hi c h m a y r esult in th e v es s el y a win g an d b ecoming di fficult to s t ee r . Sh e m a y ta k e lon g er t o r es p ond t o helm m o v emen t , p r obab l y inc r eas i n g th e a d v anc e of th e turnin g ci r cle, a s w ell a s inc r eas i n g o v er th e t r ans f e r . The cor r esponding final diame t er wil l b e inc r eased r et r ospe c t iv e l y .

R u dd e r a n g l e . P r obab l y th e mos t s i g n if i cant f ac t or af f ecting th e tu r ning ci r cle is th e r udde r an g l e . The optimum is o n e w hi c h wil l cause maximu m turnin g ef f ect without cau s ing e x ce s s i v e d r ag . I f a small rudder an g l e is empl o y ed, a la r g e turnin g ci r cle wil l r es u l t , wit h little los s of speed. H ow e v e r , when a la r g e rudder an g l e is empl o y ed, the n , al t hou g h a ti g h t er turnin g ci r cle m a y b e e xperi enced, thi s w ill be accompanie d b y a los s of speed. D r if t a n g l e a nd i n f l u e nc i n g f o r c e s . Whe n a v essel r espo n ds t o helm m o v emen t , it is n o rmal f or th e s t ern of th e v es s el to t ra v er s e in opposing Motio n . Alth o u gh th e b o w m o v ement is w hat is des i r ed, the r es u lta n t m otion of th e v es s el is one of c r abbin g i n a s i de w a y s di r ection, a t a n an g l e of dr i f t . Whe n comple t ing a turnin g ci r cle, becaus e of thi s an g l e of dr i f t , th e s t ern quar t ers a r e outside th e turning c i r cle a r ea w hile th e bo w a r ea i s in s ide the turnin g ci r cle. Studie s h a v e sh o wn that the ‘ p i v ot point’ of t he v es s el in most ca s es d e s c r i bes the ci r cum f e r ence of t he turnin g c i r cle.

H e a d w ay m o vi n g f or w a r d t h r u t h e w a t e r S t e r n w ay m o vi n g b ack w ar d s t h r u t h e wa t e r B a r e S t eer a g ew ay t h e m i n i m um s p e e d a sh ip c a n pr o c e e d a n d s t i l l ma i n t a in c o u r s e u si n g t h e r u d d e rs Sh i p h a n d li n g: T e r m s

S h ip Ah e ad P ro p e l l e r Ah e ad Rud de r A m i d s h ip s Sh i p h a n d li n g: S i n gl e S c r e w S h ip s

S h ip A s t e r n P ro p e l l e r As t e r n Rud de r A m i d s h ip s S h i p f ollo w s t h e r u dd e r: S h i p w ill t e nd i nt o t h e w i nd: S h i p w ill t e nd t o p or t v e r y e asil y S h i p d o e s n o t t e nd t o s t a r b o a r d e asil y Sh i p h a n d li n g: S i n gl e S c r e w S h ip s

S h ip Ah e ad P ro p e l l e r As t e r n Rud de r A m i d s h ip s Sh i p h a n d li n g: S i n gl e S c r e w S h ip s

S h i p A he ad B o t h P ro p e ll e r s A he ad Sh i p h a n d li n g: T w in S c r e w Sh ip s

S h i p A he ad O n e P r o pe ll e r Traili n g C o u nte r act wi t h r u dd e r Sh i p h a n d li n g: T w in S c r e w Sh ip s

S h i p As t e r n O n e P r o pe ll e r Traili n g C o u nte r act wi t h r u dd e r Sh i p h a n d li n g: T w in S c r e w Sh ip s

S h ip A he ad B o t h P ro p e ll e r s A he ad D i ff e r e n t S pee d s C o u nte r act wi t h r u dd e r Sh i p h a n d li n g: T w in S c r e w Sh ip s

P ro p e l l e r s Spl it Sh i p h a n d li n g: T w in S c r e w Sh ip s

S ing l e H e a d l in e S i m pl e s t T i e - u p B e s t t o a l lo w t u g t o push o r p u l l o n l y N ot g o od i f c o m pl e x t u g ma n e u v e rs r e q u i r e d. Sh i p h a n d li n g: T u g T i e - U p s

D o u b l e H e a d l in e N ot a s simpl e Al lo ws t u g t o push o r p u l l a n d c o m pl e x t u g ma n e u v e rs Sh i p h a n d li n g: T u g T i e - U p s

P o w er Mo s t v e r s a t i l e t i e - u p G o o d f o r g e n e r a l p u r p o s e u s e Ho ld s t u g s e cu r e l y t o sh ip. Sh i p h a n d li n g: T u g T i e - U p s

R e c o v e r y M an e u v e r s W i l li am so n Tu r n And e r s on Tu r n Ra c e T r a c k Y - T u r n Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

E a s i e s t M e t h o d ? D a y li g h t: An d e r s on N i ght : W i lli am s on S ub s : Y b a c ki n g C a rr i e r s : R a c e tr a c k B o at / H e l o? Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

R e c o v e r y c o n s i d e r a t i o n s H e li c op t e r a v e r a g e t i m e t o r e a d y fo r t a k e of f i s 10 - 12 m i n s S m a l l b o at a v e r a g e t i m e t o l a un c h 6 - 8 m i n s S h i p f as t e s t m e t h o d Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

Rig h t F u ll Rudd e r All E n gin e s Ah e ad F ul l Kic ks S te r n A w ay Man O v e r b o a r d S t a r b o a r d Si d e Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

W il liam s on T u r n S h i f t R u dd e r W h e n 60° O f f C o u r s e Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

man e u v e r in g W il l i a m s on p o r t s t arb o a rd - s l ow - g o o d f o r n i g h t o r l ow v i s 6 deg Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

A n d er s on T u r n Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

man e u v e r in g A n d er s on p o r t s t arb o a rd - fast e st - m o s t sk ill Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

R a c e t r a c k T u r n Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

man e u v e r in g Ra c e tr a c k p o r t st arb o a rd - hig h sp eed - ea s i e r ap p r o a ch Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

Y - T u r n Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

man e u v e r in g Y - b a c k i ng p o o r co n tro l k eep s sh i p c l o s e to m an Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

man e u v e r in g t e ar d r op p o r t s t arb o a rd - C a rr i e r s mo d i fi ed r a c e tr a ck Sh i p h a n d li n g: M a n O v e r bo a r d R ec o v e ry

S t oppin g d i stan c e and forces for stopping the ship

STOPP I NG OF S H IPS C AP T R A JIV K V IG

S t oppi n g dist a n c e – S t oppi n g time The s t op pin g distance is th e distance th a t a v essel with h e r rudder amidsh i ps and her e ngin e fu l l ahe a d, wil l run f r om the mom e n t her engine a r e p u t as t ern unti l she comes t o a comple t e r est ( s t op) o v er the g r ound. The t i m e ta k en t o com p le t e th i s is call s t op pin g tim e . S t op ping distance and s t op ping t ime mus t :- B e e x p r essed in ship ’ s length s ( L ) or m . and th e s t op pin g tim e in min u t e and second . B e clea r l y e x p r essed on th e bridge. The w a t er r esistan ce, a t a c o nstan t sp e ed is equal t o th e po w er of the engine and , a s a r ou g h esti ma t e, th at w a t er r esistan c e is p r oportion a l t o th e s q ua r e of th e speed ( V ²).

S t oppin g di s tan c e – S t oppin g time Gene r a l r ema r ks S u p p ose a v essel wi t h a speed of 16 knot s w i t h her eng i ne s a t th e a v e r ag e p o w er of 100%. The w a t er r es i sta nc e in tha t case is a lso eq u a l t o 100%. The e n g i n e s a r e s t opped a n d the v ess e l is cont inui n g t o m o v e on her o w n i n ert ia wi t h h er h elm a t midships. W h en th e v ess e l has sl o w d o w n to 8 k n ots th e w a t er r es i sta nc e wil l b e equal t o 25% of the iner t ia w a t er r esis t anc e . The s t opping d i sta nc e depends f or a g r e a t deal on th e p r op o rtion b e t w e e n th e p r opeller p ow er Ahe a d a n d As ter n . The p o w er of a tu r bin e s t eam e ng i ne , w o r ki n g as t ern is abo u t 70% of its p o w er w o r ki n g ahe a d. W h en app l yin g as tern p r op ulsion t o s t op a ship, th e sh i p m a y b y consid e r ed a s be ing s t opped w hen t he w a k e r e a c h es t he middl e of th e ship.

Whe n t he s t opping t i m e an d th e speed of a v essel a r e kn o wn , it is quit ea s y t o de t er m ine th e s t opping di s tance. Whe n con s i d ering th e s t opping d i s t ance , t a k e in t o accoun t th e d i s t anc e r a n f r om th e t i m e th e speed T eleg r ap h is pu t on full as t ern an d tha t th e p r opeller actual l y s t ar t t o tur n as t ern. The engineer is n o t a lwa y s close t o th e manoe u vring boa r d and w hale minu t e can e laps e be f o r e th e p r opell e r actual l y turn s in r e v erse d i r ection. Element s such a s th e wi n d, th e s t a t e of th e sea, th e dep t h of w a t er should b e t a k en in t o ac c ount w hen consi d ering th e s t opping di s tanc e an d th e s t opping time. K eep in min d tha t w hen as t ern p o w er is applied , th e v essel wil l n ot s t a y on her ori g inal course bu t th e b o w wil l tur n ei t her t o s t a r boa r d or t o por t depen d ing on th e t y p e of p r opeller used. F or in s tance , wi t h a ri g ht hand fi x ed p r opell e r , th e as t ern w i l l m o v e t o por t an d the b o w t o s t a r boa r d. Whe n t he v essel has co m e t o com p le t e r es t , th e v essel m a y w ell h a v e turne d o v er 90 ° .

S t opp i n g d i s t a nc e o f s h i p s A s w e al l kno w , ship li k e a n y o t her t r ansp o rt ut i lity do e s no t h a v e b r a k es t o ma k e the m s t op immedia t e l y . Whe n th e engine is g i v en s t op o r de r , th e ship w ill continue m o ving in th e same d i r ection due t o inertia and wil l c o m e t o s t op af t er m o ving f or so m e distance. Ev e r y s h ip h a s t h r e e d if f e r e n t s t o p p i n g d i s t a n c e s d e p e nd i n g on : In e rtia S t op . C r ash s t op. R udde r c y cle s t op .

I n e r ti a S t o p W hen th e engine of the ship is s t op p e d, th e sh i p wil l c onti nu e m o ving in the same di r ection f or so m e mo r e distance due t o inerti a. He r e n o as t ern command is g i v en (used t o p r oduce “b r akin g ef f ec t ” f or ships), and hence sh i p wil l t r a v el mo r e distance in th e inertia s t op met hod. The distance in mile s m a y on l y b e t enth of the initial spe e d f or li g ht ship s, b u t mo r e th a n half the spe e d f or de e p l y lo a ded s hi ps. I. e. if ship speed 1 kt s f or laden ship th e inertia s t op wil l b e ab o u t 5 N .M . if ship speed 10 kt s f or li g ht loaded ship th e in e rtia s t op m a y 1 /10 of in i ti a l spe e d w hi c h is one N .M. S t op pin g a b ility The t r ac k r each in th e full a s t ern s t op ping test should no t e x ceed 1 5 ship lengths. H o w e v e r , th i s v alu e m a y be modi f ied b y th e A dminist r at i on w he r e ships of la r ge. Displace men t ma k e th i s cri t erion im p r ac t ica bl e, b u t shoul d in n o case e x ce e d 20 ship lengths.

C r a s h s t o p C r ash s t op is usual l y th e t erm used w hen the ship has t o sudden s t op in em e r genc y situati o n . He r e th e engine, w hi c h is m o ving in an ahead di r ection is g i v en an o r der f or f u l l as t ern, l e a ving th e rud d er in th e mi d s hip position t o s t op th e sh i p wit hin minim u m distance and shor t est p o ssible t i me . T his s t ops or r educ e s th e sp e ed of the v essel he a ding t o w a r ds th e collision c o urse. C r ash mane u v ering is turnin g th e engine in opposi t e di r ection t o r educe the he a ding speed of the ship . Af t er c ertain t i me , th e ship s t ops a n d s tarts st r eaming in as t ern d i r ection. This is d one b y s u p p l ying starting ai r a t a bout 3 b a rs f r om the air r ec e i v er t o th e engine. The s t op pin g ai r is kn ow n a s the b r a k e ai r . The b r a k e ai r w hen sudden injec t ed inside th e engine c y linde r , wil l tr y t o r esist the mo t ion of the p i s t on and th e r ot a ti o n of the c r an k sha f t and p r op e lle r .

C r a s h s t o p p r oce d u r e Whe n t he r e is a n emerg e nc y li k e colli s ion, g r ound i n g e t c. th e cont r ols a r e t r ans f er r ed immed i a t e l y in t o th e Engin e r oom cont r ols. The bridg e wil l g i v e as t ern d i r ecti o n in t he t eleg r aph , ackn o w ledg e th e same. Whe n t he t eleg r ap h is ackn o w ledge d on l y th e s t artin g ai r c a m wil l r e v erse i t s d i r ection bu t th e fuel cam wil l r emain in i t s running posi t ion due t o running d i r ection in t e r loc k si n ce engine is s t i l l running in th e ahea d di r ection The fuel l e v er in t he eng i n e con t r ol r o o m is b r ou g ht t o ‘ ’ A s s o on a s th e RP M of t he eng i n e d r ops belo w 4 % of th e Maxim u m C o nt i nuous R ati n g of th e engine, g iv e b r eak ai r f ew t i me s i n short t i m e f r am e . The b r eak ai r wil l i njec t wit h as t ern t iming se t t i n g in s i d e t he ahea d m o v i n g pis t on w hich wil l r es i st th e pis t on mot i on . S ince fuel wil l no t inject unt i l running d i r ecti o n in t e r loc k opens, a s so o n a s th e rpm d r ops nea r t o Ze r o, g iv e f u el an d ai r kic k b y bringin g fuel l e v er t o minimum s t ar t set t ing. Whe n carrying out C r as h Mane u v ering, some sa f eties nee d t o b e b ypassed t o a v oid tr i ppin g of eng i n e in mid of eme r gen c y . Whe n t he s hip s t ops an d s i tuat i on is unde r cont r ol, a detailed Mai n engine in s pe c t i on is t o b e carried out w hen the r e is a chan c e.

R u d de r c y c l e A w ell t r i ed method of u s ing th e en g ine to b r a k e th e f or w a r d p r o g r ess of th e v es s el is t o init i al l y k eep th e p r opeller goin g ahea d bu t r educ i n g the r e v olut ions an d turnin g th e helm f r om o ne s i de to th e other to c r ea t e a rudder d r ag. Whe n hea d w a y has bee n r educed t he p r opeller can b e r e v er s ed and as t ern r e v olut ions buil t u p a s th e speed th r ou gh th e w a t er declines.

A t ypical R udde r C y cling man e u v er f or a ship p r oceeding wi t h 16 knot s w a s carri e d o u t as f ol l o w s: In i t i a l speed 16 k n ots. ( F ul l ahe a d ) Ha r d o v er t o p o rt 2 ° a n d, r educing speed t o ( Half ahea d ) A f t er tur n in g 4 ° t o p o r t , ha r d o v er the w heel t o sta r b o a r d side a n d r educe t o ( Sl o w ahe a d ) W h en t he s h ip h a v e passe d th e origi nal co u rse ha r d o v er t o p ort R educe t o ( Dead Sl o w ah e a d ) Fina l l y w hen coming bac k to th e origin al co u rse ha r d o v er t o sta r b o a r d an d e ng i nes ( F u l l as t er n ). S T O P ENGIN E . The t r ac k r each of thi s mane u v er is r edu c ed t o less tha n half t he c r as h s t op.

An c h o ri n g in e m e r g e n c y . A v essel is a p p r oa c hing a ch a nne l in r educ e d visibili t y , spe e d 5 knot s. T h e of f ice r of the w a t ch r e c e i v es a VHF co mmunic a ti o n th at the channel h a s be c ome bloc k ed b y a co l lisio n at th e ma i n ent r anc e . Wha t w ould be a r ec o mmen d ed course of action w hen the v essel w a s 1 mil e f r om th e obstruc t ed channel, with a flood tid e of ap p r o xima t e l y 4 knot s runn i n g as t ern? 1 . As sumin g th e v essel t o h a v e a ri g h t - hand fi x ed p r o pelle r , pu t th e rudder ha r d a- sta r b o a r d and s t op main e n gine s. The v essel w ould r esp o n d b y tu r nin g t o sta r b o a r d. The ancho r p a rty sho u l d stand b y f or w a r d t o le t go sta r b o a r d anc h o r .

Let g o sta r bo a r d ancho r . F ul l as t ern o n main engines t o r educe he a d r each. Letti n g g o the anc h or w ould ch e c k th e hea d w a y of t he v essel and act t o snub th e v essel r ound. S t op main engine s . F ul l a h e ad on main engines, with rud d er ha r d t o sta r b o a r d . Eas e and ch e ck th e c abl e as w ei g ht c o mes on th e an c h o r . Onc e th e v essel has s t op p e d o v er th e g r ou n d, g o half ah e ad on main engines, all o win g th e v essel t o come up t o w a r ds t he anc h or and s o r eli e v e th e s t r ain on th e cabl e. He a v e a w a y on t he cable and bring th e anc h or hom e. Cl e a r th e a r ea and i n v esti g a t e a sa f e a ncho r ag e or al t ernat i v e p ort until ch a nne l obstruction is cle a r e d .

S t opp i n g t e st S to p p i n g te st sho ul d b e p e r fo r m e d f r o m t h e test s p e e d wi t h maxim u m as t e r n p o we r . As i n d ic a te d in fi gu r e, t h e shi p ’ s t r a c k a n d h e a din g a f te r a s t er n o r de r a r e p l otte d v ersu s t i m e. C AP T R A JIV K V IG • Hea d r e a c h an d l ateral d e viatio n a r e p r e sen t ed in t er ms o f th e numbe r o f s h ip le ngths. Th e t i me l ag b etw e e n issuin g t h e a s te r n o r d e r a n d t h e m o m e nt wh e n t h e pr o p e l l e r s to p s a n d r e v e rse s s h o u l d b e m e as u r e d. S to p p ing t e st

T e s t spee d : C AP T R A JIV K V IG V T = C B x V D V T : t e s t s p ee d VD : d e s i g n s pe e d C B : b l o ck c o e ff i c i en t I M O s t a n d a r d: T r a c k re a c h < 1 5 L QU E S TI O N : I MO C R IT ER I A F O R S T OP P I NG D I S T A N C E I N C R A S H S T O P

R U D D E R C Y C L ING Q UE S TI ON : F A C T O R S W H I C H A FF E C T E F F I C IE N T R U D D E R C Y C L I N G: S P E E D , AR E A O F R UD D E R , R U D D E R F O RCE, S I D E FOR CE, D R A F T/ D E P T H RE L A TI ON S H IP C AP T R A JIV K V IG

C o m p a ris on o f d iff e r e n t s t o p p i n g t e chn i q u es QU E S TI O N : W h a t i s t h e mo s t e f f ec t i v e w ay o f a c h i ev i n g m i n i mu m h e ad r e a c h f o r s t opp i n g a s h ip C AP T R A JIV K V IG

Ty p e o f t ug c o-o p e r a t i n g w i t h a s h i p , w h e r e t h e m ai n d i f f e re n c e r e s u l t s f r o m t h e l o c a ti o n o f t u g’ s p ro pu l s i o n a nd t o w i n g p oi n t . T h e c h oi c e i s b e t w ee n c o n v e n t io n a l s i n g l e o r t w i n - s c r ew t u g s v e ry of te n fi t t e d w i t h n o z zl e s a nd t r a cto r ty p e t u g s. Th e A SD ( a z im u t h st e r n dr i v e ) t u g s a r e t h e c o m p ro m i s e l i nk i n g s o m e o f t he b e n efit s of c o n v en t io n a l a nd t r a c to r t u g s ty p e . QU E S T I O N : W H A T AR E T H E DI FF E REN T T Y P E S O F T U G S I N U S E ? C AP T R A JIV K V IG

D an g e r s r e l a t e d to s h i p -t u g co o p e r a t i o n W h e n as s i s t i n g a s h i p, t u g s o p e r a t e i n h e r clos e p r ox i m i t y i n d i s t u r b e d w a t e r p r e s su re r e gio n s su r r o u nd i n g a s h i p ’ s h u ll . T h i s i s t h e so u r c e of i n t e r a c t i o n p h en o m e n o n, e s p e c i al l y d a n g e r ou s f o r r e l a t i v e l y s m a l l t u g s w h e n co m p a r i n g w i t h t h e s i ze o f a s s i s t e d ships. C on s e c u t i v e p o s i t i o n s o f a t u g w h e n ap p r o a c h i n g a s h i p t o b e a ss i s t e d a re s h o wn i n f i g . . W h e n t h e t u g a pp r o ac h e s t h e a f t p a r t o f t h e s h i p ( po s i t i o n 1 ) , a n i n c r e as e o f he r sp e e d m a y o cc ur d u e t h e i n c o min g f l o w velo c i t y. In t h e c l o s e p r o x i m i t y o f sh i p ’ s h u ll , a l o w p r es s u r e s t a r t s t o m o v e t h e t u g t o w a r d s t h e h ul l . F or s h i p s in b al l ast co n d i t io n o r f or s h i p s h av i n g p a r t i c ular ove r h an gin g s t e r n, t h e t u g c a n ea s il y c o me t o p os i t i o n 2, w h i c h c r e a t e s d a n g e r of d a m a ge s t o t h e t ug ’ s hu l l an d su p e r s t r u c t u r e. Q U E ST IO N : I D E N T IF Y DA N G E RS T O T U G S I N P R O X IMI TY OF SHI P HUL L S; W H A T IS GI R T I N G •

• C AP T R A JIV K V IG P ro ceed i n g f u rt her a l ong t h e hu l l ( p o s i t i on 3 ) , t he tu g i s und e r i m po rt ant s uc t i on f o r ce o r i en t ed t o w a r ds t he s h ip’s h u l l and o ut w a r d t u r n i ng mo m e n t d u e to t u g bo w - cu s h i o n. O n ce s uck e d a l on g s i de it i s v e ry d i ff i cu lt t o g e t o f f a ga i n a n d t o con t i n u e t he w a y . T u g i n p o s i t i o n 4 e n t e rs t h e h i gh - p r e ss u r e a r e a. A r i s i n g ou t w a rd t u r n i ng m oment m u s t be elimi n a t ed by a pp r op r i a t e use of r udd e r a nd en g i ne. W h e n a rr i v i ng t o p o s i t i o n 5 c l o s e to t h e bo w , ve r y s tr ong “out f o r c e ” a c t i n g on t he st e rn t r i es t o br i ng t he t ug t o po s i t i on 6 b r oad s i d e und e r t he bow w i t h r i s k of c a p s i z i n g. I mm e d i a t e ac t i on o f r u dder and u s e of a v a il a b l e po w er ( f u l l a s t e r n) c a n co rr ect t he p o s i t i on. T r ac t o r s t y pe t u gs a r e l ess v u l n e ra b l e i n s uch a s it u a t i on. • • • • •

T h e ma in s ourc e o f dange r fo r a t u g w he n as s i st i n g a s h ip is s h i p ’s to o h i g h s p e e d . C l as s i ca l tu g acc i den t s (so - ca ll e d “ g i r t i ng ”) a r e pre s ente d in nex t th r e e fi gu r e s . I n fi g ., a t u g w ork i n g o n a li n e is ass i st i n g a s h ip mak i n g a tu r n t o s t arboar d (posit i o n 1) . Sh ip is s udden ly acce l e r at i n g fo r examp le t o im pr o v e tu r n i n g ab ili t i e s in o r de r t o rea li s e t h e tu r n cor r e c t l y . Th e spee d afte r f ew moment s b e c o me s to o h i g h an d t h e consecu t i v e tu g po s i t i on s a r e mor e an d mo r e a f t w i t h h i g h tens i o n in t h e t o w li n e ( p os iti on s 2 an d 3 ) . Th e danger of capsizin g is t he n r ea l. T h e abo v e - desc r i b e d s i tua t i o n is l e s s dangerou s f o r t r a c to r t ug s becaus e t h e ir to w i n g po i n t li e s a t th e aft . So - ca ll e d “ go b rope ” fo r convent i o n a l t ug s ca n im p r ov e muc h th e s i tua t i o n b y s h i f t i n g th e to w i n g p o i n t mor e t o th e s t ern , bu t o n han d it limi t s th e manoeuvr a b i l i t y o f th e tow i n g t u g. C AP T R A JIV K V IG 

C AP T R A JIV K V IG

C AP T R A JIV K V IG

C AP T R A JIV K V IG

• • C AP T R A JIV K V IG S o m e o t he r d a n g er s a f f e c ti n g f re q ue n t l y t u g ’s s af e t y a r e l i st e d b e l ow : B ul b o u s b o w s a r e n ot v i s i b le w h e n t h ey a r e under wa t e r a n d be ca u s e of t h e i r imp o r t a n t d im e n s io n s t h e s t er n of t h e t u g m ay t o u c h t h e b o w w h e n p as s i n g or t a k i n g a t ow l i n e . S h o r t to w l i ne s ca n a l s o c r e a t e s i m il a r d a ng e r f o r t u g s. T h i s s it u a tion i s e s peci a l l y d a n g er o u s i n t h e ca s e of e x c e ss i v e fo r wa r d s p ee d of s h ip s to b e a s s i s t e d . A n i ne x p er ien ce d s h ip’ s c re w m a y n o t b e a b le to re l ea s e t u g’ s towli n e w h e n n ee d ed. A f t er s l a c k i n g o ff t h e to w li n e b y a t ug , w h e n s h ip’ s s p ee d i n c r e a se s, t h e t en s i on s i m u l t a ne o u s l y i n c r e a ses i n t h e to w l i n e dr a g g e d t h r o u g h t h e wa t e r. T h e re l e asi n g of t h e t owl i n e be c o m es ver y di ff i c u l t, i f n ot im p os sib l e. • • • • • • • D A NG E R S A SSO C I A T E D WIT H T U G OP E R ATION

• C AP T R A JIV K V IG W he n th e bo lla r d p u l l o f a ssisti n g t u gs i s n ot su ff i c ien t t o co u nt e r ac t all e xt e r n a l f o rc e s a cti n g o n a shi p ( u n de r e s ti m a t i o n of win d f orc e, c u rr en t vel o cit y incr e a s e s ), tu g s c an be jam m e d b e t wee n t h e shi p an d th e b e r th a s t h e r e s ult of d ri f ti n g sh ip’ s m o t i o n. W he n p a ssi n g o r t a ki n g a t o wline, t h e sh ip’ s s pee d a n d he a di n g m us t be c o n st a nt . A n y ch an ge i n va lu e s of th e a b o v e pa r a me t e r s c r e a t e s a d di tio nal d a n g e r t o th e t u g . I f s u c h a sit u a tio n will o c c u r , th e a ssisti n g t u g m us t be immedia t e ly i n f or me d t o a nti c i p a t e e x pe c t e d ma n o e u v r e s . • • • • • •

SHIP D E A D I N WA T E R P L A C E M E NT OF T U G S P i v o t p oi n t a t m i d sh i p. T w o t u g s p u ll i n g or push i n g s i d e w a y s. Sh i p i s s h i ft i n g t o o n e s i d e w i t h o u t s w i n g i f b ot h t u gs d e v e l op e qu a l pu l li n g or push i n g fo r c e s a nd l e v e r s a re t h e s a me . C AP T R A JIV K V IG 3 2

S H IP MA K I N G H E ADWA Y P iv ot p oi nt sh i f t s fo r w a r d. S t e r n t u g wo r k i ng o n l a r g e l e v er i s mo r e e f f e ct i v e. Sh i p h a s a t e nd e n c y t o s w i n g t o p o r t . Q U E S T I O N: W H I CH T UG I S M O R E E F F E C T I VE I . G O I N G AHEA D II ) M O V I N G A S TER N C AP T R A JIV K V IG 3 3

P i v o t po i n t s hi f t s a f t . St e r n t u g w o r k i n g o n s m a ll L e v e r ( l e s s eff e c t i v e ) B o w t u g w or k i n g o n l a r g e L e v e r S hi p h a s a t e n de n c y t o sw i n g t o st a r b o a r d S h i p ma k i n g s t er n w ay C AP T R A JIV K V IG 3 4

M oo r in g L in es 2 1 3 4 6 5 B o w Lin e S t e r n L i n e S p r ing Li ne s A f t e r B ow S pri ng F or wa r d B o w S prin g A f t e r Q u a r t e r S prin g F or wa r d Q u a r t e r S prin g Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

M oo r in g L in es L i n e s • 1 - 6 Li n e s 1 a n d 6 a r e t h i c k e r t h a n o t h e r s Moo r i ng p r o ce d u r e f a k e o u t l i n e s s a fe ty b ri e f h e a v i n g l i n e s Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

M oo r in g L in es T er m s : H e a vi n g L i n e Ta tt l e t a l e F e n d e rs C a p s t an ( p. 1 88 Se a m a nsh i p ) R a t G u a r d s ( p. 1 7 5 S e am a n s h i p) Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

D e c k an d P i e r F it t in g s Sh i p h a n d li n g: Gr o u n d Ta c kl e

M oo r in g L in es 2 1 3 4 6 5 B o w Lin e S t e r n L i n e S p r ing Li ne s A f t e r B ow S pri ng F or wa r d B o w S prin g A f t e r Q u a r t e r S prin g F or wa r d Q u a r t e r S prin g Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

M oo r in g L in es L i n e s • 1 - 6 Li n e s 1 a n d 6 a r e t h i c k e r t h a n o t h e r s Moo r i ng p r o ce d u r e f a k e o u t l i n e s s a fe ty b ri e f h e a v i n g l i n e s Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

M oo r in g L in es T er m s : H e a vi n g L i n e Ta tt l e t a l e F e n d e rs C a p s t an ( p. 1 88 Se a m a nsh i p ) R a t G u a r d s ( p. 1 7 5 S e am a n s h i p) Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

S t a nd b y l i n e s Ta k e i n t he s l a c k Ta k e a s tr a i n H e a v e a r o u nd A v ast h e a v i ng H o l d C h e c k D o ub l e up S i ng l e up Ta k e i n S l a c k E a s e Ta k e t o t h e c ap s t a i n Gr o u n d Ta c kl e , M o o r i n g L i n e s Se q u e n c e : Command s : Sh i p h a n d li n g:

S a f e ty B att l e d re ss S n a p b a c k z on e Tu g s Pi l o t s l a d d e r Sh i p h a n d li n g: Gr o u n d Ta c kl e , M o o r i n g L i n e s

D e c k an d P i e r F it t in g s Sh i p h a n d li n g: Gr o u n d Ta c kl e

A n ch o rs Most c om m o n an c ho r S t a n d ar d N a v y S t o c k l e s s Most s h i p s ha v e t w o D ee p w a t e r a n c h o r - 1 4 s h o t s o f c h a in N o r m al a n c h o r - 12 sho t s o f ch a in S h o t - 15 f at h om s ( 90 f ee t) Sh i p h a n d li n g: Gr o u n d Ta c kl e , A n c h o rs

S c o p e o f C hai n 15 f a t h o m s 30 f a t h o m s 45 f a t h o m s 60 f a t h o m s Sh i p h a n d li n g: Gr o u n d Ta c kl e , A n c h o r i n g

A n c h o r in g Ap p r o a c h S t a n d b y L e t G o t he An c ho r R e p o rts P . 1 9 4 ( Se am a n s h i p ) An c ho r w atc h Sh i p h a n d li n g: Gr o u n d Ta c kl e , A n c h o r i n g

C o n ce r ns: W a t c h t h e ste r n / p i e r W a t c h f o r o the r s hi p s W i n d s / C u r r e n t s S e t on o r s e t o ff p ie r? Usi ng m oori n g l in e s and t ug s a s n e c e s s a r y t o c o nt r o l b o w / ste r n Sh i p h a n d li n g: G e t ti n g U n d e rw a y, Mo o r i n g

G e t ti n g U n d e rw a y, Mo o r i n g The I d e al Ap p r o a c h Ap p r o a c h on a c on v er g i n g c ou r se 10 t o 20 d e g r e e s f r om t h e h e a d i ng o f ou r b e rt h. Wh e n p a r a l l e l , s w i ng t he r u d d e r op p o s i t e t h e p i e r , and s t o p t h e s h i p. S t o p h e ad w ay b y b a c k i ng ou t b o a r d e ng i n e . “ Wa lk ” t he s h i p i n b y t e n s i on i ng li n e 1; “t w i s t ” t he s t e r n w i t h t he e ng i n e s . Sh i p h a n d li n g:

L e ss t h an I d e a l C on d iti on s B e ing S e t O n: S t op p a r a l l e l t o t h e pi e r , wit h 1 / 2 a b e a m w id t h o f op e n w a t e r b e t w ee n y o u a n d t h e pi e r . Al lo w t h e c u r r e n t t o push y o u o n t o t h e pi e r . B e ing S e t O ff : M a k e y o u r a pp r o a c h at a l ar g e r a n gl e t o t h e p i e r at a c o n sid e r a b l e s p e e d. B e c a r e fu l n o t t o p a rt y o u r b o w l i n e . Sh i p h a n d li n g: G e t ti n g U n d e rw a y, Mo o r i n g

E as i e r t h a n an c ho r i ng B u o y h e ld s e cu r e l y b y s e v e r al a n c h o r s. Ch a n c e o f d r ag g i n g r e d u c e d. T w o m e t h od s O r d i n a ry T r ol l e y Sh i p h a n d li n g: G e t ti n g U n d e rw a y, Mo o r i n g R e qu i r e s: M W B / R H IB w i t h b o at c r e w Y o u r s h i p A bu o y

C o nnin g O ff i c e r Dr i ve s t h e s h i p ’ s h e a d i ng and s p e e d t h r ough s t a n d a r d c omman d s ( o r d er s ) to t he h e l m and l e e h e l m H e l m - c on tr o l s t h e r u d d e r L e e h e l m - c on tr o l s t he p r op e l l e r s Sh i p h a n d li n g: S t a n d a r d C o mm a n d s

B as i c F o r ma t C o nn i n g O f f i c e r C om ma n d V e r b a t im R e p e a t b a c k ( C ar r i es o u t c o m m a n d ) R e po rt A c k n o w l e dg e s R e po rt He lm / L ee h e lm Sh i p h a n d li n g: S t a n d a r d C o mm a n d s

S t a n d a r d C o mm a n d s H E L M C O N SO L E Sh i p h a n d li n g:

Sh i p h a n d li n g: S t a n d a r d C o mm a n d s E NG I N E O R D ER TE L E G R A PH

I n v e s ti g a t i o n of E n v i r o n m e nt a l C o n d it i o n s ( h ar b o u r c o nd iti o n s ) H ar b o u r c o n d i t i o n s m u s t b e i n v e s t i g a t e d e a c h t i me a p ort i s e nt e r e d , n ot o n l y j u s t t h e fi r s t t i m e. F or li n e r s e r v i c e s , c o n d i t i o n s m u s t a l so b e i n v e s ti g a t e d a n d v er i f i e d a t a p p r o p r i a t e i n t e r v a l s as w e ll . S u c h i n v e s t i g a t i o n re q u i r es t h e c o ll e c t i o n of as m u c h d a t a as p o s s i b l e a n d v er if y i n g i t w i t h t h e l o c a l a g e n t . R e c e n tl y i t h as b ee n p o s s i b l e t o fi n d i n f o rm a t i o n o u t v i a t h e I n t e r n e t . H o w e v e r , ma n y v e ss e l s d o n ot h a v e an I n t er n e t c o n n e c t i o n , a n d i t i s t h e r e f o r e d e s i r a b l e t h a t a s h o r e t e am c o ll e c t s t h e r e l e v a n t d a t a a n d pro v i d es i t t o t h e v e s s e l .

̑ I n v e s t i g a ti o n of G eo g r a p h i c a l C o n d i t i o n s a n d C o n d i t i o n s As s o c i a t e d w i t h H ar b o u r F a c ili t i es I n v e s t i g a ti o n of t h e N a v i g a t i o n E n v i r o n m e n t ( e . g . b u o y s , fi s h i n g v e s s e l s , fi s h i n g r e e f s , s h i p p i n g m o v e m e n t s ) I n v e s t i g a ti o n of t h e So c i a l E n v i r o n m e n t ( l o c a l r e g u l a t i o n s a n d n a v i g a t i o n r es t r i c t i o n s ) I n v e s t i g a ti o n of t h e N a t u r a l E n v i r o n m e n t ( e . g . w i n d , t i d e s , v i s i b i l it y , w a ve d i r e c ti o n ) T i d al In f o r m a t i o n t h r o u g h t h e In t ernet

E x am p l e of I n v e s t i g a t i o n of G eo g r a p h i c a l C o n d i t i o n s ( 1) M a x i m u m P e rm i s s i b l e D r a f t a n d U n d er K ee l C l e a r a n c e (U K C ) Ma x i m u m p e rm i ss i b l e d r a f t a n d U n d e r K e e l C l ea r a n ce ( U K C) a r e i m p or t a n t i n f o rm a t i o n i n ma k i n g d e c i s i o n s o n sa f e e n t ry of th e v e s s e l t o h ar b o u r . As s h o w n b e l o w , U K C i s a v a l u e i nd i c a ti n g th e m a r g i n b e tw e e n t h e s e a b o tt o m a n d t h e b o tt o m of t h e hu ll . F or e x am p l e, i f t h e w a t e r d e p t h a n d d r a f t a r e t h e s ame (U K C = ) , th e r e i s a p o s s i b i l it y t h a t th e v e s s e l m a y r u n a g r o u n d , a n d e nt ry t o h ar b o u r i s t h ere f o r e u n s a f e.

̓ = R e l a t i o n s h i p B e t w ee n Ma x i m u m P e rm i s s i b l e D r a f t a n d U K C = T h e r e l a t i o n s h i p b e t w ee n m a x i m u m p e rm i s s i b l e d r a f t a n d U n d er K ee l C l e a r a n c e i s as s h o w n b y t h e f o ll o w i n g c a l c u l a t i o n . T h e m a x i m u m p e rm i s s i b l e d r a f t m u s t c o n s i d er e r r o r s a n d a s a f e t y f a c t o r t o g e t h er w it h t h e v ar i a b l es i n t h e c a l c u l a t i o n . I t i s a l so n e c e s s ary t o i n v e s t i g a t e t h e m a x i m u m p e r m i s s i b l e d r a f t f o r e a c h h a r b o u r ( or e a c h b er t h ) t o d e t e rm i n e p r o b l e m s .

M o s t h ar b o ur s s e t g u i d e li n e s f or U K C , a n d ma n y h ar b o ur s t h r o u g h o u t t h e w or l d m a n a g e U K C t o g e t h er w i t h d a t a o n w e a t h e r a n d s e a c o n di t i o ns t o e n s ur e a ma r g i n f or n a v i g a t i o n . ma n y h ar b o u r s e m p l o y f i x e d U K C w h i c h i s a p r o p or t i o n of t h e d r a f t , or a s et v a l u e i n m e t e r s . T h e E ur o p e an M ar i t i me P il o t s ’ A s s o c i a t i o n a n d t h e Ja p a n e se h ar b o u r t e c h n i c a l c r i t er i a e m p l oy t h e f o ll o w i n g g u i d e li n e s . ̔

O n c h a r t s, th e a l l o w a b l e li m i t f o r e r r o r in w a t er d ep t h a t t he i n t e r n a t i o n al d ep t h d at u m i s as f o l l o w s . W a t er d ep t h t o 2 m W a t er d ep t h t o 1 00 m W a t er d ep t h t o 1 00 m o r m o r e : U p t o 0.3 m : U p t o 1.0 m : 1 % o f w a t er d ep t h T he a ct u al w a t er d ep t h is t h e d ep t h on t h e c h a r t , p l u s o r m i nu s t h e t i d e l e v e l . T h e t i d e l e v e l i s o b t ai ne d f r o m t h e t i d e t a b l e . Si n c e t h is t i d e l e v e l is a p r e d i c t e d v al u e w h i c h c an be c al c u l a t e d f r o m a f i x e d d a t um, i t m u s t be c o n s i de r e d t h a t t h e a c t u al t i d e l e v e l m a y d i f f e r . I f t h e d i u rn al i n eq u al i t y a n d a b n o rm al w e a t h er c o n d i t io n s e t c . a r e i g n o r ed , th e acc u r a c y o f th e tid e t a bl e i s w i t hi n . 3 m of t h e a c t u al v al u e . ̕ = W a t e r D e p t h a n d T i d e l e v e l =

= V e s s e l ’ s S i n k a g e W h il e U n d e r w a y = W he n a v e ss e l b e g i n s mo v i n g t h e d is t r i b u t i on o f w a t er p r e s s u r e a r o un d i t c h a n g e s, a n d t he h u ll l o w e r s s l i g h t l y in t h e w a t e r . W he n n a v i g a t i n g in h a r b o u r s, t h e r e f o r e, t h e a m o u nt o f t h i s s i n k a g e o f t he v e ss e l in t h e w a t er m u s t be a d d e d t o t h e d r a f t w h i l e a t b er t h . T h is a m o unt b e c o me s g r e a t er as t he w a t er b e c o me s s h al l o w e r , a n d as s p ee d i n c r e a s e s, as s h o w n in t h e f o ll o w i ng g r a p h . L a r g e v e s s e ls a r e o pe r a t e d a t l ow s p ee d ( S / B s p eed ) in h a r b o u r s, a n d i t is t h e r e f o r e a p p r o p r i a t e t o e st i m a t e t h e s i n k a g e of t he v e s s e l as . 1 – . 2 % o f th e l e n g t h o f th e v e sse l. It is al s o n e c e s s a ry t o c o n s i d er s i n k a g e of t h e v e s s e l d u e t o r o ll i n g , p i t c h i n g a n d y a w i n g of t h e v e s s e l w i t h w i n d a n d w a v e s , a n d s w e l l . ̍ ̌

= E x am p l e C a l c u l a ti o n t o D e c i d e W h e th er or Not t o E nt er H ar b o u r = L O A = 2 00 m, d r a f t = 1 2.00 m M a x i m u m d r a ft of v e s s e l : D r a f t a t de p a r t u r e ( o r e x p e c t e d d r a f t a t a rr i v al) + a mo unt of s i n k a g e o f v e s s e l ( . 2 % of L O A ) 1 2 m + 20 m x 0.2 % ( 0.4 m ) = 1 2 . 4 m S a f e t y f a c t o r f o r w a t er d ep t h on c h a r t : 0.6 m ( w a t er d ep t h er r o r + t i d e l e v e l er r o r ) U K C : 1 – 2 % o f m a x i m u m d r a f t (de p e n d i n g on s ai l i n g a r e a ) , 1 5 % in c al c u l a t i on = 12.4 m x 1 5 % = 1.8 6 m M i n i m u m R e qu i r e d W a t er d ep t h = 1 2.40 m + 0.6 m + 1.86 m = 1 4 . 8 6 m ̍ ̍

̍ ̎ ( 2) T u r n i n g B a s i n s W h e n e n t e r i n g a n d l e a v i n g m o s t h ar b o u r s , t h e v e ss e l w ill u s e it s o w n p ow e r , or a u x i l i a ry f a c ili t i es s u c h as t u g s or b o w t h r u s t er s , f or t u r n i n g . T h e h ar b o u r d e s i g n c r i t er i a g u i d e l i n es s p e c if y as s t a nd a r d a c i r c l e o f a d i ame t e r t hre e t i m e s t h e l e n g t h o f t h e ve ss e l w h e n t u r n i n g u n d er it s o w n p owe r , a n d t w i c e t h e l e n g t h w h e n t u r n i n g w i t h t h e a s s i s t a n c e of t u gs . M a n y h ar b o ur s d o n ot p r o v i d e s u f fi c i e n t a re a a s s h o w n i n t h e f o ll o w i n g d i a g r am. I n s u c h c a s e s , i t i s n e c e s s ary t o i n v e s t i g a t e t h e r e l e v a n t p o i n t s s u f fi c i e n t l y i n a d v a n c e ( v er if y i n g t h e n u m b er of t u g s r e q u i r e d , a n d d e t er m i n i n g t h e pr o c e d u r e f or t u r n i n g t h e v e s s e l . , e t c. )

( 1) Ma x i m u m S i z e of A c c e p t a b l e V e s s e l a t P i er = D e s i g n C r i t e r i a f or H ar b o u r F a c iliti e s = T e c h n i c a l c r i t er i a f or h ar b o u r f a c ili t i es a c c o r d i n g t o J a p a n e s e m i n i s t er i a l o rd i n a n c es a r e a s f o ll ow s . V er i f y t h a t s u f fi c i e n t p i er l e n g t h i s a v a il a b l e b a s e d o n t h e l e n g t h of th e v e ss e l . T h e same c o n s i d e r a t i o n s a p p l y i n o t h er c o u n t r i e s . E x am p l e of I n v e s t i g a t i o n of P ort F a c ili t i es ̍ ̏

S t r e n g t h of Moor i n g B i t t s I t i s a l s o n e c e s s ary t o v er if y t h a t t h e m oor i n g b i t t s o n t h e p i er a r e a b l e t o w i t h s t a n d m oor i n g of t h e v e s s e l . S t r e n g t h of m oor i n g b i t t s i n a c c o r d a n c e w i t h J a p a n e se h ar b o u r t e c h n i c a l d e s i g n s t a n d a r d s a r e as f o ll o w s . ̍ ̐

Fe n d e r s F e n d e r s a r e a l so an i m p or t a n t i t e m of e q u i p m e n t f or sa f e m oor i n g of t h e v e s s e l . P ar t i c u l a r l y w h e n a s we ll e n t er s t h e h ar b o u r , i n s uff i c i e n t f e n d er s m a y r e s u l t i n d ama g e t o th e p i er a n d t o t h e h u ll of t h e v e s s e l . I f d ama g e d f e n d e r s a r e d i s c o v e re d a f t er e nt er i n g h ar b o u r , t h e y s h o u l d b e p h o t o g r a p h e d t o g u a r d a g a i n s t c l a i m s l a t er o n . ̍ ̑

T u g s T u g s a r e a n i m p or t a n t m e a n s of a ss i s t a n c e wh e n m a n e u v er i n g wh i l e e nt er i n g a n d l e a v i n g h ar b o u r . V e r if y i n g t h e nu m b e r a n d p o w er of t u g s i s an i m p or t a n t p art of t h e i n v e s ti g a t i o n of h ar b o u r c o n d i t i o n s . = P o w er a n d N u m b er of T u g s = Si z e a n d loa d i n g c o nd i t i on of t he v e s s e l C o n d i t io n s of m ain e n g i ne s , r ud de r s, a n d a n c h o r s of t h e v e ss e l W e a t h er a n d s e a c o nd i t i o n s (w i n d d i r e c t i o n , w i n d f o r c e, d i r e ct i o n a n d s p ee d of t i d al f l o w , w a v e s ) M e t h o d o f a p p r oa c h i n g a n d l e a v i ng t he p i er ( m o o r i ng t o w a r d t h e d i r e ct i o n of a r r i v al a n d d ep a r t u r e ) W a t er d ep t h i n t he a r e a ( c o n s i der e f f e c t s o f s h a l l ow w a t er ) A v ai l a b i l i t y o f t hr u s t e r s A r e a a v a i la b l e f o r m a ne u v e r i n g ̍ ̒

G u i d e li n es a r e c o m m o n l y s e t f or t h e n u m b er of t u g s r e q u i re d a t e a c h h a r b o u r . Us e th i s i n f o rm a t i o n f or r e f e re n c e. W h e n n o g u i d e li n es h a v e b e e n s e t , u se th e f o ll o w i n g e q u a t i o n t o d e t er m i n e th e n e c e ssa r y p o w er i n c o n j un c ti o n w it h t h e d e a d w e i g h t of th e v e s s e l . ̍ ̓

I t i s p o ss i b l e t o r e d u c e t h e n u m b er of tu g s i f t h e y a r e fi t t e d w i t h t h r u s t er s . W h i l e b o w th r u s t e r s o p e r a t e o n l y i n t h e t r a n s v er se d i re c ti o n , tu g s h a v e a s i g n i f i c a n t d i f f er e n c e i n t h a t t h e y a ll o w t o w i n g a n d p u s h i n g a t an a n g l e. I t i s i m p or t a n t t o i n c r e ase th e n u m b er of tu g s u s e d w h e n e n t e r i n g or l e a v i n g h ar b o u r w i t h o u t h e s i t a t i o n i n b ad wea t h er a n d s e a c o n d i t i o n s . B ow t h r u s t er T ug ( t o w i n g a n d p u s h i ng a t an a n g l e ) ̍ ̔

V e ss e l M a n e u v e r a b il i t y A p p ro x i m a t e l y 7 % of i n c i d e nt s of d a m a g e t o h ar b o u r f a c il i ti e s i n v o l v e d a m a g e t o p i e r s a n d f e n d e r s , h o w e v e r m o s t a r e d u e t o m i s t a k e s i n o p e r a t i o n of th e v e ss e l . S u c h m i s t a k es i n c o nf i n e d h ar b o u r s w i t h li m i t e d a r e a a v a il a b l e f or ma n e u v e r i n g a r e d u e t o t h e f o ll o w i n g ; I n a b ili t y t o a cc u r a t e l y d e t er m i n e t h e e f f e c t s of e x t e r n a l f o r c es s u c h as w i n d a n d ti d e s . M i s t a k es i n s p ee d c o n t r o l a n d t u r n i n g of t h e v e s s e l w h i l e u s i n g e n g i n es a n d t u g s . T h e s h i p n a v i g a t or g r a d u a ll y r e d u c es s p e e d i n a c c o r d a n c e w i t h th e d i s t a n c e re ma i n i n g , a n d i s r e q u i r e d t o a d j u s t s p e e d a n d t u rn t h e v e s s e l w h il e c o n s i d er i n g i t s t y p e, s i z e, l o a d i n g c o n d i t i o n , i n er t i a , ma n e u v e r a b ili t y , a n d t h e e f f e c t s of e x t er n a l f o r c e s . ̍ ̕

E f f e c t s o f E x t er n al F o r c e s (w i n d ) ᶃ S t r ai g h t a h e ad if n o e x t er n al f o r c es a r e a c t i n g in w i nd l e s s c o nd i t io n s . C / W Ќ / W B : W B Wi n d G ᶄ W h en th e w i n d is a t 4 5 ˃ t o s t ar b oa r d , th e v e s s e l is p r e s s e d t o l ee w a r d . T h e p oi n t a t w h i c h t h e w i n d a c t s (C ) is a h ead of th e v e s s e l ’ s c e n t e r of g ra v i t y (G) , a n d a tu r n i n g m om e n t ( N ( V α ) ) a c t s t o t u rn th e v e ss el in th e l ee w a r d d i r e c t io n . ᶅ W h en th e v e ss el b e g i n s d ri f t i n g ( d ia g o n all y ) l ee w a r d , w a t er : W Ќ E W a t e r R e s i s t. D i re c t i o n of S h i p M o v e m e n t r e s i s t a n c e is g e n e r a t e d on t h e lee s i d e of th e b o w . T h e p oi n t ( E) a t w h i c h th is f o r c e a c t s is a h e ad of th e p oi n t a t w h i c h t h e w i n d p r e s s u r e a c t s (C) , a n d a tu r n i n g m om e n t ( N (V β ) ) a c t s t o t u rn th e v e s s e l in th e w i ndw a r d d i r e c t io n . β : W М / W М ᶆ T h e v e ss el t u r n s und er t h e t u r n i n g m om e n t of t h e w i n d or w a t e r re s i s t a n c e , w h i c h e v er is th e g r e a t e r . Si n c e w a t e r r e s i s t a n c e is n orm a l l y m u c h g r e a t er t h a n air r e s i s t a n c e , the v e s s e l b e g i ns to tu r n w i nd w a r d. ( N ( V β ) > N ( V α ) ) ᶇ T h e r udd er a c t s a g ai n s t t h e t u r n i n g mo m e n t , i . e . th e v e s s e l is c o nt r olled w i t h th e m ome n t N ( V σ ) g e n era t ed b y th e r udd er a n g le ( σ) . ᶈ Fi n all y , w i t h t u r n i n g mo m e n t of th e w i nd , w a t er r e s i s t a n c e, a n d r udd er in e qu ili b ri u m, th e v e s s e l m ai n t ai n s a c o u r s e a t t h e a n g le β ( le e w a y ) t o t h e r i g h t a h e a d , a n d p r o c e e d s w i t h d ri f t i n g l ee w a r d . = T r a n s v e r s e M oveme nt a n d T u rn i n g U nd er W i n d P r e ss u r e W h il e U n de r w a y = ̎ ̌

̎ ̍ T he p oi nt (C ) a t w h i c h t he w i n d a ct s a p p r oa c h e s t h e v e s s e l ’ s c en t er of g r a v i t y ( G) t h e c l o s er t h e r e l a t i v e w i n d is t o t h e t r a n s v e r s e a x i s o f t he v e ss e l. A t 9 ˃ ( a b e a m ) i t a c t s al mo s t en t i r e l y on t h e v e s s e l ’ s c en t er of g r a v i t y . A s a r e s u l t , t he t u r n i ng m o me nt N ( V α ) a ct i n g in t h e l e e w a r d d i r e c t i on is r e du c e d ( t u r n ) , a n d t h e f o r c e Y ( V α ) a ct i n g on t h e v e s s e l in t h e l e e w a r d d i r e ct ion i n c r e a s e s ( d r i f t ) , a n d t he d ia go n al a n g l e i n c r e a s e s, i n c r e a s i n g t h e t u rn i n g m o me nt N ( V β ) d ue t o w a t er r e s is t a n c e . F u r t herm o r e, w h e n t h e r e l a t i v e w i n d mo v e s f r om t h e t r a n s v e r s e t o t h e r e a r w a r d d i r e ct i o n , t he p o i nt (C ) a t wh i c h t h e w i n d a ct s mov e s f r om t he v e s s e l ’ s of g r a v i t y t o w a r d s t he s t ern , t h e t ur n i n g mome nt N ( V α ) r o u n d s u p t h e b o w , a n d a ct s in t h e s a me d i r e ct i o n as t h e w a t er r e s is t a n c e .

̎ ̎ T he c o u r s e c an b e m ai n t ai ne d if t he mome nt d er i v e d f r o m t h e w i n d a n d w a t er r e s is t a n c e c an b e c o n t r ol l e d w i t h t he ru dd e r . I f s u c h c o n t r o l is n o t p o s s i b l e, an i n c r e a s e i n t he t u rn i n g m o me nt d u e t o w a t er r e s i s t a n c e i n c r e a s e s , a n d th e c o u r s e c a n n o l o n g e r b e m a i n t a i n e d . T h is g r a p h s h o w s t h e r at io of w i n d s p ee d ( V a) t o s pee d o f t h e v e ss e l ( V s ) on t h e v e r t ic al a x i s, a n d t h e r e l a t i v e w i n d a n g l e on t h e h o r i z o n t al a x i s, a n d i nd ica t e s t h e r e g i o n s i n wh i c h t h e c o u r s e c an a n d c a nn o t b e m ai n t a i n e d w i t h a ru dd er a n g l e of 3 ˃ . I f t h e r at io of w i n d s p ee d t o v e ss e l s p ee d e x c ee d s 3.7, a r e g ion o cc u r s in w h ic h t h e c o u r s e c a n n o t be m a i n t ai n e d d ue t o t h e r e l a t i v e w i n d a n g l e . A t v e s s e l s pee d s of 6 – 8 k n o t s ( 3. 1 – 4 . 1 m / s e c ) i n s i d e t he h a r b o u r , a w i n d s p ee d of 1 1 – 1 5 m / s ec r e s u l t s i n a r at io of w i n d s p ee d t o v e ss e l s p ee d of 3.7, a n d t h e c o u r s e m a y n o t b e a b l e t o b e m ai n t ai ne d in t h e s e c o n d i t io n s d epe nd i n g o n t he d i r e c t i on o f t h e r e l a t i v e w i n d .

̎ ̏ I n t h e f o l l o w i n g g r a p h , ru dd er a n g l e i s s h o w n o n t he v e r t ic al a x is , a n d t he r e g io n s in w h i c h t he c o u r s e c an a n d c a nn o t b e m ai n t ai ne d f o r e a c h r at io of w i n d s pee d t o v e s s e l s p ee d . W h e n t h e r a t io o f w i n d s pee d t o v e s s e l s p ee d ( V a / V s ) r e a c h e s 4, de p e n d i n g on t h e a n g l e o f t he r e l a t i v e w i n d , a r e g i o n in w h i c h t he c o u r s e c a nn o t be m ai n t a i n e d o cc u r s, d e s p i t e a r u d d er a n g l e of 3 ˃ .

̎ ̐ I t i s i m p or t a n t t o ma n e u v er t h e v e s s e l w h il e c o n s i d er i n g t h e r o u nd i n g u p a n g l e l e e w a y ( β) w h e n n a v i g a t i n g i n a c h a n n e l w it h o u t t h e as s i s t a n c e of t u g s u n d er w i n d pr e s s ur e. In s u c h c a s e s , w i n d d i r e c t i o n a n d s p ee d , a n d v e s s e l s p ee d , m u s t b e c o n s i d e r e d , a n d an i n v e s t i g a t i o n c o n d u c t e d t o d e t e rm i n e w h et h e r or n ot ma n e u v e r i n g i s p oss i b l e i n t h e r e gi o n i n w h i ch t h e c o ur s e c a n b e m a in t a i n e d . T h e m a x i m u m a ll o w a b l e w i n d s p ee d f or e nt er i n g a n d l e a v i n g th e h ar b o u r i s v ery o f t e n s e t , h owe v er hu ll s h a p e e t c . s h o u l d b e c o n s i d e r e d t o g e t h er w it h t h e c r i t e r i a e s t a b li s h e d f o r t h e h ar b o u r i n q u e s t i o n .

L e e w a y o f 3 ˃ t o s t a rb oa r d t o e n s u r e p a ss a g e u n d er c en t er of b r i d g e . (I n c h e o n P o r t ) M o d e r n r a d a r w i t h a d v a n c e d t e c hn o lo g y d i s p l a y s g e n e r a l l y i n c o r p o r a t e s G P S i n f o rm at io n . I f t h is f u n ct ion is u s e d s k i l l f u ll y t h e l e e w a y a n g l e a n d d i r e ct i o n of dr i ft c an be u n d e r s t ood i n nu me r i c al t erm s . T h i s i n f o rm at ion i s e f f e c t i v e i n m a n e u v er i ng t h e v e s s e l . ̎ ̑

T u r n i n g t h e V e s s e l u s i n g 1 ( o n e) T u g B o a t ( F r e e of E x t e r n a l F o r c e) W he n t ur n i n g w i t h o ne t u g pu s h i n g a t t he s t e r n ( o r b o w ) , t h e c en t er of t h e t ur n is t h e p i v o t p oi nt ( P ) , r at h er t h an t he c en t er of g r a v i t y ( G ) . T ur n i n g t h e v e ss e l on t h e s p o t in a c i r c l e o f r a d i u s 1 / 2 L ( L b e i ng t h e v e s s e l l e n g t h ) is t h e r e f o r e n o t p o s s i b l e . T he r a d i u s of a r e a r e qu i r e d f o r t u rn i n g c an be f o un d w i t h t h e f o ll o w i ng eq u a t i o n . T ur n i n g r a d i u s ( R ) = G P + 1 / 2 L C P G 1 / 2 L G C G P L : T u r n i ng r a d i u s o f m o me nt of i ner t ia a r o un d v e r t ic al a x i s t h r o u g h c en t er o f g r a v i t y ( G ) ˺ 0.3 5 L P : P i v o t p oi n t , c en t er o f r o t at ion w h e n t u r n i ng v e ss e l G : C en t er o f g r a v i t y C : P o i nt a t w h i c h t ug a c t s o n v e s s e l ̎ ̒ ː T u r n i ng t he v e s s e l

G П ʹ ̎ ̡ 1 m / s ec Si m u l at o r (C o n t ai ner ) ̎ ̓ T u rn i n g w i t h in a c i r c l e of d i a me t er 1 L u s i n g 2 t u g s u n d er Wi n d E f f e c t e x t er n al F o r c e A s i m u l a t i on w as ru n o f t ur n i n g a c o n t ai n er v e s s e l o f 24 6 m in l e n g t h s u b j e c t t o w i n d s of 1 m / s ec a t 4 5 ˃ t o s t a rb oa r d a t t he b e g i n n i ng o f t h e t u rn , u s i n g tw o t u g s . T h e t u g s w e r e u s e d s o l e l y f o r t u rn i n g , a n d n o a d j u s t me nt w as m a de f o r d r i f t . W h il e de p e n dent on h u ll s h a pe a n d v e ss e l t y pe, a w i n d s p ee d of 1 m / s ec i s t he l i m i t , e v e n if a 2 L ci r cl e is a v a i la b l e f o r t ur n i n g t h i s v e ss e l. A la r g er a r e a is r e q u i r e d f o r t u rn i n g a t w i n d s p eed s in e x c e s s of 1 m / s e c . - P B N - Q Q N # S F E U I N % F Q U I N % S B G U N % J T Q , 5 5 S J N N ( Q P TJ U J P O 8 J O E 1S P K F D U ' S P O U ᶷ ʣ 4 J E F ʢ ᶷ ʣ

S p e e d C o n t r ol I n c i d e n t s of f a i li n g t o c o n t r o l a s h i p ’ s s p e e d w h il e e n t er i n g h ar b o u r , w i t h t h e v e s s e l c o n s e q u e nt l y c o lli d i n g w i t h t h e p i er c a u s i n g m a j o r d ama g e t o t h e p i e r , s h o r e c r a n e s , a n d t h e v e s s e l it s e l f , n e v er c e as e. S h i p s d i f f er f r o m m o t or v e h i c l e s i n t h a t t h e y a r e n o t f it t e d w i t h a b r a k i n g m e c h a n i sm t o r e d u c e s p ee d . C o n t r o l of s p ee d m u s t t h e r e f o r e r e l y o n c o nt r o lli n g t h e s p e e d of t h e ma i n e n g i n e, re v e r s i n g t h e ma i n e n g i n e, or t h e as s i s t a n c e of a tu g . In o r d er t o e n s u r e t h a t t h e v e s s e l s t o p s pr e c i s e l y a t t h e s c h e d u l e d p o i nt , t h e s h i p n a v i g a t or i s r e q u i r e d t o c o n s i d er it s t y p e, s i z e, l o a d i n g c o n d i t i o n , i n e r ti a, a n d m a n e u v e r a b ilit y , a n d t h e e f f e c t s of e x t er n a l f o r c es e t c . w h e n a d j u s ti n g s p ee d . ̎ ̔

̎ ̕ T h e se f a c t o r s a r e o b v i o u s l y n ot f o rma ll y c a l c u l a t e d w h il e t h e v e s s e l i s a p p r o a c h i n g t h e p i e r , a n d l a c k of c o m m u n i c a t i o n b e tw e e n t h e p il ot a n d c a p t a i n i s a c a u s e of i n c i d e nt s , as i s i n s uff i c i e n t a d v i c e f r o m th e c a p t a i n . B o t h t h e c a p t a i n a n d p il ot a r e r e q u i re d t o h a v e a q u a n ti t a t i v e, r a t h er t h an an i n t u i t i ve e x c h a n g e of i n f o rm a t i o n , b as e d o n e x p e r i e n c e, u n d er s t a n d i n g of t h e s t o p p i n g d i s t a n c e a n d t h e ti m e r e q u i r e d t o s t o p .

B as i c s of S t o p p i n g D i s t a n c e, V e s s e l W e i g h t , a n d A cc e l e r a t i o n H u ll s h a p e a n d r e s i s t a n c e m u s t b e c o n s i d e r e d w h e n d e t e rm i n i n g d e t a il s s u c h as s t o p p i n g d i s t a n c e a n d t h e t i me r e q u i re d t o s t o p , h owe v er a p p ro x i m a t e v a l u es c an b e d e r i v e d w i t h th e f o ll o w i n g e q u a ti o n b a s e d o n t h e p r i n c i p l e of c o n s e r v a t i o n of e n er g y . ̏ ̌

̏ ̍ : A p p a r e n t d i s p l a c e m e n t ( d i s p l a c e m e n t + a d d i t i o n a l ma s s *) ( t o n s ) V o : I n i t i a l s p e e d (m / s e c ) : F i n a l s p ee d ( m / s e c ) F : F o r c es a c t i n g ( t u g t h r u s t a n d r e v e r se e n g i n e t h r u s t ) ( t o n s ) T : E l a p s e d t i me ( s e c o n d s ) S : F o r w a r d m o v e m e n t ( m) Α : A cc e l e r a t i o n a p p li e d t o v e s s e l (m / s e c 2 ) * A d d i ti o n a l m a s s W h e n a cc e l e r a t i n g a n d d e c e l e r a t i n g t h e v e s s e l , t h e v e s s e l i t s e l f m o v e s , w h il e a t t h e s ame t i m e, t h e wa t er i n t h e v i c i n it y a l s o m o v es as a r e s u l t of t h i s m o v e m e nt . P owe r i s th e re f o r e n ot o n l y r e q u i r e d t o m o ve t h e v e s s e l , b u t t o m o ve a p a rt of t h e wa t er i n t h e v i c i n i t y . T h i s i s , i n e f f e c t , t h e same as m o v i n g a v e s s e l of i n c r e as e d mas s . T h i s i n c r e a s e d mas s i s re f e r r e d t o as ‘ a d d i t i o n a l ma s s ’ .

S p e e d R e d u c t i o n P l an f or V e ss e l A p p r o a c h i n g P i er i n D i r e c t i o n of Arr i v a l ( e x am p l e) W h e n a p pr o a c h i n g p a r a ll e l t o t h e p i er i n t h e d i re c ti o n of arr i v a l i t i s n e c e s s ary t o d e t er m i n e i n a d v a n c e w h e n t o s t o p th e e n g i n e, a n d t o u n d e r s t a n d g u i d e li n e s f or e v a l u a ti n g w h e t h e r or n ot s p e e d th r o u g h th e p r i ma r y w a y p o i nt s i s e x c e s s i v e w h il e a p p r o a c h i n g t h e b er t h . F or e x am p l e, wh i l e m o v i n g f o r w a r d a t d e ad s l o w a h e ad as s h o w n i n th e f o ll o w i n g i m a g e, w h e n s t o pp i n g t h e e n g i n e w i t h s i m u l t a n e o u s b r a k i n g a p p li e d b y a s t e rn t u g , a n d w i t h a d i s t a n c e t o t h e s t o p p o s i t i o n of 4L a n d 1 L , i t i s n e c e s sa r y t o d e t e rm i n e b e f o r e h a n d t h e s p e e d a t w h i c h i t i s p o s s i b l e t o s t o p a t t h e s c h e d u l e d p o i n t . W h i l e i n c o r p o r a t i n g a s a f e t y m a r g i n i n t h e d i s t a n c e t o t h e b er t h n o t e d a b o v e, i t i s a l so n e e d e d t o r e d u c e s p e e d b y i n c r e as i n g t h e b r a k i n g e f f e c t of th e t u g or b y re v e r s i n g t h e e n g i n e i f t h e a p pr o a c h t o t h e b er t h i s a t a g r e a t er s p ee d .

In p r a c t i c e, r a t h er t h an m a n e u v er i n g t h e v e s s e l t o s t o p a t t h e s t o p p o i nt , b r a k i n g i s a p p li e d w h il e c o n t r o lli n g s p ee d so t h a t t h e v e ss e l s t o p s a t t h e t a r g e t a t t h e f r o n t of t h e b er t h w i t h o u t l o s i n g c o n t r o l . V e r i f y d i s p l a c e m e n t o f v e ss e l, p o w e r a t e n g i n e a st e r n , a n d po w e r o f t u g , v e r if y t h e d i st an ce a n d ti m e r e qu i r e d t o st o p d u r i n g m a ne u v e r i n g f o r a p p r o a c h , a n d m a n eu v e r t h e v e ss e l w it h a s a f e t y m a r g i n . ̏ ̏

R e f e r e n c e V a l u es f or R e d u c i n g S p e e d T h e s pr e a d s h e e t b e l o w p re s e n t s t h e e q u a t i o n i n ( 4 ) - 1 i n a f or ma t r e a d y f or d a t a e nt r y . E n t e r t h e n e c e ss a ry d a t a t o c a l c u l a t e a p p ro x i m a t e v a l u es f or s t o p p i n g d i s t a n c e a n d s t o p p i n g t i m e, a n d sa f e t y ma r g i n . I t i s i m p or t a n t t o r e c o g n i z e r e f e re n c e v a l u es f or t h e s t o p p i n g d i s t a n c e of t h e v e s s e l u s i n g s i m p l e s pr e a d s h e e t s . E a r l y b r a k i n g b y tu g or re v e r s i n g t h e e n g i n e i s n e c e ssa r y i f th e sa f e t y ma r g i n i s . 3 or l e ss . ̏ ̐

̏ ̑ I n a d d i t i o n t o t h is s p r e a d s h e e t, i t is al s o e f f e c t i v e t o c o n s i d er t h e m a n eu v e r a b il i t y o f t he v e ss e l in p r ep a r i ng s p ee d r ed u ct ion g u i de li ne s in g r a p h i c f orm a t . T he g u i de li ne s s h o u ld b e p o s t e d o n t h e b r i d g e, w i t h c o p i e s k ept in st o r a g e . T he g u i de li ne s c an b e p r ov i de d t o t he p i lo t as r e f e r e n c e m a t er ial f o r i n f orm a t i on e x c h a n g e u p on b o a r d i n g t o a s s i s t in c o mm u n i c a t i o n .

U p t o 20 , 00 G T ( c o n v en t io n al me t h o d ) C o n v e nt i o n a l l y , t h e v e ss e l a p p r o a c h es a t an a n g l e o n a f a c e l i n e of t h e p i e r , t h e b o w li n e i s t a k e n , a n d th e s t ern i s p u s h e d t o t h e p i e r . T h i s m e t h o d i s s t ill u s e d w i t h v e s s e l s of u p t o 20,00 G T . H o w e v e r l a r g e r v e s s e l s g e n e r a ll y a p p r o a c h a n d p o s iti o n p a r a ll e l t o t h e p i er a t a d i s t a n c e of 1 . 5 – 2 t i m es t h e b e am, a n d a r e t h e n p u s h e d s i d e w a y s o n t o t h e p i er b y a t u g ( p a r a ll e l a ppr o a c h ) . L a r g e v e s s e ls e x c ee d i n g 2 ,0 G T ( p a r all e l a pp r oa c h ) C o n t r o l of B er t h i n g V e l o c i t y W h e n A p pr o a c h i n g t h e P i er ̏ ̒

̏ ̓ = A d v a nt a g es a n d d i s a d v a n t a g e s of th e p a r a ll e l a p p r o a c h = [ A d v a nt a g e s ] W h i l e t h i s d e p e nd s o n t h e l a y o u t o f t h e p i e r , a m i s t a k e i n r e d u c i n g s p e e d d o e s n ot r e s u l t i n d ama g e t o t h e p i e r . W h e n t h e p i er i s of c o n s i d e r a b l e l e n g t h , a m i s t a k e i n s p e e d c o n t r o l s i m p l y r e s u l t s i n o v e rr u n n i n g t h e s c h e d u l e d s t o p p o s iti o n , a n d d oes n ot r e s u l t i n d a m a g e t o t h e p i e r . Wi t h t h e c o n v e n t i o n a l m e t h o d , c o n t a i n er s h i p s e t c . w it h l a r g e b o w fl a r e s s o m e ti m es d ama g e c r a n es e t c . o v e r h a n g i n g t h e p i e r . T h i s r i s k i s m u c h r e d u c e d w i t h t h e p a r a ll e l a p p r o a c h . T h e a t t it u d e of t h e v e ss e l i s m o r e e a s il y c o n t r o l l e d w i t h t h e p a r a ll e l a p p r o a c h , f a c il it a t i n g r e s p o n se t o r a p i d c h a n g es i n e x t er n a l f o r c e s . [ D i s a d v a n t a g e s ] An e x t r a 1 – 2 m i n u t es i s r e q u i r e d t o r e a c h t h e p i e r .

( 5) B er t h i n g V e l o c i t y C o n t r o l T h e e n er g y of th e v e s s e l w h e n c o n t a c ti n g t h e p i er c an b e c a l c u l a t e d w i t h t h e f o ll o w i n g e q u a t i o n , a n d i s p r o p or t i o n a l t o t h e s q u a r e of th e s p e e d of c o nt a c t . E W’ G V C : C o n t a c t ene r g y ( t o n- m ) : W ( d i s p la c eme nt ( t o n s ) ʷ t r a n s v e r s e a dd i t i o n al m a s s c o eff i c i ent ( 1 - – 2.0 ) : A cc e l e r a t i o n du e t o g r a v i t y ( m / s e c 2 ) : B e r t h i n g V e l o c i t y ( m / s e c ) : E ne r g y d i m i n u t i on c o e f f ic i ent d u e t o t ur n i n g e t c . ̏ ̔

C o n t a c t e n e r gy ( t - m) B e rt hi n g V e lo c i ty ( V c m / s e c ) Us i n g an a d d i t i o n a l mas s c o e ff i c i e n t of 1 . 8, a n d C of . 5 i n t h e a b o ve e q u a ti o n , a c o n t a i n er v e ss e l w i t h a d i s p l a c e m e n t of 50,0 t o n s a p p r o a c h i n g t h e p i er a t a s p e e d of 10 cm / s ec h a s a c o nt a c t e n er g y of a p p ro x i m a t e l y 2 3 t o n - m. T h i s i s e q u i v a l e n t t o a 1 t o n m o t or v e h i c l e c o lli d i n g w i t h a w a ll a t 8 k m /h . V e ss e l s g e n e r a l l y a p p r o a c h a t a m a x i m u m s p ee d of 10c m / s e c , w i t h l a r g e v e s s e l s a n d V L C C s a p p r o a c h i n g a t 5c m / s e c. T h e se s p ee d s a ll o w a b s or pt i o n of t h e e n e r g y of t h e v e s s e l w h e n c o n t a c t i n g t h e p i er f e n d er s , a n d pre v e n t d a m a g e t o t h e h u ll a n d t h e p i e r . ̏ ̕

P r e v e n t i n g D a m a g e t o H ar b o u r F a c ili t i e s G r asp Ex t e r n a l f o r c e s C o n t r o l t h e a t t i t u d e a n d s p e e d of t h e v e ss e l a p p r o p r i a t e l y w h il e ma n e u v e r i n g . I t i s n e c e s s ary f or t h e c a p t a i n t o p l an t h e pr o c e d ur e f or e n t r y a n d e x i t i n a d v a n c e. B r i d g e R e s ou r ce M a n a g e m e n t D u r i n g H ar b o u r E n t r y a n d E x i t S / B W h e n t h e p il ot b o a r d s t h e v e s s e l , pr e s e n t t h e p il ot c a r d , a n d e x p l a i n d r a f t , d i s p l a c e m e n t a n d o t h er p o i n t s of s p e c i a l n o t e. O ff i c e r s s t a t i o n e d a t t h e b o w a n d s t e rn re p ort r e p ea t e d l y o n m o ve m e n t of t h e t u g s. ̐ ̌

B r i d g e R e s o u r c e M a n a g e m e n t D u r i n g Arr i v i n g a n d a n d D e p ar t ur e S / B i n H a r b o u r C on s u lt w i t h t h e n a v i g a t o r o n t h e d a y p ri o r t o h ar b o u r e n t ry f o r a b r i e fin g on h a r b o u r e n tr y a n d e x i t p r oc e du r e s. W h en t h e p il o t b o a r d s t h e v e ss e l, p r e s e n t t h e p i l ot c a r d , a n d e x pl a i n d r a f t , d i s p l a c e m e n t a n d o th e r p o in t s of s p e c i a l n o t e . O b t ain i n f o rm a t i o n f r o m t h e p il o t o n w h er e t h e tu g i s t o b e t a k e n up , w h e t h er t h e p i e r is t o b e a pp r o a c h e d o n th e s hip ’ s p o r t or s t a r b o a r d s id e , a n d t h e nu m b e r of m o o r i n g l in e s e t c . t o b e u s e d . I f t h er e is t ime a v aila b l e, v e ri f y t h e re qu ir e m e n t s f o r m a n e u v e r i n g o f t h e v e ss el ( e . g . t u r n i n g po i n t ) . ̐ ̍

E n s u r e th a t t h e o f f i c e r on th e b r i d g e r e p o r t s e n g i n e s p ee d ( w h en e n g i n e s a r e op e ra t e d ) , a n d t h a t t h e h e l m s m a n r e p o r t s r udd e r s t a tu s as a p p r op r ia t e. W h en t h e e n g i n e i s s t o p p ed in t h e f i n a l s t a g e s o f a pp r o a c h i n g t h e p ie r , t h e o f f i c er m a y b e g in t i d y i n g u p t h e b ri d g e a n d h e / s h e ma y n e g l e c t t o r e p o rt t h e b er t h i n g v e l o c i t y o f t h e v e ss e l. I t i s i m po r t a n t t h a t t h e r e q u i r ed i n f o rm a t i o n ( e .g . a h ea d / a s t ern s p ee d , b e r t h i n g v e l o c i t y ) i s re po r t e d a p p r op r i a t ely u n t il an i n s t r u c t i o n is r e c ei v ed f r o m t h e c a p t ain t h a t it is n o l o n g er n e c e ss ar y . O f fi c e r s s t a t i o n e d a t th e b ow a n d s t e r n r e p o r t r e p e a t e d l y on m o v e m e n t of th e tu g s. I n n o n- E n g l i s h - s p ea k i n g r e g i on s i n p ar t i c u l a r , t h e p i l o t a n d c a p t ain o f t h e t u g f r e q u e n t ly c o n v e r s e in t h e l o c al la n g u a g e, a n d i n f o r m a t i o n o n m o v e me n t o f t h e t u g ma y no t r e a c h t h e c a p t a i n o f t h e v e ss e l. I t i s i m po r t a n t t h a t o f f i c e r s s t a t i o n ed a t t h e b o w a n d s t e rn r e p o rt c o n c i s e ly w h e t h er t h e t u g s a r e p u s h i n g o r p u l l i n g t h e v e ss e l, a n d i n w h i c h d i r e c t i o n e tc . ̐ ̎

M oo r i n g l in e s a r e s e t i n co n s u lt a t i on w it h th e p i l ot or Ma s t e r . E v en a f t er t h e l i n es a r e t ied o n t h e b i t t s , t h e y a r e g e n e r a lly l e f t un - t e n s i o n ed (w i t h n o s la c k ) . I t is i m p o r t a n t t o f o ll o w t h e i n s t r u c t i o n s o f t h e s h ip n a v i g a t o r w h en w i n d i n g in m o o ri n g li n es t o c o n t r o l t h e a t t i t u d e o f t h e v e ss el. I t i s al w a y s n e c e ss ary t o v e r i f y a n y d o ub t s . T h is a p p li e s n o t o n ly t h e c a pt a i n , b u t al s o t o t h e c r e w . T h e c a p t ain is r e s p o n s i b le f o r c r e a t i n g an a t m o s ph e r e in w h i c h t h is b e h a v i o r is e n c o u r a g e d . ̐ ̏

A s h i p ’ s a n c h o r d r a g s T he i m p a c t o f e x t er n al f o r c e s D r a g g i n g A n c h o r > T h e h o l d i n g p o w er o f t h e a n c h o r a n d c a b l e . M a s t e r s a n d d e c k o f f ic e r s s h o u ld be a w a r e o f h ow v a r i o u s p a r a m e t e r s , s u c h as t he s c o pe o f c a b l e in r e l at i o n t o t he d e p t h o f w at er a n d t h e e f f e c t s o f w i n d , w a v e a n d t i d a l f o r c es o n t h e v e sse l , c an in t u r n e x ert e x c e ss i v e f o r c e s o n t h e a n c h o r a n d c a b l e s y s t e m l e a d i ng t o b r e a k - o u t o f t h e a n c h o r f r o m t he g r o u n d a n d d r a g g i n g . T h e r e a s o n w h y an a n c h or d r a g s ̐ ̐

E m p i r i c al o r R u l e o f T h u m b M e t h o d s f o r A ss e ss i ng t h e M i n i m u m R e q u i r e d L e n g th o f An c h o r C h ain d : W a t er d ep t h ( m ) L : M i n i m u m R e q u i r e d L e n g t h of A n c h o r C h ai n( m ) J a p a n e s e p ub li c at i o n T h e o r y o f S h ip O p e r at i o n Fi ne w e at h er : R o u g h w e at h er: L = 3 d + 9 m L = 4 d + 1 4 5 m U n i t e d Ki n g d om pu b li c a ti o n T h e o ry o f S h ip O p e r at i o n L = 3 9 x ˽̳ m ̐ ̑

T r a d iti o n al m e a n s o f d e t e cti ng a d r a g g i ng a n c h o r ᶃ C h e c k i ng t h e s h i p ’ s p o s i t i o n , t o c o n f i rm w h e t h er i t is p la c e d o u t s i d e o f a t u r n i ng ci r cl e . ᶄ T h e b ow c a n n o t s t a n d a g ai n s t t h e w i n d . ᶅ T h e s h i p ’ s s i d e a g ai n s t t he w i n d h a s n ’t c h a n g e d . ᶆ C h e c k i ng t o s e e t h e r e is n o s la c k i n g o f c h ai n s j u s t b e f o r e a s h i p ’ s s i de a g ai n s t t h e w i n d t u r n s . ᶇ C h e c k i ng w h e t h er t h e r e a r e e x t r a o r d i n a ry v i b r at i o n s t h r o u g h t h e a n c h o r c h ai n s . ᶈ C h e c k i ng t h e c o u r s e r e c o r d er in c a s e i t d o e s n o t i n d i ca t e a “ f i g u r e - o f - e i g h t ” m o t i o n l o c u s . ̐ ̒

T h e a b o v e me t h o d s r em a i n w e l l - t r i e d b ut , o f c ou r s e , o n ly c o n f i r m t h a t t h e a n c h o r is d r a gg i n g . T h e y d o n o t p r e d i ct w h e n d r a gg i n g i s l i k e l y t o c o m me n c e . A cc o r d i ng t o o n e c u r r e n t s t u d y , an a n al y s is o f a n c h o r d r a gg i ng h as s h o w n t h a t t h e r e a r e tw o a ss o c i a t e d p h e n o m e n a , o r s t a g e s , t o t h e p r o c e s s w h i c h i n d i c at e t h a t d r a g g i n g m a y b e a b o u t t o o c c u r b e f o r e i t is d e t e c t e d by t h e m o r e u s u al m e t h o d s o u t l i n e d a b o v e . ̐ ̓

T h e F i r s t S t a g e : D r a gg i n g A n c h o r w i t h Y a w a n d S w a y Y a w a n d s w a y mo ti o n o f a v e ss e l w h e n lyi ng t o an a n c h o r is s o m e t i m e s r e f er r e d t o as “ h o r s i n g ” . A r e a [ A ] in t h e d ia g r a m s h o w s t h e s i t u a t i o n w h e r e t he s h ip is lyi ng a t a n c h o r a n d y a w i n g in a “ f i g u r e - o f- e i g h t ” mo ti o n . I t h as b ee n f o u n d t h a t as w i n d p r e ss u r e f o r c e b e g i n s t o e x c ee d t he a n c h o r ’ s h o l d i ng p o w e r , t he s h ip y a w s a n d is p r e ss e d t o l ee w a r d , as s h o w n by a r e a [ B ] in t h e d ia g r a m . I t is s u g g e s t e d t h a t , du r i ng t h is p er i o d , i t s h o u ld be r e la t i v e l y e a s y t o c o nt r ol t h e m a neu v e r a b i l i t y o f a sh i p i n su c h a s ta t e a n d t o w e i g h th e a n c ho r . ̐ ̔

T h e S e c on d S t a g e : An c ho r D r a gg i n g ca u s e d b y W i n d P r ess u r e W h e r e w i n d p r e s s u r e f o r c e g r a du all y b e c o m e s s t r o n g e r , o n e s i d e o f t h e s h ip t u r n s a g ai n s t t h e w i n d a n d is t h e n p r e ss e d a n d mo v e s t o l ee w a r d a t a c er t ain s p ee d , as s h o w n in a r e a [ C] in t h e d ia g r a m . I t is s u g g e s t e d t h a t , d u r i ng t h is s t a g e, i t is d i f f i c u l t t o w e i g h a n c h o r a n d , e v e n if p o s s i b l e, t h is t a k e s a c o n s i d e r a b l e a m o un t o f t i m e . I f w e i g h i ng t h e a n c h o r c a nn o t be a cc om p l i s h e d , t he s h ip l o s e s i t s m a n e u v e r a b ilit y . D r a gg i n g a n c ho r m a y n ot b e d e t e c t e d b y t h e T r a d i t i on a l M e t ho d s unt i l th e v e ssel h a s e nt e r e d t h e se c o n d s t a g e des c r i be d a b o v e , b y w h ic h t i m e i t m a y b e t o o la t e t o a vo i d a d a n g e r ous s i t u a t i o n f r o m d eve l o p i n g . ̐ ̕

E a r l y p r e d ic t i o n a n d d e t e ct i o n o f t h e d r a g g i n g o f an a n c h o r is al s o p o ss i b l e u s i ng t h e s h i p ’ s w a k e i n d i c a t o r s in t he E C D I S , R A D A R a n d G P S d i sp l a y s . T h e r e f o r e, c o u n t er m e a s u r e s f o r t he s a f e t y a r e r e q u i r e d t o be t a k e n as e a r li er as p o s s i b l e . E C D I S A R E A ʮ ̗ ʧ R A D A R A R E A ʮ ̗ ʧ G P S A R E A ʮ ̘ ʧ ̑ ̌

ː 3. 2 Wi n d P r e ss u r e F o r c e C a l c u l a t i o n H u g h es F or m u l a В : Wi n d di r e c t ion f r om b o w [d e g r e e ] ( R e l a ti v e W i n d D i r e c t i o n ) 7 B : H ea d w in d s p e ed [ m / s e c ] ρ : Air d e n s it y [ . 12 5 k g ɾ s e c 2 / m 4 ] : S h i p ’ s p r oje c t e d a r ea f r om b o w a b o v e wa t erli n e [ m 2 ] : S hip ’ s p r o je c t ed a r e a f r o m s i d e a b o v e wa t erli n e [ m 2 ] a : L e n g t h f r om b o w t o w in d p r e ss u r e c e nt e r [ m] ( P o i n t o f A c t ion ) R B : R e s ul t a n t w i n d p r e ss u r e f o r c e [ k g ] → d i v id e d b y 1 ,0 t o b e “ t o n ” ( T o t al W i n d For c e ) α : W i n d p r e ss u r e f o r c e a n g le[ d e g r ee ] ( A n g le o f A c t i o n ) C R a : W i n d p r e s s u r e f o r c e c o eff i c i en t . P a s s e n g er : 1.14 2 - 0.14 2 c o s 2 В 0.3 6 7 c o s 4 В - 0.13 3 c o s 6 В G e n e r al C a r g o : 1 . 3 2 5 - . 50 c o s 2 В - . 3 50 c o s 4 В - 0.17 5 c o s 6 В T a n k er & B u l k c a rr i er : 1.2 - 0.0 8 3 c o s2 В - 0.25 c o s 4 В - . 1 17 c o s 6 В R e s u l t a n t w i n d p r e s su r e f o r ce i s p r op o r t i o n a l t o t h e s q u a r e of w i n d s p e e d . 3 B ͇ Л ͇ $ 3 B Y 7 B Y " D P T В ʴ ̗ T J O В ʣ U P O ̑ ̍

ː 3. 3 H o l d i n g P o w er c r e a t e d b y A n c h or a n d A n c h or C h a i n S : C a t e n a r y l e n g t h a g ai n s t t h e e x t er n al f o r c e ( m ) Z : W a t er d e p t h + H a w s e p i p e h e i g h t f r o m s ea s u r f a c e ( m ) M : M i n i m u m R e q u i r ed C o n t a ct e d le n g t h o f t h e c h ain ( m) L : M i n i m u m R e q u i r ed L e n g t h o f A n c h o r C h ain ( m ) ( = S + M ) 5 Y : E xt e r n al f o r c e ( k g f ) H ( H o l d i n g P o w e r c r e a t e d b y An c ho r a n d An c ho r C h a i n) = H a + H c = λ a x W a ’ + λ c x W c ’ x M ̑ ̎

H : H o l d i ng p o w er c r e a t e d by A n c h o r a n d A n c h o r C h ain ( k g s ) H a : H o l d i ng p o w er by A n c h o r ( k g s ) Hc : H o l d i ng p o w er by A n c h o r C h a i n ( k g s ) ( R e s i s t a n c e of c a b l e ) W a : A n c h o r W e i g ht in A i r ( k g s ) W c : A n c h o r C h ain W e i g ht p er m in A i r ( k g s ) W a ’ : A n c h o r W e i g ht in W a t er ( k g s ) = . 8 7 x W a ( k g s ) W c ’ : A n c h o r C h ain W e i g ht p er m in W a t er ( k g s ) = . 8 7 x W c ( k g s ) M : M i n i m u m R e qu i r e d L e n g t h of A n c h o r C h ain ( m ) λ a : A n c h o r H o l d i ng F a ct o r λ c : A n c h o r C h ain H o l d i n g F a c t o r Е B " O D I P S ) P M E J O H ' B D U P S Е D " O D I P S $ I B J O ) P M E J O H ' BD U P S + * 4 " $ ̑ ̏ 5 Z Q F 4 B O E . V E % S B H HJ O H ̟ ̞ ̨ " $ ) P M E J O H % S BH H J O H ʙ 4 B O E . V E

C a l c u l a t i n g t h e C a t e n ary L e n g t h of an A n c h or C h a i n 5 Y 8 D ̨ ʹ ͈ 2 ʴ Z S : C a t en a r y l e n g t h a g a i n s t t h e e x t er n al f o r c e ( m ) Z : W a t er Dep t h + H a w s e p i p e h e i g ht f r o m s e a s ur f a c e ( m ) W c ’ : A n c h o r C h ain W e i g ht p er m i n W a t er ( k g s ) = . 8 7 x W c ( k g s ) T x : E x t ern al f o r c e ( k g f ) U n d er th e c o n d iti o n th a t L [M i n i m u m R e qu i r e d L e n g t h of A n c h or C h a i n ( S + l ) ] i s fi x e d a t a c e r t a i n l e v e l , i f T x [ Ex t e r n a l f o r ce (k g f ) ] i n c rea s e s, S [ C a te n a r y l e n gt h a g ai n s t t h e e x ter n a l f o r c e ( m) ] w i l l a l so i nc r e a s e . O n th e c o n t r a r y , h owe v e r , l [ M i n i m u m R e q u i re d C o n t a c t e d l e n g t h of t h e c h a i n ( m) ] d e c r e as es so t h a t H [ H o l d i n g p owe r c r e a t e d b y A n c h or a n d A n c h or C h a i n (k gs ) ] w i l l b e d i m i n i s h e d . ̑ ̐

ᶃ → ᶄ F r o m r i g h t t o l e f t . A n c h or c h a i n i s t i g h t c o n d iti o n ᶅ L e f t s i d e p o s iti o n . A n c h or c h a i n b e c o me re l a x e s . B i g g e s t I m p a c t F o r c e ᶆ ᶇ → ᶈ F r o m l e f t t o r i g h t . A n c h or c h a i n i s t i g h t c o n d iti o n ᶉ R i g h t s i d e p o s i ti o n . A n c h or c h a i n b e c o me re l a x e s . B i g g e s t I m p a c t F o r c e ᶊ In t h i s w a y , t h e s h i p ’ s c e n t e r of g r a v i t y i s m o v i n g i n a “ fi g ur e - o f - e i g h t ” p a tt ern as ill u s t r a t e d b y th e g re e n t r a c k i n t h e d i a g r am. ː 3. 5 H o r s i n g ( Y a w i n g a n d S w a y i n g ) M o t i o n a n d I m p a c t F o r c e ̑ ̑

̑ S h i p ’ s o p e ra t i o n a l s a f et y m ea s ure s f or a n cho r ag e a n d t h e i r e f f e c t s C o u n t e r m e as u re s I n c re a s e d r a u g h t b y t a ki n g i n b a ll as t w a t e r E f f e c t i v e n e s s S h i p ’ s w e i g h t i s i n c r e a s e d so t h a t v e s s e l ’ s m o t i o n s (H o r s i n g ) a r e d e c re a s e d . T h e p o i n t of a c t i o n s h i f t s a f t e r w a r d a n d t e n d s t o d e c r e ase t h e h o r s i n g m o t i o n . I n c re a s e s a n c h or c h a i n h o l d i n g f a c t o r . E x t e n d e d c a t e n a r y l e n g t h a b s or b s m o r e e x t er n a l f o r c e o n a n c h o r . R e mar k s C o n s i d er s t a b ili t y i s s u e s . T r i m b y t h e h e ad C o n s i d e r s t a b ili t y i ss u e s . M a i n t a i n p r o p e ll er i mm er s i o n . V e e r m o r e a n c h or c a b l e C o n s i d e r t h a t w e i g h i n g a n c h or i s d i f fi c u l t i n r o u g h s e a c o n d i t i o n s a n d m o r e t i m e w i l l b e r e q u ire d t o w e i g h t h e a nc h o r .

C o u n t e r m e as u re s D r o p t h e o t h er a n c h or E f f e c t i v e n e s s C an r e d u c e y a w i n g a n d h o r s i n g m o t i o n b y h a l f , a n d r e d u c e f o r c e o n a n c h or b y 30 % ʙ 40 % . R e mar k s C o n s i d e r am o un t of s e c o n d c a b l e r e q u i r e d i s o n e a n d a h a l f t i m e s t h e d e pt h of wa t e r . C o n s i d e r t h e p o ss i bi l i t y of f o ul i n g t h e c a b l e s , p a r ti c u l ar l y w h e n p i t c h i n g h e a v il y . D a n g er of f o u li n g an a n c h or i f t h e v e s s e l i s t u r n e d u n d e r t h e i nf l u e n c e of w i n d a n d / or t i d e . F r o m t h e o u t s e t of a n c h or i n g , t o d e p l oy b o t h a n c h o r s R i d i n g t o tw o a n c h o r s i s sa i d t o i n c re a s e h o l d i n g p o w er a n d t o d e c r e ase h o r s i n g m o t i o n . ̑ ̕

C o u n t e r m e as u re s Us e o f b o w th r u s t e r s E f f e c t i v e n e s s B y s t e mm i n g th e w i n d , t h i s c a n e f f e c t i v e l y r e d u c e t h e h o r s i n g m o t i o n a n d e ase c a b l e t e n s i o n . I f t h e p ow er of t h e b o w t h r u s t er i s 80 % o f t h e w i n d f o r ce o n t h e b o w , i t i s sa i d t h a t w i dt h of o s c ill a t i n g m o t i o n a n d i m p a c t f o r c e a r e d i m i n i s h e d b y a b o u t 4 %. R e mar k s T h e po s s ib i l i t y t h a t e x t e n d e d use of t h e b o w t h r u s t er s m a y n ot b e p oss i b l e f or t e c h n i c a l rea s o ns. E n s u r e t h a t th e b o w t h r u s t er s a r e k e p t s u b m e r g e d w h e n t h e s h i p i s p i t c h i n g a n d r o lli n g . ̒ ̌

C o u n t e r m e as u re s Us e o f t h e m a i n e n g i n e i n c o m b i n a ti o n w i t h s t e er i n g E f f e c t i v e n e s s T h i s c an b e an e f f e c t i v e d e t e r r e n t t o t h e h o r s i n g m o ti o n a n d w ill r e li e v e t h e t e n s i o n o n t h e a n c h or a n d c a b l e s y s t e m. R e mar k s D o n ot a ll o w t h e v e ss e l t o p a y -o f f s u d d e n l y w h e n t h e t e n s i o n o n t h e a n c h or c a b l e h as b ee n e as e d a s a s u dd e n i n c r ea se i n t e n s i o n m a y brea k - o ut t h e a n c h o r . D o n ot a ll o w t h e v e s s e l t o o v e rr i d e t h e a n c h o r , p a r ti c u l ar l y i n s h a ll o w w a t e r w h e r e t h e v e ss e l c o u l d i m p a c t o n t h e a n c h or i f p i t c h i n g . ̒ ̍

̒ ̎ =E x am p l e c a l c u l a t i o n o f t h e i n c r ea s e i n h o l d i n g p ow er w h en c a b l e i s v ee r ed = S h i p ’ s t y p e A n c h or W e i g h t i n A i r ( W a) : P C C l a d e n w i t h 6,00 u n i t s : 10 . 5 t o n ˰ 9 . 13 5t o n i n W a t er W a t er D e pt h + H a w s e p i p e h e i g h t f r o m s e a s u r f a c e ( y ) : 25 . m L e n g t h of o n e s h a c k l e of a n c h or c a b l e S h i p ’ s P r oje c t e d a r e a f r o m b o w a b o ve w a t e r li n e ( A) Wi n d pr e s s ur e f o r c e C o e f fi c i e n t ( C Ra ) : 27 . 5 m : 8 00 s q m : . 7 5 Ai r d e n s it y ( ρ ) : . 1 2 5 k g / s e c 2 / m 4 T h e a n c h or c a b l e i s a s s u m e d t o h a v e f or m e d a c a t e n a r y w i t h n o c a b l e l y i n g o n t h e g r o u nd . A n c h o r H o l d i n g F a c t o r ( λ a) : 7 . A n c h o r C h ain W e i g h t p e r m e t e r in Air ( W c ) : . 166 t o n / m ˰ . 14 4t o n i n W a t e r

A n c h or H o l d i n g P o w er = I m p a c t F o r c e ( e x t e r n a l f o r c e ) : 63 . 90 t o n f C a t e n a r y L e n g th ( S’) : 1 50 . 90 m ( 5 . 5 s h a ck l e s ) T h e c r iti c a l w i n d s p e e d c an b e c a l c u l a t e d f r o m t h e H u g h es F o rm u l a : 1 6 .9 m / s e c. T h e a v e r a g e w i n d s p e e d 11 . 3m / s e c ʙ 13 . 5m / s e c. T h e c r iti c a l w i n d s p e e d = A v e r a g e w i n d s p ee d x 1 . 2 5 ʙ 1 . 5 ˎ I m p a c t F o r c e ( e x t er n a l f o r c e) T h e Wi n d F o r c e f r o m a h e ad : 1 . 65 t o n f = Wi n d F o r c e f r o m a h e ad x 6 ̒ ̏

̒ ̐ ( S i t u a t i o n a f t er o n e a d d i t i o n a l s h a ck l e ( 2 7 . 5 m) of c a b l e i s v e e r e d ) A f t er a fu r t h er s h a ck l e of c a b l e i s v e e r e d , t h e c r i t i c a l w i n d s p e e d w ill b e i n c r e a s e d . O n l y p art of th e l o n g er c a b l e s y s t e m w ill l a y a l o n g th e g ro u n d w i t h th e r e m a i n d er f o rm i n g p art of a n e w c a t e n a r y . Y Z 8 B Y ЕB 8 D Y ЕD Y M 8 D ̨ ʢ ̼ ʵ ̻ ʣ ʹ ͈ 2 Y S ’ : C a t e n a ry L e n g t h b e f o r e o n e s h a c k l e i s v ee r e d 1 5 0.90 m ( 5 . 5 s h a ck l e s ) M : C o n t a c t e d l en g t h o f t h e c h a i n ( laid ov er t h e b o t t om ) 2 3 . 6 m A d d i t io n al N e w C a t e n a ry 3.9 m : T h e ho l d i n g p o w e r c r e a te d b y t h e a nc h or a n d c a bl e s y s te m = 67 . 3 t o n

= 17 . 3 m / s e c . = 11 . 5 m / s ec ʙ 13 . 8 m / s e c . I n c o m p a r i s o n w i t h t h e av e r ag e w i n d s p ee d b e f o r e o n e s h a ck l e of c a b l e i s v e e r e d, t h e r e a r e i n c r e a s e s of . 2 m / s e c ʙ . 3 m / s e c t o t h e c r i t i c a l w i n d s p ee d. I m p o r ta n t l y f or t ho se o n t h e b ri d g e , t h e c r i t i c a l w i n d s p ee d i s n o t i n c r e a s e d a s m u ch a s m i g h t b e e x p e c t e d e v e n i f t h e a n c hor c a b l e i s v ee r e d c on s i d e r a b l y . a f u ll l e n g th o f c a b l e ( 12 s h ac k l e s ) is v ee r e d ) T h e a v e r a g e w i n d s p e e d = 13 . 1m / s e c ʙ 15 . 7m / s e c. ̒ ̑ T h e w i n d f o r c e f r o m a h e ad = 1 1 . 2 3 t o n f . T h e c r iti c a l w i n d s p e e d T h e a v e r a g e w i n d s p e e d I n c r e a s e o f 1 . 8 m / s e c ʙ 2 . 2m / se c

T h e C r i t i c a l W i n d S p ee d W h il e l o o k i ng i n t o v a r i o u s r e f e r e n c e b o o k s , t h e r e is n o c o n c r e t e i n d i c a t i o n . R e a s o n s T h e h o l d i n g p ow er of e a c h v e s s e l ’ s a n c h or i s d e p e n d e n t up o n t h e c o n d iti o n of t h e g r o u n d i n t h e i mm e d i a t e v i c i n it y . T h e a c t u a l h o l d i n g p o w er m a y n ot a l w a y s c o n f o r m t o t h e t h e o r e t i c a l v a l u e o b t a i n e d b y c a l c u l a t i o n . C o n t i n u i n g c h a n g es i n t h e d i r e c t i o n of t h e a n c h or c a b l e a n d t h e a n g l e of a c t i o n o n t h e m oor i n g s y s t e m . T h e r e s u l t i s t h a t t h e a n c h or c a b l e m a y b e s u b je c t e d t o s h o c k s t re s s es as t h e c a b l e s a g s a n d t h e n ti g h t e n s . T h e h o r s i n g m o ti o n m a y n ot b e c o n s t a n t a n d t h e m o t i o n m a y e v e n b e a cc e l e r a t e d . A f t er t a k i ng i n t o c o n s i d e r at i o n all t h e f ac t o r s s et o u t a b o v e t h e s a f e a n d p r u d e n t d e ci s i o n m a y w e ll b e n o t t o a n c h o r . ̒ ̒

E m e r g e n c y m e a s u r e s t a k e n a n d t h e i r e f f e c t i v e n e s s a f t er d r a gg i ng a n c h o r ᶃ V e e r i n g an A dd iti o n a l c a b l e a n d u se of th e s e c o n d a n c h or A d d i n g c a b l e t o th e fi r s t a n c h or i s n o t s ee n as an e f f e c t i ve m e a n s of s t o p p i n g a s h i p f r o m b e i n g pr e ss e d a n d d r i f ti n g t o l e ew a rd . ᶄ Us e of b o w t h r u s t er T h e m i n i m u m t h r u s t e r p ow er m u s t b e e q u a l t o th e w i n d f o r c e o n t h e b o w . ᶅ Us e o f t h e ma i n e n g i n e a n d s t eer i n g T h e r e q u i re d p o w er of t h e ma i n e n g i n e ̒ ̓ S t ee ri n g : H a r d Ov e r Wi n d s p ee d : E n g i n e O r d e r 20 m / s e c : Sl o w A h e ad 25 m / s e c : H alf A h e ad 30 m / s e c : F u ll A h e ad

D i ff i c u l t y i n m a i n t a i n i n g m a n e u ve r a b i l i t y I t s h o u ld b e r e m e m b e r e d t h a t w h e n t h e p r o p e ll er is w o r k i ng t h e e f f e c t o f t h e b ow t h r u s t er w ill be d e c r e a s e d by a b o u t 2 % p er 1 k n o t o f a h e ad s p ee d . I n o t h er w o r d s , a t a b o u t 5 k n o t s , t h e e f f e c t o f t he b ow t h r u s t er is n e g a t e d . L i m i t a t i o n o f m a n e u v er i n g by r u d d er N u m b e r s e nt e r e d i n th e v er t i c a l a x i s a r e w i n d s p e e d p e r s h i p ’ s s p e e d a n d t h e w i n d f o r c e a n g l e i s e n t er e d a l o n g t h e h o r i z o nt a l a x i s . T h e y e l l o w z on e s h o w s t h e a r e a un d e r t h e cu r v e i n w h i c h t h e ef f e ct of t h e r u d d e r i s l os t . ม ਑ ෆՄೳ Ҭ W i nd S p e e d / S h i p ' s S p e e d ૬ର ෩ ޲ ֯ ʢ ౓ ʣ 3 F M B U J W F 8 J O E E J S F D U J O E F H V O J U T ̥ ̘ ̘ ɺ I E I ਫ ਂ 8 B U F S % F Q U I ม ਑ Մ ೳ Ҭ ෩ ଎ / ધ ଎ ൺ U n a b l e M a n e u v e r i ng A r e a M a n e u v e r i n g A r e a ม ਑ ૢ ધ ͷݶք - J N J U B U J P O P G . B O F V W F S J O H C Z 3 V E E F S Wi n d s p e e d of 20 m / s e c , t h e s h i p ’ s s p ee d w o u l d h a v e t o b e m o r e th an 5 k n o t s ( 2.5 m / s e c) ̒ ̔

P r e p a ra t i o n f or s a f e a n c h o r a g e T h e f o ll o w i n g c o n s i d e r a t i o n s m u s t b e t a k e n i n t o a c c o u n t : T o s e l e c t a s h e lt er e d g oo d a n c h o r a g e La n d c o n fi g u r a t i o n T h e b o t t o m c o n fi g u r a t i o n H o l d i n g g r o u n d i n g c o n d i ti o n An a p pr o p r i a t e d e p t h S u ff i c i e n t r oo m S h e l t e r e d f r o m s u c h an e x t e r n a l f o r c e as w i n d a n d s e a D e g r e e of c o n g e s t i o n of o t h er s h i p s a t a n c h o r a g e T o pre v e n t an a cc i d e n t i n t h e e v e n t t h a t t h e a n c h or d r a g s K ee p a sa f e d i s t a n c e f r o m o t h er s h i p s K ee p a sa f e d i s t a n c e f r o m s h a ll o w s / o t h e r f a c ili t i es ̒ ̕

R e c e n t ly t h e r e h as b een an i n c r ea s e in t h e nu m b e r of a c c i d e n t s i n v ol v i n g a n c h or c a b les b e c o m i n g e n t a n g l e d or a n c h o r s a n d c a b les b ei n g lo s t . T h e s e a cc i d e n t s h a v e m o s t ly b e e n c a u s e d b y m i s t a k es t h a t w e r e m a d e du ri n g t h e o p e r a t ion of l e t t i n g g o t h e a n c h o r . I n p ar t i c u la r , mo s t a cc i d e n t s h a v e b e en c a u s ed b y n ot c o n t r olli n g th e r un n i n g - o u t s p eed of th e a n c h or c a b le, th a t i s , w i th o u t b r a k i n g w h e n t h e a n c h or is l e t g o. T e s t r e s u l t s s h ow th a t t h e s p eed of a n c h or f r ee f all r ea c h es 1 m / s ec a f t er 5 m w h e n an a n c h or is l e t g o w i th o u t b r a k i n g . T h a t is t o s a y , 12 s h a c k l e s ( = 3 30 m) c o u ld t o t ally r u n o u t in 33 s e c o nd s . A c c o r d i ng t o i n v e st i g a t i on r e s u l ts, al t h o u g h m o s t m a r i n e r s i n v o l v e d in a n c h o r - r e l a t e d a cc i den t s s t a t e d t h a t t he b r a k e d id n o t w o rk w e l l , t h o r o u g h i n v e s t i g at io n s on s i t e h a v e e s t a b l i s h e d t h a t a bent b r a k e s h a f t a n d / o r la c k of m ai n t e n a n c e w e r e t h e c a u s e . T h e c r e w w e r e u n a b l e t o p r o p e r l y a p p l y t h e b r a k e . T o e n s u r e s a f e a n c h o r i n g , t h e v eer i n g r a t e m u s t be l i m i t e d t o a b r a k e f o r c e of 5 t o 6 m / s e c . A n c h or O p e r at i o n ̓ ̌

̓ ̍ I f t h e d ep t h a t an a n c h o r a g e e x c ee d s 20 m, t h e p o ss i b i li t y o f d a m a g e t o o r lo s s of t h e a n c h o r a n d i t s c a b l e be c ome s g r e a t er du e t o e x c e s s i v e r u n n i ng o ut s p ee d if t he a n c h o r i s al l o w e d t o f r ee f al l . T o a vo id t h i s h a z a r d , t h e a n c h o r s h o u ld b e l o w e r e d by w a l k i n g b a c k i n t o t h e w a t er u n t il t h e a n c h o r r e a c he s a b o ut 5 m a b o v e t h e b o tt o m . W he n l e t t i n g g o , t h e b r a k e s h o u l d b e a pp l i e d in o r der t o s l ow t h e v eer i ng r a t e un t i l t he l en g t h v ee r e d is a b o u t 2 m - 3 m m o r e t h an t h e w a t er d ep t h . T h is s h o u ld p r e v ent t h e c a b l e f r o m p i l i n g o n t o t h e a n c h o r . A f t er t h e a n c h o r t o u c h e s t h e b o tt o m, t h e s h i p ' s s t e r n w a y s h o u ld b e li m i t e d t o a b o u t 0.5 k - 1 k n o t in o r der t o a v oid i m p o s i n g e x c e s s i v e st r a i n o n t he c a b l e a n d al s o t o fu r t her a v oid p i li n g . T h e a i m is t o l a y t h e c a b l e a c r o s s t he g r o u n d in an o r d e r l y f a s h ion a n d w i t h o ut i m p o s i ng a n y e x c e s s i v e st r e s s on t h e s y s t em . (I d e a l l y , r e p e a t st r e t c h i n g , li t t l e by l i t t l e, e v ery t i me u n t il i t b e c o me s t a u t. )

An c h o r C a b l e V ee r in g R a t e ɾ S c o p e o f C a bl e T o B e P a i d O u t ɾ B r a k e F o r ce o f W i ndl a ss T he G r a p h o n t he n e x t p a g e s h o w s t he r e l at io n s h ip b e tw ee n b r a k e f o r c e, s c o p e of c a b l e a n d v eer i ng r a t e d e t erm i n e d d u r i n g t r i als on b oa r d a 2 3 0, 00 dwt V L C C w h e n a n c h o r a n d c a b l e a r e p a i d o u t u s i n g t h e b r a k e . D ur i ng t h e t r ial , t he c a b l e w as f i r s t r e l e a s e d w i t h h alf b r a k e a p p li ed . T he b r a k e w as a p p l i e d 3 s e c o n d s a f t er l e t t i n g g o t he a n c h o r a n d w as fu l l y a p p li e d a g ain a f t er a n o t h er 5 s e c o n d s in o r der t o st op v ee r i n g c o m p l e t e l y . A s c an b e s ee n , t h e l e n g t h of c a b l e v ee r e d t h is t i me is a b o u t 2 1 m . I f t h e a n c h o r is l et g o by f r ee f all a n d t h e v eer i n g r a t e e x c eed s 10 m / s e c , i t b e c o me s d i f f i c u l t t o a r r e s t t he c a b l e a n d t h e b r a k e l i n i ng m a y b e d a m a g e d . I f , h o we v e r , t h e v ee r i n g r a t e is l i m i t e d t o a b o u t 5 - 6 m / s ec by t h e t i me l y a p p l icat ion of h alf b r a k e, s u c h d a m a g e w ill be a v o i d e d . ̓ ̎

3 F T V M U P G 7 - $ $ " O D I P S J O H E x a m p l e s of en t a n g li ng ̓ ̏

T e c h n i c a l m e a s ur es w h il e l y i n g a t a n c h or E x t e r n a l f o r c e s ass o c i a t e d w it h w i n d s p e e d s a n d d i r e c ti o n s w a v e h e i g h t a n d p er i o d F l o w d i r e c t i o n a n d v e l o c i t y S h i p ’ s t y p e , H u ll d i m e n s i o n s , d r a u g h t , t r i m U n d e r s t a n d i n g t h e h o l d i n g p o w er of t h e a n c h or s y s t e m Q u a n t i t a t i v e as s e s s m e n t of w i n d p r e s s ur e f o r c es M a n a g e m e n t of t h e ma i n p r o p u l s i o n s y s t e ms P r e d i c ti o n a n d ear l y d e t e c t i o n of d r a g g i n g a n c h or U n d e r s t a n d f u ll y t h e r e l a t i o n s h i p b e t w e e n h o l d i n g p ow er a n d e x t er n a l f o r c es T o d e t e c t d r a g g i n g a n c h or b y o b s e r v i n g t h e h o r s i n g m o ti o n T o u s e t r a c k d i s p l a y f u n c ti o n of E C D I S ɾ R A D A R ɾ G PS ː 3 . 1 2 T e c h n i c a l M e a s u r e s f o r A n c ho r i n g ̓ ̐

ࢀߟ ɿ ߴ଎ધ ͷ F u ll S p ee d ߤ૸Լ ʹ ͓ ͚ Δ ճ಄ӡಈ ͱ ੍ޚ T a k i ng i n t o a c c o unt T ur n i n g M o t i o n in t h e e v ent t h a t a h i g h s p ee d v e ss e l ( c o n t ai n er s h ip o r P C C e t c . ) is o p e r at i n g a t f u ll - loa de d c a p a c i t y a n d a t f u ll s p ee d . F ail u r e as a r e s u l t o f r a p i d t ur n i n g d u r i n g o p e r at ion a t h i g h s p ee d F o r e x a m p l e, t h e f o l l o w i n g p r o b l em s m a y o cc ur w h e n a c o n t a i n er s h ip o p e r at i n g a t 2 2 k n o t s s t ee r s i t s r u d d er t o f u ll ( h a r d -ov er) . I f t h e m a i n e n g i n e is i n ov er - load ( t o r qu e r ic h ) a n d a l s o in M O o p e r at ion mo d e, m ain en g i n e r p m d e c r e a s e s t o g e t h er w i t h t h e s o u n d i ng of t h e S l ow D o w n ala r m . O u t er h ee l i n c r e a s e s d u e t o c en t r i f u g al f o r c e . B e c a u s e G o M of a c o n t ai n er s h i p is b e t w ee n 1. 2 a n d 1. 8 m e t e r s a t f u ll l oa d , o u t er h ee l i n c r e a s e s d ue t o r a p id r o t at io n , w h i c h m a y c a u s e a d a n g e r o u s s i t u at io n . So as n o t t o c a u s e t he a b o v e f a i l u r e, i t is a r eq u i r eme nt t h a t t h e v e s s e l n a v i g a t e a t a r e s t r i c t e d r a t e - o f - t ur n s pee d a t 5 - 1 d e g r ee s per m i n u t e ( 1 5 d e g r ee s per m i n u t e a t m a x . ) . ̓ ̑ R e f . ɿ V e ss e l T u r n i n g M o t i o n a n d C o nt r o l f or H i g h S p e e d v e s s e l s u n d er F u ll S p e e d c o n d iti o n s

Turning in Ci r cles A case study of the distaster which started the first international convention The Turning Chara c teri s tics of the SS T it a nic T a ct i c al dia m ete r 9 0° T r an s f er F ina l Dia m ete r Advan c e

PR E S E NT A TION OV E RVI EW What d o w e al r ead y know abou t Ti t anic' s tu r ning abil i t y ? Some tu r ning basics Develop i ng the model Ti t anic' s tu r ning ci r cle 1 4 Ap r il 1 91 2 a t 11:4 PM ATS The class i c scena r io does not h old up A f ai l e d port - aroun d maneuver? Was there a "ha r d - a - starboard " call?

What D o We Alr e ad y Kn o w? Titanic turned a full circl e of 385 ft measure d dia m e t e r at 20. 5 knot s during her se a trials off B elfast Lough . 1 Fo r w a r d tra v e l for the hard turn w a s repor t e d a t 210 fe e t . 1 ,3 A hard-a- sta r board (left full rudder ) order a t 21. 5 knots result s in a headi n g chang e of t w o poi n ts (2 2. 5 degrees) a fter 3 7 seconds . 2 A hard-a- sta r board (left full rudder ) turn a t 2 2 knot s w ould resu l t in a fo r w ar d m o v e m en t of abou t 44 y ard s ( 132 f t ) for a heading chang e of 2 po i nts . 3 ,4 S m al l change s of spee d do n ot sign i fican t ly chang e the dia m e t e r of the turning circle , just the time it ta ke s to turn a certai n a m ount . 5 R efe r e n ces: Eat o n & H aas , T ita n ic - T ri u m p h a n d T r a g e d y , Ch . 4 , 2 n d E d . E d w a rd W il d i ng , B riti s h I nqu iry ( B I 25292). E d w a rd W il d i n g a t R ya n Vs. Ocea n ic Steam N av i g at i o n Co . E d w a rd W il d i n g a t t h e N Y L i m itat io n o f L i a b il i ty H ea ri ng s . M r . Ro c h e ( M ari n e E ng i n ee r ’ s A ss o ciati on ) B riti s h I nqu iry p . 77 .

S om e T u rning Bas i cs T urning Cir c le - A ship ’ s t u rning ci r cle is t h e path f ol l o w ed by the ship ’ s pi v ot point w hen m aking a 360 de g ree turn. A d v ance - A d v ance i s th e a m ou n t o f d ist ance run on th e or ig in a l course until th e sh i p ste ad ie s on th e new cou rse. A d v ance i s m easured f rom th e po in t w here th e ru d d e r i s f i r st p u t o v e r . T r ansfer - T ran s f er i s th e a m ou n t o f d ist ance g a in e d to w ards th e new course (sho w n here f or 9 ° head i n g chan g e ). T actic a l Di a m eter - T actical d ia m e t e r i s th e d ist ance g a in e d to th e le f t or r ig h t o f th e or ig in a l course a f te r a tu r n o f 1 80 ° i s com pl et ed . Final Di a m eter - Final d ia m e t e r i s th e d ist ance perpe n d i cu l a r to t he or ig in a l course m easured f rom th e 180 ° po in t th rou g h 36 ° (sho w n here f or ste ady tu rning rad ius , R ) . Pi v ot Point - A ship ’ s pi v ot point is a point on t h e cente rl i n e a b o u t w hic h the ship tu rn s w h e n the ru d d e r is pu t o v e r . Drif t A ngle - D r i f t an g l e i s an an g l e a t any p o in t on th e tu rning ci r cle bet w een th e in te rsect io n o f th e ta n g en t a t t h at point and t h e ship ’ s keel l i ne. R eferenc e : ht t p://we b . n p s. n a v y . m il /~m e / t ss e /T S4 01 / s u p po r t / 1 - 11 - 1 . p df

F o r c e s Act i ng on Titanic's Ru d der 2 2 knot s H a r d O v e r 4 ° F o rc e on rud d e r  21 x A R V 2  R ( n e w t o ns) * A R is t h e ru d d e r are a in sq u ar e meters  R is t h e rud d e r an g le in de g rees V is v eloci t y of t h e shi p in met er s per second A re a of T ita n ic ' s rud d e r by Simpso n 's rule* * = 401. 7 f t 2 = 3 7. 3 m 2  R = 40° hard o v er V= 2 kn o t s = 10. 3 meters/sec F o rc e = 3,324,00 ne w t o ns = 33 4 long t o ns Rud der pressure = 0.8 3 t o ns/sq -ft * Equation i s f o r a s pad e s hape d rudde r . h tt p : / / ww w .s na m e . o r g /N A M E/ p ro b le m 7 . pdf ** h tt p :/ / ww w . en c y c lopedi a - t i t a n i c a . o r g / a r t i c le s / r u d de r _ w ee k s. p d f spade shapp e d rudder

Th e sh i p tu rn s b ec au s e o f h y d ro d y n ami c fo r c e s on th e hu l l , no t th e fo r c e acti n g o n th e ru dd e r . dire ct io n o f w a t e r f low dire ct io n o f s hi p m o v e m ent dire ct io n o f w a t e r f low dire ct io n o f w a t e r f low ru dde r f orce d e v e l op i n g t u rn - bu il d - u p o f hu ll f o r ces hul l f or ce rudder f or ce Dr a g a n d p ro p u l sive forc e s n o t sh o w n. dire ct io n o f w a t e r f low dire ct io n o f s hi p m o v e m ent dire ct io n o f w a t e r f low dire ct io n o f s hi p m o v e m ent dire ct io n o f w a t e r f low st r a ig h t ap p roa c h sta rt o f t u rn - h e lm pu s h e d o v er

Th e spee d o f a s hip in a tu r n w i ll d ec r ea s e du e to inc r ea s ed r e sistance. 4.53 Fo r T ita n ic : C B = . 684 T urnin g dia m e t e r = 385 ft Ship lengt h = 85 ft Approach s pee d 3 8 ft/s e c (22.5 k no ts) T urnin g dia m e t e r - t o - l e ng t h rat i o = 4 . 53 St ead y t urnin g s pee d- t o - a p p r o a ch s pee d rat i o = . 7 7 from abo v e Stea d y t u r n i n g s p ee d f o r T ita n ic = . 7 6 X approac h s pee d = 28 .9 ft/s e c ( 17 .1 k no ts ) A stead y t u rnin g rat e a t 1 7 kn o ts u n der hard helm f o r t h e fi n al dia m ete r of t u r n w orks o u t to a stead y sta t e t u rnin g rat e of 0.8 6 de g rees per secon d . R eferenc e : ht t p://we b . n p s. n a v y . m il /~m e / t ss e /T S4 01 / s u p po r t / 1- 11 - 1 . p df . 76

Wh a t Else D o We Know Abou t How a Ship Turns? T h e ship w ill he e l to w a r d the o utside of a turn. G = c ente r o f gra v i ty B = c en t e r o f bou y an cy GM = m e t a c en t e r height Bou y an cy f or ce = Weig h t o f s hi p ( W ) W  L = W  GM s in  = F C  H F C = W /g  v 2 /R T a k ing: H = 18 .6 ft GM = 2 .6 ft * W = 48 , 30 t on s * v = 2 9 ft/s e c i n t urn R = 19 2 5 ft  = 5 .4° h ee l a ng le f o r h a r d - o ve r f u ll s p ee d t u rn G B' w e i g h t of ship W bou y a n c y f o r ce w a t e r l i n e heelin g momen t arm H h y d r o d y n am ic hu ll f o r ce e qu a ls ce n tr e p it a l f o r c e F C right in g m o m en t ar m L Look i n g f or w ar d from a st ern durin g a t ur n to port (ex agge r a t e d v iew)  M B * B ed f o rd & H acke tt paper

An g le of He e l De v elopmen t Over Time Estimated an g le of heel f o r T ita n ic in a f u ll -spee d maximu m t u r n is 5. 4 ° t y pi c a l angl e- o f - h ee l de v elop m ent st ead y hee l angle Ad a pte d fro m : ht t p: / /w eb . n p s . n a v y .m il /~m e /t s s e / T S 4 1 / s u p p or t/ 1 - 11 - 1 . p d f

Wh a t Else D o We Know Abou t How a Ship Turns? F o r T itanic w ith 4 ° rud d e r d efle c ti o n: D rift - an gle rea ch e s ~ 8 ° an d th e head i n g cha ng e s a t 0.8 6 ° /sec in 3 r d ph as e .  st ead y -st a t e = 8 °  max = 40 ° Phases in a T urn 1 . Rudd e r t h r o w n . Ad a pte d fro m : ht t p: / /w eb . n p s . n a v y .m il /~m e /t s s e / T S 4 1 / s u p p or t/ 1 - 11 - 1 . p d f r s te ad y - s tate = . 8 6°/ s e c o n d 2 . S h ip sk i d s a n d d rifts ou t w hil e hu ll f o r ce s bu ild a n d sta rts to t u rn s h i p . 3 . A ll f o r ce s b a l a n ce ou t a n d s h ip sta y s in stea d y t u r n .

Det e rmining Pivot P o ints an d Dri f t Angles Th e d rift a ng le in d e g r ee s ca n b e taken a s β = 1 8 L /R (in d e g r ees ). Fo r T ita n i c , β = 7 . 9 5  8 ° . Th e l o cat i o n o f t h e p i v o t po i n t is X = R s i n β a h ea d o f t h e ce n ter o f g r a v ity o f t h e s h i p . Fo r T ita n i c , X = 26 6 ft a h ea d o f bu l k h ea d H , o r a bou t 15 9 feet b ac k fr o m t h e bo w (a pp . 1 /6 th s h i p l e ng t h ) und e r t h e f o r w a rd w e l l d eck. R e f eren c e : h tt p : / / w e b . np s. n a v y . m il / ~m e /tss e / T S 4 1 / s u p p or t/ 1 - 1 1 - 1 . pdf Path o f C G o f s h ip in t h e t u rn D rift a ng le  H ea d i n g a ng le  V e l o c ity v ect o r C e n ter o f t u rn D ir ect i o n o f s h ip m o v eme n t  =    Pi v o t po i n t C e n ter o f Gr a v ity ( C G) Stea d y t u r n i n g r a d i u s R 192 5 ft s h ip l e ng th L 85 ft B P X

Pivot P o int an d Drif t A n gle for the Titanic

Wh a t Ca n We Le a rn From Zi g - Zag M a neu v e r s? R eferenc e : ht t p://we b . n p s. n a v y . m il /~m e / t ss e /T S4 01 / s u p po r t / 1 - 11 - 1 . p df R es pon s e c u r v e f o r s h ip st udd i e d s ho w s a h ea d i n g c h a ng e o f 20 ° in 3 4 sec ond s fr o m t=0 b ef o re h e lm s h ifted to oppo s ite side. T r ack s c l o se ly a h ea d i n g c h a ng e o f 2 po i n ts in 3 7 sec ond s see n o n Ol ym p ic f o r a "h a r d - asta r b o a r d " h el m o r d e r w h e n r unn i n g a t 21 .5 k no ts. Stea d y t u rn r at e f o r t h is s h ip is 5 ° p er m i nu te (0. 8 3 ° p er sec ond ). Th is is a bou t t h e same t u r n i n g r at e f o r t h e T ita n ic in t h e stea d y t u rn ph as e und e r f u ll h e l m. W e ca n use t he d y na m ics o f f t h es e cur v e s to mo del t h e t u rning characteristic s of t h e T ita n ic f o r se v era l t y pes of t u rnin g maneu v ers. 3 4 sec 20 ° stea d y t u rn r at e o f 5 0° p e r m in °

S p r e a d S h e e t Anal y sis ... ... . . . s pee d ( k no t s ) s pee d ( f t/ s e c ) i n c r e m en t a l d i s t an c e i n 7 . 5 s e c pe r c en t m a x 22 . 5 38 285 100% i n i t i a l 21 . 3 36 270 95% 19 . 5 33 248 87% 18 . 4 31 233 82% 17 29 218 76% i n f u l l t u r n T i m e ( s e c ) r udde r ang l e ( deg ) h ea d i ng ( d e g) de l t a head i n g ang l e d r i f t ang l e ( deg ) c ou r s e ang l e ( deg ) X po s i t i o n ( f t ) Y po s i t i o n ( f t ) - 1 5 . 570 - 7 . 5 . 285 . 7 . 5 - 4 - 2 . -2 -2 - 28 5 15 - 4 - 5 . -3 -5 - 55 5 22 . 5 - 4 - 11 . -6 -6 -5 - 80 2 - 2 2 30 - 4 - 17 . 5 - 6 . 4 7 -8 - 9 . 4 7 - 103 2 - 6 37 . 5 - 4 - 23 . 9 - 6 . 4 7 -8 - 15 . 9 4 - 124 2 - 12 45 - 4 - 30 . 4 - 6 . 4 7 -8 - 22 . 4 1 - 144 3 - 20 3 52 . 5 - 4 - 36 . 9 - 6 . 4 7 -8 - 28 . 8 8 - 163 4 - 30 8 60 - 4 - 43 . 4 - 6 . 4 7 -8 - 35 . 3 5 - 181 2 - 43 4 67 . 5 - 4 - 49 . 8 - 6 . 4 7 -8 - 41 . 8 2 - 197 4 - 58 75 - 4 - 56 . 3 - 6 . 4 7 -8 - 48 . 2 9 - 211 9 - 74 2 82 . 5 - 4 - 62 . 8 - 6 . 4 7 -8 - 54 . 7 6 - 224 5 - 92 90 - 4 - 69 . 2 - 6 . 4 7 -8 - 61 . 2 3 - 235 - 111 2 97 . 5 - 4 - 75 . 7 - 6 . 4 7 -8 - 67 . 7 - 243 3 - 131 3 105 - 4 - 82 . 2 - 6 . 4 7 -8 - 74 . 1 7 - 249 2 - 152 3 112 . 5 - 4 - 88 . 6 - 6 . 4 7 -8 - 80 . 6 4 - 252 8 - 173 8 120 - 4 - 95 . 1 - 6 . 4 7 -8 - 87 . 1 1 - 253 9 - 195 6 127 . 5 - 4 - 101 . 6 - 6 . 4 7 -8 - 93 . 5 8 - 252 5 - 217 3 135 - 4 - 108 . 1 - 6 . 4 7 -8 - 100 . 5 - 248 7 - 238 8 420 - 4 - 353 . 9 - 6 . 4 7 -8 - 345 . 9 1 - 24 2 - 4 7 427 . 5 - 4 - 360 . 4 - 6 . 4 7 -8 - 352 . 3 8 - 45 8 - 1 8 435 - 4 - 366 . 9 - 6 . 4 7 -8 - 358 . 8 5 - 67 6 - 1 4

Titanic's T u rning Cir cle Mo d e l Results

Titanic's T u rning Cir cle With S h i p Prof i les O v erla i n A d v ance 2540 ft 90 ° T r ansfer 1740 ft T actic a l dia m eter 3880 ft Final Di a m eter 3860 ft

1 1 : 4 PM on 1 4 Apri l 1 9 1 2 What the Britis h I n qu i r y S aid Report on the Loss of the SS T i t anic 30th day of Jul y , 1912 The s h ip appea r s to h ave r u n o n , on t h e s ame co u r s e, u n til, at a l ittle before 1 1.40, one of the look-outs in the crow ’ s nest str u ck th r ee blows on the go n g, w h i c h was the ac c ep t ed war n ing for something ahead, fol l owing this i m m e dia t e l y aft e rwa r ds by a t e l e pho n e m e s s age to the b r idge “Iceberg rig h t ahead.” Al m ost simultaneou s ly wi t h the th r ee gong signal M r . M u rdoch, the o f fi c er of the watch, gave the o r der “Har d -a- starboa r d,” and i m m e dia t e l y t e l e grap h ed down to the engine r oom “ S top. F u ll speed astern.” The helm was already “ h ard o v e r ,” and the s h ip ’ s head h ad fal l en o f f about two points to port, w h en s h e co l l i ded wi t h an i c eb e rg we l l forwa r d on her starboa r d side.

1 1 : 4 PM on 1 4 Apri l 1 9 1 2 Concl u si o n of the Britis h I n qu i ry Report on the Loss of the SS T i t anic 30th day of Jul y , 1912 F r om the e v ide n ce given it appea r s that the “ T ita n i c ” h ad t u r n ed abo u t two poi n ts to port before the coll i sion oc c u r re d . From v ario u s e xperi m ents s u bsequently made wi t h the S .S. “ O l y mp i c , ” a sister s h ip to the “ T i t anic , ” it was fou n d that travel l ing at the same r ate as the “ T i t anic , ” about 37 seconds wo u ld be req u ired for the s hip t o change her c ou r se to this ex t ent aft e r the h e l m h ad be e n put har d -a-starboa r d. In this t i m e the s hip would travel abo u t 466 yards, a n d al l owing for the few seconds that wo u ld be nec e s s ary for the order to be gi v en, it may be as s umed that 500 yards was about the distance at w h i c h the i c eb e rg was sighted e i ther from the b r idge or c row ’ s nest.

What Abou t the Engines Stopping or R e v e r sing? T r i mm er T h o m as D il lo n: "They st o pped . . . abo u t a m inute and a ha l f [ a fter the c o llisi o n ] . They [then] w ent slow astern . . . about a m inute and a half [later f o r] about t w o m inutes . " G re a ser T h o m a s Range r : " W e turned r ound and loo k ed into the eng i ne r oom and saw the turbine engine w as st o pped . . . T h e re a re t w o a r m s [t hat ] c o m e u p a s t h e t u r b i n e e ng i n e st op s ... [that w as] about t w o m inutes after w a rds. . .[ a f t er the ja r .]" 1st Class P assenger Henry Sten g el: " A s I w o k e up I heard a s l ight cr a sh. I pa i d no attent i o n to it until I heard the eng i nes st o p. . .[They w e r e st o pped] I sh o uld say t w o or th r ee m inutes, and then they st a rted again just sligh t l y ; just st a rted to m ove again. I do not k now w hy; w hether they w e r e bac k ing off, or not." 1st Class P assenger G e o rge Rhei m s: "I did not notice that the engines w e r e st o pped right a w ay; they w e r e not stopp e d right a w a y ; of that I am p ositive. [I felt a chan g e w ith r efe r ence to the eng i nes] a few m inutes after the shoc k , possib l y t w o or th r ee m inutes; m ight have been le s s." 2nd Class P assenger L awrence Bee s ley: "The r e ca m e w hat see m ed to m e nothing m o r e than an e x tra heave of the eng i nes and a m o r e than usually obvio u s dancing m otion of the m att r e s s. . . and p r e s ently the s a m e thing r epe a ted w ith about the sa m e inten s it y . . .I c o ntinued m y r e a ding. . .But in a few m o m ents I fe l t the engines slow and st o p." T h e e n g i n e s d i d not stop nor r e v e r s e u ntil som e sh o rt a m o unt of time afte r th e s h i p s truck the ic eberg.

A p pl y ing the Mo d el The turning mode l ca n be used to anal y ze se v eral scenari os i n cl u d i ng: The c l assi c "har d-a- starbo a rd " maneu v e r . A n a tte mpte d "por t - around " maneu v e r . A dela y e d "har d-a-port" maneu v e r .

We Also Ne e d A T y pical Ice berg Passen g er H enry Stengel: "I noticed, a very large one, w hich loo k ed s o m ething li k e the Rock of G ibralta r ." AB Sea m an Jose p h Scarrott: "It r ese m bled the Rock of G ibraltar loo k ing at it f r om Eu r opa Poin t ." QM Olliver: "The iceberg w as about the height of the boat dec k ; if anything, just a li t tle highe r . It w as al m ost alongside of the boat, si r . The top did not touch the side of the boat, but it w as al m ost alongside of the boat . " 2 5 f t v isi b le portion a ll o w in g f or under w a te r con to ur M odel f or a 2 di m en t ional plot

T h e "Hard -a- Starb o a r d" Scena r io 7. 5 S econ d I n cre m ent s S h o w n on a 500 ' X 500 ' Gr i d

What D o t he T u rning Mo d e l Resul t s Sa y ? A turn of " h a r d - a - st a rboard " 3 7 s e con d s before col l isio n w i th no oth e r cor r e cti v e a ctio n w o u l d ha v e l i k ely prod uce s e v e r e dam age along the entir e st a rboard side.

Rea l ity an d Co n tr adi ction QM HICHENS A T THE AMER I C A N I N QUI R Y QM H i chens: "T h e sixth offic e r r epeated the orde r , "T h e helm is hard astarboard, si r ." B u t, d u r i ng the tim e , s h e w as c r u s hi n g the i c e, or w e could hear the g r i n d ing n oise alo n g the s h ip's b ottom. I heard t h e te l egra p h r i n g, si r ." QM HICHEN S ' FIR S T RE S P O N S E A T THE B R IT I SH I N QUI R Y 951. Had y ou time to get the h e l m hard a starboard befo r e s h e struck? - [QM Hi c h en s ] N o , sh e w as c r a sh ing t h en. QM HICHEN S ' CONT R A D I C TION 957. Befo r e t h e vessel s truck had y ou had time to get the w heel r i ght ove r ? - [QM H i chens] T h e w heel w as over then, hard ove r . 958. (The Commis s ione r .) Befo r e s h e struck? - Oh y es, hard over befo r e s h e struck.

S om e Rea l ity Chec k s QM Alfred Oll i v e r: " I know the ord e rs I hea r d w hen I w as on the bridge w as aft e r w e had stru c k the i c eb e r g . I he a rd h a r d aport, and th e r e w as the man at the w heel and the offi c e r . The offi c er w as seeing it w as ca r r i ed out r ight." AB Sea m an Joseph Scarrott: " Un d er port helm. Her stern w as sle w ing off the i c eb e r g . Her starboard quart e r w as go i ng off the iceb e r g , and the starboard bow w as go i ng as i f to make a ci r c l e r ound it . " Fireman Alfred S hier s : " I saw the be r g that w as go i ng a w a y . . . on the starboard quart e r , off the stern."

S om e Rea l ity Chec k s Was the Ice b er g Real l y Dea d Ahead? T h is sketc h (s h o w n here w ith in v erte d colors ) w a s dra w n by L o ok o ut Frederick Fleet to show h o w t h e b er g ap p eared w hen first sigh ti n g . Not ice h o w he placed t h e berg sligh t l y o f f t h e starboar d b o w of t h e ship , n o t dead ahead of he r . Fleet occ u pied t h e p o r t si d e of cro w ' s n es t w hile Lee had t h e starboar d side. Despit e w hat he t o ld Senat o r Smit h , t h is v iew ma y explain a n ap p aren t delay in ge t ti n g a n i mmed ia t e resp o n s e fr o m t h e brid g e w hen t h e 3 bell w arnin g w a s gi v en. Se n at o r S M I TH . Th e y s w un g t h e s h i p 's bo w a w a y fr o m t h e ob j ect? M r . FL EE T . Y es ; b eca u s e w e w e re mak i n g st r a i gh t f o r it.

Time From 3 - Bel l L o okout Wa r ning to Colli sion Lo o kout Fre d rick Fleet: "I saw this black thing loo m ing up; I didn’t k now w hat it w as. I as k ed Lee if he k new w hat it w as. H e couldn’t s a y . I thou g ht I bet t er ring the bell. I rang it th r ee ti m es." [Interview w ith Leslie Reade] QM R o bert H ichens: " [ The first notice that the r e w as s o m ething ahead w as] th r ee gongs f r om the c r o w 's - nest, Si r . . . W ell, as near as I can t ell you, [it w as] about half a m inu t e [ b e f o r e t h e order ca m e ' H ar d - astarboard'] . " [British Inquiry 96 9 - 973] QM Alfred Olliver: "When I w as doing t his bit of duty I heard th r ee bells rung up in the c r o w 's nest, w hich I k new t hat it w as s o m ething ahead...When I heard t he r eport, I loo k ed, but could not see anything, and I le f t that and ca m e w as just entering on t he bridge just as the sh o ck ca m e." [ A m eri c an Inquiry] IT T A KE S A B O U T 4 5 SE C O ND S ON A VE R A G E T O W A LK FR O M THE S T A N D A RD C O M P A SS PL A T F O R M T O THE BRID G E N O T C O UNTING RE A CTI O N TIME. T ime from 3- bell l o o kou t w a r n i n g to c o l l i sion w o u l d be ab out 50 - 60 s e con d s ba s ed o n QM O l l i v e r's r e p o rt e d a ctions. Ic eberg sp o tted som e shor t time e a r l i e r by Fred e ric k F l e et. W e r e a l ly d o n 't kno w w hat time Murd o ch first spotted the ic eberg.

Mo d el i ng a " P o r t - a r o u n d " Maneuv er

Mo d el i ng a " P o r t - a r o u n d " Maneuv er 92 f t 882 f t OA Sett in g t h e headin g angle. 26 . 2 5 - 4 - 16 . - 5 - 7 . - 9 - 93 1 - 5 T i m e ( s e c ) r udde r ang l e ( deg ) h ea d i ng ( d e g) de l t a head i n g ang l e d r i f t ang l e ( deg ) c ou r s e ang l e ( deg ) X po s i t i o n ( f t ) Y po s i t i o n ( f t ) - 1 5 . . 570 . . 3 . 7 5 - 13 . 3 - . 5 - . 5 - . 5 - 14 3 7 . 5 - 26 . 7 - 2 . - 1 . 5 - 2 . - 28 5 11 . 2 5 - 4 - 3 . 6 - 1 . 6 - 3 . 3 - . 3 - 42 4 -1 15 - 4 - 5 . 5 - 1 . 9 - 4 . 5 -1 - 55 9 -3 18 . 7 5 - 4 - 8 . - 2 . 5 - 5 . 5 - 2 . 5 - 68 9 -9 22 . 5 - 4 - 11 . -3 - 6 . -5 - 81 2 - 2 30 - 26 . 7 - 19 . -3 - 6 . - 1 3 - 104 4 - 8 33 . 7 5 - 13 . 3 - 22 . -3 - 4 . 5 - 17 . 5 - 115 2 - 13 9 37 . 5 - 22 . 5 - . 5 - 3 . - 19 . 5 - 125 4 - 17 5 41 . 2 5 13 . 3 - 22 . 5 - 2 . - 20 . 5 - 135 7 - 21 4 45 26 . 7 - 22 . . 5 - 1 . - 2 1 - 145 8 - 25 3 48 . 7 5 40 - 21 . 5 . 5 . - 21 . 5 - 156 - 29 3 52 . 5 40 - 19 . 5 2 1 . - 20 . 5 - 166 2 - 33 1 56 . 2 5 40 - 17 . 2 2 . 3 2 . - 19 . 2 - 176 5 - 36 7 60 40 - 14 . 5 2 . 7 3 . - 17 . 5 - 186 9 - 39 9 63 . 7 5 40 - 11 . 6 2 . 9 4 . 5 - 16 . 1 - 197 3 - 43 67 . 5 40 - 8 . 4 3 . 2 5 6 . - 14 . 3 5 - 207 9 - 45 7 71 . 2 5 40 - 5 . 1 3 . 2 5 7 . - 12 . 1 - 218 6 - 47 9 75 40 - 1 . 9 3 . 2 5 8 . - 9 . 8 5 - 229 3 - 49 8

" P or t- a r o u n d " Scena r io — Did It Happe n Like This? 3.7 5 S econ d I n cre m ent s S h o w n on 250 ' X 250 ' gr i d

SU M MARY AN D CO N CL U SIONS A turning mode l w a s de v elope d f or SS Titanic based on repor t e d obser v a tions of Titanic an d Oly m pic an d gener i c ship maneu v erin g chara c te ris t ics Model appl i e d to a sprea d shee t for anal y sis m od e l us e s r e a li s tic pa rame t e r s s uch a s sp ee d r e du c tion in a tu rn an d drift an gle data g i v e s he a d i ng ang l e , cours e a n gle, an d X - Y co o rdi n at e s a s fun ction of time r e sult s allow for an i m atio n anal y sis The class i c co l l i si o n w he r e the sh i p si d e s w i p e s a n ice b er g 37 second s foll o w ing a "har d-a - sta r board" order does not ho l d up. Se v era l a lternat i v e scen a rio s ha v e been considered a p o rt - a r o u nd t y pe of m an e u v er a d e la y e d ha r d - a - po r t only m a neu v e r The m odel ca n be easil y ex t ende d to look a t other scen a rios
Tags