Som ii {theories of failure}

DRSANJIVKUMAR1 65 views 20 slides Apr 08, 2021
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Hand Written Notes for THEORIES OF FAILURE
SOM- II


Slide Content

STRENGTH OF MATERI ALS - I
ToPIc 2
HEORIEES
OF
FAILURE

OF FAILURE
THEORIES
axamples Shaiks
Du elag number
actong K bodues eginantng prolnca.
Cam omanml
Condiiows nqnd t m dar
t
hu a Clarnn
thadiu
be nd
i lwm e
uta
fonoLng oe
that ex pan
Cond t ons .
theDhues
laikune hat expkaim
a kun etins Cnoo dkuut
Condutiens
C Maxlmum Pueipal 3toss Ihesaj Theo
2 Maxumum
Shoa 3Kass Sres
ohe RM TheoA
)Maximum Ynne pal
30am
Thad
bam Thaon.
4)To Sta &nns tho0
5)
Sho Sham Enna Thoy
t t 4la odeng
et cns we u duts
olaal. S al
Tende &hets oat the
eloic mit m Aimpe
tinAon Comresienhorp
Oet ec

Mo i' neipal Shass Thuo Tho
he &implut
amd
slalast heas
a wne Jho hey
io also
Callad RankIA
Accehdu ug o i theoy
Faulwe O Ccw nshim he maxi mLm
einp le bus (
th
--
_ ysbm
Teathas Val
sbazs
at t
eladic mu
Cownplex
mple
Dnsiem e m maxumu
webol Comphrsive
he elastic mit (e)
es hache4
Aimpe
W
e
ecm Limpke empo
Ne th max mum e pal 8tesK
te deb ta on, the
MoLR.
nee
exCesd e w
mg
Maas muat
net
S ress mathial
e Duei se)
ilt Br M)
e

(3
TKio koAy elUlminalos ke
ako u'nepl Asos amd
oo bamoo hesdas
Fe britla matou
which olo net
hail by ielding,
th
max. princ palAress hoA s CmaidJ
th NE S
as
ut Aasf by becaus ,'b na
Jaie by bte bare
mai als
his thoon appeans be
ploo xi'maTly
ntleo
CeerE ondi
nay CLs and
bu to
melal
Flaos Cobaduettens The thaehy
. Ow a muld 2 l
2peci maw whm
Zimble
Ca ed aut,
h
2lidt
0ccs
aphoimataly 4stoka axio o
puime. Thio shus ot fa du
t
modimLm eo hossNathr han
diect
Jthasbeen tnat a malalwic a
eNew
thougw t eon
m
Ame ComT
eNew
Ca
exc tu int m imate

n a eallic bodr the
pn ipal stresses ne+5MN/m (nd
95 MN/n, the
mple 18
al stress Peng e hr iasti nil stress in simple tensin
is cqual anud
is >201/V/m nd the tactor f afrin hased
f faihure fer
the
maie rual is thu
mavimum prim ial
strss throry
the rlast
limit if
h
f failun
5 MN/m
Spe(Gven
), and
'inipal stresses
9 MN/m
220 MN/m
=Elastic limil stress (/ension). and
herc.
=lastic limit
stress (compression).
= , (working stress in tension)
(F.O.S. means factor of safcty) F.O.S.
220
= 6-28
35
FO.S
Also. o
=
G, (working stress in
compression)
F.O.S.
ec -95=
F.O.S.
220
F.O.S.= = 23
95
So. the material according
to the maximum principal stress theory will fail due to the
mpressive principal stress.
FO.S. 23 (Ans.)
Example 182. In a cast-iron body the principal stresses are + 40 MN/m* and
-
100 MN/m
third principal stress being zero. The elastic limit stresses in simple tension and in simple
mpression are 80 MNIm? and 400 MN/*
respectively. Find the factor of safery based on the ste limit if the criterionof failure
is the maximum principal stress theory.
olution. Given:
o,
= 40 MN/m?,
Principal stresses
o, = 0
-100 MN/m?
80 MN/m* (elastic limit stress in tension)
400 MN/m- (elastic limit stress in compression)
Now,
, 0, (working stress in tension)
80
o
F.O.S.
or, 40
F.O.S.
FO.S. A = 2
or
Also
o (working stress in compression)
4o0
4 Fo S 4
F.O.S.

MA K,
y
Pt
Shan E Sam
Detile Malhal
yedd
o Ductl Matuls
m
FOS
Iec
FoS
B tt
Motuas
foS
ec
FoS

Shaa SbiasThoey 2. Ma Lmum
OR
SboLs DiAeomt huoy
Thus thoy Called Guau o
Thos CasThony
thot
OCcw Kan
maxi MaxL mum Kian sDs Omax
tht Comblx AyK&n aachos hi abua
MALXLum hao hoss sLmple m
nsigr
at tke elastic inut o
t
dt ta a aD Compo nswl m
whi c amo ach axiall a
stresses, 0f Comhsine
Bix
Zer

muidl be
CA
oluctile
ma leuals mde Lhoo
mnd hat
tals
weakast
dig
due tile mauals e
hei b
.3a4 Considv,Max. hoa tTes Theo
alays
JAL Lhaa
A hear Anoas darlapad
vu based on th badn
el vaues and
M
Sbusses nal
le
each dh
bo
Shear 8hels olevelsped t boc. hw
be
Mokas Cucle
Cau se
phuneip
as
+ ( +
2
I+(*
Mat Sha 2hs
2
Noud
'

max
2
Y
Cmoy -()
Sbtae gne
re (
.
Max &hatskres, ( Max
Cowplex yt
Max. Ahea
reks i elsbi
mi w
2
Ma mat col
RLTon
Jh mAx
(
ot eld punlv
mo-x alue mahual
divi de h
max Aheat ArAs
Sot (Fo ,
t matoual willbe Lafe.
Codhon
J v
FoS
naial.

hlds t ductle
malua
tas b
t e rimipal
Atessos
CopreAsie an t must
be TabAn as
e ( imph
ansion
2 2
et
FoS
-)
,b O
Max shaa gtre Tohy
r: A mi'ld stulshtt
6amnaxImum g 20 kNm and mAXImum
bendun
20 mm diameb Anbsetd
bendng moment 12 kNm at a þarbola
faels Saaly(Fos) acdig
moALMLm
mpe nim 22o MNM
2
SA
G Lven Dala
Damair
Aht,
d=
12o m
Radw 6o mm
Tong ,T=
2o KNm
aimum bending momLnt, M= 12Nn
Et t m Aimtle sm, t= 220 M
MaAmum
Fac S (Fos
FoS
(-
TT

10
Ae hane
ins
n dhot bendun4 4hu
amd
Hham
iven
max dhoo res
an
wipa Touss
C
Noud nd ut T
e
nud +hat Bendng bah
ve
R
M beuoln mam
M. o.
E YoungsMadulusn Elste
R Radie CwhNw
Ferw abeve
M M
M
z Sehon mod

:)
Z
T
TT
4
2
M
3 od3
0.73 F0.73 M N/
Llen Ce
Me dao emod t Tu
ToA Epni le aldo
s ToRAm Eqmaton
Ge
TE MaxLmum ToRg
J Polar M.0.2 = d
32
Modul
Ang
Auet
m oda n
Ahot
Ahart mabral
R Radius t kt
abi ToAL0r enan

R
Tol
T
T. d
C
16 32
16T 1X o o x 10
TT d3
TTx (o.12)
s8.9s MNm
b e
(2 39)to+ (6 99
2
3S 34) t
(3s.36)+ (sa.5
3S.36 + 68.74
= 04.12 MN
2
33.38 38 MN mn
AcLhdin T Max.
res The
-3)=

13 2
137.5 MN
2
220 M
FOS=
-)
1375MN/
F.OS S- 16 A.
3 MaxI MAXIMUNM PRINCIPAL STRAIN_THEOl
Jhao Theo so callad SE. Venanl theo 4.
---
dhio thaoky als that
Tho mataal
Occwl whn
L mum uincipal tanala Aram mh
maleal Naachas tuhe An eloktc
u' wei pal tomphuss ve sngm reches Hhe sa'
m Bimla Compsioa.
b
e -lGt
-
A ne Sa diaeton 1 PS m
Nao Condi Cawc ae
CCndi na Mak. riwe
Shain tho 4?
e,
7 6et (6,ust
se +ve)

and (Emust be- Ve)
e Ca Aa hat te
(3) e,u +ve)
E
Sec eg7
(¬, -Ve
TRat wLans
-
-(5+5)
E
amd
C6)
E (+7 6) E
et 7)
- ( +)7
(8.) -( +)7
. To phadeutalura
-C+)< (o)
At e JUST lasiie aikua
+)=
Ond
F D631GN PuRPoE S

Aoa Auos t amd egns L
hich Ca Cam
ba danat
by and
and C12
an
pkacad by &oe 8hassas,
daag dua wpraas
(+)= E
(t=
ToNaoinwe
imperlantfoA
tuo
thuoy
aloos net gwe exact Aoulo
duetla matals he (AL, MS eE)
e hoony oes met ft wel w-T Tha
pel mumlal herulK excopt ouly bout6
maials ke () f biaxial n im
Cmprosson & (-f sdichh omeTmy
h mmom dud)
Jwi hoy t
wped muchv
haaticad poAas
ADA
PTO

19
STRAIN ENERGY. TH6RY ToTAL
J theo Ay ha Ou
lheimodynaMLC
nalay ad as a loqical load
Omd
r en b Belbami Ho h
Smokoy tats that
i ue malual maual wl_ occu
mawal
ho_arhas tt Am anst
-
mati
al
elasti mitE m
pleGaiom
A di mungional Ahs gn, mu lkom
na wit veum
iven b
U ++2v(+ +S)
2E
md awe Sama
Ne at
t toua
2-E
o
+5)-a» ic *"s+5]
=
w
douaw braci cas, Th
e
elashe
mE oheglaro b

G
-
2. t + )= -- -0)
FoS
N (A o able Sveus)
FoS
we tet, db Cau (= o) an n (i) aduos
FoS
2
( 233 7) <
poi n aa conolndud abat thup thaa
() J esudi 1tkoshy Q imilsl
T
expman rlb duet matuals (usmch
ndrtialdi ng as i
(2 h thioy an nat be abpeed la mathuals uhorr
emd na
theoy does not e
exact houl a
Comporad aapai'mantl nas u eNen les duche
mawual fa i c dy o La to be most
iabe Btt vev ooe adulla nst exaeat.
5SHE AR STRAN ENEGY TaeORY
i thoy also CalldDiskahonEng
Thao kuony Mies-AenRyTkaon
AcchdLng o

lune
mabual o cou
whhe
thi ha a a
uut
Vume a sasad mawun
Saachas
veme
he_haah_ha Onea1
at_te elosbc nt bet
m simke
andion, "
ha &Mam enua dua ti bt'neip
eskas and e ww.t v uma
th &bussed aua
2
U -)+ (%-)+(
-()
Nou Aimpetmsin tst m laic
p'nap pent than
s ie
pt Th Aha Aham enui* b
unit Vobuwne tvan
2
E+-(-
12c
et et
2 2
Eq utno ws U) amd 2)
p
c-a +C-+ (g-|
2

2 (- + )+ C- )= a
Sn ackal odsdign
aplacod by ba
valat Atnoas im
2
( (- )
+
(-5) = 32
Fos
h ab
eve thao Kae beew Bund k ne bost
nesulb5 nasulo dethle
motials r wic
e appoimot.3hadas o
ec
mmatal.
boinz aL Comeludad about th
thaouy
The thao y does nat agne uta Tki
xpaiemanlal
hsul t he matials
o quu d khut.
am
ec
(11) F zdro Ge pYeksws bnaim
hiw kao
Ves
at= O, w mans T mawuk
fal da amy noa k Psme o
icw
a
obvi Oy nw Prsb
A cua n tue
enal n S'onaA
nei p daseh ens, bitl
o cchs aunol h
maxL um
iwe'p Sres hes T
ive Alalol
neslp.
gandad
Ce s tt magt olurtenalnals undr
vau pus ts adi nj
.
Tags