Analyze Problem
GeneralapplicationofMachineelement
TRANSMISSIONS SYSTEM
Transmissionis a mechanism intended to transmit power from the prime mover (an
engine or a motor) to the driven machine.
Analyze Problem
GeneralapplicationofMachineelement
CLASSIFICATION OF TRANSMISSIONS
Transmissionbyfriction:apowertransmissionsystemutilizingasetoffrictiongearsso
arrangedthatvaryingtheirpositionsrelativetooneanothergivesawiderangeofspeed
ratios.
Africtiondriveorfrictionengineisatypeoftransmissionthatutilizestwowheelsinthetransmission
totransferpowerfromtheenginetothedrivingwheels.Thesystemisinherentlyacontinuously
variabletransmission;byadjustingthepositionsofthetwodisks,theoutputratiochanges
continuously.
GeneralapplicationofMachineelement
CLASSIFICATION OF TRANSMISSIONS
Forexample,inamanualtransmissionsystemforavehicle,engagementreferstothe
connectionofgearswhenthedriverselectsaspecificgearusingthegearshifter.This
engagementallowspowertobetransmittedfromtheenginetothewheels,determiningthe
speedanddirectionofthevehicle.
GeneralapplicationofMachineelement
CLASSIFICATION OF TRANSMISSIONS
Theefficiencyandeffectivenessofatransmissionsystemwithdirectcontactdependon
thedesign,materials,andlubricationusedtominimizewearandensuresmoothoperation.
Itcontrastswithsystemsthatuseindirectmethodslikefluidcouplingsor
electromechanicalsystemswherethereisnodirectphysicalcontactbetweentransmission
components.
GeneralapplicationofMachineelement
CLASSIFICATION OF TRANSMISSIONS
Transmissionbyflexibleconnectiontypicallyreferstoamethodoftransferringpoweror
motionbetweentwocomponentsusingflexibleelements.Unlikerigidconnections,
flexibleconnectionsallowforsomedegreeofmovement,misalignment,orvibration
isolation.Therearevarioustypesofflexibleconnections,eachsuitablefordifferent
applications.Somecommonexamplesinclude:
Fastenings These type of machine elements include nuts and bolts, screw, cotters, keys,
couplings, pins, revettes are used for holding the components.
MachineElementDesign
Classification of Engineering Materials
Density:
Metals:Generallyhavehighdensities.
Nonmetals:Generallyhavelowerdensitiescomparedtometals.
The metals may be further classified as:
(a)Ferrous metals, and (b) Non-ferrous metals.
The primary distinction between ferrous metals and nonferrous metals lies in the presence of
iron.Here are the key differences between ferrous metals and nonferrous metals:
Composition:
FerrousMetals:Containironasasignificantcomponent.Commonexamplesincludeiron,
steel,andcastiron.Stainlesssteel,whichcontainsironbutalsoincludeschromiumand
nickel,isalsoconsideredferrous.
NonferrousMetals:Donotcontainironasamajorcomponent.Examplesincludealuminum,
copper,lead,zinc,andpreciousmetalssuchasgoldandsilver.
MachineElementDesign
Calculation of loads applied on machine part.
MachineElementDesign
Calculation of loads applied on machine part.
Hooke'sLawisafundamentalprincipleinphysicsandmaterialssciencethatdescribes
thebehaviorofelasticmaterials,particularlyinthecontextofstretchingor
compressing.Thelawisnamedafterthe17th-centuryEnglishscientistRobertHooke,
whofirstformulatedit.
MachineElementDesign
Calculation of loads applied on machine part.
Hooke'sLawisafundamentalprincipleinphysicsandmaterialssciencethatdescribes
thebehaviorofelasticmaterials,particularlyinthecontextofstretchingor
compressing.Thelawisnamedafterthe17th-centuryEnglishscientistRobertHooke,
whofirstformulatedit.Hooke'sLawcanbestatedmathematicallyas:
F=−k⋅ΔL
Hooke'sLawiscommonlyappliedtothebehaviorofspringsandelasticmaterials,butit
alsoservesasastartingpointforunderstandingthemechanicalpropertiesofmaterialsin
general.ItisimportanttonotethatHooke'sLawhaslimitationsandmaynotaccurately
describethebehaviorofmaterialsunderextremeconditionsorbeyondtheirelasticlimits.
MachineElementDesign
Application of machine parts
DESIGNOFPOWERSCREW
Powerscrewisamechanicaldeviceusedtoconvertrotarymotionintolinearmotioninorder
totransmitpower.Powerscrewsareusedtoobtainhighmechanicaladvantage.Unlike
thethreadedfastenerswhichareusedtoclampthemachinemembers,powerscrews
areusedtotransmitpower.
Apowerscrewisamechanicaldevicethatconvertsrotarymotionintolinearmotionandvice
versa.Itconsistsofathreadedshaft(screw)andamatingnut,anditsdesignallowsforthe
efficienttransmissionofpowerandmotion.Powerscrewsarecommonlyusedinvarious
engineeringapplications,suchasinmachinery,automotivesystems,andmanufacturing
equipment.
Common applications of power screws are:
Screw jacks: to move large loads with minimum effort.
Lead screw of lathe: for axial movement of tool and its precise positioning.
Tensile testing machine: to exert large force.
Vice: to clamp the work piece
Power screw comprises of two main components: screw and nut, and can operate in
following three ways
MachineElementDesign
Application of machine parts
DESIGNOFPOWERSCREW
Power screw comprises of two main components: screw and nut, and can operate in
following three ways:
Screw rotates in bearings and nut moves axially
Screw rotates and also moves axially while nut is kept fixed
Nut rotates and screw moves in axial direction
Summary:Powerscrewshavelargeloadcarryingcapacity,arecompact,providelarge
mechanicaladvantage,provideveryaccurateandpreciselinearmotion,havesmoothand
noiselessoperation,arereliableandhavelessercost.Disadvantagesarethatpower
screwshavepoorefficiencyandhighrateofwear.
MachineElementDesign
Application of machine parts
MultipleThreads:Thepowerscrewswithmultiplethreadssuchasdouble,tripleetc.are
employedwhenitisdesiredtosecurealargeleadwithfinethreadsorhighefficiency.Such
typeofthreadsareusuallyfoundinhighspeedactuators.
Types of Screw Threads used for Power Screws
MachineElementDesign
Application of machine parts
TorqueRequiredtoRaiseLoadbySquareThreadedScrews
Thetorquerequiredtoraisealoadbymeansofsquarethreadedscrewmaybedetermined
byconsideringascrewjackasshowninFig.(a).Theloadtoberaisedorloweredisplaced
ontheheadofthesquarethreadedrodwhichisrotatedbytheapplicationofaneffortatthe
endofleverforliftingorloweringtheload.
MachineElementDesign
Application of machine parts
TorqueRequiredtoRaiseLoadbySquareThreadedScrews
Alittleconsiderationwillshowthatifonecompleteturnofascrewthreadbeimaginedtobe
unwound,fromthebodyofthescrewanddeveloped,itwillformaninclinedplaneasshown
inFig.(a).
From the geometry of the Fig. (a), we find that
MachineElementDesign
TorqueRequiredtolowerLoadbySquareThreadedScrews
Alittleconsiderationwillshowthatwhentheloadisbeinglowered,theforceoffriction
(F=µ.RN)willactupwards.Alltheforcesactingonthebodyareshown
Resolving the forces along the plane,
MachineElementDesign
TorqueRequiredtolowerLoadbySquareThreadedScrews
Torque required to overcome friction between the screwand nut,
Efficiency of Square Threaded Screws
Theefficiencyofsquarethreadedscrewsmaybedefinedastheratiobetweentheidealeffort
(i.e.theeffortrequiredtomovetheload,neglectingfriction)totheactualeffort(i.e.theeffort
requiredtomovetheloadtakingfrictionintoaccount).
Theeffortappliedatthecircumferenceofthescrewtoliftthe
loadis
Note that If there would have been no friction between the screw and the nut, then φ will be
equal to zero.
MachineElementDesign
TorqueRequiredtoraiseLoadbySquareThreadedScrews
This shows that the efficiency of a screw jack, is independent of the load raised.
In the above expression for efficiency, only the screw friction is considered. However, if
the screw friction and collar friction is taken into account, then
MachineElementDesign
TorqueRequiredtoraiseLoadbySquareThreadedScrews
Note that : The efficiency may also be defined as the ratio of mechanical advantage to the
velocity ratio.
We know that mechanical advantage,
MachineElementDesign
TorqueRequiredtoraiseLoadbySquareThreadedScrews
Maximum Efficiency of a Square Threaded Screw
Multiplying the numerator and denominator by 2, we have,
MachineElementDesign
OverHaulingandSelfLockingScrews
The effort required at the circumference of the screw to lower the load is
Intheaboveexpression,ifφ<α,thentorquerequiredtolowertheloadwillbenegative.In
otherwords,theloadwillstartmovingdownwardwithouttheapplicationofanytorque.
Suchaconditionisknownasoverhaulingofscrews.Ifhowever,φ>α,thetorquerequired
tolowertheloadwillbepositive,indicatingthataneffortisappliedtolowertheload.Such
ascrewisknownasselflockingscrew.Inotherwords,ascrewwillbeselflockingifthe
frictionangleisgreaterthanhelixangleorcoefficientoffrictionisgreaterthantangentof
helixanglei.e.µortanφ>tanα.