Pe |
oe |
STATE-OF-PRACTICEOF
SEISMIC DESIGN AND CONSTRUCTION IN
INDONESIA
= nr
F ‚Southerns/aVas-Yogyazeanthaual
17 May 2722006
State of Practice of Selsmic Design and Construction DEVELOPMENT OF
EEE INDONESIAN CODE for SEISMIC RESISTANT STRUCTURE
+ 1970 : Indonesian Loading Code - N.I-18
E
> Current Indonesian Seismic Code and Design Practice
> Updating the Seismic Code (SNI 03-1726-2012)
> Performance-Based Seismic Design in Indonesia
a + 2002 : Code on Seismic Resistant Design
for Buildings, SNI 03-1726-2002
2012: New Seismic Resistant Design Code
2012: New Seismic Rı D Cod
> Base Isolation System in Jakarta
> Summary
rs mene
HAL HAL YANG PERLU DIPERHATIKAN DALAM CAPACITY DESIGN
Moment-curvature suatu penampang beton bertulang
LES
TABEL NILAI Force Reduction Factor R
samples of Maximum Fore Redon Factors or he Damage
"Con Lini State in Different Couns
GaGa | RE
AE
Kelemahan dalam STRENGTH-BASED S.D. UPDATING THE CODE
1. Penampang beton mempunyal tk orten,
tidak organtung tngkat pombebanan
Hubungan Force-Deformation suatu penampang tertentu
dengan tulangan berbeda mempunyal constant sas, dan
nil ultimate yield rotation berbeds
3. _MalR cam |, tanpa melihat
ik llkukan pda seur Komponen
5. Tidak ada defn tentang Service Love EO ne EEE
6. ik odo acceptance err yangoksplit og | mean
a
CL men)
Other Reasons for Updating
La ace bet À le A
ee EOS
To update earthquake sourcedata
Including active fait that have not been consideredin the 2002 map
PGA, MCE, Spectral Response Acceleration 24757 EQ Site Class B
COSTER “Home HIER MAP (REV 207)
ae msm
New Provisions
Generating
Seismic Des
Imeguanties
Horizontal regularities
Redundancy Factors
Major Steps| („= )
ES
InPBSD ||)
PEER-TBI PERFORMANCE OBJECTIVES
Mengapa NLRHA?
Long Fundamental Period
Multiple Contributing Period
Higher Mode Participation
Damping Ratio Tidak Konstan
‘Tidak Portu Mempermasalahkan Nilal R
Member! kepastian Lebih Ting!
pue? "neu Fetntegh ) re "tata
ERE
Types of
lonlinear Models
RG Core wal and Ouiger, 25:55 pa
E
|
=
+ Analysis procedures and
acceptance criteria: follow the
PEER TBI Guidelines
+ For this case study, we use
three suites of ground motions
and take the maximum value
+ Selection and modification of
GM : Follow PEER GMSM
+ The three GM represent
subduction, benioff and
background earthquake
ore
Basement structure is Included
'SSIis not included
3-D Nonlinear Model
Peraturan yang ada merupakan "MINIMUM Design Requirements
Tidak membatasitngkat kerusakan dengan jelas
Strength Based tidak dapat mempr
Fundamental principle of base isolation: modify the
response of the building so that the ground can move
below the buildings without transmitting these motion
into the building.
Flexibility 1e SDamping
IR
Prinsip Kerja Base
O sm.
Earthquakes can be Catastrophic and
i Very Expensive y Design Objectives of Base Isolation
No damage to structural elements
Loma Prieta 1989 - $7 Billion No damage to nonstructural components
+ $450 Milicn per Second No damage to building contents
Northridge 1994 - $30 Billion
+ $2bilion per second No failure of isolation system
No significant damage to structural elements
be 19 0 - $200 Billion No extensive damage to nonstructural components
Kobe sr 72008 No major disruption to facility function
+975 Life-Safety
000 san era
Perormance of Soiamcaly Isla Buildings in Tohoku Area
Comparison ofthe Selsmic Prolecion Systems 2
re. a |
>
General Philosophy of
Building Code Provision
+ No specific isolation systems are described
+ All isolation systems must:
+ Remain stable at the required displacement
+ Provide increasing resistance with increasing
displacement
+ Have non-degrading properties under repeated
cyclic loading
+ Have quantifiable engineering parameters
Types of Seismic Isolation Bearings
Elastomeric Bearings
- Low-Damping Natural or Synthetic Rubber Bearing
- High-Damping Natural Rubber Bearing
- Lead-Rubber Bearing
(Low damping natural rubber with lead core)