() ()
() N1,3810101081,1102010F
Pa1081,1pm81,1
20
5,1210
10
10p
s
m
5,12
108
01,0
A
Q
v
g2
vvpp
z
p
g2
v
z
p
g2
v
Pa10110p
HpH
p
Hz
p
g2
v
z
p
g2
v
AApApFFAApAp)b
4444
4
G
22
4
4
G
4
G
G
2
G
2
44G
G
G
2
G
4
4
2
4
44
4
6,4p46,4p
4
6,4p6
6
2
6
4
4
2
4
HpGp4HpGp4
=×××−−××=
×−=→−=
−
+=
γ
=
×
==
−
+
γ
=
γ
→+
γ
+=+
γ
+
=×=
γ=→=
γ
→++
γ
+=+
γ
+
−−=→+−=
−−
−
Exercício 4.12
() ()
()
kW4,410
7,0
2002,17,12QH
N
m200
7,12
7341806pp
H
Pa18062,1427,122,142pm2,142100
20
5,730p
H
g2
vvp
Hz
p
g2
v
z
p
g2
v
Pa7348,577,128,57pm8,57100
20
5,730p
s
m
5,7
4,04,0
2,1
A
Q
v
s
m
2,12,02,030AvQ
H
g2
vvp
Hz
p
g2
v
z
p
g2
v
3
v
v
v
01
v
1
22
1
A,1p
2
1
2
A1
A,1pA
A
2
A
1
1
2
1
0
22
0
0
0
3
AA
0,Ap
2
0
2
A0
0,Ap0
0
2
0
A
A
2
A
=×
××
=
η
γ
=
=
−−
=
γ
−
=
=×=×γ=⇒=+
−
=
γ
+
−
=
γ
⇒++
γ
+=+
γ
+
−=−×=−×γ=⇒−=−
−
=
γ
=
×
==⇒=××==
−
−
=
γ
⇒++
γ
+=+
γ
+
−
Exercício 4.13
() () Pa108,810102,18,0hpp
phhp:amanométricEquação
pp
g2vv
z
p
g2
v
z
p
g2
v
)a
445
F54
5F4
542
4
2
5
5
5
2
5
4
4
2
4
×=−×=γ−γ=−
=γ−γ+
γ
−
=−
+
γ
+=+
γ
+
176
10
108,8
20vv
4
4
2
4
2
5
=
×
×=−