STEEL CONSTRUCTION 14TH MANUAL AISC.pdf

2,024 views 203 slides Mar 14, 2023
Slide 1
Slide 1 of 2325
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243
Slide 244
244
Slide 245
245
Slide 246
246
Slide 247
247
Slide 248
248
Slide 249
249
Slide 250
250
Slide 251
251
Slide 252
252
Slide 253
253
Slide 254
254
Slide 255
255
Slide 256
256
Slide 257
257
Slide 258
258
Slide 259
259
Slide 260
260
Slide 261
261
Slide 262
262
Slide 263
263
Slide 264
264
Slide 265
265
Slide 266
266
Slide 267
267
Slide 268
268
Slide 269
269
Slide 270
270
Slide 271
271
Slide 272
272
Slide 273
273
Slide 274
274
Slide 275
275
Slide 276
276
Slide 277
277
Slide 278
278
Slide 279
279
Slide 280
280
Slide 281
281
Slide 282
282
Slide 283
283
Slide 284
284
Slide 285
285
Slide 286
286
Slide 287
287
Slide 288
288
Slide 289
289
Slide 290
290
Slide 291
291
Slide 292
292
Slide 293
293
Slide 294
294
Slide 295
295
Slide 296
296
Slide 297
297
Slide 298
298
Slide 299
299
Slide 300
300
Slide 301
301
Slide 302
302
Slide 303
303
Slide 304
304
Slide 305
305
Slide 306
306
Slide 307
307
Slide 308
308
Slide 309
309
Slide 310
310
Slide 311
311
Slide 312
312
Slide 313
313
Slide 314
314
Slide 315
315
Slide 316
316
Slide 317
317
Slide 318
318
Slide 319
319
Slide 320
320
Slide 321
321
Slide 322
322
Slide 323
323
Slide 324
324
Slide 325
325
Slide 326
326
Slide 327
327
Slide 328
328
Slide 329
329
Slide 330
330
Slide 331
331
Slide 332
332
Slide 333
333
Slide 334
334
Slide 335
335
Slide 336
336
Slide 337
337
Slide 338
338
Slide 339
339
Slide 340
340
Slide 341
341
Slide 342
342
Slide 343
343
Slide 344
344
Slide 345
345
Slide 346
346
Slide 347
347
Slide 348
348
Slide 349
349
Slide 350
350
Slide 351
351
Slide 352
352
Slide 353
353
Slide 354
354
Slide 355
355
Slide 356
356
Slide 357
357
Slide 358
358
Slide 359
359
Slide 360
360
Slide 361
361
Slide 362
362
Slide 363
363
Slide 364
364
Slide 365
365
Slide 366
366
Slide 367
367
Slide 368
368
Slide 369
369
Slide 370
370
Slide 371
371
Slide 372
372
Slide 373
373
Slide 374
374
Slide 375
375
Slide 376
376
Slide 377
377
Slide 378
378
Slide 379
379
Slide 380
380
Slide 381
381
Slide 382
382
Slide 383
383
Slide 384
384
Slide 385
385
Slide 386
386
Slide 387
387
Slide 388
388
Slide 389
389
Slide 390
390
Slide 391
391
Slide 392
392
Slide 393
393
Slide 394
394
Slide 395
395
Slide 396
396
Slide 397
397
Slide 398
398
Slide 399
399
Slide 400
400
Slide 401
401
Slide 402
402
Slide 403
403
Slide 404
404
Slide 405
405
Slide 406
406
Slide 407
407
Slide 408
408
Slide 409
409
Slide 410
410
Slide 411
411
Slide 412
412
Slide 413
413
Slide 414
414
Slide 415
415
Slide 416
416
Slide 417
417
Slide 418
418
Slide 419
419
Slide 420
420
Slide 421
421
Slide 422
422
Slide 423
423
Slide 424
424
Slide 425
425
Slide 426
426
Slide 427
427
Slide 428
428
Slide 429
429
Slide 430
430
Slide 431
431
Slide 432
432
Slide 433
433
Slide 434
434
Slide 435
435
Slide 436
436
Slide 437
437
Slide 438
438
Slide 439
439
Slide 440
440
Slide 441
441
Slide 442
442
Slide 443
443
Slide 444
444
Slide 445
445
Slide 446
446
Slide 447
447
Slide 448
448
Slide 449
449
Slide 450
450
Slide 451
451
Slide 452
452
Slide 453
453
Slide 454
454
Slide 455
455
Slide 456
456
Slide 457
457
Slide 458
458
Slide 459
459
Slide 460
460
Slide 461
461
Slide 462
462
Slide 463
463
Slide 464
464
Slide 465
465
Slide 466
466
Slide 467
467
Slide 468
468
Slide 469
469
Slide 470
470
Slide 471
471
Slide 472
472
Slide 473
473
Slide 474
474
Slide 475
475
Slide 476
476
Slide 477
477
Slide 478
478
Slide 479
479
Slide 480
480
Slide 481
481
Slide 482
482
Slide 483
483
Slide 484
484
Slide 485
485
Slide 486
486
Slide 487
487
Slide 488
488
Slide 489
489
Slide 490
490
Slide 491
491
Slide 492
492
Slide 493
493
Slide 494
494
Slide 495
495
Slide 496
496
Slide 497
497
Slide 498
498
Slide 499
499
Slide 500
500
Slide 501
501
Slide 502
502
Slide 503
503
Slide 504
504
Slide 505
505
Slide 506
506
Slide 507
507
Slide 508
508
Slide 509
509
Slide 510
510
Slide 511
511
Slide 512
512
Slide 513
513
Slide 514
514
Slide 515
515
Slide 516
516
Slide 517
517
Slide 518
518
Slide 519
519
Slide 520
520
Slide 521
521
Slide 522
522
Slide 523
523
Slide 524
524
Slide 525
525
Slide 526
526
Slide 527
527
Slide 528
528
Slide 529
529
Slide 530
530
Slide 531
531
Slide 532
532
Slide 533
533
Slide 534
534
Slide 535
535
Slide 536
536
Slide 537
537
Slide 538
538
Slide 539
539
Slide 540
540
Slide 541
541
Slide 542
542
Slide 543
543
Slide 544
544
Slide 545
545
Slide 546
546
Slide 547
547
Slide 548
548
Slide 549
549
Slide 550
550
Slide 551
551
Slide 552
552
Slide 553
553
Slide 554
554
Slide 555
555
Slide 556
556
Slide 557
557
Slide 558
558
Slide 559
559
Slide 560
560
Slide 561
561
Slide 562
562
Slide 563
563
Slide 564
564
Slide 565
565
Slide 566
566
Slide 567
567
Slide 568
568
Slide 569
569
Slide 570
570
Slide 571
571
Slide 572
572
Slide 573
573
Slide 574
574
Slide 575
575
Slide 576
576
Slide 577
577
Slide 578
578
Slide 579
579
Slide 580
580
Slide 581
581
Slide 582
582
Slide 583
583
Slide 584
584
Slide 585
585
Slide 586
586
Slide 587
587
Slide 588
588
Slide 589
589
Slide 590
590
Slide 591
591
Slide 592
592
Slide 593
593
Slide 594
594
Slide 595
595
Slide 596
596
Slide 597
597
Slide 598
598
Slide 599
599
Slide 600
600
Slide 601
601
Slide 602
602
Slide 603
603
Slide 604
604
Slide 605
605
Slide 606
606
Slide 607
607
Slide 608
608
Slide 609
609
Slide 610
610
Slide 611
611
Slide 612
612
Slide 613
613
Slide 614
614
Slide 615
615
Slide 616
616
Slide 617
617
Slide 618
618
Slide 619
619
Slide 620
620
Slide 621
621
Slide 622
622
Slide 623
623
Slide 624
624
Slide 625
625
Slide 626
626
Slide 627
627
Slide 628
628
Slide 629
629
Slide 630
630
Slide 631
631
Slide 632
632
Slide 633
633
Slide 634
634
Slide 635
635
Slide 636
636
Slide 637
637
Slide 638
638
Slide 639
639
Slide 640
640
Slide 641
641
Slide 642
642
Slide 643
643
Slide 644
644
Slide 645
645
Slide 646
646
Slide 647
647
Slide 648
648
Slide 649
649
Slide 650
650
Slide 651
651
Slide 652
652
Slide 653
653
Slide 654
654
Slide 655
655
Slide 656
656
Slide 657
657
Slide 658
658
Slide 659
659
Slide 660
660
Slide 661
661
Slide 662
662
Slide 663
663
Slide 664
664
Slide 665
665
Slide 666
666
Slide 667
667
Slide 668
668
Slide 669
669
Slide 670
670
Slide 671
671
Slide 672
672
Slide 673
673
Slide 674
674
Slide 675
675
Slide 676
676
Slide 677
677
Slide 678
678
Slide 679
679
Slide 680
680
Slide 681
681
Slide 682
682
Slide 683
683
Slide 684
684
Slide 685
685
Slide 686
686
Slide 687
687
Slide 688
688
Slide 689
689
Slide 690
690
Slide 691
691
Slide 692
692
Slide 693
693
Slide 694
694
Slide 695
695
Slide 696
696
Slide 697
697
Slide 698
698
Slide 699
699
Slide 700
700
Slide 701
701
Slide 702
702
Slide 703
703
Slide 704
704
Slide 705
705
Slide 706
706
Slide 707
707
Slide 708
708
Slide 709
709
Slide 710
710
Slide 711
711
Slide 712
712
Slide 713
713
Slide 714
714
Slide 715
715
Slide 716
716
Slide 717
717
Slide 718
718
Slide 719
719
Slide 720
720
Slide 721
721
Slide 722
722
Slide 723
723
Slide 724
724
Slide 725
725
Slide 726
726
Slide 727
727
Slide 728
728
Slide 729
729
Slide 730
730
Slide 731
731
Slide 732
732
Slide 733
733
Slide 734
734
Slide 735
735
Slide 736
736
Slide 737
737
Slide 738
738
Slide 739
739
Slide 740
740
Slide 741
741
Slide 742
742
Slide 743
743
Slide 744
744
Slide 745
745
Slide 746
746
Slide 747
747
Slide 748
748
Slide 749
749
Slide 750
750
Slide 751
751
Slide 752
752
Slide 753
753
Slide 754
754
Slide 755
755
Slide 756
756
Slide 757
757
Slide 758
758
Slide 759
759
Slide 760
760
Slide 761
761
Slide 762
762
Slide 763
763
Slide 764
764
Slide 765
765
Slide 766
766
Slide 767
767
Slide 768
768
Slide 769
769
Slide 770
770
Slide 771
771
Slide 772
772
Slide 773
773
Slide 774
774
Slide 775
775
Slide 776
776
Slide 777
777
Slide 778
778
Slide 779
779
Slide 780
780
Slide 781
781
Slide 782
782
Slide 783
783
Slide 784
784
Slide 785
785
Slide 786
786
Slide 787
787
Slide 788
788
Slide 789
789
Slide 790
790
Slide 791
791
Slide 792
792
Slide 793
793
Slide 794
794
Slide 795
795
Slide 796
796
Slide 797
797
Slide 798
798
Slide 799
799
Slide 800
800
Slide 801
801
Slide 802
802
Slide 803
803
Slide 804
804
Slide 805
805
Slide 806
806
Slide 807
807
Slide 808
808
Slide 809
809
Slide 810
810
Slide 811
811
Slide 812
812
Slide 813
813
Slide 814
814
Slide 815
815
Slide 816
816
Slide 817
817
Slide 818
818
Slide 819
819
Slide 820
820
Slide 821
821
Slide 822
822
Slide 823
823
Slide 824
824
Slide 825
825
Slide 826
826
Slide 827
827
Slide 828
828
Slide 829
829
Slide 830
830
Slide 831
831
Slide 832
832
Slide 833
833
Slide 834
834
Slide 835
835
Slide 836
836
Slide 837
837
Slide 838
838
Slide 839
839
Slide 840
840
Slide 841
841
Slide 842
842
Slide 843
843
Slide 844
844
Slide 845
845
Slide 846
846
Slide 847
847
Slide 848
848
Slide 849
849
Slide 850
850
Slide 851
851
Slide 852
852
Slide 853
853
Slide 854
854
Slide 855
855
Slide 856
856
Slide 857
857
Slide 858
858
Slide 859
859
Slide 860
860
Slide 861
861
Slide 862
862
Slide 863
863
Slide 864
864
Slide 865
865
Slide 866
866
Slide 867
867
Slide 868
868
Slide 869
869
Slide 870
870
Slide 871
871
Slide 872
872
Slide 873
873
Slide 874
874
Slide 875
875
Slide 876
876
Slide 877
877
Slide 878
878
Slide 879
879
Slide 880
880
Slide 881
881
Slide 882
882
Slide 883
883
Slide 884
884
Slide 885
885
Slide 886
886
Slide 887
887
Slide 888
888
Slide 889
889
Slide 890
890
Slide 891
891
Slide 892
892
Slide 893
893
Slide 894
894
Slide 895
895
Slide 896
896
Slide 897
897
Slide 898
898
Slide 899
899
Slide 900
900
Slide 901
901
Slide 902
902
Slide 903
903
Slide 904
904
Slide 905
905
Slide 906
906
Slide 907
907
Slide 908
908
Slide 909
909
Slide 910
910
Slide 911
911
Slide 912
912
Slide 913
913
Slide 914
914
Slide 915
915
Slide 916
916
Slide 917
917
Slide 918
918
Slide 919
919
Slide 920
920
Slide 921
921
Slide 922
922
Slide 923
923
Slide 924
924
Slide 925
925
Slide 926
926
Slide 927
927
Slide 928
928
Slide 929
929
Slide 930
930
Slide 931
931
Slide 932
932
Slide 933
933
Slide 934
934
Slide 935
935
Slide 936
936
Slide 937
937
Slide 938
938
Slide 939
939
Slide 940
940
Slide 941
941
Slide 942
942
Slide 943
943
Slide 944
944
Slide 945
945
Slide 946
946
Slide 947
947
Slide 948
948
Slide 949
949
Slide 950
950
Slide 951
951
Slide 952
952
Slide 953
953
Slide 954
954
Slide 955
955
Slide 956
956
Slide 957
957
Slide 958
958
Slide 959
959
Slide 960
960
Slide 961
961
Slide 962
962
Slide 963
963
Slide 964
964
Slide 965
965
Slide 966
966
Slide 967
967
Slide 968
968
Slide 969
969
Slide 970
970
Slide 971
971
Slide 972
972
Slide 973
973
Slide 974
974
Slide 975
975
Slide 976
976
Slide 977
977
Slide 978
978
Slide 979
979
Slide 980
980
Slide 981
981
Slide 982
982
Slide 983
983
Slide 984
984
Slide 985
985
Slide 986
986
Slide 987
987
Slide 988
988
Slide 989
989
Slide 990
990
Slide 991
991
Slide 992
992
Slide 993
993
Slide 994
994
Slide 995
995
Slide 996
996
Slide 997
997
Slide 998
998
Slide 999
999
Slide 1000
1000
Slide 1001
1001
Slide 1002
1002
Slide 1003
1003
Slide 1004
1004
Slide 1005
1005
Slide 1006
1006
Slide 1007
1007
Slide 1008
1008
Slide 1009
1009
Slide 1010
1010
Slide 1011
1011
Slide 1012
1012
Slide 1013
1013
Slide 1014
1014
Slide 1015
1015
Slide 1016
1016
Slide 1017
1017
Slide 1018
1018
Slide 1019
1019
Slide 1020
1020
Slide 1021
1021
Slide 1022
1022
Slide 1023
1023
Slide 1024
1024
Slide 1025
1025
Slide 1026
1026
Slide 1027
1027
Slide 1028
1028
Slide 1029
1029
Slide 1030
1030
Slide 1031
1031
Slide 1032
1032
Slide 1033
1033
Slide 1034
1034
Slide 1035
1035
Slide 1036
1036
Slide 1037
1037
Slide 1038
1038
Slide 1039
1039
Slide 1040
1040
Slide 1041
1041
Slide 1042
1042
Slide 1043
1043
Slide 1044
1044
Slide 1045
1045
Slide 1046
1046
Slide 1047
1047
Slide 1048
1048
Slide 1049
1049
Slide 1050
1050
Slide 1051
1051
Slide 1052
1052
Slide 1053
1053
Slide 1054
1054
Slide 1055
1055
Slide 1056
1056
Slide 1057
1057
Slide 1058
1058
Slide 1059
1059
Slide 1060
1060
Slide 1061
1061
Slide 1062
1062
Slide 1063
1063
Slide 1064
1064
Slide 1065
1065
Slide 1066
1066
Slide 1067
1067
Slide 1068
1068
Slide 1069
1069
Slide 1070
1070
Slide 1071
1071
Slide 1072
1072
Slide 1073
1073
Slide 1074
1074
Slide 1075
1075
Slide 1076
1076
Slide 1077
1077
Slide 1078
1078
Slide 1079
1079
Slide 1080
1080
Slide 1081
1081
Slide 1082
1082
Slide 1083
1083
Slide 1084
1084
Slide 1085
1085
Slide 1086
1086
Slide 1087
1087
Slide 1088
1088
Slide 1089
1089
Slide 1090
1090
Slide 1091
1091
Slide 1092
1092
Slide 1093
1093
Slide 1094
1094
Slide 1095
1095
Slide 1096
1096
Slide 1097
1097
Slide 1098
1098
Slide 1099
1099
Slide 1100
1100
Slide 1101
1101
Slide 1102
1102
Slide 1103
1103
Slide 1104
1104
Slide 1105
1105
Slide 1106
1106
Slide 1107
1107
Slide 1108
1108
Slide 1109
1109
Slide 1110
1110
Slide 1111
1111
Slide 1112
1112
Slide 1113
1113
Slide 1114
1114
Slide 1115
1115
Slide 1116
1116
Slide 1117
1117
Slide 1118
1118
Slide 1119
1119
Slide 1120
1120
Slide 1121
1121
Slide 1122
1122
Slide 1123
1123
Slide 1124
1124
Slide 1125
1125
Slide 1126
1126
Slide 1127
1127
Slide 1128
1128
Slide 1129
1129
Slide 1130
1130
Slide 1131
1131
Slide 1132
1132
Slide 1133
1133
Slide 1134
1134
Slide 1135
1135
Slide 1136
1136
Slide 1137
1137
Slide 1138
1138
Slide 1139
1139
Slide 1140
1140
Slide 1141
1141
Slide 1142
1142
Slide 1143
1143
Slide 1144
1144
Slide 1145
1145
Slide 1146
1146
Slide 1147
1147
Slide 1148
1148
Slide 1149
1149
Slide 1150
1150
Slide 1151
1151
Slide 1152
1152
Slide 1153
1153
Slide 1154
1154
Slide 1155
1155
Slide 1156
1156
Slide 1157
1157
Slide 1158
1158
Slide 1159
1159
Slide 1160
1160
Slide 1161
1161
Slide 1162
1162
Slide 1163
1163
Slide 1164
1164
Slide 1165
1165
Slide 1166
1166
Slide 1167
1167
Slide 1168
1168
Slide 1169
1169
Slide 1170
1170
Slide 1171
1171
Slide 1172
1172
Slide 1173
1173
Slide 1174
1174
Slide 1175
1175
Slide 1176
1176
Slide 1177
1177
Slide 1178
1178
Slide 1179
1179
Slide 1180
1180
Slide 1181
1181
Slide 1182
1182
Slide 1183
1183
Slide 1184
1184
Slide 1185
1185
Slide 1186
1186
Slide 1187
1187
Slide 1188
1188
Slide 1189
1189
Slide 1190
1190
Slide 1191
1191
Slide 1192
1192
Slide 1193
1193
Slide 1194
1194
Slide 1195
1195
Slide 1196
1196
Slide 1197
1197
Slide 1198
1198
Slide 1199
1199
Slide 1200
1200
Slide 1201
1201
Slide 1202
1202
Slide 1203
1203
Slide 1204
1204
Slide 1205
1205
Slide 1206
1206
Slide 1207
1207
Slide 1208
1208
Slide 1209
1209
Slide 1210
1210
Slide 1211
1211
Slide 1212
1212
Slide 1213
1213
Slide 1214
1214
Slide 1215
1215
Slide 1216
1216
Slide 1217
1217
Slide 1218
1218
Slide 1219
1219
Slide 1220
1220
Slide 1221
1221
Slide 1222
1222
Slide 1223
1223
Slide 1224
1224
Slide 1225
1225
Slide 1226
1226
Slide 1227
1227
Slide 1228
1228
Slide 1229
1229
Slide 1230
1230
Slide 1231
1231
Slide 1232
1232
Slide 1233
1233
Slide 1234
1234
Slide 1235
1235
Slide 1236
1236
Slide 1237
1237
Slide 1238
1238
Slide 1239
1239
Slide 1240
1240
Slide 1241
1241
Slide 1242
1242
Slide 1243
1243
Slide 1244
1244
Slide 1245
1245
Slide 1246
1246
Slide 1247
1247
Slide 1248
1248
Slide 1249
1249
Slide 1250
1250
Slide 1251
1251
Slide 1252
1252
Slide 1253
1253
Slide 1254
1254
Slide 1255
1255
Slide 1256
1256
Slide 1257
1257
Slide 1258
1258
Slide 1259
1259
Slide 1260
1260
Slide 1261
1261
Slide 1262
1262
Slide 1263
1263
Slide 1264
1264
Slide 1265
1265
Slide 1266
1266
Slide 1267
1267
Slide 1268
1268
Slide 1269
1269
Slide 1270
1270
Slide 1271
1271
Slide 1272
1272
Slide 1273
1273
Slide 1274
1274
Slide 1275
1275
Slide 1276
1276
Slide 1277
1277
Slide 1278
1278
Slide 1279
1279
Slide 1280
1280
Slide 1281
1281
Slide 1282
1282
Slide 1283
1283
Slide 1284
1284
Slide 1285
1285
Slide 1286
1286
Slide 1287
1287
Slide 1288
1288
Slide 1289
1289
Slide 1290
1290
Slide 1291
1291
Slide 1292
1292
Slide 1293
1293
Slide 1294
1294
Slide 1295
1295
Slide 1296
1296
Slide 1297
1297
Slide 1298
1298
Slide 1299
1299
Slide 1300
1300
Slide 1301
1301
Slide 1302
1302
Slide 1303
1303
Slide 1304
1304
Slide 1305
1305
Slide 1306
1306
Slide 1307
1307
Slide 1308
1308
Slide 1309
1309
Slide 1310
1310
Slide 1311
1311
Slide 1312
1312
Slide 1313
1313
Slide 1314
1314
Slide 1315
1315
Slide 1316
1316
Slide 1317
1317
Slide 1318
1318
Slide 1319
1319
Slide 1320
1320
Slide 1321
1321
Slide 1322
1322
Slide 1323
1323
Slide 1324
1324
Slide 1325
1325
Slide 1326
1326
Slide 1327
1327
Slide 1328
1328
Slide 1329
1329
Slide 1330
1330
Slide 1331
1331
Slide 1332
1332
Slide 1333
1333
Slide 1334
1334
Slide 1335
1335
Slide 1336
1336
Slide 1337
1337
Slide 1338
1338
Slide 1339
1339
Slide 1340
1340
Slide 1341
1341
Slide 1342
1342
Slide 1343
1343
Slide 1344
1344
Slide 1345
1345
Slide 1346
1346
Slide 1347
1347
Slide 1348
1348
Slide 1349
1349
Slide 1350
1350
Slide 1351
1351
Slide 1352
1352
Slide 1353
1353
Slide 1354
1354
Slide 1355
1355
Slide 1356
1356
Slide 1357
1357
Slide 1358
1358
Slide 1359
1359
Slide 1360
1360
Slide 1361
1361
Slide 1362
1362
Slide 1363
1363
Slide 1364
1364
Slide 1365
1365
Slide 1366
1366
Slide 1367
1367
Slide 1368
1368
Slide 1369
1369
Slide 1370
1370
Slide 1371
1371
Slide 1372
1372
Slide 1373
1373
Slide 1374
1374
Slide 1375
1375
Slide 1376
1376
Slide 1377
1377
Slide 1378
1378
Slide 1379
1379
Slide 1380
1380
Slide 1381
1381
Slide 1382
1382
Slide 1383
1383
Slide 1384
1384
Slide 1385
1385
Slide 1386
1386
Slide 1387
1387
Slide 1388
1388
Slide 1389
1389
Slide 1390
1390
Slide 1391
1391
Slide 1392
1392
Slide 1393
1393
Slide 1394
1394
Slide 1395
1395
Slide 1396
1396
Slide 1397
1397
Slide 1398
1398
Slide 1399
1399
Slide 1400
1400
Slide 1401
1401
Slide 1402
1402
Slide 1403
1403
Slide 1404
1404
Slide 1405
1405
Slide 1406
1406
Slide 1407
1407
Slide 1408
1408
Slide 1409
1409
Slide 1410
1410
Slide 1411
1411
Slide 1412
1412
Slide 1413
1413
Slide 1414
1414
Slide 1415
1415
Slide 1416
1416
Slide 1417
1417
Slide 1418
1418
Slide 1419
1419
Slide 1420
1420
Slide 1421
1421
Slide 1422
1422
Slide 1423
1423
Slide 1424
1424
Slide 1425
1425
Slide 1426
1426
Slide 1427
1427
Slide 1428
1428
Slide 1429
1429
Slide 1430
1430
Slide 1431
1431
Slide 1432
1432
Slide 1433
1433
Slide 1434
1434
Slide 1435
1435
Slide 1436
1436
Slide 1437
1437
Slide 1438
1438
Slide 1439
1439
Slide 1440
1440
Slide 1441
1441
Slide 1442
1442
Slide 1443
1443
Slide 1444
1444
Slide 1445
1445
Slide 1446
1446
Slide 1447
1447
Slide 1448
1448
Slide 1449
1449
Slide 1450
1450
Slide 1451
1451
Slide 1452
1452
Slide 1453
1453
Slide 1454
1454
Slide 1455
1455
Slide 1456
1456
Slide 1457
1457
Slide 1458
1458
Slide 1459
1459
Slide 1460
1460
Slide 1461
1461
Slide 1462
1462
Slide 1463
1463
Slide 1464
1464
Slide 1465
1465
Slide 1466
1466
Slide 1467
1467
Slide 1468
1468
Slide 1469
1469
Slide 1470
1470
Slide 1471
1471
Slide 1472
1472
Slide 1473
1473
Slide 1474
1474
Slide 1475
1475
Slide 1476
1476
Slide 1477
1477
Slide 1478
1478
Slide 1479
1479
Slide 1480
1480
Slide 1481
1481
Slide 1482
1482
Slide 1483
1483
Slide 1484
1484
Slide 1485
1485
Slide 1486
1486
Slide 1487
1487
Slide 1488
1488
Slide 1489
1489
Slide 1490
1490
Slide 1491
1491
Slide 1492
1492
Slide 1493
1493
Slide 1494
1494
Slide 1495
1495
Slide 1496
1496
Slide 1497
1497
Slide 1498
1498
Slide 1499
1499
Slide 1500
1500
Slide 1501
1501
Slide 1502
1502
Slide 1503
1503
Slide 1504
1504
Slide 1505
1505
Slide 1506
1506
Slide 1507
1507
Slide 1508
1508
Slide 1509
1509
Slide 1510
1510
Slide 1511
1511
Slide 1512
1512
Slide 1513
1513
Slide 1514
1514
Slide 1515
1515
Slide 1516
1516
Slide 1517
1517
Slide 1518
1518
Slide 1519
1519
Slide 1520
1520
Slide 1521
1521
Slide 1522
1522
Slide 1523
1523
Slide 1524
1524
Slide 1525
1525
Slide 1526
1526
Slide 1527
1527
Slide 1528
1528
Slide 1529
1529
Slide 1530
1530
Slide 1531
1531
Slide 1532
1532
Slide 1533
1533
Slide 1534
1534
Slide 1535
1535
Slide 1536
1536
Slide 1537
1537
Slide 1538
1538
Slide 1539
1539
Slide 1540
1540
Slide 1541
1541
Slide 1542
1542
Slide 1543
1543
Slide 1544
1544
Slide 1545
1545
Slide 1546
1546
Slide 1547
1547
Slide 1548
1548
Slide 1549
1549
Slide 1550
1550
Slide 1551
1551
Slide 1552
1552
Slide 1553
1553
Slide 1554
1554
Slide 1555
1555
Slide 1556
1556
Slide 1557
1557
Slide 1558
1558
Slide 1559
1559
Slide 1560
1560
Slide 1561
1561
Slide 1562
1562
Slide 1563
1563
Slide 1564
1564
Slide 1565
1565
Slide 1566
1566
Slide 1567
1567
Slide 1568
1568
Slide 1569
1569
Slide 1570
1570
Slide 1571
1571
Slide 1572
1572
Slide 1573
1573
Slide 1574
1574
Slide 1575
1575
Slide 1576
1576
Slide 1577
1577
Slide 1578
1578
Slide 1579
1579
Slide 1580
1580
Slide 1581
1581
Slide 1582
1582
Slide 1583
1583
Slide 1584
1584
Slide 1585
1585
Slide 1586
1586
Slide 1587
1587
Slide 1588
1588
Slide 1589
1589
Slide 1590
1590
Slide 1591
1591
Slide 1592
1592
Slide 1593
1593
Slide 1594
1594
Slide 1595
1595
Slide 1596
1596
Slide 1597
1597
Slide 1598
1598
Slide 1599
1599
Slide 1600
1600
Slide 1601
1601
Slide 1602
1602
Slide 1603
1603
Slide 1604
1604
Slide 1605
1605
Slide 1606
1606
Slide 1607
1607
Slide 1608
1608
Slide 1609
1609
Slide 1610
1610
Slide 1611
1611
Slide 1612
1612
Slide 1613
1613
Slide 1614
1614
Slide 1615
1615
Slide 1616
1616
Slide 1617
1617
Slide 1618
1618
Slide 1619
1619
Slide 1620
1620
Slide 1621
1621
Slide 1622
1622
Slide 1623
1623
Slide 1624
1624
Slide 1625
1625
Slide 1626
1626
Slide 1627
1627
Slide 1628
1628
Slide 1629
1629
Slide 1630
1630
Slide 1631
1631
Slide 1632
1632
Slide 1633
1633
Slide 1634
1634
Slide 1635
1635
Slide 1636
1636
Slide 1637
1637
Slide 1638
1638
Slide 1639
1639
Slide 1640
1640
Slide 1641
1641
Slide 1642
1642
Slide 1643
1643
Slide 1644
1644
Slide 1645
1645
Slide 1646
1646
Slide 1647
1647
Slide 1648
1648
Slide 1649
1649
Slide 1650
1650
Slide 1651
1651
Slide 1652
1652
Slide 1653
1653
Slide 1654
1654
Slide 1655
1655
Slide 1656
1656
Slide 1657
1657
Slide 1658
1658
Slide 1659
1659
Slide 1660
1660
Slide 1661
1661
Slide 1662
1662
Slide 1663
1663
Slide 1664
1664
Slide 1665
1665
Slide 1666
1666
Slide 1667
1667
Slide 1668
1668
Slide 1669
1669
Slide 1670
1670
Slide 1671
1671
Slide 1672
1672
Slide 1673
1673
Slide 1674
1674
Slide 1675
1675
Slide 1676
1676
Slide 1677
1677
Slide 1678
1678
Slide 1679
1679
Slide 1680
1680
Slide 1681
1681
Slide 1682
1682
Slide 1683
1683
Slide 1684
1684
Slide 1685
1685
Slide 1686
1686
Slide 1687
1687
Slide 1688
1688
Slide 1689
1689
Slide 1690
1690
Slide 1691
1691
Slide 1692
1692
Slide 1693
1693
Slide 1694
1694
Slide 1695
1695
Slide 1696
1696
Slide 1697
1697
Slide 1698
1698
Slide 1699
1699
Slide 1700
1700
Slide 1701
1701
Slide 1702
1702
Slide 1703
1703
Slide 1704
1704
Slide 1705
1705
Slide 1706
1706
Slide 1707
1707
Slide 1708
1708
Slide 1709
1709
Slide 1710
1710
Slide 1711
1711
Slide 1712
1712
Slide 1713
1713
Slide 1714
1714
Slide 1715
1715
Slide 1716
1716
Slide 1717
1717
Slide 1718
1718
Slide 1719
1719
Slide 1720
1720
Slide 1721
1721
Slide 1722
1722
Slide 1723
1723
Slide 1724
1724
Slide 1725
1725
Slide 1726
1726
Slide 1727
1727
Slide 1728
1728
Slide 1729
1729
Slide 1730
1730
Slide 1731
1731
Slide 1732
1732
Slide 1733
1733
Slide 1734
1734
Slide 1735
1735
Slide 1736
1736
Slide 1737
1737
Slide 1738
1738
Slide 1739
1739
Slide 1740
1740
Slide 1741
1741
Slide 1742
1742
Slide 1743
1743
Slide 1744
1744
Slide 1745
1745
Slide 1746
1746
Slide 1747
1747
Slide 1748
1748
Slide 1749
1749
Slide 1750
1750
Slide 1751
1751
Slide 1752
1752
Slide 1753
1753
Slide 1754
1754
Slide 1755
1755
Slide 1756
1756
Slide 1757
1757
Slide 1758
1758
Slide 1759
1759
Slide 1760
1760
Slide 1761
1761
Slide 1762
1762
Slide 1763
1763
Slide 1764
1764
Slide 1765
1765
Slide 1766
1766
Slide 1767
1767
Slide 1768
1768
Slide 1769
1769
Slide 1770
1770
Slide 1771
1771
Slide 1772
1772
Slide 1773
1773
Slide 1774
1774
Slide 1775
1775
Slide 1776
1776
Slide 1777
1777
Slide 1778
1778
Slide 1779
1779
Slide 1780
1780
Slide 1781
1781
Slide 1782
1782
Slide 1783
1783
Slide 1784
1784
Slide 1785
1785
Slide 1786
1786
Slide 1787
1787
Slide 1788
1788
Slide 1789
1789
Slide 1790
1790
Slide 1791
1791
Slide 1792
1792
Slide 1793
1793
Slide 1794
1794
Slide 1795
1795
Slide 1796
1796
Slide 1797
1797
Slide 1798
1798
Slide 1799
1799
Slide 1800
1800
Slide 1801
1801
Slide 1802
1802
Slide 1803
1803
Slide 1804
1804
Slide 1805
1805
Slide 1806
1806
Slide 1807
1807
Slide 1808
1808
Slide 1809
1809
Slide 1810
1810
Slide 1811
1811
Slide 1812
1812
Slide 1813
1813
Slide 1814
1814
Slide 1815
1815
Slide 1816
1816
Slide 1817
1817
Slide 1818
1818
Slide 1819
1819
Slide 1820
1820
Slide 1821
1821
Slide 1822
1822
Slide 1823
1823
Slide 1824
1824
Slide 1825
1825
Slide 1826
1826
Slide 1827
1827
Slide 1828
1828
Slide 1829
1829
Slide 1830
1830
Slide 1831
1831
Slide 1832
1832
Slide 1833
1833
Slide 1834
1834
Slide 1835
1835
Slide 1836
1836
Slide 1837
1837
Slide 1838
1838
Slide 1839
1839
Slide 1840
1840
Slide 1841
1841
Slide 1842
1842
Slide 1843
1843
Slide 1844
1844
Slide 1845
1845
Slide 1846
1846
Slide 1847
1847
Slide 1848
1848
Slide 1849
1849
Slide 1850
1850
Slide 1851
1851
Slide 1852
1852
Slide 1853
1853
Slide 1854
1854
Slide 1855
1855
Slide 1856
1856
Slide 1857
1857
Slide 1858
1858
Slide 1859
1859
Slide 1860
1860
Slide 1861
1861
Slide 1862
1862
Slide 1863
1863
Slide 1864
1864
Slide 1865
1865
Slide 1866
1866
Slide 1867
1867
Slide 1868
1868
Slide 1869
1869
Slide 1870
1870
Slide 1871
1871
Slide 1872
1872
Slide 1873
1873
Slide 1874
1874
Slide 1875
1875
Slide 1876
1876
Slide 1877
1877
Slide 1878
1878
Slide 1879
1879
Slide 1880
1880
Slide 1881
1881
Slide 1882
1882
Slide 1883
1883
Slide 1884
1884
Slide 1885
1885
Slide 1886
1886
Slide 1887
1887
Slide 1888
1888
Slide 1889
1889
Slide 1890
1890
Slide 1891
1891
Slide 1892
1892
Slide 1893
1893
Slide 1894
1894
Slide 1895
1895
Slide 1896
1896
Slide 1897
1897
Slide 1898
1898
Slide 1899
1899
Slide 1900
1900
Slide 1901
1901
Slide 1902
1902
Slide 1903
1903
Slide 1904
1904
Slide 1905
1905
Slide 1906
1906
Slide 1907
1907
Slide 1908
1908
Slide 1909
1909
Slide 1910
1910
Slide 1911
1911
Slide 1912
1912
Slide 1913
1913
Slide 1914
1914
Slide 1915
1915
Slide 1916
1916
Slide 1917
1917
Slide 1918
1918
Slide 1919
1919
Slide 1920
1920
Slide 1921
1921
Slide 1922
1922
Slide 1923
1923
Slide 1924
1924
Slide 1925
1925
Slide 1926
1926
Slide 1927
1927
Slide 1928
1928
Slide 1929
1929
Slide 1930
1930
Slide 1931
1931
Slide 1932
1932
Slide 1933
1933
Slide 1934
1934
Slide 1935
1935
Slide 1936
1936
Slide 1937
1937
Slide 1938
1938
Slide 1939
1939
Slide 1940
1940
Slide 1941
1941
Slide 1942
1942
Slide 1943
1943
Slide 1944
1944
Slide 1945
1945
Slide 1946
1946
Slide 1947
1947
Slide 1948
1948
Slide 1949
1949
Slide 1950
1950
Slide 1951
1951
Slide 1952
1952
Slide 1953
1953
Slide 1954
1954
Slide 1955
1955
Slide 1956
1956
Slide 1957
1957
Slide 1958
1958
Slide 1959
1959
Slide 1960
1960
Slide 1961
1961
Slide 1962
1962
Slide 1963
1963
Slide 1964
1964
Slide 1965
1965
Slide 1966
1966
Slide 1967
1967
Slide 1968
1968
Slide 1969
1969
Slide 1970
1970
Slide 1971
1971
Slide 1972
1972
Slide 1973
1973
Slide 1974
1974
Slide 1975
1975
Slide 1976
1976
Slide 1977
1977
Slide 1978
1978
Slide 1979
1979
Slide 1980
1980
Slide 1981
1981
Slide 1982
1982
Slide 1983
1983
Slide 1984
1984
Slide 1985
1985
Slide 1986
1986
Slide 1987
1987
Slide 1988
1988
Slide 1989
1989
Slide 1990
1990
Slide 1991
1991
Slide 1992
1992
Slide 1993
1993
Slide 1994
1994
Slide 1995
1995
Slide 1996
1996
Slide 1997
1997
Slide 1998
1998
Slide 1999
1999
Slide 2000
2000
Slide 2001
2001
Slide 2002
2002
Slide 2003
2003
Slide 2004
2004
Slide 2005
2005
Slide 2006
2006
Slide 2007
2007
Slide 2008
2008
Slide 2009
2009
Slide 2010
2010
Slide 2011
2011
Slide 2012
2012
Slide 2013
2013
Slide 2014
2014
Slide 2015
2015
Slide 2016
2016
Slide 2017
2017
Slide 2018
2018
Slide 2019
2019
Slide 2020
2020
Slide 2021
2021
Slide 2022
2022
Slide 2023
2023
Slide 2024
2024
Slide 2025
2025
Slide 2026
2026
Slide 2027
2027
Slide 2028
2028
Slide 2029
2029
Slide 2030
2030
Slide 2031
2031
Slide 2032
2032
Slide 2033
2033
Slide 2034
2034
Slide 2035
2035
Slide 2036
2036
Slide 2037
2037
Slide 2038
2038
Slide 2039
2039
Slide 2040
2040
Slide 2041
2041
Slide 2042
2042
Slide 2043
2043
Slide 2044
2044
Slide 2045
2045
Slide 2046
2046
Slide 2047
2047
Slide 2048
2048
Slide 2049
2049
Slide 2050
2050
Slide 2051
2051
Slide 2052
2052
Slide 2053
2053
Slide 2054
2054
Slide 2055
2055
Slide 2056
2056
Slide 2057
2057
Slide 2058
2058
Slide 2059
2059
Slide 2060
2060
Slide 2061
2061
Slide 2062
2062
Slide 2063
2063
Slide 2064
2064
Slide 2065
2065
Slide 2066
2066
Slide 2067
2067
Slide 2068
2068
Slide 2069
2069
Slide 2070
2070
Slide 2071
2071
Slide 2072
2072
Slide 2073
2073
Slide 2074
2074
Slide 2075
2075
Slide 2076
2076
Slide 2077
2077
Slide 2078
2078
Slide 2079
2079
Slide 2080
2080
Slide 2081
2081
Slide 2082
2082
Slide 2083
2083
Slide 2084
2084
Slide 2085
2085
Slide 2086
2086
Slide 2087
2087
Slide 2088
2088
Slide 2089
2089
Slide 2090
2090
Slide 2091
2091
Slide 2092
2092
Slide 2093
2093
Slide 2094
2094
Slide 2095
2095
Slide 2096
2096
Slide 2097
2097
Slide 2098
2098
Slide 2099
2099
Slide 2100
2100
Slide 2101
2101
Slide 2102
2102
Slide 2103
2103
Slide 2104
2104
Slide 2105
2105
Slide 2106
2106
Slide 2107
2107
Slide 2108
2108
Slide 2109
2109
Slide 2110
2110
Slide 2111
2111
Slide 2112
2112
Slide 2113
2113
Slide 2114
2114
Slide 2115
2115
Slide 2116
2116
Slide 2117
2117
Slide 2118
2118
Slide 2119
2119
Slide 2120
2120
Slide 2121
2121
Slide 2122
2122
Slide 2123
2123
Slide 2124
2124
Slide 2125
2125
Slide 2126
2126
Slide 2127
2127
Slide 2128
2128
Slide 2129
2129
Slide 2130
2130
Slide 2131
2131
Slide 2132
2132
Slide 2133
2133
Slide 2134
2134
Slide 2135
2135
Slide 2136
2136
Slide 2137
2137
Slide 2138
2138
Slide 2139
2139
Slide 2140
2140
Slide 2141
2141
Slide 2142
2142
Slide 2143
2143
Slide 2144
2144
Slide 2145
2145
Slide 2146
2146
Slide 2147
2147
Slide 2148
2148
Slide 2149
2149
Slide 2150
2150
Slide 2151
2151
Slide 2152
2152
Slide 2153
2153
Slide 2154
2154
Slide 2155
2155
Slide 2156
2156
Slide 2157
2157
Slide 2158
2158
Slide 2159
2159
Slide 2160
2160
Slide 2161
2161
Slide 2162
2162
Slide 2163
2163
Slide 2164
2164
Slide 2165
2165
Slide 2166
2166
Slide 2167
2167
Slide 2168
2168
Slide 2169
2169
Slide 2170
2170
Slide 2171
2171
Slide 2172
2172
Slide 2173
2173
Slide 2174
2174
Slide 2175
2175
Slide 2176
2176
Slide 2177
2177
Slide 2178
2178
Slide 2179
2179
Slide 2180
2180
Slide 2181
2181
Slide 2182
2182
Slide 2183
2183
Slide 2184
2184
Slide 2185
2185
Slide 2186
2186
Slide 2187
2187
Slide 2188
2188
Slide 2189
2189
Slide 2190
2190
Slide 2191
2191
Slide 2192
2192
Slide 2193
2193
Slide 2194
2194
Slide 2195
2195
Slide 2196
2196
Slide 2197
2197
Slide 2198
2198
Slide 2199
2199
Slide 2200
2200
Slide 2201
2201
Slide 2202
2202
Slide 2203
2203
Slide 2204
2204
Slide 2205
2205
Slide 2206
2206
Slide 2207
2207
Slide 2208
2208
Slide 2209
2209
Slide 2210
2210
Slide 2211
2211
Slide 2212
2212
Slide 2213
2213
Slide 2214
2214
Slide 2215
2215
Slide 2216
2216
Slide 2217
2217
Slide 2218
2218
Slide 2219
2219
Slide 2220
2220
Slide 2221
2221
Slide 2222
2222
Slide 2223
2223
Slide 2224
2224
Slide 2225
2225
Slide 2226
2226
Slide 2227
2227
Slide 2228
2228
Slide 2229
2229
Slide 2230
2230
Slide 2231
2231
Slide 2232
2232
Slide 2233
2233
Slide 2234
2234
Slide 2235
2235
Slide 2236
2236
Slide 2237
2237
Slide 2238
2238
Slide 2239
2239
Slide 2240
2240
Slide 2241
2241
Slide 2242
2242
Slide 2243
2243
Slide 2244
2244
Slide 2245
2245
Slide 2246
2246
Slide 2247
2247
Slide 2248
2248
Slide 2249
2249
Slide 2250
2250
Slide 2251
2251
Slide 2252
2252
Slide 2253
2253
Slide 2254
2254
Slide 2255
2255
Slide 2256
2256
Slide 2257
2257
Slide 2258
2258
Slide 2259
2259
Slide 2260
2260
Slide 2261
2261
Slide 2262
2262
Slide 2263
2263
Slide 2264
2264
Slide 2265
2265
Slide 2266
2266
Slide 2267
2267
Slide 2268
2268
Slide 2269
2269
Slide 2270
2270
Slide 2271
2271
Slide 2272
2272
Slide 2273
2273
Slide 2274
2274
Slide 2275
2275
Slide 2276
2276
Slide 2277
2277
Slide 2278
2278
Slide 2279
2279
Slide 2280
2280
Slide 2281
2281
Slide 2282
2282
Slide 2283
2283
Slide 2284
2284
Slide 2285
2285
Slide 2286
2286
Slide 2287
2287
Slide 2288
2288
Slide 2289
2289
Slide 2290
2290
Slide 2291
2291
Slide 2292
2292
Slide 2293
2293
Slide 2294
2294
Slide 2295
2295
Slide 2296
2296
Slide 2297
2297
Slide 2298
2298
Slide 2299
2299
Slide 2300
2300
Slide 2301
2301
Slide 2302
2302
Slide 2303
2303
Slide 2304
2304
Slide 2305
2305
Slide 2306
2306
Slide 2307
2307
Slide 2308
2308
Slide 2309
2309
Slide 2310
2310
Slide 2311
2311
Slide 2312
2312
Slide 2313
2313
Slide 2314
2314
Slide 2315
2315
Slide 2316
2316
Slide 2317
2317
Slide 2318
2318
Slide 2319
2319
Slide 2320
2320
Slide 2321
2321
Slide 2322
2322
Slide 2323
2323
Slide 2324
2324
Slide 2325
2325

About This Presentation

14TH MANUAL AISC STEEL CONSTRUCTION


Slide Content

Steel
construction
manual
fourteenth edition
american institute
of
steel construction

1 Dimensions and Properties
2 General Design Considerations
3 Design of Flexural Members
4 Design of Compression Members
5 Design of Tension Members
6 Design of Members Subject to Combined Forces
7 Design Considerations for Bolts
8 Design Considerations for Welds
9 Design of Connecting Elements
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page i

AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page ii

10 Design of Simple Shear Connections
11 Design of Partially Restrained Moment Connections
12 Design of Fully Restrained Moment Connections
13 Design of Bracing Connections and Truss Connections
14 Design of Beam Bearing Plates, Col. Base Plates, Anchor Rods, and Col. Splices
15 Design of Hanger Connections, Bracket Plates, and Crane-Rail Connections
16 Specifications and Codes
17 Miscellaneous Data and Mathematical Information
Index and General Nomenclature
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page iii

AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page iv

STEEL
CONSTRUCTION
MANUAL
FOURTEENTH EDITION
AMERICAN INSTITUTE
OF
STEEL CONSTRUCTION
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page v

vi
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC © 2011
by
American Institute of Steel Construction
ISBN 1-56424-060-6
All rights reserved. This book or any part thereof
must not be reproduced in any form without the
written permission of the publisher.
The AISC logo is a registered trademark of AISC.
The information presented in this publication has been prepared in accordance with recog-
nized engineering principles and is for general information only. While it is believed to be
accurate, this information should not be used or relied upon for any specific application
without competent professional examination and verification of its accuracy, suitability, and
applicability by a licensed professional engineer, designer, or architect. The publication of
the material contained herein is not intended as a representation or warranty on the part of
the American Institute of Steel Construction or of any other person named herein, that this
information is suitable for any general or particular use or of freedom from infringement of
any patent or patents. Anyone making use of this information assumes all liability arising
from such use.
Caution must be exercised when relying upon other specifications and codes developed by
other bodies and incorporated by reference herein since such material may be modified or
amended from time to time subsequent to the printing of this edition. The Institute bears no
responsibility for such material other than to refer to it and incorporate it by reference at the
time of the initial publication of this edition.
Printed in the United States of America
First Printing: March 2011
Second Printing: February 2012
Third Printing: February 2013
Fourth Printing: February 2015
AISC_Prelims_14th Ed._February 25, 2013 14-11-10 9:30 AM Page vi (Black plate)

vii
AMERICANINSTITUTE OFSTEELCONSTRUCTION
FOREWORD
The American Institute of Steel Construction, founded in 1921, is the nonprofit technical
standards developer and trade organization for the fabricated structural steel industry in the
United States. AISC is headquartered in Chicago and has a long tradition of service to the
steel construction industry providing timely and reliable information.
The continuing financial support and active participation of Members in the engineering,
research and development activities of the Institute make possible the publishing of this
Steel Construction Manual. Those Members include the following: Full Members engaged
in the fabrication, production and sale of structural steel; Associate Members, who include
erectors, detailers, service consultants, software developers and steel product manufactur-
ers; Professional Members, who are structural or civil engineers and architects, including
architectural and engineering educators; Affiliate Members, who include general contrac-
tors, building inspectors and code officials; and Student Members.
The Institute’s objective is to make structural steel the material of choice, by being the
leader in structural-steel-related technical and market-building activities, including specifi-
cation and code development, research, education, technical assistance, quality certification,
standardization and market development.
To accomplish this objective, the Institute publishes manuals, design guides and specifi-
cations. Best known and most widely used is the Steel Construction Manual, which holds a
highly respected position in engineering literature. The Manual is based on the Specification
for Structural Steel Buildingsand the Code of Standard Practice for Steel Buildings and
Bridges. Both standards are included in the Manual for easy reference.
The Institute also publishes technical information and timely articles in its Engineering
Journal, Design Guide series, Modern Steel Constructionmagazine, and other design aids,
research reports and journal articles. Nearly all of the information AISC publishes is avail-
able for download from the AISC web site at www.aisc.org.
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page vii

viii
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PREFACE
This Manual is the 14th Edition of the AISC Steel Construction Manual, which was first
published in 1927. It replaces the 13th Edition Manual originally published in 2005.
The following specifications, codes and standards are printed in Part 16 of this Manual:
• 2010 AISCSpecification for Structural Steel Buildings
• 2009 RCSCSpecification for Structural Joints Using High-Strength Bolts
• 2010 AISCCode of Standard Practice for Steel Buildings and Bridges
The following resources supplement the Manual and are available on the AISC web site
at www.aisc.org:
• AISCDesign Examples, which illustrate the application of tables and specification
provisions that are included in this Manual.
• AISCShapes Database V14.0 and V14.0H.
• Background and supporting literature (references) for the AISCSteel Construction
Manual.
The following major changes and improvements have been made in this revision:
• All tabular information and discussions have been updated to comply with the 2010
Specification for Structural Buildingsand the standards and other documents refer-
enced therein.
• Shape information has been updated to ASTM A6-09 throughout the Manual, includ-
ing a new HP shape series.
• Eccentrically loaded weld tables have been revised to indicate the strongest weld per-
mitted by the three methods listed in Chapter J of the specification and supplemented
to provide strengths for L-shaped welds loaded from either side.
• The procedure for the design of bracket plates in Part 15 has been revised.
• In Part 10, the procedure for the design of conventional single plate shear connections
has been revised to accommodate the increased bolt shear strengths of the 2010
Specification for Structural Steel Buildings.
• In Part 10, for extended single plate shear connections, information is provided to
determine if stiffening plates (stabilizers) are required.
In addition, many other improvements have been made throughout this Manual and the
number of accompanying design examples has been expanded.
By the AISC Committee on Manuals and Textbooks,
William A. Thornton, Chairman Edward M. Egan
Mark V. Holland, Vice-Chairman Marshall T. Ferrell
Abbas Aminmansour Lanny J. Flynn
Charles J. Carter Patrick J. Fortney
Harry A. Cole Louis F. Geschwindner
Brad Davis W. Scott Goodrich
Robert O. Disque Christopher M. Hewitt
Bo Dowswell W. Steven Hofmeister
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page viii

ix
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bill R. Lindley, II William N. Scott
Ronald L. Meng William T. Segui
Larry S. Muir Victor Shneur
Thomas M. Murray Marc L. Sorenson
Charles R. Page Gary C. Violette
Davis G. Parsons, II Michael A. West
Rafael Sabelli Ronald G. Yeager
Clifford W. Schwinger Cynthia J. Duncan, Secretary
The committee gratefully acknowledges the contributions made to this Manual by the
AISC Committee on Specifications and the following individuals: Leigh C. Arber, Areti
Carter, Janet T. Cummins, Amanuel Gebremeskel, Kurt Gustafson, Richard C. Kaehler,
Daniel J. Kaufman, Rostislav Kucher, Brent L. Leu, Margaret A. Matthew, Frederick J.
Palmer, Vijaykumar Patel, Elizabeth A. Rehwoldt, Thomas J. Schlafly, Zachary W. Stutts
and Sriramulu Vinnakota.
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page ix

x
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design recommendations and considerations sum-
marized in this Manual apply in general to the design and construction of steel buildings and
other structures.
The design of seismic force resisting systems also must meet the requirements in the
AISC Seismic Provisions for Structural Steel Buildings, except in the following cases for
which use of the AISC Seismic Provisionsis not required:
• Buildings and other structures in seismic design category (SDC) A
• Buildings and other structures in SDC B or C with R=3 systems [steel systems not
specifically detailed for seismic resistance per ASCE/SEI 7 Table 12.2-1 (ASCE, 2010)]
• Nonbuilding structures similar to buildings with R=1
1
/2braced-frame systems or
R=1 moment-frame systems; see ASCE/SEI 7 Table 15.4-1
• Nonbuilding structures not similar to buildings (see ASCE/SEI 7 Table 15.4-2), which
are designed to meet the requirements in other standards entirely
Conversely, use of the AISC Seismic Provisionsis required in the following cases:
• Buildings and other structures in SDC B or C when one of the exemptions for steel
seismic force resisting systems above does not apply
• Buildings and other structures in SDC B or C that use composite seismic force resist-
ing systems (those containing composite steel-and-concrete members and those
composed of steel members in combination with reinforced concrete members)
• Buildings in SDC D, E or F
• Nonbuilding structures in SDC D, E or F when the exemption above does not apply
The AISC Seismic Design Manualprovides guidance on the use of the AISC Seismic
Provisions.
The Manual consists of seventeen parts addressing various topics related to steel build-
ing design and construction. Part 1 provides the dimensions and properties for structural
products commonly used. For proper material specifications for these products, as well as
general specification requirements and other design considerations, see Part 2. For the
design of members, see Parts 3 through 6. For the design of connections, see Parts 7 through
15. For AISC Specifications and Codes, see Part 16. For other miscellaneous information,
see Part 17.
REFERENCE
ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10,
American Society of Civil Engineers, Reston, VA.
AISC_Prelims:14th Ed. 1/20/11 7:23 AM Page x

1–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 1
DIMENSIONS AND PROPERTIES
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
STRUCTURAL PRODUCTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
W-, M-, S- and HP-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
Structural Tees (WT-, MT- and ST-Shapes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
Hollow Structural Sections (HSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
Double Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
W-Shapes and S-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
Plate Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Other Structural Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
STANDARD MILL PRACTICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Hot-Rolled Structural Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Hollow Structural Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
Plate Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
PART 1 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–11
TABLES OF DESIGN DIMENSIONS, DETAILING DIMENSIONS, AND AXIAL,
STRONG-AXIS FLEXURAL, AND WEAK-AXIS FLEXURAL PROPERTIES . . . . 1–12
Table 1-1. W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–12
Table 1-2. M-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–30
Table 1-3. S-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32
Table 1-4. HP-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
Table 1-5. C-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–36
Table 1-6. MC-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
Table 1-7. Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–42
AISC_PART 01A:14th Ed_ 4/1/11 9:20 AM Page 1

1–2 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-7A. Workable Gages in Angle Legs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–48
Table 1-7B. Compactness Criteria for Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . .1–49
Table 1-8. WT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–50
Table 1-9. MT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–70
Table 1-10. ST-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–72
Table 1-11. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74
Table 1-12. Square HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–92
Table 1-12A. Rectangular and Square HSS Compactness Criteria . . . . . . . . . . . . .1–95
Table 1-13. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–96
Table 1-14. Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101
Table 1-15. Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–102
Table 1-16. 2C-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–110
Table 1-17. 2MC-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–111
Table 1-18. Weights of Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . 1–113
Table 1-19. W-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–114
Table 1-20. S-Shapes with Cap Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–116
Table 1-21. Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–118
Table 1-22. ASTM A6 Tolerances for W-Shapes and HP-Shapes . . . . . . . . . . . 1–119
Table 1-23. ASTM A6 Tolerances for S-Shapes, M-Shapes and Channels . . . . 1–121
Table 1-24. ASTM A6 Tolerances for WT-, MT-and ST-Shapes . . . . . . . . . . . 1–122
Table 1-25. ASTM A6 Tolerances for Angles, 3 in. and Larger . . . . . . . . . . . . 1–123
Table 1-26. ASTM A6 Tolerances for Angles, <3 in. . . . . . . . . . . . . . . . . . . . . 1–124
Table 1-27. Tolerances for Rectangular and Square HSS . . . . . . . . . . . . . . . . . 1–125
Table 1-28. Tolerances for Round HSS and Pipe . . . . . . . . . . . . . . . . . . . . . . . . 1–126
Table 1-29. Rectangular Sheared Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–127
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 2

STRUCTURAL PRODUCTS 1–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The dimensions and properties for structural products commonly used in steel building
design and construction are given in this Part. Although the dimensions and properties tab-
ulated in Part 1 reflect “commonly” used structural products, some of the shapes listed are
not commonly produced or stocked. These shapes are usually only produced to order, and
will likely be subject to mill production schedules and minimum order quantities. For avail-
ability of shapes, go to www.aisc.org. For torsional and flexural-torsional properties of
rolled shapes see AISC Design Guide 9, Torsional Analysis of Structural Steel Members
(Seaburg and Carter, 1997). For surface areas, box perimeters and areas, W/Dratios and A/D
ratios, see AISC Design Guide 19, Fire Resistance of Structural Steel Framing (Ruddy et al.,
2003).
STRUCTURAL PRODUCTS
W-, M-, S- and HP-Shapes
Four types of H-shaped (or I-shaped) members are covered in this Manual:
• W-shapes, which have essentially parallel inner and outer flange surfaces.
• M-shapes, which are H-shaped members that are not classified in ASTM A6 as W-, S-
or HP-shapes. M-shapes may have a sloped inside flange face or other cross-section
features that do not meet the criteria for W-, S- or HP-shapes.
• S-shapes (also known as American standard beams), which have a slope of approxi-
mately 16
2
/3% (2 on 12) on the inner flange surfaces.
• HP-shapes (also known as bearing piles), which are similar to W-shapes except their
webs and flanges are of equal thickness and the depth and flange width are nominally
equal for a given designation.
These shapes are designated by the mark W, M, S or HP, nominal depth (in.) and nomi-
nal weight (lb/ft). For example, a W24×55 is a W-shape that is nominally 24 in. deep and
weighs 55 lb/ft.
The following dimensional and property information is given in this Manual for the W-,
M-, S- and HP-shapes covered in ASTM A6:
• Design dimensions, detailing dimensions, axial properties and flexural properties are
given in Tables 1-1, 1-2, 1-3 and 1-4 for W-, M-, S- and HP-shapes, respectively.
• SI-equivalent designations are given in Table 17-1 for W-shapes and in Table 17-2 for
M-, S- and HP-shapes.
Tabulated decimal values are appropriate for use in design calculations, whereas frac-
tional values are appropriate for use in detailing. All decimal and fractional values are
similar with one exception: Because of the variation in fillet sizes used in shape production,
the decimal value, k
des, is conservatively presented based on the smallest fillet used in pro-
duction, and the fractional value, k
det, is conservatively presented based on the largest fillet
used in production. For the definitions of the tabulated variables, refer to the Nomenclature
section at the back of this Manual.
When appropriate, this Manual presents tabulated values for the workable gage of a
section. The term workable gage refers to the gage for fasteners in the flange that provides
for entering and tightening clearances and edge distance and spacing requirements. When
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 3

1–4 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the listed value is footnoted, the actual size, combination, and orientation of fastener
components should be compared with the geometry of the cross section to ensure compati-
bility. Other gages that provide for entering and tightening clearances and edge distance and
spacing requirements can also be used.
Channels
Two types of channels are covered in this Manual:
• C-shapes (also known as American standard channels), which have a slope of approx-
imately 16
2
/3% (2 on 12) on the inner flange surfaces.
• MC-shapes (also known as miscellaneous channels), which have a slope other than
16
2
/3% (2 on 12) on the inner flange surfaces.
These shapes are designated by the mark C or MC, nominal depth (in.) and nominal
weight (lb/ft). For example, a C12×25 is a C-shape that is nominally 12 in. deep and weighs
25 lb/ft.
The following dimensional and property information is given in this Manual for the chan-
nels covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Tables 1-5 and 1-6 for C- and MC-shapes, respectively.
• SI-equivalent designations are given in Table 17-3.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Angles
Angles (also known as L-shapes) have legs of equal thickness and either equal or unequal
leg sizes. Angles are designated by the mark L, leg sizes (in.) and thickness (in.). For exam-
ple, an L4×3×
1
/2is an angle with one 4-in. leg, one 3-in. leg, and
1
/2-in. thickness.
The following dimensional and property information is given in this Manual for the
angles covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and flexural-torsional
properties are given in Table 1-7. The effects of leg-to-leg and toe fillet radii have been
considered in the determination of these section properties. The S
zvalue that is given in
Table 1-7 is based on the largest perpendicular distance measured from the z-axis to the
center of the thickness at the tip of the angle toe(s) or heel. Additional properties of sin-
gle angles are provided in the digital shapes database available at www.aisc.org. These
properties are used for calculations involving zand wprincipal axes. For unequal leg
angles, the database includes I, and values of Sat the toe of the short leg, the heel, and
the toe of the long leg, for the wand zprincipal axes. For equal leg angles, the database
includes I, and values of Sat the toe of the leg and the heel, for wand zprincipal axes.
• Workable gages on angle legs are tabulated in Table 1-7A.
• Compactness criteria for angles are tabulated in Table 1-7B.
• SI-equivalent designations are given in Table 17-4.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 4

STRUCTURAL PRODUCTS 1–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Structural Tees (WT-, MT- and ST-Shapes)
Three types of structural tees are covered in this Manual:
• WT-shapes, which are made from W-shapes
• MT-shapes, which are made from M-shapes
• ST-shapes, which are made from S-shapes
These shapes are designated by the mark WT, MT or ST, nominal depth (in.) and nomi-
nal weight (lb/ft). WT-, MT- and ST-shapes are split (sheared or thermal-cut) from W-,
M- and S-shapes, respectively, and have half the nominal depth and weight of that shape.
For example, a WT12×27.5 is a structural tee split from a W-shape (W24×55), is nomi-
nally 12 in. deep and weighs 27.5 lb/ft. Although off-center splitting or splitting on two
lines can be obtained by special order, the resulting nonstandard shape is not covered in
this Manual.
The following dimensional and property information is given in this Manual for the struc-
tural tees cut from the W-, M- and S-shapes covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Tables 1-8, 1-9 and 1-10 for WT-, MT- and ST-shapes, respectively.
• SI-equivalent designations are given in Table 17-5 for WT-shapes and in Table 17-6 for
MT- and ST-shapes.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Hollow Structural Sections (HSS)
Three types of HSS are covered in this Manual:
• Rectangular HSS, which have an essentially rectangular cross section, except for
rounded corners, and uniform wall thickness, except at the weld seam(s)
• Square HSS, which have an essentially square cross section, except for rounded cor-
ners, and uniform wall thickness, except at the weld seam(s)
• Round HSS, which have an essentially round cross section and uniform wall thickness,
except at the weld seam(s)
In each case, ASTM A500 covers only electric-resistance-welded (ERW) HSS with a max-
imum periphery of 64 in. The coverage of HSS in this Manual is similarly limited.
Rectangular HSS are designated by the mark HSS, overall outside dimensions (in.), and
wall thickness (in.), with all dimensions expressed as fractional numbers. For example,
an HSS10×10×
1
/2is nominally 10 in. by 10 in. with a
1
/2-in. wall thickness. Round HSS are
designated by the term HSS, nominal outside diameter (in.), and wall thickness (in.) with
both dimensions expressed to three decimal places. For example, an HSS10.000×0.500 is
nominally 10 in. in diameter with a
1
/2-in. nominal wall thickness.
Per AISC SpecificationSection B4.2, the wall thickness used in design, t
des, is taken as
0.93 times the nominal wall thickness, t
nom. The rationale for this requirement is explained
in the corresponding Specification Commentary Section B4.2.
In calculating the tabulated b/tand h/tratios, the outside corner radii are taken as 1.5t
des
for rectangular and square HSS, per AISC SpecificationSection B4.1. In other tabulated
design dimensions, the corner radii are taken as 2t
des. In the tabulated workable flat dimen-
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 5

1–6 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
sions of rectangular (and square) HSS, the outside corner radii are taken as 2.25t nom. The
term workable flat refers to a reasonable flat width or depth of material for use in making
connections to HSS. The workable flat dimension is provided as a reflection of current
industry practice, although the tolerances of ASTM A500 allow a greater maximum corner
radius of 3t
nom.
The following dimensional and property information is given in this Manual for the HSS
covered in ASTM A500, A501, A618 or A847:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis
flexural, torsional, and flexural-torsional properties are given in Tables 1-11 and 1-12
for rectangular and square HSS, respectively.
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Table 1-13 for round HSS.
• SI-equivalent designations are given in Tables 17-7, 17-8 and 17-9 for rectangular,
square and round HSS, respectively.
• Compactness criteria of rectangular and square HSS are given in Table 1-12A.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Pipe
Pipes have an essentially round cross section and uniform thickness, except at the weld
seam(s) for welded pipe.
Pipes up to and including NPS 12 are designated by the term Pipe, nominal diameter (in.)
and weight class (Std., x-Strong, xx-Strong). NPS stands for nominal pipe size. For exam-
ple, Pipe 5 Std. denotes a pipe with a 5-in. nominal diameter and a 0.258-in. wall thickness,
which corresponds to the standard weight series. Pipes with wall thicknesses that do not
correspond to the foregoing weight classes are designated by the term Pipe, outside diame-
ter (in.), and wall thickness (in.) with both expressed to three decimal places. For example,
Pipe 14.000×0.375 and Pipe 5.563×0.500 are proper designations.
Per AISC SpecificationSection B4.2, the wall thickness used in design, t
des, is taken as
0.93 times the nominal wall thickness, t
nom. The rationale for this requirement is explained
in the corresponding Specification Commentary Section B4.2.
The following dimensional and property information is given in this Manual for the pipes
covered in ASTM A53:
• Design dimensions, detailing dimensions, and axial, flexural and torsional properties
are given in Table 1-14.
• SI-equivalent designations are given in Table 17-10.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Double Angles
Double angles (also known as 2L-shapes) are made with two angles that are interconnected
through their back-to-back legs along the length of the member, either in contact for the full
length or separated by spacers at the points of interconnection.
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 6

STRUCTURAL PRODUCTS 1–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
These shapes are designated by the mark 2L, the sizes and thickness of their legs (in.),
and their orientation when the angle legs are not of equal size (LLBB or SLBB).
1
For exam-
ple, a 2L4×3×
1
/2LLBBhas two angles with one 4-in. leg and one 3-in. leg and the 4-in. legs
are back-to-back; a 2L4×3×
1
/2SLBBis similar, except the 3-in. legs are back-to-back. In
both cases, the legs are
1
/2-in. thick.
The following dimensional and property information is given in this Manual for the dou-
ble angles built-up from the angles covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, weak-axis
flexural, torsional, and flexural-torsional properties are given in Table 1-15 for equal-
leg, LLBB and SLBB angles. In each case, angle separations of zero in.,
3
/8in. and
3
/4in. are covered. The effects of leg-to-leg and toe fillet radii have been considered in
the determination of these section properties. For workable gages on legs of angles, see
Table 1-7A.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Double Channels
Double channels (also known as 2C- and 2MC-shapes) are made with two channels that are
interconnected through their back-to-back webs along the length of the member, either in
contact for the full length or separated by spacers at the points of interconnection.
These shapes are designated by the mark 2C or 2MC, nominal depth (in.), and nominal
weight per channel (lb/ft). For example, a 2C12×25 is a double channel that consists of two
channels that are each nominally 12 in. deep and each weigh 25 lb/ft.
The following dimensional and property information is given in this Manual for the dou-
ble channels built-up from the channels covered in ASTM A6:
• Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties are given in Tables 1-16 and 1-17 for 2C- and 2MC-shapes,
respectively. In each case, channel separations of zero,
3
/8in. and
3
/4in. are covered.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
W-Shapes and S-Shapes with Cap Channels
Common combined sections made with W- or S-shapes and channels (C- or MC-shapes) are
tabulated in this Manual. In either case, the channel web is interconnected to the W-shape
or S-shape top flange, respectively, with the flange toes down. The interconnection of the
two elements must be designed for the horizontal shear, q, where
(1-1)
1
LLBB stands for long legs back-to-back. SLBB stands for short legs back-to-back. Alternatively, the ori-
entations LLV and SLV, which stand for long legs vertical and short legs vertical, respectively, can be used.
q
VQ
I
=
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 7

where
I=moment of inertia of the combined cross section, in.
4
Q=first moment of the channel area about the neutral axis of the combined
cross section, in.
3
V=vertical shear, kips
q=horizontal shear, kips/in.
The effects of other forces, such as crane horizontal and lateral forces, may also require con-
sideration, when applicable.
The following dimensional and property information is given in this Manual for combined
sections built-up from the W-shapes, S-shapes and cap channels covered in ASTM A6:
Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties of W-shapes with cap channels are given in Table 1-19.
Design dimensions, detailing dimensions, and axial, strong-axis flexural, and weak-
axis flexural properties of S-shapes with cap channels are given in Table 1-20.
For the definitions of the tabulated variables, refer to the Nomenclature section at the back
of this Manual.
Plate Products
Plate products may be ordered as sheet, strip or bar material. Sheet and strip are distinguished
from structural bars and plates by their dimensional characteristics, as outlined in Table 2-3
and Table 2-5.
The historical classification system for structural bars and plates suggests that there is
only a physical difference between them based upon size and production procedure. In raw
form, flat stock has historically been classified as a bar if it is less than or equal to 8 in. wide
and as a plate if it is greater than 8 in. wide. Bars are rolled between horizontal and vertical
rolls and trimmed to length by shearing or thermal cutting on the ends only. Plates are gen-
erally produced using one of two methods:
1. Sheared plates are rolled between horizontal rolls and trimmed to width and length by
shearing or thermal cutting on the edges and ends; or
2. Stripped plates are sheared or thermal cut from wider sheared plates.
There is very little, if any, structural difference between plates and bars. Consequently, the
term plate is becoming a universally applied term today and a PL
1
/2in.×4
1
/2in.×1ft 3 in., for
example, might be fabricated from plate or bar stock.
For structural plates, the preferred practice is to specify thickness in
1
/16-in. increments up
to
3
/8-in. thickness,
1
/8-in. increments over
3
/8-in. to 1-in. thickness, and
1
/4-in. increments
over 1-in. thickness. The current extreme width for sheared plates is 200 in. Because
mill practice regarding plate widths vary, individual mills should be consulted to determine
preferences.
For bars, the preferred practice is to specify width in
1
/4-in. increments, and thickness and
diameter in
1
/8-in. increments.
1–8 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 2/17/12 7:10 AM Page 8

STANDARD MILL PRACTICES 1–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Raised-Pattern Floor Plates
Weights of raised-pattern floor plates are given in Table 1-18. Raised-pattern floor plates are
commonly available in widths up to 120 in. For larger plate widths, see literature available
from floor plate producers.
Crane Rails
Although crane rails are not listed as structural steel in the AISC Code of Standard Practice
Section 2.1, this information is provided because some fabricators may choose to provide
crane rails. Crane rails are designated by unit weight in lb/yard. Dimensions and properties
for the crane rails shown are given in Table 1-21. Crane rails can be either heat treated or
end hardened to reduce wear. For additional information or for profiles and properties of
crane rails not listed, manufacturer’s catalogs should be consulted. For crane-rail connec-
tions, see Part 15.
Other Structural Products
The following other structural products are covered in this Manual as indicated:
• High-strength bolts, common bolts, washers, nuts and direct-tension-indicator washers
are covered in Part 7.
• Welding filler metals and fluxes are covered in Part 8.
• Forged steel structural hardware items, such as clevises, turnbuckles, sleeve nuts,
recessed-pin nuts, and cotter pins are covered in Part 15.
• Anchor rods and threaded rods are covered in Part 14.
STANDARD MILL PRACTICES
The production of structural products is subject to unavoidable variations relative to the the-
oretical dimensions and profiles, due to many factors, including roll wear, roll dressing
practices and temperature effects. Such variations are limited by the dimensional and pro-
file tolerances as summarized below.
Hot-Rolled Structural Shapes
Acceptable dimensional tolerances for hot-rolled structural shapes (W-, M-, S- and HP-
shapes), channels (C- and MC-shapes), and angles are given in ASTM A6 Section 12 and
summarized in Tables 1-22 through 1-26. Supplementary information, including permissi-
ble variations for sheet and strip and for other grades of steel, can also be found in literature
from steel plate producers and the Association of Iron and Steel Technology.
Hollow Structural Sections
Acceptable dimensional tolerances for HSS are given in ASTM A500 Section 11, A501
Section 12, A618 Section 8, or A847 Section 10, as applicable, and summarized in Tables
1-27 and 1-28, for rectangular and round HSS, respectively. Supplementary information
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 9

1–10 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
can also be found in literature from HSS producers and the Steel Tube Institute, such as
Recommended Methods to Check Dimensional Tolerances on Hollow Structural Sections
(HSS) Made to ASTM A500.
Pipe
Acceptable dimensional tolerances for pipes are given in ASTM A53 Section 10 and
summarized in Table 1-28. Supplementary information can also be found in literature
from pipe producers.
Plate Products
Acceptable dimensional tolerances for plate products are given in ASTM A6 Section 12
and summarized in Table 1-29. Note that plate thickness can be specified in inches or by
weight per square foot, and separate tolerances apply to each method. No decimal edge
thickness can be assured for plate specified by the latter method. Supplementary infor-
mation, including permissible variations for sheet and strip and for other grades of steel,
can also be found in literature from steel plate producers and the Association of Iron and
Steel Technology.
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 10

PART 1 REFERENCES 1–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 1 REFERENCES
Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of
Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 11

Table 1-1
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
W44×335
c
98.5 44.0 44 1.03 1
1
/215.9 16 1.77 1
3
/42.56 2
5
/81
5
/1638
3
/45
1
/2
×290
c
85.4 43.6 43
5
/80.865
7
/8
7/1615.8 15
7
/81.58 1
9
/162.36 2
7
/161
1
/4
×262
c
77.2 43.3 43
1
/40.785
13
/16
7/1615.8 15
3
/41.42 1
7
/162.20 2
1
/41
3
/16
×230
c,v
67.8 42.9 42
7
/80.710
11
/16
3/815.8 15
3
/41.22 1
1
/42.01 2
1
/161
3
/16
W40×593
h
174 43.0 43 1.79 1
13
/16
15/1616.7 16
3
/43.23 3
1
/44.41 4
1
/22
1
/834 7
1
/2
×503
h
148 42.1 42 1.54 1
9
/16
13/1616.4 16
3
/82.76 2
3
/43.94 4 2
×431
h
127 41.3 41
1
/41.34 1
5
/16
11/1616.2 16
1
/42.36 2
3
/83.54 3
5
/81
7
/8
×397
h
117 41.0 41 1.22 1
1
/4
5 /816.1 16
1
/82.20 2
3
/163.38 3
1
/21
13
/16
×372
h
110 40.6 40
5
/81.16 1
3
/16
5/816.1 16
1
/82.05 2
1
/163.23 3
5
/161
13
/16
×362
h
106 40.6 40
1
/21.12 1
1
/8
9/1616.0 16 2.01 2 3.19 3
1
/41
3
/4
×324 95.3 40.2 40
1
/81.00 1
1
/215.9 15
7
/81.81 1
13
/162.99 3
1
/161
11
/16
×297
c
87.3 39.8 39
7
/80.930
15
/16
1/215.8 15
7
/81.65 1
5
/82.83 2
15
/161
11
/16
×277
c
81.5 39.7 39
3
/40.830
13
/16
7/1615.8 15
7
/81.58 1
9
/162.76 2
7
/81
5
/8
×249
c
73.5 39.4 39
3
/80.750
3
/4
3/815.8 15
3
/41.42 1
7
/162.60 2
11
/161
9
/16
×215
c
63.5 39.0 39 0.650
5
/8
5/1615.8 15
3
/41.22 1
1
/42.40 2
1
/21
9
/16
×199
c
58.8 38.7 38
5
/80.650
5
/8
5/1615.8 15
3
/41.07 1
1
/162.25 2
5
/161
9
/16
W40×392
h
116 41.6 41
5
/81.42 1
7
/16
3/412.4 12
3
/82.52 2
1
/23.70 3
13
/161
15
/1634 7
1
/2
×331
h
97.7 40.8 40
3
/41.22 1
1
/4
5/812.2 12
1
/82.13 2
1
/83.31 3
3
/81
13
/16
×327
h
95.9 40.8 40
3
/41.18 1
3
/16
5/812.1 12
1
/82.13 2
1
/83.31 3
3
/81
13
/16
×294 86.2 40.4 40
3
/81.06 1
1
/16
9/1612.0 12 1.93 1
15
/163.11 3
3
/161
3
/4
×278 82.3 40.2 40
1
/81.03 1
1
/212.0 12 1.81 1
13
/162.99 3
1
/161
3
/4
×264 77.4 40.0 40 0.960
15
/16
1/211.9 11
7
/81.73 1
3
/42.91 3 1
11
/16
×235
c
69.1 39.7 39
3
/40.830
13
/16
7/1611.9 11
7
/81.58 1
9
/162.76 2
7
/81
5
/8
×211
c
62.1 39.4 39
3
/80.750
3
/4
3/811.8 11
3
/41.42 1
7
/162.60 2
11
/161
9
/16
×183
c
53.3 39.0 39 0.650
5
/8
5/1611.8 11
3
/41.20 1
3
/162.38 2
1
/21
9
/16
×167
c
49.3 38.6 38
5
/80.650
5
/8
5/1611.8 11
3
/41.03 1 2.21 2
5
/161
9
/16
×149
c,v
43.8 38.2 38
1
/40.630
5
/8
5/1611.8 11
3
/40.830
13
/162.01 2
1
/81
1
/2
1–12 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 12

Table 1-1 (continued)
W-Shapes
Properties
DIMENSIONS AND PROPERTIES 1–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
335 4.50 38.0 31100 1410 17.8 1620 1200 150 3.49 236 4.24 42.2 74.7 535000
290 5.02 45.0 27000 1240 17.8 1410 1040 132 3.49 205 4.20 42.0 50.9 461000
262 5.57 49.6 24100 1110 17.7 1270 923 117 3.47 182 4.17 41.9 37.3 405000
230 6.45 54.8 20800 971 17.5 1100 796 101 3.43 157 4.13 41.7 24.9 346000
593 2.58 19.1 50400 2340 17.0 2760 2520 302 3.80 481 4.63 39.8 445 997000
503 2.98 22.3 41600 1980 16.8 2320 2040 249 3.72 394 4.50 39.3 277 789000
431 3.44 25.5 34800 1690 16.6 1960 1690 208 3.65 328 4.41 38.9 177 638000
397 3.66 28.0 32000 1560 16.6 1800 1540 191 3.64 300 4.38 38.8 142 579000
372 3.93 29.5 29600 1460 16.5 1680 1420 177 3.60 277 4.33 38.6 116 528000
362 3.99 30.5 28900 1420 16.5 1640 1380 173 3.60 270 4.33 38.6 109 513000
324 4.40 34.2 25600 1280 16.4 1460 1220 153 3.58 239 4.27 38.4 79.4 448000
297 4.80 36.8 23200 1170 16.3 1330 1090 138 3.54 215 4.22 38.2 61.2 399000
277 5.03 41.2 21900 1100 16.4 1250 1040 132 3.58 204 4.25 38.1 51.5 379000
249 5.55 45.6 19600 993 16.3 1120 926 118 3.55 182 4.21 38.0 38.1 334000
215 6.45 52.6 16700 859 16.2 964 803 101 3.54 156 4.19 37.8 24.8 284000
199 7.39 52.6 14900 770 16.0 869 695 88.2 3.45 137 4.12 37.6 18.3 246000
392 2.45 24.1 29900 1440 16.1 1710 803 130 2.64 212 3.30 39.1 172 306000
331 2.86 28.0 24700 1210 15.9 1430 644 106 2.57 172 3.21 38.7 105 241000
327 2.85 29.0 24500 1200 16.0 1410 640 105 2.58 170 3.21 38.7 103 239000
294 3.11 32.2 21900 1080 15.9 1270 562 93.5 2.55 150 3.16 38.5 76.6 208000
278 3.31 33.3 20500 1020 15.8 1190 521 87.1 2.52 140 3.13 38.4 65.0 192000
264 3.45 35.6 19400 971 15.8 1130 493 82.6 2.52 132 3.12 38.3 56.1 181000
235 3.77 41.2 17400 875 15.9 1010 444 74.6 2.54 118 3.11 38.1 41.3 161000
211 4.17 45.6 15500 786 15.8 906 390 66.1 2.51 105 3.07 38.0 30.4 141000
183 4.92 52.6 13200 675 15.7 774 331 56.0 2.49 88.3 3.04 37.8 19.3 118000
167 5.76 52.6 11600 600 15.3 693 283 47.9 2.40 76.0 2.98 37.6 14.0 99700
149 7.11 54.3 9800 513 15.0 598 229 38.8 2.29 62.2 2.89 37.4 9.36 80000
W44-W40
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 13

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
W36×652
h
192 41.1 41 1.97 2 1 17.6 17
5
/83.54 3
9
/164.49 4
13
/162
3
/1631
3
/87
1
/2
×529
h
156 39.8 39
3
/41.61 1
5
/8
13/1617.2 17
1
/42.91 2
15
/163.86 4
3
/162
×487
h
143 39.3 39
3
/81.50 1
1
/2
3/417.1 17
1
/82.68 2
11
/163.63 4 1
7
/8
×441
h
130 38.9 38
7
/81.36 1
3
/8
11/1617.0 17 2.44 2
7
/163.39 3
3
/41
7
/8
×395
h
116 38.4 38
3
/81.22 1
1
/4
5/816.8 16
7
/82.20 2
3
/163.15 3
7
/161
13
/16
×361
h
106 38.0 38 1.12 1
1
/8
9/1616.7 16
3
/42.01 2 2.96 3
5
/161
3
/4
×330 96.9 37.7 37
5
/81.02 1
1
/216.6 16
5
/81.85 1
7
/82.80 3
1
/81
3
/4
×302 89.0 37.3 37
3
/80.945
15
/16
1/216.7 16
5
/81.68 1
11
/162.63 3 1
11
/16
×282
c
82.9 37.1 37
1
/80.885
7
/8
7/1616.6 16
5
/81.57 1
9
/162.52 2
7
/81
5
/8
×262
c
77.2 36.9 36
7
/80.840
13
/16
7/1616.6 16
1
/21.44 1
7
/162.39 2
3
/41
5
/8
×247
c
72.5 36.7 36
5
/80.800
13
/16
7/1616.5 16
1
/21.35 1
3
/82.30 2
5
/81
5
/8
×231
c
68.2 36.5 36
1
/20.760
3
/4
3/816.5 16
1
/21.26 1
1
/42.21 2
9
/161
9
/16
W36×256 75.3 37.4 37
3
/80.960
15
/16
1/212.2 12
1
/41.73 1
3
/42.48 2
5
/81
5
/1632
1
/85
1
/2
×232
c
68.0 37.1 37
1
/80.870
7
/8
7/1612.1 12
1
/81.57 1
9
/162.32 2
7
/161
1
/4
×210
c
61.9 36.7 36
3
/40.830
13
/16
7/1612.2 12
1
/81.36 1
3
/82.11 2
5
/161
1
/4
×194
c
57.0 36.5 36
1
/20.765
3
/4
3/812.1 12
1
/81.26 1
1
/42.01 2
3
/161
3
/16
×182
c
53.6 36.3 36
3
/80.725
3
/4
3/812.1 12
1
/81.18 1
3
/161.93 2
1
/81
3
/16
×170
c
50.0 36.2 36
1
/80.680
11
/16
3/812.0 12 1.10 1
1
/81.85 2 1
3
/16
×160
c
47.0 36.0 36 0.650
5
/8
5/1612.0 12 1.02 1 1.77 1
15
/161
1
/8
×150
c
44.3 35.9 35
7
/80.625
5
/8
5/1612.0 12 0.940
15
/161.69 1
7
/81
1
/8
×135
c,v
39.9 35.6 35
1
/20.600
5
/8
5/1612.0 12 0.790
13
/161.54 1
11
/161
1
/8
W33×387
h
114 36.0 36 1.26 1
1
/4
5/816.2 16
1
/42.28 2
1
/43.07 3
3
/161
7
/1629
5
/85
1
/2
×354
h
104 35.6 35
1
/21.16 1
3
/16
5/816.1 16
1
/82.09 2
1
/162.88 2
15
/161
3
/8
×318 93.7 35.2 35
1
/81.04 1
1
/16
9/1616.0 16 1.89 1
7
/82.68 2
3
/41
5
/16
×291 85.6 34.8 34
7
/80.960
15
/16
1/215.9 15
7
/81.73 1
3
/42.52 2
5
/81
5
/16
×263 77.4 34.5 34
1
/20.870
7
/8
7/1615.8 15
3
/41.57 1
9
/162.36 2
7
/161
1
/4
×241
c
71.1 34.2 34
1
/80.830
13
/16
7/1615.9 15
7
/81.40 1
3
/82.19 2
1
/41
1
/4
×221
c
65.3 33.9 33
7
/80.775
3
/4
3/815.8 15
3
/41.28 1
1
/42.06 2
1
/81
3
/16
×201
c
59.1 33.7 33
5
/80.715
11
/16
3/815.7 15
3
/41.15 1
1
/81.94 2 1
3
/16
W33×169
c
49.5 33.8 33
7
/80.670
11
/16
3/811.5 11
1
/21.22 1
1
/41.92 2
1
/81
3
/1629
5
/85
1
/2
×152
c
44.9 33.5 33
1
/20.635
5
/8
5/1611.6 11
5
/81.06 1
1
/161.76 1
15
/161
1
/8
×141
c
41.5 33.3 33
1
/40.605
5
/8
5/1611.5 11
1
/20.960
15
/161.66 1
13
/161
1
/8
×130
c
38.3 33.1 33
1
/80.580
9
/16
5/1611.5 11
1
/20.855
7
/81.56 1
3
/41
1
/8
×118
c,v
34.7 32.9 32
7
/80.550
9
/16
5/1611.5 11
1
/20.740
3
/41.44 1
5
/81
1
/8
1–14 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 14

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W36-W33
DIMENSIONS AND PROPERTIES 1–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
652 2.48 16.3 50600 2460 16.2 2910 3230 367 4.10 581 4.96 37.6 593 1130000
529 2.96 19.9 39600 1990 16.0 2330 2490 289 4.00 454 4.80 36.9 327 846000
487 3.19 21.4 36000 1830 15.8 2130 2250 263 3.96 412 4.74 36.6 258 754000
441 3.48 23.6 32100 1650 15.7 1910 1990 235 3.92 368 4.69 36.5 194 661000
395 3.83 26.3 28500 1490 15.7 1710 1750 208 3.88 325 4.61 36.2 142 575000
361 4.16 28.6 25700 1350 15.6 1550 1570 188 3.85 293 4.58 36.0 109 509000
330 4.49 31.4 23300 1240 15.5 1410 1420 171 3.83 265 4.53 35.9 84.3 456000
302 4.96 33.9 21100 1130 15.4 1280 1300 156 3.82 241 4.53 35.6 64.3 412000
282 5.29 36.2 19600 1050 15.4 1190 1200 144 3.80 223 4.50 35.5 52.7 378000
262 5.75 38.2 17900 972 15.3 1100 1090 132 3.76 204 4.46 35.5 41.6 342000
247 6.11 40.1 16700 913 15.2 1030 1010 123 3.74 190 4.42 35.4 34.7 316000
231 6.54 42.2 15600 854 15.1 963 940 114 3.71 176 4.40 35.2 28.7 292000
256 3.53 33.8 16800 895 14.9 1040 528 86.5 2.65 137 3.24 35.7 52.9 168000
232 3.86 37.3 15000 809 14.8 936 468 77.2 2.62 122 3.21 35.5 39.6 148000
210 4.48 39.1 13200 719 14.6 833 411 67.5 2.58 107 3.18 35.3 28.0 128000
194 4.81 42.4 12100 664 14.6 767 375 61.9 2.56 97.7 3.15 35.2 22.2 116000
182 5.12 44.8 11300 623 14.5 718 347 57.6 2.55 90.7 3.13 35.1 18.5 107000
170 5.47 47.7 10500 581 14.5 668 320 53.2 2.53 83.8 3.11 35.1 15.1 98500
160 5.88 49.9 9760 542 14.4 624 295 49.1 2.50 77.3 3.09 35.0 12.4 90200
150 6.37 51.9 9040 504 14.3 581 270 45.1 2.47 70.9 3.06 35.0 10.1 82200
135 7.56 54.1 7800 439 14.0 509 225 37.7 2.38 59.7 2.99 34.8 7.00 68100
387 3.55 23.7 24300 1350 14.6 1560 1620 200 3.77 312 4.49 33.7 148 459000
354 3.85 25.7 22000 1240 14.5 1420 1460 181 3.74 282 4.44 33.5 115 408000
318 4.23 28.7 19500 1110 14.5 1270 1290 161 3.71 250 4.40 33.3 84.4 357000
291 4.60 31.0 17700 1020 14.4 1160 1160 146 3.68 226 4.34 33.1 65.1 319000
263 5.03 34.3 15900 919 14.3 1040 1040 131 3.66 202 4.31 32.9 48.7 281000
241 5.66 35.9 14200 831 14.1 940 933 118 3.62 182 4.29 32.8 36.2 251000
221 6.20 38.5 12900 759 14.1 857 840 106 3.59 164 4.25 32.6 27.8 224000
201 6.85 41.7 11600 686 14.0 773 749 95.2 3.56 147 4.21 32.6 20.8 198000
169 4.71 44.7 9290 549 13.7 629 310 53.9 2.50 84.4 3.03 32.6 17.7 82400
152 5.48 47.2 8160 487 13.5 559 273 47.2 2.47 73.9 3.01 32.4 12.4 71700
141 6.01 49.6 7450 448 13.4 514 246 42.7 2.43 66.9 2.98 32.3 9.70 64400
130 6.73 51.7 6710 406 13.2 467 218 37.9 2.39 59.5 2.94 32.2 7.37 56600
118 7.76 54.5 5900 359 13.0 415 187 32.6 2.32 51.3 2.89 32.2 5.30 48300
AISC_PART 01A:14th Ed_ 1/20/11 7:25 AM Page 15

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
W30×391
h
115 33.2 33
1
/41.36 1
3
/8
11/1615.6 15
5
/82.44 2
7
/163.23 3
3
/81
1
/226
1
/25
1
/2
×357
h
105 32.8 32
3
/41.24 1
1
/4
5/815.5 15
1
/22.24 2
1
/43.03 3
1
/81
7
/16
×326
h
95.9 32.4 32
3
/81.14 1
1
/8
9/1615.4 15
3
/82.05 2
1
/162.84 2
15
/161
3
/8
×292 86.0 32.0 32 1.02 1
1
/215.3 15
1
/41.85 1
7
/82.64 2
3
/41
5
/16
×261 77.0 31.6 31
5
/80.930
15
/16
1/215.2 15
1
/81.65 1
5
/82.44 2
9
/161
5
/16
×235 69.3 31.3 31
1
/40.830
13
/16
7/1615.1 15 1.50 1
1
/22.29 2
3
/81
1
/4
×211 62.3 30.9 31 0.775
3
/4
3/815.1 15
1
/81.32 1
5
/162.10 2
1
/41
3
/16
×191
c
56.1 30.7 30
5
/80.710
11
/16
3/815.0 15 1.19 1
3
/161.97 2
1
/161
3
/16
×173
c
50.9 30.4 30
1
/20.655
5
/8
5/1615.0 15 1.07 1
1
/161.85 2 1
1
/8
W30×148
c
43.6 30.7 30
5
/80.650
5
/8
5/1610.5 10
1
/21.18 1
3
/161.83 2
1
/161
1
/826
1
/25
1
/2
×132
c
38.8 30.3 30
1
/40.615
5
/8
5/1610.5 10
1
/21.00 1 1.65 1
7
/81
1
/8
×124
c
36.5 30.2 30
1
/80.585
9
/16
5/1610.5 10
1
/20.930
15
/161.58 1
13
/161
1
/8
×116
c
34.2 30.0 30 0.565
9
/16
5/1610.5 10
1
/20.850
7
/81.50 1
3
/41
1
/8
×108
c
31.7 29.8 29
7
/80.545
9
/16
5/1610.5 10
1
/20.760
3
/41.41 1
11
/161
1
/8
×99
c
29.0 29.7 29
5
/80.520
1
/2
1/410.5 10
1
/20.670
11
/161.32 1
9
/161
1
/16
×90
c,v
26.3 29.5 29
1
/20.470
1
/2
1/410.4 10
3
/80.610
5
/81.26 1
1
/21
1
/16
W27×539
h
159 32.5 32
1
/21.97 2 1 15.3 15
1
/43.54 3
9
/164.33 4
7
/161
13
/1623
5
/85
1
/2
g
×368
h
109 30.4 30
3
/81.38 1
3
/8
11/1614.7 14
5
/82.48 2
1
/23.27 3
3
/81
1
/2 5
1
/2
×336
h
99.2 30.0 30 1.26 1
1
/4
5/814.6 14
1
/22.28 2
1
/43.07 3
3
/161
7
/16
×307
h
90.2 29.6 29
5
/81.16 1
3
/16
5/814.4 14
1
/22.09 2
1
/162.88 3 1
7
/16
×281 83.1 29.3 29
1
/41.06 1
1
/16
9/1614.4 14
3
/81.93 1
15
/162.72 2
13
/161
3
/8
×258 76.1 29.0 29 0.980 1
1
/214.3 14
1
/41.77 1
3
/42.56 2
11
/161
5
/16
×235 69.4 28.7 28
5
/80.910
15
/16
1/214.2 14
1
/41.61 1
5
/82.40 2
1
/21
5
/16
×217 63.9 28.4 28
3
/80.830
13
/16
7/1614.1 14
1
/81.50 1
1
/22.29 2
3
/81
1
/4
×194 57.1 28.1 28
1
/80.750
3
/4
3/814.0 14 1.34 1
5
/162.13 2
1
/41
3
/16
×178 52.5 27.8 27
3
/40.725
3
/4
3/814.1 14
1
/81.19 1
3
/161.98 2
1
/161
3
/16
×161
c
47.6 27.6 27
5
/80.660
11
/16
3/814.0 14 1.08 1
1
/161.87 2 1
3
/16
×146
c
43.2 27.4 27
3
/80.605
5
/8
5/1614.0 14 0.975 1 1.76 1
7
/81
1
/8
W27×129
c
37.8 27.6 27
5
/80.610
5
/8
5/1610.0 10 1.10 1
1
/81.70 2 1
1
/823
5
/85
1
/2
×114
c
33.6 27.3 27
1
/40.570
9
/16
5/1610.1 10
1
/80.930
15
/161.53 1
13
/161
1
/8
×102
c
30.0 27.1 27
1
/80.515
1
/2
1/410.0 10 0.830
13
/161.43 1
3
/41
1
/16
×94
c
27.6 26.9 26
7
/80.490
1
/2
1/410.0 10 0.745
3
/41.34 1
5
/81
1
/16
×84
c
24.7 26.7 26
3
/40.460
7
/16
1/410.0 10 0.640
5
/81.24 1
9
/161
1
/16
1–16 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 16

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W30-W27
DIMENSIONS AND PROPERTIES 1–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
391 3.19 19.7 20700 1250 13.4 1450 1550 198 3.67 310 4.37 30.8 173 366000
357 3.45 21.6 18700 1140 13.3 1320 1390 179 3.64 279 4.31 30.6 134 324000
326 3.75 23.4 16800 1040 13.2 1190 1240 162 3.60 252 4.26 30.4 103 287000
292 4.12 26.2 14900 930 13.2 1060 1100 144 3.58 223 4.22 30.2 75.2 250000
261 4.59 28.7 13100 829 13.1 943 959 127 3.53 196 4.16 30.0 54.1 215000
235 5.02 32.2 11700 748 13.0 847 855 114 3.51 175 4.13 29.8 40.3 190000
211 5.74 34.5 10300 665 12.9 751 757 100 3.49 155 4.11 29.6 28.4 166000
191 6.35 37.7 9200 600 12.8 675 673 89.5 3.46 138 4.06 29.5 21.0 146000
173 7.04 40.8 8230 541 12.7 607 598 79.8 3.42 123 4.03 29.3 15.6 129000
148 4.44 41.6 6680 436 12.4 500 227 43.3 2.28 68.0 2.77 29.5 14.5 49400
132 5.27 43.9 5770 380 12.2 437 196 37.2 2.25 58.4 2.75 29.3 9.72 42100
124 5.65 46.2 5360 355 12.1 408 181 34.4 2.23 54.0 2.73 29.3 7.99 38600
116 6.17 47.8 4930 329 12.0 378 164 31.3 2.19 49.2 2.70 29.2 6.43 34900
108 6.89 49.6 4470 299 11.9 346 146 27.9 2.15 43.9 2.67 29.0 4.99 30900
99 7.80 51.9 3990 269 11.7 312 128 24.5 2.10 38.6 2.62 29.0 3.77 26800
90 8.52 57.5 3610 245 11.7 283 115 22.1 2.09 34.7 2.60 28.9 2.84 24000
539 2.15 12.1 25600 1570 12.7 1890 2110 277 3.65 437 4.41 29.0 496 443000
368 2.96 17.3 16200 1060 12.2 1240 1310 179 3.48 279 4.15 27.9 170 255000
336 3.19 18.9 14600 972 12.1 1130 1180 162 3.45 252 4.10 27.7 131 226000
307 3.46 20.6 13100 887 12.0 1030 1050 146 3.41 227 4.04 27.5 101 199000
281 3.72 22.5 11900 814 12.0 936 953 133 3.39 206 4.00 27.4 79.5 178000
258 4.03 24.4 10800 745 11.9 852 859 120 3.36 187 3.96 27.2 61.6 159000
235 4.41 26.2 9700 677 11.8 772 769 108 3.33 168 3.92 27.1 47.0 141000
217 4.71 28.7 8910 627 11.8 711 704 100 3.32 154 3.89 26.9 37.6 128000
194 5.24 31.8 7860 559 11.7 631 619 88.1 3.29 136 3.85 26.8 27.1 111000
178 5.92 32.9 7020 505 11.6 570 555 78.8 3.25 122 3.83 26.6 20.1 98400
161 6.49 36.1 6310 458 11.5 515 497 70.9 3.23 109 3.79 26.5 15.1 87300
146 7.16 39.4 5660 414 11.5 464 443 63.5 3.20 97.7 3.76 26.4 11.3 77200
129 4.55 39.7 4760 345 11.2 395 184 36.8 2.21 57.6 2.66 26.5 11.1 32500
114 5.41 42.5 4080 299 11.0 343 159 31.5 2.18 49.3 2.65 26.4 7.33 27600
102 6.03 47.1 3620 267 11.0 305 139 27.8 2.15 43.4 2.62 26.3 5.28 24000
94 6.70 49.5 3270 243 10.9 278 124 24.8 2.12 38.8 2.59 26.2 4.03 21300
84 7.78 52.7 2850 213 10.7 244 106 21.2 2.07 33.2 2.54 26.1 2.81 17900
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 17

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
1–18 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W24×370
h
109 28.0 28 1.52 1
1
/2
3/413.7 13
5
/82.72 2
3
/43.22 3
5
/81
9
/1620
3
/45
1
/2
×335
h
98.3 27.5 27
1
/21.38 1
3
/8
11/1613.5 13
1
/22.48 2
1
/22.98 3
3
/81
1
/2
×306
h
89.7 27.1 27
1
/81.26 1
1
/4
5/813.4 13
3
/82.28 2
1
/42.78 3
3
/161
7
/16
x279
h
81.9 26.7 26
3
/41.16 1
3
/16
5/813.3 13
1
/42.09 2
1
/162.59 3 1
7
/16
×250 73.5 26.3 26
3
/81.04 1
1
/16
9/1613.2 13
1
/81.89 1
7
/82.39 2
13
/161
3
/8
×229 67.2 26.0 26 0.960
15
/16
1/213.1 13
1
/81.73 1
3
/42.23 2
5
/81
5
/16
×207 60.7 25.7 25
3
/40.870
7
/8
7/1613.0 13 1.57 1
9
/162.07 2
1
/21
1
/4
×192 56.5 25.5 25
1
/20.810
13
/16
7/1613.0 13 1.46 1
7
/161.96 2
3
/81
1
/4
×176 51.7 25.2 25
1
/40.750
3
/4
3/812.9 12
7
/81.34 1
5
/161.84 2
1
/41
3
/16
×162 47.8 25.0 25 0.705
11
/16
3/813.0 13 1.22 1
1
/41.72 2
1
/81
3
/16
×146 43.0 24.7 24
3
/40.650
5
/8
5/1612.9 12
7
/81.09 1
1
/161.59 2 1
1
/8
×131 38.6 24.5 24
1
/20.605
5
/8
5/1612.9 12
7
/80.960
15
/161.46 1
7
/81
1
/8
×117
c
34.4 24.3 24
1
/40.550
9
/16
5/1612.8 12
3
/40.850
7
/81.35 1
3
/41
1
/8
×104
c
30.7 24.1 24 0.500
1
/2
1/412.8 12
3
/40.750
3
/41.25 1
5
/81
1
/16
W24×103
c
30.3 24.5 24
1
/20.550
9
/16
5/169.00 9 0.980 1 1.48 1
7
/81
1
/820
3
/45
1
/2
×94
c
27.7 24.3 24
1
/40.515
1
/2
1/49.07 9
1
/80.875
7
/81.38 1
3
/41
1
/16
×84
c
24.7 24.1 24
1
/80.470
1
/2
1/49.02 9 0.770
3
/41.27 1
11
/161
1
/16
×76
c
22.4 23.9 23
7
/80.440
7
/16
1/48.99 9 0.680
11
/161.18 1
9
/161
1
/16
×68
c
20.1 23.7 23
3
/40.415
7
/16
1/48.97 9 0.585
9
/161.09 1
1
/21
1
/16
W24×62
c
18.2 23.7 23
3
/40.430
7
/16
1/47.04 7 0.590
9
/161.09 1
1
/21
1
/1620
3
/43
1
/2
g
×55
c,v
16.2 23.6 23
5
/80.395
3
/8
3/167.01 7 0.505
1
/21.01 1
7
/16120
3
/43
1
/2
g
W21×201 59.3 23.0 23 0.910
15
/16
1/212.6 12
5
/81.63 1
5
/82.13 2
1
/21
5
/1618 5
1
/2
×182 53.6 22.7 22
3
/40.830
13
/16
7/1612.5 12
1
/21.48 1
1
/21.98 2
3
/81
1
/4
×166 48.8 22.5 22
1
/20.750
3
/4
3/812.4 12
3
/81.36 1
3
/81.86 2
1
/41
3
/16
×147 43.2 22.1 22 0.720
3
/4
3/812.5 12
1
/21.15 1
1
/81.65 2 1
3
/16
×132 38.8 21.8 21
7
/80.650
5
/8
5/1612.4 12
1
/21.04 1
1
/161.54 1
15
/161
1
/8
×122 35.9 21.7 21
5
/80.600
5
/8
5/1612.4 12
3
/80.960
15
/161.46 1
13
/161
1
/8
×111 32.6 21.5 21
1
/20.550
9
/16
5/1612.3 12
3
/80.875
7
/81.38 1
3
/41
1
/8
×101
c
29.8 21.4 21
3
/80.500
1
/2
1/412.3 12
1
/40.800
13
/161.30 1
11
/161
1
/16
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 18

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W24-W21
DIMENSIONS AND PROPERTIES 1–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
370 2.51 14.2 13400 957 11.1 1130 1160 170 3.27 267 3.92 25.3 201 186000
335 2.73 15.6 11900 864 11.0 1020 1030 152 3.23 238 3.86 25.0 152 161000
306 2.94 17.1 10700 789 10.9 922 919 137 3.20 214 3.81 24.8 117 142000
279 3.18 18.6 9600 718 10.8 835 823 124 3.17 193 3.76 24.6 90.5 125000
250 3.49 20.7 8490 644 10.7 744 724 110 3.14 171 3.71 24.4 66.6 108000
229 3.79 22.5 7650 588 10.7 675 651 99.4 3.11 154 3.67 24.3 51.3 96100
207 4.14 24.8 6820 531 10.6 606 578 88.8 3.08 137 3.62 24.1 38.3 84100
192 4.43 26.6 6260 491 10.5 559 530 81.8 3.07 126 3.60 24.0 30.8 76300
176 4.81 28.7 5680 450 10.5 511 479 74.3 3.04 115 3.57 23.9 23.9 68400
162 5.31 30.6 5170 414 10.4 468 443 68.4 3.05 105 3.57 23.8 18.5 62600
146 5.92 33.2 4580 371 10.3 418 391 60.5 3.01 93.2 3.53 23.6 13.4 54600
131 6.70 35.6 4020 329 10.2 370 340 53.0 2.97 81.5 3.49 23.5 9.50 47100
117 7.53 39.2 3540 291 10.1 327 297 46.5 2.94 71.4 3.46 23.5 6.72 40800
104 8.50 43.1 3100 258 10.1 289 259 40.7 2.91 62.4 3.42 23.4 4.72 35200
103 4.59 39.2 3000 245 10.0 280 119 26.5 1.99 41.5 2.40 23.5 7.07 16600
94 5.18 41.9 2700 222 9.87 254 109 24.0 1.98 37.5 2.40 23.4 5.26 15000
84 5.86 45.9 2370 196 9.79 224 94.4 20.9 1.95 32.6 2.37 23.3 3.70 12800
76 6.61 49.0 2100 176 9.69 200 82.5 18.4 1.92 28.6 2.33 23.2 2.68 11100
68 7.66 52.0 1830 154 9.55 177 70.4 15.7 1.87 24.5 2.30 23.1 1.87 9430
62 5.97 50.1 1550 131 9.23 153 34.5 9.80 1.38 15.7 1.75 23.1 1.71 4620
55 6.94 54.6 1350 114 9.11 134 29.1 8.30 1.34 13.3 1.72 23.1 1.18 3870
201 3.86 20.6 5310 461 9.47 530 542 86.1 3.02 133 3.55 21.4 40.9 62000
182 4.22 22.6 4730 417 9.40 476 483 77.2 3.00 119 3.51 21.2 30.7 54400
166 4.57 25.0 4280 380 9.36 432 435 70.0 2.99 108 3.48 21.1 23.6 48500
147 5.44 26.1 3630 329 9.17 373 376 60.1 2.95 92.6 3.46 21.0 15.4 41100
132 6.01 28.9 3220 295 9.12 333 333 53.5 2.93 82.3 3.43 20.8 11.3 36000
122 6.45 31.3 2960 273 9.09 307 305 49.2 2.92 75.6 3.40 20.7 8.98 32700
111 7.05 34.1 2670 249 9.05 279 274 44.5 2.90 68.2 3.37 20.6 6.83 29200
101 7.68 37.5 2420 227 9.02 253 248 40.3 2.89 61.7 3.35 20.6 5.21 26200
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 19

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W21×93 27.3 21.6 21
5
/80.580
9
/16
5/168.42 8
3
/80.930
15
/161.43 1
5
/8
15/1618
3
/85
1
/2
×83
c
24.4 21.4 21
3
/80.515
1
/2
1/48.36 8
3
/80.835
13
/161.34 1
1
/2
7/8
×73
c
21.5 21.2 21
1
/40.455
7
/16
1/48.30 8
1
/40.740
3
/41.24 1
7
/16
7/8
×68
c
20.0 21.1 21
1
/80.430
7
/16
1/48.27 8
1
/40.685
11
/161.19 1
3
/8
7/8
×62
c
18.3 21.0 21 0.400
3
/8
3/168.24 8
1
/40.615
5
/81.12 1
5
/16
13/16
×55
c
16.2 20.8 20
3
/40.375
3
/8
3/168.22 8
1
/40.522
1
/21.02 1
3
/16
13/16
×48
c,f
14.1 20.6 20
5
/80.350
3
/8
3/168.14 8
1
/80.430
7
/160.930 1
1
/8
13/16
W21×57
c
16.7 21.1 21 0.405
3
/8
3/166.56 6
1
/20.650
5
/81.15 1
5
/16
13/1618
3
/83
1
/2
×50
c
14.7 20.8 20
7
/80.380
3
/8
3/166.53 6
1
/20.535
9
/161.04 1
1
/4
13/16
×44
c
13.0 20.7 20
5
/80.350
3
/8
3/166.50 6
1
/20.450
7
/160.950 1
1
/8
13/16
W18×311
h
91.6 22.3 22
3
/81.52 1
1
/2
3/412.0 12 2.74 2
3
/43.24 3
7
/161
3
/815
1
/25
1
/2
×283
h
83.3 21.9 21
7
/81.40 1
3
/8
11/1611.9 11
7
/82.50 2
1
/23.00 3
3
/161
5
/16
×258
h
76.0 21.5 21
1
/21.28 1
1
/4
5/811.8 11
3
/42.30 2
5
/162.70 3 1
1
/4
×234
h
68.6 21.1 21 1.16 1
3
/16
5/811.7 11
5
/82.11 2
1
/82.51 2
3
/41
3
/16
×211 62.3 20.7 20
5
/81.06 1
1
/16
9/1611.6 11
1
/21.91 1
15
/162.31 2
9
/161
3
/16
×192 56.2 20.4 20
3
/80.960
15
/16
1/211.5 11
1
/21.75 1
3
/42.15 2
7
/161
1
/8
×175 51.4 20.0 20 0.890
7
/8
7/1611.4 11
3
/81.59 1
9
/161.99 2
7
/161
1
/415
1
/8
×158 46.3 19.7 19
3
/40.810
13
/16
7/1611.3 11
1
/41.44 1
7
/161.84 2
3
/81
1
/4
×143 42.0 19.5 19
1
/20.730
3
/4
3/811.2 11
1
/41.32 1
5
/161.72 2
3
/161
3
/16
×130 38.3 19.3 19
1
/40.670
11
/16
3/811.2 11
1
/81.20 1
3
/161.60 2
1
/161
3
/16
×119 35.1 19.0 19 0.655
5
/8
5/1611.3 11
1
/41.06 1
1
/161.46 1
15
/161
3
/16
×106 31.1 18.7 18
3
/40.590
9
/16
5/1611.2 11
1
/40.940
15
/161.34 1
13
/161
1
/8
×97 28.5 18.6 18
5
/80.535
9
/16
5/1611.1 11
1
/80.870
7
/81.27 1
3
/41
1
/8
×86 25.3 18.4 18
3
/80.480
1
/2
1/411.1 11
1
/80.770
3
/41.17 1
5
/81
1
/16
×76
c
22.3 18.2 18
1
/40.425
7
/16
1/411.0 11 0.680
11
/161.08 1
9
/161
1
/16
W18×71 20.9 18.5 18
1
/20.495
1
/2
1/47.64 7
5
/80.810
13
/161.21 1
1
/2
7/815
1
/23
1
/2
g
×65 19.1 18.4 18
3
/80.450
7
/16
1/47.59 7
5
/80.750
3
/41.15 1
7
/16
7/8
×60
c
17.6 18.2 18
1
/40.415
7
/16
1/47.56 7
1
/20.695
11
/161.10 1
3
/8
13/16
×55
c
16.2 18.1 18
1
/80.390
3
/8
3/167.53 7
1
/20.630
5
/81.03 1
5
/16
13/16
×50
c
14.7 18.0 18 0.355
3
/8
3/167.50 7
1
/20.570
9
/160.972 1
1
/4
13/16
W18×46
c
13.5 18.1 18 0.360
3
/8
3/166.06 6 0.605
5
/81.01 1
1
/4
13/1615
1
/23
1
/2
g
×40
c
11.8 17.9 17
7
/80.315
5
/16
3/166.02 6 0.525
1
/20.927 1
3
/16
13/16
×35
c
10.3 17.7 17
3
/40.300
5
/16
3/166.00 6 0.425
7
/160.827 1
1
/8
3/4
1–20 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 20

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W21-W18
DIMENSIONS AND PROPERTIES 1–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
93 4.53 32.3 2070 192 8.70 221 92.9 22.1 1.84 34.7 2.24 20.7 6.03 9940
83 5.00 36.4 1830 171 8.67 196 81.4 19.5 1.83 30.5 2.21 20.6 4.34 8630
73 5.60 41.2 1600 151 8.64 172 70.6 17.0 1.81 26.6 2.19 20.5 3.02 7410
68 6.04 43.6 1480 140 8.60 160 64.7 15.7 1.80 24.4 2.17 20.4 2.45 6760
62 6.70 46.9 1330 127 8.54 144 57.5 14.0 1.77 21.7 2.15 20.4 1.83 5960
55 7.87 50.0 1140 110 8.40 126 48.4 11.8 1.73 18.4 2.11 20.3 1.24 4980
48 9.47 53.6 959 93.0 8.24 107 38.7 9.52 1.66 14.9 2.05 20.2 0.803 3950
57 5.04 46.3 1170 111 8.36 129 30.6 9.35 1.35 14.8 1.68 20.5 1.77 3190
50 6.10 49.4 984 94.5 8.18 110 24.9 7.64 1.30 12.2 1.64 20.3 1.14 2570
44 7.22 53.6 843 81.6 8.06 95.4 20.7 6.37 1.26 10.2 1.60 20.3 0.770 2110
311 2.19 10.4 6970 624 8.72 754 795 132 2.95 207 3.53 19.6 176 76200
283 2.38 11.3 6170 565 8.61 676 704 118 2.91 185 3.47 19.4 134 65900
258 2.56 12.5 5510 514 8.53 611 628 107 2.88 166 3.42 19.2 103 57600
234 2.76 13.8 4900 466 8.44 549 558 95.8 2.85 149 3.37 19.0 78.7 50100
211 3.02 15.1 4330 419 8.35 490 493 85.3 2.82 132 3.32 18.8 58.6 43400
192 3.27 16.7 3870 380 8.28 442 440 76.8 2.79 119 3.28 18.7 44.7 38000
175 3.58 18.0 3450 344 8.20 398 391 68.8 2.76 106 3.24 18.4 33.8 33300
158 3.92 19.8 3060 310 8.12 356 347 61.4 2.74 94.8 3.20 18.3 25.2 29000
143 4.25 22.0 2750 282 8.09 322 311 55.5 2.72 85.4 3.17 18.2 19.2 25700
130 4.65 23.9 2460 256 8.03 290 278 49.9 2.70 76.7 3.13 18.1 14.5 22700
119 5.31 24.5 2190 231 7.90 262 253 44.9 2.69 69.1 3.13 17.9 10.6 20300
106 5.96 27.2 1910 204 7.84 230 220 39.4 2.66 60.5 3.10 17.8 7.48 17400
97 6.41 30.0 1750 188 7.82 211 201 36.1 2.65 55.3 3.08 17.7 5.86 15800
86 7.20 33.4 1530 166 7.77 186 175 31.6 2.63 48.4 3.05 17.6 4.10 13600
76 8.11 37.8 1330 146 7.73 163 152 27.6 2.61 42.2 3.02 17.5 2.83 11700
71 4.71 32.4 1170 127 7.50 146 60.3 15.8 1.70 24.7 2.05 17.7 3.49 4700
65 5.06 35.7 1070 117 7.49 133 54.8 14.4 1.69 22.5 2.03 17.7 2.73 4240
60 5.44 38.7 984 108 7.47 123 50.1 13.3 1.68 20.6 2.02 17.5 2.17 3850
55 5.98 41.1 890 98.3 7.41 112 44.9 11.9 1.67 18.5 2.00 17.5 1.66 3430
50 6.57 45.2 800 88.9 7.38 101 40.1 10.7 1.65 16.6 1.98 17.4 1.24 3040
46 5.01 44.6 712 78.8 7.25 90.7 22.5 7.43 1.29 11.7 1.58 17.5 1.22 1720
40 5.73 50.9 612 68.4 7.21 78.4 19.1 6.35 1.27 10.0 1.56 17.4 0.810 1440
35 7.06 53.5 510 57.6 7.04 66.5 15.3 5.12 1.22 8.06 1.51 17.3 0.506 1140
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 21

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
W16×100 29.4 17.0 17 0.585
9
/16
5/1610.4 10
3
/80.985 1 1.39 1
7
/81
1
/813
1
/45
1
/2
×89 26.2 16.8 16
3
/40.525
1
/2
1/410.4 10
3
/80.875
7
/81.28 1
3
/41
1
/16
×77 22.6 16.5 16
1
/20.455
7
/16
1/410.3 10
1
/40.760
3
/41.16 1
5
/81
1
/16
×67
c
19.6 16.3 16
3
/80.395
3
/8
3/1610.2 10
1
/40.665
11
/161.07 1
9
/161
W16×57 16.8 16.4 16
3
/80.430
7
/16
1/47.12 7
1
/80.715
11
/161.12 1
3
/8
7/813
5
/83
1
/2
g
×50
c
14.7 16.3 16
1
/40.380
3
/8
3/167.07 7
1
/80.630
5
/81.03 1
5
/16
13/16
×45
c
13.3 16.1 16
1
/80.345
3
/8
3/167.04 7 0.565
9
/160.967 1
1
/4
13/16
×40
c
11.8 16.0 16 0.305
5
/16
3/167.00 7 0.505
1
/20.907 1
3
/16
13/16
×36
c
10.6 15.9 15
7
/80.295
5
/16
3/166.99 7 0.430
7
/160.832 1
1
/8
3/4
W16×31
c
9.13 15.9 15
7
/80.275
1
/4
1/85.53 5
1
/20.440
7
/160.842 1
1
/8
3/413
5
/83
1
/2
×26
c,v
7.68 15.7 15
3
/40.250
1
/4
1/85.50 5
1
/20.345
3
/80.747 1
1
/16
3/413
5
/83
1
/2
W14×730
h
215 22.4 22
3
/83.07 3
1
/161
9
/1617.9 17
7
/84.91 4
15
/165.51 6
3
/162
3
/4103-7
1
/2-3
g
×665
h
196 21.6 21
5
/82.83 2
13
/161
7
/1617.7 17
5
/84.52 4
1
/25.12 5
13
/162
5
/8 3-7
1
/2-3
g
×605
h
178 20.9 20
7
/82.60 2
5
/81
5
/1617.4 17
3
/84.16 4
3
/164.76 5
7
/162
1
/2 3-7
1
/2-3
×550
h
162 20.2 20
1
/42.38 2
3
/81
3
/1617.2 17
1
/43.82 3
13
/164.42 5
1
/82
3
/8
×500
h
147 19.6 19
5
/82.19 2
3
/161
1
/817.0 17 3.50 3
1
/24.10 4
13
/162
5
/16
×455
h
134 19.0 19 2.02 2 1 16.8 16
7
/83.21 3
3
/163.81 4
1
/22
1
/4
×426
h
125 18.7 18
5
/81.88 1
7
/8
15/1616.7 16
3
/43.04 3
1
/163.63 4
5
/162
1
/8
×398
h
117 18.3 18
1
/41.77 1
3
/4
7/816.6 16
5
/82.85 2
7
/83.44 4
1
/82
1
/8
×370
h
109 17.9 17
7
/81.66 1
11
/16
13/1616.5 16
1
/22.66 2
11
/163.26 3
15
/162
1
/16
×342
h
101 17.5 17
1
/21.54 1
9
/16
13/1616.4 16
3
/82.47 2
1
/23.07 3
3
/42
×311
h
91.4 17.1 17
1
/81.41 1
7
/16
3/416.2 16
1
/42.26 2
1
/42.86 3
9
/161
15
/16
×283
h
83.3 16.7 16
3
/41.29 1
5
/16
11/1616.1 16
1
/82.07 2
1
/162.67 3
3
/81
7
/8
×257 75.6 16.4 16
3
/81.18 1
3
/16
5/816.0 16 1.89 1
7
/82.49 3
3
/161
13
/16
×233 68.5 16.0 16 1.07 1
1
/16
9/1615.9 15
7
/81.72 1
3
/42.32 3 1
3
/4
×211 62.0 15.7 15
3
/40.980 1
1
/215.8 15
3
/41.56 1
9
/162.16 2
7
/81
11
/16
×193 56.8 15.5 15
1
/20.890
7
/8
7/1615.7 15
3
/41.44 1
7
/162.04 2
3
/41
11
/16
×176 51.8 15.2 15
1
/40.830
13
/16
7/1615.7 15
5
/81.31 1
5
/161.91 2
5
/81
5
/8
×159 46.7 15.0 15 0.745
3
/4
3/815.6 15
5
/81.19 1
3
/161.79 2
1
/21
9
/16
×145 42.7 14.8 14
3
/40.680
11
/16
3/815.5 15
1
/21.09 1
1
/161.69 2
3
/81
9
/16
1–22 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 22

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W16-W14
DIMENSIONS AND PROPERTIES 1–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
100 5.29 24.3 1490 175 7.10 198 186 35.7 2.51 54.9 2.92 16.0 7.73 11900
89 5.92 27.0 1300 155 7.05 175 163 31.4 2.49 48.1 2.88 15.9 5.45 10200
77 6.77 31.2 1110 134 7.00 150 138 26.9 2.47 41.1 2.85 15.7 3.57 8590
67 7.70 35.9 954 117 6.96 130 119 23.2 2.46 35.5 2.82 15.6 2.39 7300
57 4.98 33.0 758 92.2 6.72 105 43.1 12.1 1.60 18.9 1.92 15.7 2.22 2660
50 5.61 37.4 659 81.0 6.68 92.0 37.2 10.5 1.59 16.3 1.89 15.7 1.52 2270
45 6.23 41.1 586 72.7 6.65 82.3 32.8 9.34 1.57 14.5 1.87 15.5 1.11 1990
40 6.93 46.5 518 64.7 6.63 73.0 28.9 8.25 1.57 12.7 1.86 15.5 0.794 1730
36 8.12 48.1 448 56.5 6.51 64.0 24.5 7.00 1.52 10.8 1.83 15.5 0.545 1460
31 6.28 51.6 375 47.2 6.41 54.0 12.4 4.49 1.17 7.03 1.42 15.5 0.461 739
26 7.97 56.8 301 38.4 6.26 44.2 9.59 3.49 1.12 5.48 1.38 15.4 0.262 565
730 1.82 3.71 14300 1280 8.17 1660 4720 527 4.69 816 5.68 17.5 1450 362000
665 1.95 4.03 12400 1150 7.98 1480 4170 472 4.62 730 5.57 17.1 1120 305000
605 2.09 4.39 10800 1040 7.80 1320 3680 423 4.55 652 5.44 16.7 869 258000
550 2.25 4.79 9430 931 7.63 1180 3250 378 4.49 583 5.35 16.4 669 219000
500 2.43 5.21 8210 838 7.48 1050 2880 339 4.43 522 5.26 16.1 514 187000
455 2.62 5.66 7190 756 7.33 936 2560 304 4.38 468 5.17 15.8 395 160000
426 2.75 6.08 6600 706 7.26 869 2360 283 4.34 434 5.11 15.7 331 144000
398 2.92 6.44 6000 656 7.16 801 2170 262 4.31 402 5.05 15.5 273 129000
370 3.10 6.89 5440 607 7.07 736 1990 241 4.27 370 5.00 15.2 222 116000
342 3.31 7.41 4900 558 6.98 672 1810 221 4.24 338 4.95 15.0 178 103000
311 3.59 8.09 4330 506 6.88 603 1610 199 4.20 304 4.87 14.8 136 89100
283 3.89 8.84 3840 459 6.79 542 1440 179 4.17 274 4.80 14.6 104 77700
257 4.23 9.71 3400 415 6.71 487 1290 161 4.13 246 4.75 14.5 79.1 67800
233 4.62 10.7 3010 375 6.63 436 1150 145 4.10 221 4.69 14.3 59.5 59000
211 5.06 11.6 2660 338 6.55 390 1030 130 4.07 198 4.64 14.1 44.6 51500
193 5.45 12.8 2400 310 6.50 355 931 119 4.05 180 4.59 14.1 34.8 45900
176 5.97 13.7 2140 281 6.43 320 838 107 4.02 163 4.55 13.9 26.5 40500
159 6.54 15.3 1900 254 6.38 287 748 96.2 4.00 146 4.51 13.8 19.7 35600
145 7.11 16.8 1710 232 6.33 260 677 87.3 3.98 133 4.47 13.7 15.2 31700
AISC_PART 01A:14th Ed_ 1/20/11 7:26 AM Page 23

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14×132 38.8 14.7 14
5
/80.645
5
/8
5/1614.7 14
3
/41.03 1 1.63 2
5
/161
9
/1610 5
1
/2
×120 35.3 14.5 14
1
/20.590
9
/16
5/1614.7 14
5
/80.940
15
/161.54 2
1
/41
1
/2
×109 32.0 14.3 14
3
/80.525
1
/2
1/414.6 14
5
/80.860
7
/81.46 2
3
/161
1
/2
×99
f
29.1 14.2 14
1
/80.485
1
/2
1/414.6 14
5
/80.780
3
/41.38 2
1
/161
7
/16
×90
f
26.5 14.0 14 0.440
7
/16
1/414.5 14
1
/20.710
11
/161.31 2 1
7
/16
W14×82 24.0 14.3 14
1
/40.510
1
/2
1/410.1 10
1
/80.855
7
/81.45 1
11
/161
1
/1610
7
/85
1
/2
×74 21.8 14.2 14
1
/80.450
7
/16
1/410.1 10
1
/80.785
13
/161.38 1
5
/81
1
/16
×68 20.0 14.0 14 0.415
7
/16
1/410.0 10 0.720
3
/41.31 1
9
/161
1
/16
×61 17.9 13.9 13
7
/80.375
3
/8
3/1610.0 10 0.645
5
/81.24 1
1
/21
W14×53 15.6 13.9 13
7
/80.370
3
/8
3/168.06 8 0.660
11
/161.25 1
1
/2110
7
/85
1
/2
×48 14.1 13.8 13
3
/40.340
5
/16
3/168.03 8 0.595
5
/81.19 1
7
/161
×43
c
12.6 13.7 13
5
/80.305
5
/16
3/168.00 8 0.530
1
/21.12 1
3
/81
W14×38
c
11.2 14.1 14
1
/80.310
5
/16
3/166.77 6
3
/40.515
1
/20.915 1
1
/4
13/1611
5
/83
1
/2
g
×34
c
10.0 14.0 14 0.285
5
/16
3/166.75 6
3
/40.455
7
/160.855 1
3
/16
3/4 3
1
/2
×30
c
8.85 13.8 13
7
/80.270
1
/4
1/86.73 6
3
/40.385
3
/80.785 1
1
/8
3/4 3
1
/2
W14×26
c
7.69 13.9 13
7
/80.255
1
/4
1/85.03 5 0.420
7
/160.820 1
1
/8
3/411
5
/82
3
/4
g
×22
c
6.49 13.7 13
3
/40.230
1
/4
1/85.00 5 0.335
5
/160.735 1
1
/16
3/411
5
/82
3
/4
g
W12×336
h
98.9 16.8 16
7
/81.78 1
3
/4
7/813.4 13
3
/82.96 2
15
/163.55 3
7
/81
11
/169
1
/85
1
/2
×305
h
89.5 16.3 16
3
/81.63 1
5
/8
13/1613.2 13
1
/42.71 2
11
/163.30 3
5
/81
5
/8
×279
h
81.9 15.9 15
7
/81.53 1
1
/2
3/413.1 13
1
/82.47 2
1
/23.07 3
3
/81
5
/8
×252
h
74.1 15.4 15
3
/81.40 1
3
/8
11/1613.0 13 2.25 2
1
/42.85 3
1
/81
1
/2
×230
h
67.7 15.1 15 1.29 1
5
/16
11/1612.9 12
7
/82.07 2
1
/162.67 2
15
/161
1
/2
×210 61.8 14.7 14
3
/41.18 1
3
/16
5/812.8 12
3
/41.90 1
7
/82.50 2
13
/161
7
/16
×190 56.0 14.4 14
3
/81.06 1
1
/16
9/1612.7 12
5
/81.74 1
3
/42.33 2
5
/81
3
/8
×170 50.0 14.0 14 0.960
15
/16
1/212.6 12
5
/81.56 1
9
/162.16 2
7
/161
5
/16
×152 44.7 13.7 13
3
/40.870
7
/8
7/1612.5 12
1
/21.40 1
3
/82.00 2
5
/161
1
/4
×136 39.9 13.4 13
3
/80.790
13
/16
7/1612.4 12
3
/81.25 1
1
/41.85 2
1
/81
1
/4
×120 35.2 13.1 13
1
/80.710
11
/16
3/812.3 12
3
/81.11 1
1
/81.70 2 1
3
/16
×106 31.2 12.9 12
7
/80.610
5
/8
5/1612.2 12
1
/40.990 1 1.59 1
7
/81
1
/8
×96 28.2 12.7 12
3
/40.550
9
/16
5/1612.2 12
1
/80.900
7
/81.50 1
13
/161
1
/8
×87 25.6 12.5 12
1
/20.515
1
/2
1/412.1 12
1
/80.810
13
/161.41 1
11
/161
1
/16
×79 23.2 12.4 12
3
/80.470
1
/2
1/412.1 12
1
/80.735
3
/41.33 1
5
/81
1
/16
×72 21.1 12.3 12
1
/40.430
7
/16
1/412.0 12 0.670
11
/161.27 1
9
/161
1
/16
×65
f
19.1 12.1 12
1
/80.390
3
/8
3/1612.0 12 0.605
5
/81.20 1
1
/21
1–24 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 24

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W14-W12
DIMENSIONS AND PROPERTIES 1–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
132 7.15 17.7 1530 209 6.28 234 548 74.5 3.76 113 4.23 13.7 12.3 25500
120 7.80 19.3 1380 190 6.24 212 495 67.5 3.74 102 4.20 13.6 9.37 22700
109 8.49 21.7 1240 173 6.22 192 447 61.2 3.73 92.7 4.17 13.4 7.12 20200
99 9.34 23.5 1110 157 6.17 173 402 55.2 3.71 83.6 4.14 13.4 5.37 18000
90 10.2 25.9 999 143 6.14 157 362 49.9 3.70 75.6 4.10 13.3 4.06 16000
82 5.92 22.4 881 123 6.05 139 148 29.3 2.48 44.8 2.85 13.4 5.07 6710
74 6.41 25.4 795 112 6.04 126 134 26.6 2.48 40.5 2.83 13.4 3.87 5990
68 6.97 27.5 722 103 6.01 115 121 24.2 2.46 36.9 2.80 13.3 3.01 5380
61 7.75 30.4 640 92.1 5.98 102 107 21.5 2.45 32.8 2.78 13.3 2.19 4710
53 6.11 30.9 541 77.8 5.89 87.1 57.7 14.3 1.92 22.0 2.22 13.2 1.94 2540
48 6.75 33.6 484 70.2 5.85 78.4 51.4 12.8 1.91 19.6 2.20 13.2 1.45 2240
43 7.54 37.4 428 62.6 5.82 69.6 45.2 11.3 1.89 17.3 2.18 13.2 1.05 1950
38 6.57 39.6 385 54.6 5.87 61.5 26.7 7.88 1.55 12.1 1.82 13.6 0.798 1230
34 7.41 43.1 340 48.6 5.83 54.6 23.3 6.91 1.53 10.6 1.80 13.5 0.569 1070
30 8.74 45.4 291 42.0 5.73 47.3 19.6 5.82 1.49 8.99 1.77 13.4 0.380 887
26 5.98 48.1 245 35.3 5.65 40.2 8.91 3.55 1.08 5.54 1.30 13.5 0.358 405
22 7.46 53.3 199 29.0 5.54 33.2 7.00 2.80 1.04 4.39 1.27 13.4 0.208 314
336 2.26 5.47 4060 483 6.41 603 1190 177 3.47 274 4.13 13.8 243 57000
305 2.45 5.98 3550 435 6.29 537 1050 159 3.42 244 4.05 13.6 185 48600
279 2.66 6.35 3110 393 6.16 481 937 143 3.38 220 4.00 13.4 143 42000
252 2.89 6.96 2720 353 6.06 428 828 127 3.34 196 3.93 13.2 108 35800
230 3.11 7.56 2420 321 5.97 386 742 115 3.31 177 3.87 13.0 83.8 31200
210 3.37 8.23 2140 292 5.89 348 664 104 3.28 159 3.81 12.8 64.7 27200
190 3.65 9.16 1890 263 5.82 311 589 93.0 3.25 143 3.77 12.7 48.8 23600
170 4.03 10.1 1650 235 5.74 275 517 82.3 3.22 126 3.70 12.4 35.6 20100
152 4.46 11.2 1430 209 5.66 243 454 72.8 3.19 111 3.66 12.3 25.8 17200
136 4.96 12.3 1240 186 5.58 214 398 64.2 3.16 98.0 3.61 12.2 18.5 14700
120 5.57 13.7 1070 163 5.51 186 345 56.0 3.13 85.4 3.56 12.0 12.9 12400
106 6.17 15.9 933 145 5.47 164 301 49.3 3.11 75.1 3.52 11.9 9.13 10700
96 6.76 17.7 833 131 5.44 147 270 44.4 3.09 67.5 3.49 11.8 6.85 9410
87 7.48 18.9 740 118 5.38 132 241 39.7 3.07 60.4 3.46 11.7 5.10 8270
79 8.22 20.7 662 107 5.34 119 216 35.8 3.05 54.3 3.43 11.7 3.84 7330
72 8.99 22.6 597 97.4 5.31 108 195 32.4 3.04 49.2 3.41 11.6 2.93 6540
65 9.92 24.9 533 87.9 5.28 96.8 174 29.1 3.02 44.1 3.38 11.5 2.18 5780
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 25

Table 1-1 (continued)
W-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi.
W12×58 17.0 12.2 12
1
/40.360
3
/8
3/1610.0 10 0.640
5
/81.24 1
1
/2
15/169
1
/45
1
/2
×53 15.6 12.1 12 0.345
3
/8
3/1610.0 10 0.575
9
/161.18 1
3
/8
15/169
1
/45
1
/2
W12×50 14.6 12.2 12
1
/40.370
3
/8
3/168.08 8
1
/80.640
5
/81.14 1
1
/2
15/169
1
/45
1
/2
×45 13.1 12.1 12 0.335
5
/16
3/168.05 8 0.575
9
/161.08 1
3
/8
15/16
×40 11.7 11.9 12 0.295
5
/16
3/168.01 8 0.515
1
/21.02 1
3
/8
7/8
W12×35
c
10.3 12.5 12
1
/20.300
5
/16
3/166.56 6
1
/20.520
1
/20.820 1
3
/16
3/410
1
/83
1
/2
×30
c
8.79 12.3 12
3
/80.260
1
/4
1/86.52 6
1
/20.440
7
/160.740 1
1
/8
3/4
×26
c
7.65 12.2 12
1
/40.230
1
/4
1/86.49 6
1
/20.380
3
/80.680 1
1
/16
3/4
W12×22
c
6.48 12.3 12
1
/40.260
1
/4
1/84.03 4 0.425
7
/160.725
15
/16
5/810
3
/82
1
/4
g
×19
c
5.57 12.2 12
1
/80.235
1
/4
1/84.01 4 0.350
3
/80.650
7
/8
9/16
×16
c
4.71 12.0 12 0.220
1
/4
1/83.99 4 0.265
1
/40.565
13
/16
9/16
×14
c,v
4.16 11.9 11
7
/80.200
3
/16
1/83.97 4 0.225
1
/40.525
3
/4
9/16
W10×112 32.9 11.4 11
3
/80.755
3
/4
3/810.4 10
3
/81.25 1
1
/41.75 1
15
/1617
1
/25
1
/2
×100 29.3 11.1 11
1
/80.680
11
/16
3/810.3 10
3
/81.12 1
1
/81.62 1
13
/161
×88 26.0 10.8 10
7
/80.605
5
/8
5/1610.3 10
1
/40.990 1 1.49 1
11
/16
15/16
×77 22.7 10.6 10
5
/80.530
1
/2
1/410.2 10
1
/40.870
7
/81.37 1
9
/16
7/8
×68 19.9 10.4 10
3
/80.470
1
/2
1/410.1 10
1
/80.770
3
/41.27 1
7
/16
7/8
×60 17.7 10.2 10
1
/40.420
7
/16
1/410.1 10
1
/80.680
11
/161.18 1
3
/8
13/16
×54 15.8 10.1 10
1
/80.370
3
/8
3/1610.0 10 0.615
5
/81.12 1
5
/16
13/16
×49 14.4 10.0 10 0.340
5
/16
3/1610.0 10 0.560
9
/161.06 1
1
/4
13/16
W10×45 13.3 10.1 10
1
/80.350
3
/8
3/168.02 8 0.620
5
/81.12 1
5
/16
13/167
1
/25
1
/2
×39 11.5 9.92 9
7
/80.315
5
/16
3/167.99 8 0.530
1
/21.03 1
3
/16
13/16
×33 9.71 9.73 9
3
/40.290
5
/16
3/167.96 8 0.435
7
/160.935 1
1
/8
3/4
W10×30 8.84 10.5 10
1
/20.300
5
/16
3/165.81 5
3
/40.510
1
/20.810 1
1
/8
11/168
1
/42
3
/4
g
×26 7.61 10.3 10
3
/80.260
1
/4
1/85.77 5
3
/40.440
7
/160.740 1
1
/16
11/16
×22
c
6.49 10.2 10
1
/80.240
1
/4
1/85.75 5
3
/40.360
3
/80.660
15
/16
5/8
W10×19 5.62 10.2 10
1
/40.250
1
/4
1/84.02 4 0.395
3
/80.695
15
/16
5/88
3
/82
1
/4
g
×17
c
4.99 10.1 10
1
/80.240
1
/4
1/84.01 4 0.330
5
/160.630
7
/8
9/16
×15
c
4.41 9.99 10 0.230
1
/4
1/84.00 4 0.270
1
/40.570
13
/16
9/16
×12
c,f
3.549.87 9
7
/80.190
3
/16
1/83.96 4 0.210
3
/160.510
3
/4
9/16
1–26 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 26

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
lb/ft
W12-W10
DIMENSIONS AND PROPERTIES 1–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
58 7.82 27.0 475 78.0 5.28 86.4 107 21.4 2.51 32.5 2.81 11.6 2.10 3570
53 8.69 28.1 425 70.6 5.23 77.9 95.8 19.2 2.48 29.1 2.79 11.5 1.58 3160
50 6.31 26.8 391 64.2 5.18 71.9 56.3 13.9 1.96 21.3 2.25 11.6 1.71 1880
45 7.00 29.6 348 57.7 5.15 64.2 50.0 12.4 1.95 19.0 2.23 11.5 1.26 1650
40 7.77 33.6 307 51.5 5.13 57.0 44.1 11.0 1.94 16.8 2.21 11.4 0.906 1440
35 6.31 36.2 285 45.6 5.25 51.2 24.5 7.47 1.54 11.5 1.79 12.0 0.741 879
30 7.41 41.8 238 38.6 5.21 43.1 20.3 6.24 1.52 9.56 1.77 11.9 0.457 720
26 8.54 47.2 204 33.4 5.17 37.2 17.3 5.34 1.51 8.17 1.75 11.8 0.300 607
22 4.74 41.8 156 25.4 4.91 29.3 4.66 2.31 0.848 3.66 1.04 11.9 0.293 164
19 5.72 46.2 130 21.3 4.82 24.7 3.76 1.88 0.822 2.98 1.02 11.9 0.180 131
16 7.53 49.4 103 17.1 4.67 20.1 2.82 1.41 0.773 2.26 0.983 11.7 0.103 96.9
14 8.82 54.3 88.6 14.9 4.62 17.4 2.36 1.19 0.753 1.90 0.961 11.7 0.0704 80.4
112 4.17 10.4 716 126 4.66 147 236 45.3 2.68 69.2 3.08 10.2 15.1 6020
100 4.62 11.6 623 112 4.60 130 207 40.0 2.65 61.0 3.04 10.0 10.9 5150
88 5.18 13.0 534 98.5 4.54 113 179 34.8 2.63 53.1 2.99 9.81 7.53 4330
77 5.86 14.8 455 85.9 4.49 97.6 154 30.1 2.60 45.9 2.95 9.73 5.11 3630
68 6.58 16.7 394 75.7 4.44 85.3 134 26.4 2.59 40.1 2.92 9.63 3.56 3100
60 7.41 18.7 341 66.7 4.39 74.6 116 23.0 2.57 35.0 2.88 9.52 2.48 2640
54 8.15 21.2 303 60.0 4.37 66.6 103 20.6 2.56 31.3 2.85 9.49 1.82 2320
49 8.93 23.1 272 54.6 4.35 60.4 93.4 18.7 2.54 28.3 2.84 9.44 1.39 2070
45 6.47 22.5 248 49.1 4.32 54.9 53.4 13.3 2.01 20.3 2.27 9.48 1.51 1200
39 7.53 25.0 209 42.1 4.27 46.8 45.0 11.3 1.98 17.2 2.24 9.39 0.976 992
33 9.15 27.1 171 35.0 4.19 38.8 36.6 9.20 1.94 14.0 2.20 9.30 0.583 791
30 5.70 29.5 170 32.4 4.38 36.6 16.7 5.75 1.37 8.84 1.60 9.99 0.622 414
26 6.56 34.0 144 27.9 4.35 31.3 14.1 4.89 1.36 7.50 1.58 9.86 0.402 345
22 7.99 36.9 118 23.2 4.27 26.0 11.4 3.97 1.33 6.10 1.55 9.84 0.239 275
19 5.09 35.4 96.3 18.8 4.14 21.6 4.29 2.14 0.874 3.35 1.06 9.81 0.233 104
17 6.08 36.9 81.9 16.2 4.05 18.7 3.56 1.78 0.845 2.80 1.04 9.77 0.156 85.1
15 7.41 38.5 68.9 13.8 3.95 16.0 2.89 1.45 0.810 2.30 1.01 9.72 0.104 68.3
12 9.43 46.6 53.8 10.9 3.90 12.6 2.18 1.10 0.785 1.74 0.983 9.66 0.0547 50.9
bf

2tf
h

tw
AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:42 AM Page 27 (Black plate)

Table 1-1 (continued)
W-Shapes
Dimensions
1–28 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf kdeskdet
k1
in.
T
Work-
able
Gage
in.
2
in. in. in. in. in. in. in. in.
k
in.
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
W8×67 19.7 9.00 90.570
9
/16
5/168.28 8
1
/40.935
15
/161.33 1
5
/8
15/165
3
/45
1
/2
×58 17.1 8.75 8
3
/40.510
1
/2
1/48.22 8
1
/40.810
13
/161.20 1
1
/2
7/8
×48 14.1 8.50 8
1
/20.400
3
/8
3/168.11 8
1
/80.685
11
/161.08 1
3
/8
13/16
×40 11.7 8.25 8
1
/40.360
3
/8
3/168.07 8
1
/80.560
9
/160.954 1
1
/4
13/16
×35 10.3 8.12 8
1
/80.310
5
/16
3/168.02 8 0.495
1
/20.889 1
3
/16
13/16
×31
f
9.138.00 80.285
5
/16
3/168.00 8 0.435
7
/160.829 1
1
/8
3/4
W8×28 8.25 8.06 80.285
5
/16
3/166.54 6
1
/20.465
7
/160.859
15
/16
5/86
1
/84
×24 7.08 7.93 7
7
/80.245
1
/4
1/86.50 6
1
/20.400
3
/80.794
7
/8
9/166
1
/84
W8×21 6.16 8.28 8
1
/40.250
1
/4
1/85.27 5
1
/40.400
3
/80.700
7
/8
9/166
1
/22
3
/4
g
×18 5.26 8.14 8
1
/80.230
1
/4
1/85.25 5
1
/40.330
5
/160.630
13
/16
9/166
1
/22
3
/4
g
W8×15 4.44 8.11 8
1
/80.245
1
/4
1/84.02 4 0.315
5
/160.615
13
/16
9/166
1
/22
1
/4
g
×13 3.84 7.99 80.230
1
/4
1/84.00 4 0.255
1
/40.555
3
/4
9/16
×10
c,f
2.967.89 7
7
/80.170
3
/16
1/83.94 4 0.205
3
/160.505
11
/16
1/2
W6×25 7.34 6.38 6
3
/80.320
5
/16
3/166.08 6
1
/80.455
7
/160.705
15
/16
9/164
1
/23
1
/2
×20 5.87 6.20 6
1
/40.260
1
/4
1/86.02 6 0.365
3
/80.615
7
/8
9/16
×15
f
4.435.99 60.230
1
/4
1/85.99 6 0.260
1
/40.510
3
/4
9/16
W6×16 4.74 6.28 6
1
/40.260
1
/4
1/84.03 4 0.405
3
/80.655
7
/8
9/164
1
/22
1
/4
g
×12 3.55 6.03 60.230
1
/4
1/84.00 4 0.280
1
/40.530
3
/4
9/16
×9
f
2.685.90 5
7
/80.170
3
/16
1/83.94 4 0.215
3
/160.465
11
/16
1/2
×8.5
f
2.525.83 5
7
/80.170
3
/16
1/83.94 4 0.195
3
/160.445
11
/16
1/2
W5×19 5.56 5.15 5
1
/80.270
1
/4
1/85.03 5 0.430
7
/160.730
13
/16
7/163
1
/22
3
/4
g
×16 4.71 5.01 50.240
1
/4
1/85.00 5 0.360
3
/80.660
3
/4
7/163
1
/22
3
/4
g
W4×13 3.83 4.16 4
1
/80.280
1
/4
1/84.06 4 0.345
3
/80.595
3
/4
1/22
5
/82
1
/4
g
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 28

Table 1-1 (continued)
W-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
W8-W4
DIMENSIONS AND PROPERTIES 1–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
67 4.43 11.1 272 60.4 3.72 70.1 88.6 21.4 2.12 32.7 2.43 8.07 5.05 1440
58 5.07 12.4 228 52.0 3.65 59.8 75.1 18.3 2.10 27.9 2.39 7.94 3.33 1180
48 5.92 15.9 184 43.2 3.61 49.0 60.9 15.0 2.08 22.9 2.35 7.82 1.96 931
40 7.21 17.6 146 35.5 3.53 39.8 49.1 12.2 2.04 18.5 2.31 7.69 1.12 726
35 8.10 20.5 127 31.2 3.51 34.7 42.6 10.6 2.03 16.1 2.28 7.63 0.769 619
31 9.19 22.3 110 27.5 3.47 30.4 37.1 9.27 2.02 14.1 2.26 7.57 0.536 530
28 7.03 22.3 98.0 24.3 3.45 27.2 21.7 6.63 1.62 10.1 1.84 7.60 0.537 312
24 8.12 25.9 82.7 20.9 3.42 23.1 18.3 5.63 1.61 8.57 1.81 7.53 0.346 259
21 6.59 27.5 75.3 18.2 3.49 20.4 9.77 3.71 1.26 5.69 1.46 7.88 0.282 152
18 7.95 29.9 61.9 15.2 3.43 17.0 7.97 3.04 1.23 4.66 1.43 7.81 0.172 122
15 6.37 28.1 48.0 11.8 3.29 13.6 3.41 1.70 0.876 2.67 1.06 7.80 0.137 51.8
13 7.84 29.9 39.6 9.91 3.21 11.4 2.73 1.37 0.843 2.15 1.03 7.74 0.0871 40.8
10 9.61 40.5 30.8 7.81 3.22 8.87 2.09 1.06 0.841 1.66 1.01 7.69 0.0426 30.9
25 6.68 15.5 53.4 16.7 2.70 18.9 17.1 5.61 1.52 8.56 1.74 5.93 0.461 150
20 8.25 19.1 41.4 13.4 2.66 14.9 13.3 4.41 1.50 6.72 1.70 5.84 0.240 113
15 11.5 21.6 29.1 9.72 2.56 10.8 9.32 3.11 1.45 4.75 1.66 5.73 0.101 76.5
16 4.98 19.1 32.1 10.2 2.60 11.7 4.43 2.20 0.967 3.39 1.13 5.88 0.223 38.2
12 7.14 21.6 22.1 7.31 2.49 8.30 2.99 1.50 0.918 2.32 1.08 5.75 0.0903 24.7
9 9.16 29.2 16.4 5.56 2.47 6.23 2.20 1.11 0.905 1.72 1.06 5.69 0.0405 17.7
8.5 10.1 29.1 14.9 5.10 2.43 5.73 1.99 1.01 0.890 1.56 1.05 5.64 0.0333 15.8
19 5.85 13.7 26.3 10.2 2.17 11.6 9.13 3.63 1.28 5.53 1.45 4.72 0.316 50.9
16 6.94 15.4 21.4 8.55 2.13 9.63 7.51 3.00 1.26 4.58 1.43 4.65 0.192 40.6
13 5.88 10.6 11.3 5.46 1.72 6.28 3.86 1.90 1.00 2.92 1.16 3.82 0.151 14.0
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 29

1–30 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
kk 1T
Workable
Gage
in.
2
in. in. in. in. in. in. in. in. in.
Table 1-2
M-Shapes
Dimensions
M12.5×12.4
c,v
3.63 12.5 12
1/20.155
1
/8
1/163.75 3
3
/40.228
1
/4
9/16
3 /811
3
/8 —
×11.6
c,v
3.40 12.5 12
1/20.155
1
/8
1/163.50 3
1/20.211
3
/16
9/16
3 /811
3
/8 —
M12×11.8
c
3.47 12.0 12 0.177
3
/16
1/83.07 3
1
/80.225
1
/4
9/16
3 /810
7
/8 —
×10.8
c
3.18 12.0 12 0.160
3
/16
1/83.07 3
1
/80.210
3
/16
9/16
3 /810
7
/8 —
M12×10
c,v
2.95 12.0 12 0.149
1
/8
1/163.25 3
1
/40.180
3
/16
1/2
3/811 —
M10×9
c
2.65 10.0 10 0.157
3
/16
1/82.69 2
3
/40.206
3
/16
9/16
3 /88
7
/8 —
×8
c
2.37 9.95 10 0.141
1
/8
1/162.69 2
3
/40.182
3
/16
9/16
3 /88
7
/8 —
M10×7.5
c,v
2.22 9.99 10 0.130
1
/8
1/162.69 2
3
/40.173
3
/16
7/16
5 /169
1
/8 —
M8×6.5
c
1.92 8.00 8 0.135
1
/8
1/162.28 2
1
/40.189
3
/16
9/16
3 /86
7
/8 —
×6.2
c
1.82 8.00 8 0.129
1
/8
1/162.28 2
1
/40.177
3
/16
7/16
1 /47
1
/8 —
M6×4.4
c
1.29 6.00 6 0.114
1
/8
1/161.84 1
7
/80.171
3
/16
3/8
1/45
1
/4 —
×3.7
c
1.09 5.92 5
7
/80.0980
1
/8
1/162.00 2 0.129
1
/8
5/16
1/45
1
/4 —
M5×18.9
t
5.56 5.00 5 0.316
5
/16
3/165.00 5 0.416
7
/16
13/16
1/23
3
/82
3
/4
g
M4×6
f
1.75 3.80 3
3
/40.130
1
/8
1/163.80 3
3
/40.160
3
/16
1/2
3 /82
3
/4 —
×4.08 1.27 4.00 4 0.115
1
/8
1/162.25 2
1
/40.170
3
/16
9/16
3 /82
7
/8 —
×3.45 1.01 4.00 4 0.0920
1
/16
1/162.25 2
1
/40.130
1
/8
1/2
3 /83—
×3.2 1.01 4.00 4 0.0920
1
/16
1/162.25 2
1
/40.130
1
/8
1/2
3 /83—
M3×2.9 0.914 3.00 3 0.0900
1
/16
1/162.25 2
1
/40.130
1
/8
1/2
3 /82—
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of
the cross section to ensure compatibility.
t
Shape has tapered flanges while other M-shapes have parallel flange surfaces.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(b)(i) with Fy=36 ksi.
— Indicates flange is too narrow to establish a workable gage.
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 30

12.4 8.22 74.8 89.3 14.2 4.96 16.5 2.01 1.07 0.744 1.68 0.933 12.3 0.000283 0.0493 76.0
11.6 8.29 74.8 80.3 12.8 4.86 15.0 1.51 0.864 0.667 1.37 0.852 12.3 0.000263 0.0414 57.1
11.8 6.81 62.5 72.2 12.0 4.56 14.3 1.09 0.709 0.559 1.15 0.731 11.8 0.000355 0.0500 37.7
10.8 7.30 69.2 66.7 11.1 4.58 13.2 1.01 0.661 0.564 1.07 0.732 11.8 0.000300 0.0393 35.0
10 9.03 74.7 61.7 10.3 4.57 12.2 1.03 0.636 0.592 1.02 0.768 11.8 0.000240 0.0292 35.9
9 6.53 58.4 39.0 7.79 3.83 9.22 0.672 0.500 0.503 0.809 0.650 9.79 0.000411 0.0314 16.1
8 7.39 65.0 34.6 6.95 3.82 8.20 0.593 0.441 0.500 0.711 0.646 9.77 0.000328 0.0224 14.2
7.5 7.77 71.0 33.0 6.60 3.85 7.77 0.562 0.418 0.503 0.670 0.646 9.82 0.000289 0.0187 13.5
6.5 6.03 53.8 18.5 4.63 3.11 5.43 0.376 0.329 0.443 0.529 0.563 7.81 0.000509 0.0184 5.73
6.2 6.44 56.5 17.6 4.39 3.10 5.15 0.352 0.308 0.439 0.495 0.560 7.82 0.000455 0.0156 5.38
4.4 5.39 47.0 7.23 2.41 2.36 2.80 0.180 0.195 0.372 0.311 0.467 5.83 0.000707 0.00990 1.53
3.7 7.75 54.7 5.96 2.01 2.34 2.33 0.173 0.173 0.398 0.273 0.499 5.79 0.000459 0.00530 1.45
18.9 6.01 11.2 24.2 9.67 2.08 11.1 8.70 3.48 1.25 5.33 1.44 4.58 0.00709 0.313 45.7
6 11.9 22.0 4.72 2.48 1.64 2.74 1.47 0.771 0.915 1.18 1.04 3.64 0.00208 0.0184 4.87
4.08 6.62 26.4 3.53 1.77 1.67 2.00 0.325 0.289 0.506 0.453 0.593 3.83 0.00218 0.0147 1.19
3.45 8.65 33.9 2.86 1.43 1.68 1.60 0.248 0.221 0.496 0.346 0.580 3.87 0.00148 0.00820 0.930
3.2 8.65 33.9 2.86 1.43 1.68 1.60 0.248 0.221 0.496 0.346 0.580 3.87 0.00148 0.00820 0.930
2.9 8.65 23.6 1.50 1.00 1.28 1.12 0.248 0.221 0.521 0.344 0.597 2.87 0.00275 0.00790 0.511
DIMENSIONS AND PROPERTIES 1–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISr Z
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
J

Sxho
bf

2tflb/ft
h

tw
Table 1-2 (continued)
M-Shapes
Properties
M-SHAPES
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 31

1–32 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
kT
Workable
Gage
in.
2
in. in. in. in. in. in. in. in.
Table 1-3
S-Shapes
Dimensions
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
— Indicates flange is too narrow to establish a workable gage.
S24×121 35.5 24.5 24
1
/20.800
13
/16
7/168.05 8 1.09 1
1
/16220
1
/24
×106 31.1 24.5 24
1
/20.620
5
/8
5 /167.87 7
7
/81.09 1
1
/16220
1
/24
S24×100 29.3 24.0 24 0.745
3
/4
3 /87.25 7
1
/40.870
7
/81
3
/420
1
/24
×90 26.5 24.0 24 0.625
5
/8
5 /167.13 7
1
/80.870
7
/81
3
/420
1
/24
×80 23.5 24.0 24 0.500
1
/2
1 /47.00 7 0.870
7
/81
3
/420
1
/24
S20×96 28.2 20.3 20
1
/40.800
13
/16
7/167.20 7
1
/40.920
15
/161
3
/416
3
/44
×86 25.3 20.3 20
1
/40.660
11
/16
3/87.06 7 0.920
15
/161
3
/416
3
/44
S20×75 22.0 20.0 20 0.635
5
/8
5 /166.39 6
3
/80.795
13
/161
5
/816
3
/43
1
/2
g
×66 19.4 20.0 20 0.505
1
/2
1 /46.26 6
1
/40.795
13
/161
5
/816
3
/43
1
/2
g
S18×70 20.5 18.0 18 0.711
11
/16
3/86.25 6
1
/40.691
11
/161
1
/215 3
1
/2
g
×54.7 16.0 18.0 18 0.461
7
/16
1 /46.00 6 0.691
11
/161
1
/215 3
1
/2
g
S15×50 14.7 15.0 15 0.550
9
/16
5 /165.64 5
5
/80.622
5
/81
3
/812
1
/43
1
/2
g
×42.9 12.6 15.0 15 0.411
7
/16
1 /45.50 5
1
/20.622
5
/81
3
/812
1
/43
1
/2
g
S12×50 14.7 12.0 12 0.687
11
/16
3/85.48 5
1
/20.659
11
/161
7
/16 9
1
/83
g
×40.8 11.9 12.0 12 0.462
7
/16
1 /45.25 5
1
/40.659
11
/161
7
/16 9
1
/83
g
S12×35 10.2 12.0 12 0.428
7
/16
1 /45.08 5
1
/80.544
9
/161
3
/16 9
5
/83
g
×31.8 9.31 12.0 12 0.350
3
/8
3 /165.00 5 0.544
9
/161
3
/16 9
5
/83
g
S10×35 10.3 10.0 10 0.594
5
/8
5 /164.94 5 0.491
1
/21
1
/8 7
3
/42
3
/4
g
×25.4 7.45 10.0 10 0.311
5
/16
3 /164.66 4
5
/80.491
1
/21
1
/8 7
3
/42
3
/4
g
S8×23 6.76 8.00 8 0.441
7
/16
1 /44.17 4
1
/80.425
7
/16162
1
/4
g
×18.4 5.40 8.00 8 0.271
1
/4
1 /84.00 4 0.425
7
/16162
1
/4
g
S6×17.25 5.05 6.00 6 0.465
7
/16
1 /43.57 3
5
/80.359
3
/8
13 /164
3
/8—
×12.5 3.66 6.00 6 0.232
1
/4
1 /83.33 3
3
/80.359
3
/8
13 /164
3
/8—
S5×10 2.93 5.00 5 0.214
3
/16
1 /83.00 3 0.326
5
/16
3 /4 3
1
/2—
S4×9.5 2.79 4.00 4 0.326
5
/16
3 /162.80 2
3
/40.293
5
/16
3 /4 2
1
/2—
×7.7 2.26 4.00 4 0.193
3
/16
1 /82.66 2
5
/80.293
5
/16
3 /4 2
1
/2—
S3×7.5 2.20 3.00 3 0.349
3
/8
3 /162.51 2
1
/20.260
1
/4
5 /8 1
3
/4—
×5.7 1.66 3.00 3 0.170
3
/16
1 /82.33 2
3
/80.260
1
/4
5 /8 1
3
/4—
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 32

121 3.69 25.9 3160 258 9.43 306 83.0 20.6 1.53 36.3 1.94 23.4 12.8 11400
106 3.61 33.4 2940 240 9.71 279 76.8 19.5 1.57 33.4 1.93 23.4 10.1 10500
100 4.16 27.8 2380 199 9.01 239 47.4 13.1 1.27 24.0 1.66 23.1 7.59 6350
90 4.09 33.1 2250 187 9.21 222 44.7 12.5 1.30 22.4 1.66 23.1 6.05 5980
80 4.02 41.4 2100 175 9.47 204 42.0 12.0 1.34 20.8 1.67 23.1 4.89 5620
96 3.91 21.1 1670 165 7.71 198 49.9 13.9 1.33 24.9 1.71 19.4 8.40 4690
86 3.84 25.6 1570 155 7.89 183 46.6 13.2 1.36 23.1 1.71 19.4 6.65 4370
75 4.02 26.6 1280 128 7.62 152 29.5 9.25 1.16 16.7 1.49 19.2 4.59 2720
66 3.93 33.5 1190 119 7.83 139 27.5 8.78 1.19 15.4 1.49 19.2 3.58 2530
70 4.52 21.5 923 103 6.70 124 24.0 7.69 1.08 14.3 1.42 17.3 4.10 1800
54.7 4.34 33.2 801 89.0 7.07 104 20.7 6.91 1.14 12.1 1.42 17.3 2.33 1550
50 4.53 22.7 485 64.7 5.75 77.0 15.6 5.53 1.03 10.0 1.32 14.4 2.12 805
42.9 4.42 30.4 446 59.4 5.95 69.2 14.3 5.19 1.06 9.08 1.31 14.4 1.54 737
50 4.16 13.7 303 50.6 4.55 60.9 15.6 5.69 1.03 10.3 1.32 11.3 2.77 501
40.8 3.98 20.6 270 45.1 4.76 52.7 13.5 5.13 1.06 8.86 1.30 11.3 1.69 433
35 4.67 23.1 228 38.1 4.72 44.6 9.84 3.88 0.980 6.80 1.22 11.5 1.05 323
31.8 4.60 28.3 217 36.2 4.83 41.8 9.33 3.73 1.00 6.44 1.21 11.5 0.878 306
35 5.03 13.4 147 29.4 3.78 35.4 8.30 3.36 0.899 6.19 1.16 9.51 1.29 188
25.4 4.75 25.6 123 24.6 4.07 28.3 6.73 2.89 0.950 4.99 1.14 9.51 0.603 152
23 4.91 14.1 64.7 16.2 3.09 19.2 4.27 2.05 0.795 3.67 0.999 7.58 0.550 61.2
18.4 4.71 22.9 57.5 14.4 3.26 16.5 3.69 1.84 0.827 3.18 0.985 7.58 0.335 52.9
17.25 4.97 9.67 26.2 8.74 2.28 10.5 2.29 1.28 0.673 2.35 0.859 5.64 0.371 18.2
12.5 4.64 19.4 22.0 7.34 2.45 8.45 1.80 1.08 0.702 1.86 0.831 5.64 0.167 14.3
10 4.61 16.8 12.3 4.90 2.05 5.66 1.19 0.795 0.638 1.37 0.754 4.67 0.114 6.52
9.5 4.77 8.33 6.76 3.38 1.56 4.04 0.887 0.635 0.564 1.13 0.698 3.71 0.120 3.05
7.7 4.54 14.1 6.05 3.03 1.64 3.50 0.748 0.562 0.576 0.970 0.676 3.71 0.0732 2.57
7.5 4.83 5.38 2.91 1.94 1.15 2.35 0.578 0.461 0.513 0.821 0.638 2.74 0.0896 1.08
5.7 4.48 11.0 2.50 1.67 1.23 1.94 0.447 0.383 0.518 0.656 0.605 2.74 0.0433 0.838
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
bf

2tflb/ft
h

tw
DIMENSIONS AND PROPERTIES 1–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-3 (continued)
S-Shapes
Properties
S-SHAPES
AISC_PART 01A:14th Ed_ 1/20/11 7:27 AM Page 33

1–34 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
kk 1T
Workable
Gage
in.
2
in. in. in. in. in. in. in. in. in.
Table 1-4
HP-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
HP18×204 60.2 18.3 18
1
/41.13 1
1
/8
9/1618.1 18
1
/81.13 1
1
/82
5
/161
3
/413
1
/27
1
/2
×181 53.2 18.0 18 1.00 1
1
/218.0 18 1.00 1 2
3
/161
11
/16
×157
f
46.2 17.7 17
3
/40.870
7
/8
7/1617.9 17
7
/80.870
7
/82
1
/161
5
/8
×135
f
39.9 17.5 17
1
/20.750
3
/4
3/817.8 17
3
/40.750
3
/41
15
/161
9
/16
HP16×183 54.1 16.5 16
1
/21.13 1
1
/8
9/1616.3 16
1
/21.13 1
1
/82
5
/161
3
/411
3
/45
1
/2
×162 47.7 16.3 16
1
/41.00 1
1
/216.1 16
1
/81.00 1 2
3
/161
11
/16
×141 41.7 16.0 16 0.875
7
/8
7/1616.0 16 0.875
7
/82
1
/161
5
/8
×121
f
35.8 15.8 15
3
/40.750
3
/4
3/815.9 15
7
/80.750
3
/41
15
/161
9
/16
×101
f
29.9 15.5 15
1
/20.625
5
/8
5/1615.8 15
3
/40.625
5
/81
13
/161
1
/2
×88
c,f
25.8 15.3 15
3
/80.540
9
/16
5/1615.7 15
11
/160.540
9
/161
3
/41
7
/16
HP14×117
f
34.4 14.2 14
1
/40.805
13
/16
7/1614.9 14
7
/80.805
13
/161
1
/21
1
/1611
1
/45
1
/2
×102
f
30.1 14.0 14 0.705
11
/16
3/814.8 14
3
/40.705
11
/161
3
/81
×89
f
26.1 13.8 13
7
/80.615
5
/8
5/1614.7 14
3
/40.615
5
/81
5
/16
15 /16
×73
c,f
21.4 13.6 13
5
/80.505
1
/2
1/414.6 14
5
/80.505
1
/21
3
/16
7 /8
HP12×84 24.6 12.3 12
1
/40.685
11
/16
3/812.3 12
1
/40.685
11
/161
3
/819
1
/25
1
/2
×74
f
21.8 12.1 12
1
/80.605
5
/8
5/1612.2 12
1
/40.610
5
/81
5
/16
15 /16
×63
f
18.4 11.9 12 0.515
1
/2
1/412.1 12
1
/80.515
1
/21
1
/4
7 /8
×53
c,f
15.5 11.8 11
3
/40.435
7
/16
1/412.0 12 0.435
7
/161
1
/8
7 /8
HP10×57 16.7 9.99 10 0.565
9
/16
5/1610.2 10
1
/40.565
9
/161
1
/4
15 /167
1
/25
1
/2
×42
f
12.4 9.70 9
3
/40.415
7
/16
1/410.1 10
1
/80.420
7
/161
1
/8
13 /167
1
/25
1
/2
HP8×36
f
10.6 8.02 8 0.445
7
/16
1/48.16 8
1
/80.445
7
/161
1
/8
7 /8 5
3
/45
1
/2
AISC_PART 01A:14th Ed._ 2/17/12 7:13 AM Page 34

DIMENSIONS AND PROPERTIES 1–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-4 (continued)
HP-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISrZ I SrZ
Axis X-X Axis Y-Y
Torsional
Properties
rtsho
JC w
in.
4
in.
3
in. in.
3
in.
4
in.
3
in. in.
3
in. in. in.
4
in.
6
HP-SHAPES
J

Sxho
bf

2tflb/ft
h

tw
204 8.01 12.1 3480 380 7.60 433 1120 124 4.31 191 5.03 17.2 0.00451 29.5 82500
181 9.00 13.6 3020 336 7.53 379 974 108 4.28 167 4.96 17.0 0.00362 20.7 70400
157 10.3 15.6 2570 290 7.46 327 833 93.1 4.25 143 4.92 16.8 0.00285 13.9 59000
135 11.9 18.2 2200 251 7.43 281 706 79.3 4.21 122 4.85 16.8 0.00216 9.12 49500
183 7.21 10.5 2510 304 6.81 349 818 100 3.89 156 4.54 15.4 0.00576 26.9 48300
162 8.05 11.9 2190 269 6.78 306 697 86.6 3.82 134 4.45 15.3 0.00457 18.8 40800
141 9.14 13.6 1870 234 6.70 264 599 74.9 3.79 116 4.40 15.1 0.00365 12.9 34300
121 10.6 15.9 1590 201 6.66 226 504 63.4 3.75 97.6 4.34 15.1 0.00275 8.35 28500
101 12.6 19.0 1300 168 6.59 187 412 52.2 3.71 80.1 4.27 14.9 0.00203 5.07 22800
88 14.5 22.0 1110 145 6.56 161 349 44.5 3.68 68.2 4.21 14.8 0.00161 3.45 19000
117 9.25 14.2 1220 172 5.96 194 443 59.5 3.59 91.4 4.15 13.4 0.00348 8.02 19900
102 10.5 16.2 1050 150 5.92 169 380 51.4 3.56 78.8 4.10 13.3 0.00270 5.39 16800
89 11.9 18.5 904 131 5.88 146 326 44.3 3.53 67.7 4.05 13.2 0.00207 3.59 14200
73 14.4 22.6 729 107 5.84 118 261 35.8 3.49 54.6 4.00 13.1 0.00143 2.01 11200
84 8.97 14.2 650 106 5.14 120 213 34.6 2.94 53.2 3.41 11.6 0.00345 4.24 7140
74 10.0 16.1 569 93.8 5.11 105 186 30.4 2.92 46.6 3.38 11.5 0.00276 2.98 6160
63 11.8 18.9 472 79.1 5.06 88.3 153 25.3 2.88 38.7 3.33 11.4 0.00202 1.83 5000
53 13.8 22.3 393 66.7 5.03 74.0 127 21.1 2.86 32.2 3.29 11.4 0.00148 1.12 4080
57 9.03 13.9 294 58.8 4.18 66.5 101 19.7 2.45 30.3 2.84 9.43 0.00355 1.97 2240
42 12.0 18.9 210 43.4 4.13 48.3 71.7 14.2 2.41 21.8 2.77 9.28 0.00202 0.813 1540
36 9.16 14.2 119 29.8 3.36 33.6 40.3 9.88 1.95 15.2 2.26 7.58 0.00341 0.770 578
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 35

1–36 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-5
C-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Average
Thickness,
tf
kT
Work-
able
Gage
in.
rtsho
in.
2
in. in. in. in. in. in. in. in. in.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
— Indicates flange is too narrow to establish a workable gage.
C15×50 14.7 15.0 15 0.716
11
/16
3/83.72 3
3
/40.650
5
/81
7
/1612
1
/82
1
/41.17 14.4
×40 11.8 15.0 15 0.520
1
/2
1/43.52 3
1
/20.650
5
/81
7
/1612
1
/82 1.15 14.4
×33.9 10.0 15.0 15 0.400
3
/8
3/163.40 3
3
/80.650
5
/81
7
/1612
1
/82 1.13 14.4
C12×30 8.81 12.0 12 0.510
1
/2
1/43.17 3
1
/80.501
1
/21
1
/89
3
/41
3
/4
g1.01 11.5
×25 7.34 12.0 12 0.387
3
/8
3/163.05 3 0.501
1
/21
1
/89
3
/41
3
/4
g1.00 11.5
×20.7 6.08 12.0 12 0.282
5
/16
3/162.94 3 0.501
1
/21
1
/89
3
/41
3
/4
g0.983 11.5
C10×30 8.81 10.0 10 0.673
11
/16
3/83.03 3 0.436
7
/16181
3
/4
g0.924 9.56
×25 7.35 10.0 10 0.526
1
/2
1/42.89 2
7
/80.436
7
/16181
3
/4
g0.911 9.56
×20 5.87 10.0 10 0.379
3
/8
3/162.74 2
3
/40.436
7
/16181
1
/2
g0.894 9.56
×15.3 4.48 10.0 10 0.240
1
/4
1/82.60 2
5
/80.436
7
/16181
1
/2
g0.868 9.56
C9×20 5.87 9.00 9 0.448
7
/16
1/42.65 2
5
/80.413
7
/16171
1
/2
g0.850 8.59
×15 4.40 9.00 9 0.285
5
/16
3/162.49 2
1
/20.413
7
/16171
3
/8
g0.825 8.59
×13.4 3.94 9.00 9 0.233
1
/4
1/82.43 2
3
/80.413
7
/16171
3
/8
g0.814 8.59
C8×18.75 5.51 8.00 8 0.487
1
/2
1/42.53 2
1
/20.390
3
/8
15 /166
1
/81
1
/2
g0.800 7.61
×13.75 4.03 8.00 8 0.303
5
/16
3/162.34 2
3
/80.390
3
/8
15 /166
1
/81
3
/8
g0.774 7.61
×11.5 3.37 8.00 8 0.220
1
/4
1/82.26 2
1
/40.390
3
/8
15 /166
1
/81
3
/8
g0.756 7.61
C7×14.75 4.33 7.00 7 0.419
7
/16
1/42.30 2
1
/40.366
3
/8
7 /85
1
/41
1
/4
g0.738 6.63
×12.25 3.59 7.00 7 0.314
5
/16
3/162.19 2
1
/40.366
3
/8
7 /85
1
/41
1
/4
g0.722 6.63
×9.8 2.87 7.00 7 0.210
3
/16
1/82.09 2
1
/80.366
3
/8
7 /85
1
/41
1
/4
g0.698 6.63
C6×13 3.82 6.00 6 0.437
7
/16
1/42.16 2
1
/80.343
5
/16
13 /164
3
/81
3
/8
g0.689 5.66
×10.5 3.07 6.00 6 0.314
5
/16
3/162.03 2 0.343
5
/16
13 /164
3
/81
1
/8
g0.669 5.66
×8.2 2.39 6.00 6 0.200
3
/16
1/81.92 1
7
/80.343
5
/16
13 /164
3
/81
1
/8
g0.643 5.66
C5×9 2.64 5.00 5 0.325
5
/16
3/161.89 1
7
/80.320
5
/16
3 /43
1
/21
1
/8
g0.616 4.68
×6.7 1.97 5.00 5 0.190
3
/16
1/81.75 1
3
/40.320
5
/16
3 /43
1
/2— 0.584 4.68
C4×7.25 2.13 4.00 4 0.321
5
/16
3/161.72 1
3
/40.296
5
/16
3 /42
1
/21
g
0.563 3.70
×6.25 1.77 4.00 4 0.247
1
/4
1/81.65 1
3
/40.272
5
/16
3 /42
1
/2— 0.546 3.73
×5.4 1.58 4.00 4 0.184
3
/16
1/81.58 1
5
/80.296
5
/16
3 /42
1
/2— 0.528 3.70
×4.5 1.38 4.00 4 0.125
1
/8
1/161.58 1
5
/80.296
5
/16
3 /42
1
/2— 0.524 3.70
C3×6 1.76 3.00 3 0.356
3
/8
3/161.60 1
5
/80.273
1
/4
11 /161
5
/8— 0.519 2.73
×5 1.47 3.00 3 0.258
1
/4
1/81.50 1
1
/20.273
1
/4
11 /161
5
/8— 0.496 2.73
×4.1 1.20 3.00 3 0.170
3
/16
1/81.41 1
3
/80.273
1
/4
11 /161
5
/8— 0.469 2.73
×3.5 1.09 3.00 3 0.132
1
/8
1/161.37 1
3
/80.273
1
/4
11 /161
5
/8— 0.456 2.73
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 36

DIMENSIONS AND PROPERTIES 1–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-5 (continued)
C-Shapes
Properties
Nom-
inal
Wt.
Shear
Ctr,
eo
ISrZISr

x x p
Axis X-X Axis Y-Y
Torsional Properties
CwJ

r o
H
in.
4
in.
3
in.in. in.
3
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
C-SHAPES
lb/ft
Z
50 0.583 404 53.8 5.24 68.5 11.0 3.77 0.865 0.799 8.14 0.490 2.65 492 5.49 0.937
40 0.767 348 46.5 5.43 57.5 9.17 3.34 0.883 0.778 6.84 0.392 1.45 410 5.71 0.927
33.9 0.896 315 42.0 5.61 50.8 8.07 3.09 0.901 0.788 6.19 0.332 1.01 358 5.94 0.920
30 0.618 162 27.0 4.29 33.8 5.12 2.05 0.762 0.674 4.32 0.367 0.861 151 4.54 0.919
25 0.746 144 24.0 4.43 29.4 4.45 1.87 0.779 0.674 3.82 0.306 0.538 130 4.72 0.909
20.7 0.870 129 21.5 4.61 25.6 3.86 1.72 0.797 0.698 3.47 0.253 0.369 112 4.93 0.899
30 0.368 103 20.7 3.43 26.7 3.93 1.65 0.668 0.649 3.78 0.441 1.22 79.5 3.63 0.921
25 0.494 91.1 18.2 3.52 23.1 3.34 1.47 0.675 0.617 3.18 0.367 0.687 68.3 3.76 0.912
20 0.636 78.9 15.8 3.67 19.4 2.80 1.31 0.690 0.606 2.70 0.294 0.368 56.9 3.93 0.900
15.3 0.796 67.3 13.5 3.88 15.9 2.27 1.15 0.711 0.634 2.34 0.224 0.209 45.5 4.19 0.884
20 0.515 60.9 13.5 3.22 16.9 2.41 1.17 0.640 0.583 2.46 0.326 0.427 39.4 3.46 0.899
15 0.681 51.0 11.3 3.40 13.6 1.91 1.01 0.659 0.586 2.04 0.245 0.208 31.0 3.69 0.882
13.4 0.742 47.8 10.6 3.48 12.6 1.75 0.954 0.666 0.601 1.94 0.219 0.168 28.2 3.79 0.875
18.75 0.431 43.9 11.0 2.82 13.9 1.97 1.01 0.598 0.565 2.17 0.344 0.434 25.1 3.05 0.894
13.75 0.604 36.1 9.02 2.99 11.0 1.52 0.848 0.613 0.554 1.73 0.252 0.186 19.2 3.26 0.874
11.5 0.697 32.5 8.14 3.11 9.63 1.31 0.775 0.623 0.572 1.57 0.211 0.130 16.5 3.41 0.862
14.75 0.441 27.2 7.78 2.51 9.75 1.37 0.772 0.561 0.532 1.63 0.309 0.267 13.1 2.75 0.875
12.25 0.538 24.2 6.92 2.59 8.46 1.16 0.696 0.568 0.525 1.42 0.257 0.161 11.2 2.86 0.862
9.8 0.647 21.2 6.07 2.72 7.19 0.957 0.617 0.578 0.541 1.26 0.205 0.0996 9.15 3.02 0.845
13 0.380 17.3 5.78 2.13 7.29 1.05 0.638 0.524 0.514 1.35 0.318 0.237 7.19 2.37 0.858
10.5 0.486 15.1 5.04 2.22 6.18 0.860 0.561 0.529 0.500 1.14 0.256 0.128 5.91 2.48 0.842
8.2 0.599 13.1 4.35 2.34 5.16 0.687 0.488 0.536 0.512 0.987 0.199 0.0736 4.70 2.65 0.824
9 0.427 8.89 3.56 1.84 4.39 0.624 0.444 0.486 0.478 0.913 0.264 0.109 2.93 2.10 0.815
6.7 0.552 7.48 2.99 1.95 3.55 0.470 0.372 0.489 0.484 0.757 0.215 0.0549 2.22 2.26 0.790
7.25 0.386 4.58 2.29 1.47 2.84 0.425 0.337 0.447 0.459 0.695 0.266 0.0817 1.24 1.75 0.767
6.25 0.434 4.00 2.00 1.50 2.43 0.345 0.284 0.441 0.435 0.569 0.221 0.0487 1.03 1.79 0.764
5.4 0.501 3.85 1.92 1.56 2.29 0.312 0.277 0.444 0.457 0.565 0.231 0.0399 0.921 1.88 0.742
4.5 0.587 3.65 1.83 1.63 2.12 0.289 0.265 0.457 0.493 0.531 0.321 0.0322 0.871 2.01 0.710
6 0.322 2.07 1.38 1.09 1.74 0.300 0.263 0.413 0.455 0.543 0.294 0.0725 0.462 1.40 0.690
5 0.392 1.85 1.23 1.12 1.52 0.241 0.228 0.405 0.439 0.464 0.245 0.0425 0.379 1.45 0.673
4.1 0.461 1.65 1.10 1.18 1.32 0.191 0.196 0.398 0.437 0.399 0.262 0.0269 0.307 1.53 0.655
3.5 0.493 1.57 1.04 1.20 1.24 0.169 0.182 0.394 0.443 0.364 0.296 0.0226 0.276 1.57 0.646
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 37

1–38 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-6
MC-Shapes
Dimensions
Shape
Area, A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Average
Thickness,
tf
kT
Work-
able
Gage
in.
rtsho
in.
2
in. in. in. in. in. in. in. in. in.
c
Shape is slender for compression with Fy=36 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
— Indicates flange is too narrow to establish a workable gage.
MC18×58 17.1 18.0 18 0.700
11
/16
3/84.20 4
1
/40.625
5
/81
7
/1615
1
/82
1
/21.35 17.4
×51.9 15.3 18.0 18 0.600
5
/8
5/164.10 4
1
/80.625
5
/81
7
/16 1.35 17.4
×45.8 13.5 18.0 18 0.500
1
/2
1/44.00 4 0.625
5
/81
7
/16 1.34 17.4
×42.7 12.6 18.0 18 0.450
7
/16
1/43.95 4 0.625
5
/81
7
/16 1.34 17.4
MC13×50 14.7 13.0 13 0.787
13
/16
7/164.41 4
3
/80.610
5
/81
7
/1610
1
/82
1
/21.41 12.4
×40 11.7 13.0 13 0.560
9
/16
5/164.19 4
1
/80.610
5
/81
7
/16 1.38 12.4
×35 10.3 13.0 13 0.447
7
/16
1/44.07 4
1
/80.610
5
/81
7
/16 1.35 12.4
×31.8 9.35 13.0 13 0.375
3
/8
3/164.00 4 0.610
5
/81
7
/16 1.34 12.4
MC12×50 14.7 12.0 12 0.835
13
/16
7/164.14 4
1
/80.700
11
/161
5
/169
3
/82
1
/21.37 11.3
×45 13.2 12.0 12 0.710
11
/16
3/84.01 4 0.700
11
/161
5
/16 1.35 11.3
×40 11.8 12.0 12 0.590
9
/16
5/163.89 3
7
/80.700
11
/161
5
/16 1.33 11.3
×35 10.3 12.0 12 0.465
7
/16
1/43.77 3
3
/40.700
11
/161
5
/16 1.30 11.3
×31 9.12 12.0 12 0.370
3
/8
3/163.67 3
5
/80.700
11
/161
5
/16 2
1
/41.28 11.3
MC12×14.3 4.18 12.0 12 0.250
1
/4
1/82.12 2
1
/80.313
5
/16
3 /410
1
/21
1
/4
g0.672 11.7
MC12×10.6
c
3.10 12.0 12 0.190
3
/16
1/81.50 1
1
/20.309
5
/16
3 /410
1
/2— 0.478 11.7
MC10×41.1 12.1 10.0 10 0.796
13
/16
7/164.32 4
3
/80.575
9
/161
5
/167
3
/82
1
/2
g1.44 9.43
×33.6 9.87 10.0 10 0.575
9
/16
5/164.10 4
1
/80.575
9
/161
5
/167
3
/82
1
/2
g1.40 9.43
×28.5 8.37 10.0 10 0.425
7
/16
1/43.95 4 0.575
9
/161
5
/167
3
/82
1
/2
g1.36 9.43
MC10×25 7.34 10.0 10 0.380
3
/8
3/163.41 3
3
/80.575
9
/161
5
/167
3
/82
g
1.17 9.43
×22 6.45 10.0 10 0.290
5
/16
3/163.32 3
3
/80.575
9
/161
5
/167
3
/82
g
1.14 9.43
MC10×8.4
c
2.46 10.0 10 0.170
3
/16
1/81.50 1
1
/20.280
1
/4
3 /48
1
/2— 0.486 9.72
×6.5
c
1.95 10.0 10 0.152
1
/8
1/161.17 1
1
/80.202
3
/16
9 /168
7
/8— 0.363 9.80
MC9×25.4 7.47 9.00 9 0.450
7
/16
1/43.50 3
1
/20.550
9
/161
1
/46
1
/22
g
1.20 8.45
×23.9 7.02 9.00 9 0.400
3
/8
3/163.45 3
1
/20.550
9
/161
1
/46
1
/22
g
1.18 8.45
MC8×22.8 6.70 8.00 8 0.427
7
/16
1/43.50 3
1
/20.525
1
/21
3
/165
5
/82
g
1.20 7.48
×21.4 6.28 8.00 8 0.375
3
/8
3/163.45 3
1
/20.525
1
/21
3
/165
5
/82
g
1.18 7.48
MC8×20 5.87 8.00 8 0.400
3
/8
3/163.03 3 0.500
1
/21
1
/85
3
/42
g
1.03 7.50
×18.7 5.50 8.00 8 0.353
3
/8
3/162.98 3 0.500
1
/21
1
/85
3
/42
g
1.02 7.50
MC8×8.5 2.50 8.00 8 0.179
3
/16
1/81.87 1
7
/80.311
5
/16
13/166
3
/81
1
/8
g0.624 7.69
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 38

DIMENSIONS AND PROPERTIES 1–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-6 (continued)
MC-Shapes
Properties
Nom-
inal
Wt.
Shear
Ctr,
eo
ISrZISr

x x p
Axis X-X Axis Y-Y
Torsional Properties
CwJ

r o
in.
4
in.
3
in.in. in.
3
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
MC18-MC8
lb/ft
Z
58 0.695 675 75.0 6.29 95.4 17.6 5.28 1.02 0.862 10.7 0.474 2.81 1070 6.56 0.944
51.9 0.797 627 69.6 6.41 87.3 16.3 5.02 1.03 0.858 9.86 0.424 2.03 985 6.70 0.939
45.8 0.909 578 64.2 6.55 79.2 14.9 4.77 1.05 0.866 9.14 0.374 1.45 897 6.87 0.933
42.7 0.969 554 61.5 6.64 75.1 14.3 4.64 1.07 0.877 8.82 0.349 1.23 852 6.97 0.930
50 0.815 314 48.3 4.62 60.8 16.4 4.77 1.06 0.974 10.2 0.566 2.96 558 5.07 0.875
40 1.03 273 41.9 4.82 51.2 13.7 4.24 1.08 0.963 8.66 0.452 1.55 462 5.32 0.859
35 1.16 252 38.8 4.95 46.5 12.3 3.97 1.09 0.980 8.04 0.396 1.13 412 5.50 0.849
31.8 1.24 239 36.7 5.05 43.4 11.4 3.79 1.10 1.00 7.69 0.360 0.937 380 5.64 0.842
50 0.741 269 44.9 4.28 56.5 17.4 5.64 1.09 1.05 10.9 0.613 3.23 411 4.77 0.859
45 0.844 251 41.9 4.36 52.0 15.8 5.30 1.09 1.04 10.1 0.550 2.33 373 4.88 0.851
40 0.952 234 39.0 4.46 47.7 14.2 4.98 1.10 1.04 9.31 0.490 1.69 336 5.01 0.842
35 1.07 216 36.0 4.59 43.2 12.6 4.64 1.11 1.05 8.62 0.428 1.24 297 5.18 0.831
31 1.17 202 33.7 4.71 39.7 11.3 4.37 1.11 1.08 8.15 0.425 1.00 267 5.34 0.822
14.3 0.435 76.1 12.7 4.27 15.9 1.00 0.574 0.489 0.377 1.21 0.174 0.117 32.8 4.37 0.965
10.6 0.284 55.3 9.22 4.22 11.6 0.378 0.307 0.349 0.269 0.635 0.129 0.0596 11.7 4.27 0.983
41.1 0.864 157 31.5 3.61 39.3 15.7 4.85 1.14 1.09 9.49 0.604 2.26 269 4.26 0.790
33.6 1.06 139 27.8 3.75 33.7 13.1 4.35 1.15 1.09 8.28 0.494 1.20 224 4.47 0.770
28.5 1.21 126 25.3 3.89 30.0 11.3 3.99 1.16 1.12 7.59 0.419 0.791 193 4.68 0.752
25 1.03 110 22.0 3.87 26.2 7.25 2.96 0.993 0.953 5.65 0.367 0.638 124 4.46 0.803
22 1.12 102 20.5 3.99 23.9 6.40 2.75 0.997 0.990 5.29 0.467 0.510 110 4.62 0.791
8.4 0.332 31.9 6.39 3.61 7.92 0.326 0.268 0.364 0.284 0.548 0.123 0.0413 7.00 3.68 0.972
6.5 0.182 22.9 4.59 3.43 5.90 0.133 0.137 0.262 0.194 0.284 0.0975 0.0191 2.76 3.46 0.988
25.4 0.986 87.9 19.5 3.43 23.5 7.57 2.99 1.01 0.970 5.70 0.415 0.691 104 4.08 0.770
23.9 1.04 84.9 18.9 3.48 22.5 7.14 2.89 1.01 0.981 5.51 0.390 0.599 98.0 4.15 0.763
22.8 1.04 63.8 15.9 3.09 19.1 7.01 2.81 1.02 1.01 5.37 0.419 0.572 75.2 3.84 0.715
21.4 1.09 61.5 15.4 3.13 18.2 6.58 2.71 1.02 1.02 5.18 0.452 0.495 70.8 3.91 0.707
20 0.843 54.4 13.6 3.04 16.4 4.42 2.02 0.867 0.840 3.86 0.367 0.441 47.8 3.58 0.779
18.7 0.889 52.4 13.1 3.09 15.6 4.15 1.95 0.868 0.849 3.72 0.344 0.380 45.0 3.65 0.773
8.5 0.542 23.3 5.82 3.05 6.95 0.624 0.431 0.500 0.428 0.875 0.156 0.0587 8.21 3.24 0.910
H
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 39

Table 1-6 (continued)
MC-Shapes
Dimensions
Shape
Area,
A
Depth,
d
Web Flange Distance
Thickness,
tw
tw

2
Width,
bf
Average
Thickness,
tf
kT
Work-
able
Gage
in.
rtsho
in.
2
in. in. in. in. in. in. in. in. in.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section to ensure compatibility.
— Indicates flange is too narrow to establish a workable gage.
1–40 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MC7×22.7 6.67 7.00 7 0.503
1
/2
1/43.60 3
5
/80.500
1
/21
1
/84
3
/42
g
1.23 6.50
×19.1 5.61 7.00 7 0.352
3
/8
3/163.45 3
1
/20.500
1
/21
1
/84
3
/42
g
1.19 6.50
MC6×18 5.29 6.00 6 0.379
3
/8
3/163.50 3
1
/20.475
1
/21
1
/163
7
/82
g
1.20 5.53
×15.3 4.49 6.00 6 0.340
5
/16
3/163.50 3
1
/20.385
3
/8
7/84
1
/42
g
1.20 5.62
MC6×16.3 4.79 6.00 6 0.375
3
/8
3/163.00 3 0.475
1
/21
1
/163
7
/81
3
/4
g1.03 5.53
×15.1 4.44 6.00 6 0.316
5
/16
3/162.94 3 0.475
1
/21
1
/163
7
/81
3
/4
g1.01 5.53
MC6×12 3.53 6.00 6 0.310
5
/16
3/162.50 2
1
/20.375
3
/8
7/84
1
/41
1
/2
g0.856 5.63
MC6×7 2.09 6.00 6 0.179
3
/16
1/81.88 1
7
/80.291
5
/16
3 /44
1
/2— 0.638 5.71
×6.5 1.95 6.00 6 0.155
1
/8
1/161.85 1
7
/80.291
5
/16
3 /44
1
/2— 0.631 5.71
MC4×13.8 4.03 4.00 4 0.500
1
/2
1/42.50 2
1
/20.500
1
/21 2 — 0.851 3.50
MC3×7.1 2.11 3.00 3 0.312
5
/16
3/161.94 2 0.351
3
/8
13/161
3
/8— 0.657 2.65
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 40

Table 1-6 (continued)
MC-Shapes
Properties
Nom-
inal
Wt.
Shear
Ctr,
eo
ISrZISr

x x p
Axis X-X Axis Y-Y
Torsional Properties
CwJ

r o
in.
4
in.
3
in.in. in.
3
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
MC7-MC3
lb/ft
Z
DIMENSIONS AND PROPERTIES 1–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
22.7 1.01 47.4 13.5 2.67 16.4 7.24 2.83 1.04 1.04 5.38 0.477 0.625 58.3 3.53 0.659
19.1 1.15 43.1 12.3 2.77 14.5 6.06 2.55 1.04 1.08 4.85 0.579 0.407 49.3 3.70 0.638
18 1.17 29.7 9.89 2.37 11.7 5.88 2.47 1.05 1.12 4.68 0.644 0.379 34.6 3.46 0.563
15.3 1.16 25.3 8.44 2.38 9.91 4.91 2.01 1.05 1.05 3.85 0.511 0.223 30.0 3.41 0.579
16.3 0.930 26.0 8.66 2.33 10.4 3.77 1.82 0.887 0.927 3.47 0.465 0.336 22.1 3.11 0.643
15.1 0.982 24.9 8.30 2.37 9.83 3.46 1.73 0.883 0.940 3.30 0.543 0.285 20.5 3.18 0.634
12 0.725 18.7 6.24 2.30 7.47 1.85 1.03 0.724 0.704 1.97 0.294 0.155 11.3 2.80 0.740
7 0.583 11.4 3.81 2.34 4.50 0.603 0.439 0.537 0.501 0.865 0.174 0.0464 4.00 2.63 0.830
6.5 0.612 11.0 3.66 2.38 4.28 0.565 0.422 0.539 0.513 0.836 0.191 0.0412 3.75 2.68 0.824
13.8 0.643 8.85 4.43 1.48 5.53 2.13 1.29 0.727 0.849 2.40 0.508 0.373 4.84 2.23 0.550
7.1 0.574 2.72 1.81 1.14 2.24 0.666 0.518 0.562 0.653 0.998 0.414 0.0928 0.915 1.76 0.516
H
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 41

1–42 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-7
Angles
Properties
Shape
kWt.
Area,
A ISr

y y p
Axis X-X
Flexural-Torsional
Properties
CwJ

r o
in. lb/ft in.
2
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
Z
L8×8×1
1
/81
3
/456.9 16.8 98.1 17.5 2.41 2.40 31.6 1.05 7.13 32.5 4.29
×11
5
/851.0 15.1 89.1 15.8 2.43 2.36 28.5 0.944 5.08 23.4 4.32
×
7
/81
1
/245.0 13.3 79.7 14.0 2.45 2.31 25.3 0.831 3.46 16.1 4.36
×
3
/41
3
/838.9 11.5 69.9 12.2 2.46 2.26 22.0 0.719 2.21 10.4 4.39
×
5
/81
1
/432.7 9.69 59.6 10.3 2.48 2.21 18.6 0.606 1.30 6.16 4.42
×
9
/161
3
/1629.6 8.77 54.2 9.33 2.49 2.19 16.8 0.548 0.961 4.55 4.43
×
1
/21
1
/826.4 7.84 48.8 8.36 2.49 2.17 15.1 0.490 0.683 3.23 4.45
L8×6×11
1
/244.2 13.1 80.9 15.1 2.49 2.65 27.3 1.45 4.34 16.3 3.88
×
7
/81
3
/839.1 11.5 72.4 13.4 2.50 2.60 24.3 1.43 2.96 11.3 3.92
×
3
/41
1
/433.8 9.99 63.5 11.7 2.52 2.55 21.1 1.34 1.90 7.28 3.95
×
5
/81
1
/828.5 8.41 54.2 9.86 2.54 2.50 17.9 1.27 1.12 4.33 3.98
×
9
/161
1
/1625.7 7.61 49.4 8.94 2.55 2.48 16.2 1.24 0.823 3.20 3.99
×
1
/21 23.0 6.80 44.4 8.01 2.55 2.46 14.6 1.20 0.584 2.28 4.01
×
7
/16
15 /1620.2 5.99 39.3 7.06 2.56 2.43 12.9 1.15 0.396 1.55 4.02
L8×4×11
1
/237.4 11.1 69.7 14.0 2.51 3.03 24.3 2.45 3.68 12.9 3.75
×
7
/81
3
/833.1 9.79 62.6 12.5 2.53 2.99 21.7 2.41 2.51 8.89 3.78
×
3
/41
1
/428.7 8.49 55.0 10.9 2.55 2.94 18.9 2.34 1.61 5.75 3.80
×
5
/81
1
/824.2 7.16 47.0 9.20 2.56 2.89 16.1 2.27 0.955 3.42 3.83
×
9
/161
1
/1621.9 6.49 42.9 8.34 2.57 2.86 14.6 2.23 0.704 2.53 3.84
×
1
/21 19.6 5.80 38.6 7.48 2.58 2.84 13.1 2.20 0.501 1.80 3.86
×
7
/16
15 /1617.2 5.11 34.2 6.59 2.59 2.81 11.6 2.16 0.340 1.22 3.87
L7×4×
3
/41
1
/426.2 7.74 37.8 8.39 2.21 2.50 14.8 1.84 1.47 3.97 3.31
×
5
/81
1
/822.1 6.50 32.4 7.12 2.23 2.45 12.5 1.80 0.868 2.37 3.34
×
1
/21 17.9 5.26 26.6 5.79 2.25 2.40 10.2 1.74 0.456 1.25 3.37
×
7
/16
15 /1615.7 4.63 23.6 5.11 2.26 2.38 9.03 1.71 0.310 0.851 3.38
×
3
/8
7 /813.6 4.00 20.5 4.42 2.27 2.35 7.81 1.67 0.198 0.544 3.40
L6×6×11
1
/237.4 11.0 35.4 8.55 1.79 1.86 15.4 0.917 3.68 9.24 3.18
×
7
/81
3
/833.1 9.75 31.9 7.61 1.81 1.81 13.7 0.813 2.51 6.41 3.21
×
3
/41
1
/428.7 8.46 28.1 6.64 1.82 1.77 11.9 0.705 1.61 4.17 3.24
×
5
/81
1
/824.2 7.13 24.1 5.64 1.84 1.72 10.1 0.594 0.955 2.50 3.28
×
9
/161
1
/1621.9 6.45 22.0 5.12 1.85 1.70 9.18 0.538 0.704 1.85 3.29
×
1
/21 19.6 5.77 19.9 4.59 1.86 1.67 8.22 0.481 0.501 1.32 3.31
×
7
/16
15 /1617.2 5.08 17.6 4.06 1.86 1.65 7.25 0.423 0.340 0.899 3.32
×
3
/8
7 /814.9 4.38 15.4 3.51 1.87 1.62 6.27 0.365 0.218 0.575 3.34
×
5
/16
13 /1612.4 3.67 13.0 2.95 1.88 1.60 5.26 0.306 0.129 0.338 3.35
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 42

DIMENSIONS AND PROPERTIES 1–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-7 (continued)
Angles
Properties
Shape ISr

xx p
Axis Y-Y Axis Z-Z
Tan

Fy= 36
ksi
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in.
Zr
Q
s
SI
L8×8×1
1
/898.1 17.5 2.41 2.40 31.6 1.05 40.7 12.0 1.56 1.00 1.00
×1 89.1 15.8 2.43 2.36 28.5 0.944 36.8 11.0 1.56 1.00 1.00
×
7
/879.7 14.0 2.45 2.31 25.3 0.831 32.7 10.0 1.57 1.00 1.00
×
3
/469.9 12.2 2.46 2.26 22.0 0.719 28.5 8.90 1.57 1.00 1.00
×
5
/859.6 10.3 2.48 2.21 18.6 0.606 24.2 7.72 1.58 1.00 0.997
×
9
/1654.2 9.33 2.49 2.19 16.8 0.548 21.9 7.09 1.58 1.00 0.959
×
1
/248.8 8.36 2.49 2.17 15.1 0.490 19.8 6.44 1.59 1.00 0.912
L8×6×1 38.8 8.92 1.72 1.65 16.2 0.819 21.3 7.60 1.28 0.542 1.00
×
7
/834.9 7.94 1.74 1.60 14.4 0.719 18.9 6.71 1.28 0.546 1.00
×
3
/430.8 6.92 1.75 1.56 12.5 0.624 16.6 5.82 1.29 0.550 1.00
×
5
/826.4 5.88 1.77 1.51 10.5 0.526 14.1 4.91 1.29 0.554 0.997
×
9
/1624.1 5.34 1.78 1.49 9.52 0.476 12.8 4.45 1.30 0.556 0.959
×
1
/221.7 4.79 1.79 1.46 8.52 0.425 11.5 3.98 1.30 0.557 0.912
×
7
/1619.3 4.23 1.80 1.44 7.50 0.374 10.2 3.51 1.31 0.559 0.850
L8×4×1 11.6 3.94 1.03 1.04 7.73 0.694 7.83 3.48 0.844 0.247 1.00
×
7
/810.5 3.51 1.04 0.997 6.77 0.612 6.97 3.06 0.846 0.252 1.00
×
3
/49.37 3.07 1.05 0.949 5.82 0.531 6.14 2.65 0.850 0.257 1.00
×
5
/88.11 2.62 1.06 0.902 4.86 0.448 5.24 2.24 0.856 0.262 0.997
×
9
/167.44 2.38 1.07 0.878 4.39 0.406 4.78 2.03 0.859 0.264 0.959
×
1
/26.75 2.15 1.08 0.854 3.91 0.363 4.32 1.82 0.863 0.266 0.912
×
7
/166.03 1.90 1.09 0.829 3.42 0.319 3.84 1.61 0.867 0.268 0.850
L7×4×
3
/49.00 3.01 1.08 1.00 5.60 0.553 5.63 2.57 0.855 0.324 1.00
×
5
/87.79 2.56 1.10 0.958 4.69 0.464 4.81 2.16 0.860 0.329 1.00
×
1
/26.48 2.10 1.11 0.910 3.77 0.376 3.94 1.76 0.866 0.334 0.965
×
7
/165.79 1.86 1.12 0.886 3.31 0.331 3.50 1.55 0.869 0.337 0.912
×
3
/85.06 1.61 1.12 0.861 2.84 0.286 3.04 1.34 0.873 0.339 0.840
L6×6×1 35.4 8.55 1.79 1.86 15.4 0.917 14.9 5.70 1.17 1.00 1.00
×
7
/831.9 7.61 1.81 1.81 13.7 0.813 13.3 5.18 1.17 1.00 1.00
×
3
/428.1 6.64 1.82 1.77 11.9 0.705 11.6 4.63 1.17 1.00 1.00
×
5
/824.1 5.64 1.84 1.72 10.1 0.594 9.81 4.04 1.17 1.00 1.00
×
9
/1622.0 5.12 1.85 1.70 9.18 0.538 8.90 3.73 1.18 1.00 1.00
×
1
/219.9 4.59 1.86 1.67 8.22 0.481 8.06 3.40 1.18 1.00 1.00
×
7
/1617.6 4.06 1.86 1.65 7.25 0.423 7.05 3.05 1.18 1.00 0.973
×
3
/815.4 3.51 1.87 1.62 6.27 0.365 6.21 2.69 1.19 1.00 0.912
×
5
/1613.0 2.95 1.88 1.60 5.26 0.306 5.20 2.30 1.19 1.00 0.826
L8-L6
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:50 AM Page 43 (Black plate)

Table 1-7 (continued)
Angles
Properties
Shape
kWt.
Area,
A ISr

y y p
Axis X-X
Flexural-Torsional
Properties
CwJ

r o
in. lb/ft in.
2
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
Z
1–44 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
L6×4×
7
/81
3
/827.2 8.00 27.7 7.13 1.86 2.12 12.7 1.43 2.03 4.04 2.82
×
3
/41
1
/423.6 6.94 24.5 6.23 1.88 2.07 11.1 1.37 1.31 2.64 2.85
×
5
/81
1
/820.0 5.86 21.0 5.29 1.89 2.03 9.44 1.31 0.775 1.59 2.88
×
9
/161
1
/1618.1 5.31 19.2 4.81 1.90 2.00 8.59 1.28 0.572 1.18 2.90
×
1
/21 16.2 4.75 17.3 4.31 1.91 1.98 7.71 1.25 0.407 0.843 2.91
×
7
/16
15 /1614.3 4.18 15.4 3.81 1.92 1.95 6.81 1.22 0.276 0.575 2.93
×
3
/8
7 /812.3 3.61 13.4 3.30 1.93 1.93 5.89 1.19 0.177 0.369 2.94
×
5
/16
13 /1610.3 3.03 11.4 2.77 1.94 1.90 4.96 1.15 0.104 0.217 2.96
L6×3
1
/2×
1
/21 15.3 4.50 16.6 4.23 1.92 2.07 7.49 1.50 0.386 0.779 2.88
×
3
/8
7 /811.7 3.44 12.9 3.23 1.93 2.02 5.74 1.41 0.168 0.341 2.90
×
5
/16
13 /169.80 2.89 10.9 2.72 1.94 2.00 4.84 1.38 0.0990 0.201 2.92
L5×5×
7
/81
3
/827.2 8.00 17.8 5.16 1.49 1.56 9.31 0.800 2.07 3.53 2.64
×
3
/41
1
/423.6 6.98 15.7 4.52 1.50 1.52 8.14 0.698 1.33 2.32 2.67
×
5
/81
1
/820.0 5.90 13.6 3.85 1.52 1.47 6.93 0.590 0.792 1.40 2.70
×
1
/21 16.2 4.79 11.3 3.15 1.53 1.42 5.66 0.479 0.417 0.744 2.73
×
7
/16
15 /1614.3 4.22 10.0 2.78 1.54 1.40 5.00 0.422 0.284 0.508 2.74
×
3
/8
7 /812.3 3.65 8.76 2.41 1.55 1.37 4.33 0.365 0.183 0.327 2.76
×
5
/16
13 /1610.3 3.07 7.44 2.04 1.56 1.35 3.65 0.307 0.108 0.193 2.77
L5×3
1
/2×
3
/41
3
/1619.8 5.85 13.9 4.26 1.55 1.74 7.60 1.10 1.09 1.52 2.36
×
5
/81
1
/1616.8 4.93 12.0 3.63 1.56 1.69 6.50 1.06 0.651 0.918 2.39
×
1
/2
15 /1613.6 4.00 10.0 2.97 1.58 1.65 5.33 1.00 0.343 0.491 2.42
×
3
/8
13 /1610.4 3.05 7.75 2.28 1.59 1.60 4.09 0.933 0.150 0.217 2.45
×
5
/16
3 /48.70 2.56 6.58 1.92 1.60 1.57 3.45 0.904 0.0883 0.128 2.47
×
1
/4
11 /167.00 2.07 5.36 1.55 1.61 1.55 2.78 0.860 0.0464 0.0670 2.48
L5×3×
1
/2
15 /1612.8 3.75 9.43 2.89 1.58 1.74 5.12 1.25 0.322 0.444 2.38
×
7
/16
7 /811.3 3.31 8.41 2.56 1.59 1.72 4.53 1.22 0.220 0.304 2.39
×
3
/8
13 /169.80 2.86 7.35 2.22 1.60 1.69 3.93 1.19 0.141 0.196 2.41
×
5
/16
3 /48.20 2.41 6.24 1.87 1.61 1.67 3.32 1.14 0.0832 0.116 2.42
×
1
/4
11 /166.60 1.94 5.09 1.51 1.62 1.64 2.68 1.12 0.0438 0.0606 2.43
L4×4×
3
/41
1
/818.5 5.44 7.62 2.79 1.18 1.27 5.02 0.680 1.02 1.12 2.10
×
5
/81 15.7 4.61 6.62 2.38 1.20 1.22 4.28 0.576 0.610 0.680 2.13
×
1
/2
7 /812.8 3.75 5.52 1.96 1.21 1.18 3.50 0.469 0.322 0.366 2.16
×
7
/16
13 /1611.3 3.30 4.93 1.73 1.22 1.15 3.10 0.413 0.220 0.252 2.18
×
3
/8
3 /49.80 2.86 4.32 1.50 1.23 1.13 2.69 0.358 0.141 0.162 2.19
×
5
/16
11 /168.20 2.40 3.67 1.27 1.24 1.11 2.26 0.300 0.0832 0.0963 2.21
×
1
/4
5 /86.60 1.93 3.00 1.03 1.25 1.08 1.82 0.241 0.0438 0.0505 2.22
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 44

Table 1-7 (continued)
Angles
Properties
Shape ISr

xx p
Axis Y-Y Axis Z-Z
Tan

Fy= 36
ksi
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in.
Zr
Q
s
SI
DIMENSIONS AND PROPERTIES 1–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
L6×4×
7
/89.70 3.37 1.10 1.12 6.26 0.667 5.82 2.91 0.854 0.421 1.00
×
3
/48.63 2.95 1.12 1.07 5.42 0.578 5.08 2.51 0.856 0.428 1.00
×
5
/87.48 2.52 1.13 1.03 4.56 0.488 4.32 2.12 0.859 0.435 1.00
×
9
/166.86 2.29 1.14 1.00 4.13 0.443 3.93 1.92 0.861 0.438 1.00
×
1
/26.22 2.06 1.14 0.981 3.69 0.396 3.54 1.72 0.864 0.440 1.00
×
7
/165.56 1.83 1.15 0.957 3.24 0.348 3.14 1.51 0.867 0.443 0.973
×
3
/84.86 1.58 1.16 0.933 2.79 0.301 2.73 1.31 0.870 0.446 0.912
×
5
/164.13 1.34 1.17 0.908 2.33 0.253 2.31 1.10 0.874 0.449 0.826
L6×3
1
/2×
1
/24.24 1.59 0.968 0.829 2.88 0.375 2.59 1.34 0.756 0.343 1.00
×
3
/83.33 1.22 0.984 0.781 2.18 0.287 2.01 1.02 0.763 0.349 0.912
×
5
/162.84 1.03 0.991 0.756 1.82 0.241 1.70 0.859 0.767 0.352 0.826
L5×5×
7
/817.8 5.16 1.49 1.56 9.31 0.800 7.60 3.43 0.971 1.00 1.00
×
3
/415.7 4.52 1.50 1.52 8.14 0.698 6.55 3.08 0.972 1.00 1.00
×
5
/813.6 3.85 1.52 1.47 6.93 0.590 5.62 2.70 0.975 1.00 1.00
×
1
/211.3 3.15 1.53 1.42 5.66 0.479 4.64 2.29 0.980 1.00 1.00
×
7
/1610.0 2.78 1.54 1.40 5.00 0.422 4.04 2.06 0.983 1.00 1.00
×
3
/88.76 2.41 1.55 1.37 4.33 0.365 3.55 1.83 0.986 1.00 0.983
×
5
/167.44 2.04 1.56 1.35 3.65 0.307 3.00 1.58 0.990 1.00 0.912
L5×3
1
/2×
3
/45.52 2.20 0.974 0.993 4.07 0.585 3.23 1.90 0.744 0.464 1.00
×
5
/84.80 1.88 0.987 0.947 3.43 0.493 2.74 1.60 0.746 0.472 1.00
×
1
/24.02 1.55 1.00 0.901 2.79 0.400 2.26 1.29 0.750 0.479 1.00
×
3
/83.15 1.19 1.02 0.854 2.12 0.305 1.73 0.985 0.755 0.485 0.983
×
5
/162.69 1.01 1.02 0.829 1.77 0.256 1.47 0.827 0.758 0.489 0.912
×
1
/42.20 0.816 1.03 0.804 1.42 0.207 1.19 0.667 0.761 0.491 0.804
L5×3×
1
/22.55 1.13 0.824 0.746 2.08 0.375 1.55 0.953 0.642 0.357 1.00
×
7
/162.29 1.00 0.831 0.722 1.82 0.331 1.37 0.840 0.644 0.361 1.00
×
3
/82.01 0.874 0.838 0.698 1.57 0.286 1.20 0.726 0.646 0.364 0.983
×
5
/161.72 0.739 0.846 0.673 1.31 0.241 1.01 0.610 0.649 0.368 0.912
×
1
/41.41 0.600 0.853 0.648 1.05 0.194 0.825 0.491 0.652 0.371 0.804
L4×4×
3
/47.62 2.79 1.18 1.27 5.02 0.680 3.25 1.81 0.774 1.00 1.00
×
5
/86.62 2.38 1.20 1.22 4.28 0.576 2.76 1.59 0.774 1.00 1.00
×
1
/25.52 1.96 1.21 1.18 3.50 0.469 2.25 1.35 0.776 1.00 1.00
×
7
/164.93 1.73 1.22 1.15 3.10 0.413 1.99 1.22 0.777 1.00 1.00
×
3
/84.32 1.50 1.23 1.13 2.69 0.358 1.73 1.08 0.779 1.00 1.00
×
5
/163.67 1.27 1.24 1.11 2.26 0.300 1.46 0.936 0.781 1.00 0.997
×
1
/43.00 1.03 1.25 1.08 1.82 0.241 1.19 0.776 0.783 1.00 0.912
L6-L4
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 9:55 AM Page 45 (Black plate)

Table 1-7 (continued)
Angles
Properties
Shape
kWt.
Area,
A ISr

y y
p
Axis X-X
Flexural-Torsional
Properties
CwJ

r o
in. lb/ft in.
2
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
Z
1–46 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
L4×3
1
/2×
1
/2
7 /811.9 3.50 5.30 1.92 1.23 1.24 3.46 0.500 0.301 0.302 2.03
×
3
/8
3 /49.10 2.68 4.15 1.48 1.25 1.20 2.66 0.427 0.132 0.134 2.06
×
5
/16
11 /167.70 2.25 3.53 1.25 1.25 1.17 2.24 0.400 0.0782 0.0798 2.08
×
1
/4
5 /86.20 1.82 2.89 1.01 1.26 1.14 1.81 0.360 0.0412 0.0419 2.09
L4×3×
5
/81 13.6 3.99 6.01 2.28 1.23 1.37 4.08 0.808 0.529 0.472 1.91
×
1
/2
7 /811.1 3.25 5.02 1.87 1.24 1.32 3.36 0.750 0.281 0.255 1.94
×
3
/8
3 /48.50 2.49 3.94 1.44 1.26 1.27 2.60 0.680 0.123 0.114 1.97
×
5
/16
11 /167.20 2.09 3.36 1.22 1.27 1.25 2.19 0.656 0.0731 0.0676 1.98
×
1
/4
5 /85.80 1.69 2.75 0.988 1.27 1.22 1.77 0.620 0.0386 0.0356 1.99
L3
1
/2×3
1
/2×
1
/2
7 /811.1 3.25 3.63 1.48 1.05 1.05 2.66 0.464 0.281 0.238 1.87
×
7
/16
13 /169.80 2.89 3.25 1.32 1.06 1.03 2.36 0.413 0.192 0.164 1.89
×
3
/8
3 /48.50 2.50 2.86 1.15 1.07 1.00 2.06 0.357 0.123 0.106 1.90
×
5
/16
11 /167.20 2.10 2.44 0.969 1.08 0.979 1.74 0.300 0.0731 0.0634 1.92
×
1
/4
5 /85.80 1.70 2.00 0.787 1.09 0.954 1.41 0.243 0.0386 0.0334 1.93
L3
1
/2×3×
1
/2
7 /810.2 3.02 3.45 1.45 1.07 1.12 2.61 0.480 0.260 0.191 1.75
×
7
/16
13 /169.10 2.67 3.10 1.29 1.08 1.09 2.32 0.449 0.178 0.132 1.76
×
3
/8
3 /47.90 2.32 2.73 1.12 1.09 1.07 2.03 0.407 0.114 0.0858 1.78
×
5
/16
11 /166.60 1.95 2.33 0.951 1.09 1.05 1.72 0.380 0.0680 0.0512 1.79
×
1
/4
5 /85.40 1.58 1.92 0.773 1.10 1.02 1.39 0.340 0.0360 0.0270 1.80
L3
1
/2×2
1
/2×
1
/2
7 /89.40 2.77 3.24 1.41 1.08 1.20 2.52 0.730 0.234 0.159 1.66
×
3
/8
3 /47.20 2.12 2.56 1.09 1.10 1.15 1.96 0.673 0.103 0.0714 1.69
×
5
/16
11 /166.10 1.79 2.20 0.925 1.11 1.13 1.67 0.636 0.0611 0.0426 1.71
×
1
/4
5 /84.90 1.45 1.81 0.753 1.12 1.10 1.36 0.600 0.0322 0.0225 1.72
L3×3×
1
/2
7 /89.40 2.76 2.20 1.06 0.895 0.929 1.91 0.460 0.230 0.144 1.59
×
7
/16
13 /168.30 2.43 1.98 0.946 0.903 0.907 1.70 0.405 0.157 0.100 1.60
×
3
/8
3 /47.20 2.11 1.75 0.825 0.910 0.884 1.48 0.352 0.101 0.0652 1.62
×
5
/16
11 /166.10 1.78 1.50 0.699 0.918 0.860 1.26 0.297 0.0597 0.0390 1.64
×
1
/4
5 /84.90 1.44 1.23 0.569 0.926 0.836 1.02 0.240 0.0313 0.0206 1.65
×
3
/16
9 /163.71 1.09 0.948 0.433 0.933 0.812 0.774 0.182 0.0136 0.00899 1.67
L3×2
1
/2×
1
/2
7 /88.50 2.50 2.07 1.03 0.910 0.995 1.86 0.500 0.213 0.112 1.46
×
7
/16
13 /167.60 2.22 1.87 0.921 0.917 0.972 1.66 0.463 0.146 0.0777 1.48
×
3
/8
3 /46.60 1.93 1.65 0.803 0.924 0.949 1.45 0.427 0.0943 0.0507 1.49
×
5
/16
11 /165.60 1.63 1.41 0.681 0.932 0.925 1.23 0.392 0.0560 0.0304 1.51
×
1
/4
5 /84.50 1.32 1.16 0.555 0.940 0.900 1.000 0.360 0.0296 0.0161 1.52
×
3
/16
9 /163.39 1.00 0.899 0.423 0.947 0.874 0.761 0.333 0.0130 0.00705 1.54
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A:14th Ed_ 1/20/11 7:28 AM Page 46

Table 1-7 (continued)
Angles
Properties
Shape ISr

xx p
Axis Y-Y Axis Z-Z
Tan

Fy= 36
ksi
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in.
Zr
Q
s
SI
DIMENSIONS AND PROPERTIES 1–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
L4×3
1
/2×
1
/23.76 1.50 1.04 0.994 2.69 0.438 1.79 1.17 0.716 0.750 1.00
×
3
/82.96 1.16 1.05 0.947 2.06 0.335 1.39 0.938 0.719 0.755 1.00
×
5
/162.52 0.980 1.06 0.923 1.74 0.281 1.16 0.811 0.721 0.757 0.997
×
1
/42.07 0.794 1.07 0.897 1.40 0.228 0.953 0.653 0.723 0.759 0.912
L4×3×
5
/82.85 1.34 0.845 0.867 2.45 0.499 1.59 1.13 0.631 0.534 1.00
×
1
/22.40 1.10 0.858 0.822 1.99 0.406 1.30 0.927 0.633 0.542 1.00
×
3
/81.89 0.851 0.873 0.775 1.52 0.311 1.00 0.705 0.636 0.551 1.00
×
5
/161.62 0.721 0.880 0.750 1.28 0.261 0.849 0.591 0.638 0.554 0.997
×
1
/41.33 0.585 0.887 0.725 1.03 0.211 0.692 0.476 0.639 0.558 0.912
L3
1
/2×3
1
/2×
1
/23.63 1.48 1.05 1.05 2.66 0.464 1.51 1.01 0.679 1.00 1.00
×
7
/163.25 1.32 1.06 1.03 2.36 0.413 1.33 0.920 0.681 1.00 1.00
×
3
/82.86 1.15 1.07 1.00 2.06 0.357 1.17 0.821 0.683 1.00 1.00
×
5
/162.44 0.969 1.08 0.979 1.74 0.300 0.984 0.714 0.685 1.00 1.00
×
1
/42.00 0.787 1.09 0.954 1.41 0.243 0.802 0.598 0.688 1.00 0.965
L3
1
/2×3×
1
/22.32 1.09 0.877 0.869 1.97 0.431 1.15 0.851 0.618 0.713 1.00
×
7
/162.09 0.971 0.885 0.846 1.75 0.381 1.02 0.774 0.620 0.717 1.00
×
3
/81.84 0.847 0.892 0.823 1.52 0.331 0.894 0.692 0.622 0.720 1.00
×
5
/161.58 0.718 0.900 0.798 1.28 0.279 0.758 0.602 0.624 0.722 1.00
×
1
/41.30 0.585 0.908 0.773 1.04 0.226 0.622 0.487 0.628 0.725 0.965
L3
1
/2×2
1
/2×
1
/21.36 0.756 0.701 0.701 1.39 0.396 0.781 0.649 0.532 0.485 1.00
×
3
/81.09 0.589 0.716 0.655 1.07 0.303 0.609 0.496 0.535 0.495 1.00
×
5
/160.937 0.501 0.723 0.632 0.900 0.256 0.518 0.419 0.538 0.500 1.00
×
1
/40.775 0.410 0.731 0.607 0.728 0.207 0.426 0.340 0.541 0.504 0.965
L3×3×
1
/22.20 1.06 0.895 0.929 1.91 0.460 0.922 0.703 0.580 1.00 1.00
×
7
/161.98 0.946 0.903 0.907 1.70 0.405 0.817 0.639 0.580 1.00 1.00
×
3
/81.75 0.825 0.910 0.884 1.48 0.352 0.716 0.570 0.581 1.00 1.00
×
5
/161.50 0.699 0.918 0.860 1.26 0.297 0.606 0.496 0.583 1.00 1.00
×
1
/41.23 0.569 0.926 0.836 1.02 0.240 0.490 0.415 0.585 1.00 1.00
×
3
/160.948 0.433 0.933 0.812 0.774 0.182 0.373 0.326 0.586 1.00 0.912
L3×2
1
/2×
1
/21.29 0.736 0.718 0.746 1.34 0.417 0.665 0.568 0.516 0.666 1.00
×
7
/161.17 0.656 0.724 0.724 1.19 0.370 0.594 0.517 0.516 0.671 1.00
×
3
/81.03 0.573 0.731 0.701 1.03 0.322 0.514 0.463 0.517 0.675 1.00
×
5
/160.888 0.487 0.739 0.677 0.873 0.272 0.435 0.404 0.518 0.679 1.00
×
1
/40.734 0.397 0.746 0.653 0.707 0.220 0.355 0.327 0.520 0.683 1.00
×
3
/160.568 0.303 0.753 0.627 0.536 0.167 0.271 0.247 0.521 0.687 0.912
L4-L3
Note: For workable gages, refer to Table 1-7A. For compactness criteria, refer to Table 1-7B.
AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 10:03 AM Page 47 (Black plate)

Table 1-7 (continued)
Angles
Properties
Shape
kWt.
Area,
A ISr

y y
p
Axis X-X
Flexural-Torsional
Properties
CwJ

r o
in. lb/ft in.
2
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
6
in.
Z
1–48 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-7A
Workable Gages in Angle Legs, in.
Leg876543
1
/232
1
/221
3
/41
1
/21
3
/81
1
/41
g4
1
/243
1
/232
1
/221
3
/41
3
/81
1
/81
7
/8
7/8
3/4
5/8
g
1
32
1
/22
1
/42
g
2
332
1
/21
3
/4
Note: Other gages are permitted to suit specific requirements subject to clearances and edge distance limitations.
L3×2×
1
/2
13 /167.70 2.26 1.92 1.00 0.922 1.08 1.78 0.740 0.192 0.0908 1.39
×
3
/8
11 /165.90 1.75 1.54 0.779 0.937 1.03 1.39 0.667 0.0855 0.0413 1.42
×
5
/16
5 /85.00 1.48 1.32 0.662 0.945 1.01 1.19 0.632 0.0510 0.0248 1.43
×
1
/4
9 /164.10 1.20 1.09 0.541 0.953 0.980 0.969 0.600 0.0270 0.0132 1.45
×
3
/16
1 /23.07 0.917 0.847 0.414 0.961 0.952 0.743 0.555 0.0119 0.00576 1.46
L2
1
/2×2
1
/2×
1
/2
3 /47.70 2.26 1.22 0.716 0.735 0.803 1.29 0.452 0.188 0.0791 1.30
×
3
/8
5 /85.90 1.73 0.972 0.558 0.749 0.758 1.01 0.346 0.0833 0.0362 1.33
×
5
/16
9 /165.00 1.46 0.837 0.474 0.756 0.735 0.853 0.292 0.0495 0.0218 1.35
×
1
/4
1 /24.10 1.19 0.692 0.387 0.764 0.711 0.695 0.238 0.0261 0.0116 1.36
×
3
/16
7 /163.07 0.901 0.535 0.295 0.771 0.687 0.529 0.180 0.0114 0.00510 1.38
L2
1
/2×2×
3
/8
5 /85.30 1.55 0.914 0.546 0.766 0.826 0.982 0.433 0.0746 0.0268 1.22
×
5
/16
9 /164.50 1.32 0.790 0.465 0.774 0.803 0.839 0.388 0.0444 0.0162 1.23
×
1
/4
1 /23.62 1.07 0.656 0.381 0.782 0.779 0.688 0.360 0.0235 0.00868 1.25
×
3
/16
7 /162.75 0.818 0.511 0.293 0.790 0.754 0.529 0.319 0.0103 0.00382 1.26
L2
1
/2×1
1
/2×
1
/4
1 /23.19 0.947 0.594 0.364 0.792 0.866 0.644 0.606 0.0209 0.00694 1.19
×
3
/16
7 /162.44 0.724 0.464 0.280 0.801 0.839 0.497 0.569 0.00921 0.00306 1.20
L2×2×
3
/8
5 /84.70 1.37 0.476 0.348 0.591 0.632 0.629 0.343 0.0658 0.0174 1.05
×
5
/16
9 /163.92 1.16 0.414 0.298 0.598 0.609 0.537 0.290 0.0393 0.0106 1.06
×
1
/4
1 /23.19 0.944 0.346 0.244 0.605 0.586 0.440 0.236 0.0209 0.00572 1.08
×
3
/16
7 /162.44 0.722 0.271 0.188 0.612 0.561 0.338 0.181 0.00921 0.00254 1.09
×
1
/8
3 /81.65 0.491 0.189 0.129 0.620 0.534 0.230 0.123 0.00293 0.000789 1.10
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 48

Compression Flexure Compression Flexure
nonslender compact noncompact nonslender compact noncompact
up to up to up to up to up to up to
Width of angle leg, in. Width of angle leg, in.
1
1
/8 88—
7
/16 568
1—
3
/8 458
7
/8 —
5
/16 448
3
/4 —
1
/4 33
1
/2 6
5
/8 —
3
/16 22
1
/2 4
9
/16 7—
1
/8 1
1
/2 1
1
/2 3
1
/2 678
Note: Compactness criteria given for Fy=36 ksi. Cv=1.0 for all angles.
tt
Table 1-7 (continued)
Angles
Properties
Shape ISr

xx p
Axis Y-Y Axis Z-Z
Tan

Fy= 36
ksi
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in.
Zr
Q
s
SI
DIMENSIONS AND PROPERTIES 1–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
L3×2×
1
/20.667 0.470 0.543 0.580 0.887 0.377 0.409 0.411 0.425 0.413 1.00
×
3
/80.539 0.368 0.555 0.535 0.679 0.292 0.319 0.313 0.426 0.426 1.00
×
5
/160.467 0.314 0.562 0.511 0.572 0.247 0.271 0.264 0.428 0.432 1.00
×
1
/40.390 0.258 0.569 0.487 0.463 0.200 0.223 0.214 0.431 0.437 1.00
×
3
/160.305 0.198 0.577 0.462 0.351 0.153 0.173 0.163 0.435 0.442 0.912
L2
1
/2×2
1
/2×
1
/21.22 0.716 0.735 0.803 1.29 0.452 0.526 0.459 0.481 1.00 1.00
×
3
/80.972 0.558 0.749 0.758 1.01 0.346 0.400 0.373 0.481 1.00 1.00
×
5
/160.837 0.474 0.756 0.735 0.853 0.292 0.338 0.326 0.481 1.00 1.00
×
1
/40.692 0.387 0.764 0.711 0.695 0.238 0.276 0.274 0.482 1.00 1.00
×
3
/160.535 0.295 0.771 0.687 0.529 0.180 0.209 0.216 0.482 1.00 0.983
L2
1
/2×2×
3
/80.513 0.361 0.574 0.578 0.657 0.310 0.273 0.295 0.419 0.612 1.00
×
5
/160.446 0.309 0.581 0.555 0.557 0.264 0.233 0.260 0.420 0.618 1.00
×
1
/40.372 0.253 0.589 0.532 0.454 0.214 0.192 0.213 0.423 0.624 1.00
×
3
/160.292 0.195 0.597 0.508 0.347 0.164 0.148 0.163 0.426 0.628 0.983
L2
1
/2×1
1
/2×
1
/40.160 0.142 0.411 0.372 0.261 0.189 0.0977 0.119 0.321 0.354 1.00
×
3
/160.126 0.110 0.418 0.347 0.198 0.145 0.0754 0.0914 0.324 0.360 0.983
L2×2×
3
/80.476 0.348 0.591 0.632 0.629 0.343 0.203 0.227 0.386 1.00 1.00
×
5
/160.414 0.298 0.598 0.609 0.537 0.290 0.172 0.200 0.386 1.00 1.00
×
1
/40.346 0.244 0.605 0.586 0.440 0.236 0.142 0.171 0.387 1.00 1.00
×
3
/160.271 0.188 0.612 0.561 0.338 0.181 0.109 0.137 0.389 1.00 1.00
×
1
/80.189 0.129 0.620 0.534 0.230 0.123 0.0756 0.0994 0.391 1.00 0.912
L3-L2
Table 1-7B
Compactness Criteria for Angles
AISC_PART 01A_14th Ed._Nov. 19, 2012 14-11-10 10:09 AM Page 49 (Black plate)

1–50 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv< 1.0) with Fy=50 ksi.
WT22×167.5
c
49.2 22.0 22 1.03 1
1
/222.6 15.9 16 1.77 1
3
/42.56 2
5
/8 5
1
/2
×145
c
42.6 21.8 21
3
/40.865
7
/8
7 /1618.9 15.8 15
7
/81.58 1
9
/162.36 2
7
/16
×131
c
38.5 21.7 21
5
/80.785
13
/16
7/1617.0 15.8 15
3
/41.42 1
7
/162.20 2
1
/4
×115
c,v
33.9 21.5 21
1
/20.710
11
/16
3/815.2 15.8 15
3
/41.22 1
1
/42.01 2
1
/16
WT20×296.5
h
87.2 21.5 21
1
/21.79 1
13
/16
15/1638.5 16.7 16
3
/43.23 3
1
/44.41 4
1
/2 7
1
/2
×251.5
h
74.0 21.0 21 1.54 1
9
/16
13 /1632.3 16.4 16
3
/82.76 2
3
/43.94 4
×215.5
h
63.3 20.6 20
5
/81.34 1
5
/16
11/1627.6 16.2 16
1
/42.36 2
3
/83.54 3
5
/8
×198.5
h
58.3 20.5 20
1
/21.22 1
1
/4
5 /825.0 16.1 16
1
/82.20 2
3
/163.38 3
1
/2
×186
h
54.7 20.3 20
3
/81.16 1
3
/16
5 /823.6 16.1 16
1
/82.05 2
1
/163.23 3
5
/16
×181
c,h
53.2 20.3 20
1
/41.12 1
1
/8
9 /1622.7 16.0 16 2.01 2 3.19 3
1
/4
×162
c
47.7 20.1 20
1
/81.00 1
1
/220.1 15.9 15
7
/81.81 1
13
/162.99 3
1
/16
×148.5
c
43.6 19.9 19
7
/80.930
15
/16
1/218.5 15.8 15
7
/81.65 1
5
/82.83 2
15
/16
×138.5
c
40.7 19.8 19
7
/80.830
13
/16
7/1616.5 15.8 15
7
/81.58 1
9
/162.76 2
7
/8
×124.5
c
36.7 19.7 19
3
/40.750
3
/4
3 /814.8 15.8 15
3
/41.42 1
7
/162.60 2
11
/16
×107.5
c,v
31.8 19.5 19
1
/20.650
5
/8
5 /1612.7 15.8 15
3
/41.22 1
1
/42.40 2
1
/2
×99.5
c,v
29.2 19.3 19
3
/80.650
5
/8
5 /1612.6 15.8 15
3
/41.07 1
1
/162.25 2
5
/16
WT20×196
h
57.8 20.8 20
3
/41.42 1
7
/16
3 /429.4 12.4 12
3
/82.52 2
1
/23.70 3
13
/167
1
/2
×165.5
h
48.8 20.4 20
3
/81.22 1
1
/4
5 /824.9 12.2 12
1
/82.13 2
1
/83.31 3
3
/8
×163.5
h
47.9 20.4 20
3
/81.18 1
3
/16
5 /824.1 12.1 12
1
/82.13 2
1
/83.31 3
3
/8
×147
c
43.1 20.2 20
1
/41.06 1
1
/16
9 /1621.4 12.0 12 1.93 1
15
/163.11 3
3
/16
×139
c
41.0 20.1 20
1
/81.03 1
1
/220.6 12.0 12 1.81 1
13
/162.99 3
1
/16
×132
c
38.7 20.0 20 0.960
15
/16
1/219.2 11.9 11
7
/81.73 1
3
/42.91 3
×117.5
c
34.6 19.8 19
7
/80.830
13
/16
7/1616.5 11.9 11
7
/81.58 1
9
/162.76 2
7
/8
×105.5
c
31.1 19.7 19
5
/80.750
3
/4
3 /814.8 11.8 11
3
/41.42 1
7
/162.60 2
11
/16
×91.5
c,v
26.7 19.5 19
1
/20.650
5
/8
5 /1612.7 11.8 11
3
/41.20 1
3
/162.38 2
1
/2
×83.5
c,v
24.5 19.3 19
1
/40.650
5
/8
5 /1612.5 11.8 11
3
/41.03 1 2.21 2
5
/16
×74.5
c,v
21.9 19.1 19
1
/80.630
5
/8
5 /1612.0 11.8 11
3
/40.830
13
/162.01 2
1
/8
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 50

DIMENSIONS AND PROPERTIES 1–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
167.5 4.50 21.4 2170 131 6.63 5.53 234 1.54 600 75.2 3.49 118 0.824 37.2 438 145 5.02 25.2 1830 111 6.54 5.26 196 1.35 521 65.9 3.49 102 0.630 25.4 275 131 5.57 27.6 1640 99.4 6.53 5.19 176 1.22 462 58.6 3.47 90.9 0.525 18.6 200 115 6.45 30.3 1440 88.6 6.53 5.17 157 1.07 398 50.5 3.43 78.3 0.436 12.4 139
296.5 2.58 12.0 3310 209 6.16 5.66 379 2.61 1260 151 3.80 240 1.00 221 2340
251.5 2.98 13.6 2730 174 6.07 5.38 314 2.25 1020 124 3.72 197 1.00 138 1400
215.5 3.44 15.4 2290 148 6.01 5.18 266 1.95 843 104 3.65 164 1.00 88.2 881
198.5 3.66 16.8 2070 134 5.96 5.03 240 1.81 771 95.7 3.63 150 1.00 70.6 677
186 3.93 17.5 1930 126 5.95 4.98 225 1.70 709 88.3 3.60 138 1.00 57.7 558
181 3.99 18.1 1870 122 5.92 4.91 217 1.66 691 86.3 3.60 135 0.991 54.2 511
162 4.40 20.1 1650 108 5.88 4.77 192 1.50 609 76.6 3.57 119 0.890 39.6 362
148.5 4.80 21.4 1500 98.9 5.87 4.71 176 1.38 546 69.0 3.54 107 0.824 30.5 279
138.5 5.03 23.9 1360 88.6 5.78 4.50 157 1.29 522 65.9 3.58 102 0.697 25.7 218
124.5 5.55 26.3 1210 79.4 5.75 4.41 140 1.16 463 58.8 3.55 90.8 0.579 19.0 158
107.5 6.45 30.0 1030 68.0 5.71 4.28 120 1.01 398 50.5 3.54 77.8 0.445 12.4 101
99.5 7.39 29.7 988 66.5 5.81 4.47 117 0.929 347 44.1 3.45 68.2 0.454 9.12 83.5
196 2.45 14.6 2270 153 6.27 5.94 275 2.33 401 64.9 2.64 106 1.00 85.4 796
165.5 2.86 16.7 1880 128 6.21 5.74 231 2.00 322 52.9 2.57 85.7 1.00 52.5 484
163.5 2.85 17.3 1840 125 6.19 5.66 224 1.98 320 52.7 2.58 85.0 1.00 51.4 449
147 3.11 19.1 1630 111 6.14 5.51 199 1.80 281 46.7 2.55 75.0 0.940 38.2 322
139 3.31 19.5 1550 106 6.14 5.51 191 1.71 261 43.5 2.52 69.9 0.920 32.4 282
132 3.45 20.8 1450 99.2 6.11 5.41 178 1.63 246 41.3 2.52 66.0 0.854 27.9 233
117.5 3.77 23.9 1260 85.7 6.04 5.17 153 1.45 222 37.3 2.54 59.0 0.697 20.6 156
105.5 4.17 26.3 1120 76.7 6.01 5.08 137 1.31 195 33.0 2.51 52.1 0.579 15.2 113
91.5 4.92 30.0 955 65.7 5.98 4.97 117 1.13 165 28.0 2.49 44.0 0.445 9.65 71.2
83.5 5.76 29.7 899 63.7 6.05 5.19 115 1.10 141 23.9 2.40 37.8 0.454 6.99 62.9
74.5 7.11 30.3 815 59.7 6.10 5.45 108 1.72 114 19.4 2.29 30.9 0.436 4.66 51.9
WT22-WT20
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 51

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–52 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT18×326
h
96.2 20.5 20
1
/21.97 2 1 40.4 17.6 17
5
/83.54 3
9
/164.49 4
13
/167
1
/2
×264.5
h
77.8 19.9 19
7
/81.61 1
5
/8
13 /1632.0 17.2 17
1
/42.91 2
15
/163.86 4
3
/16
×243.5
h
71.7 19.7 19
5
/81.50 1
1
/2
3 /429.5 17.1 17
1
/82.68 2
11
/163.63 4
×220.5
h
64.9 19.4 19
3
/81.36 1
3
/8
11/1626.4 17.0 17 2.44 2
7
/163.39 3
3
/4
×197.5
h
58.1 19.2 19
1
/41.22 1
1
/4
5 /823.4 16.8 16
7
/82.20 2
3
/163.15 3
7
/16
×180.5
h
53.0 19.0 19 1.12 1
1
/8
9 /1621.3 16.7 16
3
/42.01 2 2.96 3
5
/16
×165
c
48.4 18.8 18
7
/81.02 1
1
/219.2 16.6 16
5
/81.85 1
7
/82.80 3
1
/8
×151
c
44.5 18.7 18
5
/80.945
15
/16
1/217.6 16.7 16
5
/81.68 1
11
/162.63 3
×141
c
41.5 18.6 18
1
/20.885
7
/8
7 /1616.4 16.6 16
5
/81.57 1
9
/162.52 2
7
/8
×131
c
38.5 18.4 18
3
/80.840
13
/16
7/1615.5 16.6 16
1
/21.44 1
7
/162.39 2
3
/4
×123.5
c
36.3 18.3 18
3
/80.800
13
/16
7/1614.7 16.5 16
1
/21.35 1
3
/82.30 2
5
/8
×115.5
c
34.1 18.2 18
1
/40.760
3
/4
3 /813.9 16.5 16
1
/21.26 1
1
/42.21 2
9
/16
WT18×128
c
37.6 18.7 18
3
/40.960
15
/16
1/218.0 12.2 12
1
/41.73 1
3
/42.48 2
5
/8 5
1
/2
×116
c
34.0 18.6 18
1
/20.870
7
/8
7 /1616.1 12.1 12
1
/81.57 1
9
/162.32 2
7
/16
×105
c
30.9 18.3 18
3
/80.830
13
/16
7/1615.2 12.2 12
1
/81.36 1
3
/82.11 2
5
/16
×97
c
28.5 18.2 18
1
/40.765
3
/4
3 /814.0 12.1 12
1
/81.26 1
1
/42.01 2
3
/16
×91
c
26.8 18.2 18
1
/80.725
3
/4
3 /813.2 12.1 12
1
/81.18 1
3
/161.93 2
1
/8
×85
c
25.0 18.1 18
1
/80.680
11
/16
3/812.3 12.0 12 1.10 1
1
/81.85 2
×80
c
23.5 18.0 18 0.650
5
/8
5 /1611.7 12.0 12 1.02 1 1.77 1
15
/16
×75
c
22.1 17.9 17
7
/80.625
5
/8
5 /1611.2 12.0 12 0.940
15
/161.69 1
7
/8
×67.5
c,v
19.9 17.8 17
3
/40.600
5
/8
5 /1610.7 12.0 12 0.790
13
/161.54 1
11
/16
WT16.5×193.5
h
57.0 18.0 18 1.26 1
1
/4
5 /822.6 16.2 16
1
/42.28 2
1
/43.07 3
3
/165
1
/2
×177
h
52.1 17.8 17
3
/41.16 1
3
/16
5 /820.6 16.1 16
1
/82.09 2
1
/162.88 2
15
/16
×159 46.8 17.6 17
5
/81.04 1
1
/16
9 /1618.3 16.0 16 1.89 1
7
/82.68 2
3
/4
×145.5
c
42.8 17.4 17
3
/80.960
15
/16
1/216.7 15.9 15
7
/81.73 1
3
/42.52 2
5
/8
×131.5
c
38.7 17.3 17
1
/40.870
7
/8
7 /1615.0 15.8 15
3
/41.57 1
9
/162.36 2
7
/16
×120.5
c
35.6 17.1 17
1
/80.830
13
/16
7/1614.2 15.9 15
7
/81.40 1
3
/82.19 2
1
/4
×110.5
c
32.6 17.0 17 0.775
3
/4
3 /813.1 15.8 15
3
/41.28 1
1
/42.06 2
1
/8
×100.5
c
29.7 16.8 16
7
/80.715
11
/16
3/812.0 15.7 15
3
/41.15 1
1
/81.94 2
kdeskdet
Table 1-8 (continued)
WT-Shapes
Dimensions
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 52

DIMENSIONS AND PROPERTIES 1–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
326 2.48 10.4 3160 208 5.74 5.35 383 2.73 1610 184 4.10 290 1.00 295 3070
264.5 2.96 12.4 2440 164 5.60 4.96 298 2.26 1240 145 4.00 227 1.00 163 1600
243.5 3.19 13.1 2220 150 5.57 4.84 272 2.10 1120 131 3.96 206 1.00 128 1250
220.5 3.48 14.3 1980 134 5.52 4.69 242 1.91 997 117 3.92 184 1.00 96.6 914
197.5 3.83 15.7 1740 119 5.47 4.53 213 1.73 877 104 3.88 162 1.00 70.7 652
180.5 4.16 17.0 1570 107 5.43 4.42 192 1.59 786 94.0 3.85 146 1.00 54.1 491
165 4.49 18.4 1410 97.0 5.39 4.30 173 1.46 711 85.5 3.83 132 0.976 42.0 372
151 4.96 19.8 1280 88.8 5.37 4.22 158 1.33 648 77.8 3.82 120 0.905 32.1 285
141 5.29 21.0 1190 82.6 5.36 4.16 146 1.25 599 72.2 3.80 112 0.844 26.3 231
131 5.75 21.9 1110 77.5 5.36 4.14 137 1.16 545 65.8 3.76 102 0.799 20.8 185
123.5 6.11 22.9 1040 73.3 5.36 4.12 129 1.10 507 61.4 3.74 94.8 0.748 17.3 155
115.5 6.54 23.9 978 69.1 5.36 4.10 122 1.03 470 57.0 3.71 88.0 0.697 14.3 129
128 3.53 19.5 1210 87.4 5.66 4.92 156 1.54 264 43.2 2.65 68.5 0.920 26.4 205
116 3.86 21.4 1080 78.5 5.63 4.82 140 1.40 234 38.6 2.62 60.9 0.824 19.7 151
105 4.48 22.0 985 73.1 5.65 4.87 131 1.27 206 33.8 2.58 53.4 0.794 13.9 119
97 4.81 23.8 901 67.0 5.62 4.80 120 1.18 187 30.9 2.56 48.8 0.702 11.1 92.7
91 5.12 25.1 845 63.1 5.62 4.77 113 1.11 174 28.8 2.55 45.3 0.635 9.20 77.6
85 5.47 26.6 786 58.9 5.61 4.73 105 1.04 160 26.6 2.53 41.8 0.566 7.51 63.2
80 5.88 27.7 740 55.8 5.61 4.74 100 0.980 147 24.6 2.50 38.6 0.522 6.17 53.6
75 6.37 28.6 698 53.1 5.62 4.78 95.5 0.923 135 22.5 2.47 35.4 0.489 5.04 46.0
67.5 7.56 29.7 637 49.7 5.66 4.96 90.1 1.23 113 18.9 2.38 29.8 0.454 3.48 37.3
193.5 3.55 14.3 1460 107 5.07 4.27 193 1.76 810 100 3.77 156 1.00 73.9 615
177 3.85 15.3 1320 96.8 5.03 4.15 174 1.62 729 90.6 3.74 141 1.00 57.1 468
159 4.23 16.9 1160 85.8 4.99 4.02 154 1.46 645 80.7 3.71 125 1.00 42.1 335
145.5 4.60 18.1 1060 78.3 4.96 3.93 140 1.35 581 73.1 3.68 113 0.991 32.5 256
131.5 5.03 19.9 943 70.2 4.93 3.83 125 1.23 517 65.5 3.65 101 0.900 24.3 188
120.5 5.66 20.6 872 65.8 4.96 3.84 116 1.12 466 58.8 3.62 90.8 0.864 18.0 146
110.5 6.20 21.9 799 60.8 4.95 3.81 107 1.03 420 53.2 3.59 82.1 0.799 13.9 113
100.5 6.85 23.5 725 55.5 4.95 3.77 97.8 0.940 375 47.6 3.56 73.3 0.718 10.4 84.9
Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT18-WT16.5
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 53

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–54 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT16.5×84.5
c
24.7 16.9 16
7
/80.670
11
/16
3/811.3 11.5 11
1
/21.22 1
1
/41.92 2
1
/8 5
1
/2
×76
c
22.5 16.7 16
3
/40.635
5
/8
5 /1610.6 11.6 11
5
/81.06 1
1
/161.76 1
15
/16
×70.5
c
20.7 16.7 16
5
/80.605
5
/8
5 /1610.1 11.5 11
1
/20.960
15
/161.66 1
13
/16
×65
c
19.1 16.5 16
1
/20.580
9
/16
5 /169.60 11.5 11
1
/20.855
7
/81.56 1
3
/4
×59
c,v
17.4 16.4 16
3
/80.550
9
/16
5 /169.04 11.5 11
1
/20.740
3
/41.44 1
5
/8
WT15×195.5
h
57.6 16.6 16
5
/81.36 1
3
/8
11/1622.6 15.6 15
5
/82.44 2
7
/163.23 3
3
/8 5
1
/2
×178.5
h
52.5 16.4 16
3
/81.24 1
1
/4
5 /820.3 15.5 15
1
/22.24 2
1
/43.03 3
1
/8
×163
h
48.0 16.2 16
1
/41.14 1
1
/8
9 /1618.5 15.4 15
3
/82.05 2
1
/162.84 2
15
/16
×146 43.0 16.0 16 1.02 1
1
/216.3 15.3 15
1
/41.85 1
7
/82.64 2
3
/4
×130.5 38.5 15.8 15
3
/40.930
15
/16
1/214.7 15.2 15
1
/81.65 1
5
/82.44 2
9
/16
×117.5
c
34.7 15.7 15
5
/80.830
13
/16
7/1613.0 15.1 15 1.50 1
1
/22.29 2
3
/8
×105.5
c
31.1 15.5 15
1
/20.775
3
/4
3 /812.0 15.1 15
1
/81.32 1
5
/162.10 2
1
/4
×95.5
c
28.0 15.3 15
3
/80.710
11
/16
3/810.9 15.0 15 1.19 1
3
/161.97 2
1
/16
×86.5
c
25.4 15.2 15
1
/40.655
5
/8
5 /1610.0 15.0 15 1.07 1
1
/161.85 2
WT15×74
c
21.8 15.3 15
3
/80.650
5
/8
5 /1610.0 10.5 10
1
/21.18 1
3
/161.83 2
1
/165
1
/2
×66
c
19.5 15.2 15
1
/80.615
5
/8
5 /169.32 10.5 10
1
/21.00 1 1.65 1
7
/8
×62
c
18.2 15.1 15
1
/8 0.585
9
/16
5 /168.82 10.5 10
1
/20.930
15
/161.58 1
13
/16
×58
c
17.1 15.0 15 0.565
9
/16
5 /168.48 10.5 10
1
/20.850
7
/81.50 1
3
/4
×54
c
15.9 14.9 14
7
/80.545
9
/16
5 /168.13 10.5 10
1
/20.760
3
/41.41 1
11
/16
×49.5
c
14.5 14.8 14
7
/80.520
1
/2
1 /47.71 10.5 10
1
/20.670
11
/161.32 1
9
/16
×45
c,v
13.2 14.8 14
3
/40.470
1
/2
1 /46.94 10.4 10
3
/80.610
5
/81.26 1
1
/2
WT13.5×269.5
h
79.3 16.3 16
1
/41.97 2 1 32.0 15.3 15
1
/43.54 3
9
/164.33 4
7
/165
1
/2
g
×184
h
54.2 15.2 15
1
/41.38 1
3
/8
11/1621.0 14.7 14
5
/82.48 2
1
/23.27 3
3
/8 5
1
/2
×168
h
49.5 15.0 15 1.26 1
1
/4
5 /818.9 14.6 14
1
/22.28 2
1
/43.07 3
3
/16
×153.5
h
45.2 14.8 14
3
/41.16 1
3
/16
5 /817.2 14.4 14
1
/22.09 2
1
/162.88 3
×140.5 41.5 14.6 14
5
/81.06 1
1
/16
9 /1615.5 14.4 14
3
/81.93 1
15
/162.72 2
13
/16
×129 38.1 14.5 14
1
/20.980 1
1
/214.2 14.3 14
1
/41.77 1
3
/42.56 2
11
/16
×117.5 34.7 14.3 14
3
/80.910
15
/16
1/213.0 14.2 14
1
/41.61 1
5
/82.40 2
1
/2
×108.5 32.0 14.2 14
1
/40.830
13
/16
7/1611.8 14.1 14
1
/81.50 1
1
/22.29 2
3
/8
×97
c
28.6 14.1 14 0.750
3
/4
3 /810.5 14.0 14 1.34 1
5
/162.13 2
1
/4
×89
c
26.3 13.9 13
7
/80.725
3
/4
3 /810.1 14.1 14
1
/81.19 1
3
/161.98 2
1
/16
×80.5
c
23.8 13.8 13
3
/40.660
11
/16
3/89.10 14.0 14 1.08 1
1
/161.87 2
×73
c
21.6 13.7 13
3
/40.605
5
/8
5 /168.28 14.0 14 0.975 1 1.76 1
7
/8
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 54

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT16.5-WT13.5
DIMENSIONS AND PROPERTIES 1–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
84.5 4.71 25.2 649 51.1 5.12 4.21 90.8 1.08 155 27.0 2.50 42.1 0.630 8.81 55.4
76 5.48 26.3 592 47.4 5.14 4.26 84.5 0.967 136 23.6 2.47 36.9 0.579 6.16 43.0
70.5 6.01 27.6 552 44.7 5.15 4.29 79.8 0.901 123 21.3 2.43 33.4 0.525 4.84 35.4
65 6.73 28.4 513 42.1 5.18 4.36 75.6 0.832 109 18.9 2.38 29.7 0.496 3.67 29.3
59 7.76 29.8 469 39.2 5.20 4.47 70.8 0.862 93.5 16.3 2.32 25.6 0.451 2.64 23.4
195.5 3.19 12.2 1220 96.9 4.61 4.00 177 1.85 774 99.2 3.67 155 1.00 86.3 636
178.5 3.45 13.2 1090 87.2 4.56 3.87 159 1.70 693 89.6 3.64 140 1.00 66.6 478
163 3.75 14.2 981 78.8 4.52 3.76 143 1.56 622 81.0 3.60 126 1.00 51.2 361
146 4.12 15.7 861 69.6 4.48 3.62 125 1.41 549 71.9 3.58 111 1.00 37.5 257
130.5 4.59 17.0 765 62.4 4.46 3.54 112 1.27 480 63.3 3.53 97.9 1.00 26.9 184
117.5 5.02 18.9 674 55.1 4.41 3.41 98.2 1.15 427 56.8 3.51 87.5 0.951 20.1 133
105.5 5.74 20.0 610 50.5 4.43 3.39 89.5 1.03 378 50.1 3.49 77.2 0.895 14.1 96.4
95.5 6.35 21.5 549 45.7 4.42 3.34 80.8 0.935 336 44.7 3.46 68.9 0.819 10.5 71.2
86.5 7.01 23.2 497 41.7 4.42 3.31 73.5 0.851 299 39.9 3.42 61.4 0.733 7.78 53.0
74 4.44 23.5 466 40.6 4.63 3.84 72.2 1.04 114 21.7 2.28 33.9 0.718 7.24 37.6
66 5.27 24.7 421 37.4 4.66 3.90 66.8 0.921 98.0 18.6 2.25 29.2 0.657 4.85 28.5
62 5.65 25.8 396 35.3 4.66 3.90 63.1 0.867 90.4 17.2 2.23 27.0 0.601 3.98 23.9
58 6.17 26.5 373 33.7 4.67 3.94 60.4 0.815 82.1 15.6 2.19 24.6 0.570 3.21 20.5
54 6.89 27.3 349 32.0 4.69 4.01 57.7 0.757 73.0 13.9 2.15 21.9 0.537 2.49 17.3
49.5 7.80 28.5 322 30.0 4.71 4.09 54.4 0.912 63.9 12.2 2.10 19.3 0.493 1.88 14.3
45 8.52 31.5 290 27.1 4.69 4.04 49.0 0.835 57.3 11.0 2.09 17.3 0.403 1.41 10.5
269.5 2.15 8.30 1530 128 4.39 4.34 242 2.60 1060 138 3.65 218 1.00 247 1740
184 2.96 11.0 939 81.7 4.16 3.71 151 1.85 655 89.3 3.48 140 1.00 84.5 532
168 3.19 11.9 839 73.4 4.12 3.58 135 1.70 587 80.8 3.45 126 1.00 65.4 401
153.5 3.46 12.8 753 66.4 4.08 3.47 121 1.56 527 72.9 3.41 113 1.00 50.5 304
140.5 3.72 13.8 677 59.9 4.04 3.35 109 1.44 477 66.4 3.39 103 1.00 39.6 232
129 4.03 14.8 613 54.7 4.02 3.27 98.9 1.33 430 60.2 3.36 93.3 1.00 30.7 178
117.5 4.41 15.7 556 50.0 4.00 3.20 89.9 1.22 384 54.2 3.33 83.8 1.00 23.4 135
108.5 4.71 17.1 502 45.2 3.96 3.10 81.1 1.13 352 49.9 3.32 77.0 1.00 18.8 105
97 5.24 18.8 444 40.3 3.94 3.02 71.8 1.02 309 44.1 3.29 67.8 0.956 13.5 74.3
89 5.92 19.2 414 38.2 3.97 3.04 67.7 0.932 278 39.4 3.25 60.8 0.935 10.0 57.7
80.5 6.49 20.9 372 34.4 3.95 2.98 60.8 0.849 248 35.4 3.23 54.5 0.849 7.53 42.7
73 7.16 22.6 336 31.2 3.95 2.94 55.0 0.772 222 31.7 3.20 48.8 0.763 5.62 31.7
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 55

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–56 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT13.5×64.5
c
18.9 13.8 13
7
/80.610
5
/8
5 /168.43 10.0 10 1.10 1
1
/81.70 2 5
1
/2
×57
c
16.8 13.6 13
5
/80.570
9
/16
5 /167.78 10.1 10
1
/80.930
15
/161.53 1
13
/16
×51
c
15.0 13.5 13
1
/20.515
1
/2
1 /46.98 10.0 10 0.830
13
/161.43 1
3
/4
×47
c
13.8 13.5 13
1
/20.490
1
/2
1 /46.60 10.0 10 0.745
3
/41.34 1
5
/8
×42
c
12.4 13.4 13
3
/80.460
7
/16
1 /46.14 10.0 10 0.640
5
/81.24 1
9
/16
WT12×185
h
54.5 14.0 14 1.52 1
1
/2
3 /421.3 13.7 13
5
/82.72 2
3
/43.22 3
5
/8 5
1
/2
×167.5
h
49.1 13.8 13
3
/41.38 1
3
/8
11/1619.0 13.5 13
1
/22.48 2
1
/22.98 3
3
/8
×153
h
44.9 13.6 13
5
/81.26 1
1
/4
5 /817.1 13.4 13
3
/82.28 2
1
/42.78 3
3
/16
×139.5
h
41.0 13.4 13
3
/81.16 1
3
/16
5 /815.5 13.3 13
1
/42.09 2
1
/162.59 3
×125 36.8 13.2 13
1
/81.04 1
1
/16
9 /1613.7 13.2 13
1
/81.89 1
7
/82.39 2
13
/16
×114.5 33.6 13.0 13 0.960
15
/16
1/212.5 13.1 13
1
/81.73 1
3
/42.23 2
5
/8
×103.5 30.3 12.9 12
7
/80.870
7
/8
7 /1611.2 13.0 13 1.57 1
9
/162.07 2
1
/2
×96 28.2 12.7 12
3
/40.810
13
/16
7/1610.3 13.0 13 1.46 1
7
/161.96 2
3
/8
×88 25.8 12.6 12
5
/80.750
3
/4
3 /89.47 12.9 12
7
/81.34 1
5
/161.84 2
1
/4
×81 23.9 12.5 12
1
/20.705
11
/16
3/88.81 13.0 13 1.22 1
1
/41.72 2
1
/8
×73
c
21.5 12.4 12
3
/80.650
5
/8
5 /168.04 12.9 12
7
/81.09 1
1
/161.59 2
×65.5
c
19.3 12.2 12
1
/40.605
5
/8
5 /167.41 12.9 12
7
/80.960
15
/161.46 1
7
/8
×58.5
c
17.2 12.1 12
1
/80.550
9
/16
5 /166.67 12.8 12
3
/40.850
7
/81.35 1
3
/4
×52
c
15.3 12.0 12 0.500
1
/2
1 /46.02 12.8 12
3
/40.750
3
/41.25 1
5
/8
WT12×51.5
c
15.1 12.3 12
1
/40.550
9
/16
5 /166.75 9.00 9 0.980 1 1.48 1
7
/8 5
1
/2
×47
c
13.8 12.2 12
1
/80.515
1
/2
1 /46.26 9.07 9
1
/80.875
7
/81.38 1
3
/4
×42
c
12.4 12.1 12 0.470
1
/2
1 /45.66 9.02 9 0.770
3
/41.27 1
11
/16
×38
c
11.2 12.0 12 0.440
7
/16
1 /45.26 8.99 9 0.680
11
/161.18 1
9
/165
1
/2
g
×34
c
10.0 11.9 11
7
/80.415
7
/16
1 /44.92 8.97 9 0.585
9
/161.09 1
1
/2 5
1
/2
g
WT12×31
c
9.11 11.9 11
7
/80.430
7
/16
1 /45.10 7.04 7 0.590
9
/161.09 1
1
/2 3
1
/2
×27.5
c,v
8.10 11.8 11
3
/40.395
3
/8
3 /164.66 7.01 7 0.505
1
/21.01 1
7
/163
1
/2
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 56

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT13.5-WT12
DIMENSIONS AND PROPERTIES 1–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
64.5 4.55 22.6 323 31.0 4.13 3.39 55.1 0.945 92.2 18.4 2.21 28.8 0.763 5.55 24.0
57 5.41 23.9 289 28.3 4.15 3.42 50.4 0.832 79.3 15.8 2.18 24.6 0.697 3.65 17.5
51 6.03 26.2 258 25.3 4.14 3.37 45.0 0.750 69.6 13.9 2.15 21.7 0.583 2.63 12.6
47 6.70 27.6 239 23.8 4.16 3.41 42.4 0.692 62.0 12.4 2.12 19.4 0.525 2.01 10.2
42 7.78 29.1 216 21.9 4.18 3.48 39.2 0.621 52.8 10.6 2.07 16.6 0.473 1.40 7.79
185 2.51 9.20 779 74.7 3.78 3.57 140 1.99 581 85.1 3.27 133 1.00 100 553
167.5 2.73 10.0 686 66.3 3.73 3.42 123 1.82 513 75.9 3.23 119 1.00 75.6 405
153 2.94 10.8 611 59.4 3.69 3.29 110 1.67 460 68.6 3.20 107 1.00 58.4 305
139.5 3.18 11.6 546 53.6 3.65 3.18 98.8 1.54 412 61.9 3.17 96.3 1.00 45.1 230
125 3.49 12.7 478 47.2 3.61 3.05 86.5 1.39 362 54.9 3.14 85.2 1.00 33.2 165
114.5 3.79 13.5 431 42.9 3.58 2.96 78.1 1.28 326 49.7 3.11 77.0 1.00 25.5 125
103.5 4.14 14.8 382 38.3 3.55 2.87 69.3 1.17 289 44.4 3.08 68.6 1.00 19.1 91.3
96 4.43 15.7 350 35.2 3.53 2.80 63.5 1.09 265 40.9 3.07 63.1 1.00 15.3 72.5
88 4.81 16.8 319 32.2 3.51 2.74 57.8 1.00 240 37.2 3.04 57.3 1.00 11.9 55.8
81 5.31 17.7 293 29.9 3.50 2.70 53.3 0.921 221 34.2 3.05 52.6 1.00 9.22 43.8
73 5.92 19.1 264 27.2 3.50 2.66 48.2 0.833 195 30.3 3.01 46.6 0.940 6.70 31.9
65.5 6.70 20.2 238 24.8 3.52 2.65 43.9 0.750 170 26.5 2.97 40.7 0.885 4.74 23.1
58.5 7.53 22.0 212 22.3 3.51 2.62 39.2 0.672 149 23.2 2.94 35.7 0.794 3.35 16.4
52 8.50 24.0 189 20.0 3.51 2.59 35.1 0.600 130 20.3 2.91 31.2 0.692 2.35 11.6
51.5 4.59 22.4 204 22.0 3.67 3.01 39.2 0.841 59.7 13.3 1.99 20.7 0.773 3.53 12.3
47 5.18 23.7 186 20.3 3.67 2.99 36.1 0.764 54.5 12.0 1.98 18.7 0.707 2.62 9.57
42 5.86 25.7 166 18.3 3.67 2.97 32.5 0.685 47.2 10.5 1.95 16.3 0.606 1.84 6.90
38 6.61 27.3 151 16.9 3.68 3.00 30.1 0.622 41.3 9.18 1.92 14.3 0.537 1.34 5.30
34 7.66 28.7 137 15.6 3.70 3.06 27.9 0.560 35.2 7.85 1.87 12.3 0.486 0.932 4.08
31 5.97 27.7 131 15.6 3.79 3.46 28.4 1.28 17.2 4.90 1.38 7.85 0.522 0.850 3.92
27.5 6.94 29.9 117 14.1 3.80 3.50 25.6 1.53 14.5 4.15 1.34 6.65 0.448 0.588 2.93
AISC_PART 01A:14th Ed_ 1/20/11 7:29 AM Page 57

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–58 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT10.5×100.5 29.6 11.5 11
1
/20.910
15
/16
1/210.5 12.6 12
5
/81.63 1
5
/82.13 2
1
/2 5
1
/2
×91 26.8 11.4 11
3
/80.830
13
/16
7/169.43 12.5 12
1
/21.48 1
1
/21.98 2
3
/8
×83 24.4 11.2 11
1
/40.750
3
/4
3 /88.43 12.4 12
3
/81.36 1
3
/81.86 2
1
/4
×73.5 21.6 11.0 11 0.720
3
/4
3 /87.94 12.5 12
1
/21.15 1
1
/81.65 2
×66 19.4 10.9 10
7
/80.650
5
/8
5 /167.09 12.4 12
1
/21.04 1
1
/161.54 1
15
/16
×61 17.9 10.8 10
7
/80.600
5
/8
5 /166.50 12.4 12
3
/80.960
15
/161.46 1
13
/16
×55.5
c
16.3 10.8 10
3
/40.550
9
/16
5 /165.92 12.3 12
3
/80.875
7
/81.38 1
3
/4
×50.5
c
14.9 10.7 10
5
/80.500
1
/2
1 /45.34 12.3 12
1
/40.800
13
/161.30 1
11
/16
WT10.5×46.5
c
13.7 10.8 10
3
/40.580
9
/16
5 /166.27 8.42 8
3
/80.930
15
/161.43 1
5
/8 5
1
/2
×41.5
c
12.2 10.7 10
3
/40.515
1
/2
1 /45.52 8.36 8
3
/80.835
13
/161.34 1
1
/2
×36.5
c
10.7 10.6 10
5
/80.455
7
/16
1 /44.83 8.30 8
1
/40.740
3
/41.24 1
7
/16
×34
c
10.0 10.6 10
5
/80.430
7
/16
1 /44.54 8.27 8
1
/40.685
11
/161.19 1
3
/8
×31
c
9.13 10.5 10
1
/20.400
3
/8
3 /164.20 8.24 8
1
/40.615
5
/81.12 1
5
/16
×27.5
c
8.10 10.4 10
3
/80.375
3
/8
3 /163.90 8.22 8
1
/40.522
1
/21.02 1
3
/16
×24
c,f,v
7.07 10.3 10
1
/40.350
3
/8
3 /163.61 8.14 8
1
/80.430
7
/160.930 1
1
/8
WT10.5×28.5
c
8.37 10.5 10
1
/20.405
3
/8
3 /164.26 6.56 6
1
/20.650
5
/81.15 1
5
/163
1
/2
×25
c
7.36 10.4 10
3
/80.380
3
/8
3 /163.96 6.53 6
1
/20.535
9
/161.04 1
1
/4 3
1
/2
g
×22
c,v
6.49 10.3 10
3
/80.350
3
/8
3 /163.62 6.50 6
1
/20.450
7
/160.950 1
1
/8 3
1
/2
g
WT9×155.5
h
45.8 11.2 11
1
/81.52 1
1
/2
3 /417.0 12.0 12 2.74 2
3
/43.24 3
7
/165
1
/2
×141.5
h
41.7 10.9 10
7
/81.40 1
3
/8
11/1615.3 11.9 11
7
/82.50 2
1
/23.00 3
3
/16
×129
h
38.0 10.7 10
3
/41.28 1
1
/4
5 /813.7 11.8 11
3
/42.30 2
5
/162.70 3
×117
h
34.3 10.5 10
1
/21.16 1
3
/16
5 /812.2 11.7 11
5
/82.11 2
1
/82.51 2
3
/4
×105.5 31.2 10.3 10
3
/81.06 1
1
/16
9 /1611.0 11.6 11
1
/21.91 1
15
/162.31 2
9
/16
×96 28.1 10.2 10
1
/80.960
15
/16
1/29.77 11.5 11
1
/21.75 1
3
/42.15 2
7
/16
×87.5 25.7 10.0 10 0.890
7
/8
7 /168.92 11.4 11
3
/81.59 1
9
/161.99 2
7
/16
×79 23.2 9.86 9
7
/80.810
13
/16
7/167.99 11.3 11
1
/41.44 1
7
/161.84 2
3
/8
×71.5 21.0 9.75 9
3
/40.730
3
/4
3 /87.11 11.2 11
1
/41.32 1
5
/161.72 2
3
/16
×65 19.2 9.63 9
5
/80.670
11
/16
3/86.45 11.2 11
1
/81.20 1
3
/161.60 2
1
/16
×59.5 17.6 9.49 9
1
/20.655
5
/8
5 /166.21 11.3 11
1
/41.06 1
1
/161.46 1
15
/16
×53 15.6 9.37 9
3
/80.590
9
/16
5 /165.53 11.2 11
1
/40.940
15
/161.34 1
13
/16
×48.5 14.2 9.30 9
1
/40.535
9
/16
5 /164.97 11.1 11
1
/80.870
7
/81.27 1
3
/4
×43
c
12.7 9.20 9
1
/40.480
1
/2
1 /44.41 11.1 11
1
/80.770
3
/41.17 1
5
/8
×38
c
11.1 9.11 9
1
/80.425
7
/16
1 /43.87 11.0 11 0.680
11
/161.08 1
9
/16
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 58

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT10.5-WT9
DIMENSIONS AND PROPERTIES 1–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
100.5 3.86 12.6 285 31.9 3.10 2.57 58.6 1.18 271 43.1 3.02 66.5 1.00 20.4 85.4
91 4.22 13.7 253 28.5 3.07 2.48 52.1 1.07 241 38.6 3.00 59.5 1.00 15.3 63.0
83 4.57 14.9 226 25.5 3.04 2.39 46.3 0.983 217 35.0 2.99 53.9 1.00 11.8 47.3
73.5 5.44 15.3 204 23.7 3.08 2.39 42.4 0.864 188 30.0 2.95 46.3 1.00 7.69 32.5
66 6.01 16.8 181 21.1 3.06 2.33 37.6 0.780 166 26.7 2.93 41.1 1.00 5.62 23.4
61 6.45 18.0 166 19.3 3.04 2.28 34.3 0.724 152 24.6 2.91 37.8 1.00 4.47 18.4
55.5 7.05 19.6 150 17.5 3.03 2.23 31.0 0.662 137 22.2 2.90 34.1 0.915 3.40 13.8
50.5 7.68 21.4 135 15.8 3.01 2.18 27.9 0.605 124 20.2 2.89 30.8 0.824 2.60 10.4
46.5 4.53 18.6 144 17.9 3.25 2.74 31.8 0.812 46.4 11.0 1.84 17.3 0.966 3.01 9.33
41.5 5.00 20.8 127 15.7 3.22 2.66 28.0 0.728 40.7 9.74 1.83 15.2 0.854 2.16 6.50
36.5 5.60 23.3 110 13.8 3.21 2.60 24.4 0.647 35.3 8.51 1.81 13.3 0.728 1.51 4.42
34 6.04 24.7 103 12.9 3.20 2.59 22.9 0.606 32.4 7.83 1.80 12.2 0.657 1.22 3.62
31 6.70 26.3 93.8 11.9 3.21 2.58 21.1 0.554 28.7 6.97 1.77 10.9 0.579 0.913 2.78
27.5 7.87 27.7 84.4 10.9 3.23 2.64 19.4 0.493 24.2 5.89 1.73 9.18 0.522 0.617 2.08
24 9.47 29.4 74.9 9.90 3.26 2.74 17.8 0.459 19.4 4.76 1.66 7.44 0.463 0.400 1.52
28.5 5.04 25.9 90.4 11.8 3.29 2.85 21.2 0.638 15.3 4.67 1.35 7.40 0.597 0.884 2.50
25 6.10 27.4 80.3 10.7 3.30 2.93 19.4 0.771 12.5 3.82 1.30 6.08 0.533 0.570 1.89
22 7.22 29.4 71.1 9.68 3.31 2.98 17.6 1.06 10.3 3.18 1.26 5.07 0.463 0.383 1.40
155.5 2.19 7.37 383 46.6 2.89 2.93 90.6 1.91 398 66.2 2.95 104 1.00 87.2 339
141.5 2.38 7.79 337 41.5 2.85 2.80 80.2 1.75 352 59.2 2.91 92.5 1.00 66.5 251
129 2.56 8.36 298 37.0 2.80 2.68 71.0 1.61 314 53.4 2.88 83.1 1.00 51.1 189
117 2.76 9.05 261 32.7 2.75 2.55 62.4 1.48 279 47.9 2.85 74.4 1.00 39.1 140
105.5 3.02 9.72 229 29.1 2.72 2.44 55.0 1.34 246 42.7 2.82 66.1 1.00 29.1 102
96 3.27 10.6 202 25.8 2.68 2.34 48.5 1.23 220 38.4 2.79 59.4 1.00 22.3 75.7
87.5 3.58 11.2 181 23.4 2.66 2.26 43.6 1.13 196 34.4 2.76 53.1 1.00 16.8 56.5
79 3.92 12.2 160 20.8 2.63 2.17 38.5 1.02 174 30.7 2.74 47.4 1.00 12.5 41.2
71.5 4.25 13.4 142 18.5 2.60 2.09 34.0 0.937 156 27.7 2.72 42.7 1.00 9.58 30.7
65 4.65 14.4 127 16.7 2.58 2.02 30.5 0.856 139 24.9 2.70 38.3 1.00 7.23 22.8
59.5 5.31 14.5 119 15.9 2.60 2.03 28.7 0.778 126 22.5 2.69 34.5 1.00 5.30 17.4
53 5.96 15.9 104 14.1 2.59 1.97 25.2 0.695 110 19.7 2.66 30.2 1.00 3.73 12.1
48.5 6.41 17.4 93.8 12.7 2.56 1.91 22.6 0.640 100 18.0 2.65 27.6 1.00 2.92 9.29
43 7.20 19.2 82.4 11.2 2.55 1.86 19.9 0.570 87.6 15.8 2.63 24.2 0.935 2.04 6.42
38 8.11 21.4 71.8 9.83 2.54 1.80 17.3 0.505 76.2 13.8 2.61 21.1 0.824 1.41 4.37
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 59

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–60 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT9×35.5
c
10.4 9.24 9
1
/40.495
1
/2
1 /44.57 7.64 7
5
/80.810
13
/161.21 1
1
/2 3
1
/2
g
×32.5
c
9.55 9.18 9
1
/80.450
7
/16
1 /44.13 7.59 7
5
/80.750
3
/41.15 1
7
/16
×30
c
8.82 9.12 9
1
/80.415
7
/16
1 /43.78 7.56 7
1
/20.695
11
/161.10 1
3
/8
×27.5
c
8.10 9.06 9 0.390
3
/8
3 /163.53 7.53 7
1
/20.630
5
/81.03 1
5
/16
×25
c
7.34 9.00 9 0.355
3
/8
3 /163.19 7.50 7
1
/20.570
9
/160.972 1
1
/4
WT9×23
c
6.77 9.03 9 0.360
3
/8
3 /163.25 6.06 6 0.605
5
/81.01 1
1
/4 3
1
/2
g
×20
c
5.88 8.95 9 0.315
5
/16
3 /162.82 6.02 6 0.525
1
/20.927 1
3
/16
×17.5
c,v
5.15 8.85 8
7
/80.300
5
/16
3 /162.66 6.00 6 0.425
7
/160.827 1
1
/8
WT8×50 14.7 8.49 8
1
/20.585
9
/16
5 /164.96 10.4 10
3
/80.985 1 1.39 1
7
/8 5
1
/2
×44.5 13.1 8.38 8
3
/80.525
1
/2
1 /44.40 10.4 10
3
/80.875
7
/81.28 1
3
/4
×38.5
c
11.3 8.26 8
1
/40.455
7
/16
1 /43.76 10.3 10
1
/40.760
3
/41.16 1
5
/8
×33.5
c
9.81 8.17 8
1
/80.395
3
/8
3 /163.23 10.2 10
1
/40.665
11
/161.07 1
9
/16
WT8×28.5
c
8.39 8.22 8
1
/40.430
7
/16
1 /43.53 7.12 7
1
/80.715
11
/161.12 1
3
/8 3
1
/2
g
×25
c
7.37 8.13 8
1
/80.380
3
/8
3 /163.09 7.07 7
1
/80.630
5
/81.03 1
5
/16
×22.5
c
6.63 8.07 8
1
/80.345
3
/8
3 /162.78 7.04 7 0.565
9
/160.967 1
1
/4
×20
c
5.89 8.01 8 0.305
5
/16
3 /162.44 7.00 7 0.505
1
/20.907 1
3
/163
1
/2
×18
c
5.29 7.93 7
7
/80.295
5
/16
3 /162.34 6.99 7 0.430
7
/160.832 1
1
/8 3
1
/2
WT8×15.5
c
4.56 7.94 8 0.275
1
/4
1 /82.18 5.53 5
1
/20.440
7
/160.842 1
1
/8 3
1
/2
×13
c,v
3.84 7.85 7
7
/80.250
1
/4
1 /81.96 5.50 5
1
/20.345
3
/80.747 1
1
/163
1
/2
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 60

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT9-WT8
DIMENSIONS AND PROPERTIES 1–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
35.5 4.71 18.7 78.2 11.2 2.74 2.26 20.0 0.683 30.1 7.89 1.70 12.3 0.961 1.74 3.96
32.5 5.06 20.4 70.7 10.1 2.72 2.20 18.0 0.629 27.4 7.22 1.69 11.2 0.875 1.36 3.01
30 5.44 22.0 64.7 9.29 2.71 2.16 16.5 0.583 25.0 6.63 1.68 10.3 0.794 1.08 2.35
27.5 5.98 23.2 59.5 8.63 2.71 2.16 15.3 0.538 22.5 5.97 1.67 9.26 0.733 0.830 1.84
25 6.57 25.4 53.5 7.79 2.70 2.12 13.8 0.489 20.0 5.35 1.65 8.28 0.620 0.619 1.36
23 5.01 25.1 52.1 7.77 2.77 2.33 13.9 0.558 11.3 3.71 1.29 5.84 0.635 0.609 1.20
20 5.73 28.4 44.8 6.73 2.76 2.29 12.0 0.489 9.55 3.17 1.27 4.97 0.496 0.404 0.788
17.5 7.06 29.5 40.1 6.21 2.79 2.39 11.2 0.450 7.67 2.56 1.22 4.02 0.460 0.252 0.598
50 5.29 14.5 76.8 11.4 2.28 1.76 20.7 0.706 93.1 17.9 2.51 27.4 1.00 3.85 10.4
44.5 5.92 16.0 67.2 10.1 2.27 1.70 18.1 0.631 81.3 15.7 2.49 24.0 1.00 2.72 7.19
38.5 6.77 18.2 56.9 8.59 2.24 1.63 15.3 0.549 69.2 13.4 2.47 20.5 0.986 1.78 4.61
33.5 7.70 20.7 48.6 7.36 2.22 1.56 13.0 0.481 59.5 11.6 2.46 17.7 0.859 1.19 3.01
28.5 4.98 19.1 48.7 7.77 2.41 1.94 13.8 0.589 21.6 6.06 1.60 9.42 0.940 1.10 1.99
25 5.61 21.4 42.3 6.78 2.40 1.89 12.0 0.521 18.6 5.26 1.59 8.15 0.824 0.760 1.34
22.5 6.23 23.4 37.8 6.10 2.39 1.86 10.8 0.471 16.4 4.67 1.57 7.22 0.723 0.555 0.974
20 6.93 26.3 33.1 5.35 2.37 1.81 9.43 0.421 14.4 4.12 1.56 6.36 0.579 0.396 0.673
18 8.12 26.9 30.6 5.05 2.41 1.88 8.93 0.378 12.2 3.50 1.52 5.42 0.553 0.272 0.516
15.5 6.28 28.9 27.5 4.64 2.45 2.02 8.27 0.413 6.20 2.24 1.17 3.51 0.479 0.230 0.366
13 7.97 31.4 23.5 4.09 2.47 2.09 7.36 0.372 4.79 1.74 1.12 2.73 0.406 0.130 0.243
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 61

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
1–62 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT7×365
h
107 11.2 11
1
/43.07 3
1
/161
9
/1634.4 17.9 17
7
/84.91 4
15
/165.51 6
3
/167
1
/2
g
×332.5
h
97.8 10.8 10
7
/82.83 2
13
/161
7
/1630.6 17.7 17
5
/84.52 4
1
/25.12 5
13
/167
1
/2
g
×302.5
h
89.0 10.5 10
1
/22.60 2
5
/81
5
/1627.1 17.4 17
3
/84.16 4
3
/164.76 5
7
/167
1
/2
×275
h
80.9 10.1 10
1
/82.38 2
3
/81
3
/1624.1 17.2 17
1
/43.82 3
13
/164.42 5
1
/8
×250
h
73.5 9.80 9
3
/42.19 2
3
/161
1
/821.5 17.0 17 3.50 3
1
/24.10 4
13
/16
×227.5
h
66.9 9.51 9
1
/22.02 2 1 19.2 16.8 16
7
/83.21 3
3
/163.81 4
1
/2
×213
h
62.7 9.34 9
3
/81.88 1
7
/8
15 /1617.5 16.7 16
3
/43.04 3
1
/163.63 4
5
/16
×199
h
58.4 9.15 9
1
/81.77 1
3
/4
7 /816.2 16.6 16
5
/82.85 2
7
/83.44 4
1
/8
×185
h
54.4 8.96 9 1.66 1
11
/16
13/1614.8 16.5 16
1
/22.66 2
11
/163.26 3
15
/16
×171
h
50.3 8.77 8
3
/41.54 1
9
/16
13 /1613.5 16.4 16
3
/82.47 2
1
/23.07 3
3
/4
×155.5
h
45.7 8.56 8
1
/21.41 1
7
/16
3 /412.1 16.2 16
1
/42.26 2
1
/42.86 3
9
/16
×141.5
h
41.6 8.37 8
3
/81.29 1
5
/16
11/1610.8 16.1 16
1
/82.07 2
1
/162.67 3
3
/8
×128.5 37.8 8.19 8
1
/41.18 1
3
/16
5 /89.62 16.0 16 1.89 1
7
/82.49 3
3
/16
×116.5 34.2 8.02 8 1.07 1
1
/16
9 /168.58 15.9 15
7
/81.72 1
3
/42.32 3
×105.5 31.0 7.86 7
7
/80.980 1
1
/27.70 15.8 15
3
/41.56 1
9
/162.16 2
7
/8
×96.5 28.4 7.74 7
3
/40.890
7
/8
7 /166.89 15.7 15
3
/41.44 1
7
/162.04 2
3
/4
×88 25.9 7.61 7
5
/80.830
13
/16
7/166.32 15.7 15
5
/81.31 1
5
/161.91 2
5
/8
×79.5 23.4 7.49 7
1
/20.745
3
/4
3 /85.58 15.6 15
5
/81.19 1
3
/161.79 2
1
/2
×72.5 21.3 7.39 7
3
/80.680
11
/16
3/85.03 15.5 15
1
/21.09 1
1
/161.69 2
3
/8
WT7×66 19.4 7.33 7
3
/80.645
5
/8
5 /164.73 14.7 14
3
/41.03 1 1.63 2
5
/165
1
/2
×60 17.7 7.24 7
1
/40.590
9
/16
5 /164.27 14.7 14
5
/80.940
15
/161.54 2
1
/4
×54.5 16.0 7.16 7
1
/80.525
1
/2
1 /43.76 14.6 14
5
/80.860
7
/81.46 2
3
/16
×49.5
f
14.6 7.08 7
1
/80.485
1
/2
1 /43.43 14.6 14
5
/80.780
3
/41.38 2
1
/16
×45
f
13.2 7.01 7 0.440
7
/16
1 /43.08 14.5 14
1
/20.710
11
/161.31 2
WT7×41 12.0 7.16 7
1
/80.510
1
/2
1 /43.65 10.1 10
1
/80.855
7
/81.45 1
11
/165
1
/2
×37 10.9 7.09 7
1
/80.450
7
/16
1 /43.19 10.1 10
1
/80.785
13
/161.38 1
5
/8
×34 10.0 7.02 7 0.415
7
/16
1 /42.91 10.0 10 0.720
3
/41.31 1
9
/16
×30.5
c
8.96 6.95 7 0.375
3
/8
3 /162.60 10.0 10 0.645
5
/81.24 1
1
/2
WT7×26.5
c
7.80 6.96 7 0.370
3
/8
3 /162.58 8.06 8 0.660
11
/161.25 1
1
/2 5
1
/2
×24
c
7.07 6.90 6
7
/80.340
5
/16
3 /162.34 8.03 8 0.595
5
/81.19 1
7
/16
×21.5
c
6.31 6.83 6
7
/80.305
5
/16
3 /162.08 8.00 8 0.530
1
/21.12 1
3
/8
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 62

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT7
DIMENSIONS AND PROPERTIES 1–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
365 1.82 3.65 739 95.4 2.62 3.47 211 3.00 2360 264 4.69 408 1.00 714 5250
332.5 1.95 3.82 622 82.1 2.52 3.25 182 2.77 2080 236 4.62 365 1.00 555 3920
302.5 2.09 4.04 524 70.6 2.43 3.05 157 2.55 1840 211 4.55 326 1.00 430 2930
275 2.25 4.24 442 60.9 2.34 2.85 136 2.35 1630 189 4.49 292 1.00 331 2180
250 2.43 4.47 375 52.7 2.26 2.67 117 2.16 1440 169 4.43 261 1.00 254 1620
227.5 2.62 4.71 321 45.9 2.19 2.51 102 1.99 1280 152 4.38 234 1.00 196 1210
213 2.75 4.97 287 41.4 2.14 2.40 91.7 1.88 1180 141 4.34 217 1.00 164 991
199 2.92 5.17 257 37.6 2.10 2.30 82.9 1.76 1090 131 4.31 201 1.00 135 801
185 3.10 5.40 229 33.9 2.05 2.19 74.4 1.65 994 121 4.27 185 1.00 110 640
171 3.31 5.69 203 30.4 2.01 2.09 66.2 1.54 903 110 4.24 169 1.00 88.3 502
155.5 3.59 6.07 176 26.7 1.96 1.97 57.7 1.41 807 99.4 4.20 152 1.00 67.5 375
141.5 3.89 6.49 153 23.5 1.92 1.86 50.4 1.29 722 89.7 4.17 137 1.00 51.8 281
128.5 4.23 6.94 133 20.7 1.88 1.75 43.9 1.18 645 80.7 4.13 123 1.00 39.3 209
116.5 4.62 7.50 116 18.2 1.84 1.65 38.2 1.08 576 72.5 4.10 110 1.00 29.6 154
105.5 5.06 8.02 102 16.2 1.81 1.57 33.4 0.980 513 65.0 4.07 98.9 1.00 22.2 113
96.5 5.45 8.70 89.8 14.4 1.78 1.49 29.4 0.903 466 59.3 4.05 90.1 1.00 17.3 87.2
88 5.97 9.17 80.5 13.0 1.76 1.43 26.3 0.827 419 53.5 4.02 81.3 1.00 13.2 65.2
79.5 6.54 10.1 70.2 11.4 1.73 1.35 22.8 0.751 374 48.1 4.00 73.0 1.00 9.84 47.9
72.5 7.11 10.9 62.5 10.2 1.71 1.29 20.2 0.688 338 43.7 3.98 66.2 1.00 7.56 36.3
66 7.15 11.4 57.8 9.57 1.73 1.29 18.6 0.658 274 37.2 3.76 56.5 1.00 6.13 26.6
60 7.80 12.3 51.7 8.61 1.71 1.24 16.5 0.602 247 33.7 3.74 51.2 1.00 4.67 20.0
54.5 8.49 13.6 45.3 7.56 1.68 1.17 14.4 0.548 223 30.6 3.73 46.3 1.00 3.55 15.0
49.5 9.34 14.6 40.9 6.88 1.67 1.14 12.9 0.500 201 27.6 3.71 41.8 1.00 2.68 11.1
45 10.2 15.9 36.5 6.16 1.66 1.09 11.5 0.456 181 25.0 3.70 37.8 1.00 2.03 8.31
41 5.92 14.0 41.2 7.14 1.85 1.39 13.2 0.593 74.1 14.6 2.48 22.4 1.00 2.53 5.63
37 6.41 15.8 36.0 6.25 1.82 1.32 11.5 0.541 66.9 13.3 2.48 20.2 1.00 1.93 4.19
34 6.97 16.9 32.6 5.69 1.81 1.29 10.4 0.498 60.7 12.1 2.46 18.4 1.00 1.50 3.21
30.5 7.75 18.5 28.9 5.07 1.80 1.25 9.15 0.448 53.7 10.7 2.45 16.4 0.971 1.09 2.29
26.5 6.11 18.8 27.6 4.94 1.88 1.38 8.87 0.484 28.8 7.15 1.92 11.0 0.956 0.967 1.46
24 6.75 20.3 24.9 4.49 1.88 1.35 8.00 0.440 25.7 6.40 1.91 9.80 0.880 0.723 1.07
21.5 7.54 22.4 21.9 3.98 1.86 1.31 7.05 0.395 22.6 5.65 1.89 8.64 0.773 0.522 0.751
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 63

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–64 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT7×19
c
5.58 7.05 7 0.310
5
/16
3 /162.19 6.77 6
3
/40.515
1
/20.915 1
1
/4 3
1
/2
g
×17
c
5.00 6.99 7 0.285
5
/16
3 /161.99 6.75 6
3
/40.455
7
/160.855 1
3
/163
1
/2
×15
c
4.42 6.92 6
7
/80.270
1
/4
1 /81.87 6.73 6
3
/40.385
3
/80.785 1
1
/8 3
1
/2
WT7×13
c
3.85 6.96 7 0.255
1
/4
1 /81.77 5.03 5 0.420
7
/160.820 1
1
/82
3
/4
g
×11
c,v
3.25 6.87 6
7
/80.230
1
/4
1 /81.58 5.00 5 0.335
5
/160.735 1
1
/162
3
/4
g
WT6×168
h
49.5 8.41 8
3
/81.78 1
3
/4
7 /814.9 13.4 13
3
/82.96 2
15
/163.55 3
7
/8 5
1
/2
×152.5
h
44.7 8.16 8
1
/81.63 1
5
/8
13 /1613.3 13.2 13
1
/42.71 2
11
/163.30 3
5
/8
×139.5
h
41.0 7.93 7
7
/81.53 1
1
/2
3 /412.1 13.1 13
1
/82.47 2
1
/23.07 3
3
/8
×126
h
37.1 7.71 7
3
/41.40 1
3
/8
11/1610.7 13.0 13 2.25 2
1
/42.85 3
1
/8
×115
h
33.8 7.53 7
1
/21.29 1
5
/16
11/169.67 12.9 12
7
/82.07 2
1
/162.67 2
15
/16
×105 30.9 7.36 7
3
/81.18 1
3
/16
5 /88.68 12.8 12
3
/41.90 1
7
/82.50 2
13
/16
×95 28.0 7.19 7
1
/41.06 1
1
/16
9 /167.62 12.7 12
5
/81.74 1
3
/42.33 2
5
/8
×85 25.0 7.02 7 0.960
15
/16
1/26.73 12.6 12
5
/81.56 1
9
/162.16 2
7
/16
×76 22.4 6.86 6
7
/80.870
7
/8
7 /165.96 12.5 12
1
/21.40 1
3
/82.00 2
5
/16
×68 20.0 6.71 6
3
/40.790
13
/16
7/165.30 12.4 12
3
/81.25 1
1
/41.85 2
1
/8
×60 17.6 6.56 6
1
/20.710
11
/16
3/84.66 12.3 12
3
/81.11 1
1
/81.70 2
×53 15.6 6.45 6
1
/20.610
5
/8
5 /163.93 12.2 12
1
/40.990 1 1.59 1
7
/8
×48 14.1 6.36 6
3
/80.550
9
/16
5 /163.50 12.2 12
1
/80.900
7
/81.50 1
13
/16
×43.5 12.8 6.27 6
1
/40.515
1
/2
1 /43.23 12.1 12
1
/80.810
13
/161.41 1
11
/16
×39.5 11.6 6.19 6
1
/40.470
1
/2
1 /42.91 12.1 12
1
/80.735
3
/41.33 1
5
/8
×36 10.6 6.13 6
1
/80.430
7
/16
1 /42.63 12.0 12 0.670
11
/161.27 1
9
/16
×32.5
f
9.54 6.06 6 0.390
3
/8
3 /162.36 12.0 12 0.605
5
/81.20 1
1
/2
WT6×29 8.52 6.10 6
1
/80.360
3
/8
3 /162.19 10.0 10 0.640
5
/81.24 1
1
/2 5
1
/2
×26.5 7.78 6.03 6 0.345
3
/8
3 /162.08 10.0 10 0.575
9
/161.18 1
3
/8 5
1
/2
WT6×25 7.30 6.10 6
1
/80.370
3
/8
3 /162.26 8.08 8
1
/80.640
5
/81.14 1
1
/2 5
1
/2
×22.5 6.56 6.03 6 0.335
5
/16
3 /162.02 8.05 8 0.575
9
/161.08 1
3
/8
×20
c
5.84 5.97 6 0.295
5
/16
3 /161.76 8.01 8 0.515
1
/21.02 1
3
/8
WT6×17.5
c
5.17 6.25 6
1
/40.300
5
/16
3 /161.88 6.56 6
1
/20.520
1
/20.820 1
3
/163
1
/2
×15
c
4.40 6.17 6
1
/80.260
1
/4
1 /81.60 6.52 6
1
/20.440
7
/160.740 1
1
/8
×13
c
3.82 6.11 6
1
/80.230
1
/4
1 /81.41 6.49 6
1
/20.380
3
/80.680 1
1
/16
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 64

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT7-WT6
DIMENSIONS AND PROPERTIES 1–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
19 6.57 22.7 23.3 4.22 2.04 1.54 7.45 0.412 13.3 3.94 1.55 6.07 0.758 0.398 0.554
17 7.41 24.5 20.9 3.83 2.04 1.53 6.74 0.371 11.6 3.45 1.53 5.32 0.667 0.284 0.400
15 8.74 25.6 19.0 3.55 2.07 1.58 6.25 0.329 9.79 2.91 1.49 4.49 0.611 0.190 0.287
13 5.98 27.3 17.3 3.31 2.12 1.72 5.89 0.383 4.45 1.77 1.08 2.76 0.537 0.179 0.207
11 7.46 29.9 14.8 2.91 2.14 1.76 5.20 0.325 3.50 1.40 1.04 2.19 0.448 0.104 0.134
168 2.26 4.72 190 31.2 1.96 2.31 68.4 1.84 593 88.6 3.47 137 1.00 120 481
152.5 2.45 5.01 162 27.0 1.90 2.16 59.1 1.69 525 79.3 3.42 122 1.00 92.0 356
139.5 2.66 5.18 141 24.1 1.86 2.05 51.9 1.56 469 71.3 3.38 110 1.00 70.9 267
126 2.89 5.51 121 20.9 1.81 1.92 44.8 1.42 414 63.6 3.34 97.9 1.00 53.5 195
115 3.11 5.84 106 18.5 1.77 1.82 39.4 1.31 371 57.5 3.31 88.4 1.00 41.6 148
105 3.37 6.24 92.1 16.4 1.73 1.72 34.5 1.21 332 51.9 3.28 79.7 1.00 32.1 112
95 3.65 6.78 79.0 14.2 1.68 1.62 29.8 1.10 295 46.5 3.25 71.2 1.00 24.3 82.1
85 4.03 7.31 67.8 12.3 1.65 1.52 25.6 0.994 259 41.2 3.22 62.9 1.00 17.7 58.3
76 4.46 7.89 58.5 10.8 1.62 1.43 22.0 0.896 227 36.4 3.19 55.6 1.00 12.8 41.3
68 4.96 8.49 50.6 9.46 1.59 1.35 19.0 0.805 199 32.1 3.16 48.9 1.00 9.21 28.9
60 5.57 9.24 43.4 8.22 1.57 1.28 16.2 0.716 172 28.0 3.13 42.7 1.00 6.42 19.7
53 6.17 10.6 36.3 6.92 1.53 1.19 13.6 0.637 151 24.7 3.11 37.5 1.00 4.55 13.6
48 6.76 11.6 32.0 6.12 1.51 1.13 11.9 0.580 135 22.2 3.09 33.7 1.00 3.42 10.1
43.5 7.48 12.2 28.9 5.60 1.50 1.10 10.7 0.527 120 19.9 3.07 30.2 1.00 2.54 7.34
39.5 8.22 13.2 25.8 5.03 1.49 1.06 9.49 0.480 108 17.9 3.05 27.1 1.00 1.91 5.43
36 8.99 14.3 23.2 4.54 1.48 1.02 8.48 0.439 97.5 16.2 3.04 24.6 1.00 1.46 4.07
32.5 9.92 15.5 20.6 4.06 1.47 0.985 7.50 0.398 87.2 14.5 3.02 22.0 1.00 1.09 2.97
29 7.82 16.9 19.1 3.76 1.50 1.03 6.97 0.426 53.5 10.7 2.51 16.2 1.00 1.05 2.08
26.5 8.69 17.5 17.7 3.54 1.51 1.02 6.46 0.389 47.9 9.58 2.48 14.5 1.00 0.788 1.53
25 6.31 16.5 18.7 3.79 1.60 1.17 6.88 0.452 28.2 6.97 1.96 10.6 1.00 0.855 1.23
22.5 7.00 18.0 16.6 3.39 1.59 1.13 6.10 0.408 25.0 6.21 1.95 9.47 1.00 0.627 0.885
20 7.77 20.2 14.4 2.95 1.57 1.09 5.28 0.365 22.0 5.50 1.94 8.38 0.885 0.452 0.620
17.5 6.31 20.8 16.0 3.23 1.76 1.30 5.71 0.394 12.2 3.73 1.54 5.73 0.854 0.369 0.437
15 7.41 23.7 13.5 2.75 1.75 1.27 4.83 0.337 10.2 3.12 1.52 4.78 0.707 0.228 0.267
13 8.54 26.6 11.7 2.40 1.75 1.25 4.20 0.295 8.66 2.67 1.51 4.08 0.566 0.150 0.174
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 65

Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
v
Shear strength controlled by buckling effects (Cv<1.0) with Fy=50 ksi.
1–66 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT6×11
c
3.24 6.16 6
1
/80.260
1
/4
1 /81.60 4.03 4 0.425
7
/160.725
15
/162
1
/4
g
×9.5
c
2.79 6.08 6
1
/80.235
1
/4
1 /81.43 4.01 4 0.350
3
/80.650
7
/8
×8
c
2.36 6.00 6 0.220
1
/4
1 /81.32 3.99 4 0.265
1
/40.565
13
/16
×7
c,v
2.08 5.96 6 0.200
3
/16
1/81.19 3.97 4 0.225
1
/40.525
3
/4
WT5×56 16.5 5.68 5
5
/80.755
3
/4
3 /84.29 10.4 10
3
/81.25 1
1
/41.75 1
15
/165
1
/2
×50 14.7 5.55 5
1
/20.680
11
/16
3/83.77 10.3 10
3
/81.12 1
1
/81.62 1
13
/16
×44 13.0 5.42 5
3
/80.605
5
/8
5 /163.28 10.3 10
1
/40.990 1 1.49 1
11
/16
×38.5 11.3 5.30 5
1
/40.530
1
/2
1 /42.81 10.2 10
1
/40.870
7
/81.37 1
9
/16
×34 10.0 5.20 5
1
/40.470
1
/2
1 /42.44 10.1 10
1
/80.770
3
/41.27 1
7
/16
×30 8.84 5.11 5
1
/80.420
7
/16
1 /42.15 10.1 10
1
/80.680
11
/161.18 1
3
/8
×27 7.90 5.05 5 0.370
3
/8
3 /161.87 10.0 10 0.615
5
/81.12 1
5
/16
×24.5 7.21 4.99 5 0.340
5
/16
3 /161.70 10.0 10 0.560
9
/161.06 1
1
/4
WT5×22.5 6.63 5.05 5 0.350
3
/8
3 /161.77 8.02 8 0.620
5
/81.12 1
5
/16
×19.5 5.73 4.96 5 0.315
5
/16
3 /161.56 7.99 8 0.530
1
/21.03 1
3
/16
×16.5 4.85 4.87 4
7
/80.290
5
/16
3 /161.41 7.96 8 0.435
7
/160.935 1
1
/8
WT5×15 4.42 5.24 5
1
/40.300
5
/16
3 /161.57 5.81 5
3
/40.510
1
/20.810 1
1
/82
3
/4
g
×13
c
3.81 5.17 5
1
/80.260
1
/4
1 /81.34 5.77 5
3
/40.440
7
/160.740 1
1
/16
×11
c
3.24 5.09 5
1
/80.240
1
/4
1 /81.22 5.75 5
3
/40.360
3
/80.660
15
/16
WT5×9.5
c
2.81 5.12 5
1
/80.250
1
/4
1 /81.28 4.02 4 0.395
3
/80.695
15
/162
1
/4
g
×8.5
c
2.50 5.06 5 0.240
1
/4
1 /81.21 4.01 4 0.330
5
/160.630
7
/8
×7.5
c
2.21 5.00 5 0.230
1
/4
1 /81.15 4.00 4 0.270
1
/40.570
13
/16
×6
c,f
1.77 4.94 4
7
/80.190
3
/16
1/80.938 3.96 4 0.210
3
/160.510
3
/4
WT4×33.5 9.84 4.50 4
1
/20.570
9
/16
5 /162.57 8.28 8
1
/40.935
15
/161.33 1
5
/8 5
1
/2
×29 8.54 4.38 4
3
/80.510
1
/2
1 /42.23 8.22 8
1
/40.810
13
/161.20 1
1
/2
×24 7.05 4.25 4
1
/40.400
3
/8
3 /161.70 8.11 8
1
/80.685
11
/161.08 1
3
/8
×20 5.87 4.13 4
1
/80.360
3
/8
3 /161.49 8.07 8
1
/80.560
9
/160.954 1
1
/4
×17.5 5.14 4.06 4 0.310
5
/16
3 /161.26 8.02 8 0.495
1
/20.889 1
3
/16
×15.5
f
4.56 4.00 4 0.285
5
/16
3 /161.14 8.00 8 0.435
7
/160.829 1
1
/8
WT4×14 4.12 4.03 4 0.285
5
/16
3 /161.15 6.54 6
1
/20.465
7
/160.859
15
/163
1
/2
×12 3.54 3.97 4 0.245
1
/4
1 /80.971 6.50 6
1
/20.400
3
/80.794
7
/8 3
1
/2
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 66

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT6-WT4
DIMENSIONS AND PROPERTIES 1–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
11 4.74 23.7 11.7 2.59 1.90 1.63 4.63 0.402 2.33 1.15 0.847 1.83 0.707 0.146 0.137
9.5 5.72 25.9 10.1 2.28 1.90 1.65 4.11 0.348 1.88 0.939 0.821 1.49 0.597 0.0899 0.0934
8 7.53 27.3 8.70 2.04 1.92 1.74 3.72 0.639 1.41 0.706 0.773 1.13 0.537 0.0511 0.0678
7 8.82 29.8 7.67 1.83 1.92 1.76 3.32 0.760 1.18 0.593 0.753 0.947 0.451 0.0350 0.0493
56 4.17 7.52 28.6 6.40 1.32 1.21 13.4 0.791 118 22.6 2.67 34.6 1.00 7.50 16.9
50 4.62 8.16 24.5 5.56 1.29 1.13 11.4 0.711 103 20.0 2.65 30.5 1.00 5.41 11.9
44 5.18 8.96 20.8 4.77 1.27 1.06 9.65 0.631 89.3 17.4 2.63 26.5 1.00 3.75 8.02
38.5 5.86 10.0 17.4 4.05 1.24 0.990 8.06 0.555 76.8 15.1 2.60 22.9 1.00 2.55 5.31
34 6.58 11.1 14.9 3.49 1.22 0.932 6.85 0.493 66.7 13.2 2.58 20.0 1.00 1.78 3.62
30 7.41 12.2 12.9 3.04 1.21 0.884 5.87 0.438 58.1 11.5 2.57 17.5 1.00 1.23 2.46
27 8.15 13.6 11.1 2.64 1.19 0.836 5.05 0.395 51.7 10.3 2.56 15.6 1.00 0.909 1.78
24.5 8.93 14.7 10.0 2.39 1.18 0.807 4.52 0.361 46.7 9.34 2.54 14.1 1.00 0.693 1.33
22.5 6.47 14.4 10.2 2.47 1.24 0.907 4.65 0.413 26.7 6.65 2.01 10.1 1.00 0.753 0.981
19.5 7.53 15.7 8.84 2.16 1.24 0.876 3.99 0.359 22.5 5.64 1.98 8.57 1.00 0.487 0.616
16.5 9.15 16.8 7.71 1.93 1.26 0.869 3.48 0.305 18.3 4.60 1.94 7.00 1.00 0.291 0.356
15 5.70 17.5 9.28 2.24 1.45 1.10 4.01 0.380 8.35 2.87 1.37 4.41 1.00 0.310 0.273
13 6.56 19.9 7.86 1.91 1.44 1.06 3.39 0.330 7.05 2.44 1.36 3.75 0.900 0.201 0.173
11 7.99 21.2 6.88 1.72 1.46 1.07 3.02 0.282 5.71 1.99 1.33 3.05 0.834 0.119 0.107
9.5 5.09 20.5 6.68 1.74 1.54 1.28 3.10 0.349 2.15 1.07 0.874 1.67 0.870 0.116 0.0796
8.5 6.08 21.1 6.06 1.62 1.56 1.32 2.90 0.311 1.78 0.887 0.844 1.40 0.839 0.0776 0.0610
7.5 7.41 21.7 5.45 1.50 1.57 1.37 2.71 0.305 1.45 0.723 0.810 1.15 0.809 0.0518 0.0475
6 9.43 26.0 4.35 1.22 1.57 1.36 2.20 0.322 1.09 0.551 0.785 0.869 0.592 0.0272 0.0255
33.5 4.43 7.89 10.9 3.05 1.05 0.936 6.29 0.594 44.3 10.7 2.12 16.3 1.00 2.51 3.56
29 5.07 8.59 9.12 2.61 1.03 0.874 5.25 0.520 37.5 9.13 2.10 13.9 1.00 1.66 2.28
24 5.92 10.6 6.85 1.97 0.986 0.777 3.94 0.435 30.5 7.51 2.08 11.4 1.00 0.977 1.30
20 7.21 11.5 5.73 1.69 0.988 0.735 3.25 0.364 24.5 6.08 2.04 9.24 1.00 0.558 0.715
17.5 8.10 13.1 4.82 1.43 0.968 0.688 2.71 0.321 21.3 5.31 2.03 8.05 1.00 0.384 0.480
15.5 9.19 14.0 4.28 1.28 0.969 0.668 2.39 0.285 18.5 4.64 2.02 7.03 1.00 0.267 0.327
14 7.03 14.1 4.23 1.28 1.01 0.734 2.38 0.315 10.8 3.31 1.62 5.04 1.00 0.268 0.230
12 8.12 16.2 3.53 1.08 0.999 0.695 1.98 0.272 9.14 2.81 1.61 4.28 1.00 0.173 0.144
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 67

1–68 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A Area
Depth, d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
k Work-
able
Gage
in.
2
in.
2
in. in. in. in. in. in. in. in.
Table 1-8 (continued)
WT-Shapes
Dimensions
c
Shape is slender for compression with Fy=50 ksi.
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
WT4×10.5 3.08 4.14 4
1
/80.250
1
/4
1 /81.04 5.27 5
1
/40.400
3
/80.700
7
/82
3
/4
g
×9 2.63 4.07 4
1
/80.230
1
/4
1 /80.936 5.25 5
1
/40.330
5
/160.630
13
/162
3
/4
g
WT4×7.5 2.22 4.06 4 0.245
1
/4
1 /80.993 4.02 4 0.315
5
/160.615
13
/162
1
/4
g
×6.5 1.92 4.00 4 0.230
1
/4
1 /80.919 4.00 4 0.255
1
/40.555
3
/4
×5
c,f
1.48 3.95 4 0.170
3
/16
1/80.671 3.94 4 0.205
3
/160.505
11
/16
WT3×12.5 3.67 3.19 3
1
/40.320
5
/16
3 /161.02 6.08 6
1
/80.455
7
/160.705
15
/163
1
/2
×10 2.94 3.10 3
1
/80.260
1
/4
1 /80.806 6.02 6 0.365
3
/80.615
7
/8
×7.5
f
2.21 3.00 3 0.230
1
/4
1 /80.689 5.99 6 0.260
1
/40.510
3
/4
WT3×8 2.37 3.14 3
1
/80.260
1
/4
1 /80.816 4.03 4 0.405
3
/80.655
7
/82
1
/4
g
×6 1.78 3.02 3 0.230
1
/4
1 /80.693 4.00 4 0.280
1
/40.530
3
/4
×4.5
f
1.34 2.95 3 0.170
3
/16
1/80.502 3.94 4 0.215
3
/160.465
11
/16
×4.25
f
1.26 2.92 2
7
/80.170
3
/16
1/80.496 3.94 4 0.195
3
/160.445
11
/16
WT2.5×9.5 2.78 2.58 2
5
/80.270
1
/4
1 /80.695 5.03 5 0.430
7
/160.730
13
/162
3
/4
×8 2.35 2.51 2
1
/20.240
1
/4
1 /80.601 5.00 5 0.360
3
/80.660
3
/4 2
3
/4
WT2×6.5 1.91 2.08 2
1
/80.280
1
/4
1 /80.582 4.06 4 0.345
3
/80.595
3
/4 2
1
/4
kdeskdet
AISC_PART 01A:14th Ed_ 1/20/11 7:30 AM Page 68

Table 1-8 (continued)
WT-Shapes
Properties
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 50
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tflb/ft
d

tw
WT4-WT2
DIMENSIONS AND PROPERTIES 1–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
10.5 6.59 16.6 3.90 1.18 1.12 0.831 2.11 0.292 4.88 1.85 1.26 2.84 1.00 0.141 0.0916
9 7.95 17.7 3.41 1.05 1.14 0.834 1.86 0.251 3.98 1.52 1.23 2.33 1.00 0.0855 0.0562
7.5 6.37 16.6 3.28 1.07 1.22 0.998 1.91 0.276 1.70 0.849 0.876 1.33 1.00 0.0679 0.0382
6.5 7.84 17.4 2.89 0.974 1.23 1.03 1.74 0.240 1.36 0.682 0.843 1.07 1.00 0.0433 0.0269
5 9.61 23.2 2.15 0.717 1.20 0.953 1.27 0.188 1.05 0.531 0.840 0.826 0.733 0.0212 0.0114
12.5 6.68 10.0 2.29 0.886 0.789 0.610 1.68 0.302 8.53 2.81 1.52 4.28 1.00 0.229 0.171
10 8.25 11.9 1.76 0.693 0.774 0.560 1.29 0.244 6.64 2.21 1.50 3.36 1.00 0.120 0.0858
7.5 11.5 13.0 1.41 0.577 0.797 0.558 1.03 0.185 4.66 1.56 1.45 2.37 1.00 0.0504 0.0342
8 4.98 12.1 1.69 0.685 0.844 0.676 1.25 0.294 2.21 1.10 0.966 1.69 1.00 0.111 0.0426
6 7.14 13.1 1.32 0.564 0.862 0.677 1.01 0.222 1.50 0.748 0.918 1.16 1.00 0.0449 0.0178
4.5 9.16 17.4 0.950 0.408 0.842 0.623 0.720 0.170 1.10 0.557 0.905 0.856 1.00 0.0202 0.00736
4.25 10.1 17.2 0.905 0.397 0.848 0.637 0.700 0.160 0.995 0.505 0.890 0.778 1.00 0.0166 0.00620
9.5 5.85 9.56 1.01 0.485 0.604 0.487 0.970 0.276 4.56 1.81 1.28 2.76 1.00 0.157 0.0775
8 6.94 10.5 0.845 0.413 0.599 0.458 0.801 0.235 3.75 1.50 1.26 2.28 1.00 0.0958 0.0453
6.5 5.88 7.43 0.526 0.321 0.524 0.440 0.616 0.236 1.93 0.950 1.00 1.46 1.00 0.0750 0.0233
AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 69

1–70 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Area, A
Depth,
d
Stem Flange Distance
Thickness,
tw
tw

2
Width,
bf
Thickness,
tf
Area k
Work-
able
Gage
in.
2
in. in. in. in.
2
in. in. in. in.
Table 1-9
MT-Shapes
Dimensions
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the
cross section to ensure compatibility.
t
This shape has tapered flanges while all other MT-shapes have parallel flange surfaces.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=36 ksi.
— Indicates flange is too narrow to establish a workable gage.
MT6.25×6.2
c,v
1.82 6.27 6
1
/40.155
1
/8
1/160.971 3.75 3
3
/40.228
1
/4
9 /16 —
×5.8
c,v
1.70 6.25 6
1
/40.155
1
/8
1/160.969 3.50 3
1
/20.211
3
/16
9 /16
MT6×5.9
c
1.74 6.00 6 0.177
3
/16
1/81.06 3.07 3
1
/80.225
1
/4
9 /16 —
×5.4
c,v
1.59 5.99 6 0.160
3
/16
1/80.958 3.07 3
1
/80.210
3
/16
9 /16 —
×5
c,v
1.48 5.99 6 0.149
1
/8
1/160.892 3.25 3
1
/40.180
3
/16
1 /2 —
MT5×4.5
c
1.33 5.00 5 0.157
3
/16
1/80.785 2.69 2
3
/40.206
3
/16
9 /16 —
×4
c
1.19 4.98 5 0.141
1
/8
1/160.701 2.69 2
3
/40.182
3
/16
9 /16 —
MT5×3.75
c,v
1.11 5.00 5 0.130
1
/8
1/160.649 2.69 2
3
/40.173
3
/16
7 /16 —
MT4×3.25
c,v
0.959 4.00 4 0.135
1
/8
1/160.540 2.28 2
1
/40.189
3
/16
9 /16 —
×3.1
c
0.911 4.00 4 0.129
1
/8
1/160.516 2.28 2
1
/40.177
3
/16
7 /16 —
MT3×2.2
c
0.647 3.00 3 0.114
1
/8
1/160.342 1.84 1
7
/80.171
3
/16
3 /8 —
×1.85
c
0.545 2.96 3 0.0980
1
/8
1/160.290 2.00 2 0.129
1
/8
5 /16 —
MT2.5×9.45
t
2.78 2.50 2
1
/20.316
5
/16
3/160.790 5.00 5 0.416
7
/16
13 /162
3
/4
g
MT2×3
f
0.875 1.90 1
7
/80.130
1
/8
1/160.247 3.80 3
3
/40.160
3
/16
1 /2 —
AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 70

Table 1-9 (continued)
MT-Shapes
Properties
MT-SHAPES
DIMENSIONS AND PROPERTIES 1–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.2 8.22 40.4 7.29 1.61 2.01 1.74 2.92 0.372 1.00 0.536 0.746 0.839 0.341 0.0246 0.0284
5.8 8.29 40.3 6.94 1.57 2.03 1.84 2.86 0.808 0.756 0.432 0.669 0.684 0.342 0.0206 0.0268
5.9 6.82 33.9 6.61 1.61 1.96 1.89 2.89 1.13 0.543 0.354 0.561 0.575 0.484 0.0249 0.0337
5.4 7.31 37.4 6.03 1.46 1.95 1.86 2.63 1.05 0.506 0.330 0.566 0.532 0.397 0.0196 0.0250
5 9.03 40.2 5.62 1.36 1.96 1.86 2.45 1.08 0.517 0.318 0.594 0.509 0.344 0.0145 0.0202
4.5 6.53 31.8 3.47 1.00 1.62 1.54 1.81 0.808 0.336 0.250 0.505 0.403 0.550 0.0156 0.0138
4 7.39 35.3 3.08 0.894 1.62 1.52 1.61 0.809 0.296 0.220 0.502 0.354 0.446 0.0112 0.00989
3.75 7.77 38.4 2.91 0.836 1.63 1.51 1.51 0.759 0.281 0.209 0.505 0.334 0.377 0.00932 0.00792
3.25 6.03 29.6 1.57 0.558 1.29 1.18 1.01 0.472 0.188 0.165 0.444 0.264 0.634 0.00917 0.00463
3.1 6.44 31.0 1.50 0.533 1.29 1.18 0.967 0.497 0.176 0.154 0.441 0.247 0.578 0.00778 0.00403
2.2 5.38 26.3 0.579 0.268 0.949 0.841 0.483 0.190 0.0897 0.0973 0.374 0.155 0.778 0.00494 0.00124
1.85 7.75 30.2 0.483 0.226 0.945 0.827 0.409 0.174 0.0863 0.0863 0.400 0.136 0.609 0.00265 0.000754
9.45 6.01 7.91 1.05 0.528 0.617 0.512 1.03 0.276 4.35 1.74 1.26 2.66 1.00 0.156 0.0732
3 11.9 14.6 0.208 0.133 0.493 0.341 0.241 0.112 0.732 0.385 0.926 0.588 1.00 0.00919 0.00193
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
yp
Qs
JF
y
= 36
ksi
Cw
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
in.
6
bf

2tf
lb/ft
d

tw
AISC_PART 01A:14th Ed_ 1/20/11 7:31 AM Page 71

Shape
Area, A
Depth,
d
Stem Flange Distance
Thickness,
t
w
Width,
b
f
Thickness,
t
f
Area k
Workable
Gage
in.
2
in. in. in. in.
2
in. in. in. in.
Table 1-10
ST-Shapes
Dimensions
c
Shape is slender for compression with F
y
= 36 ksi
g
The actual size, combination and orientation of fastener components should be compared with the geometry of the cross section
to ensure compatibility.
— Indicates flange is too narrow to establish a workable gage.
1–72 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ST12×60.5 17.8 12.3 12
1
/40.800
13
/16
7/169.80 8.05 8 1.09 1
1
/1624
×53 15.6 12.3 12
1
/40.620
5
/8
5/167.60 7.87 7
7
/81.09 1
1
/1624
ST12×50 14.7 12.0 12 0.745
3
/4
3/88.94 7.25 7
1
/40.870
7
/8 1
3
/4 4
×45 13.2 12.0 12 0.625
5
/8
5/167.50 7.13 7
1
/80.870
7
/8 1
3
/4 4
×40
c
11.7 12.0 12 0.500
1
/2
1/46.00 7.00 7 0.870
7
/8 1
3
/4 4
ST10×48 14.1 10.2 10
1
/80.800
13
/16
7/168.12 7.20 7
1
/40.920
15
/161
3
/4 4
×43 12.7 10.2 10
1
/80.660
11
/16
3/86.70 7.06 7 0.920
15
/161
3
/4 4
ST10×37.5 11.0 10.0 10 0.635
5
/8
5/166.35 6.39 6
3
/80.795
13
/161
5
/8 3
1
/2
g
×33 9.70 10.0 10 0.505
1
/2
1/45.05 6.26 6
1
/40.795
13
/161
5
/8 3
1
/2
g
ST9×35 10.3 9.00 9 0.711
11
/16
3/86.40 6.25 6
1
/40.691
11
/161
1
/2 3
1
/2
g
×27.35 8.02 9.00 9 0.461
7
/16
1/44.15 6.00 6 0.691
11
/161
1
/2 3
1
/2
g
ST7.5×25 7.34 7.50 7
1
/20.550
9
/16
5/164.13 5.64 5
5
/80.622
5
/8 1
3
/8 3
1
/2
g
×21.45 6.30 7.50 7
1
/20.411
7
/16
1/43.08 5.50 5
1
/20.622
5
/8 1
3
/8 3
1
/2
g
ST6×25 7.33 6.00 6 0.687
11
/16
3/84.12 5.48 5
1
/20.659
11
/161
7
/163
g
×20.4 5.96 6.00 6 0.462
7
/16
1/42.77 5.25 5
1
/40.659
11
/161
7
/163
g
ST6×17.5 5.12 6.00 6 0.428
7
/16
1/42.57 5.08 5
1
/80.544
9
/161
3
/163
g
×15.9 4.65 6.00 6 0.350
3
/8
3/162.10 5.00 5 0.544
9
/161
3
/163
g
ST5×17.5 5.14 5.00 5 0.594
5
/8
5/162.97 4.94 5 0.491
1
/2 1
1
/8 2
3
/4
g
×12.7 3.72 5.00 5 0.311
5
/16
3/161.56 4.66 4
5
/80.491
1
/2 1
1
/8 2
3
/4
g
ST4×11.5 3.38 4.00 4 0.441
7
/16
1/41.76 4.17 4
1
/80.425
7
/1612
1
/4
g
×9.2 2.70 4.00 4 0.271
1
/4
1/81.08 4.00 4 0.425
7
/1612
1
/4
g
ST3×8.6 2.53 3.00 3 0.465
7
/16
1/41.40 3.57 3
5
/80.359
3
/8
13 /16 —
×6.25 1.83 3.00 3 0.232
1
/4
1/80.696 3.33 3
3
/80.359
3
/8
13 /16 —
ST2.5×5 1.46 2.50 2
1
/20.214
3
/16
1/80.535 3.00 3 0.326
5
/16
3 /4 —
ST2×4.75 1.40 2.00 2 0.326
5
/16
3/160.652 2.80 2
3
/40.293
5
/16
3 /4 —
×3.85 1.13 2.00 2 0.193
3
/16
1/80.386 2.66 2
5
/80.293
5
/16
3 /4 —
ST1.5×3.75 1.10 1.50 1
1
/20.349
3
/8
3/160.524 2.51 2
1
/20.260
1
/4
5 /8 —
×2.85 0.830 1.50 1
1
/20.170
3
/16
1/80.255 2.33 2
3
/80.260
1
/4
5 /8 —
t
w
2
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 72

Table 1-10 (continued)
ST-Shapes
Properties
ST-SHAPES
Nom-
inal
Wt.
Compact
Section
Criteria
ISr

y ZISrZ
Axis X-X Axis Y-Y
Torsional
Properties
y
p
Q
s
JF
y= 36
ksi C
w
in.
4
in.
3
in. in. in.
3
in. in.
4
in.
3
in. in.
3
in.
4
bf

2tflb/ft
d

tw
DIMENSIONS AND PROPERTIES 1–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
60.5 3.69 15.4 259 30.1 3.82 3.63 54.5 1.26 41.5 10.3 1.53 18.1 1.00 6.38 27.5
53 3.61 19.8 216 24.1 3.72 3.28 43.3 1.02 38.4 9.76 1.57 16.7 1.00 5.05 15.0
50 4.17 16.1 215 26.3 3.83 3.84 47.5 2.16 23.7 6.55 1.27 12.0 1.00 3.76 19.5
45 4.10 19.2 190 22.6 3.79 3.60 41.1 1.42 22.3 6.27 1.30 11.2 1.00 3.01 12.1
40 4.02 24.0 162 18.6 3.72 3.30 33.6 0.909 21.0 6.00 1.34 10.4 0.876 2.44 6.94
48 3.91 12.7 143 20.3 3.18 3.13 36.9 1.35 25.0 6.93 1.33 12.5 1.00 4.16 15.0
43 3.84 15.4 124 17.2 3.13 2.91 31.1 0.972 23.3 6.59 1.36 11.6 1.00 3.30 9.17
37.5 4.02 15.7 109 15.8 3.15 3.07 28.6 1.34 14.8 4.62 1.16 8.36 1.00 2.28 7.21
33 3.94 19.8 92.9 12.9 3.10 2.81 23.4 0.841 13.7 4.39 1.19 7.70 1.00 1.78 4.02
35 4.52 12.7 84.5 14.0 2.87 2.94 25.1 1.78 12.0 3.84 1.08 7.17 1.00 2.02 7.03
27.35 4.34 19.5 62.3 9.60 2.79 2.51 17.3 0.737 10.4 3.45 1.14 6.06 1.00 1.16 2.26
25 4.53 13.6 40.5 7.72 2.35 2.25 14.0 0.826 7.79 2.76 1.03 4.99 1.00 1.05 2.02
21.45 4.42 18.2 32.9 5.99 2.29 2.01 10.8 0.605 7.13 2.59 1.06 4.54 1.00 0.765 0.995
25 4.17 8.73 25.1 6.04 1.85 1.84 11.0 0.758 7.79 2.84 1.03 5.16 1.00 1.36 1.97
20.4 3.98 13.0 18.9 4.27 1.78 1.58 7.71 0.577 6.74 2.57 1.06 4.43 1.00 0.842 0.787
17.5 4.67 14.0 17.2 3.95 1.83 1.65 7.12 0.543 4.92 1.94 0.980 3.40 1.00 0.524 0.556
15.9 4.60 17.1 14.8 3.30 1.78 1.51 5.94 0.480 4.66 1.87 1.00 3.22 1.00 0.438 0.364
17.5 5.03 8.42 12.5 3.62 1.56 1.56 6.58 0.673 4.15 1.68 0.899 3.10 1.00 0.633 0.725
12.7 4.75 16.1 7.79 2.05 1.45 1.20 3.70 0.403 3.36 1.44 0.950 2.49 1.00 0.300 0.173
11.5 4.91 9.07 5.00 1.76 1.22 1.15 3.19 0.439 2.13 1.02 0.795 1.84 1.00 0.271 0.168
9.2 4.71 14.8 3.49 1.14 1.14 0.942 2.07 0.336 1.84 0.922 0.827 1.59 1.00 0.167 0.0642
8.6 4.97 6.45 2.12 1.02 0.915 0.915 1.85 0.394 1.14 0.642 0.673 1.17 1.00 0.181 0.0772
6.25 4.64 12.9 1.26 0.547 0.831 0.692 1.01 0.271 0.901 0.541 0.702 0.930 1.00 0.0830 0.0197
5 4.60 11.7 0.671 0.348 0.677 0.570 0.650 0.239 0.597 0.398 0.638 0.686 1.00 0.0568 0.01000
4.75 4.78 6.13 0.462 0.319 0.575 0.553 0.592 0.250 0.444 0.317 0.564 0.565 1.00 0.0590 0.00995
3.85 4.54 10.4 0.307 0.198 0.522 0.448 0.381 0.204 0.374 0.281 0.576 0.485 1.00 0.0364 0.00457
3.75 4.83 4.30 0.200 0.187 0.426 0.432 0.351 0.219 0.289 0.230 0.513 0.411 1.00 0.0432 0.00496
2.85 4.48 8.82 0.114 0.0970 0.370 0.329 0.196 0.171 0.223 0.192 0.518 0.328 1.00 0.0216 0.00189
in.
6
AISC_PART 01B_14th Ed._Nov. 19, 2012 14-12-04 2:33 PM Page 73 (Black plate)

1–74 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-11
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
HSS20×12×
5
/80.581 127.37 35.0 17.7 31.4 1880 188 7.33 230
×
1
/20.465 103.30 28.3 22.8 40.0 1550 155 7.39 188
×
3
/80.349 78.52 21.5 31.4 54.3 1200 120 7.45 144
×
5
/160.291 65.87 18.1 38.2 65.7 1010 101 7.48 122
HSS20×8×
5
/80.581 110.36 30.3 10.8 31.4 1440 144 6.89 185
×
1
/20.465 89.68 24.6 14.2 40.0 1190 119 6.96 152
×
3
/80.349 68.31 18.7 19.9 54.3 926 92.6 7.03 117
×
5
/160.291 57.36 15.7 24.5 65.7 786 78.6 7.07 98.6
HSS20×4×
1
/20.465 76.07 20.9 5.60 40.0 838 83.8 6.33 115
×
3
/80.349 58.10 16.0 8.46 54.3 657 65.7 6.42 89.3
×
5
/160.291 48.86 13.4 10.7 65.7 560 56.0 6.46 75.6
×
1
/40.233 39.43 10.8 14.2 82.8 458 45.8 6.50 61.5
HSS18×6×
5
/80.581 93.34 25.7 7.33 28.0 923 103 6.00 135
×
1
/20.465 76.07 20.9 9.90 35.7 770 85.6 6.07 112
×
3
/80.349 58.10 16.0 14.2 48.6 602 66.9 6.15 86.4
×
5
/160.291 48.86 13.4 17.6 58.9 513 57.0 6.18 73.1
×
1
/40.233 39.43 10.8 22.8 74.3 419 46.5 6.22 59.4
HSS16×12×
5
/80.581 110.36 30.3 17.7 24.5 1090 136 6.00 165
×
1
/20.465 89.68 24.6 22.8 31.4 904 113 6.06 135
×
3
/80.349 68.31 18.7 31.4 42.8 702 87.7 6.12 104
×
5
/160.291 57.36 15.7 38.2 52.0 595 74.4 6.15 87.7
HSS16×8×
5
/80.581 93.34 25.7 10.8 24.5 815 102 5.64 129
×
1
/20.465 76.07 20.9 14.2 31.4 679 84.9 5.70 106
×
3
/80.349 58.10 16.0 19.9 42.8 531 66.3 5.77 82.1
×
5
/160.291 48.86 13.4 24.5 52.0 451 56.4 5.80 69.4
×
1
/40.233 39.43 10.8 31.3 65.7 368 46.1 5.83 56.4
HSS16×4×
5
/80.581 76.33 21.0 3.88 24.5 539 67.3 5.06 92.9
×
1
/20.465 62.46 17.2 5.60 31.4 455 56.9 5.15 77.3
×
3
/80.349 47.90 13.2 8.46 42.8 360 45.0 5.23 60.2
×
5
/160.291 40.35 11.1 10.7 52.0 308 38.5 5.27 51.1
×
1
/40.233 32.63 8.96 14.2 65.7 253 31.6 5.31 41.7
×
3
/160.174 24.73 6.76 20.0 89.0 193 24.2 5.35 31.7
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 74

HSS20×12×
5
/8851 142 4.930 162 17
3
/169
3
/161890 257 5.17
×
1
/2705 117 4.99 132 17
3
/49
3
/41540 209 5.20
×
3
/8547 91.1 5.04 102 18
5
/1610
5
/161180 160 5.23
×
5
/16464 77.3 5.07 85.8 18
5
/810
5
/8997 134 5.25
HSS20×8×
5
/8338 84.6 3.34 96.4 17
3
/165
3
/16916 167 4.50
×
1
/2283 70.8 3.39 79.5 17
3
/45
3
/4757 137 4.53
×
3
/8222 55.6 3.44 61.5 18
5
/166
5
/16586 105 4.57
×
5
/16189 47.4 3.47 52.0 18
5
/86
5
/8496 88.3 4.58
HSS20×4×
1
/258.7 29.3 1.68 34.0 17
3
/4— 195 63.8 3.87
×
3
/847.6 23.8 1.73 26.8 18
5
/162
5
/16156 49.9 3.90
×
5
/1641.2 20.6 1.75 22.9 18
5
/82
5
/8134 42.4 3.92
×
1
/434.3 17.1 1.78 18.7 18
7
/82
7
/8111 34.7 3.93
HSS18×6×
5
/8158 52.7 2.48 61.0 15
3
/163
3
/16462 109 3.83
×
1
/2134 44.6 2.53 50.7 15
3
/43
3
/4387 89.9 3.87
×
3
/8106 35.5 2.58 39.5 16
5
/164
5
/16302 69.5 3.90
×
5
/1691.3 30.4 2.61 33.5 16
9
/164
9
/16257 58.7 3.92
×
1
/475.1 25.0 2.63 27.3 16
7
/84
7
/8210 47.7 3.93
HSS16x12×
5
/8700 117 4.80 135 13
3
/169
3
/161370 204 4.50
×
1
/2581 96.8 4.86 111 13
3
/49
3
/41120 166 4.53
×
3
/8452 75.3 4.91 85.5 14
5
/1610
5
/16862 127 4.57
×
5
/16384 64.0 4.94 72.2 14
5
/810
5
/8727 107 4.58
HSS16×8×
5
/8274 68.6 3.27 79.2 13
3
/165
3
/16681 132 3.83
×
1
/2230 57.6 3.32 65.5 13
3
/45
3
/4563 108 3.87
×
3
/8181 45.3 3.37 50.8 14
5
/166
5
/16436 83.4 3.90
×
5
/16155 38.7 3.40 43.0 14
5
/86
5
/8369 70.4 3.92
×
1
/4127 31.7 3.42 35.0 14
7
/86
7
/8300 57.0 3.93
HSS16×4×
5
/854.1 27.0 1.60 32.5 13
3
/16— 174 60.5 3.17
×
1
/247.0 23.5 1.65 27.4 13
3
/4— 150 50.7 3.20
×
3
/838.3 19.1 1.71 21.7 14
5
/162
5
/16120 39.7 3.23
×
5
/1633.2 16.6 1.73 18.5 14
5
/82
5
/8103 33.8 3.25
×
1
/427.7 13.8 1.76 15.2 14
7
/82
7
/8 85.2 27.6 3.27
×
3
/1621.5 10.8 1.78 11.7 15
3
/163
3
/1665.5 21.1 3.28
DIMENSIONS AND PROPERTIES 1–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in. in. in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS20-HSS16
Depth
Workable Flat
Width
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 75

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–76 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS14×10×
5
/80.581 93.34 25.7 14.2 21.1 687 98.2 5.17 120
×
1
/20.465 76.07 20.9 18.5 27.1 573 81.8 5.23 98.8
×
3
/80.349 58.10 16.0 25.7 37.1 447 63.9 5.29 76.3
×
5
/160.291 48.86 13.4 31.4 45.1 380 54.3 5.32 64.6
×
1
/40.233 39.43 10.8 39.9 57.1 310 44.3 5.35 52.4
HSS14×6×
5
/80.581 76.33 21.0 7.33 21.1 478 68.3 4.77 88.7
×
1
/20.465 62.46 17.2 9.90 27.1 402 57.4 4.84 73.6
×
3
/80.349 47.90 13.2 14.2 37.1 317 45.3 4.91 57.3
×
5
/160.291 40.35 11.1 17.6 45.1 271 38.7 4.94 48.6
×
1
/40.233 32.63 8.96 22.8 57.1 222 31.7 4.98 39.6
×
3
/160.174 24.73 6.76 31.5 77.5 170 24.3 5.01 30.1
HSS14×4×
5
/80.581 67.82 18.7 3.88 21.1 373 53.3 4.47 73.1
×
1
/20.465 55.66 15.3 5.60 27.1 317 45.3 4.55 61.0
×
3
/80.349 42.79 11.8 8.46 37.1 252 36.0 4.63 47.8
×
5
/160.291 36.10 9.92 10.7 45.1 216 30.9 4.67 40.6
×
1
/40.233 29.23 8.03 14.2 57.1 178 25.4 4.71 33.2
×
3
/160.174 22.18 6.06 20.0 77.5 137 19.5 4.74 25.3
HSS12×10×
1
/20.465 69.27 19.0 18.5 22.8 395 65.9 4.56 78.8
×
3
/80.349 53.00 14.6 25.7 31.4 310 51.6 4.61 61.1
×
5
/160.291 44.60 12.2 31.4 38.2 264 44.0 4.64 51.7
×
1
/40.233 36.03 9.90 39.9 48.5 216 36.0 4.67 42.1
HSS12×8×
5
/80.581 76.33 21.0 10.8 17.7 397 66.1 4.34 82.1
×
1
/20.465 62.46 17.2 14.2 22.8 333 55.6 4.41 68.1
×
3
/80.349 47.90 13.2 19.9 31.4 262 43.7 4.47 53.0
×
5
/160.291 40.35 11.1 24.5 38.2 224 37.4 4.50 44.9
×
1
/40.233 32.63 8.96 31.3 48.5 184 30.6 4.53 36.6
×
3
/160.174 24.73 6.76 43.0 66.0 140 23.4 4.56 27.8
HSS12×6×
5
/80.581 67.82 18.7 7.33 17.7 321 53.4 4.14 68.8
×
1
/20.465 55.66 15.3 9.90 22.8 271 45.2 4.21 57.4
×
3
/80.349 42.79 11.8 14.2 31.4 215 35.9 4.28 44.8
×
5
/160.291 36.10 9.92 17.6 38.2 184 30.7 4.31 38.1
×
1
/40.233 29.23 8.03 22.8 48.5 151 25.2 4.34 31.1
×
3
/160.174 22.18 6.06 31.5 66.0 116 19.4 4.38 23.7
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 76

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS14-HSS12
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS14×10×
5
/8407 81.5 3.98 95.1 11
3
/167
3
/16832 146 3.83
×
1
/2341 68.1 4.04 78.5 11
3
/47
3
/4685 120 3.87
×
3
/8267 53.4 4.09 60.7 12
5
/168
5
/16528 91.8 3.90
×
5
/16227 45.5 4.12 51.4 12
9
/168
9
/16446 77.4 3.92
×
1
/4186 37.2 4.14 41.8 12
7
/88
7
/8362 62.6 3.93
HSS14×6×
5
/8124 41.2 2.43 48.4 11
3
/163
3
/16334 83.7 3.17
×
1
/2105 35.1 2.48 40.4 11
3
/43
3
/4279 69.3 3.20
×
3
/884.1 28.0 2.53 31.6 12
5
/164
5
/16219 53.7 3.23
×
5
/1672.3 24.1 2.55 26.9 12
9
/164
9
/16186 45.5 3.25
×
1
/459.6 19.9 2.58 22.0 12
7
/84
7
/8152 36.9 3.27
×
3
/1645.9 15.3 2.61 16.7 13
3
/165
3
/16116 28.0 3.28
HSS14×4×
5
/847.2 23.6 1.59 28.5 11
1
/4— 148 52.6 2.83
×
1
/241.2 20.6 1.64 24.1 11
3
/4— 127 44.1 2.87
×
3
/833.6 16.8 1.69 19.1 12
1
/42
1
/4102 34.6 2.90
×
5
/1629.2 14.6 1.72 16.4 12
5
/82
5
/8 87.7 29.5 2.92
×
1
/424.4 12.2 1.74 13.5 12
7
/82
7
/8 72.4 24.1 2.93
×
3
/1619.0 9.48 1.77 10.3 13
1
/83
1
/8 55.8 18.4 2.95
HSS12×10×
1
/2298 59.7 3.96 69.6 9
3
/47
3
/4545 102 3.53
×
3
/8234 46.9 4.01 54.0 10
5
/168
5
/16421 78.3 3.57
×
5
/16200 40.0 4.04 45.7 10
9
/168
9
/16356 66.1 3.58
×
1
/4164 32.7 4.07 37.2 10
7
/88
7
/8289 53.5 3.60
HSS12×8×
5
/8210 52.5 3.16 61.9 9
3
/165
3
/16454 97.7 3.17
×
1
/2178 44.4 3.21 51.5 9
3
/45
3
/4377 80.4 3.20
×
3
/8140 35.1 3.27 40.1 10
5
/166
5
/16293 62.1 3.23
×
5
/16120 30.1 3.29 34.1 10
9
/166
9
/16248 52.4 3.25
×
1
/498.8 24.7 3.32 27.8 10
7
/86
7
/8202 42.5 3.27
×
3
/1675.7 18.9 3.35 21.1 11
1
/87
1
/8153 32.2 3.28
HSS12×6×
5
/8107 35.5 2.39 42.1 9
3
/163
3
/16271 71.1 2.83
×
1
/291.1 30.4 2.44 35.2 9
3
/43
3
/4227 59.0 2.87
×
3
/872.9 24.3 2.49 27.7 10
5
/164
5
/16178 45.8 2.90
×
5
/1662.8 20.9 2.52 23.6 10
9
/164
9
/16152 38.8 2.92
×
1
/451.9 17.3 2.54 19.3 10
7
/84
7
/8124 31.6 2.93
×
3
/1640.0 13.3 2.57 14.7 11
3
/165
3
/1694.6 24.0 2.95
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 77

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–78 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS12×4×
5
/80.581 59.32 16.4 3.88 17.7 245 40.8 3.87 55.5
×
1
/20.465 48.85 13.5 5.60 22.8 210 34.9 3.95 46.7
×
3
/80.349 37.69 10.4 8.46 31.4 168 28.0 4.02 36.7
×
5
/160.291 31.84 8.76 10.7 38.2 144 24.1 4.06 31.3
×
1
/40.233 25.82 7.10 14.2 48.5 119 19.9 4.10 25.6
×
3
/160.174 19.63 5.37 20.0 66.0 91.8 15.3 4.13 19.6
HSS12×3
1
/2×
3
/80.349 36.41 10.0 7.03 31.4 156 26.0 3.94 34.7
×
5
/160.291 30.78 8.46 9.03 38.2 134 22.4 3.98 29.6
HSS12×3×
5
/160.291 29.72 8.17 7.31 38.2 124 20.7 3.90 27.9
×
1
/40.233 24.12 6.63 9.88 48.5 103 17.2 3.94 22.9
×
3
/160.174 18.35 5.02 14.2 66.0 79.6 13.3 3.98 17.5
HSS12×2×
5
/160.291 27.59 7.59 3.87 38.2 104 17.4 3.71 24.5
×
1
/40.233 22.42 6.17 5.58 48.5 86.9 14.5 3.75 20.1
×
3
/160.174 17.08 4.67 8.49 66.0 67.4 11.2 3.80 15.5
HSS10×8×
5
/80.581 67.82 18.7 10.8 14.2 253 50.5 3.68 62.2
×
1
/20.465 55.66 15.3 14.2 18.5 214 42.7 3.73 51.9
×
3
/80.349 42.79 11.8 19.9 25.7 169 33.9 3.79 40.5
×
5
/160.291 36.10 9.92 24.5 31.4 145 29.0 3.82 34.4
×
1
/40.233 29.23 8.03 31.3 39.9 119 23.8 3.85 28.1
×
3
/160.174 22.18 6.06 43.0 54.5 91.4 18.3 3.88 21.4
HSS10×6×
5
/80.581 59.32 16.4 7.33 14.2 201 40.2 3.50 51.3
×
1
/20.465 48.85 13.5 9.90 18.5 171 34.3 3.57 43.0
×
3
/80.349 37.69 10.4 14.2 25.7 137 27.4 3.63 33.8
×
5
/160.291 31.84 8.76 17.6 31.4 118 23.5 3.66 28.8
×
1
/40.233 25.82 7.10 22.8 39.9 96.9 19.4 3.69 23.6
×
3
/160.174 19.63 5.37 31.5 54.5 74.6 14.9 3.73 18.0
HSS10×5×
3
/80.349 35.13 9.67 11.3 25.7 120 24.1 3.53 30.4
×
5
/160.291 29.72 8.17 14.2 31.4 104 20.8 3.56 26.0
×
1
/40.233 24.12 6.63 18.5 39.9 85.8 17.2 3.60 21.3
×
3
/160.174 18.35 5.02 25.7 54.5 66.2 13.2 3.63 16.3
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 78

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS12-HSS10
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS12×4×
5
/840.4 20.2 1.57 24.5 9
3
/16— 122 44.6 2.50
×
1
/235.3 17.7 1.62 20.9 9
3
/4— 105 37.5 2.53
×
3
/828.9 14.5 1.67 16.6 10
5
/162
5
/1684.1 29.5 2.57
×
5
/1625.2 12.6 1.70 14.2 10
5
/82
5
/8 72.4 25.2 2.58
×
1
/421.0 10.5 1.72 11.7 10
7
/82
7
/8 59.8 20.6 2.60
×
3
/1616.4 8.20 1.75 9.00 11
3
/163
3
/1646.1 15.7 2.62
HSS12×3
1
/2×
3
/821.3 12.2 1.46 14.0 10
5
/16— 64.7 25.5 2.48
×
5
/1618.6 10.6 1.48 12.1 10
5
/8— 56.0 21.8 2.50
HSS12×3×
5
/1613.1 8.73 1.27 10.0 10
5
/8— 41.3 18.4 2.42
×
1
/411.1 7.38 1.29 8.28 10
7
/8— 34.5 15.1 2.43
×
3
/16 8.72 5.81 1.32 6.40 11
3
/162
3
/1626.8 11.6 2.45
HSS12×2×
5
/16 5.10 5.10 0.820 6.05 10
5
/8— 17.6 11.6 2.25
×
1
/4 4.41 4.41 0.845 5.08 10
7
/8— 15.1 9.64 2.27
×
3
/16 3.55 3.55 0.872 3.97 11
3
/16— 12.0 7.49 2.28
HSS10×8×
5
/8178 44.5 3.09 53.3 7
3
/165
3
/16346 80.4 2.83
×
1
/2151 37.8 3.14 44.5 7
3
/45
3
/4288 66.4 2.87
×
3
/8120 30.0 3.19 34.8 8
5
/166
5
/16224 51.4 2.90
×
5
/16103 25.7 3.22 29.6 8
5
/86
5
/8190 43.5 2.92
×
1
/484.7 21.2 3.25 24.2 8
7
/86
7
/8155 35.3 2.93
×
3
/1665.1 16.3 3.28 18.4 9
3
/167
3
/16118 26.7 2.95
HSS10×6×
5
/889.4 29.8 2.34 35.8 7
3
/163
3
/16209 58.6 2.50
×
1
/276.8 25.6 2.39 30.1 7
3
/43
3
/4176 48.7 2.53
×
3
/861.8 20.6 2.44 23.7 8
5
/164
5
/16139 37.9 2.57
×
5
/1653.3 17.8 2.47 20.2 8
5
/84
5
/8118 32.2 2.58
×
1
/444.1 14.7 2.49 16.6 8
7
/84
7
/8 96.7 26.2 2.60
×
3
/1634.1 11.4 2.52 12.7 9
3
/165
3
/1673.8 19.9 2.62
HSS10×5×
3
/840.6 16.2 2.05 18.7 8
5
/163
5
/16100 31.2 2.40
×
5
/1635.2 14.1 2.07 16.0 8
5
/83
5
/8 86.0 26.5 2.42
×
1
/429.3 11.7 2.10 13.2 8
7
/83
7
/8 70.7 21.6 2.43
×
3
/1622.7 9.09 2.13 10.1 9
3
/164
3
/1654.1 16.5 2.45
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 79

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–80 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS10×4×
5
/80.581 50.81 14.0 3.88 14.2 149 29.9 3.26 40.3
×
1
/20.465 42.05 11.6 5.60 18.5 129 25.8 3.34 34.1
×
3
/80.349 32.58 8.97 8.46 25.7 104 20.8 3.41 27.0
×
5
/160.291 27.59 7.59 10.7 31.4 90.1 18.0 3.44 23.1
×
1
/40.233 22.42 6.17 14.2 39.9 74.7 14.9 3.48 19.0
×
3
/160.174 17.08 4.67 20.0 54.5 57.8 11.6 3.52 14.6
×
1
/80.116 11.56 3.16 31.5 83.2 39.8 7.97 3.55 10.0
HSS10×3
1
/2×
1
/20.465 40.34 11.1 4.53 18.5 118 23.7 3.26 31.9
×
3
/80.349 31.31 8.62 7.03 25.7 96.1 19.2 3.34 25.3
×
5
/160.291 26.53 7.30 9.03 31.4 83.2 16.6 3.38 21.7
×
1
/40.233 21.57 5.93 12.0 39.9 69.1 13.8 3.41 17.9
×
3
/160.174 16.44 4.50 17.1 54.5 53.6 10.7 3.45 13.7
×
1
/80.116 11.13 3.04 27.2 83.2 37.0 7.40 3.49 9.37
HSS10×3×
3
/80.349 30.03 8.27 5.60 25.7 88.0 17.6 3.26 23.7
×
5
/160.291 25.46 7.01 7.31 31.4 76.3 15.3 3.30 20.3
×
1
/40.233 20.72 5.70 9.88 39.9 63.6 12.7 3.34 16.7
×
3
/160.174 15.80 4.32 14.2 54.5 49.4 9.87 3.38 12.8
×
1
/80.116 10.71 2.93 22.9 83.2 34.2 6.83 3.42 8.80
HSS10×2×
3
/80.349 27.48 7.58 2.73 25.7 71.7 14.3 3.08 20.3
×
5
/160.291 23.34 6.43 3.87 31.4 62.6 12.5 3.12 17.5
×
1
/40.233 19.02 5.24 5.58 39.9 52.5 10.5 3.17 14.4
×
3
/160.174 14.53 3.98 8.49 54.5 41.0 8.19 3.21 11.1
×
1
/80.116 9.86 2.70 14.2 83.2 28.5 5.70 3.25 7.65
HSS9×7×
5
/80.581 59.32 16.4 9.05 12.5 174 38.7 3.26 48.3
×
1
/20.465 48.85 13.5 12.1 16.4 149 33.0 3.32 40.5
×
3
/80.349 37.69 10.4 17.1 22.8 119 26.4 3.38 31.8
×
5
/160.291 31.84 8.76 21.1 27.9 102 22.6 3.41 27.1
×
1
/40.233 25.82 7.10 27.0 35.6 84.1 18.7 3.44 22.2
×
3
/160.174 19.63 5.37 37.2 48.7 64.7 14.4 3.47 16.9
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 80

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS10-HSS9
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS10×4×
5
/833.5 16.8 1.54 20.6 7
3
/16— 95.7 36.7 2.17
×
1
/229.5 14.7 1.59 17.6 7
3
/4— 82.6 31.0 2.20
×
3
/824.3 12.1 1.64 14.0 8
5
/162
5
/1666.5 24.4 2.23
×
5
/1621.2 10.6 1.67 12.1 8
5
/82
5
/8 57.3 20.9 2.25
×
1
/417.7 8.87 1.70 10.0 8
7
/82
7
/8 47.4 17.1 2.27
×
3
/1613.9 6.93 1.72 7.66 9
3
/163
3
/1636.5 13.1 2.28
×
1
/8 9.65 4.83 1.75 5.26 9
7
/163
7
/1625.1 8.90 2.30
HSS10×3
1
/2×
1
/221.4 12.2 1.39 14.7 7
3
/4— 63.2 26.5 2.12
×
3
/817.8 10.2 1.44 11.8 8
5
/16— 51.5 21.1 2.15
×
5
/1615.6 8.92 1.46 10.2 8
5
/8— 44.6 18.0 2.17
×
1
/413.1 7.51 1.49 8.45 8
7
/8— 37.0 14.8 2.18
×
3
/1610.3 5.89 1.51 6.52 9
3
/162
11
/1628.6 11.4 2.20
×
1
/8 7.22 4.12 1.54 4.48 9
7
/162
15
/1619.8 7.75 2.22
HSS10×3×
3
/812.4 8.28 1.22 9.73 8
5
/16— 37.8 17.7 2.07
×
5
/1611.0 7.30 1.25 8.42 8
5
/8— 33.0 15.2 2.08
×
1
/4 9.28 6.19 1.28 6.99 8
7
/8— 27.6 12.5 2.10
×
3
/16 7.33 4.89 1.30 5.41 9
3
/162
3
/1621.5 9.64 2.12
×
1
/8 5.16 3.44 1.33 3.74 9
7
/162
7
/1614.9 6.61 2.13
HSS10×2×
3
/8 4.70 4.70 0.787 5.76 8
5
/16— 15.9 11.0 1.90
×
5
/16 4.24 4.24 0.812 5.06 8
5
/8— 14.2 9.56 1.92
×
1
/4 3.67 3.67 0.838 4.26 8
7
/8— 12.2 7.99 1.93
×
3
/16 2.97 2.97 0.864 3.34 9
3
/16— 9.74 6.22 1.95
×
1
/8 2.14 2.14 0.890 2.33 9
7
/16— 6.90 4.31 1.97
HSS9×7×
5
/8117 33.5 2.68 40.5 6
3
/164
3
/16235 62.0 2.50
×
1
/2100 28.7 2.73 34.0 6
3
/44
3
/4197 51.5 2.53
×
3
/880.4 23.0 2.78 26.7 7
5
/165
5
/16154 40.0 2.57
×
5
/1669.2 19.8 2.81 22.8 7
5
/85
5
/8131 33.9 2.58
×
1
/457.2 16.3 2.84 18.7 7
7
/85
7
/8107 27.6 2.60
×
3
/1644.1 12.6 2.87 14.3 8
3
/166
3
/1681.7 20.9 2.62
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 81

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–82 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS9×5×
5
/80.581 50.81 14.0 5.61 12.5 133 29.6 3.08 38.5
×
1
/20.465 42.05 11.6 7.75 16.4 115 25.5 3.14 32.5
×
3
/80.349 32.58 8.97 11.3 22.8 92.5 20.5 3.21 25.7
×
5
/160.291 27.59 7.59 14.2 27.9 79.8 17.7 3.24 22.0
×
1
/40.233 22.42 6.17 18.5 35.6 66.1 14.7 3.27 18.1
×
3
/160.174 17.08 4.67 25.7 48.7 51.1 11.4 3.31 13.8
HSS9×3×
1
/20.465 35.24 9.74 3.45 16.4 80.8 18.0 2.88 24.6
×
3
/80.349 27.48 7.58 5.60 22.8 66.3 14.7 2.96 19.7
×
5
/160.291 23.34 6.43 7.31 27.9 57.7 12.8 3.00 16.9
×
1
/40.233 19.02 5.24 9.88 35.6 48.2 10.7 3.04 14.0
×
3
/160.174 14.53 3.98 14.2 48.7 37.6 8.35 3.07 10.8
HSS8×6×
5
/80.581 50.81 14.0 7.33 10.8 114 28.5 2.85 36.1
×
1
/20.465 42.05 11.6 9.90 14.2 98.2 24.6 2.91 30.5
×
3
/80.349 32.58 8.97 14.2 19.9 79.1 19.8 2.97 24.1
×
5
/160.291 27.59 7.59 17.6 24.5 68.3 17.1 3.00 20.6
×
1
/40.233 22.42 6.17 22.8 31.3 56.6 14.2 3.03 16.9
×
3
/160.174 17.08 4.67 31.5 43.0 43.7 10.9 3.06 13.0
HSS8×4×
5
/80.581 42.30 11.7 3.88 10.8 82.0 20.5 2.64 27.4
×
1
/20.465 35.24 9.74 5.60 14.2 71.8 17.9 2.71 23.5
×
3
/80.349 27.48 7.58 8.46 19.9 58.7 14.7 2.78 18.8
×
5
/160.291 23.34 6.43 10.7 24.5 51.0 12.8 2.82 16.1
×
1
/40.233 19.02 5.24 14.2 31.3 42.5 10.6 2.85 13.3
×
3
/160.174 14.53 3.98 20.0 43.0 33.1 8.27 2.88 10.2
×
1
/80.116 9.86 2.70 31.5 66.0 22.9 5.73 2.92 7.02
HSS8×3×
1
/20.465 31.84 8.81 3.45 14.2 58.6 14.6 2.58 20.0
×
3
/80.349 24.93 6.88 5.60 19.9 48.5 12.1 2.65 16.1
×
5
/160.291 21.21 5.85 7.31 24.5 42.4 10.6 2.69 13.9
×
1
/40.233 17.32 4.77 9.88 31.3 35.5 8.88 2.73 11.5
×
3
/160.174 13.25 3.63 14.2 43.0 27.8 6.94 2.77 8.87
×
1
/80.116 9.01 2.46 22.9 66.0 19.3 4.83 2.80 6.11
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 82

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS9-HSS8
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS9×5×
5
/852.0 20.8 1.92 25.3 6
3
/162
3
/16128 42.5 2.17
×
1
/245.2 18.1 1.97 21.5 6
3
/42
3
/4109 35.6 2.20
×
3
/836.8 14.7 2.03 17.1 7
5
/163
5
/1686.9 27.9 2.23
×
5
/1632.0 12.8 2.05 14.6 7
5
/83
5
/8 74.4 23.8 2.25
×
1
/426.6 10.6 2.08 12.0 7
7
/83
7
/8 61.2 19.4 2.27
×
3
/1620.7 8.28 2.10 9.25 8
3
/164
3
/1646.9 14.8 2.28
HSS9×3×
1
/213.2 8.81 1.17 10.8 6
3
/4— 40.0 19.7 1.87
×
3
/811.2 7.45 1.21 8.80 7
5
/16— 33.1 15.8 1.90
×
5
/16 9.88 6.59 1.24 7.63 7
5
/8— 28.9 13.6 1.92
×
1
/4 8.38 5.59 1.27 6.35 7
7
/8— 24.2 11.3 1.93
×
3
/16 6.64 4.42 1.29 4.92 8
3
/162
3
/1618.9 8.66 1.95
HSS8×6×
5
/872.3 24.1 2.27 29.5 5
3
/163
3
/16150 46.0 2.17
×
1
/262.5 20.8 2.32 24.9 5
3
/43
3
/4127 38.4 2.20
×
3
/850.6 16.9 2.38 19.8 6
5
/164
5
/16100 30.0 2.23
×
5
/1643.8 14.6 2.40 16.9 6
5
/84
5
/8 85.8 25.5 2.25
×
1
/436.4 12.1 2.43 13.9 6
7
/84
7
/8 70.3 20.8 2.27
×
3
/1628.2 9.39 2.46 10.7 7
3
/165
3
/1653.7 15.8 2.28
HSS8×4×
5
/826.6 13.3 1.51 16.6 5
3
/16— 70.3 28.7 1.83
×
1
/223.6 11.8 1.56 14.3 5
3
/4— 61.1 24.4 1.87
×
3
/819.6 9.80 1.61 11.5 6
5
/162
5
/1649.3 19.3 1.90
×
5
/1617.2 8.58 1.63 9.91 6
5
/82
5
/8 42.6 16.5 1.92
×
1
/414.4 7.21 1.66 8.20 6
7
/82
7
/8 35.3 13.6 1.93
×
3
/1611.3 5.65 1.69 6.33 7
3
/163
3
/1627.2 10.4 1.95
×
1
/8 7.90 3.95 1.71 4.36 7
7
/163
7
/1618.7 7.10 1.97
HSS8×3×
1
/211.7 7.81 1.15 9.64 5
3
/4— 34.3 17.4 1.70
×
3
/810.0 6.63 1.20 7.88 6
5
/16— 28.5 14.0 1.73
×
5
/16 8.81 5.87 1.23 6.84 6
5
/8— 24.9 12.1 1.75
×
1
/4 7.49 4.99 1.25 5.70 6
7
/8— 20.8 10.0 1.77
×
3
/16 5.94 3.96 1.28 4.43 7
3
/162
3
/1616.2 7.68 1.78
×
1
/8 4.20 2.80 1.31 3.07 7
7
/162
7
/1611.3 5.27 1.80
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 83

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–84 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS8×2×
3
/80.349 22.37 6.18 2.73 19.9 38.2 9.56 2.49 13.4
×
5
/160.291 19.08 5.26 3.87 24.5 33.7 8.43 2.53 11.6
×
1
/40.233 15.62 4.30 5.58 31.3 28.5 7.12 2.57 9.68
×
3
/160.174 11.97 3.28 8.49 43.0 22.4 5.61 2.61 7.51
×
1
/80.116 8.16 2.23 14.2 66.0 15.7 3.93 2.65 5.19
HSS7×5×
1
/20.465 35.24 9.74 7.75 12.1 60.6 17.3 2.50 21.9
×
3
/80.349 27.48 7.58 11.3 17.1 49.5 14.1 2.56 17.5
×
5
/160.291 23.34 6.43 14.2 21.1 43.0 12.3 2.59 15.0
×
1
/40.233 19.02 5.24 18.5 27.0 35.9 10.2 2.62 12.4
×
3
/160.174 14.53 3.98 25.7 37.2 27.9 7.96 2.65 9.52
×
1
/80.116 9.86 2.70 40.1 57.3 19.3 5.52 2.68 6.53
HSS7×4×
1
/20.465 31.84 8.81 5.60 12.1 50.7 14.5 2.40 18.8
×
3
/80.349 24.93 6.88 8.46 17.1 41.8 11.9 2.46 15.1
×
5
/160.291 21.21 5.85 10.7 21.1 36.5 10.4 2.50 13.1
×
1
/40.233 17.32 4.77 14.2 27.0 30.5 8.72 2.53 10.8
×
3
/160.174 13.25 3.63 20.0 37.2 23.8 6.81 2.56 8.33
×
1
/80.116 9.01 2.46 31.5 57.3 16.6 4.73 2.59 5.73
HSS7×3×
1
/20.465 28.43 7.88 3.45 12.1 40.7 11.6 2.27 15.8
×
3
/80.349 22.37 6.18 5.60 17.1 34.1 9.73 2.35 12.8
×
5
/160.291 19.08 5.26 7.31 21.1 29.9 8.54 2.38 11.1
×
1
/40.233 15.62 4.30 9.88 27.0 25.2 7.19 2.42 9.22
×
3
/160.174 11.97 3.28 14.2 37.2 19.8 5.65 2.45 7.14
×
1
/80.116 8.16 2.23 22.9 57.3 13.8 3.95 2.49 4.93
HSS7×2×
1
/40.233 13.91 3.84 5.58 27.0 19.8 5.67 2.27 7.64
×
3
/160.174 10.70 2.93 8.49 37.2 15.7 4.49 2.31 5.95
×
1
/80.116 7.31 2.00 14.2 57.3 11.1 3.16 2.35 4.13
HSS6×5×
1
/20.465 31.84 8.81 7.75 9.90 41.1 13.7 2.16 17.2
×
3
/80.349 24.93 6.88 11.3 14.2 33.9 11.3 2.22 13.8
×
5
/160.291 21.21 5.85 14.2 17.6 29.6 9.85 2.25 11.9
×
1
/40.233 17.32 4.77 18.5 22.8 24.7 8.25 2.28 9.87
×
3
/160.174 13.25 3.63 25.7 31.5 19.3 6.44 2.31 7.62
×
1
/80.116 9.01 2.46 40.1 48.7 13.4 4.48 2.34 5.24
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 84

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS8-HSS6
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS8×2×
3
/8 3.73 3.73 0.777 4.61 6
5
/16— 12.1 8.65 1.57
×
5
/16 3.38 3.38 0.802 4.06 6
5
/8— 10.9 7.57 1.58
×
1
/4 2.94 2.94 0.827 3.43 6
7
/8— 9.36 6.35 1.60
×
3
/16 2.39 2.39 0.853 2.70 7
3
/16— 7.48 4.95 1.62
×
1
/8 1.72 1.72 0.879 1.90 7
7
/16— 5.30 3.44 1.63
HSS7×5×
1
/235.6 14.2 1.91 17.3 4
3
/42
3
/4 75.8 27.2 1.87
×
3
/829.3 11.7 1.97 13.8 5
5
/163
5
/1660.6 21.4 1.90
×
5
/1625.5 10.2 1.99 11.9 5
5
/83
5
/8 52.1 18.3 1.92
×
1
/421.3 8.53 2.02 9.83 5
7
/83
7
/8 42.9 15.0 1.93
×
3
/1616.6 6.65 2.05 7.57 6
3
/164
3
/1632.9 11.4 1.95
×
1
/811.6 4.63 2.07 5.20 6
7
/164
7
/1622.5 7.79 1.97
HSS7×4×
1
/220.7 10.4 1.53 12.6 4
3
/4— 50.5 21.1 1.70
×
3
/817.3 8.63 1.58 10.2 5
5
/162
5
/1641.0 16.8 1.73
×
5
/1615.2 7.58 1.61 8.83 5
5
/82
5
/8 35.4 14.4 1.75
×
1
/412.8 6.38 1.64 7.33 5
7
/82
7
/8 29.3 11.8 1.77
×
3
/1610.0 5.02 1.66 5.67 6
1
/83
1
/8 22.7 9.07 1.78
×
1
/8 7.03 3.51 1.69 3.91 6
7
/163
7
/1615.6 6.20 1.80
HSS7×3×
1
/210.2 6.80 1.14 8.46 4
3
/4— 28.6 15.0 1.53
×
3
/8 8.71 5.81 1.19 6.95 5
5
/16— 23.9 12.1 1.57
×
5
/16 7.74 5.16 1.21 6.05 5
5
/8— 20.9 10.5 1.58
×
1
/4 6.60 4.40 1.24 5.06 5
7
/8— 17.5 8.68 1.60
×
3
/16 5.24 3.50 1.26 3.94 6
3
/162
3
/1613.7 6.69 1.62
×
1
/8 3.71 2.48 1.29 2.73 6
7
/162
7
/16 9.48 4.60 1.63
HSS7×2×
1
/4 2.58 2.58 0.819 3.02 5
7
/8— 7.95 5.52 1.43
×
3
/16 2.10 2.10 0.845 2.39 6
3
/16— 6.35 4.32 1.45
×
1
/8 1.52 1.52 0.871 1.68 6
7
/16— 4.51 3.00 1.47
HSS6×5×
1
/230.8 12.3 1.87 15.2 3
3
/42
3
/4 59.8 23.0 1.70
×
3
/825.5 10.2 1.92 12.2 4
5
/163
5
/1648.1 18.2 1.73
×
5
/1622.3 8.91 1.95 10.5 4
5
/83
5
/8 41.4 15.6 1.75
×
1
/418.7 7.47 1.98 8.72 4
7
/83
7
/8 34.2 12.8 1.77
×
3
/1614.6 5.84 2.01 6.73 5
3
/164
3
/1626.3 9.76 1.78
×
1
/810.2 4.07 2.03 4.63 5
7
/164
7
/1618.0 6.66 1.80
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 85

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–86 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS6×4×
1
/20.465 28.43 7.88 5.60 9.90 34.0 11.3 2.08 14.6
×
3
/80.349 22.37 6.18 8.46 14.2 28.3 9.43 2.14 11.9
×
5
/160.291 19.08 5.26 10.7 17.6 24.8 8.27 2.17 10.3
×
1
/40.233 15.62 4.30 14.2 22.8 20.9 6.96 2.20 8.53
×
3
/160.174 11.97 3.28 20.0 31.5 16.4 5.46 2.23 6.60
×
1
/80.116 8.16 2.23 31.5 48.7 11.4 3.81 2.26 4.56
HSS6×3×
1
/20.465 25.03 6.95 3.45 9.90 26.8 8.95 1.97 12.1
×
3
/80.349 19.82 5.48 5.60 14.2 22.7 7.57 2.04 9.90
×
5
/160.291 16.96 4.68 7.31 17.6 20.1 6.69 2.07 8.61
×
1
/40.233 13.91 3.84 9.88 22.8 17.0 5.66 2.10 7.19
×
3
/160.174 10.70 2.93 14.2 31.5 13.4 4.47 2.14 5.59
×
1
/80.116 7.31 2.00 22.9 48.7 9.43 3.14 2.17 3.87
HSS6×2×
3
/80.349 17.27 4.78 2.73 14.2 17.1 5.71 1.89 7.93
×
5
/160.291 14.83 4.10 3.87 17.6 15.3 5.11 1.93 6.95
×
1
/40.233 12.21 3.37 5.58 22.8 13.1 4.37 1.97 5.84
×
3
/160.174 9.42 2.58 8.49 31.5 10.5 3.49 2.01 4.58
×
1
/80.116 6.46 1.77 14.2 48.7 7.42 2.47 2.05 3.19
HSS5×4×
1
/20.465 25.03 6.95 5.60 7.75 21.2 8.49 1.75 10.9
×
3
/80.349 19.82 5.48 8.46 11.3 17.9 7.17 1.81 8.96
×
5
/160.291 16.96 4.68 10.7 14.2 15.8 6.32 1.84 7.79
×
1
/40.233 13.91 3.84 14.2 18.5 13.4 5.35 1.87 6.49
×
3
/160.174 10.70 2.93 20.0 25.7 10.6 4.22 1.90 5.05
×
1
/80.116 7.31 2.00 31.5 40.1 7.42 2.97 1.93 3.50
HSS5×3×
1
/20.465 21.63 6.02 3.45 7.75 16.4 6.57 1.65 8.83
×
3
/80.349 17.27 4.78 5.60 11.3 14.1 5.65 1.72 7.34
×
5
/160.291 14.83 4.10 7.31 14.2 12.6 5.03 1.75 6.42
×
1
/40.233 12.21 3.37 9.88 18.5 10.7 4.29 1.78 5.38
×
3
/160.174 9.42 2.58 14.2 25.7 8.53 3.41 1.82 4.21
×
1
/80.116 6.46 1.77 22.9 40.1 6.03 2.41 1.85 2.93
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 86

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
IS r
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS6-HSS5
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS6×4×
1
/217.8 8.89 1.50 11.0 3
3
/4— 40.3 17.8 1.53
×
3
/814.9 7.47 1.55 8.94 4
5
/162
5
/1632.8 14.2 1.57
×
5
/1613.2 6.58 1.58 7.75 4
5
/82
5
/8 28.4 12.2 1.58
×
1
/411.1 5.56 1.61 6.45 4
7
/82
7
/8 23.6 10.1 1.60
×
3
/16 8.76 4.38 1.63 5.00 5
3
/163
3
/1618.2 7.74 1.62
×
1
/8 6.15 3.08 1.66 3.46 5
7
/163
7
/1612.6 5.30 1.63
HSS6×3×
1
/2 8.69 5.79 1.12 7.28 3
3
/4— 23.1 12.7 1.37
×
3
/8 7.48 4.99 1.17 6.03 4
5
/16— 19.3 10.3 1.40
×
5
/16 6.67 4.45 1.19 5.27 4
5
/8— 16.9 8.91 1.42
×
1
/4 5.70 3.80 1.22 4.41 4
7
/8— 14.2 7.39 1.43
×
3
/16 4.55 3.03 1.25 3.45 5
3
/162
3
/1611.1 5.71 1.45
×
1
/8 3.23 2.15 1.27 2.40 5
7
/162
7
/16 7.73 3.93 1.47
HSS6×2×
3
/8 2.77 2.77 0.760 3.46 4
5
/16— 8.42 6.35 1.23
×
5
/16 2.52 2.52 0.785 3.07 4
5
/8— 7.60 5.58 1.25
×
1
/4 2.21 2.21 0.810 2.61 4
7
/8— 6.55 4.70 1.27
×
3
/16 1.80 1.80 0.836 2.07 5
3
/16— 5.24 3.68 1.28
×
1
/8 1.31 1.31 0.861 1.46 5
7
/16— 3.72 2.57 1.30
HSS5×4×
1
/214.9 7.43 1.46 9.35 2
3
/4— 30.3 14.5 1.37
×
3
/812.6 6.30 1.52 7.67 3
5
/162
5
/1624.9 11.7 1.40
×
5
/1611.1 5.57 1.54 6.67 3
5
/82
5
/8 21.7 10.1 1.42
×
1
/4 9.46 4.73 1.57 5.57 3
7
/82
7
/8 18.0 8.32 1.43
×
3
/16 7.48 3.74 1.60 4.34 4
3
/163
3
/1614.0 6.41 1.45
×
1
/8 5.27 2.64 1.62 3.01 4
7
/163
7
/16 9.66 4.39 1.47
HSS5×3×
1
/2 7.18 4.78 1.09 6.10 2
3
/4— 17.6 10.3 1.20
×
3
/8 6.25 4.16 1.14 5.10 3
5
/16— 14.9 8.44 1.23
×
5
/16 5.60 3.73 1.17 4.48 3
5
/8— 13.1 7.33 1.25
×
1
/4 4.81 3.21 1.19 3.77 3
7
/8— 11.0 6.10 1.27
×
3
/16 3.85 2.57 1.22 2.96 4
3
/162
3
/16 8.64 4.73 1.28
×
1
/8 2.75 1.83 1.25 2.07 4
7
/162
7
/16 6.02 3.26 1.30
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 87

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–88 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS5×2
1
/2×
1
/40.233 11.36 3.14 7.73 18.5 9.40 3.76 1.73 4.83
×
3
/160.174 8.78 2.41 11.4 25.7 7.51 3.01 1.77 3.79
×
1
/80.116 6.03 1.65 18.6 40.1 5.34 2.14 1.80 2.65
HSS5×2×
3
/80.349 14.72 4.09 2.73 11.3 10.4 4.14 1.59 5.71
×
5
/160.291 12.70 3.52 3.87 14.2 9.35 3.74 1.63 5.05
×
1
/40.233 10.51 2.91 5.58 18.5 8.08 3.23 1.67 4.27
×
3
/160.174 8.15 2.24 8.49 25.7 6.50 2.60 1.70 3.37
×
1
/80.116 5.61 1.54 14.2 40.1 4.65 1.86 1.74 2.37
HSS4×3×
3
/80.349 14.72 4.09 5.60 8.46 7.93 3.97 1.39 5.12
×
5
/160.291 12.70 3.52 7.31 10.7 7.14 3.57 1.42 4.51
×
1
/40.233 10.51 2.91 9.88 14.2 6.15 3.07 1.45 3.81
×
3
/160.174 8.15 2.24 14.2 20.0 4.93 2.47 1.49 3.00
×
1
/80.116 5.61 1.54 22.9 31.5 3.52 1.76 1.52 2.11
HSS4×2
1
/2×
3
/80.349 13.44 3.74 4.16 8.46 6.77 3.38 1.35 4.48
×
5
/160.291 11.64 3.23 5.59 10.7 6.13 3.07 1.38 3.97
×
1
/40.233 9.66 2.67 7.73 14.2 5.32 2.66 1.41 3.38
×
3
/160.174 7.51 2.06 11.4 20.0 4.30 2.15 1.44 2.67
×
1
/80.116 5.18 1.42 18.6 31.5 3.09 1.54 1.47 1.88
HSS4×2×
3
/80.349 12.17 3.39 2.73 8.46 5.60 2.80 1.29 3.84
×
5
/160.291 10.58 2.94 3.87 10.7 5.13 2.56 1.32 3.43
×
1
/40.233 8.81 2.44 5.58 14.2 4.49 2.25 1.36 2.94
×
3
/160.174 6.87 1.89 8.49 20.0 3.66 1.83 1.39 2.34
×
1
/80.116 4.75 1.30 14.2 31.5 2.65 1.32 1.43 1.66
HSS3
1
/2×2
1
/2×
3
/80.349 12.17 3.39 4.16 7.03 4.75 2.72 1.18 3.59
×
5
/160.291 10.58 2.94 5.59 9.03 4.34 2.48 1.22 3.20
×
1
/40.233 8.81 2.44 7.73 12.0 3.79 2.17 1.25 2.74
×
3
/160.174 6.87 1.89 11.4 17.1 3.09 1.76 1.28 2.18
×
1
/80.116 4.75 1.30 18.6 27.2 2.23 1.28 1.31 1.54
HSS3
1
/2×2×
1
/40.233 7.96 2.21 5.58 12.0 3.17 1.81 1.20 2.36
×
3
/160.174 6.23 1.71 8.49 17.1 2.61 1.49 1.23 1.89
×
1
/80.116 4.33 1.19 14.2 27.2 1.90 1.09 1.27 1.34
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 88

Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
—Indicates flat depth or width is too small to establish a workable flat.
HSS5-HSS3
1
/2
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS5×2
1
/2×
1
/4 3.13 2.50 0.999 2.95 3
7
/8— 7.93 4.99 1.18
×
3
/16 2.53 2.03 1.02 2.33 4
3
/16— 6.26 3.89 1.20
×
1
/8 1.82 1.46 1.05 1.64 4
7
/16— 4.40 2.70 1.22
HSS5×2×
3
/8 2.28 2.28 0.748 2.88 3
5
/16— 6.61 5.20 1.07
×
5
/16 2.10 2.10 0.772 2.57 3
5
/8— 5.99 4.59 1.08
×
1
/4 1.84 1.84 0.797 2.20 3
7
/8— 5.17 3.88 1.10
×
3
/16 1.51 1.51 0.823 1.75 4
3
/16— 4.15 3.05 1.12
×
1
/8 1.10 1.10 0.848 1.24 4
7
/16— 2.95 2.13 1.13
HSS4×3×
3
/8 5.01 3.34 1.11 4.18 2
5
/16— 10.6 6.59 1.07
×
5
/16 4.52 3.02 1.13 3.69 2
5
/8— 9.41 5.75 1.08
×
1
/4 3.91 2.61 1.16 3.12 2
7
/8— 7.96 4.81 1.10
×
3
/16 3.16 2.10 1.19 2.46 3
3
/16— 6.26 3.74 1.12
×
1
/8 2.27 1.51 1.21 1.73 3
7
/16— 4.38 2.59 1.13
HSS4×2
1
/2×
3
/8 3.17 2.54 0.922 3.20 2
5
/16— 7.57 5.32 0.983
×
5
/16 2.89 2.32 0.947 2.85 2
5
/8— 6.77 4.67 1.00
×
1
/4 2.53 2.02 0.973 2.43 2
7
/8— 5.78 3.93 1.02
×
3
/16 2.06 1.65 0.999 1.93 3
1
/8— 4.59 3.08 1.03
×
1
/8 1.49 1.19 1.03 1.36 3
7
/16— 3.23 2.14 1.05
HSS4×2×
3
/8 1.80 1.80 0.729 2.31 2
5
/16— 4.83 4.04 0.900
×
5
/16 1.67 1.67 0.754 2.08 2
5
/8— 4.40 3.59 0.917
×
1
/4 1.48 1.48 0.779 1.79 2
7
/8— 3.82 3.05 0.933
×
3
/16 1.22 1.22 0.804 1.43 3
3
/16— 3.08 2.41 0.950
×
1
/8 0.898 0.898 0.830 1.02 3
7
/16— 2.20 1.69 0.967
HSS3
1
/2×2
1
/2×
3
/8 2.77 2.21 0.904 2.82 — — 6.16 4.57 0.900
×
5
/16 2.54 2.03 0.930 2.52 2
1
/8— 5.53 4.03 0.917
×
1
/4 2.23 1.78 0.956 2.16 2
3
/8— 4.75 3.40 0.933
×
3
/16 1.82 1.46 0.983 1.72 2
11
/16— 3.78 2.67 0.950
×
1
/8 1.33 1.06 1.01 1.22 2
15
/16— 2.67 1.87 0.967
HSS3
1
/2×2×
1
/4 1.30 1.30 0.766 1.58 2
3
/8— 3.16 2.64 0.850
×
3
/16 1.08 1.08 0.792 1.27 2
11
/16— 2.55 2.09 0.867
×
1
/8 0.795 0.795 0.818 0.912 2
15
/16— 1.83 1.47 0.883
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 89

HSS3
1
/2×1
1
/2×
1
/40.233 7.11 1.97 3.44 12.0 2.55 1.46 1.14 1.98
×
3
/160.174 5.59 1.54 5.62 17.1 2.12 1.21 1.17 1.60
×
1
/80.116 3.90 1.07 9.93 27.2 1.57 0.896 1.21 1.15
HSS3×2
1
/2×
5
/160.291 9.51 2.64 5.59 7.31 2.92 1.94 1.05 2.51
×
1
/40.233 7.96 2.21 7.73 9.88 2.57 1.72 1.08 2.16
×
3
/160.174 6.23 1.71 11.4 14.2 2.11 1.41 1.11 1.73
×
1
/80.116 4.33 1.19 18.6 22.9 1.54 1.03 1.14 1.23
HSS3×2×
5
/160.291 8.45 2.35 3.87 7.31 2.38 1.59 1.01 2.11
×
1
/40.233 7.11 1.97 5.58 9.88 2.13 1.42 1.04 1.83
×
3
/160.174 5.59 1.54 8.49 14.2 1.77 1.18 1.07 1.48
×
1
/80.116 3.90 1.07 14.2 22.9 1.30 0.867 1.10 1.06
HSS3×1
1
/2×
1
/40.233 6.26 1.74 3.44 9.88 1.68 1.12 0.982 1.51
×
3
/160.174 4.96 1.37 5.62 14.2 1.42 0.945 1.02 1.24
×
1
/80.116 3.48 0.956 9.93 22.9 1.06 0.706 1.05 0.895
HSS3×1×
3
/160.174 4.32 1.19 2.75 14.2 1.07 0.713 0.947 0.989
×
1
/80.116 3.05 0.840 5.62 22.9 0.817 0.545 0.987 0.728
HSS2
1
/2×2×
1
/40.233 6.26 1.74 5.58 7.73 1.33 1.06 0.874 1.37
×
3
/160.174 4.96 1.37 8.49 11.4 1.12 0.894 0.904 1.12
×
1
/80.116 3.48 0.956 14.2 18.6 0.833 0.667 0.934 0.809
HSS2
1
/2×1
1
/2×
1
/40.233 5.41 1.51 3.44 7.73 1.03 0.822 0.826 1.11
×
3
/160.174 4.32 1.19 5.62 11.4 0.882 0.705 0.860 0.915
×
1
/80.116 3.05 0.840 9.93 18.6 0.668 0.535 0.892 0.671
HSS2
1
/2×1×
3
/160.174 3.68 1.02 2.75 11.4 0.646 0.517 0.796 0.713
×
1
/80.116 2.63 0.724 5.62 18.6 0.503 0.403 0.834 0.532
HSS2
1
/4×2×
3
/160.174 4.64 1.28 8.49 9.93 0.859 0.764 0.819 0.952
×
1
/80.116 3.27 0.898 14.2 16.4 0.646 0.574 0.848 0.693
HSS2×1
1
/2×
3
/160.174 3.68 1.02 5.62 8.49 0.495 0.495 0.697 0.639
×
1
/80.116 2.63 0.724 9.93 14.2 0.383 0.383 0.728 0.475
HSS2×1×
3
/160.174 3.04 0.845 2.75 8.49 0.350 0.350 0.643 0.480
×
1
/80.116 2.20 0.608 5.62 14.2 0.280 0.280 0.679 0.366
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nominal
Wt.
Area,
A
ISr
Axis X-X
in. lb/ft in.
2
b/t h/t
in.
4
in.
3
in. in.
3
Z
Note: For compactness criteria, refer to Table 1-12A.
1–90 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 90

HSS3
1
/2×1
1
/2×
1
/4 0.638 0.851 0.569 1.06 2
3
/8— 1.79 1.88 0.767
×
3
/16 0.544 0.725 0.594 0.867 2
11
/16— 1.49 1.51 0.784
×
1
/8 0.411 0.548 0.619 0.630 2
15
/16— 1.09 1.08 0.800
HSS3×2
1
/2×
5
/16 2.18 1.74 0.908 2.20 — — 4.34 3.39 0.833
×
1
/4 1.93 1.54 0.935 1.90 — — 3.74 2.87 0.850
×
3
/16 1.59 1.27 0.963 1.52 2
3
/16— 3.00 2.27 0.867
×
1
/8 1.16 0.931 0.990 1.09 2
7
/16— 2.13 1.59 0.883
HSS3×2×
5
/16 1.24 1.24 0.725 1.58 — — 2.87 2.60 0.750
×
1
/4 1.11 1.11 0.751 1.38 — — 2.52 2.23 0.767
×
3
/16 0.932 0.932 0.778 1.12 2
3
/16— 2.05 1.78 0.784
×
1
/8 0.692 0.692 0.804 0.803 2
7
/16— 1.47 1.25 0.800
HSS3×1
1
/2×
1
/4 0.543 0.725 0.559 0.911 1
7
/8— 1.44 1.58 0.683
×
3
/16 0.467 0.622 0.584 0.752 2
3
/16— 1.21 1.28 0.700
×
1
/8 0.355 0.474 0.610 0.550 2
7
/16— 0.886 0.920 0.717
HSS3×1×
3
/16 0.173 0.345 0.380 0.432 2
3
/16— 0.526 0.792 0.617
×
1
/8 0.138 0.276 0.405 0.325 2
7
/16— 0.408 0.585 0.633
HSS2
1
/2×2×
1
/4 0.930 0.930 0.731 1.17 — — 1.90 1.82 0.683
×
3
/16 0.786 0.786 0.758 0.956 — — 1.55 1.46 0.700
×
1
/8 0.589 0.589 0.785 0.694 — — 1.12 1.04 0.717
HSS2
1
/2×1
1
/2×
1
/4 0.449 0.599 0.546 0.764 — — 1.10 1.29 0.600
×
3
/16 0.390 0.520 0.572 0.636 — — 0.929 1.05 0.617
×
1
/8 0.300 0.399 0.597 0.469 — — 0.687 0.759 0.633
HSS2
1
/2×1×
3
/16 0.143 0.285 0.374 0.360 — — 0.412 0.648 0.534
×
1
/8 0.115 0.230 0.399 0.274 — — 0.322 0.483 0.550
HSS2
1
/4×2×
3
/16 0.713 0.713 0.747 0.877 — — 1.32 1.30 0.659
×
1
/8 0.538 0.538 0.774 0.639 — — 0.957 0.927 0.675
HSS2×1
1
/2×
3
/16 0.313 0.417 0.554 0.521 — — 0.664 0.822 0.534
×
1
/8 0.244 0.325 0.581 0.389 — — 0.496 0.599 0.550
HSS2×1×
3
/16 0.112 0.225 0.365 0.288 — — 0.301 0.505 0.450
×
1
/8 0.0922 0.184 0.390 0.223 — — 0.238 0.380 0.467
Table 1-11 (continued)
Rectangular HSS
Dimensions and Properties
Shape
ISr
Axis Y-Y Torsion
Surface
Area
in.
4
in.
3
in. in.
3
ft
2
/ft
ZJ
in.
4
in.
3
C
— Indicates flat depth or width is too small to establish a workable flat.
HSS3
1
/2-HSS2
Depth
Workable Flat
Width
DIMENSIONS AND PROPERTIES 1–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in. in.
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 91

Table 1-12
Square HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
TorsionWork-
able
Flat
Sur-
face
Area
CJ
in. lb/ft in.
2
b/th/t
in.
4
in.
3
in. in.
3
in. in.
4
in.
3
ft
2
/ft
Z
1–92 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Note: For compactness criteria, refer to Table 1-12A.
HSS16×16×
5
/80.581 127.37 35.0 24.5 24.5 1370 171 6.25 200 13
3
/162170 276 5.17
×
1
/20.465 103.30 28.3 31.4 31.4 1130 141 6.31 164 13
3
/41770 224 5.20
×
3
/80.349 78.52 21.5 42.8 42.8 873 109 6.37 126 14
5
/161350 171 5.23
×
5
/160.291 65.87 18.1 52.0 52.0 739 92.3 6.39 106 14
5
/81140 144 5.25
HSS14×14×
5
/80.581 110.36 30.3 21.1 21.1 897 128 5.44 151 11
3
/161430 208 4.50
×
1
/20.465 89.68 24.6 27.1 27.1 743 106 5.49 124 11
3
/41170 170 4.53
×
3
/80.349 68.31 18.7 37.1 37.1 577 82.5 5.55 95.4 12
5
/16900 130 4.57
×
5
/160.291 57.36 15.7 45.1 45.1 490 69.9 5.58 80.5 12
5
/8759 109 4.58
HSS12×12×
5
/80.581 93.34 25.7 17.7 17.7 548 91.4 4.62 109 9
3
/16885 151 3.83
×
1
/20.465 76.07 20.9 22.8 22.8 457 76.2 4.68 89.6 9
3
/4728 123 3.87
×
3
/80.349 58.10 16.0 31.4 31.4 357 59.5 4.73 69.2 10
5
/16561 94.6 3.90
×
5
/160.291 48.86 13.4 38.2 38.2 304 50.7 4.76 58.6 10
5
/8474 79.7 3.92
×
1
/40.233 39.43 10.8 48.5 48.5 248 41.4 4.79 47.6 10
7
/8384 64.5 3.93
×
3
/160.174 29.84 8.15 66.0 66.0 189 31.5 4.82 36.0 11
3
/16290 48.6 3.95
HSS10×10×
5
/80.581 76.33 21.0 14.2 14.2 304 60.8 3.80 73.2 7
3
/16498 102 3.17
×
1
/20.465 62.46 17.2 18.5 18.5 256 51.2 3.86 60.7 7
3
/4412 84.2 3.20
×
3
/80.349 47.90 13.2 25.7 25.7 202 40.4 3.92 47.2 8
5
/16320 64.8 3.23
×
5
/160.291 40.35 11.1 31.4 31.4 172 34.5 3.94 40.1 8
5
/8271 54.8 3.25
×
1
/40.233 32.63 8.96 39.9 39.9 141 28.3 3.97 32.7 8
7
/8220 44.4 3.27
×
3
/160.174 24.73 6.76 54.5 54.5 108 21.6 4.00 24.8 9
3
/16167 33.6 3.28
HSS9×9×
5
/80.581 67.82 18.7 12.5 12.5 216 47.9 3.40 58.1 6
3
/16356 81.6 2.83
×
1
/20.465 55.66 15.3 16.4 16.4 183 40.6 3.45 48.4 6
3
/4296 67.4 2.87
×
3
/80.349 42.79 11.8 22.8 22.8 145 32.2 3.51 37.8 7
5
/16231 52.1 2.90
×
5
/160.291 36.10 9.92 27.9 27.9 124 27.6 3.54 32.1 7
5
/8196 44.0 2.92
×
1
/40.233 29.23 8.03 35.6 35.6 102 22.7 3.56 26.2 7
7
/8159 35.8 2.93
×
3
/160.174 22.18 6.06 48.7 48.7 78.2 17.4 3.59 20.0 8
3
/16121 27.1 2.95
×
1
/80.116 14.96 4.09 74.6 74.6 53.5 11.9 3.62 13.6 8
7
/1682.0 18.3 2.97
HSS8×8×
5
/80.581 59.32 16.4 10.8 10.8 146 36.5 2.99 44.7 5
3
/16244 63.2 2.50
×
1
/20.465 48.85 13.5 14.2 14.2 125 31.2 3.04 37.5 5
3
/4204 52.4 2.53
×
3
/80.349 37.69 10.4 19.9 19.9 100 24.9 3.10 29.4 6
5
/16160 40.7 2.57
×
5
/160.291 31.84 8.76 24.5 24.5 85.6 21.4 3.13 25.1 6
5
/8136 34.5 2.58
×
1
/40.233 25.82 7.10 31.3 31.3 70.7 17.7 3.15 20.5 6
7
/8111 28.1 2.60
×
3
/160.174 19.63 5.37 43.0 43.0 54.4 13.6 3.18 15.7 7
3
/1684.5 21.3 2.62
×
1
/80.116 13.26 3.62 66.0 66.0 37.4 9.34 3.21 10.7 7
7
/1657.3 14.4 2.63
HSS16-HSS8
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 92

Table 1-12 (continued)
Square HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
TorsionWork-
able
Flat
Sur-
face
Area
CJ
in. lb/ft in.
2
b/th/t
in.
4
in.
3
in. in.
3
in. in.
4
in.
3
ft
2
/ft
Z
Note: For compactness criteria, refer to Table 1-12A.
HSS7-HSS4
1
/2
DIMENSIONS AND PROPERTIES 1–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS7×7×
5
/80.581 50.81 14.0 9.05 9.05 93.4 26.7 2.58 33.1 4
3
/16158 47.1 2.17
×
1
/20.465 42.05 11.6 12.1 12.1 80.5 23.0 2.63 27.9 4
3
/4133 39.3 2.20
×
3
/80.349 32.58 8.97 17.1 17.1 65.0 18.6 2.69 22.1 5
5
/16105 30.7 2.23
×
5
/160.291 27.59 7.59 21.1 21.1 56.1 16.0 2.72 18.9 5
5
/889.7 26.1 2.25
×
1
/40.233 22.42 6.17 27.0 27.0 46.5 13.3 2.75 15.5 5
7
/873.5 21.3 2.27
×
3
/160.174 17.08 4.67 37.2 37.2 36.0 10.3 2.77 11.9 6
3
/1656.1 16.2 2.28
×
1
/80.116 11.56 3.16 57.3 57.3 24.8 7.09 2.80 8.13 6
7
/1638.2 11.0 2.30
HSS6×6×
5
/80.581 42.30 11.7 7.33 7.33 55.2 18.4 2.17 23.2 3
3
/1694.9 33.4 1.83
×
1
/20.465 35.24 9.74 9.90 9.90 48.3 16.1 2.23 19.8 3
3
/481.1 28.1 1.87
×
3
/80.349 27.48 7.58 14.2 14.2 39.5 13.2 2.28 15.8 4
5
/1664.6 22.1 1.90
×
5
/160.291 23.34 6.43 17.6 17.6 34.3 11.4 2.31 13.6 4
5
/855.4 18.9 1.92
×
1
/40.233 19.02 5.24 22.8 22.8 28.6 9.54 2.34 11.2 4
7
/845.6 15.4 1.93
×
3
/160.174 14.53 3.98 31.5 31.5 22.3 7.42 2.37 8.63 5
3
/1635.0 11.8 1.95
×
1
/80.116 9.86 2.70 48.7 48.7 15.5 5.15 2.39 5.92 5
7
/1623.9 8.03 1.97
HSS5
1
/2×5
1
/2×
3
/80.349 24.93 6.88 12.8 12.8 29.7 10.8 2.08 13.1 3
13
/1649.0 18.4 1.73
×
5
/160.291 21.21 5.85 15.9 15.9 25.9 9.43 2.11 11.3 4
1
/842.2 15.7 1.75
×
1
/40.233 17.32 4.77 20.6 20.6 21.7 7.90 2.13 9.32 4
3
/834.8 12.9 1.77
×
3
/160.174 13.25 3.63 28.6 28.6 17.0 6.17 2.16 7.19 4
11
/1626.7 9.85 1.78
×
1
/80.116 9.01 2.46 44.4 44.4 11.8 4.30 2.19 4.95 4
15
/1618.3 6.72 1.80
HSS5×5×
1
/20.465 28.43 7.88 7.75 7.75 26.0 10.4 1.82 13.1 2
3
/444.6 18.7 1.53
×
3
/80.349 22.37 6.18 11.3 11.3 21.7 8.68 1.87 10.6 3
5
/1636.1 14.9 1.57
×
5
/160.291 19.08 5.26 14.2 14.2 19.0 7.62 1.90 9.16 3
5
/831.2 12.8 1.58
×
1
/40.233 15.62 4.30 18.5 18.5 16.0 6.41 1.93 7.61 3
7
/825.8 10.5 1.60
×
3
/160.174 11.97 3.28 25.7 25.7 12.6 5.03 1.96 5.89 4
3
/1619.9 8.08 1.62
×
1
/80.116 8.16 2.23 40.1 40.1 8.80 3.52 1.99 4.07 4
7
/1613.7 5.53 1.63
HSS4
1
/2×4
1
/2×
1
/20.465 25.03 6.95 6.68 6.68 18.1 8.03 1.61 10.2 2
1
/431.3 14.8 1.37
×
3
/80.349 19.82 5.48 9.89 9.89 15.3 6.79 1.67 8.36 2
13
/1625.7 11.9 1.40
×
5
/160.291 16.96 4.68 12.5 12.5 13.5 6.00 1.70 7.27 3
1
/822.3 10.2 1.42
×
1
/40.233 13.91 3.84 16.3 16.3 11.4 5.08 1.73 6.06 3
3
/818.5 8.44 1.43
×
3
/160.174 10.70 2.93 22.9 22.9 9.02 4.01 1.75 4.71 3
11
/1614.4 6.49 1.45
×
1
/80.116 7.31 2.00 35.8 35.8 6.35 2.82 1.78 3.27 3
15
/169.92 4.45 1.47
AISC_PART 01B:14th Ed._ 1/20/11 7:33 AM Page 93

Table 1-12 (continued)
Square HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
TorsionWork-
able
Flat
Sur-
face
Area
CJ
in. lb/ft in.
2
b/th/t
in.
4
in.
3
in. in.
3
in. in.
4
in.
3
ft
2
/ft
Z
Note: For compactness criteria, refer to Table 1-12A.
— Indicates flat depth or width is too small to establish a workable flat.
HSS4-HSS2
1–94 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS4×4×
1
/20.465 21.63 6.02 5.60 5.60 11.9 5.97 1.41 7.70 — 21.0 11.2 1.20
×
3
/80.349 17.27 4.78 8.46 8.46 10.3 5.13 1.47 6.39 2
5
/1617.5 9.14 1.23
×
5
/160.291 14.83 4.10 10.7 10.7 9.14 4.57 1.49 5.59 2
5
/815.3 7.91 1.25
×
1
/40.233 12.21 3.37 14.2 14.2 7.80 3.90 1.52 4.69 2
7
/812.8 6.56 1.27
×
3
/160.174 9.42 2.58 20.0 20.0 6.21 3.10 1.55 3.67 3
3
/1610.0 5.07 1.28
×
1
/80.116 6.46 1.77 31.5 31.5 4.40 2.20 1.58 2.56 3
7
/166.91 3.49 1.30
HSS3
1
/2×3
1
/2×
3
/80.349 14.72 4.09 7.03 7.03 6.49 3.71 1.26 4.69 — 11.2 6.77 1.07
×
5
/160.291 12.70 3.52 9.03 9.03 5.84 3.34 1.29 4.14 2
1
/89.89 5.90 1.08
×
1
/40.233 10.51 2.91 12.0 12.0 5.04 2.88 1.32 3.50 2
3
/88.35 4.92 1.10
×
3
/160.174 8.15 2.24 17.1 17.1 4.05 2.31 1.35 2.76 2
11
/166.56 3.83 1.12
×
1
/80.116 5.61 1.54 27.2 27.2 2.90 1.66 1.37 1.93 2
15
/164.58 2.65 1.13
HSS3×3×
3
/80.349 12.17 3.39 5.60 5.60 3.78 2.52 1.06 3.25 — 6.64 4.74 0.900
×
5
/160.291 10.58 2.94 7.31 7.31 3.45 2.30 1.08 2.90 — 5.94 4.18 0.917
×
1
/40.233 8.81 2.44 9.88 9.88 3.02 2.01 1.11 2.48 — 5.08 3.52 0.933
×
3
/160.174 6.87 1.89 14.2 14.2 2.46 1.64 1.14 1.97 2
3
/164.03 2.76 0.950
×
1
/80.116 4.75 1.30 22.9 22.9 1.78 1.19 1.17 1.40 2
7
/162.84 1.92 0.967
HSS2
1
/2×2
1
/2×
5
/160.291 8.45 2.35 5.59 5.59 1.82 1.46 0.880 1.88 — 3.20 2.74 0.750
×
1
/40.233 7.11 1.97 7.73 7.73 1.63 1.30 0.908 1.63 — 2.79 2.35 0.767
×
3
/160.174 5.59 1.54 11.4 11.4 1.35 1.08 0.937 1.32 — 2.25 1.86 0.784
×
1
/80.116 3.90 1.07 18.6 18.6 0.998 0.799 0.965 0.947 — 1.61 1.31 0.800
HSS2
1
/4×2
1
/4×
1
/40.233 6.26 1.74 6.66 6.66 1.13 1.01 0.806 1.28 — 1.96 1.85 0.683
×
3
/160.174 4.96 1.37 9.93 9.93 0.953 0.847 0.835 1.04 — 1.60 1.48 0.700
×
1
/80.116 3.48 0.956 16.4 16.4 0.712 0.633 0.863 0.755 — 1.15 1.05 0.717
HSS2×2×
1
/40.233 5.41 1.51 5.58 5.58 0.747 0.747 0.704 0.964 — 1.31 1.41 0.600
×
3
/160.174 4.32 1.19 8.49 8.49 0.641 0.641 0.733 0.797 — 1.09 1.14 0.617
×
1
/80.116 3.05 0.840 14.2 14.2 0.486 0.486 0.761 0.584 — 0.796 0.817 0.633
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 94

Table 1-12A
Rectangular and
Square HSS
Compactness Criteria
DIMENSIONS AND PROPERTIES 1–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5
/8 20 18 20 20
1
/2 16 14 20 20
3
/8 12 10 20 20
5
/16 10 9 18 18
1
/4 8 7 14 14
3
/16 6 5 10 10
1
/8 43
1
/2 77
Note: Compactness criteria given for F
y
=46 ksi.
Shear
C
v
= 1.0
up to
compact
up to
compact
up to
nonslender
up to
Flange Width, in.Flange Width, in. Web Height, in. Web Height, in.
Compactness Criteria for Rectangular and Square HSS
FlexureCompression
Nominal
Wall
Thickness, in.
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 95

1–96 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-13
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
Torsion
CJ
in. lb/ft in.
2
D/t
in.
4
in.
3
in. in.
3
in.
4
in.
3
Z
f
Shape exceeds compact limit for flexure with F
y
=42 ksi.
HSS20-HSS10
HSS20×0.500 0.465 104.00 28.5 43.0 1360 136 6.91 177 2720 272
×0.375
f
0.349 78.67 21.5 57.3 1040 104 6.95 135 2080 208
HSS18×0.500 0.465 93.54 25.6 38.7 985 109 6.20 143 1970 219
×0.375
f
0.349 70.66 19.4 51.6 754 83.8 6.24 109 1510 168
HSS16×0.625 0.581 103.00 28.1 27.5 838 105 5.46 138 1680 209
×0.500 0.465 82.85 22.7 34.4 685 85.7 5.49 112 1370 171
×0.438 0.407 72.87 19.9 39.3 606 75.8 5.51 99.0 1210 152
×0.375 0.349 62.64 17.2 45.8 526 65.7 5.53 85.5 1050 131
×0.312
f
0.291 52.32 14.4 55.0 443 55.4 5.55 71.8 886 111
×0.250
f
0.233 42.09 11.5 68.7 359 44.8 5.58 57.9 717 89.7
HSS14×0.625 0.581 89.36 24.5 24.1 552 78.9 4.75 105 1100 158
×0.500 0.465 72.16 19.8 30.1 453 64.8 4.79 85.2 907 130
×0.375 0.349 54.62 15.0 40.1 349 49.8 4.83 65.1 698 100
×0.312 0.291 45.65 12.5 48.1 295 42.1 4.85 54.7 589 84.2
×0.250
f
0.233 36.75 10.1 60.1 239 34.1 4.87 44.2 478 68.2
HSS12.750×0.500 0.465 65.48 17.9 27.4 339 53.2 4.35 70.2 678 106
×0.375 0.349 49.61 13.6 36.5 262 41.0 4.39 53.7 523 82.1
×0.250
f
0.233 33.41 9.16 54.7 180 28.2 4.43 36.5 359 56.3
HSS10.750×0.500 0.465 54.79 15.0 23.1 199 37.0 3.64 49.2 398 74.1
×0.375 0.349 41.59 11.4 30.8 154 28.7 3.68 37.8 309 57.4
×0.250 0.233 28.06 7.70 46.1 106 19.8 3.72 25.8 213 39.6
HSS10×0.625 0.581 62.64 17.2 17.2 191 38.3 3.34 51.6 383 76.6
×0.500 0.465 50.78 13.9 21.5 159 31.7 3.38 42.3 317 63.5
×0.375 0.349 38.58 10.6 28.7 123 24.7 3.41 32.5 247 49.3
×0.312 0.291 32.31 8.88 34.4 105 20.9 3.43 27.4 209 41.9
×0.250 0.233 26.06 7.15 42.9 85.3 17.1 3.45 22.2 171 34.1
×0.188
f
0.174 19.72 5.37 57.5 64.8 13.0 3.47 16.8 130 25.9
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 96

Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
Torsion
CJ
in. lb/ft in.
2
D/t
in.
4
in.
3
in. in.
3
in.
4
in.
3
Z
f
Shape exceeds compact limit for flexure with F
y
=42 ksi.
DIMENSIONS AND PROPERTIES 1–97
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS9.625×0.500 0.465 48.77 13.4 20.7 141 29.2 3.24 39.0 281 58.5
×0.375 0.349 37.08 10.2 27.6 110 22.8 3.28 30.0 219 45.5
×0.312 0.291 31.06 8.53 33.1 93.0 19.3 3.30 25.4 186 38.7
×0.250 0.233 25.06 6.87 41.3 75.9 15.8 3.32 20.6 152 31.5
×0.188
f
0.174 18.97 5.17 55.3 57.7 12.0 3.34 15.5 115 24.0
HSS8.625×0.625 0.581 53.45 14.7 14.8 119 27.7 2.85 37.7 239 55.4
×0.500 0.465 43.43 11.9 18.5 100 23.1 2.89 31.0 199 46.2
×0.375 0.349 33.07 9.07 24.7 77.8 18.0 2.93 23.9 156 36.1
×0.322 0.300 28.58 7.85 28.8 68.1 15.8 2.95 20.8 136 31.6
×0.250 0.233 22.38 6.14 37.0 54.1 12.5 2.97 16.4 108 25.1
×0.188
f
0.174 16.96 4.62 49.6 41.3 9.57 2.99 12.4 82.5 19.1
HSS7.625×0.375 0.349 29.06 7.98 21.8 52.9 13.9 2.58 18.5 106 27.8
×0.328 0.305 25.59 7.01 25.0 47.1 12.3 2.59 16.4 94.1 24.7
HSS7.500×0.500 0.465 37.42 10.3 16.1 63.9 17.0 2.49 23.0 128 34.1
×0.375 0.349 28.56 7.84 21.5 50.2 13.4 2.53 17.9 100 26.8
×0.312 0.291 23.97 6.59 25.8 42.9 11.4 2.55 15.1 85.8 22.9
×0.250 0.233 19.38 5.32 32.2 35.2 9.37 2.57 12.3 70.3 18.7
×0.188 0.174 14.70 4.00 43.1 26.9 7.17 2.59 9.34 53.8 14.3
HSS7×0.500 0.465 34.74 9.55 15.1 51.2 14.6 2.32 19.9 102 29.3
×0.375 0.349 26.56 7.29 20.1 40.4 11.6 2.35 15.5 80.9 23.1
×0.312 0.291 22.31 6.13 24.1 34.6 9.88 2.37 13.1 69.1 19.8
×0.250 0.233 18.04 4.95 30.0 28.4 8.11 2.39 10.7 56.8 16.2
×0.188 0.174 13.69 3.73 40.2 21.7 6.21 2.41 8.11 43.5 12.4
×0.125
f
0.116 9.19 2.51 60.3 14.9 4.25 2.43 5.50 29.7 8.49
HSS6.875×0.500 0.465 34.07 9.36 14.8 48.3 14.1 2.27 19.1 96.7 28.1
×0.375 0.349 26.06 7.16 19.7 38.2 11.1 2.31 14.9 76.4 22.2
×0.312 0.291 21.89 6.02 23.6 32.7 9.51 2.33 12.6 65.4 19.0
×0.250 0.233 17.71 4.86 29.5 26.8 7.81 2.35 10.3 53.7 15.6
×0.188 0.174 13.44 3.66 39.5 20.6 5.99 2.37 7.81 41.1 12.0
HSS9.625-
HSS6.875
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 97

Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
Torsion
CJ
in. lb/ft in.
2
D/t
in.
4
in.
3
in. in.
3
in.
4
in.
3
Z
f
Shape exceeds compact limit for flexure with F
y
=42 ksi.
1–98 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS6.625×0.500 0.465 32.74 9.00 14.2 42.9 13.0 2.18 17.7 85.9 25.9
×0.432 0.402 28.60 7.86 16.5 38.2 11.5 2.20 15.6 76.4 23.1
×0.375 0.349 25.06 6.88 19.0 34.0 10.3 2.22 13.8 68.0 20.5
×0.312 0.291 21.06 5.79 22.8 29.1 8.79 2.24 11.7 58.2 17.6
×0.280 0.260 18.99 5.20 25.5 26.4 7.96 2.25 10.5 52.7 15.9
×0.250 0.233 17.04 4.68 28.4 23.9 7.22 2.26 9.52 47.9 14.4
×0.188 0.174 12.94 3.53 38.1 18.4 5.54 2.28 7.24 36.7 11.1
×0.125
f
0.116 8.69 2.37 57.1 12.6 3.79 2.30 4.92 25.1 7.59
HSS6×0.500 0.465 29.40 8.09 12.9 31.2 10.4 1.96 14.3 62.4 20.8
×0.375 0.349 22.55 6.20 17.2 24.8 8.28 2.00 11.2 49.7 16.6
×0.312 0.291 18.97 5.22 20.6 21.3 7.11 2.02 9.49 42.6 14.2
×0.280 0.260 17.12 4.69 23.1 19.3 6.45 2.03 8.57 38.7 12.9
×0.250 0.233 15.37 4.22 25.8 17.6 5.86 2.04 7.75 35.2 11.7
×0.188 0.174 11.68 3.18 34.5 13.5 4.51 2.06 5.91 27.0 9.02
×0.125
f
0.116 7.85 2.14 51.7 9.28 3.09 2.08 4.02 18.6 6.19
HSS5.563×0.500 0.465 27.06 7.45 12.0 24.4 8.77 1.81 12.1 48.8 17.5
×0.375 0.349 20.80 5.72 15.9 19.5 7.02 1.85 9.50 39.0 14.0
×0.258 0.240 14.63 4.01 23.2 14.2 5.12 1.88 6.80 28.5 10.2
×0.188 0.174 10.80 2.95 32.0 10.7 3.85 1.91 5.05 21.4 7.70
×0.134 0.124 7.78 2.12 44.9 7.84 2.82 1.92 3.67 15.7 5.64
HSS5.500×0.500 0.465 26.73 7.36 11.8 23.5 8.55 1.79 11.8 47.0 17.1
×0.375 0.349 20.55 5.65 15.8 18.8 6.84 1.83 9.27 37.6 13.7
×0.258 0.240 14.46 3.97 22.9 13.7 5.00 1.86 6.64 27.5 10.0
HSS5×0.500 0.465 24.05 6.62 10.8 17.2 6.88 1.61 9.60 34.4 13.8
×0.375 0.349 18.54 5.10 14.3 13.9 5.55 1.65 7.56 27.7 11.1
×0.312 0.291 15.64 4.30 17.2 12.0 4.79 1.67 6.46 24.0 9.58
×0.258 0.240 13.08 3.59 20.8 10.2 4.08 1.69 5.44 20.4 8.15
×0.250 0.233 12.69 3.49 21.5 9.94 3.97 1.69 5.30 19.9 7.95
×0.188 0.174 9.67 2.64 28.7 7.69 3.08 1.71 4.05 15.4 6.15
×0.125 0.116 6.51 1.78 43.1 5.31 2.12 1.73 2.77 10.6 4.25
HSS6.625-
HSS5
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 98

Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
Torsion
CJ
in. lb/ft in.
2
D/t
in.
4
in.
3
in. in.
3
in.
4
in.
3
Z
DIMENSIONS AND PROPERTIES 1–99
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS4.500×0.375 0.349 16.54 4.55 12.9 9.87 4.39 1.47 6.03 19.7 8.78
×0.337 0.313 15.00 4.12 14.4 9.07 4.03 1.48 5.50 18.1 8.06
×0.237 0.220 10.80 2.96 20.5 6.79 3.02 1.52 4.03 13.6 6.04
×0.188 0.174 8.67 2.36 25.9 5.54 2.46 1.53 3.26 11.1 4.93
×0.125 0.116 5.85 1.60 38.8 3.84 1.71 1.55 2.23 7.68 3.41
HSS4×0.313 0.291 12.34 3.39 13.7 5.87 2.93 1.32 4.01 11.7 5.87
×0.250 0.233 10.00 2.76 17.2 4.91 2.45 1.33 3.31 9.82 4.91
×0.237 0.220 9.53 2.61 18.2 4.68 2.34 1.34 3.15 9.36 4.68
×0.226 0.210 9.12 2.50 19.0 4.50 2.25 1.34 3.02 9.01 4.50
×0.220 0.205 8.89 2.44 19.5 4.41 2.21 1.34 2.96 8.83 4.41
×0.188 0.174 7.66 2.09 23.0 3.83 1.92 1.35 2.55 7.67 3.83
×0.125 0.116 5.18 1.42 34.5 2.67 1.34 1.37 1.75 5.34 2.67
HSS3.500×0.313 0.291 10.66 2.93 12.0 3.81 2.18 1.14 3.00 7.61 4.35
×0.300 0.279 10.26 2.82 12.5 3.69 2.11 1.14 2.90 7.38 4.22
×0.250 0.233 8.69 2.39 15.0 3.21 1.83 1.16 2.49 6.41 3.66
×0.216 0.201 7.58 2.08 17.4 2.84 1.63 1.17 2.19 5.69 3.25
×0.203 0.189 7.15 1.97 18.5 2.70 1.54 1.17 2.07 5.41 3.09
×0.188 0.174 6.66 1.82 20.1 2.52 1.44 1.18 1.93 5.04 2.88
×0.125 0.116 4.51 1.23 30.2 1.77 1.01 1.20 1.33 3.53 2.02
HSS3×0.250 0.233 7.35 2.03 12.9 1.95 1.30 0.982 1.79 3.90 2.60
×0.216 0.201 6.43 1.77 14.9 1.74 1.16 0.992 1.58 3.48 2.32
×0.203 0.189 6.07 1.67 15.9 1.66 1.10 0.996 1.50 3.31 2.21
×0.188 0.174 5.65 1.54 17.2 1.55 1.03 1.00 1.39 3.10 2.06
×0.152 0.141 4.63 1.27 21.3 1.30 0.865 1.01 1.15 2.59 1.73
×0.134 0.124 4.11 1.12 24.2 1.16 0.774 1.02 1.03 2.32 1.55
×0.125 0.116 3.84 1.05 25.9 1.09 0.730 1.02 0.965 2.19 1.46
HSS2.875×0.250 0.233 7.02 1.93 12.3 1.70 1.18 0.938 1.63 3.40 2.37
×0.203 0.189 5.80 1.59 15.2 1.45 1.01 0.952 1.37 2.89 2.01
×0.188 0.174 5.40 1.48 16.5 1.35 0.941 0.957 1.27 2.70 1.88
×0.125 0.116 3.67 1.01 24.8 0.958 0.667 0.976 0.884 1.92 1.33
HSS2.500×0.250 0.233 6.01 1.66 10.7 1.08 0.862 0.806 1.20 2.15 1.72
×0.188 0.174 4.65 1.27 14.4 0.865 0.692 0.825 0.943 1.73 1.38
×0.125 0.116 3.17 0.869 21.6 0.619 0.495 0.844 0.660 1.24 0.990
HSS4.500-
HSS2.500
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 99

1–100 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-13 (continued)
Round HSS
Dimensions and Properties
Shape
Design
Wall
Thick-
ness,
t
Nom-
inal
Wt.
Area,
A
ISr
Torsion
CJ
in. lb/ft in.
2
D/t
in.
4
in.
3
in. in.
3
in.
4
in.
3
Z
HSS2.375×0.250 0.233 5.68 1.57 10.2 0.910 0.766 0.762 1.07 1.82 1.53
×0.218 0.203 5.03 1.39 11.7 0.824 0.694 0.771 0.960 1.65 1.39
×0.188 0.174 4.40 1.20 13.6 0.733 0.617 0.781 0.845 1.47 1.23
×0.154 0.143 3.66 1.00 16.6 0.627 0.528 0.791 0.713 1.25 1.06
×0.125 0.116 3.01 0.823 20.5 0.527 0.443 0.800 0.592 1.05 0.887
HSS1.900×0.188 0.174 3.44 0.943 10.9 0.355 0.374 0.613 0.520 0.710 0.747
×0.145 0.135 2.72 0.749 14.1 0.293 0.309 0.626 0.421 0.586 0.617
×0.120 0.111 2.28 0.624 17.1 0.251 0.264 0.634 0.356 0.501 0.527
HSS1.660×0.140 0.130 2.27 0.625 12.8 0.184 0.222 0.543 0.305 0.368 0.444
HSS2.375-
HSS1.660
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 100

Standard Weight (Std.)
Pipe 12 Std. 49.6 12.8 12.0 0.375 0.349 13.7 36.5 262 41.0 4.39 523 53.7
Pipe 10 Std. 40.5 10.8 10.0 0.365 0.340 11.5 31.6 151 28.1 3.68 302 36.9
Pipe 8 Std. 28.6 8.63 7.98 0.322 0.300 7.85 28.8 68.1 15.8 2.95 136 20.8
Pipe 6 Std. 19.0 6.63 6.07 0.280 0.261 5.20 25.4 26.5 7.99 2.25 52.9 10.6
Pipe 5 Std. 14.6 5.56 5.05 0.258 0.241 4.01 23.1 14.3 5.14 1.88 28.6 6.83
Pipe 4 Std. 10.8 4.50 4.03 0.237 0.221 2.96 20.4 6.82 3.03 1.51 13.6 4.05
Pipe 3
1
/2Std. 9.12 4.00 3.55 0.226 0.211 2.50 19.0 4.52 2.26 1.34 9.04 3.03
Pipe 3 Std. 7.58 3.50 3.07 0.216 0.201 2.07 17.4 2.85 1.63 1.17 5.69 2.19
Pipe 2
1
/2Std. 5.80 2.88 2.47 0.203 0.189 1.61 15.2 1.45 1.01 0.952 2.89 1.37
Pipe 2 Std. 3.66 2.38 2.07 0.154 0.143 1.02 16.6 0.627 0.528 0.791 1.25 0.713
Pipe 1
1
/2Std. 2.72 1.90 1.61 0.145 0.135 0.749 14.1 0.293 0.309 0.626 0.586 0.421
Pipe 1
1
/4Std. 2.27 1.66 1.38 0.140 0.130 0.625 12.8 0.184 0.222 0.543 0.368 0.305
Pipe 1 Std. 1.68 1.32 1.05 0.133 0.124 0.469 10.6 0.0830 0.126 0.423 0.166 0.177
Pipe
3
/4Std. 1.13 1.05 0.824 0.113 0.105 0.312 10.0 0.0350 0.0671 0.336 0.0700 0.0942
Pipe
1
/2Std. 0.850 0.840 0.622 0.109 0.101 0.234 8.32 0.0160 0.0388 0.264 0.0320 0.0555
Extra Strong (x-Strong)
Pipe 12 x-Strong 65.5 12.8 11.8 0.500 0.465 17.5 27.4 339 53.2 4.35 678 70.2 Pipe 10 x-Strong 54.8 10.8 9.75 0.500 0.465 15.1 23.1 199 37.0 3.64 398 49.2 Pipe 8 x-Strong 43.4 8.63 7.63 0.500 0.465 11.9 18.5 100 23.1 2.89 199 31.0 Pipe 6 x-Strong 28.6 6.63 5.76 0.432 0.403 7.83 16.4 38.3 11.6 2.20 76.6 15.6 Pipe 5 x-Strong 20.8 5.56 4.81 0.375 0.349 5.73 15.9 19.5 7.02 1.85 39.0 9.50 Pipe 4 x-Strong 15.0 4.50 3.83 0.337 0.315 4.14 14.3 9.12 4.05 1.48 18.2 5.53 Pipe 3
1
/2 x-Strong 12.5 4.00 3.36 0.318 0.296 3.43 13.5 5.94 2.97 1.31 11.9 4.07
Pipe 3 x-Strong 10.3 3.50 2.90 0.300 0.280 2.83 12.5 3.70 2.11 1.14 7.40 2.91
Pipe 2
1
/2 x-Strong 7.67 2.88 2.32 0.276 0.257 2.10 11.2 1.83 1.27 0.930 3.66 1.77
Pipe 2 x-Strong 5.03 2.38 1.94 0.218 0.204 1.40 11.7 0.827 0.696 0.771 1.65 0.964
Pipe 1
1
/2 x-Strong 3.63 1.90 1.50 0.200 0.186 1.00 10.2 0.372 0.392 0.610 0.744 0.549
Pipe 1
1
/4 x-Strong 3.00 1.66 1.28 0.191 0.178 0.837 9.33 0.231 0.278 0.528 0.462 0.393
Pipe 1 x-Strong 2.17 1.32 0.957 0.179 0.166 0.602 7.92 0.101 0.154 0.410 0.202 0.221
Pipe
3
/4 x-Strong 1.48 1.05 0.742 0.154 0.143 0.407 7.34 0.0430 0.0818 0.325 0.0860 0.119
Pipe
1
/2 x-Strong 1.09 0.840 0.546 0.147 0.137 0.303 6.13 0.0190 0.0462 0.253 0.0380 0.0686
Double-Extra Strong (xx-Strong)
Pipe 8 xx-Strong 72.5 8.63 6.88 0.875 0.816 20.0 10.6 154 35.8 2.78 308 49.9 Pipe 6 xx-Strong 53.2 6.63 4.90 0.864 0.805 14.7 8.23 63.5 19.2 2.08 127 27.4 Pipe 5 xx-Strong 38.6 5.56 4.06 0.750 0.699 10.7 7.96 32.2 11.6 1.74 64.4 16.7 Pipe 4 xx-Strong 27.6 4.50 3.15 0.674 0.628 7.66 7.17 14.7 6.53 1.39 29.4 9.50 Pipe 3 xx-Strong 18.6 3.50 2.30 0.600 0.559 5.17 6.26 5.79 3.31 1.06 11.6 4.89 Pipe 2
1
/2 xx-Strong 13.7 2.88 1.77 0.552 0.514 3.83 5.59 2.78 1.94 0.854 5.56 2.91
Pipe 2 xx-Strong 9.04 2.38 1.50 0.436 0.406 2.51 5.85 1.27 1.07 0.711 2.54 1.60
Table 1-14
Pipe
Dimensions and Properties
Shape
Nom-
inal
Wt.
Outside
Dia-
meter
Inside
Dia-
meter
D/t IArea
Dimensions SJZ
lb/ft in. in.
Nominal
Wall
Thick-
nessDesign
Wall
Thick-
ness
in.
4
in.
2
in.in. in.
3
in. in.
4
in.
3
r
PIPE
DIMENSIONS AND PROPERTIES 1–101
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 101

1–102 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-15
Double Angles
Properties
Shape
Area
in.
2
0
3
/8
Axis Y-Y
Separation,
s, in.
LLBB
LLBB
Separation, s, in.
Angles
in
Contact
Angles
Sepa-
rated
SLBB
SLBB
Q
s
r
x
Angles
in
Contact
Angles
Sepa-
rated
Q
s
r
x
Radius of Gyration
0
3
/8
3 /4 in. in.
Note: For compactness criteria, refer to Table 1-7B.
3
/4
2L8×8×1
1
/833.6 3.41 3.54 3.68 3.41 3.54 3.68 1.00 1.00 2.41 1.00 1.00 2.41
×1 30.2 3.39 3.52 3.66 3.39 3.52 3.66 1.00 1.00 2.43 1.00 1.00 2.43
×
7
/826.6 3.36 3.50 3.63 3.36 3.50 3.63 1.00 1.00 2.45 1.00 1.00 2.45
×
3
/423.0 3.34 3.47 3.61 3.34 3.47 3.61 1.00 1.00 2.46 1.00 1.00 2.46
×
5
/819.4 3.32 3.45 3.58 3.32 3.45 3.58 1.00 0.997 2.48 1.00 0.997 2.48
×
9
/1617.5 3.31 3.44 3.57 3.31 3.44 3.57 1.00 0.959 2.49 1.00 0.959 2.49
×
1
/215.7 3.30 3.43 3.56 3.30 3.43 3.56 0.998 0.912 2.49 0.998 0.912 2.49
2L8×6×1 26.2 2.39 2.52 2.66 3.63 3.77 3.91 1.00 1.00 2.49 1.00 1.00 1.72
×
7
/823.0 2.37 2.50 2.63 3.61 3.75 3.89 1.00 1.00 2.50 1.00 1.00 1.74
×
3
/420.0 2.35 2.47 2.61 3.59 3.72 3.86 1.00 1.00 2.52 1.00 1.00 1.75
×
5
/816.8 2.33 2.45 2.59 3.57 3.70 3.84 1.00 0.997 2.54 1.00 0.997 1.77
×
9
/1615.2 2.32 2.44 2.58 3.55 3.69 3.83 1.00 0.959 2.55 1.00 0.959 1.78
×
1
/213.6 2.31 2.43 2.56 3.54 3.68 3.81 1.00 0.912 2.55 0.998 0.912 1.79
×
7
/1612.0 2.30 2.42 2.55 3.53 3.66 3.80 1.00 0.850 2.56 0.938 0.850 1.80
2L8×4×1 22.2 1.46 1.60 1.75 3.94 4.08 4.23 1.00 1.00 2.51 1.00 1.00 1.03
×
7
/819.6 1.44 1.57 1.72 3.91 4.06 4.21 1.00 1.00 2.53 1.00 1.00 1.04
×
3
/417.0 1.42 1.55 1.69 3.89 4.03 4.18 1.00 1.00 2.55 1.00 1.00 1.05
×
5
/814.3 1.39 1.52 1.66 3.86 4.00 4.15 1.00 0.997 2.56 1.00 0.997 1.06
×
9
/1613.0 1.38 1.51 1.65 3.85 3.99 4.13 1.00 0.959 2.57 1.00 0.959 1.07
×
1
/211.6 1.38 1.50 1.63 3.83 3.97 4.12 1.00 0.912 2.58 0.998 0.912 1.08
×
7
/1610.2 1.37 1.49 1.62 3.82 3.96 4.10 1.00 0.850 2.59 0.938 0.850 1.09
2L7×4×
3
/415.5 1.48 1.61 1.75 3.34 3.48 3.63 1.00 1.00 2.21 1.00 1.00 1.08
×
5
/813.0 1.45 1.58 1.73 3.31 3.46 3.60 1.00 1.00 2.23 1.00 1.00 1.10
×
1
/210.5 1.44 1.56 1.70 3.29 3.43 3.57 1.00 0.965 2.25 1.00 0.965 1.11
×
7
/169.26 1.43 1.55 1.68 3.28 3.42 3.56 1.00 0.912 2.26 0.998 0.912 1.12
×
3
/88.00 1.42 1.54 1.67 3.26 3.40 3.54 1.00 0.840 2.27 0.928 0.840 1.12
2L6×6×1 22.0 2.58 2.72 2.86 2.58 2.72 2.86 1.00 1.00 1.79 1.00 1.00 1.79
×
7
/819.5 2.56 2.70 2.84 2.56 2.70 2.84 1.00 1.00 1.81 1.00 1.00 1.81
×
3
/416.9 2.54 2.67 2.81 2.54 2.67 2.81 1.00 1.00 1.82 1.00 1.00 1.82
×
5
/814.3 2.52 2.65 2.79 2.52 2.65 2.79 1.00 1.00 1.84 1.00 1.00 1.84
×
9
/1612.9 2.51 2.64 2.78 2.51 2.64 2.78 1.00 1.00 1.85 1.00 1.00 1.85
×
1
/211.5 2.50 2.63 2.76 2.50 2.63 2.76 1.00 1.00 1.86 1.00 1.00 1.86
×
7
/1610.2 2.49 2.62 2.75 2.49 2.62 2.75 1.00 0.973 1.86 1.00 0.973 1.86
×
3
/88.76 2.48 2.60 2.74 2.48 2.60 2.74 0.998 0.912 1.87 0.998 0.912 1.87
×
5
/167.34 2.47 2.59 2.72 2.47 2.59 2.72 0.914 0.826 1.88 0.914 0.826 1.88
LLBB
SLBB
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 102

DIMENSIONS AND PROPERTIES 1–103
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-15 (continued)
Double Angles
Properties
Shape Area,
A

r
oH
0

r
o
3
/8
Long Legs Vertical
Flexural-Torsional Properties
Back to Back of Angles, in.
Single Angle
Properties
r
z

r
oH in.
2
in.
Note: For compactness criteria, refer to Table 1-7B.
H
3
/4

r
oH
0

r
o
3
/8
Short Legs Vertical
Back to Back of Angles, in.

r
oHH
3
/4
2L8×8×1
1
/84.56 0.837 4.66 0.844 4.77 0.851 4.56 0.837 4.66 0.844 4.77 0.851 16.8 1.56
×1 4.56 0.834 4.66 0.841 4.77 0.848 4.56 0.834 4.66 0.841 4.77 0.848 15.1 1.56
×
7
/84.56 0.831 4.66 0.838 4.76 0.845 4.56 0.831 4.66 0.838 4.76 0.845 13.3 1.57
×
3
/44.56 0.829 4.66 0.836 4.76 0.843 4.56 0.829 4.66 0.836 4.76 0.843 11.5 1.57
×
5
/84.56 0.826 4.66 0.833 4.76 0.840 4.56 0.826 4.66 0.833 4.76 0.840 9.69 1.58
×
9
/164.56 0.825 4.65 0.832 4.75 0.839 4.56 0.825 4.65 0.832 4.75 0.839 8.77 1.58
×
1
/24.56 0.824 4.65 0.831 4.75 0.837 4.56 0.824 4.65 0.831 4.75 0.837 7.84 1.59
2L8×6×1 4.06 0.721 4.14 0.732 4.23 0.742 4.18 0.924 4.30 0.929 4.43 0.933 13.1 1.28
×
7
/84.07 0.718 4.14 0.728 4.23 0.739 4.17 0.922 4.29 0.926 4.42 0.930 11.5 1.28
×
3
/44.07 0.714 4.15 0.725 4.23 0.735 4.17 0.919 4.28 0.924 4.40 0.928 9.99 1.29
×
5
/84.08 0.712 4.16 0.722 4.24 0.732 4.16 0.917 4.27 0.921 4.39 0.926 8.41 1.29
×
9
/164.09 0.710 4.16 0.720 4.24 0.731 4.15 0.916 4.27 0.920 4.39 0.924 7.61 1.30
×
1
/24.09 0.709 4.16 0.719 4.24 0.729 4.15 0.915 4.26 0.919 4.38 0.923 6.80 1.30
×
7
/164.09 0.708 4.16 0.718 4.24 0.728 4.15 0.913 4.26 0.918 4.38 0.922 5.99 1.31
2L8×4×1 3.86 0.568 3.91 0.580 3.97 0.594 4.11 0.983 4.25 0.984 4.39 0.985 11.1 0.844
×
7
/83.87 0.566 3.92 0.577 3.98 0.590 4.09 0.981 4.22 0.982 4.37 0.984 9.79 0.846
×
3
/43.88 0.564 3.93 0.575 3.99 0.587 4.07 0.980 4.20 0.981 4.35 0.983 8.49 0.850
×
5
/83.89 0.562 3.94 0.573 3.99 0.585 4.05 0.979 4.18 0.980 4.32 0.981 7.16 0.856
×
9
/163.90 0.562 3.94 0.572 4.00 0.584 4.04 0.978 4.17 0.980 4.31 0.981 6.49 0.859
×
1
/23.90 0.561 3.95 0.571 4.00 0.583 4.03 0.978 4.16 0.979 4.30 0.980 5.80 0.863
×
7
/163.91 0.561 3.95 0.571 4.00 0.582 4.02 0.977 4.15 0.978 4.29 0.980 5.11 0.867
2L7×4×
3
/43.41 0.611 3.47 0.624 3.53 0.639 3.57 0.969 3.70 0.971 3.84 0.973 7.74 0.855
×
5
/83.42 0.608 3.47 0.621 3.54 0.635 3.55 0.967 3.68 0.969 3.82 0.971 6.50 0.860
×
1
/23.43 0.606 3.48 0.618 3.55 0.632 3.53 0.965 3.66 0.968 3.80 0.970 5.26 0.866
×
7
/163.43 0.605 3.49 0.617 3.55 0.630 3.53 0.964 3.66 0.967 3.79 0.969 4.63 0.869
×
3
/83.44 0.605 3.49 0.616 3.55 0.629 3.52 0.963 3.65 0.966 3.78 0.968 4.00 0.873
2L6×6×1 3.42 0.843 3.53 0.852 3.64 0.861 3.42 0.843 3.53 0.852 3.64 0.861 11.0 1.17
×
7
/83.42 0.839 3.53 0.848 3.63 0.857 3.42 0.839 3.53 0.848 3.63 0.857 9.75 1.17
×
3
/43.42 0.835 3.52 0.844 3.63 0.853 3.42 0.835 3.52 0.844 3.63 0.853 8.46 1.17
×
5
/83.42 0.831 3.52 0.840 3.62 0.849 3.42 0.831 3.52 0.840 3.62 0.849 7.13 1.17
×
9
/163.42 0.829 3.52 0.838 3.62 0.847 3.42 0.829 3.52 0.838 3.62 0.847 6.45 1.18
×
1
/23.42 0.827 3.52 0.836 3.62 0.846 3.42 0.827 3.52 0.836 3.62 0.846 5.77 1.18
×
7
/163.42 0.826 3.52 0.835 3.62 0.844 3.42 0.826 3.52 0.835 3.62 0.844 5.08 1.18
×
3
/83.42 0.824 3.51 0.833 3.61 0.842 3.42 0.824 3.51 0.833 3.61 0.842 4.38 1.19
×
5
/163.42 0.823 3.51 0.832 3.61 0.841 3.42 0.823 3.51 0.832 3.61 0.841 3.67 1.19
2L8-2L6
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 103

Table 1-15 (continued)
Double Angles
Properties
Shape
Area
in.
2
0
3
/8
Axis Y-Y
Separation,
s, in.
LLBB
LLBB
Separation, s, in.
Angles
in
Contact
Angles
Sepa-
rated
SLBB
SLBB
Q
s
r
x
Angles
in
Contact
Angles
Sepa-
rated
Q
s
r
x
Radius of Gyration
0
3
/8
3 /4 in. in.
Note: For compactness criteria, refer to Table 1-7B.
3
/4
1–104 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L6×4×
7
/816.0 1.57 1.71 1.86 2.82 2.96 3.11 1.00 1.00 1.86 1.00 1.00 1.10
×
3
/413.9 1.55 1.68 1.83 2.80 2.94 3.08 1.00 1.00 1.88 1.00 1.00 1.12
×
5
/811.7 1.53 1.66 1.80 2.77 2.91 3.06 1.00 1.00 1.89 1.00 1.00 1.13
×
9
/1610.6 1.52 1.65 1.79 2.76 2.90 3.04 1.00 1.00 1.90 1.00 1.00 1.14
×
1
/29.50 1.51 1.64 1.77 2.75 2.89 3.03 1.00 1.00 1.91 1.00 1.00 1.14
×
7
/168.36 1.50 1.62 1.76 2.74 2.88 3.02 1.00 0.973 1.92 1.00 0.973 1.15
×
3
/87.22 1.49 1.61 1.75 2.73 2.86 3.00 1.00 0.912 1.93 0.998 0.912 1.16
×
5
/166.06 1.48 1.60 1.74 2.72 2.85 2.99 1.00 0.826 1.94 0.914 0.826 1.17
2L6×3
1
/2×
1
/29.00 1.27 1.40 1.54 2.82 2.96 3.11 1.00 1.00 1.92 1.00 1.00 0.968
×
3
/86.88 1.26 1.38 1.52 2.80 2.94 3.08 1.00 0.912 1.93 0.998 0.912 0.984
×
5
/165.78 1.25 1.37 1.50 2.78 2.92 3.06 1.00 0.826 1.94 0.914 0.826 0.991
2L5×5×
7
/816.0 2.16 2.30 2.44 2.16 2.30 2.44 1.00 1.00 1.49 1.00 1.00 1.49
×
3
/414.0 2.13 2.27 2.41 2.13 2.27 2.41 1.00 1.00 1.50 1.00 1.00 1.50
×
5
/811.8 2.11 2.25 2.39 2.11 2.25 2.39 1.00 1.00 1.52 1.00 1.00 1.52
×
1
/29.58 2.09 2.22 2.36 2.09 2.22 2.36 1.00 1.00 1.53 1.00 1.00 1.53
×
7
/168.44 2.08 2.21 2.35 2.08 2.21 2.35 1.00 1.00 1.54 1.00 1.00 1.54
×
3
/87.30 2.07 2.20 2.34 2.07 2.20 2.34 1.00 0.983 1.55 1.00 0.983 1.55
×
5
/166.14 2.06 2.19 2.32 2.06 2.19 2.32 0.998 0.912 1.56 0.998 0.912 1.56
2L5×3
1
/2×
3
/411.7 1.39 1.53 1.68 2.33 2.47 2.62 1.00 1.00 1.55 1.00 1.00 0.974
×
5
/89.86 1.37 1.50 1.65 2.30 2.45 2.59 1.00 1.00 1.56 1.00 1.00 0.987
×
1
/28.00 1.35 1.48 1.62 2.28 2.42 2.57 1.00 1.00 1.58 1.00 1.00 1.00
×
3
/86.10 1.33 1.46 1.59 2.26 2.39 2.54 1.00 0.983 1.59 1.00 0.983 1.02
×
5
/165.12 1.32 1.44 1.58 2.25 2.38 2.52 1.00 0.912 1.60 0.998 0.912 1.02
×
1
/44.14 1.31 1.43 1.57 2.23 2.37 2.51 1.00 0.804 1.61 0.894 0.804 1.03
2L5×3×
1
/27.50 1.11 1.24 1.39 2.35 2.50 2.64 1.00 1.00 1.58 1.00 1.00 0.824
×
7
/166.62 1.10 1.23 1.38 2.34 2.48 2.63 1.00 1.00 1.59 1.00 1.00 0.831
×
3
/85.72 1.09 1.22 1.36 2.33 2.47 2.62 1.00 0.983 1.60 1.00 0.983 0.838
×
5
/164.82 1.08 1.21 1.35 2.32 2.46 2.60 1.00 0.912 1.61 0.998 0.912 0.846
×
1
/43.88 1.07 1.19 1.33 2.30 2.44 2.58 1.00 0.804 1.62 0.894 0.804 0.853
LLBB
SLBB
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 104

Table 1-15 (continued)
Double Angles
Properties
Shape Area,
A

r
oH
0

r
o
3
/8
Long Legs Vertical
Flexural-Torsional Properties
Back to Back of Angles, in.
Single Angle
Properties
r
z

r
oH in.
2
in.
Note: For compactness criteria, refer to Table 1-7B.
H
3
/4

r
oH
0

r
o
3
/8
Short Legs Vertical
Back to Back of Angles, in.

r
oHH
3
/4
DIMENSIONS AND PROPERTIES 1–105
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L6×4×
7
/82.96 0.678 3.04 0.694 3.12 0.710 3.10 0.952 3.23 0.956 3.37 0.959 8.00 0.854
×
3
/42.97 0.673 3.04 0.688 3.12 0.705 3.09 0.949 3.22 0.953 3.35 0.957 6.94 0.856
×
5
/82.98 0.669 3.05 0.684 3.13 0.700 3.08 0.946 3.21 0.950 3.34 0.954 5.86 0.859
×
9
/162.98 0.667 3.05 0.682 3.13 0.697 3.07 0.945 3.20 0.949 3.33 0.953 5.31 0.861
×
1
/22.99 0.665 3.05 0.679 3.13 0.695 3.07 0.943 3.19 0.948 3.32 0.952 4.75 0.864
×
7
/162.99 0.663 3.06 0.678 3.13 0.693 3.06 0.942 3.19 0.946 3.31 0.950 4.18 0.867
×
3
/82.99 0.662 3.06 0.676 3.13 0.691 3.06 0.940 3.18 0.945 3.31 0.949 3.61 0.870
×
5
/163.00 0.661 3.06 0.674 3.13 0.689 3.05 0.939 3.17 0.944 3.30 0.948 3.03 0.874
2L6x3
1
/2×
1
/22.94 0.615 2.99 0.630 3.06 0.646 3.04 0.964 3.17 0.967 3.31 0.969 4.50 0.756
×
3
/82.95 0.613 3.00 0.627 3.07 0.642 3.02 0.962 3.15 0.965 3.29 0.967 3.44 0.763
×
5
/162.95 0.612 3.00 0.625 3.07 0.641 3.02 0.960 3.14 0.964 3.28 0.966 2.89 0.767
2L5×5×
7
/82.85 0.845 2.96 0.856 3.07 0.866 2.85 0.845 2.96 0.856 3.07 0.866 8.00 0.971
×
3
/42.85 0.840 2.95 0.851 3.06 0.861 2.85 0.840 2.95 0.851 3.06 0.861 6.98 0.972
×
5
/82.85 0.835 2.95 0.846 3.06 0.857 2.85 0.835 2.95 0.846 3.06 0.857 5.90 0.975
×
1
/22.85 0.830 2.94 0.842 3.05 0.852 2.85 0.830 2.94 0.842 3.05 0.852 4.79 0.980
×
7
/162.85 0.828 2.94 0.839 3.05 0.850 2.85 0.828 2.94 0.839 3.05 0.850 4.22 0.983
×
3
/82.84 0.826 2.94 0.838 3.04 0.848 2.84 0.826 2.94 0.838 3.04 0.848 3.65 0.986
×
5
/162.84 0.825 2.94 0.836 3.04 0.847 2.84 0.825 2.94 0.836 3.04 0.847 3.07 0.990
2L5x3
1
/2×
3
/42.49 0.699 2.57 0.717 2.66 0.736 2.60 0.943 2.73 0.949 2.86 0.953 5.85 0.744
×
5
/82.49 0.693 2.57 0.711 2.66 0.730 2.59 0.940 2.71 0.945 2.85 0.950 4.93 0.746
×
1
/22.50 0.688 2.58 0.705 2.66 0.724 2.58 0.936 2.70 0.942 2.83 0.947 4.00 0.750
×
3
/82.51 0.683 2.58 0.700 2.66 0.718 2.56 0.933 2.69 0.938 2.81 0.944 3.05 0.755
×
5
/162.51 0.682 2.58 0.698 2.66 0.716 2.56 0.931 2.68 0.937 2.81 0.942 2.56 0.758
×
1
/42.52 0.680 2.58 0.696 2.66 0.714 2.55 0.929 2.67 0.935 2.80 0.941 2.07 0.761
2L5×3×
1
/22.44 0.628 2.51 0.646 2.58 0.667 2.54 0.962 2.68 0.966 2.81 0.969 3.75 0.642
×
7
/162.45 0.626 2.51 0.644 2.58 0.664 2.54 0.961 2.67 0.964 2.80 0.968 3.31 0.644
×
3
/82.45 0.624 2.51 0.642 2.59 0.661 2.53 0.959 2.66 0.963 2.79 0.967 2.86 0.646
×
5
/162.46 0.623 2.52 0.640 2.59 0.659 2.52 0.958 2.65 0.962 2.78 0.965 2.41 0.649
×
1
/42.46 0.622 2.52 0.638 2.59 0.657 2.51 0.957 2.64 0.961 2.77 0.964 1.94 0.652
2L6-2L5
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 105

Table 1-15 (continued)
Double Angles
Properties
Shape
Area
in.
2
0
3
/8
Axis Y-Y
Separation,
s, in.
LLBB
LLBB
Separation, s, in.
Angles
in
Contact
Angles
Sepa-
rated
SLBB
SLBB
Q
s
r
x
Angles
in
Contact
Angles
Sepa-
rated
Q
s
r
x
Radius of Gyration
0
3
/8
3 /4 in. in.
Note: For compactness criteria, refer to Table 1-7B.
3
/4
1–106 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L4×4×
3
/410.9 1.73 1.88 2.03 1.73 1.88 2.03 1.00 1.00 1.18 1.00 1.00 1.18
×
5
/89.22 1.71 1.85 2.00 1.71 1.85 2.00 1.00 1.00 1.20 1.00 1.00 1.20
×
1
/27.50 1.69 1.83 1.97 1.69 1.83 1.97 1.00 1.00 1.21 1.00 1.00 1.21
×
7
/166.60 1.68 1.81 1.96 1.68 1.81 1.96 1.00 1.00 1.22 1.00 1.00 1.22
×
3
/85.72 1.67 1.80 1.94 1.67 1.80 1.94 1.00 1.00 1.23 1.00 1.00 1.23
×
5
/164.80 1.66 1.79 1.93 1.66 1.79 1.93 1.00 0.997 1.24 1.00 0.997 1.24
×
1
/43.86 1.65 1.78 1.91 1.65 1.78 1.91 0.998 0.912 1.25 0.998 0.912 1.25
2L4×3
1
/2×
1
/27.00 1.44 1.57 1.72 1.75 1.89 2.03 1.00 1.00 1.23 1.00 1.00 1.04
×
3
/85.36 1.42 1.55 1.69 1.73 1.86 2.00 1.00 1.00 1.25 1.00 1.00 1.05
×
5
/164.50 1.40 1.53 1.68 1.72 1.85 1.99 1.00 0.997 1.25 1.00 0.997 1.06
×
1
/43.64 1.39 1.52 1.66 1.70 1.83 1.97 1.00 0.912 1.26 0.998 0.912 1.07
2L4×3×
5
/87.98 1.21 1.35 1.50 1.84 1.98 2.13 1.00 1.00 1.23 1.00 1.00 0.845
×
1
/26.50 1.19 1.32 1.47 1.81 1.95 2.10 1.00 1.00 1.24 1.00 1.00 0.858
×
3
/84.98 1.17 1.30 1.44 1.79 1.93 2.07 1.00 1.00 1.26 1.00 1.00 0.873
×
5
/164.18 1.16 1.29 1.43 1.78 1.91 2.06 1.00 0.997 1.27 1.00 0.997 0.880
×
1
/43.38 1.15 1.27 1.41 1.76 1.90 2.04 1.00 0.912 1.27 0.998 0.912 0.887
2L3
1
/2×3
1
/2×
1
/26.50 1.49 1.63 1.77 1.49 1.63 1.77 1.00 1.00 1.05 1.00 1.00 1.05
×
7
/165.78 1.48 1.61 1.76 1.48 1.61 1.76 1.00 1.00 1.06 1.00 1.00 1.06
×
3
/85.00 1.47 1.60 1.74 1.47 1.60 1.74 1.00 1.00 1.07 1.00 1.00 1.07
×
5
/164.20 1.46 1.59 1.73 1.46 1.59 1.73 1.00 1.00 1.08 1.00 1.00 1.08
×
1
/43.40 1.44 1.57 1.72 1.44 1.57 1.72 1.00 0.965 1.09 1.00 0.965 1.09
2L3
1
/2×3×
1
/26.04 1.23 1.37 1.52 1.55 1.69 1.84 1.00 1.00 1.07 1.00 1.00 0.877
×
7
/165.34 1.22 1.36 1.51 1.54 1.67 1.82 1.00 1.00 1.08 1.00 1.00 0.885
×
3
/84.64 1.21 1.35 1.49 1.52 1.66 1.81 1.00 1.00 1.09 1.00 1.00 0.892
×
5
/163.90 1.20 1.33 1.48 1.51 1.65 1.79 1.00 1.00 1.09 1.00 1.00 0.900
×
1
/43.16 1.19 1.32 1.46 1.50 1.63 1.78 1.00 0.965 1.10 1.00 0.965 0.908
2L3
1
/2×2
1
/2×
1
/25.54 0.992 1.13 1.28 1.62 1.76 1.91 1.00 1.00 1.08 1.00 1.00 0.701
×
3
/84.24 0.970 1.11 1.25 1.59 1.73 1.88 1.00 1.00 1.10 1.00 1.00 0.716
×
5
/163.58 0.960 1.09 1.24 1.58 1.72 1.87 1.00 1.00 1.11 1.00 1.00 0.723
×
1
/42.90 0.950 1.08 1.22 1.57 1.70 1.85 1.00 0.965 1.12 1.00 0.965 0.731
LLBB
SLBB
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 106

Table 1-15 (continued)
Double Angles
Properties
Shape Area,
A

r
oH
0

r
o
3
/8
Long Legs Vertical
Flexural-Torsional Properties
Back to Back of Angles, in.
Single Angle
Properties
r
z

r
oH in.
2
in.
Note: For compactness criteria, refer to Table 1-7B.
H
3
/4

r
oH
0

r
o
3
/8
Short Legs Vertical
Back to Back of Angles, in.

r
oHH
3
/4
DIMENSIONS AND PROPERTIES 1–107
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L4×4×
3
/42.28 0.847 2.39 0.861 2.51 0.874 2.28 0.847 2.39 0.861 2.51 0.874 5.44 0.774
×
5
/82.28 0.841 2.39 0.854 2.50 0.868 2.28 0.841 2.39 0.854 2.50 0.868 4.61 0.774
×
1
/22.28 0.834 2.38 0.848 2.49 0.862 2.28 0.834 2.38 0.848 2.49 0.862 3.75 0.776
×
7
/162.28 0.832 2.38 0.846 2.49 0.859 2.28 0.832 2.38 0.846 2.49 0.859 3.30 0.777
×
3
/82.28 0.829 2.38 0.843 2.49 0.856 2.28 0.829 2.38 0.843 2.49 0.856 2.86 0.779
×
5
/162.28 0.826 2.37 0.840 2.48 0.854 2.28 0.826 2.37 0.840 2.48 0.854 2.40 0.781
×
1
/42.28 0.824 2.37 0.838 2.48 0.851 2.28 0.824 2.37 0.838 2.48 0.851 1.93 0.783
2L4×3
1
/2×
1
/22.14 0.784 2.23 0.802 2.33 0.819 2.16 0.882 2.28 0.893 2.40 0.904 3.50 0.716
×
3
/82.14 0.778 2.23 0.795 2.33 0.813 2.16 0.876 2.27 0.888 2.39 0.899 2.68 0.719
×
5
/162.14 0.775 2.23 0.792 2.33 0.810 2.16 0.874 2.26 0.885 2.38 0.896 2.25 0.721
×
1
/42.14 0.773 2.22 0.790 2.32 0.807 2.15 0.871 2.26 0.883 2.37 0.894 1.82 0.723
2L4×3×
5
/82.02 0.728 2.11 0.750 2.21 0.773 2.10 0.930 2.22 0.938 2.36 0.945 3.99 0.631
×
1
/22.02 0.721 2.11 0.743 2.20 0.765 2.09 0.925 2.21 0.933 2.34 0.940 3.25 0.633
×
3
/82.03 0.715 2.11 0.736 2.20 0.757 2.08 0.920 2.20 0.928 2.32 0.936 2.49 0.636
×
5
/162.03 0.712 2.11 0.733 2.20 0.754 2.07 0.918 2.19 0.926 2.32 0.934 2.09 0.638
×
1
/42.03 0.710 2.11 0.730 2.20 0.751 2.06 0.915 2.18 0.924 2.31 0.932 1.69 0.639
2L3
1
/2×3
1
/2×
1
/21.99 0.838 2.10 0.854 2.21 0.869 1.99 0.838 2.10 0.854 2.21 0.869 3.25 0.679
×
7
/161.99 0.835 2.09 0.851 2.21 0.866 1.99 0.835 2.09 0.851 2.21 0.866 2.89 0.681
×
3
/81.99 0.832 2.09 0.848 2.20 0.863 1.99 0.832 2.09 0.848 2.20 0.863 2.50 0.683
×
5
/161.99 0.829 2.09 0.845 2.20 0.860 1.99 0.829 2.09 0.845 2.20 0.860 2.10 0.685
×
1
/41.99 0.826 2.08 0.842 2.19 0.857 1.99 0.826 2.08 0.842 2.19 0.857 1.70 0.688
2L3
1
/2×3×
1
/21.85 0.780 1.94 0.801 2.05 0.822 1.88 0.892 2.00 0.904 2.13 0.915 3.02 0.618
×
7
/161.85 0.776 1.94 0.797 2.05 0.818 1.88 0.889 1.99 0.901 2.12 0.912 2.67 0.620
×
3
/81.85 0.773 1.94 0.794 2.05 0.814 1.88 0.885 1.99 0.898 2.11 0.910 2.32 0.622
×
5
/161.85 0.770 1.94 0.790 2.04 0.811 1.87 0.883 1.98 0.895 2.11 0.907 1.95 0.624
×
1
/41.85 0.767 1.94 0.787 2.04 0.807 1.87 0.880 1.98 0.893 2.10 0.905 1.58 0.628
2L3
1
/2×2
1
/2×
1
/21.75 0.706 1.83 0.732 1.93 0.759 1.82 0.938 1.95 0.946 2.08 0.953 2.77 0.532
×
3
/81.75 0.698 1.83 0.724 1.93 0.750 1.81 0.933 1.93 0.941 2.07 0.949 2.12 0.535
×
5
/161.76 0.695 1.83 0.720 1.92 0.746 1.80 0.930 1.92 0.939 2.06 0.947 1.79 0.538
×
1
/41.76 0.693 1.83 0.717 1.92 0.742 1.80 0.928 1.92 0.937 2.05 0.944 1.45 0.541
2L4-2L3
1
/
2
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 107

Table 1-15 (continued)
Double Angles
Properties
Shape
Area
in.
2
0
3
/8
Axis Y-Y
Separation,
s, in.
LLBB
LLBB
Separation, s, in.
Angles
in
Contact
Angles
Sepa-
rated
SLBB
SLBB
Q
s
r
x
Angles
in
Contact
Angles
Sepa-
rated
Q
s
r
x
Radius of Gyration
0
3
/8
3 /4 in. in.
Note: For compactness criteria, refer to Table 1-7B.
3
/4
1–108 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L3×3×
1
/25.52 1.29 1.43 1.58 1.29 1.43 1.58 1.00 1.00 0.895 1.00 1.00 0.895
×
7
/164.86 1.28 1.42 1.57 1.28 1.42 1.57 1.00 1.00 0.903 1.00 1.00 0.903
×
3
/84.22 1.27 1.41 1.55 1.27 1.41 1.55 1.00 1.00 0.910 1.00 1.00 0.910
×
5
/163.56 1.26 1.39 1.54 1.26 1.39 1.54 1.00 1.00 0.918 1.00 1.00 0.918
×
1
/42.88 1.25 1.38 1.52 1.25 1.38 1.52 1.00 1.00 0.926 1.00 1.00 0.926
×
3
/162.18 1.24 1.37 1.51 1.24 1.37 1.51 0.998 0.912 0.933 0.998 0.912 0.933
2L3×2
1
/2×
1
/25.00 1.04 1.18 1.33 1.35 1.49 1.64 1.00 1.00 0.910 1.00 1.00 0.718
×
7
/164.44 1.02 1.16 1.32 1.34 1.48 1.63 1.00 1.00 0.917 1.00 1.00 0.724
×
3
/83.86 1.01 1.15 1.30 1.32 1.46 1.61 1.00 1.00 0.924 1.00 1.00 0.731
×
5
/163.26 1.00 1.14 1.29 1.31 1.45 1.60 1.00 1.00 0.932 1.00 1.00 0.739
×
1
/42.64 0.991 1.12 1.27 1.30 1.44 1.58 1.00 1.00 0.940 1.00 1.00 0.746
×
3
/162.00 0.980 1.11 1.25 1.29 1.42 1.57 1.00 0.912 0.947 0.998 0.912 0.753
2L3×2×
1
/24.52 0.795 0.940 1.10 1.42 1.56 1.72 1.00 1.00 0.922 1.00 1.00 0.543
×
3
/83.50 0.771 0.911 1.07 1.39 1.54 1.69 1.00 1.00 0.937 1.00 1.00 0.555
×
5
/162.96 0.760 0.897 1.05 1.38 1.52 1.67 1.00 1.00 0.945 1.00 1.00 0.562
×
1
/42.40 0.749 0.883 1.03 1.37 1.51 1.66 1.00 1.00 0.953 1.00 1.00 0.569
×
3
/161.83 0.739 0.869 1.02 1.35 1.49 1.64 1.00 0.912 0.961 0.998 0.912 0.577
2L2
1
/2×2
1
/2×
1
/24.52 1.09 1.23 1.39 1.09 1.23 1.39 1.00 1.00 0.735 1.00 1.00 0.735
×
3
/83.46 1.07 1.21 1.36 1.07 1.21 1.36 1.00 1.00 0.749 1.00 1.00 0.749
×
5
/162.92 1.05 1.19 1.34 1.05 1.19 1.34 1.00 1.00 0.756 1.00 1.00 0.756
×
1
/42.38 1.04 1.18 1.33 1.04 1.18 1.33 1.00 1.00 0.764 1.00 1.00 0.764
×
3
/161.80 1.03 1.17 1.31 1.03 1.17 1.31 1.00 0.983 0.771 1.00 0.983 0.771
2L2
1
/2×2×
3
/83.10 0.815 0.957 1.11 1.13 1.27 1.42 1.00 1.00 0.766 1.00 1.00 0.574
×
5
/162.64 0.804 0.943 1.10 1.12 1.26 1.41 1.00 1.00 0.774 1.00 1.00 0.581
×
1
/42.14 0.794 0.930 1.08 1.10 1.24 1.39 1.00 1.00 0.782 1.00 1.00 0.589
×
3
/161.64 0.784 0.916 1.07 1.09 1.23 1.38 1.00 0.983 0.790 1.00 0.983 0.597
2L2
1
/2×1
1
/2×
1
/41.89 0.554 0.694 0.852 1.17 1.32 1.47 1.00 1.00 0.792 1.00 1.00 0.411
×
3
/161.45 0.543 0.679 0.834 1.16 1.30 1.45 1.00 0.983 0.801 1.00 0.983 0.418
2L2×2×
3
/82.74 0.865 1.01 1.17 0.865 1.01 1.17 1.00 1.00 0.591 1.00 1.00 0.591
×
5
/162.32 0.853 0.996 1.15 0.853 0.996 1.15 1.00 1.00 0.598 1.00 1.00 0.598
×
1
/41.89 0.842 0.982 1.14 0.842 0.982 1.14 1.00 1.00 0.605 1.00 1.00 0.605
×
3
/161.44 0.831 0.967 1.12 0.831 0.967 1.12 1.00 1.00 0.612 1.00 1.00 0.612
×
1
/80.982 0.818 0.951 1.10 0.818 0.951 1.10 0.998 0.912 0.620 0.998 0.912 0.620
LLBB
SLBB
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 108

Table 1-15 (continued)
Double Angles
Properties
Shape Area,
A

r
oH
0

r
o
3
/8
Long Legs Vertical
Flexural-Torsional Properties
Back to Back of Angles, in.
Single Angle
Properties
r
z

r
oH in.
2
in.
Note: For compactness criteria, refer to Table 1-7B.
H
3
/4

r
oH
0

r
o
3
/8
Short Legs Vertical
Back to Back of Angles, in.

r
oHH
3
/4
DIMENSIONS AND PROPERTIES 1–109
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L3×3×
1
/21.71 0.842 1.82 0.861 1.94 0.878 1.71 0.842 1.82 0.861 1.94 0.878 2.76 0.580
×
7
/161.71 0.838 1.82 0.857 1.94 0.874 1.71 0.838 1.82 0.857 1.94 0.874 2.43 0.580
×
3
/81.71 0.834 1.81 0.853 1.93 0.870 1.71 0.834 1.81 0.853 1.93 0.870 2.11 0.581
×
5
/161.71 0.830 1.81 0.849 1.93 0.866 1.71 0.830 1.81 0.849 1.93 0.866 1.78 0.583
×
1
/41.71 0.827 1.81 0.845 1.92 0.863 1.71 0.827 1.81 0.845 1.92 0.863 1.44 0.585
×
3
/161.71 0.823 1.80 0.842 1.91 0.859 1.71 0.823 1.80 0.842 1.91 0.859 1.09 0.586
2L3×2
1
/2×
1
/21.57 0.774 1.66 0.800 1.78 0.824 1.61 0.905 1.73 0.918 1.86 0.929 2.50 0.516
×
7
/161.57 0.769 1.66 0.795 1.77 0.819 1.60 0.901 1.72 0.914 1.85 0.926 2.22 0.516
×
3
/81.57 0.764 1.66 0.790 1.77 0.815 1.60 0.897 1.72 0.911 1.85 0.923 1.93 0.517
×
5
/161.57 0.760 1.66 0.785 1.76 0.810 1.59 0.893 1.71 0.907 1.84 0.920 1.63 0.518
×
1
/41.57 0.756 1.66 0.781 1.76 0.806 1.59 0.890 1.70 0.904 1.83 0.917 1.32 0.520
×
3
/161.57 0.753 1.65 0.778 1.75 0.802 1.58 0.887 1.70 0.901 1.82 0.914 1.00 0.521
2L3×2×
1
/21.47 0.684 1.55 0.717 1.66 0.751 1.55 0.955 1.69 0.962 1.83 0.968 2.26 0.425
×
3
/81.48 0.675 1.55 0.707 1.65 0.739 1.54 0.949 1.67 0.957 1.81 0.963 1.75 0.426
×
5
/161.48 0.671 1.56 0.702 1.65 0.734 1.53 0.946 1.66 0.954 1.80 0.961 1.48 0.428
×
1
/41.48 0.668 1.56 0.698 1.65 0.730 1.52 0.944 1.65 0.952 1.79 0.959 1.20 0.431
×
3
/161.49 0.666 1.55 0.695 1.64 0.726 1.52 0.941 1.64 0.950 1.78 0.957 0.917 0.435
2L2
1
/2×2
1
/2×
1
/21.43 0.850 1.54 0.871 1.67 0.890 1.43 0.850 1.54 0.871 1.67 0.890 2.26 0.481
×
3
/81.42 0.839 1.53 0.861 1.65 0.881 1.42 0.839 1.53 0.861 1.65 0.881 1.73 0.481
×
5
/161.42 0.834 1.53 0.856 1.65 0.876 1.42 0.834 1.53 0.856 1.65 0.876 1.46 0.481
×
1
/41.42 0.829 1.52 0.852 1.64 0.872 1.42 0.829 1.52 0.852 1.64 0.872 1.19 0.482
×
3
/161.42 0.825 1.52 0.847 1.63 0.868 1.42 0.825 1.52 0.847 1.63 0.868 0.901 0.482
2L2
1
/2×2×
3
/81.29 0.754 1.38 0.786 1.49 0.817 1.32 0.913 1.45 0.927 1.59 0.939 1.55 0.419
×
5
/161.29 0.748 1.38 0.781 1.49 0.812 1.32 0.909 1.44 0.923 1.58 0.936 1.32 0.420
×
1
/41.29 0.744 1.38 0.775 1.49 0.806 1.32 0.904 1.43 0.920 1.57 0.933 1.07 0.423
×
3
/161.29 0.740 1.38 0.771 1.48 0.801 1.31 0.901 1.43 0.916 1.56 0.929 0.818 0.426
2L2
1
/2×1
1
/2×
1
/41.22 0.630 1.29 0.669 1.38 0.712 1.27 0.962 1.40 0.969 1.55 0.975 0.947 0.321
×
3
/161.22 0.627 1.29 0.665 1.38 0.706 1.26 0.959 1.39 0.967 1.53 0.973 0.724 0.324
2L2×2×
3
/81.14 0.847 1.25 0.874 1.38 0.897 1.14 0.847 1.25 0.874 1.38 0.897 1.37 0.386
×
5
/161.14 0.841 1.25 0.868 1.37 0.891 1.14 0.841 1.25 0.868 1.37 0.891 1.16 0.386
×
1
/41.13 0.835 1.24 0.862 1.37 0.886 1.13 0.835 1.24 0.862 1.37 0.886 0.944 0.387
×
3
/161.13 0.830 1.24 0.857 1.36 0.882 1.13 0.830 1.24 0.857 1.36 0.882 0.722 0.389
×
1
/81.13 0.826 1.23 0.853 1.35 0.877 1.13 0.826 1.23 0.853 1.35 0.877 0.491 0.391
2L3-2L2
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 109

Table 1-16
2C-Shapes
Properties
Shape
Area, A
in.
2
in.
4
SIZ rS IZ rS IZ r
in.
3
Axis
X-X
r
x
in.
3
in.in. in.
4
in.
3
in.
3
in. in.
4
in.
3
in.
3
in.
Axis Y-Y
Separation,
s, in.
3
/4
3
/80
2C-SHAPES
2C15×50 29.4 40.7 11.0 1.18 23.5 50.5 12.9 1.31 29.0 62.4 15.3 1.46 34.5 5.24
×40 23.6 32.6 9.25 1.18 18.4 40.2 10.9 1.31 22.8 49.6 12.7 1.45 27.2 5.43
×33.9 20.0 28.5 8.38 1.20 15.8 35.1 9.78 1.33 19.5 43.1 11.4 1.47 23.3 5.61
2C12×30 17.6 18.2 5.75 1.02 11.9 23.3 6.94 1.15 15.2 29.6 8.36 1.30 18.5 4.29
×25 14.7 15.6 5.11 1.03 9.89 19.8 6.12 1.16 12.6 25.0 7.32 1.31 15.4 4.43
×20.7 12.2 13.6 4.64 1.06 8.49 17.2 5.51 1.19 10.8 21.7 6.55 1.34 13.0 4.61
2C10×30 17.6 15.3 5.04 0.931 11.4 20.2 6.27 1.07 14.7 26.3 7.73 1.22 18.0 3.43
×25 14.7 12.3 4.25 0.914 9.06 16.2 5.27 1.05 11.8 21.1 6.48 1.20 14.6 3.52
×20 11.7 9.91 3.62 0.918 7.11 13.0 4.44 1.05 9.32 16.9 5.43 1.20 11.5 3.67
×15.3 8.96 8.14 3.13 0.953 5.68 10.6 3.80 1.09 7.36 13.7 4.59 1.23 9.04 3.88
2C9×20 11.7 8.80 3.32 0.866 6.84 11.8 4.15 1.00 9.05 15.6 5.15 1.15 11.2 3.22
×15 8.80 6.86 2.76 0.882 5.17 9.10 3.41 1.02 6.82 12.0 4.19 1.17 8.48 3.40
×13.4 7.88 6.34 2.61 0.897 4.74 8.39 3.20 1.03 6.21 11.0 3.92 1.18 7.69 3.48
2C8×18.75 11.0 7.46 2.95 0.823 6.23 10.2 3.75 0.962 8.29 13.7 4.71 1.11 10.4 2.82
×13.75 8.06 5.51 2.35 0.826 4.48 7.47 2.95 0.962 5.99 10.0 3.68 1.11 7.51 2.99
×11.5 6.74 4.82 2.13 0.846 3.86 6.50 2.66 0.982 5.12 8.66 3.29 1.13 6.38 3.11
2C7×14.75 8.66 5.18 2.25 0.773 4.61 7.21 2.90 0.912 6.23 9.85 3.68 1.07 7.85 2.51
×12.25 7.18 4.30 1.96 0.773 3.78 5.97 2.51 0.911 5.13 8.14 3.17 1.06 6.48 2.59
×9.8 5.74 3.59 1.72 0.791 3.11 4.95 2.17 0.929 4.18 6.72 2.73 1.08 5.26 2.72
2C6×13 7.64 4.11 1.91 0.734 3.92 5.85 2.50 0.876 5.35 8.13 3.21 1.03 6.77 2.13
×10.5 6.14 3.26 1.60 0.728 3.08 4.63 2.08 0.867 4.24 6.43 2.67 1.02 5.39 2.22
×8.2 4.78 2.63 1.37 0.741 2.45 3.72 1.76 0.881 3.34 5.14 2.24 1.04 4.24 2.34
2C5×9 5.28 2.45 1.30 0.682 2.52 3.59 1.73 0.824 3.51 5.09 2.25 0.982 4.50 1.84
×6.7 3.94 1.86 1.06 0.688 1.91 2.71 1.40 0.831 2.65 3.84 1.81 0.989 3.83 1.95
2C4×7.25 4.26 1.75 1.02 0.641 1.96 2.63 1.38 0.786 2.75 3.81 1.82 0.946 3.55 1.47
×6.25 3.54 1.36 0.824 0.620 1.54 2.06 1.12 0.763 2.20 3.01 1.49 0.922 2.87 1.50
×5.4 3.16 1.29 0.812 0.637 1.44 1.94 1.10 0.783 2.04 2.82 1.44 0.943 2.63 1.56
×4.5 2.76 1.25 0.789 0.673 1.36 1.86 1.05 0.820 1.88 2.66 1.36 0.981 2.40 1.63
2C3×6 3.52 1.33 0.833 0.614 1.60 2.06 1.15 0.764 2.26 3.03 1.54 0.927 2.92 1.09
×5 2.94 1.05 0.699 0.597 1.29 1.63 0.969 0.746 1.84 2.43 1.30 0.909 2.39 1.12
×4.1 2.40 0.842 0.597 0.591 1.05 1.32 0.827 0.741 1.50 1.97 1.10 0.905 1.95 1.18
×3.5 2.18 0.766 0.558 0.593 0.966 1.20 0.772 0.743 1.37 1.80 1.03 0.908 1.78 1.20
1–110 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 110

Table 1-17
2MC-Shapes
Properties
Shape
Area, A
in.
2
in.
4
SIZ rS IZ rS IZ r
in.
3
Axis
X-X
r
x
in.
3
in.in. in.
4
in.
3
in.
3
in. in.
4
in.
3
in.
3
in.
Axis Y-Y
Separation,
s, in.
3
/4
3
/80
DIMENSIONS AND PROPERTIES 1–111
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2MC18-2MC7
2MC18×58 34.2 60.6 14.4 1.33 29.5 72.8 16.6 1.46 35.9 87.5 19.1 1.60 42.3 6.29
×51.9 30.6 55.0 13.4 1.34 26.3 65.9 15.4 1.47 32.0 79.0 17.6 1.61 37.7 6.41
×45.8 27.0 50.1 12.5 1.36 23.4 59.8 14.3 1.49 28.4 71.4 16.3 1.63 33.5 6.55
×42.7 25.2 47.8 12.1 1.38 22.1 57.0 13.8 1.51 26.8 67.9 15.7 1.64 31.6 6.64
2MC13×50 29.4 60.7 13.8 1.44 28.6 72.5 15.8 1.57 34.1 86.3 18.0 1.71 39.7 4.62
×40 23.4 49.1 11.7 1.45 22.7 58.4 13.4 1.58 27.2 69.4 15.2 1.72 31.6 4.82
×35 20.6 44.3 10.9 1.47 20.2 52.6 12.3 1.60 24.1 62.3 14.0 1.74 27.9 4.95
×31.8 18.7 41.5 10.4 1.49 18.7 49.2 11.7 1.62 22.2 58.2 13.3 1.76 25.7 5.05
2MC12×50 29.4 67.2 16.2 1.51 30.9 79.8 18.5 1.65 36.4 94.5 20.9 1.79 41.9 4.28
×45 26.4 59.9 14.9 1.51 27.5 71.1 16.9 1.64 32.4 84.1 19.2 1.79 37.4 4.36
×40 23.6 53.7 13.8 1.51 24.5 63.7 15.6 1.65 29.0 75.3 17.7 1.79 33.4 4.46
×35 20.6 48.0 12.7 1.53 21.6 56.8 14.4 1.66 25.5 67.1 16.2 1.81 29.4 4.59
×31 18.2 44.0 12.0 1.55 19.7 52.1 13.5 1.69 23.1 61.4 15.2 1.83 26.5 4.71
2MC12×14.3 8.36 3.19 1.50 0.618 3.15 4.66 2.02 0.747 4.72 6.73 2.70 0.897 6.29 4.27
2MC12×10.6
c
6.20 1.21 0.804 0.441 1.67 2.05 1.21 0.575 2.83 3.33 1.78 0.733 3.99 4.22
2MC10×41.1 24.2 60.0 13.9 1.58 26.4 70.7 15.7 1.71 30.9 83.1 17.7 1.85 35.5 3.61
×33.6 19.7 49.5 12.1 1.58 21.5 58.2 13.6 1.72 25.2 68.3 15.3 1.86 28.9 3.75
×28.5 16.7 43.5 11.0 1.61 18.7 51.1 12.3 1.75 21.9 59.8 13.8 1.89 25.0 3.89
2MC10×25 14.7 27.8 8.18 1.38 14.0 33.6 9.36 1.51 16.8 40.4 10.7 1.66 19.5 3.87
×22 12.9 25.4 7.67 1.40 12.8 30.7 8.76 1.54 15.2 36.8 10.0 1.69 17.6 3.99
2MC10×8.4
c
4.92 1.05 0.700 0.462 1.40 1.75 1.03 0.596 2.32 2.79 1.49 0.753 3.24 3.61
×6.5
c
3.90 0.414 0.354 0.326 0.757 0.835 0.615 0.463 1.49 1.53 0.990 0.626 2.22 3.43
2MC9×25.4 14.9 29.2 8.34 1.40 14.5 35.2 9.53 1.53 17.3 42.2 10.9 1.68 20.1 3.43
×23.9 14.0 27.8 8.05 1.41 13.8 33.4 9.19 1.54 16.4 40.1 10.5 1.69 19.0 3.48
2MC8×22.8 13.4 27.7 7.91 1.44 13.5 33.2 9.01 1.58 16.0 39.7 10.2 1.72 18.6 3.09
×21.4 12.6 26.3 7.63 1.45 12.8 31.6 8.68 1.59 15.2 37.7 9.86 1.73 17.5 3.13
2MC8×20 11.7 17.1 5.66 1.21 9.88 21.2 6.61 1.34 12.1 26.2 7.70 1.49 14.3 3.04
×18.7 11.0 16.2 5.45 1.21 9.34 20.1 6.35 1.35 11.4 24.8 7.39 1.50 13.5 3.09
2MC8×8.5 5.00 2.16 1.15 0.658 2.14 3.14 1.52 0.793 3.08 4.47 1.99 0.946 4.02 3.05
2MC7×22.7 13.3 29.0 8.06 1.47 13.9 34.7 9.16 1.61 16.4 41.3 10.4 1.76 18.9 2.67
×19.1 11.2 25.1 7.27 1.50 12.1 30.0 8.25 1.64 14.2 35.7 9.34 1.78 16.3 2.77
c
Shape is slender for compression with F
y
=36 ksi.
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 111

Table 1-17 (continued)
2MC-Shapes
Properties
Shape
Area, A
in.
2
in.
4
SIZ rS IZ rS IZ r
in.
3
Axis
X-X
r
x
in.
3
in.in. in.
4
in.
3
in.
3
in. in.
4
in.
3
in.
3
in.
Axis Y-Y
Separation,
s, in.
3
/4
3
/80
2MC6 -2MC3
1–112 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2MC6×18 10.6 25.0 7.13 1.54 11.8 29.8 8.07 1.68 13.8 35.3 9.11 1.83 15.8 2.37
×15.3 8.98 19.7 5.63 1.48 9.43 23.6 6.39 1.62 11.1 28.1 7.24 1.77 12.8 2.38
2MC6×16.3 9.58 15.8 5.26 1.28 8.88 19.4 6.10 1.42 10.7 23.8 7.05 1.58 12.5 2.33
×15.1 8.88 14.8 5.02 1.29 8.35 18.2 5.82 1.43 10.0 22.3 6.71 1.58 11.7 2.37
2MC6×12 7.06 7.21 2.89 1.01 4.97 9.32 3.47 1.15 6.29 11.9 4.15 1.30 7.62 2.30
2MC6×7 4.18 2.25 1.20 0.734 2.09 3.19 1.55 0.873 2.88 4.41 1.96 1.03 3.66 2.34
×6.5 3.90 2.15 1.16 0.744 2.00 3.04 1.49 0.883 2.73 4.20 1.89 1.04 3.46 2.38
2MC4×13.8 8.06 10.1 4.03 1.12 6.84 12.9 4.81 1.27 8.35 16.3 5.68 1.42 9.87 1.48
2MC3×7.1 4.22 3.13 1.62 0.862 2.76 4.31 2.03 1.01 3.55 5.79 2.50 1.17 4.34 1.14
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 112

DIMENSIONS AND PROPERTIES 1–113
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-18
Weights of Raised-Pattern
Floor Plates
Gauge No.
Wt.,
lb/ft
2
Nominal
Thickness,
in.
Wt.,
lb/ft
2
Nominal
Thickness,
in.
Wt.,
lb/ft
2
Note: Thickness is measured near the edge of the plate, exclusive of raised pattern.
18 2.40
1
/8 6.16
1
/2 21.5
16 3.00
3
/16 8.71
9
/16 24.0
14 3.75
1
/4 11.3
5
/8 26.6
13 4.50
5
/16 13.8
3
/4 31.7
12 5.25
3
/8 16.4
7
/8 36.8
7
/16 18.9 1 41.9
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 113

1–114 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-19
W-Shapes with
Cap Channels
Properties
W-Shape Channel
Total
Wt.
Total
Area I
Axis X-X
r
lb/ft in.
2
in.
4
in.
3
in.
3
in.
Note: Compactness criteria not addressed in this table.
W36×150 MC18 ×42.7 193 56.8 12000 553 831 14.6
C15×33.9 184 54.2 11500 546 764 14.6
W33×141 MC18 ×42.7 184 54.1 10000 490 750 13.6
C15×33.9 175 51.5 9580 484 689 13.6
W33×118 MC18 ×42.7 161 47.2 8280 400 656 13.2
C15×33.9 152 44.6 7900 395 596 13.3
W30×116 MC18 ×42.7 159 46.8 6900 365 598 12.1
C15×33.9 150 44.1 6590 360 544 12.2
W30×99 MC18 ×42.7 142 41.6 5830 304 533 11.8
C15×33.9 133 39.0 5550 300 481 11.9
W27×94 C15 ×33.9 128 37.6 4530 268 435 11.0
W27×84 C15 ×33.9 118 34.7 4050 237 403 10.8
W24×84 C15 ×33.9 118 34.7 3340 217 367 9.82
C12×20.7 105 30.8 3030 211 302 9.92
W24×68 C15 ×33.9 102 30.0 2710 173 321 9.51
C12×20.7 88.7 26.1 2440 168 258 9.67
W21×68 C15 ×33.9 102 30.0 2180 156 287 8.52
C12×20.7 88.7 26.1 1970 152 232 8.67
W21×62 C15 ×33.9 95.9 28.2 2000 142 272 8.41
C12×20.7 82.7 24.3 1800 138 218 8.59
W18×50 C15 ×33.9 83.9 24.6 1250 100 211 7.12
C12×20.7 70.7 20.7 1120 97.3 166 7.35
W16×36 C15 ×33.9 69.9 20.5 748 64.5 160 6.04
C12×20.7 56.7 16.6 670 62.8 123 6.34
W14×30 C12
×20.7 50.7 14.9 447 46.7 98.1 5.47
C10×15.3 45.3 13.3 420 46.0 84.5 5.61
W12×26 C12 ×20.7 46.7 13.7 318 36.8 82.1 4.81
C10×15.3 41.3 12.1 299 36.3 70.5 4.96
S
1=
I

y
1
S
2=
I

y
2
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 114

DIMENSIONS AND PROPERTIES 1–115
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-19 (continued)
W-Shapes with
Cap Channels
Properties
W-Shape Channel IS
Axis Y-YAxis X-X
Z
in. in.
3
in. in. in.
3
in.
4
in. in.
3
ry1 y
2 y
pZ
Note: Compactness criteria not addressed in this table.
W36×150 MC18 ×42.7 21.8 14.5 738 28.0 824 91.5 3.81 146
C15×33.9 21.1 15.1 716 25.9 584 77.9 3.28 122
W33×141 MC18 ×42.7 20.4 13.3 652 27.0 800 88.9 3.85 142
C15×33.9 19.8 13.9 635 24.9 561 74.8 3.30 118
W33×118 MC18 ×42.7 20.7 12.6 544 27.8 741 82.3 3.96 126
C15×33.9 20.0 13.3 529 25.5 502 66.9 3.35 102
W30×116 MC18 ×42.7 18.9 11.5 492 26.1 718 79.8 3.92 124
C15×33.9 18.3 12.1 480 23.8 479 63.8 3.29 100
W30×99 MC18 ×42.7 19.2 10.9 412 26.4 682 75.8 4.05 114
C15×33.9 18.5 11.5 408 24.4 442 59.0 3.37 89.4
W27×94 C15 ×33.9 16.9 10.4 357 23.6 439 58.5 3.41 89.6
W27×84 C15 ×33.9 17.1 10.0 316 23.9 420 56.0 3.48 83.9
W24×84 C15 ×33.9 15.4 9.10 286 21.6 409 54.5 3.43 83.4
C12×20.7 14.3 10.0 275 18.5 223 37.2 2.69 58.2
W24×68 C15 ×33.9 15.7 8.46 232 21.7 385 51.3 3.58 75.3
C12×20.7 14.5 9.49 224 19.2 199 33.2 2.76 50.1
W21×68 C15 ×33.9 13.9 7.59 207 19.3 379 50.6 3.56 75.1
C12×20.7 12.9 8.49 200 17.6 194 32.3 2.72 50.0
W21×62 C15 ×33.9 14.1 7.33 189 19.4 372 49.6 3.63 72.5
C12×20.7 13.0 8.26 183 18.1 186 31.1 2.77 47.3
W18×50 C15 ×33.9 12.5 5.92 133 16.9 354 47.3 3.79 67.3
C12×20.7 11.5 6.76 127 16.1 169 28.2 2.85 42.2
W16×36 C15 ×33.9 11.6 4.67 86.8 15.2 339 45.2 4.06 61.6
C12×20.7 10.7 5.47 83.2 14.6 153 25.6 3.04 36.4
W14×30 C12
×20.7 9.57 4.55 62.0 12.9 149 24.8 3.16 34.6
C10×15.3 9.11 4.97 60.3 12.6 86.8 17.4 2.55 24.9
W12×26 C12 ×20.7 8.63 3.87 48.2 11.6 146 24.4 3.27 33.7
C10×15.3 8.22 4.24 47.0 11.3 84.5 16.9 2.64 24.1
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 115

1–116 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-20
S-Shapes with
Cap Channels
Properties
S-Shape Channel
Total
Wt.
Total
Area I
Axis X-X
r
lb/ft in.
2
in.
4
in.
3
in.
3
in.
S
2=
I

y
2
S
1=
I

y
1
Note: Compactness criteria not addressed in this table.
S24×80 C12 ×20.7 101 29.5 2750 191 278 9.66
C10×15.3 95.3 27.9 2610 188 252 9.67
S20×66 C12 ×20.7 86.7 25.5 1620 132 202 7.97
C10×15.3 81.3 23.9 1530 129 181 8.00
S15×42.9 C10 ×15.3 58.2 17.1 615 65.7 105 6.00
C8×11.5 54.4 16.0 583 64.7 93.9 6.04
S12×31.8 C10 ×15.3 47.1 13.8 314 40.2 71.2 4.77
C8×11.5 43.3 12.7 297 39.6 63.0 4.84
S10×25.4 C10 ×15.3 40.7 11.9 185 27.5 52.7 3.94
C8×11.5 36.9 10.8 175 27.1 46.3 4.02
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 116

DIMENSIONS AND PROPERTIES 1–117
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-20 (continued)
S-Shapes with
Cap Channels
Properties
S-Shape Channel IS
Axis Y-YAxis X-X
Z
in. in.
3
in. in. in.
3
in.
4
in. in.
3
ry1 y
2 y
pZ
Note: Compactness criteria not addressed in this table.
S24×80 C12 ×20.7 14.4 9.90 256 18.1 171 28.5 2.41 46.4
C10×15.3 13.9 10.4 246 16.5 109 21.8 1.98 36.8
S20×66 C12 ×20.7 12.3 7.99 180 16.0 156 26.1 2.48 41.0
C10×15.3 11.8 8.44 173 14.4 94.7 18.9 1.99 31.3
S15×42.9 C10 ×15.3 9.37 5.87 87.6 12.8 81.5 16.3 2.18 25.0
C8×11.5 9.01 6.21 86.5 11.6 46.8 11.7 1.71 18.7
S12×31.8 C10 ×15.3 7.82 4.42 54.0 10.6 76.5 15.3 2.36 22.3
C8×11.5 7.50 4.72 52.4 10.3 41.8 10.5 1.82 16.1
S10×25.4 C10 ×15.3 6.73 3.51 37.2 9.03 73.9 14.8 2.49 20.9
C8×11.5 6.45 3.77 36.1 8.82 39.2 9.81 1.90 14.6
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 117

Table 1-21
Crane Rails
Dimensions and Properties
1–118 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TYPE ASTM A759 ASCE
Classification
Wt.
Gage,
g
Depth,
d
Head WebBase
rcnmb
lb/yd in.in. in. in. in. in. in.
30 3
1
/81
25
/643
1
/8
17/32
11/641
11
/1612
21
/641
23
/3212 3.00 4.10 2.55 — —
40 3
1
/21
71
/1283
1
/2
5/8
7/321
7
/812
25
/641
55
/6412 3.94 6.54 3.59 3.89 1.68
50 3
7
/81
23
/323
7
/8
11/16
1/42
1
/812
7
/162
1
/1612 4.90 10.1 5.10 — 1.88
60 4
1
/41
115
/1284
1
/4
49/64
9/322
3
/812
31
/642
17
/6412 5.93 14.6 6.64 7.12 2.05
70 4
5
/82
3
/644
5
/8
13/16
9/322
7
/1612
33
/642
15
/3212 6.81 19.7 8.19 8.87 2.22
80 5 2
3
/165
7
/8
19/642
1
/212
35
/642
5
/812 7.86 26.4 10.1 11.1 2.38
85 5
3
/162
17
/645
3
/16
57/64
19/642
9
/1612
9
/162
3
/412 8.33 30.1 11.1 12.2 2.47
100 5
3
/42
65
/1285
3
/4
31/32
5/162
3
/412
9
/162
5
/6412 9.84 44.0 14.6 16.1 2.73
104 5 2
7
/1651
1
/16
1/22
1
/212 1 2
7
/163
1
/210.3 29.8 10.7 13.5 2.21
135 5
3
/42
15
/325
3
/161
1
/16
15/323
7
/1614 1
1
/42
13
/1612 13.3 50.8 17.3 18.1 2.81
171 6 2
5
/861
1
/4
5/84.3 Flat 1
1
/42
3
/4Vert. 16.8 73.4 24.5 24.4 3.01
175 6 2
21
/3261
9
/64
1/24
1
/418 1
1
/23
7
/64Vert. 17.1 70.5 23.4 23.6 2.98
Light Std. Crane
ASCE CRANE RAILS
ASTM PROFILE 135
ASTM PROFILE 175ASTM PROFILE 171
ASTM PROFILE 104
Rht
Axis X-X
y
Base
Head
l
S
Area
in.
2
in.in. in. in.
4
in.
3
in.
3
in.

AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 118

Permissible Cross-Sectional Variations
Over Under Over Under
To 12, incl.
1
/8
1 /8
1 /4
3 /16
1 /4
3 /16
1 /4
Over 12
1
/8
1 /8
1 /4
3 /16
5 /16
3 /16
1 /4
Permissible Variations in Length
Variations from Specified Length for Lengths Given, in.
Nominal Depth
b
, in. 30 ft and Under Over 30 ft
Over Under Over Under
Beams 24 in. and under
3
/8
3 /8
3
/8plus
1
/16for each additional
3
/85 ft or fraction thereof
Beams over 24 in.
1
/2
1 /2
1
/2plus
1
/16for each additional 5 ft or
1
/2
All columns fraction thereof
Mill Straightness Tolerances
c
Sizes Length
Permissible Variation in Straightness, in.
Camber Sweep
Flange width equal to
or greater than 6 in.
All
Flange width less
than 6 in.
All
Certain sections with a
flange width approx.
45 ft and under
equal to depth &
specified on order
Over 45 ft
as columns
d
Other Permissible Rolling Variations
Area and Weight −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weight
e
Ends Out of Square
1
/64in., per in. of depth, or of flange width if it is greater than the depth
a
Variation of
5
/16in. max. for sections over 426 lb/ft.
b
For shapes specified in the order for use as bearing piles, the permitted variations are plus 5 in. and minus 0 in.
c
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured
as illustrated in Figure 1-1.
d
Applies only to W8×31and heavier, W10×49 and heavier, W12×65 and heavier, W14×90 and heavier, HP8×36, HP10×57, HP12×74
and heavier, and HP14×102 and heavier. If other sections are specified on the order as columns, the tolerance will be subject to
negotiation with the manufacturer.
e
For shapes with a nominal weight ≥100 lb/ft, the permitted variation is ±2.5% from the theoretical or specified amount.
DIMENSIONS AND PROPERTIES 1–119
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-22
ASTM A6 Tolerances for W-Shapes
and HP-Shapes
Nominal
Depth, in.
A
Depth at Web Centerline, in.
B
Flange Width, in.
T+ T′
Flanges Out
of Square,
Max. in.
E
a
Web Off
Center, in.
C, Max.
Depth at any
Cross-Section
over Theoretical
Depth, in.
3
/8in. + [
1
/8in. × ]
1
/8in. × with
3
/8in. max.
1
/8in. ×
(total length, ft)
10
(total length, ft)
10
(total length, ft – 45)
10
1
/8in. ×
(total length, ft)
10
1
/8in. ×
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 119

1–120 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 1-1. Positions for measuring straightness.
W-Shapes S- and M-Shapes
Channels Angles Tees
AISC_PART 01B:14th Ed._ 1/20/11 7:34 AM Page 120

Table 1-23
ASTM A6 Tolerances for S-Shapes,
M-Shapes and Channels
DIMENSIONS AND PROPERTIES 1–121
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Permissible Cross-Sectional Variations
Over Under Over Under
3 to 7, incl.
3
/32
1 /16
1 /8
1 /8
Over 7 to 14,
incl.
1
/8
3 /32
5 /32
5 /32 1
/32
3 /16
Over 14 to 24,
incl.
3
/
16
1
/
8
3
/
16
3
/
16
3 to 7, incl.
3
/32
1 /16
1 /8
1 /8
Over 7 to 14,
incl.
1
/8
3 /32
1 /8
5 /32
1 /32

Over 14
3
/16
1 /8
1 /8
3 /16
Permissible Variations in Length
Variations from Specified Length for Lengths Given
c
, in.
5 to 10 ft, 10 to 20 ft, 20 to 30 ft, Over 30 to Over 40 to
excl. excl. incl. 40 ft, incl. 65 ft, incl. Over 65 ft
All 1 1
1
/2 1
3
/4 2
1
/4 2
3
/4 —
Mill Straightness Tolerances
d
Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are
subject to negotiation between the manufacturer and purchaser for the individual sections
involved.
Other Permissible Rolling Variations
Area and Weight −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weight
e
Ends Out of Square S-Shapes, M-Shapes and Channels
1
/64in., per in. of depth
— Indicates that there is no requirement.
a
Ais measured at center line of web for S-shapes and M-shapes and at back of web for channels.
b
T+T′applies when flanges of channels are toed in or out.
c
The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft.
d
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated in Figure 1-1.
e
For shapes with a nominal weight ≥100 lb/ft, the permitted variation is ±2.5% from the theoretical or specified amount.
Shape
Nominal
Depth, in.
B
Flange Width, in.
A
a
Depth, in.
T+ T′
b
Flanges Out
of Square,
per in. of
B, in.
E
Web Off
Center, in.
*Back of square and centerline of web to be parallel when measuring “out-of-square”
S shapes and
M shapes
Channels
Shape
Camber
Sweep
1
/8in. ×
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 121

1–122 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-24
ASTM A6 Tolerances for WT-,
MT- and ST-Shapes
Permissible Variations in Depth
Dimension A may be approximately one-half beam depth or any dimension resulting from off-center splitting or
splitting on two lines, as specified in the order.
Specified Depth, A, in. Variations in Depth A, Over and Under
To 6, excl.
1
/8
6 to 16, excl.
3
/16
16 to 20, excl.
1
/4
20 to 24, excl.
5
/16
24 and over
3
/8
The above variations in depths of tees include the permissible variations in depth for the beams before splitting
Mill Straightness Tolerances
a
Camber and Sweep
Other Permissible Rolling Variations
Other permissible variations in cross section as well as permissible variations in length, area, weight,
ends out-of-square, and sweep for WTs will correspond to those of the beam before splitting.
— Indicates that there is no requirement.
a
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated in Figure 1-1. For tolerance on induced camber and sweep, see AISC
Code of Standard Practice
Section 6.4.4.
1
/8in. ×
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 122

DIMENSIONS AND PROPERTIES 1–123
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-25
ASTM A6 Tolerances for Angles,
3 in. and Larger
Permissible Cross-Sectional Variations
B
T
Shape
Nominal Leg
Leg Size, in.
Out of Square
Size
a
, in. per in. of B, in.
Over Under
3 to 4, incl.
1
/8
3 /32
3 /128
b
Angles Over 4 to 6, incl.
1
/8
1 /8
Over 6
3
/16
1 /8
Permissible Variations in Length
Variations Over Specified Length for Lengths Given
c
, in.
5 to 10 ft, excl. 10 to 20 ft, excl. 20 to 30 ft, incl. Over 30 to 40 ft, incl. Over 40 to 65 ft, incl.
11
1
/2 1
3
/4 2
1
/4 2
3
/4
Mill Straightness Tolerances
d
Camber
Sweep
Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are subject
to negotiation between the manufacturer and purchaser for the individual sections involved.
Other Permissible Rolling Variations
Area and Weight −2.5 to +3.0% from the theoretical cross-sectional area or the specified nominal weight
Ends Out of Square
3
/128in. per in. of leg length, or 1
1
/2°. Variations based
on the longer leg of unequal angle.
a
For unequal leg angles, longer leg determines classification.
b3
/128in. per in. =1
1
/2°
c
The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft.
d
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill, measured
as illustrated in Figure 1-1.
, applied to either leg
1
/8in. ×
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 123

1–124 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-26
ASTM A6 Tolerances for Angles,
< 3 in.
Permissible Cross-Sectional Variations
Variations in Thickness for Thicknesses Given,
BT
Specified Leg
Over and Under, in.
Leg Size, Out of Square
Size
a
, in. Over and Under, per Inch of B,
3
/16and Under Over
3
/16to
3
/8incl. Over
3
/8
in. in.
1 and Under 0.008 0.010 —
1
/32
Over 1 to 2, incl. 0.010 0.010 0.012
3
/64
3 /128
b
Over 2 to 3, excl. 0.012 0.015 0.015
1
/16
Permissible Variations in Length
Variations Over Specified Length for Lengths Given
c
, in.
Section 5 to 10 ft, 10 to 20 ft, 20 to 30 ft, Over 30 to 40 ft, 40 to 65 ft,
excl. excl. incl. incl. incl.
All bar-size angles
5
/8 11
1
/2 22
1
/2
Mill Straightness Tolerances
d
Camber
Sweep
Due to the extreme variations in flexibility of these shapes, permitted variations for sweep are
subject to negotiation between the manufacturer and purchaser for the individual sections involved.
Other Permissible Rolling Variations
Ends Out of
3
/128in. per in. of leg length, or 1
1
/2°. Variations based on
Square the longer leg of unequal angle.
— Indicates that there is no requirement.
a
For unequal angles, longer leg determines classification.
b3
/128in. per in. =1
1
/2°
c
The permitted variation under the specified length is 0 in. for all lengths. There are no requirements for lengths over 65 ft.
d
The tolerances herein are taken from ASTM A6 and apply to the straightness of members received from the rolling mill,
measured as illustrated in Figure 1-1.
1
/4in. in any 5 ft, or
1
/4in. ×
, applied to either leg
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 124

DIMENSIONS AND PROPERTIES 1–125
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 1-27
Tolerances for Rectangular
and Square HSS
ASTM A500, ASTM A501, ASTM A618 and ASTM A847
The outside dimensions, measured across the flats at positions at least 2 in. from either end, shall not
vary from the specified dimensions by more than the applicable amount given in the following table:
Largest Outside Dimension Permissible Variation Over and
Outside Dimensions
Across Flats, in. Under Specified Dimensions
a,b
, in.
2
1
/2and under 0.020
Over 2
1
/2to 3
1
/2, incl. 0.025
Over 3
1
/2to 5
1
/2, incl. 0.030
Over 5
1
/2 1%
c
HSS are commonly produced in random lengths, in multiple lengths, and in specific lengths. When specific
lengths are ordered for HSS, the length tolerances shall be in accordance with the following table:
Length tolerance for specific lengths, in.
Length
22 ft and under Over 22 ft
f
Over Under Over Under
1
/2
1 /4
3 /4
1 /4
Wall Thickness
ASTM A500 and ASTM A847 only: The tolerance for wall thickness exclusive of the weld area shall be
plus and minus 10% of the nominal wall thickness specified. The wall thickness is to be measured at
the center of the flat.
Weight
ASTM A501 only: The weight of HSS, as specified in ASTM A501 Tables 3 and 4, shall not be less than
the specified value by more than 3.5%.
Mass ASTM A618 only: The mass shall not be less than the specified value by more than 3.5%.
StraightnessThe permissible variation for straightness shall be
1
/8in. times the number of ft of total length divided by 5.
Squareness of SidesAdjacent sides may deviate from 90° by a tolerance of ± 2° maximum.
Radius of CornersThe radius of any outside corner of the section shall not exceed 3 times the specified wall thickness
d
.
The tolerances for twist with respect to axial alignment of the section shall be as shown in the
following table:
Specified Dimension of Longer Side, in. Maximum Twist per 3 ft of length, in.
1
1
/2and under 0.050
Over 1
1
/2to 2
1
/2, incl. 0.062
Over 2
1
/2to 4, incl. 0.075
Over 4 to 6, incl. 0.087
Over 6 to 8, incl. 0.100
Over 8 0.112
Twist shall be determined by holding one end of the HSS down on a flat surface plate, measuring the
height that each corner on the bottom side of the tubing extends above the surface plate near the
opposite end of the HSS, and calculating the difference in the measured heights of such corners
e
.
a
The respective outside dimension tolerances include the allowances for convexity and concavity.
b
ASTM A500 and ASTM A847 HSS only: The tolerances given are for the large flat dimension only. For HSS having a ratio of outside
large to small flat dimension less than 1.5, the tolerance on the small flat dimesion shall be identical to those given. For HSS
having a ratio of outside large to small flat dimension in the range of 1.5 to 3.0 inclusive, the tolerance on the small flat dimesion
shall be 1.5 times those given. For HSS having a ratio of outside large to small flat dimension greater than 3.0, the tolerance on
the small flat dimension shall be 2.0 times those given.
c
This value is 0.01 times the large flat dimension. ASTM A501 only: Over 5
1
/2to 10 incl., this value is 0.01 times large flat
dimension; over 10, this value is 0.02 times the large flat dimension.
d
ASTM A501 HSS only: The radius of any outside corner must not exceed 3 times the calculated nominal wall thickness.
e
ASTM A500, ASTM A501, and ASTM A847 HSS only: For heavier sections it shall be permissible to use a suitable measuring
device to determine twist. Twist measurements shall not be taken within 2 in. of the ends of the HSS.
f
ASTM A501 and A618: The upper limit on specific length is 44 ft.
Twist
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 125

Table 1-28
Tolerances for Round HSS
and Pipe
ASTM A53
Weight
The weight as specified in ASTM A53 Table X2.2 and Table X2.3 or as calculated from the relevant
equation in ASME B36.10M shall not vary by more than ± 10%. Note that the weight tolerance is
determined from the weights of the customary lifts of pipe as produced for shipment by the mill, divided
by the number of ft of pipe in the lift. On pipe sizes over 4 in. where individual lengths may be weighed,
the weight tolerance is applicable to the individual length.
Diameter
For pipe 2 in. and over in nominal diameter, the outside diameter shall not vary more than ±1% from
the outside diameter specified.
Thickness
The minimum wall thickness at any point shall not be more than 12.5% under the nominal wall
thickness specified.
ASTM A500 and ASTM A847
Diameter
a
For HSS 1.900 in. and under in specified diameter, the outside diameter shall not vary more than
±0.5%, rounded to the nearest 0.005 in., from the specified diameter.
For HSS 2.000 in. and over in specified diameter, the outside diameter shall not vary more than
±0.75%, rounded to the nearest 0.005 in., from the specified diameter.
Thickness
The wall thickness at any point, excluding the weld seam of welded tubing, shall not be more than
10% under or over the specified wall thickness.
ASTM A501 and ASTM A618
Outside Dimensions
For HSS 1
1
/2in. and under in nominal size, the outside diameter shall not vary more than
1
/64in.
over nor more than
1
/32in. under the specified diameter.
For round hot-formed HSS 2 in. and over in nominal size, the outside diameter shall not vary more than
±1% from the specified diameter.
Weight The weight of HSS, as specified in ASTM A501 Table 5, shall not be less than the specified value by
(A501 only) more than 3.5%.
Mass
The mass of HSS shall not be less than the specified value by more than 3.5%. The mass tolerance
(A618 only)
shall be determined from individual lengths or, for HSS 4
1
/2in. and under in outside diameter, shall
be determined from masses of customary lifts produced by the mill.
ASTM A500, ASTM A501, ASTM A618 and ASTM A847
HSS are commonly produced in random mill lengths, in multiple lengths, and in specific lengths. When
specific lengths are ordered for HSS, the length tolerances shall be in accordance with the following table:
Length
Length tolerance for specific cut lengths, in.
22 ft and under Over 22 ft
b
Over Under Over Under
1
/2
1 /4
3 /4
1 /4
Straightness
The permissible variation for straightness of HSS shall be
1
/8in. times the number of ft of total length
divided by 5.
a
The outside diameter measurements shall be taken at least 2 in. from the end of the HSS.
b
ASTM A501 and A618: The upper limit and specific length is 44 ft.
1–126 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 126

Variations from Flatness for Specified Widths, in.
Specified
To 36, 36 to 48, 48 to 60, 60 to 72, 72 to 84, 84 to 96, 96 to 108, 108 to 120,Thickness,
excl. excl. excl. excl. excl. excl. excl. excl.in.
To
1
/4, excl.
9
/16
3 /4
15 /16 1
1
/4 1
3
/8 1
1
/2 1
5
/8 1
3
/4
1
/4to
3
/8,
1
/2
5 /8
3 /4
15 /16 1
1
/8 1
1
/4 1
3
/8 1
1
/2
excl.
3
/8to
1
/2,
1
/2
9 /16
5 /8
5 /8
3 /4
7 /8 11
1
/8
excl.
1
/2to
3
/4,
7
/16
1 /2
9 /16
5 /8
5 /8
3 /4 11
excl.
3
/4to 1,
7
/16
1 /2
9 /16
5 /8
5 /8
5 /8
3 /4
7 /8
excl.
1 to 2,
3
/8
1 /2
1 /2
9 /16
9 /16
5 /8
5 /8
5 /8
excl.
2 to 4,
5
/16
3 /8
7 /16
1 /2
1 /2
1 /2
1 /2
9 /16
excl.
4 to 6,
3
/8
7 /16
1 /2
1 /2
9 /16
9 /16
5 /8
3 /4
excl.
6 to 8,
7
/16
1 /2
1 /2
5 /8
11 /16
3 /4
7 /8
7 /8
excl.
Notes:
1. The longer dimension specified is considered the length, and permissible variations in flatness along the length shall not exceed the
tabular amount for the specified width for plates up to 12 ft in length, or in any 12 ft for longer plates.
2. The flatness variations across the width shall not exceed the tabular amount for the specified width.
3. When the longer dimension is under 36 in., the permissible variation shall not exceed
1
/4in. When the longer dimension is from 36 to 72 in.,
inclusive, the permissible variation should not exceed 75% of the tabular amount for the specified width, but in no case less than
1
/4in.
4. These variations apply to plates which have a specified minimum tensile strength of not more than 60 ksi or comparable chemistry or
hardness. The limits in the table are increased 50% for plates specified to a higher minimum tensile strength or comparable chemistry
or hardness.
5. For plates 8 in. and over in thickness or 120 in. and over in width, see ASTM A6 Table 13.
6. Plates must be in a horizontal position on a flat surface when flatness is measured.
Permissible Variations in Camber
a
for Carbon Steel Sheared and Gas Cut Rectangular Plates
Maximum permissible camber, in. (all thicknesses) =
Permissible Variations in in Camber
a
for High-Strength Low-Alloy and Alloy Steel Sheared,
Special-Cut, or Gas-Cut Rectangular Plates
Specified Dimension, in.
Permitted Camber,
in.
Thickness Width
To 2, incl. All
Over 2 to 15, incl.
To 30, incl.
Over 30 to 60, incl.
a
Camber as it relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the flat position.
Table 1-29
Rectangular Plates
DIMENSIONS AND PROPERTIES 1–127
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Permissible Variations from Flatness(Carbon Steel Only)
1
/8in. ×
(total length, ft)
5
1
/8in. ×
(total length, ft)
5
1
/4in. ×
(total length, ft)
5
3
/16in. ×
(total length, ft)
5
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 127

1–128 DIMENSIONS AND PROPERTIES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 01B:14th Ed._ 1/20/11 7:35 AM Page 128

2–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 2
GENERAL DESIGN CONSIDERATIONS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
APPLICABLE SPECIFICATIONS, CODES AND STANDARDS . . . . . . . . . . . . . . . . 2–4
Specifications, Codes and Standards for Structural Steel Buildings . . . . . . . . . . . . . 2–4
Additional Requirements for Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . 2–4
Other AISC Reference Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
OSHA REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
Columns and Column Base Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
Safety Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
Beams and Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
Cantilevers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–7
Joists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
Walking/Working Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
Controlling Contractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
USING THE 2010 AISC SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
Load and Resistance Factor Design (LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
Allowable Strength Design (ASD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
DESIGN FUNDAMENTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
Loads, Load Factors and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
Load and Resistance Factor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
Allowable Strength Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
Superposition of Loads in Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
Nominal Strengths, Resistance Factors, Safety Factors and
Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
Progressive Collapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
Required Strength, Stability, Effective Length, and Second-Order Effects . . . . . . 2–14
Simplified Determination of Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
Table 2-1. Multipliers for Use With the Simplified Method . . . . . . . . . . . . . . . . 2–17
STABILITY BRACING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
Simple-Span Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
AISC_Part 02:14th Ed._ 4/1/11 8:43 AM Page 1

2–2 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Beam Ends Supported on Bearing Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
Beams and Girders Framing Continuously Over Columns . . . . . . . . . . . . . . . . . . . 2–19
PROPERLY SPECIFYING MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Material Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Other Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Anchor rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Raised-Pattern Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
Sheet and Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Filler Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Open-Web Steel Joists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Castellated Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Forged Steel Structural Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Crane Rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
CONTRACT DOCUMENT INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–27
Design Drawings, Specifications and Other Contract Documents . . . . . . . . . . . . . 2–27
Required Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
Information Required Only When Specified . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–28
Approvals Required . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
Establishing Criteria for Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–29
Simple Shear Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30
Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
Horizontal and Vertical Bracing Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
Strut and Tie Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
CONSTRUCTABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
TOLERANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33
Mill Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33
Fabrication Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33
Erection Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33
Building Façade Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–34
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 2

GENERAL DESIGN CONSIDERATIONS 2–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . . . . . . 2–36
CAMBERING, CURVING AND STRAIGHTENING . . . . . . . . . . . . . . . . . . . . . . . . 2–37
Beam Camber and Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37
Cold Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37
Hot Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37
Truss Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38
Straightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2–38
FIRE PROTECTION AND ENGINEERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38
CORROSION PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38
RENOVATION AND RETROFIT OF EXISTING STRUCTURES . . . . . . . . . . . . . . 2–38
THERMAL EFFECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39
Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39
Elevated-Temperature Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40
FATIGUE AND FRACTURE CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40
Avoiding Brittle Fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40
Avoiding Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
WIND AND SEISMIC DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
Wind and Low-Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
High-Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
PART 2 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–44
TABLES FOR THE GENERAL DESIGN AND SPECIFICATION
OF MATERIALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47
Table 2-2. Summary Comparison of Methods for
Stability Analysis and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47
Table 2-3. AISI Standard Nomenclature for Flat-Rolled Carbon Steel . . . . . . . . . . 2–47
Table 2-4. Applicable ASTM Specifications for Various Structural Shapes . . . . . . 2–48
Table 2-5. Applicable ASTM Specifications for Plate and Bars . . . . . . . . . . . . . . . 2–49
Table 2-6. Applicable ASTM Specifications for Various Types of
Structural Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–50
Table 2-7. Metal Fastener Compatibility to Resist Corrosion . . . . . . . . . . . . . . . . . 2–51
Table 2-8. Summary of Surface Preparation Specifications . . . . . . . . . . . . . . . . . . 2–52
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 3

2–4 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply in general to the design and construction of steel buildings. The specifications, codes
and standards listed below are referenced throughout this manual.
APPLICABLE SPECIFICATIONS, CODES AND STANDARDS
Specifications, Codes and Standards for Structural Steel
Buildings
Subject to the requirements in the applicable building code and the contract documents, the
design, fabrication and erection of structural steel buildings is governed as indicated in the
AISC Specification Sections A1 and B2 as follows:
1. ASCE/SEI 7: Minimum Design Loads for Buildings and Other Structures, ASCE/
SEI 7-10 (ASCE, 2010). Available from the American Society of Civil Engineers,
ASCE/SEI 7 provides the general requirements for loads, load factors and load
combinations.
2. AISC Specification: The 2010 AISC Specification for Structural Steel Buildings(ANSI/
AISC 360-10), included in Part 16 of this Manual and available at www.aisc.org,
provides the general requirements for design and construction (AISC, 2010a).
3. AISC Code of Standard Practice: The 2010 AISC Code of Standard Practice for Steel
Buildings and Bridges(AISC, 2010c) included in Part 16 of this manual and available
at www.aisc.org, provides the standard of custom and usage for the fabrication and
erection of structural steel.
Other referenced standards include:
1. RCSC Specification: The 2009 RCSC Specification for Structural Joints Using
High-Strength Bolts, reprinted in Part 16 of this Manual with the permission of the
Research Council on Structural Connections and available at www.boltcouncil.org,
provides the additional requirements specific to bolted joints with high-strength bolts
(RCSC, 2009).
2. AWS D1.1: Structural Welding Code – Steel, AWS D1.1:2010 (AWS, 2010). Available
from the American Welding Society, AWS D1.1 provides additional requirements spe-
cific to welded joints. Requirements for the proper specification of welds can be found
in AWS A2.4: Standard Symbols for Welding, Brazing, and Nondestructive Examination
(AWS, 2007).
3. ACI 318: Building Code Requirements for Structural Concrete and Commentary
(ACI, 2008). Available from the American Concrete Institute, ACI 318 provides addi-
tional requirements for reinforced concrete, including composite design and the design
of steel-to-concrete anchorage.
Various other specifications and standards from ASME, ASTM and ACI are also referenced
in AISC SpecificationSection A2.
Additional Requirements for Seismic Applications
The 2010 AISC Seismic Provisions for Structural Steel Buildings (AISC, 2010b) apply as
indicated in Section A1.1 of the 2010 AISC Specification and in the Scope provided at the
front of this Manual. The AISC Seismic Provisions are available at www.aisc.org.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 4

APPLICABLE SPECIFICATIONS, CODES, AND STANDARDS 2–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Other AISC Reference Documents
The following other AISC publications may be of use in the design and construction of
structural steel buildings:
1. AISC Detailing for Steel Construction, Third Edition, covers the standard practices
and recommendations for steel detailing, including preparation of shop and erection
drawings (AISC, 2009).
2. The AISC Seismic Design Manual(AISC, 2006) provides guidance on steel design
in seismic applications, in accordance with the 2005 AISC Seismic Provisions for
Structural Steel Buildings.
3. The AISC Design Examplesis a web-based companion to this Manual and can be
found at www.aisc.org(AISC, 2011). It includes design examples outlining the appli-
cation of design aids and AISC Specificationprovisions developed in coordination
with this Manual.
Additionally, the following AISC Design Guides are available at www.aisc.orgfor in-depth
coverage of specific topics in steel design:
1.Base Plate and Anchor Rod Design, Design Guide 1 (Fisher and Kloiber, 2006)
2.Steel and Composite Beams with Web Openings, Design Guide 2 (Darwin, 1990)
3.Serviceability Design Considerations for Steel Buildings, Design Guide 3 (West et al.,
2003)
4.Extended End-Plate Moment Connections—Seismic and Wind Applications, Design
Guide 4 (Murray and Sumner, 2003)
5.Low- and Medium-Rise Steel Buildings, Design Guide 5 (Allison, 1991).
6.Load and Resistance Factor Design of W-Shapes Encased in Concrete, Design Guide
6 (Griffis, 1992)
7.Industrial Buildings—Roofs to Anchor Rods, Design Guide 7 (Fisher, 2004)
8.Partially Restrained Composite Connections, Design Guide 8 (Leon et al., 1996)
9.Torsional Analysis of Structural Steel Members, Design Guide 9 (Seaburg and Carter,
1997)
10.Erection Bracing of Low-Rise Structural Steel Buildings, Design Guide 10 (Fisher
and West, 1997)
11.Floor Vibrations Due to Human Activity, Design Guide 11 (Murray et al., 1997)
12.Modification of Existing Welded Steel Moment Frame Connections for Seismic
Resistance, Design Guide 12 (Gross et al., 1999)
13.Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic
Applications, Design Guide 13 (Carter, 1999)
14.Staggered Truss Framing Systems, Design Guide 14 (Wexler and Lin, 2002)
15.AISC Rehabilitation and Retrofit Guide—A Reference for Historic Shapes and
Specifications, Design Guide 15 (Brockenbrough, 2002)
16.Flush and Extended Multiple-Row Moment End-Plate Connections, Design Guide 16
(Murray and Shoemaker, 2002)
17.High Strength Bolts—A Primer for Structural Engineers, Design Guide 17 (Kulak,
2002)
18.Steel-Framed Open-Deck Parking Structures, Design Guide 18 (Churches et al. 2003)
19.Fire Resistance of Structural Steel Framing, Design Guide 19 (Ruddy et al., 2003)
20.Steel Plate Shear Walls, Design Guide 20 (Sabelli and Bruneau, 2006)
AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:56 AM Page 5

2–6 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
21.Welded Connections—A Primer for Engineers,Design Guide 21 (Miller, 2006)
22.Façade Attachments to Steel-Framed Buildings, Design Guide 22 (Parker, 2008)
23.Constructability of Structural Steel Buildings, Design Guide 23 (Ruby, 2008)
24.Hollow Structural Section Connections, Design Guide 24 (Packer et al., 2010)
25.Web-Tapered Frame Design, Design Guide 25 (Kaehler et al., 2010)
OSHA REQUIREMENTS
OSHA Safety and Health Standards for the Construction Industry, 29 CFR 1926 Part R
Safety Standards for Steel Erection(OSHA, 2001) must be addressed in the design,
detailing, fabrication and erection of steel structures. These regulations became effective
on July 18, 2001.
Following is a brief summary of selected provisions and related recommendations. The
full text of the regulations should be consulted and can be found at www.osha.gov. See also
Barger and West (2001) for further information.
Columns and Column Base Plates
1. All column base plates must be designed and fabricated with a minimum of four
anchor rods.
2. Posts (which weigh less than 300 lb) are distinguished from columns and excluded
from the four-anchor-rod requirement.
3. Columns, column base plates, and their foundations must be designed to resist a min-
imum eccentric gravity load of 300 lb located 18 in. from the extreme outer face of the
column in each direction at the top of the column shaft.
4. Column splices must be designed to meet the same load-resisting characteristics as
columns.
5. Double connections through column webs or at beams that frame over the tops of
columns must be designed to have at least one installed bolt remain in place to support
the first beam while the second beam is being erected. Alternatively, the fabricator
must supply a seat or equivalent device with a means of positive attachment to support
the first beam while the second beam is being erected.
These features should be addressed in the construction documents. Items 1 through 4 are
prescriptive, and alternative means such as guying are time consuming and costly. There are
several methods to address the condition in item 5, as shown in Chapter 2 of AISC Detailing
for Steel Construction.
Safety Cables
1. On multi-story structures, perimeter safety cables (two lines) are required at final inte-
rior and exterior perimeters of floors as soon as the deck is installed.
2. Perimeter columns must extend 48 in. above the finished floor (unless constructability
does not allow) to allow the installation of perimeter safety cables.
3. The regulations prohibit field welding of attachments for installation of perimeter
safety cables once the column has been erected.
4. Provision of some method of attaching the perimeter cable is required, but responsi-
bility is not assigned either to the fabricator or to the erector. While this will be subject
AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:13 AM Page 6 (Black plate)

OSHA REQUIREMENTS 2–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to normal business arrangements between the fabricator and the erector, holes for these
cables are often punched or drilled in columns by the fabricator.
The primary consideration in the design of the frame based on these rules is that the posi-
tion of the column splice is set with respect to the floor.
Beams and Bracing
1. Solid-web members (beams) must be connected with a minimum of two bolts or their
equivalent before the crane load line is released.
2. Bracing members must be connected with a minimum of one bolt or its equivalent
before the crane load line is released.
The OSHA regulations allow an alternative to these minimums, if an “equivalent as speci-
fied by the project structural engineer of record” is provided. If the project requirements do
not permit the use of bolts as described in items 1 and 2, then the “equivalent” means should
be provided in the construction documents. It is recommended that the “equivalent” means
should utilize bolts and removable connection material, and should provide requirements for
the final condition of the connection. Solutions that employ shoring or the need to hold the
member on the crane should be avoided.
Cantilevers
1. The erector is responsible for the stability of cantilevers and their temporary supports
until the final cantilever connection is completed. OSHA 1926.756(a)(2) requires that
a competent person shall determine if more than two bolts are necessary to ensure the
stability of cantilevered members. Cantilever connections must be evaluated for the
loads imposed on them during erection and consideration must be made for the inter-
mediate states of completion, including the connection of the backspan member
opposing the cantilever.
Certain cantilever connections can facilitate the erector’s work in this regard, such as shop
attaching short cantilevers, one piece cantilever/backspan beams carried through or over
the column at the cantilever and field bolted flange plates or end plate connections to the
supporting member. To the extent allowed by the contract documents, the selection of
details is up to the fabricator, subject to normal business relations between the fabricator
and the erector.
Joists
1. Unless panelized, all joists 40 ft long and longer and their bearing members must have
holes to allow for initial connections by bolting.
2. Establishment of bridging terminus points for joists is mandated according to OSHA
and manufacturer guidelines.
3. A vertical stabilizer plate to receive the joist bottom chord must be provided at
columns. Minimum sizes are given and the stabilizer plate must have a hole for the
attachment of guying or plumbing cables.
These features should be addressed in the construction documents and shop drawings.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 7

2–8 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Walking/Working Surfaces
1. Framed metal deck openings must have structural members configured with project-
ing elements turned down to allow continuous decking, except where not allowed by
design constraints or constructability. The openings in the metal deck are not to be cut
until the hole is needed.
2. Steel headed stud anchors, threaded studs, reinforcing bars and deformed anchors that
will project vertically from or horizontally across the top flange of the member are not
to be attached to the top flanges of beams, joists or beam attachments until after the
metal decking or other walking/working surface has been installed.
Framing at openings with down turned elements and shop versus field attachment of
anchors should be addressed in the construction documents and the shop drawings.
Controlling Contractor
1. The controlling contractor must provide adequate site access and adequate storage.
2. The controlling contractor must notify the erector of repairs or modifications to anchor
rods in writing. Such modifications and repairs must be approved by the owner’s des-
ignated representative for design.
3. The controlling contractor must give notice that the supporting foundations have
achieved sufficient strength to allow safe steel erection.
4. The controlling contractor must either provide overhead protection or prohibit other
trades from working under steel erection activities.
These provisions establish relationships among the erector, controlling contractor and
owner’s representative for design that all parties need to be aware of.
USING THE 2010 AISC SPECIFICATION
The 2010 AISC Specification for Structural Steel Buildings(ANSI/AISC 360-10) contin-
ues the format established in the 2005 edition of the Specification(AISC, 2005),
ANSI/AISC 360-05, which unified the design provisions formerly presented in the 1989
Specification for Structural Steel Buildings—Allowable Stress Design and Plastic Design
and the 1999 Load and Resistance Factor Design Specification for Structural Steel
Buildings. The 2005 Specification for Structural Steel Buildingsalso integrated into a sin-
gle document the information previously provided in the 1993 Load and Resistance
Factor Design Specification for Single-Angle Membersand the 1997 Specification for the
Design of Steel Hollow Structural Sections. The 2010 AISCSpecification, in combination
with the 2010 Seismic Provisions for Structural Steel Buildings(ANSI/AISC 341-10),
brings together all of the provisions needed for the design of structural steel in buildings
and other structures.
The 2010 AISC Specificationcontinues to present two approaches for the design of struc-
tural steel members and connections. Chapter B establishes the general requirements for
analysis and design. It states that “designs shall be made according to the provisions for
Load and Resistance Factor Design (LRFD) or to the provisions for Allowable Strength
Design (ASD).” These two approaches are equally valid for any structure for which the
Specificationis applicable. There is no preference stated or implied in the provisions.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 8

USING THE 2010 AISC SPECIFICATION 2–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The required strength of structural members and connections may be determined by elas-
tic, inelastic or plastic analysis for the load combinations associated with LRFD and by
elastic analysis for load combinations associated with ASD and as stipulated by the appli-
cable building code. In all cases, the available strength must exceed the required strength.
The AISC Specificationgives provisions for determining the available strength as summa-
rized below.
Load and Resistance Factor Design (LRFD)
The load combinations appropriate for LRFD are given in the applicable building code or,
in its absence, ASCE/SEI 7 Section 2.3. For LRFD, the available strength is referred to as
the design strength. All of the LRFD provisions are structured so that the design strength
must equal or exceed the required strength. This is presented in AISC Specification Section
B3.3 as
R
u≤φRn (2–1)
In this equation, R
uis the required strength determined by analysis for the LRFD load
combinations, R
nis the nominal strength determined according to the AISC Specification
provisions, and φis the resistance factor given by the AISC Specificationfor a particular
limit state. Throughout this Manual, tabulated values of φR
n, the design strength, are given
for LRFD. These values are tabulated as blue numbers in columns with the heading LRFD.
If there is a desire to use the LRFD provisions in the form of stresses, the strength provi-
sions can be transformed into stress provisions by factoring out the appropriate section
property. In many cases, the provisions are already given directly in terms of stress.
Allowable Strength Design (ASD)
Allowable strength design is similar to what is known as allowable stress design in that they
are both carried out at the same load level. Thus, the same load combinations are used. The
difference is that for strength design, the primary provisions are given in terms of forces or
moments rather than stresses. In every situation, these strength provisions can be trans-
formed into stress provisions by factoring out the appropriate section property. In many
cases, the provisions are already given directly in terms of stress.
The load combinations appropriate for ASD are given by the applicable building code or,
in its absence, ASCE/SEI 7 Section 2.4. For ASD, the available strength is referred to as the
allowable strength. All of the ASD provisions are structured so that the allowable strength
must equal or exceed the required strength. This is presented in AISC SpecificationSection
B3.4 as
R
a≤
R
n (2–2)
Ω
In this equation, R
ais the required strength determined by analysis for the ASD load com-
binations, R
nis the nominal strength determined according to the AISC Specification
provisions and Ωis the safety factor given by the Specificationfor a particular limit state.
Throughout this Manual, tabulated values of R
n/Ω, the allowable strength, are given for
ASD. These values are tabulated as black numbers on a green background in columns with
the heading ASD.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 9

2–10 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN FUNDAMENTALS
It is commonly believed that ASD is an elastic design method based entirely on a stress for-
mat without limit states and LRFD is an inelastic design method based entirely on a strength
format with limit states. Traditional ASD was based on limit-states principles too, but with-
out the use of the term. Additionally, either method can be formulated in a stress or strength
basis, and both take advantage of inelastic behavior. The AISC Specificationhighlights how
similar LRFD and ASD are in its formulation, with identical provisions throughout for
LRFD and ASD.
Design according to the AISC Specification, whether it is according to LRFD or ASD, is
based on limit states design principles, which define the boundaries of structural usefulness.
Strength limit states relate to load carrying capability and safety. Serviceability limit states
relate to performance under normal service conditions. Structures must be proportioned so
that no applicable strength or serviceability limit state is exceeded.
Normally, several limit states will apply in the determination of the nominal strength of
a structural member or connection. The controlling limit state is normally the one that
results in the least available strength. As an example, the controlling limit state for bending
of a simple beam may be yielding, local buckling, or lateral-torsional buckling for strength
and deflection, or vibration for serviceability. The tabulated values may either reflect a sin-
gle limit state or a combination of several limit states. This will be clearly stated in the
introduction to the particular tables.
Loads, Load Factors and Load Combinations
Based on AISCSpecificationSections B3.3 and B3.4, the required strength (either P u, Mu,
V
u, etc. for LRFD orP a, Ma, Va, etc. for ASD) is determined for the appropriate load mag-
nitudes, load factors and load combinations given in the applicable building code. These are
usually based on ASCE/SEI 7, which may be used when there is no applicable building
code. The common loads found in building structures are:
D=dead load
L=live load due to occupancy
L
r=roof live load
S=snow load
R=nominal load due to initial rainwater or ice exclusive of the ponding contribution
W=wind load
E=earthquake load
Load and Resistance Factor Design
For LRFD, the required strength is determined from the following factored combinations,
1
which are based on ASCE/SEI 7 Section 2.3:
1. 1.4D (2-3a)
2. 1.2D +1.6L +0.5(L
ror S or R) (2-3b)
3. 1.2D +1.6(L
ror S or R) +(0.5L or 0.5W) (2-3c)
4. 1.2D +1.0W +0.5L +0.5(L
ror S or R) (2-3d)
1
Exception: Per ASCE/SEI 7, the load factor on L in combinations 3, 4 and 5 shall equal 1.0 for garages,
areas occupied as places of public assembly, and all areas where the live load is greater than 100 psf.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 10

DESIGN FUNDAMENTALS 2–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5. 1.2D +1.0E +0.5L +0.2S (2-3e)
6. 0.9D +1.0W (2-3f)
7. 0.9D+1.0E (2-3g)
The load combinations for LRFD recognize that, when several transient loads act in combi-
nation, only one assumes its maximum lifetime value,
2
while the other(s) are at their
“arbitrary-point-in-time” (APT) values. Each combination models the total design loading
condition when a different load is at its maximum. Thus, the maximum-lifetime load effect
is amplified by an amount that is proportional to its relative variability and the APT load
effect(s) are factored to their mean value(s). With this approach, the margin of safety varies
with the load combination yielding a more uniform reliability than would be expected when
nominal loads are combined directly.
Dead load, D, is present in each load combination with a load factor of 1.2, except in load
combination 1, where it is the dominant (only) load effect, and load combinations 6 and 7,
where it is reduced for calculation of the overturning or uplift effect. The 1.2 load factor
accounts for the statistical variability of the dead load. The designer must independently
account for other contributions to dead load, such as the weight of additional concrete, if any,
added to adjust for concrete ponding effects (Ruddy, 1986) or differing framing elevations.
Allowable Strength Design
For ASD, the required strength is determined from the following combinations, which are
also based on ASCE/SEI 7 Section 2.4:
1.D (2-4a)
2.D +L (2-4b)
3.D +(L
ror S or R) (2-4c)
4.D +0.75L +0.75(L
ror S or R) (2-4d)
5.D +(0.6Wor 0.7E) (2-4e)
6a.D +0.75L +0.75(0.6W)+0.75(L
ror Sor R) (2-4f)
6b.D +0.75L +0.75(0.7E) +0.75S (2-4g)
7. 0.6D+0.6W (2-4h)
8. 0.6D+0.7E (2-4i)
The load combinations for ASD combine the code-specified nominal loads directly with no
factors for those cases where loads with minimal variation with time are combined, cases 1,
2 and 3. For those cases where multiple time-variable loads are included, a 0.75 reduction
factor is applied to the time-variable loads only. Since all of the safety in an ASD design
comes through the introduction of the safety factor on the resistance side of the equation,
each load case uses the same safety factor for a given limit state.
In ASD, when considering members subjected to gravity loading only, it is clear that the
controlling load combination is the one that adds the larger live load to the dead load. Thus,
for a floor that does not carry roof load, the controlling combination will be D+Lwhile for
a roof the controlling combination will be D+(L
r or Sor R). For gravity columns, after live
load reductions have been accounted for, the floor and roof live loads may be reduced to
0.75 of their nominal values. A similar reduction is permitted for live loads in combination
with lateral loads.
2
Usually based upon a 50-year recurrence, except for seismic loads.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 11

2–12 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Superposition of Loads in Load Combinations
Whether the loads themselves or the effects of those loads are used in these combinations,
LRFD or ASD, the results are the same, provided the principle of superposition is valid. This
is true when deflections are small and the stress-strain behavior is nominally elastic.
However, when second-order effects are significant or the behavior is inelastic, superposi-
tion is not valid and the loads, rather than the load effects, should be used in these
combinations.
Nominal Strengths, Resistance Factors, Safety Factors and
Available Strengths
The AISC Specificationrequires that the available strength must be greater than or equal to
the required strength for any element. The available strength is a function of the nominal
strength given by the Specificationand the corresponding resistance factor or safety factor.
As discussed earlier, the required strength can be determined either with LRFD or ASD load
combinations.
The available strength for LRFD is the design strength, which is calculated as the prod-
uct of the resistance factor φand the nominal strength (φP
n, φMn, φVn, etc.) The available
strength for ASD is the allowable strength, which is calculated as the quotient of the nomi-
nal strength and the corresponding safety factor Ω(P
n /Ω, M n /Ω, V n /Ω, etc.).
In LRFD, the margin of safety for the loads is contained in the load factors, and
resistance factors, φ, to account for unavoidable variations in materials, design equations,
fabrication and erection. In ASD, a single margin of safety for all of these effects is con-
tained in the safety factor, Ω.
The resistance factors, φ, and safety factors, Ω, in the AISC Specificationare based upon
research, as discussed in the AISC Specification Commentary to Chapter B, and the experi-
ence and judgment of the AISC Committee on Specifications. In general, φis less than unity
and Ωis greater than unity. The higher the variability in the test data for a given nominal
strength, the lower its φfactor and the higher itsΩfactor will be. Some examples of φand
Ωfactors for steel members are as follows:
φ=0.90 for limit states involving yielding
φ=0.75 for limit states involving rupture
Ω=1.67 for limit states involving yielding
Ω=2.00 for limit states involving rupture
The general relationship between the safety factor, Ω, and the resistance factor, φ, is
Ω=
1.5 (2–5)
φ
Serviceability
Serviceability requirements of the AISC Specificationare found in Section B3.9 and
Chapter L. The serviceability limit states should be selected appropriately for the specific
application as discussed in the SpecificationCommentary to Chapter L. Serviceability
limit states and the appropriate load combinations for checking their conformance to
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 12

DESIGN FUNDAMENTALS 2–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
serviceability requirements can be found in ASCE/SEI 7 Appendix C and its Commentary.
It should be noted that the load combinations in ASCE/SEI 7 Section 2.3 for LRFD and
Section 2.4 for ASD are both for strength design, and are not necessarily appropriate for
consideration of serviceability.
Guidance is also available in the Commentary to the AISC Specification, both in general
and for specific criteria, including camber, deflection, drift, vibrations, wind-induced motion,
expansion and contraction, and connection slip. Additionally, the applicable building code
may provide some further guidance or establish requirements. See also the serviceability dis-
cussions in Parts 3 through 6, AISC Design Guide 3, Serviceability Design Considerations
for Steel Buildings(West et al., 2003) and AISC Design Guide 11, Floor Vibrations Due to
Human Activity(Murray et al., 1997).
Structural Integrity
Structural integrity as introduced into building codes and the 2010 AISC Specification
Section B3.2, is a set of prescriptive requirements for connections that, when met, are
intended to provide an unknown, but satisfactory, level of performance of the finished struc-
ture. The term structural integrity has often been used interchangeably with progressive
collapse, but these two concepts have widely varying interpretations that can influence design
in a variety of ways. The term progressive collapse does not appear in the International
Building Code (ICC, 2009) or in the 2010 AISC Specification. Progressive collapse require-
ments generally are intended to prevent the collapse of a structure beyond a localized area of
the structure where a structural element has been compromised. Progressive collapse require-
ments are often mandated for government facilities, or by owners for structures which have
a high probability of being subject to terrorist attack.
Structural integrity has always been one of the goals for the structural engineer in engi-
neering design, and for the committees writing design standards. However, it has only been
since the collapse of the buildings at the World Trade Center that requirements with the
stated purpose of addressing structural integrity have appeared in U.S. building codes. The
first building code to incorporate specific structural integrity requirements was the 2008
New York City Building Code which was quickly followed by requirements in the 2009
International Building Code. Although the requirements of these two building codes are
both prescriptive in nature, there are some differences in requirements and their application.
The AISC SpecificationSection B3.2 addresses the requirements of the 2009 International
Building Code.
The 2009 International Building Codestipulates minimum integrity provisions for build-
ings classified as high-rise and assigned to Occupancy Categories III or IV. High-rise
buildings are defined as those having an occupied floor greater than 75 ft above fire depart-
ment vehicle access. The structural integrity requirements state that column splices must
resist a minimum tension force and beam end connections must resist a minimum axial ten-
sion force. The nominal axial tension strength of the beam end connection must equal or
exceed either the required vertical shear strength for ASD or
2
/3the required vertical shear
strength for LRFD. These required strengths can be reduced by 50% if the beam supports a
composite deck with the prescribed steel anchors (Geschwindner and Gustafson, 2010).
The International Building Codestructural integrity requirements for the axial tension
capacity of the beam end connections use a nominal strength basis reflecting the intent of
the code to avoid brittle rupture failures of the connection components, rather than limiting
AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:58 AM Page 13

2–14 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
deformations or yielding of those components. Section B3.2 of the 2010 AISC Specification
is based on this difference in limit state requirements for resistance to the prescriptive
structural integrity loads, as compared to those limit states required when designing for tra-
ditional load combinations.
Progressive Collapse
Progressive collapse is defined in ASCE/SEI 7-10 (ASCE, 2010) as “the spread of an initial
local failure from element to element resulting, eventually, in the collapse of an entire struc-
ture or a disproportionately large part of it.”
Progressive collapse requirements often involve assessment of the structure’s ability to
accommodate loss of a member that has been compromised through redistribution of forces
throughout the remaining structure. Design for progressive collapse poses a particularly
challenging problem since it is difficult to identify the load cases to be examined or the
members that may be compromised. Two main sources of requirements for evaluation of
structures for progressive collapse are the Department of Defense and the General Services
Administration. For facilities covered by the Department of Defense, all new and existing
buildings of three stories or more must be designed to avoid progressive collapse. The spe-
cific requirements are published in United Facilities Criteria 4-023-03, “Design of Buildings
to Resist Progressive Collapse” (DOD, 2009).
For federal facilities under the jurisdiction of the General Services Administration,
threat independent guidelines have been developed. The publication “Progressive Collapse
Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization
Projects” (USGSA, 2003) provides an explicit process that any structural engineer could use
to evaluate the progressive collapse potential of a multi-story facility.
Required Strength, Stability, Effective Length, and
Second-Order Effects
As previously discussed, the AISC Specificationrequires that the required strength must be
less than or equal to the available strength in the design of every member and connection.
Chapter C also requires that stability shall be provided for the structure as a whole and each
of its elements. Any method that considers the influence of second-order effects, also known
asP-delta effects, may be used. Thus, required strengths must be determined including sec-
ond-order effects, as described in SpecificationSection C2.1. Note that SpecificationSection
C2.1(2) permits an amplified first-order analysis as one method of second-order analysis, as
provided in Appendix 8.
Second-order effects are the additional forces, moments and displacements resulting from
the applied loads acting in their displaced positions as well as the changes from the unde-
formed to the deformed geometry of the structure. Second-order effects are obtained by
considering equilibrium of the structure within its deformed geometry. There are numerous
ways of accounting for these effects. The commentary to AISC SpecificationChapter C pro-
vides some guidance on methods of second-order analysis and suggests several benchmark
problems for checking the adequacy of analysis methods.
Since 1963, there have been provisions in the AISC Specifications to account for second-
order effects. Initially these provisions were embedded in the interaction equations. In past
ASD Specifications, second-order effects were accounted for by the term
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 14

found in the interaction equation. In past LRFD Specifications, the factors B 1and B 2from
Chapter C of those specifications were used to amplify moments to account for second-
order effects. B
1was used to account for the second-order effects due to member curvature
and B
2was used to account for second-order effects due to sidesway. In both Specifications,
more exact methods were permitted.
AISC Specification Section C1 and Appendix 7 provide three approaches that may be
followed.
• The direct analysis method is provided in Chapter C. This is the most comprehensive
and, as the name suggests, most direct approach to incorporating all necessary factors
in the analysis. Through the use of notional loads, reduced stiffness, and a second-
order analysis, the design can be carried out with the forces and moments from the
analysis and an effective length equal to the member length, K=1.0. Section C2 of
the AISC Specificationdetails the requirements for determination of required
strengths using this method.
• The effective length methodis given in AISC Specification Appendix 7, Section 7.2. In
this method, all gravity-only load cases have a minimum lateral load equal to 0.2% of
the story gravity load applied. A second order analysis is carried out and the member
strengths of columns and beam-columns are determined using effective lengths, deter-
mined by elastic buckling analysis, or more commonly, the alignment charts in the
Commentary to the Specificationwhen the associated assumptions are satisfied. The
Specificationpermits K=1.0 when the ratio of second order drift to first order drift is
less than or equal to 1.1.
• The first-order analysis methodis given in AISC Specification Appendix 7, Section 7.3.
With this approach, second-order effects are captured through the application of an
additional lateral load equal to at least 0.42% of the story gravity load applied in each
load case. No further second-order analysis is necessary. The required strengths are
taken as the forces and moments obtained from the analysis and the effective length
factor is K=1.0.
When a second-order analysis is called for in the above methods, AISC Specification
Section C1 allows any method that properly considers P-delta effects. One such method is
amplified first-order elastic analysis provided in SpecificationAppendix 8. This is a modi-
fied carry over of the B
1-B2approach used in previous LRFD Specifications, which was an
extension of the simple approach taken in past ASD Specifications.
The AISC Specificationfully integrates the provisions for stability with the specified
methods of design. For all framing systems, when using the direct analysis method, AISC
Specification Section C3 provides that the effective length factor, K, for all members can be
taken as 1.0 unless a lesser value can be justified by analysis. For the effective length
method, AISC Specification Appendix 7, Section 7.2.3(a) provides that in braced frames, the
effective length factor, K, may be taken as 1.0. For moment frames, Appendix 7, Section
7.2.3(b) requires that a critical buckling analysis to determine the critical buckling stress, F
e,
be performed or effective length factors, K, be used. For the first-order analysis method,
1
1−

f
Fa
e
DESIGN FUNDAMENTALS 2–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 15

2–16 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Appendix Section 7.3.3 stipulates that the effective length factor, K, be taken as unity for all
members. This is discussed in more detail in the Commentary to Appendix 7.
Simplified Determination of Required Strength
When a fast, conservative solution is desired, the following simplification of the effective
length method can be used with the aid of Table 2-1. The features of each of the other meth-
ods of design for stability are summarized and compared in Table 2-2.
An approximate second-order analysis approach is provided in AISC Specification
Appendix 8. Where the member amplification (P-δ) factor is small, that is, less than B
2, it
is conservative to amplify the total moment and force by B
2. Thus, Equations A-8-1 and
A-8-2 become
M
r=B1Mnt+B2Mlt=B2Mu (2-6)
P
r=Pnt+B2Plt=B2Pu (2-7)
To use this simplified method, B
1cannot exceed B 2. For members not subject to transverse
loading between their ends, it is very unlikely that B
1would be greater than 1.0. In addi-
tion, the simplified approach is not valid if the amplification factor, B
2, is greater than 1.5,
because with the exception of taking B
1=B 2, this simplified method meets the provisions
of the effective length method in AISC Specification Appendix 7. It is up to the engineer
to ensure that the frame is proportioned appropriately to use this simplified approach. In
most designs it is not advisable to have a final structure where the second order amplifica-
tion is greater than 1.5, although it is acceptable. In those cases, one should consider
stiffening the structure.
Step 1:Perform a first-order elastic analysis. Gravity load cases must include a minimum
lateral load at each story equal to 0.002 times the story gravity load where the story grav-
ity load is the load introduced at that story, independent of any loads from above.
Step 2:Establish the design story drift limit and determine the lateral load that produces
that drift. This is intended to be a measure of the lateral stiffness of the structure.
Step 3:Determine the ratio of the total story gravity load to the lateral load determined in
Step 2. For an ASD design, this ratio must be multiplied by 1.6 before entering Table
2-1. This ratio is part of the determination of the calculation on the elastic critical buck-
ling strength, P
e story, in AISC Specification Equation A-8-7, which includes the parameter
R
m. Rmis a minimum of 0.85 for rigid frames and 1.0 for all other frames.
Step 4:Multiply all of the forces and moments from the first-order analysis by the value
obtained from Table 2-1. Use the resulting forces and moments as the required strengths
for the designs of all members and connections. Note that B
2 must be computed for each
story and in each principal direction.
Step 5:For all cases where the multiplier is 1.1 or less, shown shaded in Table 2-1,
the effective length may be taken as the member length, K=1.0. For cases where the
multiplier is greater than 1.1 but does not exceed 1.5, determine the effective length fac-
tor through analysis, such as with the alignment charts of the AISC Specification
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 16

K=1
STABILITY BRACING 2–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Commentary. For cases where no value is shown for the multiplier, the structure must be
stiffened in order to use this simplified approach. Note that the multipliers are the same
value for both R
m=0.85 and 1.0 in most instances due to rounding. Where this is not the
case, two values are given consistent with the two values of R
m, respectively.
Step 6:Ensure that the drift limit set in Step 2 is not exceeded and revise design as
needed.
STABILITY BRACING
Beams, girders and trusses must be restrained against rotation about their longitudinal axes
at points of support (a basic assumption stated in the General Provisions of AISC
SpecificationSection F1). Additionally, stability bracing with adequate strength and stiff-
ness must be provided consistent with that assumed at braced points in the analysis for
frames, columns and beams (see AISC SpecificationAppendix 6). Some guidance for spe-
cial cases follows.
Simple-Span Beams
In general, adequate lateral bracing is provided to the compression flange of a simple-span
beam by the connections of infill beams, joists, concrete slabs, metal deck, concrete slabs
on metal deck, and similar framing elements.
Beam Ends Supported on Bearing Plates
The stability of a beam end supported on a bearing plate can be provided in one of several
ways (see Figure 2-1):
1. The beam end can be built into solid concrete or masonry using anchorage devices.
2. The beam top flange can be stabilized through interconnection with a floor or roof sys-
tem, provided that system is itself anchored to prevent its translation relative to the
beam bearing.
H/100 1 1.1 1.1 1.3 1.5/1.4
H/200 1 1 1.1 1.1 1.2 1.3 1.4/1.31.5/1.4
H/300 1 1 1 1.1 1.1 1.2 1.2 1.3 1.5/1.4
H/400 1 1 1 1.1 1.1 1.1 1.2 1.2 1.3 1.4/1.3 1.5
H/500 11111.11.11.11.21.21.31.4
Load Ratio from Step 3 (times 1.6 for ASD, 1.0 for LRFD)
Design Story
Drift Limit0 5 10 20 30 40 50 60 80 100 120
TABLE 2-1
Multipliers for Use With the
Simplified Method
Note: Where two values are provided, the value in bold is the value associated with Rm= 0.85.
When ratio exceeds 1.5, simplified method
requires a stiffer
structure.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 17

2–18 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 2-1. Beam end supported on bearing plate.
(a) Stability provided with transverse stiffeners
(b) Stability provided with an end plate
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 18

STABILITY BRACING 2–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. A top-flange stability connection can be provided.
4. An end-plate or transverse stiffeners located over the bearing plate extending to near
the top-flange k-distance can be provided. Such stiffeners must be welded to the top
of the bottom flange and to the beam web, but need not extend to or be welded to the
top flange.
In each case, the beam and bearing plate must also be anchored to the support. For the
design of beam bearing plates, see Part 14.
In atypical framing situations, such as when very deep beams are used, the strength and
stiffness requirements in AISC SpecificationAppendix 6 can be applied to ensure the sta-
bility of the assembly. It may also be possible to demonstrate in a limited number of cases,
such as with beams with thick webs and relatively shallow depths, that the beam has been
properly designed without providing the details described above. In this case, the beam and
bearing plate must still be anchored to the support. In any case, it should be noted that the
assembly must also meet the requirements in AISC SpecificationSection J10.
Beams and Girders Framing Continuously Over Columns
Roof framing is commonly configured with cantilevered beams that frame continuously
over the tops of columns to support drop-in beams between the cantilevered segments
(Rongoe, 1996; CISC, 1989). It is also commonly desirable to provide an assembly in which
the intersection of the beam and column can be considered a braced point for the design of
both the continuous cantilevering beam and the column top. The required stability can be
provided in several ways (see Figure 2-2):
1. When an infill beam frames into the continuous beam at the column top, the required
stability normally can be provided by using connection element(s) for the infill beam
that cover three-quarters or more of the T-dimension of the continuous beam.
Alternatively, connection elements that cover less than three-quarters of the T-dimen-
sion of the continuous beam can be used in conjunction with partial-depth stiffeners in
the beam web along with a moment connection between the column top and beam bot-
tom to maintain alignment of the beam/column assembly. A cap plate of reasonable
proportions and four bolts will normally suffice.
In either case, note that OSHA requires that, if two framing infill beams share com-
mon holes through a column web or the web of a beam that frames continuously over
the top of a column,
3
the beam erected first must remain attached while connecting the
second.
2. When joists frame into the continuous beam or girder, the required stability normally
can be provided by using bottom chord extensions connected to the column top. The
resulting continuity moments must be reported to the joist supplier for their use in the
design of the joists and bridging. Note that the continuous beam must still be checked
for the concentrated force due to the column reaction per AISC SpecificationSection
J10.
3
This requirement applies only at the location of the column, not at locations away from the column.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 19

2–20 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The position of the bottom chord extension relative to the column cap plate will
affect the bottom chord connection detail. When the extension aligns with the cap
plate, the load path and force transfer is direct. When the extension is below the col-
umn cap plate, the column must be designed to stabilize the beam bottom flange and
the connection between the extension and the column must develop the continu-
ity/brace force. When the extension is above the column top, the beam web must have
the necessary strength and stiffness to adequately brace the beam bottom/column top.
Fig. 2-2a. Beam framing continuously over column top, stability
provided with connections of infill beams.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 20

STABILITY BRACING 2–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. If connection of the joist bottom chord extensions to the column must be avoided,
the required stability can be provided with a diagonal brace that satisfies the strength
and stiffness requirements in AISC SpecificationAppendix 6. Providing a relatively
shallow angle with respect to the horizontal can minimize gravity-load effects in the
diagonal brace.
Alternatively, the required stability can be provided with stiffeners in the beam web
along with a moment connection between the column top and beam bottom to main-
tain alignment of the beam/column assembly. A cap plate of reasonable proportions
and four bolts will normally suffice.
In atypical framing situations, such as when very deep girders are used, the strength and
stiffness requirements in AISC SpecificationAppendix 6 can be applied for both the beam
Fig. 2-2b. Beam framing continuously over column top, stability
provided with welded joist-chord extensions at column top.
AISC_Part 02:14th Ed._ 1/20/11 7:37 AM Page 21

2–22 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 2-2c. Beam framing continuously over column top, stability provided with
welded joist-chord extensions above column top.
and the column to ensure the stability of the assembly. It may also be possible to demon-
strate in a limited number of cases, such as with continuous beams with thick webs and
relatively shallow depths, that the column and beam have been properly designed without
providing infill beam connections, connected joist extensions, stiffeners, or diagonal braces
as described above. In this case, a properly designed moment connection is still required
between the beam bottom flange and the column top. In any case, it should be noted that the
assembly must also meet the requirements in AISC SpecificationSection J10.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 22

STABILITY BRACING 2–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 2-2d. Beam framing continuously over column top, stability provided with
transverse stiffeners, joist chord extensions located at column top not welded.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 23

2–24 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 2-2e. Beam framing continuously over column top, stability provided with
stiffener plates, joist-chord extensions located above column top not welded.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 24

PROPERLY SPECIFYING MATERIALS 2–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PROPERLY SPECIFYING MATERIALS
Availability
The general availability of structural shapes, HSS and pipe can be determined by checking
the AISC database of available structural steel shapes at www.aisc.org/SteelAvailability.
Generally, where many producers are listed, it is an indication that the particular shape is
commonly available. However, except for the larger shapes, when only one or two produc-
ers are listed, it is prudent to consider contacting a steel fabricator to determine availability.
Material Specifications
Applicable material specifications are as shown in the following tables:
• Structural shapes in Table 2-3
• Plate and bar products in Table 2-4
• Fastening products in Table 2-5
Preferred material specifications are indicated in black shading. Other applicable material
specifications are as shown in grey shading. The availability of grades other than the pre-
ferred material specification should be confirmed prior to their specification.
Cross-sectional dimensions and production tolerances are addressed as indicated under
“Standard Mill Practices” in Part 1.
Other Products
Anchor rods
Although the AISC Specificationpermits other materials for use as anchor rods, ASTM
F1554 is the preferred specification, since all anchor rod production requirements are
together in a single specification. ASTM F1554 provides three grades, namely 36 ksi, 55 ksi
and 105 ksi. All Grade 36 rods are weldable. Grade 55 rods are weldable only when they are
made per Supplementary Requirement S1. The project specifications must indicate if the
material is to conform to Supplementary Requirement S1. As a heat-treated material, Grade
105 rods cannot be welded. Grade 105 should be used only for limited applications that
require its high strength. For more information, refer to AISC Design Guide 1, Base Plate
and Anchor Rod Design(Fisher and Kloiber, 2006).
Raised-Pattern Floor Plates
ASTM A786 is the standard specification for rolled steel floor plates. As floor-plate design
is seldom controlled by strength considerations, ASTM A786 “commercial grade” is com-
monly specified. If so, per ASTM A786-05 Section 5.1.3, “the product will be supplied
0.33% maximum carbon by heat analysis, and without specified mechanical properties.”
Alternatively, if a defined strength level is desired, ASTM A786 raised-pattern floor plate
can be ordered to a defined plate specification, such as ASTM A36, A572 or A588; see
ASTM A786 Sections 5.1.3, 7.1 and 8.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 25

2–26 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sheet and Strip
Sheet and strip products, which are generally thinner than structural plate and bar products
are produced to such ASTM specifications as A570, A606 or A607 (see Table 2-3),
Filler Metal
The appropriate filler metal for structural steel is as summarized in ANSI/AWS D1.1: 2010
Table 3.1 for the various combinations of base metal specification and grade and electrode
specification. Weld strengths in this Manual are based upon a tensile strength level of 70 ksi.
Steel Headed Stud Anchors
As specified in ANSI/AWS D1.1 Chapter 7 (Section 7.2.6 and Table 7.1), Type B shear stud
connectors (referred to in the AISC Specificationas steel headed stud anchors) made from
ASTM A108 material are used for the interconnection of steel and concrete elements in
composite construction (F
u=65 ksi).
Open Web Steel Joists
The AISC Code of Standard Practicedoes not include steel joists in its definition of struc-
tural steel. Steel joists are designed and fabricated per the requirements of specifications
published by the Steel Joist Institute. Refer to SJI literature for further information.
Castellated Beams
Castellated beams, also known as cellular beams, are members constructed by cutting
along a staggered pattern down the web of a wide-flange member, offsetting the resulting
pieces such that the deepest points of the cut are in contact, and welding the two pieces
together, thereby creating a member with holes along its web. Castellated beams are cur-
rently designed and fabricated as a proprietary product. For more information, contact the
manufacturer.
Steel Castings and Forgings
Steel castings are specified as ASTM A27 Grade 65-35 or ASTM A216 Grade 80-35. Steel
forgings are specified as ASTM A668.
Forged Steel Structural Hardware
Forged steel structural hardware products, such as clevises, turnbuckles, eye nuts and sleeve
nuts, are occasionally used in building design and construction. These products are gener-
ally forged according to ASTM A668 Class A requirements. ASTM A29, Grade 1035
material is commonly used in the manufacture of clevises and turnbuckles. ASTM A29,
Grade 1030 material is commonly used in the manufacture of steel eye nuts and steel eye
bolts. ASTM A29 Grade 1018 material is commonly used in the manufacture of sleeve nuts.
Other products, such as steel rod ends, steel yoke ends and pins, cotter pins, and coupling
nuts are commonly provided generically as “carbon steel.”
The dimensional and strength characteristics of these devices are fully described in the
literature provided by their manufacturer. Note that manufacturers usually provide strength
characteristics in terms of a “safe working load” with a safety factor as high as 5, assuming
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 26

CONTRACT DOCUMENT INFORMATION 2–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
that the product will be used in rigging or similar applications subject to dynamic loading.
The manufacturer’s safe working load may be overly conservative for permanent installa-
tions and similar applications subject to static loading only.
If desired, the published safe working load can be converted into an available strength
with reliability consistent with that of other statically loaded structural materials. In this
case, the nominal strength, R
n,is determined as:
R
n=(safe working load) ≤(manufacturer’s safety factor)(2-8)
and the available strength, φR
norRn/Ω, is determined using
φ=0.50 (LRFD) Ω=3.00 (ASD)
Crane Rails
Crane rails are furnished to ASTM A759, ASTM A1, and/or manufacturer’s specifications
and tolerances.
Most manufacturers chamfer the top and sides of the crane-rail head at the ends unless
specified otherwise to reduce chipping of the running surfaces. Often, crane rails are
ordered as end-hardened, which improves the resistance of the crane-rail ends to impact
that occurs as the moving wheel contacts it during crane operation. Alternatively, the entire
rail can be ordered as heat-treated. When maximum wheel loading or controlled cooling is
needed, refer to manufacturers’ catalogs. Purchase orders for crane rails should be noted
“for crane service.”
Light 40-lb rails are available in 30-ft lengths, 60-lb rails in 30-, 33- or 39-ft lengths, stan-
dard rails in 33- or 39-ft lengths and crane rails up to 80 ft. Consult manufacturer for
availability of other lengths. Rails should be arranged so that joints on opposite sides of the
crane runway will be staggered with respect to each other and with due consideration to the
wheelbase of the crane. Rail joints should not occur at crane girder splices. Odd lengths that
must be included to complete a run or obtain the necessary stagger should be not less than
10 ft long. Rails are furnished with standard drilling in both standard and odd lengths unless
stipulated otherwise on the order.
CONTRACT DOCUMENT INFORMATION
Design Drawings, Specifications and
Other Contract Documents
CASE Document 962D, A Guideline Addressing Coordination and Completeness of
Structural Construction Documents(CASE, 2003), provides comprehensive guidance on
the preparation of structural design drawings.
Most provisions in the AISC Specification, RCSC Specification, AWS D1.1, and the
AISCCode of Standard Practiceare written in mandatory language. Some provisions
require the communication of information in the contract documents, some provisions are
invoked only when specified in the contract documents, and some provisions require the
approval of the owner’s designated representative for design if they are to be used.
Following is a summary of these provisions in the AISC Specification, RCSC Specification,
and AISC Code of Standard Practice.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 27

2–28 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Required Information
The following communication of information is required in the contract documents:
1. Required drawing information, per AISC Code of Standard PracticeSections 3.1
and 3.1.1 through 3.1.6. and RCSC SpecificationSection 1.4 (bolting products and
joint type)
2. Drawing numbers and revision numbers, per AISC Code of Standard Practice
Section 3.5
3. Structural system description, per AISCCode of Standard PracticeSection 7.10.1
4. Installation schedule for nonstructural steel elements in the structural system, per
AISC Code of Standard PracticeSection 7.10.2
5. Project schedule, per AISC Code of Standard PracticeSection 9.5.1
Information Required Only When Specified
The following provisions are invoked only when specified in the contract documents:
1. Special material notch-toughness requirements, per AISC SpecificationSection
A3.1c and Section A3.1d
2. Special connections requiring pretension, per AISC SpecificationSection J1.10
3. Bolted joint requirements, per AISC SpecificationSection J3.1 and RCSC
SpecificationSection 1.4
4. Special cambering considerations, per AISC SpecificationSection L2
5. Special contours and finishing requirements for thermal cutting, per AISC
SpecificationSections M2.2 and M2.3, respectively
6. Corrosion protection requirements, if any, per AISC SpecificationSection M3 and
AISC Code of Standard PracticeSections 6.5, 6.5.2 and 6.5.3
7. Responsibility for field touch-up painting, if painting is specified, per AISC
SpecificationSection M4.6 and AISC Code of Standard PracticeSection 6.5.4
8. Special quality control and inspection requirements, per AISC SpecificationChapter
N and AISC Code of Standard PracticeSections 8.1.3, 8.2 and 8.3
9. Evaluation procedures, per AISC SpecificationSection B6
10. Fatigue requirements, if any, per AISC SpecificationSection B3.9
11. Tolerance requirements other than those specified in the AISC Code of Standard
Practice, per Code of Standard Practice Section 1.9
12. Designation of each connection as Option 1, 2 or 3, and identification of require-
ments for substantiating connection information, if any, per AISC Code of Standard
Practice Section 3.1.2
13. Specific instructions to address items differently, if any, from requirements in the
AISC Code of Standard Practice, per Code of Standard PracticeSection 1.1
14. Submittal schedule for shop and erection drawings, per AISC Code of Standard
PracticeSection 4.2
15. Mill order timing, special mill testing, and special mill tolerances, per AISC Code of
Standard Practice Sections 5.1, 5.2 and 5.2, respectively
16. Removal of backing bars and runoff tabs, per AISC Code of Standard Practice
Section 6.3.2
17. Special erection mark requirements, per AISC Code of Standard PracticeSection
6.6.1
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 28

CONTRACT DOCUMENT INFORMATION 2–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
18. Special delivery and erection sequences, per AISC Code of Standard Practice
Sections 6.7.1 and 7.1, respectively
19. Special field splice requirements, per AISC Code of Standard PracticeSection 6.7.4
20. Specials loads to be considered during erection, per AISC Code of Standard Practice
Section 7.10.3
21. Special safety protection treatments, per AISC Code of Standard PracticeSection
7.11.1
22. Identification of adjustable items, per AISC Code of Standard PracticeSection
7.13.1.3
23. Cuts, alterations and holes for other trades, per AISC Code of Standard Practice
Section 7.15
24. Revisions to the contract, per AISC Code of Standard PracticeSection 9.3
25. Special terms of payment, per AISC Code of Standard PracticeSection 9.6
26. Identification of architecturally exposed structural steel, per AISC Code of Standard
Practice Section 10
Approvals Required
The following provisions require the approval of the owner’s designated representative for
design if they are to be used:
1. Bolted-joint-related approvals per RCSC Specification Commentary Section 1.4
2. Use of electronic or other copies of the design drawings by the fabricator, per AISC
Code of Standard PracticeSection 4.3
3. Use of stock materials not conforming to a specified ASTM specification, per AISC
Code of Standard PracticeSection 5.2.3
4. Correction of errors, per AISC Code of Standard PracticeSection 7.14
5. Inspector-recommended deviations from contract documents, per AISC Code of
Standard PracticeSection 8.5.6
6. Contract price adjustment, per AISC Code of Standard PracticeSection 9.4.2
Establishing Criteria for Connections
AISC Code of Standard PracticeSection 3.1.2 provides the following three methods for the
establishment of connection requirements.
In the first method, the complete design of all connections is shown in the structural
design drawings. In this case, AISC Code of Standard PracticeCommentary Section 3.1.2
provides a summary of the information that must be included in the structural design draw-
ings. This method has the advantage that there is no need to provide connection loads, since
the connections are completely designed in the structural design drawings. Additionally, it
favors greater accuracy in the bidding process, since the connections are fully described in
the contract documents.
In the second method, the fabricator is allowed to select or complete the connections
while preparing the shop and erection drawings, using the information provided by the
owner’s designated representative for design per AISCCode of Standard PracticeSection
3.1.2. In this case, AISC Code of Standard PracticeCommentary Section 3.1.2 clarifies the
intention that connections that can be selected or completed by the fabricator include those
for which tables appear in the contract documents or the Manual. Other connections should
be shown in detail in the structural design drawings.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 29

2–30 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In the third method, connections are designated in the contract documents to be designed
by a licensed professional engineer working for the fabricator. The AISCCode of Standard
Practice sets forth detailed provisions that, in the absence of contract provisions to the
contrary, serve as the basis of the relationships among the parties. One feature of these
provisions is that the fabricator is required to provide representative examples of connection
design documentation early in the process, and the owner’s designated representative for
design is obliged is to review these submittals for conformity with the requirements of the
contract documents. These early submittals are required in an attempt to avoid additional
costs and/or delays as the approval process proceeds through subsequent shop drawings
with connections developed from the original representative samples.
Methods one and two have the advantage that the fabricator’s standard connections nor-
mally can be used, which often leads to project economy. However, the loads or other
connection design criteria must be provided in the structural design drawings. Design loads
and required strengths for connections should be provided in the structural design drawings
and the design method used in the design of the frame (ASD or LRFD) must be indicated
on the drawings.
In all three methods, the resulting shop and erection drawings must be submitted to the
owner’s designated representative for design for review and approval. As stated in the AISC
Code of Standard PracticeSection 4.4.1, the approval of shop and erection drawings con-
stitutes “confirmation that the Fabricator has correctly interpreted the Contract Documents”
and that the reviewer has “reviewed and approved the Connection details shown in the Shop
and Erection Drawings.” Following is additional guidance for the communication of con-
nection criteria to the connection designer.
Simple Shear Connections
The full force envelope should be given for each simple shear connection. Because of
the potential for overestimation and underestimation inherent in approximate methods
(Thornton, 1995), actual beam end reactions should be indicated on the design drawings.
The most effective method to communicate this information is to place a numeric value at
each end of each span in the framing plans.
In the past, beam end reactions were sometimes specified as a percentage of the tabulated
uniform load in Manual Part 3. This practice can result in either over- or under-specification
of connection reactions and should not be used. The inappropriateness of this practice is
illustrated in the following examples.
Over-estimation:
1. When beams are selected for serviceability considerations or for shape repetition, the
uniform load tables will often result in heavier connections than would be required by
the actual design loads.
2. When beams have relatively short spans, the uniform load tables will often result in
heavier connections than would be required by the actual design loads. If not addressed
with the accurate load, many times the heavier connections will require extension of the
connection below the bottom flange of the supported member, requiring that the flange
on one or both sides of the web to be cut and chipped, a costly process.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 30

CONTRACT DOCUMENT INFORMATION 2–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Under-estimation:
1. When beams support other framing beams or other concentrated loads occur on girders
supporting beams, the end reactions can be higher than 50% of the total uniform load.
2. For composite beams, the end reactions can be higher than 50% of the total uniform
load. The percentage requirement can be increased for this condition, but the resulting
approach is still subject to the above considerations.
Moment Connections
The full force envelope should be given for each moment connection. If the owner’s desig-
nated representative for design can select the governing load combination, its effect alone
should be provided. Otherwise, the effects of all appropriate load combinations should be
indicated. Additionally, the maximum moment imbalance should also be given for use in the
check of panel-zone web shear.
Because of the potential for overestimation—and underestimation—inherent in approxi-
mate methods, it is recommended that the actual beam end reactions (moment, shear and
other reactions, if any) be indicated in the structural design drawings. The most effective
method to do so may be by tabulation for each joint and load combination.
Although not recommended, beam end reactions are sometimes specified by more gen-
eral criteria, such as by function of the beam strength. It should be noted, however, that there
are several situations in which this approach is not appropriate. For example:
1. When beams are selected for serviceability considerations or for shape repetition, this
approach will often result in heavier connections than would be required by the actual
design loads.
2. When the column(s) or other members that frame at the joint could not resist the forces
and moments determined from the criteria so specified, this approach will often result
in heavier connections than would be required by the actual design loads.
In some cases, the structural analysis may require that the actual connections be config-
ured to match the assumptions used in the model. For example, it may be appropriate to
release weak-axis moments in a beam-column joint where only strong-axis beam moment
strength is required. Such requirements should be indicated in the structural design drawings.
Horizontal and Vertical Bracing Connections
The full force envelope should be given for each bracing-member end connection. If the
owner’s designated representative for design can select the governing load combination for
the connection, its effect alone should be provided. Otherwise, the effects of all appropriate
load combinations should be indicated in tabular form. This approach will allow a clear
understanding of all of the forces on any given joint.
Because of the potential for overestimation—and underestimation—inherent in approxi-
mate methods, it is recommended that the actual reactions at the bracing member end (axial
force and other reactions, if any) be indicated in the structural design drawings. It is also rec-
ommended that transfer forces, if any, be so indicated. The most effective method to do so
may be by tabulation for each bracing member end and load combination.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 31

2–32 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Although not recommended, bracing member end reactions can be specified by more
general criteria, such as by maximum member forces (tension or compression) or as a func-
tion of the member strength. It should be noted, however, that there are several situations in
which such approaches are not appropriate. For example:
1. The specification of maximum member forces does not permit a check of the member
forces at a joint if there are different load combinations governing the member designs at
that joint. Nor does it reflect the possibility of load reversal as it may influence the design.
2. The specification of a percentage of member strength may not properly account for the
interaction of forces at a joint or the transfer force through the joint. Additionally, it
may not allow for a cross-check of all forces at a joint.
In either case, this approach will often result in heavier connections than would be required
by the actual design loads.
Bracing connections may involve the interaction of gravity and lateral loads on the frame.
In some cases, such as V- and inverted V-bracing (also known as Chevron bracing), gravity
loads alone may govern design of the braces and their connections. Thus, clarity in the spec-
ification of loads and reactions is critical to properly consider the potential interaction of
gravity and lateral loads at floors and roofs.
Strut and Tie Connections
Floor and roof members in braced bays and adjacent bays may function as struts or ties in
addition to carrying gravity loads. Therefore the recommendations for simple shear connec-
tions and bracing connections above apply in combination.
Truss Connections
The recommendations for horizontal and vertical bracing connections above also apply in
general to bracing connections with the following additional comments.
Note that it is not necessary to specify a minimum connection strength as a percent of the
member strength as a default. However, when trusses are shop assembled or field assembled
on the ground for subsequent erection, consideration should be given to the loads that will
be induced during handling, shipping and erection.
Column Splices
Column splices may resist moments, shears and tensions in addition to gravity forces.
Typical column splices are discussed in Part 14. As in the case of the other connections dis-
cussed above, unless the column splices are fully designed in the construction documents,
forces and moments for the splice designs should be provided in the construction docu-
ments. Since column splices are located away from the girder/column joint and moments
vary in the height of the column, an accurate assessment of the forces and moments at the
column splices will usually significantly reduce their cost and complexity.
CONSTRUCTABILITY
Constructability is a relatively new word for a well established idea. The design, detailing, fab-
rication and erection of structural steel is a process which in the end needs to result in a safe
and economical steel frame. Building codes and the AISC Specificationaddress strength and
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 32

TOLERANCES 2–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
structural integrity. Constructability addresses the need for global economy in the fabricated
and erected steel frame. Constructability must be “designed in,” influencing decision making
at all steps of the design process, from framing system selection, though member design, to
connection selection and design. Constructability demands attention to detail and requires the
designer to think ahead to the fabrication and erection of the steel frame. The goal is to design
a steel frame that is relatively easy to detail, fabricate and erect. AISC provides guidance to
the design community through its many publications and presentations, including the recently
published Design Guide 23, Constructability of Structural Steel Buildings(Ruby, 2008).
Constructability focuses on such issues as framing layout, the number of pieces in an area
of framing, three-dimensional connection geometry, swinging in clearances, access to bolts,
and access to welds. It involves the acknowledgement that numerous, seemingly small deci-
sions can have an effect on the overall economy of the final erected steel frame. Fabricators
and erectors have the knowledge that can assist in the design of constructible steel frames.
Designers should seek their counsel.
TOLERANCES
The effects of mill, fabrication and erection tolerances all require consideration in the design
and construction of structural steel buildings. However, the accumulation of the mill toler-
ances and fabrication tolerances shall not cause the erection tolerances to be exceeded, per
AISC Code of Standard Practice Section 7.12.
Mill Tolerances
Mill tolerances are those variations that could be present in the product as-delivered from
the rolling mill. These tolerances are given as follows:
1. For structural shapes and plates, see ASTM A6.
2. For HSS, see ASTM A500 (or other applicable ASTM specification for HSS).
3. For pipe, see ASTM A53.
A summary of standard mill practices is also given in Part 1.
Fabrication Tolerances
Fabrication tolerances are generally provided in AISC SpecificationSection M2 and AISC
Code of Standard PracticeSection 6.4. Additional requirements that govern fabrication are
as follows:
1. Compression joint fit-up, per AISC SpecificationSection M4.4
2. Roughness limits for finished surfaces, per AISC Code of Standard PracticeSection
6.2.2
3. Straightness of projecting elements of connection materials, per AISCCode of
Standard Practice Section 6.3.1
4. Finishing requirements at locations of removal of run-off tabs and similar devices, per
AISCCode of Standard PracticeSection 6.3.2
Erection Tolerances
Erection tolerances are generally provided in AISC SpecificationSection M4 and AISC
Code of Standard PracticeSection 7.13. Note that the tolerances specified therein are
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 33

2–34 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
predicated upon the proper installation of the following items by the owner’s designated rep-
resentative for construction:
1. Building lines and benchmarks, per AISC Code of Standard PracticeSection 7.4
2. Anchorage devices, per AISC Code of Standard PracticeSection 7.5
3. Bearing devices, per AISC Code of Standard PracticeSection 7.6
4. Grout, per AISCCode of Standard PracticeSection 7.7
Building Façade Tolerances
The preceding mill, fabrication and erection tolerances can be maintained with standard
equipment and workmanship. However, the accumulated tolerances for the structural
steel and the building façade must be accounted for in the design so that the two systems
can be properly mated in the field. In the steel frame, this is normally accomplished by
specifying adjustable connections in the contract documents, per AISC Code of Standard
Practice Section 7.13.1.3. This section has three subsections. Subsection (a) addresses
the vertical position of the adjustable items, subsection (b) addresses the horizontal posi-
tion of the adjustable items, and subsection (c) addresses alignment of adjustable items
at abutting ends.
The required adjustability normally can be determined from the range of adjustment in
the building façade anchor connections, tolerances for the erection of the building façade,
and the accumulation of mill, fabrication and erection tolerances at the mid-span point of
the spandrel beam. The actual locations of the column bases, the actual slope of the columns
and the actual sweep of the spandrel beam all affect the accumulation of tolerances in the
structural steel at this critical location. These conditions must be reflected in details that will
allow successful erection of the steel frame and the façade, if each of these systems is prop-
erly constructed within its permitted tolerance envelope.
Figures 2-3a, 2-4a and 2-5a illustrate details that are not recommended because they do
not provide for adjustment. Figures 2-3b, 2-4b and 2-5b illustrate recommended alternative
details that do provide for adjustability. Note that diagonal structural and stability bracing
elements have been omitted in these details to improve the clarity of presentation regarding
adjustability. Also, note that all elements beyond the slab edge are normally not structural
steel, per AISC Code of Standard PracticeSection 2.2, and are shown for the purposes of
illustration only.
The bolted details in Figures 2-4b and 2-5b can be used to provide field adjustability with
slotted holes as shown. Further adjustability can be provided in these details, if necessary,
by removing the bolts and clamping the connection elements for field welding.
Alternatively, when the slab edge angle or plate in Figure 2-4b is shown as field welded and
identified as adjustable in the contract documents, it can be provided to within a horizontal
tolerance of ±
3
/8in., per AISCCode of Standard PracticeSection 7.13.1.3. However, if the
item was not shown as field welded and identified as adjustable in the contract documents,
it would likely be attached in the shop or attached in the field to facilitate the concrete pour
and not be suitable to provide for the necessary adjustment. The details in Figures 2-3b and
2-4b do not readily permit vertical adjustment of the adjustable material. However, the ver-
tical position tolerance of ±
3
/8in. is less than the tolerance for the position of the spandrel
member itself, see AISC Code of Standard Practice Section 7.13.1.2(b). The manufacturing
tolerance for camber in the spandrel member is set by ASTM A6, as summarized in Table
1-22. The ASTM A6 limit for camber is
1
/8in. per 10 ft of length, thus, in most situations
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 34

TOLERANCES 2–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 2-4. Attaching curtain wall façade systems to structural steel framing.
Fig. 2-3. Attaching cold-formed steel façade systems to structural steel framing.
the vertical position tolerance in AISC Code of Standard PracticeSection 7.13.1.3(b) should
be achieved indirectly. In general, spandrel members should not be cambered. Deflection of
spandrel members should be controlled by member stiffness. Figure 2-5b shows a detail in
which both horizontal and vertical adjustment can be achieved.
With adjustable connections specified in design and provided in fabrication, actions taken
on the job site will allow for a successful façade installation. Per the AISC Code of Standard
Practice definition of established column line (see Code of Standard PracticeGlossary),
(b) With adjustment
(recommended)
(b) With adjustment
(recommended)
(a) Without adjustment
(not recommended)
(a) Without adjustment
(not recommended)
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 35

2–36 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
proper placement of this line by the owner’s designated representative for construction
based upon the actual column-center locations will assure that all subcontractors are work-
ing from the same information. When sufficient adjustment cannot be accommodated within
the adjustable connections provided, a common solution is to allow the building façade to
deviate (or drift) from the theoretical location to follow the as-built locations of the struc-
tural steel framing and concrete floor slabs. A survey of the as-built locations of these
elements can be used to adjust the placement of the building façade accordingly. In this case,
the adjustable connections can serve to ensure that no abrupt changes occur in the façade.
QUALITY CONTROL AND QUALITY ASSURANCE
Prior to 2010, quality control and quality assurance were addressed in the contract docu-
ments, Chapter M of the AISCSpecification, and building codes. In the 2010 AISC
Specification, Chapter N, entitled Quality Control and Quality Assurance, has been added.
This chapter distinguishes between quality control, which is the responsibility of the fabri-
cator and erector, and quality assurance, which is the responsibility of the owner, usually
through third party inspectors. The new provisions bring together requirements from diverse
sources of quality control (QC) and quality assurance (QA), so that plans for QC and
QA can be established on a project specific basis. Chapter N provides tabulated lists of
inspection tasks for both QC and QA. As in the case of the AISC Seismic Provisions, these
tasks are characterized as either “observe” or “perform.” Tasks identified as “observe” are
general and random. Tasks identified as “perform” are specific to the final acceptance of an
item in the work. The characterization of tasks as observe and perform is a substitute for the
Fig. 2-5. Attaching masonry façade systems to structural steel framing.
(a) Without adjustment
(not recommended)
(b) With adjustment
(recommended)
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 36

CAMBERING, CURVING AND STRAIGHTENING 2–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
distinction between periodic and continuous inspection used in other codes and standards,
such as the International Building Code.
CAMBERING, CURVING AND STRAIGHTENING
Beam Camber and Sweep
Camber denotes a curve in the vertical plane. Sweep denotes a curve in the horizontal plane.
Camber and sweep occur naturally in members as received from the mill. The deviation of
the member from straight must be within the mill tolerances specified in ASTM A6/A6M.
When required by the contract documents, cambering and curving to a specified amount
can be provided by the fabricator per AISC Code of Standard PracticeSections 6.4.2 and
6.4.4, either by cold bending or by hot bending.
Cambering and curving induce residual stresses similar to those that develop in rolled
structural shapes as elements of the shape cool from the rolling temperature at different
rates. These residual stresses do not affect the available strength of structural members,
since the effect of residual stresses is considered in the provisions of the AISC Specification.
Cold Bending
The inelastic deformations required in common cold bending operations, such as for beam
cambering, normally fall well short of the strain-hardening range. Specific limitations on
cold-bending capabilities should be obtained from those that provide the service and from
Cold Bending of Wide-Flange Shapes for Construction(Bjorhovde, 2006). However, the
following general guidelines may be useful in the absence of other information:
1. The minimum radius for camber induced by cold bending in members up to a nominal
depth of 30 in. is between 10 and 14 times the depth of the member. Deeper members
may require a larger minimum radius.
2. Cold bending may be used to provide curving in members to practically any radius
desired.
3. A minimum length of 25 ft is commonly practical due to manufacturing/fabrication
equipment.
When curvatures and the resulting inelastic deformations are significant and corrective
measures are required, the effects of cold work on the strength and ductility of the structural
steels largely can be eliminated by thermal stress relief or annealing.
Hot Bending
The controlled application of heat can be used in the shop and field to provide camber or
curvature. The member is rapidly heated in selected areas that tend to expand, but are
restrained by the adjacent cooler areas, causing inelastic deformations in the heated areas
and a change in the shape of the cooled member.
The mechanical properties of steels are largely unaffected by such heating operations,
provided the maximum temperature does not exceed the temperature limitations given in
AISC SpecificationSection M2.1. Temperature-indicating crayons or other suitable means
should be used during the heating process to ensure proper regulation of the temperature.
Heat curving induces residual stresses that are similar to those that develop in hot-rolled
structural shapes as they cool from the rolling temperature because all parts of the shape do
not cool at the same rate.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 37

2–38 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Truss Camber
Camber is provided in trusses, when required, by the fabricator per AISC Code of Standard
PracticeSection 6.4.5, by geometric relocation of panel points and adjustment of member
lengths based upon the camber requirements as specified in the contract documents.
Straightening
All structural shapes are straightened at the mill after rolling, either by rotary or gag straight-
ening, to meet the aforementioned mill tolerances. Similar processes and/or the controlled
application of heat can be used in the shop or field to straighten a curved or distorted
member. These processes are normally applied in a manner similar to those used to induce
camber and curvature and described above.
FIRE PROTECTION AND ENGINEERING
Provisions for structural design for fire conditions are found in Appendix 4 of the AISC
Specification. Complete coverage of fire protection and engineering for steel structures is
included in AISC Design Guide 19, Fire Resistance of Structural Steel Framing(Ruddy et
al., 2003).
CORROSION PROTECTION
In building structures, corrosion protection is not required for steel that will be enclosed by
building finish, coated with a contact-type fireproofing, or in contact with concrete. When
enclosed, the steel is trapped in a controlled environment and the products required for cor-
rosion are quickly exhausted, as indicated in AISC Specification Commentary Section M3.
A similar situation exists when steel is fireproofed or in contact with concrete. Accordingly,
shop primer or paint is not required unless specified in the contract documents, per AISC
SpecificationSection M3.1. Per AISC Code of Standard PracticeSection 6.5, steel that is to
remain unpainted need only be cleaned of heavy deposits of oil and grease by appropriate
means after fabrication.
Corrosion protection is required, however, in exterior exposed applications. Likewise,
steel must be protected from corrosion in aggressively corrosive applications, such as a paper
processing plant, a structure with oceanfront exposure, or when temperature changes can
cause condensation. Corrosion should also be considered when connecting steel to dissimilar
metals. Guidance on steel compatibility with metal fasteners is provided in Table 2-7.
When surface preparation other than the cleaning described above is required, an appro-
priate grade of cleaning should be specified in the contract documents according to the
Society for Protective Coatings (SSPC). A summary of the SSPC surface preparation spec-
ifications (SSPC, 2000) is provided in Table 2-8. SSPC SP 2 is the normal grade of cleaning
when cleaning is required.
For further information, refer to the publications of SSPC, the American Galvanizers
Association (AGA), and the National Association of Corrosion Engineers International
(NACE).
RENOVATION AND RETROFIT OF EXISTING STRUCTURES
The provisions in AISC SpecificationSection B6 govern the evaluation of existing struc-
tures. Historical data on available steel grades and hot-rolled structural shapes, including
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 38

THERMAL EFFECTS 2–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
dimensions and properties, is available in AISC Design Guide 15,Rehabilitation and
Retrofit Guide(Brockenbrough, 2002) and the companion database of historic shape prop-
erties from 1873-1999 available at www.aisc.org. See also Ricker (1988) and Tide (1990).
THERMAL EFFECTS
Expansion and Contraction
The average coefficient of expansion, ε, for structural steel between 70 °F and 100°F is
0.0000065 for each °F (Camp et al., 1951). This value is a reasonable approximation of the
coefficient of thermal expansion for temperatures less than 70 °F. For temperatures from 100
to 1,200 °F, the change in length per unit length per °F, ε, is:
ε=(6.1 +0.0019t)10
-6
(2-9)
where tis the initial temperature in °F. The coefficients of expansion for other building
materials can be found in Table 17-11.
Although buildings are typically constructed of flexible materials, expansion joints are
often required in roofs and the supporting structure when horizontal dimensions are large.
The maximum distance between expansion joints is dependent upon many variables, includ-
ing ambient temperature during construction and the expected temperature range during the
lifetime of the building.
Figure 2-6 (Federal Construction Council, 1974) provides guidance based on design
temperature change for maximum spacing of structural expansion joints in beam-and-
column-framed buildings with pinned column bases and heated interiors. The report includes
data for numerous cities and gives five modification factors to be applied as appropriate:
Fig. 2-6. Recommended maximum expansion-joint spacing.
AISC_Part 02_14th Ed._February 12, 2013 12/02/13 7:59 AM Page 39

2–40 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. If the building will be heated only and will have pinned column bases, use the maxi-
mum spacing as specified.
2. If the building will be air-conditioned as well as heated, increase the maximum spac-
ing by 15% provided the environmental control system will run continuously.
3. If the building will be unheated, decrease the maximum spacing by 33%.
4. If the building will have fixed column bases, decrease the maximum spacing by 15%.
5. If the building will have substantially greater stiffness against lateral displacement in
one of the plan dimensions, decrease the maximum spacing by 25%.
When more than one of these design conditions prevail in a building, the percentile fac-
tor to be applied is the algebraic sum of the adjustment factors of all the various applicable
conditions. Most building codes include restrictions on location and maximum spacing of
fire walls, which often become default locations for expansion joints.
The most effective expansion joint is a double line of columns that provides a complete
and positive separation. Alternatively, low-friction sliding elements can be used. Such sys-
tems, however, are seldom totally friction-free and will induce some level of inherent
restraint to movement.
Elevated-Temperature Service
For applications involving short-duration loading at elevated temperature, the variations in
yield strength, tensile strength, and modulus of elasticity are given in AISC Design Guide
19, Fire Resistance of Structural Steel Framing (Ruddy et al., 2003). For applications
involving long-duration loading at elevated temperatures, the effects of creep must also be
considered. For further information, see Brockenbrough and Merritt (1999; pp. 1.20–1.22).
FATIGUE AND FRACTURE CONTROL
Avoiding Brittle Fracture
By definition, brittle fracture occurs by cleavage at a stress level below the yield strength.
Generally, a brittle fracture can occur when there is a sufficiently adverse combination of
tensile stress, temperature, strain rate and geometrical discontinuity (notch). The exact com-
bination of these conditions and other factors that will cause brittle fracture cannot be
readily calculated. Consequently, the best guide in selecting steel material that is appropri-
ate for a given application is experience.
The steels listed in AISCSpecificationSection A3.1a, Section A3.1c and Section A3.1d
have been successfully used in a great number of applications, including buildings, bridges,
transmission towers and transportation equipment, even at the lowest atmospheric tempera-
tures encountered in the United States. Nonetheless, it is desirable to minimize the
conditions that tend to cause brittle fracture: triaxial state-of-stress, increased strain rate,
strain aging, stress risers, welding residual stresses, areas of reduced notch toughness, and
low-temperature service.
1. Triaxial state-of-stress: While shear stresses are always present in a uniaxial or biaxial
state-of-stress, the maximum shear stress approaches zero as the principal stresses
approach a common value in a triaxial state-of-stress. A triaxial state-of-stress can also
result from uniaxial loading when notches or geometrical discontinuities are present.
A triaxial state-of-stress will cause the yield stress of the material to increase above its
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 40

FATIGUE AND FRACTURE CONTROL 2–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
nominal value, resulting in brittle fracture by cleavage, rather than ductile shear defor-
mations. As a result, in the absence of critical-size notches, the maximum stress is
limited by the yield stress of the nearby unaffected material. Triaxial stress conditions
should be avoided, when possible.
2. Increased strain rate: Gravity loads, wind loads and seismic loads have essentially sim-
ilar strain rates. Impact loads, such as those associated with heavy cranes, and blast
loads normally have increased strain rates, which tend to increase the possibility of
brittle fracture. Note, however, that a rapid strain rate or impact load is not a required
condition for the occurrence of brittle fracture.
3. Strain aging: Cold working of steel and the strain aging that normally results generally
increases the likelihood of brittle fracture, usually due to a reduction in ductility and
notch toughness. The effects of cold work and strain aging can be minimized by select-
ing a generous forming radius to eliminate or minimize strain hardening.
4. Stress risers: Fabrication operations, such as flame cutting and welding, may induce
geometric conditions or discontinuities that are crack-like in nature, creating stress ris-
ers. Intersecting welds from multiple directions should be avoided with properly sized
weld access holes to minimize the interaction of these various stress fields. Such con-
ditions should be avoided, when possible, or removed or repaired when they occur.
5. Welding residual stresses: In the as-welded condition, residual stresses near the yield
strength of the material will be present in any weldment. Residual stresses and the pos-
sible accompanying distortions can be minimized through controlled welding
procedures and fabrication methods, including the proper positioning of the compo-
nents of the joint prior to welding, the selection of welding sequences that will
minimize distortions, the use of preheat as appropriate, the deposition of a minimum
volume of weld metal with a minimum number of passes for the design condition, and
proper control of interpass temperatures and cooling rates. In fracture-sensitive appli-
cations, notch-toughness should be specified for both the base metal and the filler metal.
6. Areas of reduced notch toughness: Such areas can be found in the core areas of heavy
shapes and plates and the k-area of rotary-straightened W-shapes. Accordingly, AISC
SpecificationSections A3.1c and Section A3.1d include special requirements for mate-
rial notch toughness.
7. Low-temperature service: While steel yield strength, tensile strength, modulus of
elasticity, and fatigue strength increase as temperature decreases, ductility and tough-
ness decrease. Furthermore, there is a temperature below which steel subjected to
tensile stress may fracture by cleavage, with little or no plastic deformation, rather
than by shear, which is usually preceded by considerable inelastic deformation. Note
that cleavage and shear are used in the metallurgical sense to denote different fracture
mechanisms.
When notch-toughness is important, Charpy V-notch testing can be specified to ensure a cer-
tain level of energy absorption at a given temperature, such as 15 ft-lb at 70 °F. Note that the
appropriate test temperature may be higher than the lowest operating temperature depending
upon the rate of loading. Although it is primarily intended for bridge-related applications,
the information in ASTM A709 Section S83 (including Tables S1.1, S1.2 and S1.3) may be
useful in determining the proper level of notch toughness that should be specified.
In many cases, weld metal notch toughness exceeds that of the base metal. Filler metals
can be selected to meet a desired minimum notch-toughness value. For each welding
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 41

2–42 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
process, electrodes exist that have no specified notch toughness requirements. Such elec-
trodes should not be assumed to possess any minimum notch-toughness value. When notch
toughness is necessary for a given application, the desired value or an appropriate electrode
should be specified in the contract documents.
For further information, refer to Fisher et al. (1998), Barsom and Rolfe (1999), and
Rolfe (1977).
Avoiding Lamellar Tearing
Although lamellar tearing is less common today, the restraint against solidified weld deposit
contraction inherent in some joint configurations can impose a tensile strain high enough to
cause separation or tearing on planes parallel to the rolled surface of the element being
joined. The incidence of this phenomenon can be reduced or eliminated through greater
understanding by designers, detailers and fabricators of the inherent directionality of rolled
steel, the importance of strains associated with solidified weld deposit contraction in the
presence of high restraint (rather than externally applied design forces), and the need to
adopt appropriate joint and welding details and procedures with proper weld metal for
through-thickness connections.
Dexter and Melendrez (2000) demonstrate that W-shapes are not susceptible to lamellar
tearing or other through-thickness failures when welded tee joints are made to the flanges at
locations away from member ends. When needed for other conditions, special production
practices can be specified for steel plates to assist in reducing the incidence of lamellar tear-
ing by enhancing through-thickness ductility. For further information, refer to ASTM A770.
However, it must be recognized that it is more important and effective to properly design,
detail and fabricate to avoid highly restrained joints. AISC (1973) provides guidelines that
minimize potential problems.
WIND AND SEISMIC DESIGN
In general, nearly all building design and construction can be classified into one of two cat-
egories: wind and low-seismic applications, and high-seismic applications. For additional
discussion regarding seismic design and the applicability of the AISC Seismic Provisions,
see the Scope statement at the front of this manual.
Wind and Low-Seismic Applications
Wind and low-seismic applications are those in which the AISC Seismic Provisionsare not
applicable. Such buildings are designed to meet the provisions in the AISC Specification
based upon the code-specified forces distributed throughout the framing assuming a nomi-
nally elastic structural response. The resulting systems have normal levels of ductility. It is
important to note that the applicable building code includes seismic design requirements
even if the AISC Seismic Provisionsare not applicable. See the AISC Seismic Design
Manualfor additional discussion.
High-Seismic Applications
High-seismic applications are those in which the building is designed to meet the provisions
in both the AISCSeismic Provisionsand the AISC Specification. Note that it does not mat-
ter if wind or earthquake controls in this case. High-seismic design and construction will
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 42

WIND AND SEISMIC DESIGN 2–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
generally cost more than wind and low-seismic design and construction, as the resulting sys-
tems are designed to have high levels of ductility.
High-seismic lateral framing systems are configured to be capable of withstanding strong
ground motions as they undergo controlled ductile deformations to dissipate energy.
Consider the following three examples:
1. Special Concentrically Braced Frames (SCBF)—SCBF are generally configured so
that any inelasticity will occur by tension yielding and/or compression buckling in the
braces. The connections of the braces to the columns and beams and between the
columns and beams themselves must then be proportioned to remain nominally elas-
tic as they undergo these deformations.
2. Eccentrically Braced Frames (EBF)—EBF are generally configured so that any inelas-
ticity will occur by shear yielding and/or flexural yielding in the link. The beam
outside the link, connections, braces and columns must then be proportioned to remain
nominally elastic as they undergo these deformations.
3. Special Moment Frames (SMF)—SMF are generally configured so that any inelastic-
ity will occur by flexural yielding in the girders near, but away from, the connection
of the girders to the columns. The connections of the girders to the columns and the
columns themselves must then be proportioned to remain nominally elastic as they
undergo these deformations. Intermediate moment frames (IMF) and ordinary moment
frames (OMF) are also configured to provide improved seismic performance, although
successively lower than that for SMF.
The code-specified base accelerations used to calculate the seismic forces are not necessar-
ily maximums, but rather, they represent the intensity of ground motions that have been
selected by the code-writing authorities as reasonable for design purposes. Accordingly, the
requirements in both the AISC Seismic Provisionsand the AISCSpecificationmust be met
so that the resulting frames can then undergo controlled deformations in a ductile, well-
distributed manner.
The design provisions for high-seismic systems are also intended to result in distributed
deformations throughout the frame, rather than the formation of story mechanisms, so as to
increase the level of available energy dissipation and corresponding level of ground motion
that can be withstood.
The member sizes in high-seismic frames will be larger than those in wind and low-
seismic frames. The connections will also be much more robust so they can transmit the
member-strength-driven force demands. Net sections will often require special attention so
as to avoid having fracture limit states control. Special material requirements, design con-
siderations and construction practices must be followed. For further information on the
design and construction of high-seismic systems, see the AISCSeismic Provisions, which
are available at www.aisc.org.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 43

2–44 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 2 REFERENCES
Much of the material referenced in the Steel Construction Manualmay be found at
www.aisc.org.
ACI (2008), Building Code Requirements for Structural Concrete and Commentary, ACI
318, American Concrete Institute, Farmington Hills, MI.
Allison, H. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, AISC, Chicago,
IL.
AISC (1973), “Commentary on Highly Restrained Welded Connections,” Engineering
Journal, Vol. 10, No. 3, 3rd Quarter, American Institute of Steel Construction, Chicago, IL.
AISC (2005), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American
Institute of Steel Construction, Chicago, IL.
AISC (2006), Seismic Design Manual,American Institute of Steel Construction, Chicago, IL.
AISC (2009), Detailing for Steel Construction, 3rd Ed., American Institute of Steel
Construction, Chicago, IL.
AISC (2010a), Specification for Structural Steel Buildings, ANSI/AISC 360-10, American
Institute of Steel Construction, Chicago, IL.
AISC (2010b), Seismic Provisions for Structural Steel Buildings, AISI/AISC 341-10,
American Institute of Steel Construction, Chicago, IL.
AISC (2010c), Code of Standard Practice for Steel Buildings and Bridges, American
Institute of Steel Construction, Chicago, IL.
AISC (2011), Design Examples,V. 14.0, American Institute of Steel Construction, Chicago,
IL.
ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10,
American Society of Civil Engineers, Reston, VA.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination,
AWS A2.4, American Welding Society, Miami, FL.
AWS (2010), Structural Welding Code—Steel, AWS D1.1:2010, American Welding Society,
Miami, FL.
Barger, B.L. and West, M.A. (2001), “New OSHA Erection Rules: How They Affect
Engineers, Fabricators and Contractors,” Modern Steel Construction, May, AISC, Chicago,
IL.
Barsom, J.A. and Rolfe, S.T. (1999), Fracture and Fatigue Control in Structures: Applications
of Fracture Mechanics, 3rd Edition, ASTM, West Conshohocken, PA.
Bjorhovde, R, (2006), “Cold Bending of Wide-Flange Shapes for Construction,”
Engineering Journal, AISC, Vol. 43, No. 4, 4th Quarter, Chicago, IL, pp 271-286.
Brockenbrough, R.L. and Merritt, F.S. (1999), Structural Steel Designer’s Handbook,
3rd Edition, McGraw-Hill, New York, NY.
Brockenbrough, R.L. (2002), AISC Rehabilitation and Retrofit Guide—A Reference for
Historic Shapes and Specifications, Design Guide 15, AISC, Chicago, IL.
Camp, J.M., Francis, C.B. and McGannon H.E. (1951), The Making, Shaping and Treating
of Steel, 6th Edition, U.S. Steel, Pittsburgh, PA.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications, Design Guide 13, AISC, Chicago, IL.
CASE (2003), A Guideline Addressing Coordination and Completeness of Structural
Construction Documents, Document 962D, Council of American Structural Engineers.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 44

PART 2 REFERENCES 2–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Churches, C.H., Troup, E.W.J. and Angeloff, C. (2003), Steel-Framed Open-Deck Parking
Structures, Design Guide 18, AISC, Chicago, IL.
CISC (1989), Roof Framing with Cantilever (Gerber) Girders & Open Web Joists, Canadian
Institute of Steel Construction, Willowdale, Ontario, Canada.
Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC,
Chicago, IL.
Dexter, R.J. and Melendrez, M.I. (2000), “Through-Thickness Properties of Column
Flanges in Welded Moment Connections,” Journal of Structural Engineering, ASCE,
Vol. 126, No. 1, pp. 24–31.
DOD (2009), Design of Buildings to Resist Progressive Collapse, UFC 4-023-03, July.
Federal Construction Council (1974), Technical Report No. 65 Expansion Joints in Buildings,
National Research Council, Washington, DC.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Buildings,
Design Guide 10, AISC, Chicago, IL.
Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed.,
AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, Design Guide 1,
2nd Ed., AISC, Chicago, IL.
Fisher, J.W., Kulak, G.L. and Smith, I.F.C. (1998), A Fatigue Primer for Structural
Engineers, NSBA/AISC, Chicago, IL.
Geschwindner, L.F. and Gustafson, K. (2010), “Single-Plate Shear Connection Design to
meet Structural Integrity Requirements,” Engineering Journal, AISC, Vol. 47, No. 3, 3rd
Quarter, pp. 189–202.
Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Gross, J.L., Engelhardt, M.D., Uang, C.M., Kasai, K. and Iwankiw, N.R. (1999), Modification
of Existing Welded Steel Moment Frame Connections for Seismic Resistance, Design Guide
12, AISC, Chicago, IL.
ICC (2009), International Building Code, International Code Council, Falls Church, VA.
Kaehler, R.C., White, D.W. and Kim, Y.K. (2010), Web-Tapered Frame Design, Design
Guide 25, AISC, Chicago, IL.
Kulak, G.L. (2002), High Strength Bolts—A Primer for Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite
Connections, Design Guide 8, AISC, Chicago, IL.
Miller, D.K. (2006), Welded Connections—A Primer for Engineers, Design Guide 21, AISC,
Chicago, IL.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections—Seismic
and Wind Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, AISC, Chicago, IL.
Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment
End-Plate Connections, Design Guide 16, AISC, Chicago, IL.
OSHA (2001), Safety and Health Standards for the Construction Industry, 29 CFR 1926
Part R Safety Standards for Steel Erection, Occupational Safety and Health
Administration, Washington, DC.
AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:15 AM Page 45 (Black plate)

2–46 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
Parker, J.C. (2008), Façade Attachments to Steel-Framed Buildings, Design Guide 22,
AISC, Chicago, IL.
RCSC (2009), Specification for Structural Joints Using High-Strength Bolts, Research
Council on Structural Connections, Chicago, IL.
Ricker, D.T. (1988), “Field Welding to Existing Structures,” Engineering Journal, AISC,
Vol. 25, No. 1, 1st Quarter, pp. 1–16.
Rolfe, S.T. (1977), “Fracture and Fatigue Control in Steel Structures,” Engineering Journal,
AISC, Vol. 14, No. 1, 1st Quarter, pp. 2–15.
Rongoe, J. (1996), “Design Guidelines for Continuous Beams Supporting Steel Joist
Roof Structures,” Proceedings of the AISC National Steel Construction Conference,
pp. 23.1–23.44, AISC, Chicago, IL.
Ruby, D.I. (2008), Constructability of Structural Steel Buildings, Design Guide 23, AISC,
Chicago, IL.
Ruddy, J.L. (1986), “Ponding of Concrete Deck Floors,” Engineering Journal, AISC,
Vol. 23, No. 3, 3rd Quarter, pp. 107–115.
Ruddy, J.L., Marlo, J.P., Ioannides, S.A and Alfawakhiri, F. (2003), Fire Resistance of
Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Sabelli, R. and Bruneau, M. (2006), Steel Plate Shear Walls, Design Guide 20, AISC,
Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
SSPC (2000), Systems and Specifications: SSPC Painting Manual, Volume II, 8th Edition,
The Society for Protective Coatings, Pittsburgh, PA.
Thornton, W.A. (1995), “Connections: Art, Science, and Information in the Quest for
Economy and Safety,” Engineering Journal, AISC, Vol 32, No. 4, 4th Quarter, pp. 132–144.
Tide, R.H.R. (1990), “Reinforcing Steel Members and the Effects of Welding,” Engineering
Journal, AISC, Vol. 27, No. 4, 4th Quarter, pp. 129–131.
USGSA (2003), “Progressive Collapse Analysis and Design Guidelines for New Federal
Office Buildings and Major Modernization Projects,” U.S. General Services
Administration, Washington, DC.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for
Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.
Wexler, N. and Lin, F.B. (2002), Staggered Truss Framing Systems, Design Guide 14, AISC,
Chicago, IL.
AISC_Part 02:14th Ed._ 2/17/12 7:18 AM Page 46

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 2-2
Summary Comparison of Methods
for Stability Analysis and Design
Direct Analysis Effective Length First-Order Analysis
Method Method Method
Limitations on Use
a
None Δ2nd/Δ1st≤ 1.5
Δ2nd/Δ1st≤ 1.5
αPr/Py≤ 0.5
Analysis Type Second-order elastic
b
First-order elastic
Geometry of
All three methods use the undeformed geometry in the analysis.
Structure
Minimum or
Minimum;
c
0.2% Minimum; 0.2% Additive; at least
Additional Lateral
of the story of the story 0.42% of the
Loads Required
gravity load gravity load story gravity load
in the Analysis
Member Stiffnesses
Reduced
EAand EI Nominal EAand EI
Used in the Analysis
K=1 for braced frames. For
Design of Columns
K=1 for all frames moment frames, determine KK =1 for all frames
e
from sidesway buckling analysis
d
Specification
Reference for Chapter C Appendix Section 7.2 Appendix Section 7.3
Method
a
Δ2nd⁄Δ1stis the ratio of second-order drift to first-order drift, which can be taken to be equal to B2calculated per Appendix 8. Δ 2nd⁄Δ1stis
determined using LRFD load combinations or a multiple of 1.6 times ASD load combinations.
b
Either a general second-order analysis method or second-order analysis by amplified first-order analysis (the “B1-B2method” described in
Appendix 8) can be used.
c
This notional load is additive if Δ 2nd⁄Δ1st>1.5.
d
K = 1 is permitted for moment frames when Δ 2nd⁄Δ1st≤1.1.
e
An additional amplification for member curvature effects is required for columns in moment frames.
Table 2-3
AISI Standard Nomenclature
for Flat-Rolled Carbon Steel
Width, in.
Thickness, in. To Over 3
1
⁄2 Over 6 Over 8 Over 12 Over 48
3
1
⁄2incl. To 6 To 8 To 12 To 48
0.2300 & thicker Bar Bar Bar Plate Plate Plate
0.2299 to 0.2031 Bar Bar Strip Strip Sheet Plate
0.2030 to 0.1800 Strip Strip Strip Strip Sheet Plate
0.1799 to 0.0449 Strip Strip Strip Strip Sheet Sheet
0.0448 to 0.0344 Strip Strip
0.0343 to 0.0255 Strip Hot-rolled sheet and strip not generally produced
0.0254 & thinner
in these widths and thicknesses
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 47

Table 2-4
Applicable ASTM Specifications
for Various Structural Shapes
FyMin. Fu
Yield Tensile
Steel ASTM Stress Stress
a
Type Designation (ksi) (ksi) W M S HP C MC L Rect. Pipe
A36 36 58-80
b
A53 Gr. B 35 60
Gr. B
42 58
A500
46 58
Gr. C
46 62
50 62
A501
Gr. A 36 58
Gr. B 50 70
A529
c
Gr. 50 50 65-100
Gr. 55 55 70-100
Gr. 42 42 60
Gr. 50 50 65
d
A572 Gr. 55 55 70
Gr. 60
e
60 75
Gr. 65
e
65 80
A618
f
Gr. I & II 50
g
70
g
Gr. III 50 65
50 50
h
60
h
A913
60 60 75
65 65 80
70 70 90
A992 50 65
i
42
j
63
j
A242 46
k
67
k
50
l
70
l
A588 50 70
A847 50 70
=Preferred material specification
=Other applicable material specification, the availability of which should be confirmed prior to specification
=Material specification does not apply
a
Minimum unless a range is shown.
b
For shapes over 426 lb/ft, only the minimum of 58 ksi applies.
c
For shapes with a flange thickness less than or equal to 1
1
⁄2in. only. To improve weldability, a maximum carbon equivalent can be specified
(per ASTM Supplementary Requirement S78). If desired, maximum tensile stress of 90 ksi can be specified (per ASTM Supplementary
Requirement S79).
d
If desired, maximum tensile stress of 70 ksi can be specified (per ASTM Supplementary Requirement S81).
e
For shapes with a flange thickness less than or equal to 2 in. only.
f
ASTM A618 can also be specified as corrosion-resistant; see ASTM A618.
g
Minimum applies for walls nominally
3
⁄4-in. thick and under. For wall thicknesses over
3
⁄4in., Fy=46 ksi and Fu=67 ksi.
h
If desired, maximum yield stress of 65 ksi and maximum yield-to-tensile strength ratio of 0.85 can be specified (per ASTM Supplementary
Requirement S75).
i
A maximum yield-to-tensile strength ratio of 0.85 and carbon equivalent formula are included as mandatory in ASTM A992.
j
For shapes with a flange thickness greater than 2 in. only.
k
For shapes with a flange thickness greater than 1
1
⁄2in. and less than or equal to 2 in. only.
l
For shapes with a flange thickness less than or equal to 1
1
⁄2in. only.
2–48 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Carbon
High-
Strength
Low-
Alloy
Corrosion
Resistant
High-
Strength
Low-Alloy
Applicable Shape Series
HSS
Round
AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:18 AM Page 48 (Black plate)

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 2-5
Applicable ASTM Specifications
for Plates and Bars
FyMin. Fu over over over over over over over over
Yield Tensile to 0.75 1.25 1.5 2 to 2.5 4 to 5 to 6 to
Steel ASTM Stress Stress
a
0.75 to to to 2 2.5 to 4 5 6 8 over
Type Designation (ksi) (ksi) incl. 1.25 1.5 incl. incl. incl. incl. incl. incl. 8
A36
32 58-80
36 58-80
A529
Gr. 50 50 70-100
bbbb
Gr. 55 55 70-100
bb
Gr. 42 42 60
Gr. 50 50 65
A572 Gr. 55 55 70
Gr. 60 60 75
Gr. 65 65 80
42 63
A242 46 67
50 70
42 63
A588 46 67
50 70
90 100-130
A514
c
100 110-130
A852
c
70 90-110
=Preferred material specification
=Other applicable material specification, the availability of which should be confirmed prior to specification
=Material specification does not apply
a
Minimum unless a range is shown.
b
Applicable to bars only above 1-in. thickness.
c
Available as plates only.
Carbon
Thickness of Plates and Bars, in.
High-
Strength
Low-
Alloy
Corrosion
Resistant
High-
Strength
Low-Alloy
Quenched
and
Tempered
Alloy
Quenched
and
Tempered
Low-Alloy
AISC_Part 02_14th Ed._February 25, 2013 14-11-10 10:21 AM Page 49 (Black plate)

Table 2-6
Applicable ASTM Specifications for
Various Types of Structural Fasteners
Fy
Min. Fu
Yield Tensile
ASTM Stress Stress
a
Diameter Range Designation (ksi) (ksi) (in.)
A108 — 65 0.375 to 0.75, incl.
A325
d
— 105 over 1 to 1.5, incl.
— 120 0.5 to 1, incl.
A490
d
— 150 0.5 to 1.5
F1852
d
— 105 1.125
— 120 0.5 to 1, incl.
F2280
d
— 150 0.5 to 1.125, incl.
A194 Gr. 2H — — 0.25 to 4
A563 — — 0.25 to 4
F436
b
— — 0.25 to 4
F959 — — 0.5 to 1.5
A36 36 58-80 to 10
— 100 over 4 to 7
A193 Gr. B7
e
— 115 over 2.5 to 4
— 125 2.5 and under
A307 Gr. A — 60 0.25 to 4
A354 Gr. BD
— 140 2.5 to 4, incl.
— 150 0.25 to 2.5, incl.
— 90 1.75 to 3, incl.
c
A449 — 105 1.125 to 1.5, incl.
c
— 120 0.25 to 1, incl.
c
Gr. 42 42 60 to 6
Gr. 50 50 65 to 4
A572 Gr. 55 55 70 to 2
Gr. 60 60 75 to 1.25
Gr. 65 65 80 to 1.25
42 63 Over 5 to 8, incl.
A588 46 67 Over 4 to 5, incl.
50 70 4 and under
A687 105 150 max. 0.625 to 3
F1554 Gr. 36 36 58-80 0.25 to 4
Gr. 55 55 75-95 0.25 to 4
Gr. 105 105 125-150 0.25 to 3
=Preferred material specification
=Other applicable material specification, the availability of which should be confirmed prior to specification
=Material specification does not apply
— Indicates that a value is not specified in the material specification.
a
Minimum unless a range is shown or maximum (max.) is indicated.
b
Special washer requirements may apply per RCSC SpecificationTable 6.1 for some steel-to-steel bolting applications and per Part 14 for
anchor-rod applications.
c
See AISC SpecificationSection J3.1 for limitations on use of ASTM A449 bolts.
d
When atmospheric corrosion resistance is desired, Type 3 can be specified.
e
For anchor rods with temperature and corrosion resistance characteristics.
2–50 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Conventional
Common Bolts
Nuts
Washers
Direct-Tension-
Indicator Washers
Threaded Rods
Steel Headed Stud
Anchors
Hooked
Headed
Threaded
& Nutted
Twist-Off-Type
Tension-Control
High-
Strength
Bolts
Anchor Rods
AISC_Part 02_14th Ed._ 22/02/12 2:47 PM Page 50

TABLES FOR THE GENERAL DESIGN AND SPECIFICATION OF MATERIALS 2–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 2-7
Metal Fastener Compatibility
to Resist Corrosion
Fastener Metal Austenitic
Aluminum Brasses, Martensitic Stainless
Zinc and and Copper, Stainless Steel (Type
Galvanized Aluminum Steel and Bronzes, Steel 302/304,
Base Metal Steel Alloys Cast Iron Monel (Type 410) 303, 305)
Zinc and Galvanized Steel A B BCCC
Aluminum and Aluminum Not
Alloys
AABC
Recommended
B
Steel and Cast Iron A, D A A C C B
Terne (Lead-Tin) Plated
Steel Sheets
A, D, E A, E A, E C C B
Brasses, Copper, Bronzes,
Monel
A, D, E A, E A, E A A B
Ferritic Stainless Steel
(Type 430)
A, D, E A, E A, E A A A
Austenitic Stainless Steel
(Type 302/304)
A, D, E A, E A, E A, E A A
KEY
A. The corrosion of the base metal is not increased by the fastener.
B. The corrosion of the base metal is marginally increased by the fastener.
C. The corrosion of the base metal may be markedly increased by the fastener material.
D. The plating on the fastener is rapidly consumed, leaving the bare fastener metal.
E. The corrosion of the fastener is increased by the base metal.
NOTE: Surface treatment and environment can change activity. For a more thorough understanding of metal corrosion in construction
materials, please consult a full listing of the galvanic series of metals and alloys.
Note: Reprinted from the Specialty Steel Industry of North America Stainless Steel Fasteners Designer’s Handbook.
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 51

2–52 GENERAL DESIGN CONSIDERATIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 2-8
Summary of Surface
Preparation Specifications
SSPC
Specification
No. Title Description
SP1
Solvent Removal of oil, grease, dirt, soil, salts and contaminants by cleaning with solvent,
Cleaning vapor, alkali, emulson or steam.
SP2
Hand-Tool Removal of all loose rust, loose mill scale and loose paint to degree specified, by
Cleaning hand-chipping, scraping, sanding and wire brushing.
SP3
Power-Tool Removal of all loose rust, loose mill scale and loose paint to degree specified, by
Cleaning power-tool chipping, descaling, sanding, wire brushing, and grinding.
Metal Blast
Removal of all visible rust, mill scale, paint and foreign matter by blast-cleaning
SP5/NACE No.1
Cleaning
by wheel or nozzle (dry or wet) using sand, grit or shot. (For very corrosive
atmospheres where high cost of cleaning is warranted.)
SP6/NACE No.3
Commercial Blast- Blast-cleaning until at least two-thirds of the surface area is free of all visible
Cleaning residues. (For conditions where thoroughly cleaned surface is required.)
SP7/NACE No. 4
Brush-Off Blast- Blast-cleaning of all except tightly adhering residues of mill scale, rust and
Cleaning coatings, exposing numerous evenly distributed flecks of underlying metal.
SP8 Pickling
Complete removal of rust and mill scale by acid-pickling, duplex-pickling or
electrolytic pickling.
Near-White
Blast-cleaning to nearly white metal cleanliness, until at least 95% of the
SP10/NACE No.2
Blast-Cleaning
surface area is free of all visible residues. (For high humidity, chemical
atmosphere, marine or other corrosive environments.)
Power-Tool
Complete removal of all rust, scale and paint by power tools, with resultant
SP11 Cleaning to
surface profile.
Bare Metal
AISC_Part 02:14th Ed._ 1/20/11 7:38 AM Page 52

PART 3
DESIGN OF FLEXURAL MEMBERS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
SECTION PROPERTIES AND AREAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
For Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
For Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3–4
FLEXURAL STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
Braced, Compact Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
Unbraced Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
Noncompact or Slender Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
Available Flexural Strength for Weak-Axis Bending . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
LOCAL BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
Determining the Width-to-Thickness Ratios of the Cross Section . . . . . . . . . . . . . . . 3–6
Classification of Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
LATERAL-TORSIONAL BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
Classification of Spans for Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
Consideration of Moment Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
AVAILABLE SHEAR STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS . . . . . . . . . . . . . . . . . . . . . . 3–7
Concrete Slab Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
Available Flexural Strength for Positive Moment . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
Shored and Unshored Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
Available Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
Special Requirements for Heavy Shapes and Plates . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
Flexural Design Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
W-Shape Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
Maximum Total Uniform Load Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–1
AISC_Part 3A:14th Ed. 4/1/11 8:45 AM Page 1

Plots of Available Flexural Strength vs. Unbraced Length . . . . . . . . . . . . . . . . . . . . 3–11
Available Flexural Strength of HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
Strength of Other Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
Composite Beam Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
Beam Diagrams and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16
PART 3 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
Flexural Design Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
Table 3-1. Values of C
bfor Simply Supported Beams . . . . . . . . . . . . . . . . . . . . 3–18
W-Shape Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
Table 3-2. W-Shapes—Selection by Z
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
Table 3-3. W-Shapes—Selection by I
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–28
Table 3-4. W-Shapes—Selection by Z
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–30
Table 3-5. W-Shapes—Selection by I
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–33
Maximum Total Uniform Load Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–35
Table 3-6. W-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . 3–35
Table 3-7. S-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . . 3–80
Table 3-8. C-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . . . 3–85
Table 3-9. MC-Shapes—Maximum Total Uniform Load . . . . . . . . . . . . . . . . . . 3–91
Plots of Available Flexural Strength vs. Unbraced Length . . . . . . . . . . . . . . . . . . . 3–99
Table 3-10. W-Shapes—Plots of Available Moment vs. Unbraced Length . . . . 3–99
Table 3-11. C- and MC-Shapes—Plots of Available Moment vs.
Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–135
Available Flexural Strength of HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–143
Table 3-12. Rectangular HSS—Available Flexural Strength . . . . . . . . . . . . . . 3–143
Table 3-13. Square HSS—Available Flexural Strength . . . . . . . . . . . . . . . . . . . 3–147
Table 3-14. Round HSS—Available Flexural Strength . . . . . . . . . . . . . . . . . . . 3–148
Table 3-15. Pipe—Available Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . 3–151
Strength of Other Flexural Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–152
Tables 3-16 and 3-17. Available Shear Stress in Plate Girders . . . . . . . . . . . . . 3–152
Table 3-18. Floor Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–156
Composite Beam Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158
Table 3-19. Composite W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158
Table 3-20. Lower-Bound Elastic Moment of Inertia . . . . . . . . . . . . . . . . . . . . 3–192
Table 3-21. Nominal Horizontal Shear Strength for One Steel Headed
Stud Anchor, Q
n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–209
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–2 DESIGN OF FLEXURAL MEMBERS
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 2

Beam Diagrams and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–210
Table 3-22a. Concentrated Load Equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . 3–210
Table 3-22b. Cantilevered Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–211
Table 3-22c. Continuous Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–212
Table 3-23. Shears, Moments and Deflections . . . . . . . . . . . . . . . . . . . . . . . . . 3–213
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN OF FLEXURAL MEMBERS 3–3
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 3

3–4 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of flexural members subject to uniaxial flexure without axial forces or
torsion. For the design of members subject to biaxial flexure and/or flexure in combination
with axial tension or compression and/or torsion, see Part 6.
SECTION PROPERTIES AND AREAS
For Flexure
Flexural design properties are based upon the full cross section with no reduction for bolt
holes when the limitations in AISC SpecificationSection F13.1(a) are satisfied. Otherwise,
the flexural design properties are based upon a flexural rupture check given in AISC
SpecificationSection F13.1(b).
For Shear
For shear, the area is determined per AISC SpecificationChapter G.
FLEXURAL STRENGTH
The nominal flexural strength of W-shapes is illustrated as a function of the unbraced length,
L
b, in Figure 3 -1. The available strength is determined as φM nor Mn/Ω, which must equal
or exceed the required strength (bending moment), M
uor M a, respectively. The available
flexural strength, φM
nor Mn/Ω, is determined per AISC SpecificationChapter F. Table User
Note F1.1 outlines the sections of Chapter F and the corresponding limit states applicable to
each member type.
Braced, Compact Flexural Members
When flexural members are braced (L b≤Lp) and compact (λ≤λ p), yielding must be con-
sidered in the nominal moment strength of the member, in accordance with the requirements
of AISC SpecificationChapter F.
Unbraced Flexural Members
When flexural members are unbraced (L b>Lp), have flange width-to-thickness ratios such
that λ>λ
p, or have web width-to-thickness ratios such that λ>λ p, lateral-torsional and elas-
tic buckling effects must be considered in the calculation of the nominal moment strength
of the member.
Noncompact or Slender Cross Sections
For flexural members that have width-to-thickness ratios such that λ > λ p, local buckling
must be considered in the calculation of the nominal moment strength of the member.
Available Flexural Strength for Weak-Axis Bending
The design of flexural members subject to weak-axis bending is similar to that for strong-
axis bending, except that lateral-torsional buckling and web local buckling do not apply. See
AISC SpecificationSection F6.
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 4

(Spec.Eq. F2-5)
(Spec.Eq. F2-6)
(3-1)
For cross sections with noncompact flanges:
(from Spec.Eq. F3-1)
(3-2)
FLEXURAL STRENGTH 3–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 3-1. General available flexural strength of beams.
Lr
E
F
py
y=176.
Lr
E
F
Jc
Sh
Jc
Sh
F
E
rts
yxo xo
y=+






+195
07
676
07
2
.
.
.
.
⎛⎛





=
2
07MFS
ryx.
′==− − ( )








MMM M FS
pnp p yx
pf
rf pf 07.
λλ
λλ
′=+ −( )
−′( )
−( )
LL LL
MM
MM
pp rp
pp
pr
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 5

LOCAL BUCKLING
Determining the Width-to-Thickness Ratios
of the Cross Section
Flexural members are classified for flexure on the basis of the width-to-thickness ratios of
the various elements of the cross section. The width-to-thickness ratio, λ, is determined for
each element of the cross section per AISC SpecificationSection B4.1.
Classification of Cross Sections
Cross sections are classified as follows:
• Flexural members are compact (the plastic moment can be reached without local buck-
ling) when λis equal to or less than λ
pand the flange(s) are continuously connected to
the web(s).
• Flexural members are noncompact (local buckling will occur, but only after initial
yielding) when λexceeds λ
pbut is equal to or less than λ r.
• Flexural members are slender-element cross sections (local buckling will occur prior to
yielding) when λexceeds λ
r.
The values of λ
pand λ rare determined per AISC SpecificationSection B4.1.
LATERAL-TORSIONAL BUCKLING
Classification of Spans for Flexure
Flexural members bent about their strong axis are classified on the basis of the length, L b,
between braced points. Braced points are points at which support resistance against lateral-
torsional buckling is provided per AISC SpecificationAppendix 6, Section 6.3. Classifications
are determined as follows:
• If L
b≤Lp, flexural member is not subject to lateral-torsional buckling.
• If L
p<Lb≤Lr, flexural member is subject to inelastic lateral-torsional buckling.
• If L
b>Lr, flexural member is subject to elastic lateral-torsional buckling.
The values of L
pand L rare determined per AISC SpecificationChapter F. These values are
presented in Tables 3-2, 3-6, 3-7, 3-8, 3-9, 3-10 and 3-11. Note that for cross sections with
noncompact flanges, the value given for L
pin these tables is L′ pas given in Equation 3-2 of
Figure 3-1. In Tables 3-10 and 3-11, L
pis defined by •and L rby
°
.
Lateral-torsional buckling does not apply to flexural members bent about their weak axis or
HSS bent about either axis, per AISC SpecificationSections F6, F7 and F8.
Consideration of Moment Gradient
When L b>Lp, the moment gradient between braced points can be considered in the deter-
mination of the available strength using the lateral-torsional buckling modification factor,
C
b, herein referred to as the LTB modification factor. In the case of a uniform moment
between braced points causing single-curvature of the member, C
b=1.0. This represents the
worst case and C
bcan be conservatively taken equal to 1.0 for use with the maximum
moment between braced points in most designs. See AISC SpecificationCommentary
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–6 DESIGN OF FLEXURAL MEMBERS
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 6

Section F1 for further discussion. A nonuniform moment gradient between braced points can
be considered using C
bcalculated as given in AISC SpecificationEquation F1-1. Exceptions
are provided as follows:
1. As an alternative, when the moment diagram between braced points is a straight line,
C
bcan be calculated as given in AISC SpecificationCommentary Equation C-F1-1.
2. For cantilevers or overhangs where the free end is unbraced, C
b=1.0 per AISC
SpecificationSection F1.
3. For tees with the stem in compression, C
b=1.0 as recommended in AISC Specification
Commentary Section F9.
AVAILABLE SHEAR STRENGTH
For flexural members, the available shear strength, φV nor Vn/Ω,which must equal or
exceed the required strength, V
uor Va, respectively, is determined in accordance with AISC
SpecificationChapter G. Values of φV
nand V n/Ωcan be found in Tables 3-2, 3-6, 3-7, 3-8
and 3-9.
STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS
The following pertains to W-shapes with composite concrete slabs in regions of positive
moment. For composite flexural members in regions of negative moment, see AISC
SpecificationChapter I. For further information on composite design and construction, see
Viest et al. (1997).
Concrete Slab Effective Width
The effective width of a concrete slab acting compositely with a steel beam is determined
per AISC SpecificationSection I3.1a.
Steel Anchors
Material, placement and spacing requirements for steel anchors are given in AISC
SpecificationChapter I. The nominal shear strength, Q
n, of one steel headed stud anchor is
determined per AISC SpecificationSection I8.2a and is tabulated for common design con-
ditions in Table 3-21. The horizontal shear strength, V′
r, at the steel-concrete interface will
be the least of the concrete crushing strength, steel tensile yield strength, or the shear
strength of the steel anchors. Table 3-21 considers only the limit state of shear strength of a
steel headed stud anchor.
Available Flexural Strength for Positive Moment
The available flexural strength of a composite beam subject to positive moment is deter-
mined per AISC SpecificationSection I3.2a assuming a uniform compressive stress of
0.85f
c′and zero tensile strength in the concrete, and a uniform stress of F yin the tension area
(and compression area, if any) of the steel section. The position of the plastic neutral axis
(PNA) can then be determined by static equilibrium.
Per AISC SpecificationSection I3.2d, enough steel anchors must be provided between a
point of maximum moment and the nearest point of zero moment to transfer the total hori-
zontal shear force, V′
r, between the steel beam and concrete slab, where V′ ris determined per
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STEEL W-SHAPE BEAMS WITH COMPOSITE SLABS 3–7
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 7

AISC SpecificationSection I3.2d(1). For partial composite design, the horizontal shear
strength, V′
r, controls the available flexural strength of the composite flexural member.
Shored and Unshored Construction
The available flexural strength is identical for both shored and unshored construction. In
unshored construction, issues such as lateral support during construction and construction-
load deflection may require consideration.
Available Shear Strength
Per AISC SpecificationSection I4, the available shear strength for composite beams is deter-
mined as illustrated previously for steel beams.
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of flexural members.
Special Requirements for Heavy Shapes and Plates
For beams with complete-joint-penetration groove welded joints and made from heavy
shapes with a flange thickness exceeding 2 in., see AISC SpecificationSections A3.1c.
For built-up sections consisting of plates with a thickness exceeding 2 in., see Section
A3.1d.
Serviceability
Serviceability requirements, per AISC SpecificationChapter L, should be appropriate for
the application. This includes an appropriate limit on the deflection of the flexural member
and the vibration characteristics of the system of which the flexural member is a part. See
also AISC Design Guide 3, Serviceability Design Considerations for Steel Buildings(West
et al., 2003), AISC Design Guide 5, Low- and Medium-Rise Steel Buildings(Allison, 1991)
and AISC Design Guide 11, Floor Vibrations Due to Human Activity(Murray et al., 1997).
The maximum vertical deflection, Δ, can be calculated using the equations given in
Tables 3-22 and 3-23. Alternatively, for common cases of simple-span beams and I-shaped
members and channels, the following equation can be used:
Δ = ML
2
/(C1Ix) (3-3)
where
M= maximum service-load moment, kip-ft
L= span length, ft
I
x= moment of inertia, in.
4
C1= loading constant (see Figure 3-2) which includes the numerical constants appropri-
ate for the given loading pattern, E(29,000 ksi), and a ft-to-in. conversion factor of
1,728 in.
3
/ft
3
.
3–8 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3A_14th Ed._February 12, 2013 12/02/13 8:06 AM Page 8

DESIGN TABLE DISCUSSION 3–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION
Flexural Design Tables
Table 3-1. Values of C
bfor Simply Supported Beams
Values of the LTB modification factor, C b, are given for various loading conditions on sim-
ple-span beams in Table 3-1.
W-Shape Selection Tables
Table 3-2. W-Shapes—Selection by Z
x
W-shapes are sorted in descending order by strong-axis flexural strength and then grouped
in ascending order by weight with the lightest W-shape in each range in bold. Strong-axis
available strengths in flexure and shear are given for W-shapes with F
y=50 ksi (ASTM
A992). C
bis taken as unity.
For compact W-shapes, when L
b≤Lp, the strong-axis available flexural strength,φ bMpx
or M px/Ωb, can be determined using the tabulated strength values. When L p<Lb≤Lr,
linearly interpolate between the available strength at L
pand the available strength at L r
as follows:
Fig. 3-2. Loading constants for use in determining simple beam deflections.
LRFD ASD
φ
bMn =Cb [φbMpx φbBF(L b− Lp)]
≤φ
bMpx (3-4a)
M
C
M BF
LL
Mn
b
px
b
bp
px
=

– ( )
bb
bΩΩΩ
Ω








(3-4b)
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 9

where
When L
b>Lr, see Table 3-10.
The strong-axis available shear strength, φ
vVnx or Vnx/Ωv,can be determined using the
tabulated value.
Table 3-3. W-Shapes—Selection by I x
W-shapes are sorted in descending order by strong-axis moment of inertia, I x, and then
grouped in ascending order by weight with the lightest W-shape in each range in bold.
Table 3-4. W-Shapes—Selection by Z y
W-shapes are sorted in descending order by weak-axis flexural strength and then grouped in
ascending order by weight with the lightest W-shape in each range in bold. Weak-axis avail-
able strengths in flexure are given for W-shapes with F
y=50 ksi (ASTM A992). C bis taken
as unity.
For noncompact W-shapes, the tabulated values of M
ny/Ωband φ bMnyhave been adjusted
to account for the noncompactness.
The weak-axis available shear strength must be checked independently.
Table 3-5. W-Shapes—Selection by I y
W-shapes are sorted in descending order by weak-axis moment of inertia, I y, and then
grouped in ascending order by weight with the lightest W-shape in each range in bold.
Maximum Total Uniform Load Tables
Table 3-6. W-Shapes—Maximum Total Uniform Load
Maximum total uniform loads on braced (L b≤Lp) simple-span beams bent about the strong
axis are given for W-shapes with F
y=50 ksi (ASTM A992). The uniform load constant,
φ
bWcor Wc/Ωb(kip-ft), divided by the span length, L(ft), provides the maximum total uni-
form load (kips) for a braced simple-span beam bent about the strong axis. This is based on
the available flexural strength as discussed for Table 3-2.
3–10 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
BF
MM
LL
L
px rx
rp
p
=

( )
−( )
=for compact sections, see FFigure 3-1, AISC Equation F2-5

Specification
for noncompact sections, see Fig== ′LL
pp,u ure 3-1, Equation 3-2
see Figure 3-1, AISC LS
r= p pecification
MFZ
px y x
EquationF2-6
for compact s= e ections
as given in Figure 3-1, AISC =′M Specif
p iication Equation F3-1, for noncompact
sectionss
see Figure 3-1MM
rx r
b
b=
=
=
,
.
.
φ 090
167Ω
(3-5)
(Spec.Eq. F2-1)
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 10

DESIGN TABLE DISCUSSION 3–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The strong-axis available shear strength, φ vVn or Vn/Ωv,can be determined using the tab-
ulated value. Above the heavy horizontal line in the tables, the maximum total uniform load
is limited by the strong-axis available shear strength.
The tabulated values can also be used for braced simple-span beams with equal concen-
trated loads spaced as shown in Table 3-22a if the concentrated loads are first converted to
an equivalent uniform load.
Table 3-7. S-Shapes—Maximum Total Uniform Load
Table 3-7 is similar to Table 3-6, except it covers S-shapes with F y=36 ksi (ASTM A36).
Table 3-8. C-Shapes—Maximum Total Uniform Load
Table 3-8 is similar to Table 3-6, except it covers C-shapes with F y=36 ksi (ASTM A36).
Table 3-9. MC-Shapes—Maximum Total Uniform Load
Table 3-9 is similar to Table 3-6, except it covers MC-shapes with F y=36 ksi (ASTM A36).
Plots of Available Flexural Strength vs. Unbraced Length
Table 3-10. W-Shapes—Plots of Available Moment vs.
Unbraced Length
The strong-axis available flexural strength, φ bMnor Mn/Ωb, is plotted as a function of
the unbraced length, L
b, for W-shapes with F y=50 ksi (ASTM A992). The plots show
the total available strength for an unbraced length, L
b. The moment demand due to all
applicable load combinations on that segment may not exceed the strength shown for
L
b.Cbis taken as unity.
When the plotted curve is solid, the W-shape for that curve is the lightest cross section
for a given combination of available flexural strength and unbraced length. When the plot-
ted curve is dashed, a lighter W-shape than that for the plotted curve exists. The plotted
curves are arbitrarily terminated at a span-to-depth ratio of 30 in most cases.
L
pis indicated in each curve by a solid dot (•). L ris indicated in each curve by an open
dot (°).
Table 3-11. C- and MC-Shapes—Plots of Available Moment
vs. Unbraced Length
Table 3-11 is similar to Table 3-10, except it covers C- and MC-shapes with F y=36 ksi
(ASTM A36).
Available Flexural Strength of HSS
Table 3-12. Rectangular HSS—Available Flexural Strength
The available flexural strength is tabulated for rectangular HSS with F y=46 ksi (ASTM
A500 Grade B) as determined by AISC SpecificationSection F7. For noncompact and
slender cross sections, the tabulated values of M
n/Ωband φ bMnhave been adjusted to
account for the noncompactness or slenderness.
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 11

Table 3-13. Square HSS—Available Flexural Strength
Table 3-13 is similar to Table 3-12, except it covers square HSS with F y=46 ksi (ASTM
A500 Grade B).
Table 3-14. Round HSS—Available Flexural Strength
Table 3-14 is similar to Table 3-12, except it covers round HSS with F y=42 ksi (ASTM
A500 Grade B) and the available flexural strength is determined from AISC Specification
Section F8.
Table 3-15. Pipe—Available Flexural Strength
Table 3-15 is similar to Table 3-14, except it covers Pipe with F y=35 ksi (ASTM A53
Grade B).
Strength of Other Flexural Members
Tables 3-16 and 3-17. Available Shear Stress
in Plate Girders
The available shear stress for plate girders is plotted as a function of a/hand h/t win
Tables 3-16 (for F
y=36 ksi) and 3-17 (for F y=50 ksi). In part a of each table, tension
field action is neglected. In part b of each table, tension field action is considered.
Table 3-18. Floor Plates
The recommended maximum uniformly distributed loads are given in Table 3-18 based
upon simple-span bending between supports. Table 3-18a is for deflection-controlled
applications and should be used with the appropriate serviceability load combinations.
The tabulated values correspond to a maximum deflection of L/100. Table 3-18b is for
flexural-strength-controlled applications and should be used with LRFD or ASD load
combinations. The tabulated values correspond to a maximum bending stress of 24 ksi in
LRFD and 16 ksi in ASD.
Composite Beam Selection Tables
Table 3-19. Composite W-Shapes
The available flexural strength is tabulated for W-shapes with F y=50 ksi (ASTM A992).
The values tabulated are independent of the specific concrete flange properties allowing the
designer to select an appropriate combination of concrete strength and slab geometry.
The location of the plastic neutral axis (PNA) is uniquely determined by the horizontal
shear force, ΣQ
n, at the interface between the steel section and the concrete slab. With the
knowledge of the location of the PNA and the distance to the centroid of the concrete flange
force, ΣQ
n, the available flexural strength can be computed.
Available flexural strengths are tabulated for PNA locations at the seven locations shown.
Five of these PNA locations are in the beam flange. The seventh PNA location is computed
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–12 DESIGN OF FLEXURAL MEMBERS
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 12

YY
a con2
2
=−
ΣQ
fb
n
c
085.′
at the point where ΣQ nequals 0.25F yAs, and the sixth PNA location is halfway between the
location of ΣQ
nat point five and point seven. Use of beams with a PNA below location
seven is discouraged.
Table 3-19 can be used to design a composite beam by entering with a required flexural
strength and determining the corresponding required ΣQ
n. Alternatively, Table 3-19 can be
used to check the flexural strength of a composite beam by selecting a valid value of ΣQ
n,
using Table 3-21. With the effective width of the concrete flange, b, determined per AISC
SpecificationSection I3.1a, the appropriate value of the distance from concrete flange force
to beam top flange, Y2, can be determined as
(3-6)
where
Y
con=distance from top of steel beam to top of concrete, in.
a= (3-7)
and the available flexural strength,φ
bMnor M n/Ωb, can then be determined from Table
3-19. Values for the distance from the PNA to the beam top flange, Y1, are also tabulated for
convenience. The parameters Y1 and Y2 are illustrated in Figure 3-3. Note that the model of
the steel beam used in the calculation of the available strength assumes that
A
s=cross-sectional area of the steel section, in.
2
Af=flange area, in.
2
=bftf
Aw=web area, in.
2
=(d 2k)t w
Kdep=k t f, in.
K
area=(As 2A f Aw)/2, in.
2
Table 3-20. Lower-Bound Elastic Moment of Inertia
The lower-bound elastic moment of inertia of a composite beam can be used to calculate
deflection. If calculated deflections using the lower-bound moment of inertia are accept-
able, a more complete elastic analysis of the composite section can be avoided. The lower-
bound elastic moment of inertia is based upon the area of the beam and an equivalent con-
crete area equal to ΣQ
n/Fyas illustrated in Figure 3-4, where F y=50 ksi. The analysis
includes only the horizontal shear force transferred by the steel anchors supplied. Thus,
only the portion of the concrete flange used to balance ΣQ
nis included in the determina-
tion of the lower-bound moment of inertia.
The lower bound moment of inertia, therefore, is the moment of inertia of the cross
section at the required strength level. This is smaller than the corresponding moment of
inertia at the service load where deflection is calculated. The value for the lower bound
moment of inertia can be calculated as illustrated in AISC SpecificationCommentary
Section I3.2.
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION 3–13
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 13

Fig. 3-3. Strength design models for composite beams.
(a)
(b)
(c)
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–14 DESIGN OF FLEXURAL MEMBERS
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 14

Fig. 3-4. Deflection design model for composite beams.
Table 3-21. Nominal Horizontal Shear Strength for
One Steel Headed Stud Anchor, Q
n
The nominal shear strength of steel headed stud anchors is given in Table 3-21, in accor-
dance with AISC SpecificationChapter I. Nominal horizontal shear strength values are
presented based upon the position of the steel anchor, profile of the deck, and orientation of
the deck relative to the steel anchor. See AISC SpecificationCommentary Figure C-I8.1.
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION 3–15
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 15

3–16 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Beam Diagrams and Formulas
Table 3-22a. Concentrated Load Equivalents
Concentrated load equivalents are given in Table 3-22a for beams with various support
conditions and loading characteristics.
Table 3-22b. Cantilevered Beams
Coefficients are provided in Table 3-22b for cantilevered beams with various support
conditions and loading characteristics.
Table 3-22c. Continuous Beams
Coefficients are provided in Table 3-22c for continuous beams with various support condi-
tions and loading characteristics.
Table 3-23. Shears, Moments and Deflections
Shears, moments and deflections are given in Table 3-23 for beams with various support
conditions and loading characteristics.
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 16

PART 3 REFERENCES 3–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 3 REFERENCES
Allison, H.R. (1991), Low- and Medium-Rise Steel Buildings, Design Guide 5, American
Institute for Steel Construction, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, American Institute for Steel Construction, Chicago, IL.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr. (1997),
Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for
Steel Buildings, Design Guide 3, 2nd Ed., American Institute of Steel Construction,
Chicago, IL.
AISC_Part 3A_14th Ed._February 12, 2013 12/02/13 8:09 AM Page 17

Table 3-1
Values of C bfor Simply Supported Beams
Note: Lateral bracing must always be provided at points of support per AISC SpecificationChapter F.
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3–18 DESIGN OF FLEXURAL MEMBERS
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 18

Table 3-2
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection
A3.1c.
W36×652
h
2910 7260109004300646046.870.314.5 77.7 50600 1620 2430
W40×593
h
2760 6890104004090614055.484.413.4 63.9 50400 1540 2310
W36×529
h
2330 581087403480522046.470.114.1 64.3 39600 1280 1920
W40×503
h
2320 579087003460520055.383.113.1 55.2 41600 1300 1950
W36×487
h
2130 531079903200480046.069.514.0 59.9 36000 1180 1770
W40×431
h
1960 489073502950444053.680.412.9 49.1 34800 1110 1660
W36×441
h
1910 477071602880433045.367.913.8 55.5 32100 1060 1590
W27×539
h
1890 472070902740412026.239.312.9 88.5 25600 1280 1920
W40×397
h
1800 449067502720410052.478.412.9 46.7 32000 1000 1500
W40×392
h
1710 427064102510378060.890.89.33 38.3 29900 1180 1770
W36×395
h
1710 427064102600391044.967.213.7 50.9 28500 937 1410
W40×372
h
1680 419063002550383051.777.912.7 44.4 29600 942 1410
W14×730
h
1660 41406230224033607.3511.116.6 275 14300 1380 2060
W40×362
h
1640 409061502480373051.477.312.7 44.0 28900 909 1360
W44×335 1620 4040 60802460370059.489.512.3 38.9 31100 906 1360
W33×387
h
1560 389058502360354038.357.813.3 53.3 24300 907 1360
W36×361
h
1550 387058102360354043.665.613.6 48.2 25700 851 1280
W14×665
h
1480 36905550201030207.1010.716.3 253 12400 1220 1830
W40×324 1460 3640 54802240336049.074.112.6 41.2 25600 804 1210
W30×391
h
1450 362054402180328031.447.213.0 58.8 20700 903 1350
W40×331
h
1430 357053602110318059.188.29.08 33.8 24700 996 1490
W33×354
h
1420 354053302170326037.456.613.2 49.8 22000 826 1240
W44×290 1410 3520 52902170326054.982.512.3 36.9 27000 754 1130
W40×327
h
1410 352052902100315058.087.49.11 33.6 24500 963 1440
W36×330 1410 3520 52902170326042.263.413.5 45.5 23300 769 1150
W40×297 1330 3320 49902040307047.871.612.5 39.3 23200 740 1110
W30×357
h
1320 329049501990299031.347.212.9 54.4 18700 813 1220
W14×605
h
1320 32904950182027306.8110.316.1 232 10800 1090 1630
W36×302 1280 3190 48001970297040.560.813.5 43.6 21100 705 1060
φb=0.90
φ
v=1.00
Zx
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W-SHAPE SELECTION TABLES 3–19
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 19

Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection
A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
3–20 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W44×262 1270 3170 47601940291052.679.112.3 35.7 24100 680 1020
W40×294 1270 3170 47601890284056.985.49.01 31.5 21900 856 1280
W33×318 1270 3170 47601940291036.855.413.1 46.5 19500 732 1100
W40×277 1250 3120 46901920289045.868.712.6 38.8 21900 659 989
W27×368
h
1240 309046501850278024.937.612.3 62.0 16200 839 1260
W40×278 1190 2970 44601780268055.382.88.90 30.4 20500 828 1240
W36×282 1190 2970 44601830276039.659.013.4 42.2 19600 657 985
W30×326
h
1190 297044601820273030.345.612.7 50.6 16800 739 1110
W14×550
h
1180 29404430163024406.6510.115.9 213 9430 962 1440
W33×291 1160 2890 43501780268036.054.213.0 43.8 17700 668 1000
W40×264 1130 2820 42401700255053.881.38.90 29.7 19400 768 1150
W27×336
h
1130 282042401700255025.037.712.2 57.0 14600 756 1130
W24×370
h
1130 282042401670251020.030.011.6 69.2 13400 851 1280
W40×249 1120 2790 42001730261042.964.412.5 37.2 19600 591 887
W44×230
v
1100 274041301700255046.871.212.1 34.3 20800 547 822
W36×262 1100 2740 41301700255038.157.913.3 40.6 17900 620 930
W30×292 1060 2640 39801620244029.744.912.6 46.9 14900 653 979
W14×500
h
1050 26203940146022006.439.6515.6 196 8210 858 1290
W36×256 1040 2590 39001560235046.570.09.36 31.5 16800 718 1080
W33×263 1040 2590 39001610241034.151.912.9 41.6 15900 600 900
W36×247 1030 2570 38601590240037.455.713.2 39.4 16700 587 881
W27×307
h
1030 257038601550233025.137.712.0 52.6 13100 687 1030
W24×335
h
1020 254038301510227019.930.211.4 63.1 11900 759 1140
W40×235 1010 2520 37901530230051.076.78.97 28.4 17400 659 989
W40×215 964 2410 36201500225039.459.312.5 35.6 16700 507 761
W36×231 963 2400 36101490224035.753.713.1 38.6 15600 555 832
W30×261 943 2350 35401450218029.144.012.5 43.4 13100 588 882
W33×241 940 2350 35301450218033.550.212.8 39.7 14200 568 852
W36×232 936 2340 35101410212044.867.09.25 30.0 15000 646 968
W27×281 936 2340 35101420214024.836.912.0 49.1 11900 621 932
W14×455
h
936 23403510132019806.249.3615.5 179 7190 768 1150
W24×306
h
922 230034601380207019.729.811.3 57.9 10700 683 1020
W40×211 906 2260 34001370206048.673.18.87 27.2 15500 591 887
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:39 AM Page 20

W-SHAPE SELECTION TABLES 3–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection
A3.1c.
φb=0.90
φ
v=1.00
W40×199 869 2170 32601340202037.656.112.2 34.3 14900 503 755
W14×426
h
869 21703260123018506.169.2315.3 168 6600 703 1050
W33×221 857 2140 32101330199031.847.812.7 38.2 12900 525 788
W27×258 852 2130 32001300196024.436.511.9 45.9 10800 568 853
W30×235 847 2110 31801310196028.042.712.4 41.0 11700 520 779
W24×279
h
835 208031301250188019.729.611.2 53.4 9600 619 929
W36×210 833 2080 31201260189042.363.49.11 28.5 13200 609 914
W14×398
h
801 20003000115017205.958.9615.2 158 6000 648 972
W40×183 774 1930 29001180177044.166.58.80 25.8 13200 507 761
W33×201 773 1930 29001200180030.345.612.6 36.7 11600 482 723
W27×235 772 1930 29001180178024.136.011.8 42.9 9700 522 784
W36×194 767 1910 28801160174040.461.49.04 27.6 12100 558 838
W18×311
h
754 188028301090164011.216.810.4 81.1 6970 678 1020
W30×211 751 1870 28201160175026.940.512.3 38.7 10300 479 718
W24×250 744 1860 27901120169019.729.311.1 48.7 8490 547 821
W14×370
h
736 18402760106015905.878.8015.1 148 5440 594 891
W36×182 718 1790 26901090164038.958.49.01 27.0 11300 526 790
W27×217 711 1770 26701100165023.035.111.7 40.8 8910 471 707
W40×167 693 1730 26001050158041.762.58.48 24.8 11600 502 753
W18×283
h
676 16902540987148011.116.710.3 73.6 6170 613 920
W30×191 675 1680 25301050158025.638.612.2 36.8 9200 436 654
W24×229 675 1680 25301030154019.028.911.0 45.2 7650 499 749
W14×342
h
672 1680252097514605.738.6215.0 138 4900 539 809
W36×170 668 1670 25101010153037.856.18.94 26.4 10500 492 738
W27×194 631 1570 2370976147022.333.811.6 38.2 7860 422 632
W33×169 629 1570 2360959144034.251.58.83 26.7 9290 453 679
W36×160 624 1560 2340947142036.154.28.83 25.8 9760 468 702
W18×258
h
611 15202290898135010.916.510.2 67.3 5510 550 826
W30×173 607 1510 2280945142024.136.812.1 35.5 8230 398 597
W24×207 606 1510 2270927139018.928.610.9 41.7 6820 447 671
W14×311
h
603 1500226088413305.598.4414.8 125 4330 482 723
W12×336
h
603 1500226084412704.767.1912.3 150 4060 598 897
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 21

Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection
A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
W40×149
v
598 14902240896135038.357.48.09 23.6 9800 432 650
W36×150 581 1450 2180880132034.451.98.72 25.3 9040 449 673
W27×178 570 1420 2140882133021.632.511.5 36.4 7020 403 605
W33×152 559 1390 2100851128031.748.38.72 25.7 8160 425 638
W24×192 559 1390 2100858129018.428.010.8 39.7 6260 413 620
W18×234
h
549 13702060814122010.816.410.1 61.4 4900 490 734
W14×283
h
542 1350203080212005.528.3614.7 114 3840 431 646
W12×305
h
537 1340201076011404.646.9712.1 137 3550 531 797
W21×201 530 1320 1990805121014.522.010.7 46.2 5310 419 628
W27×161 515 1280 1930800120020.631.311.4 34.7 6310 364 546
W33×141 514 1280 1930782118030.345.78.58 25.0 7450 403 604
W24×176 511 1270 1920786118018.127.710.7 37.4 5680 378 567
W36×135
v
509 12701910767115031.747.88.41 24.3 7800 384 577
W30×148 500 1250 1880761114029.043.98.05 24.9 6680 399 599
W18×211 490 1220 1840732110010.716.29.96 55.7 4330 439 658
W14×257 487 1220 183072510905.548.2814.6 104 3400 387 581
W12×279
h
481 1200180068610304.506.7511.9 126 3110 487 730
W21×182 476 1190 1790728109014.421.810.6 42.7 4730 377 565
W24×162 468 1170 1760723109017.926.810.8 35.8 5170 353 529
W33×130 467 1170 1750709107029.343.18.44 24.2 6710 384 576
W27×146 464 1160 1740723109019.929.511.3 33.3 5660 332 497
W18×192 442 1100 166066499810.616.19.85 51.0 3870 392 588
W30×132 437 1090 164066499826.940.57.95 23.8 5770 373 559
W14×233 436 1090 16406559845.408.1514.5 95.0 3010 342 514
W21×166 432 1080 162066499814.221.210.6 39.9 4280 338 506
W12×252
h
428 107016106179274.436.6811.8 114 2720 431 647
W24×146 418 1040 157064897417.025.810.6 33.7 4580 321 482
W33×118
v
415 1040156062794227.240.68.19 23.4 5900 325 489
W30×124 408 1020 153062093226.139.07.88 23.2 5360 353 530
W18×175 398 993 149060190310.615.89.75 46.9 3450 356 534
W27×129 395 986 148060390623.435.07.81 24.2 4760 337 505
W14×211 390 973 14605908875.307.9414.4 86.6 2660 308 462
W12×230
h
386 96314505618434.316.5111.7 105 2420 390 584
3–22 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 22

W-SHAPE SELECTION TABLES 3–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
W30×116 378 943 142057586424.837.47.74 22.6 4930 339 509
W21×147 373 931 140057586413.720.710.4 36.3 3630 318 477
W24×131 370 923 139057586416.324.610.5 31.9 4020 296 445
W18×158 356 888 134054181410.515.99.68 42.8 3060 319 479
W14×193 355 886 13305418145.307.9314.3 79.4 2400 276 414
W12×210 348 868 13105107674.256.4511.6 95.8 2140 347 520
W30×108 346 863 130052278523.535.57.59 22.1 4470 325 487
W27×114 343 856 129052278521.732.87.70 23.1 4080 311 467
W21×132 333 831 125051577413.219.910.3 34.2 3220 283 425
W24×117 327 816 123050876415.423.310.4 30.4 3540 267 401
W18×143 322 803 121049374010.315.79.61 39.6 2750 285 427
W14×176 320 798 12004917385.207.8314.2 73.2 2140 252 378
W30×99 312 778 117047070622.233.47.42 21.3 3990 309 463
W12×190 311 776 11704596904.186.3311.5 87.3 1890 305 458
W21×122 307 766 115047771712.919.310.3 32.7 2960 260 391
W27×102 305 761 114046670120.129.87.59 22.3 3620 279 419
W18×130 290 724 109044767210.215.49.54 36.6 2460 259 388
W24×104 289 721 108045167714.321.310.3 29.2 3100 241 362
W14×159 287 716 10804446675.177.8514.1 66.7 1900 224 335
W30×90
v
283 706106042864320.630.87.38 20.9 3610 249 374
W24×103 280 699 105042864318.227.47.03 21.9 3000 270 404
W21×111 279 696 105043565412.418.910.2 31.2 2670 237 355
W27×94 278 694 104042463819.128.57.49 21.6 3270 264 395
W12×170 275 686 10304106174.116.1511.4 78.5 1650 269 403
W18×119 262 654 98340360610.115.29.50 34.3 2190 249 373
W14×145 260 649 9754056095.137.6914.1 61.7 1710 201 302
W24×94 254 634 95338858317.326.06.99 21.2 2700 250 375
W21×101 253 631 94939659611.817.710.2 30.1 2420 214 321
W27×84 244 609 91537255917.626.47.31 20.8 2850 246 368
W12×152 243 606 9113655494.066.1011.3 70.6 1430 238 358
W14×132 234 584 8783655495.157.7413.3 55.8 1530 190 284
W18×106 230 574 8633565369.7314.69.40 31.8 1910 221 331
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 23

Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
W24×84 224 559 84034251516.224.26.89 20.3 2370 227 340
W21×93 221 551 82933550414.622.06.50 21.3 2070 251 376
W12×136 214 534 8033254884.026.0611.2 63.2 1240 212 318
W14×120 212 529 7953324995.097.6513.2 51.9 1380 171 257
W18×97 211 526 7913284949.4114.19.36 30.4 1750 199 299
W24×76 200 499 75030746215.122.66.78 19.5 2100 210 315
W16×100 198 494 7433064597.8611.98.87 32.8 1490 199 298
W21×83 196 489 73529944913.820.86.46 20.2 1830 220 331
W14×109 192 479 7203024545.017.5413.2 48.5 1240 150 225
W18×86 186 464 6982904369.0113.69.29 28.6 1530 177 265
W12×120 186 464 6982854283.945.9511.1 56.5 1070 186 279
W24×68 177 442 66426940414.121.26.61 18.9 1830 197 295
W16×89 175 437 6562714077.7611.68.80 30.2 1300 176 265
W14×99
f
173 4306462744124.917.3613.5 45.3 1110 138 207
W21×73 172 429 64526439612.919.46.39 19.2 1600 193 289
W12×106 164 409 6152533813.935.8911.0 50.7 933 157 236
W18×76 163 407 6112553838.5012.89.22 27.1 1330 155 232
W21×68 160 399 60024536812.518.86.36 18.7 1480 181 272
W14×90
f
157 3825742503754.827.2615.1 42.5 999 123 185
W24x62 153 382 57422934416.124.14.87 14.4 1550 204 306
W16×77 150 374 5632343527.3411.18.72 27.8 1110 150 225
W12×96 147 367 5512293443.855.7810.9 46.7 833 140 210
W10×112 147 367 5512203312.694.039.47 64.1 716 172 258
W18×71 146 364 54822233310.415.86.00 19.6 1170 183 275
W21×62 144 359 54022233311.617.56.25 18.1 1330 168 252
W14×82 139 347 5212153235.408.108.76 33.2 881 146 219
W24×55
v
134 33450319929914.722.24.73 13.9 1350 167 252
W18×65 133 332 4992043079.9815.05.97 18.8 1070 166 248
W12×87 132 329 4952063103.815.7310.8 43.1 740 129 193
W16×67 130 324 4882043076.8910.48.69 26.1 954 129 193
W10×100 130 324 4881962942.644.009.36 57.9 623 151 226
W21×57 129 322 48419429113.420.34.77 14.3 1170 171 256
3–24 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 24

W-SHAPE SELECTION TABLES 3–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
W21×55 126 314 47319228910.816.36.11 17.4 1140 156 234
W14×74 126 314 4731962945.318.058.76 31.0 795 128 192
W18×60 123 307 4611892849.6214.45.93 18.2 984 151 227
W12×79 119 297 4461872813.785.6710.8 39.9 662 117 175
W14×68 115 287 4311802705.197.818.69 29.3 722 116 174
W10×88 113 282 4241722592.623.949.29 51.2 534 131 196
W18×55 112 279 4201722589.1513.85.90 17.6 890 141 212
W21×50 110 274 41316524812.118.34.59 13.6 984 158 237
W12×72 108 269 4051702563.695.5610.7 37.5 597 106 159
W21×48
f
107 2653981622449.8914.85.86 16.5 959 144 216
W16×57 105 262 3941612427.9812.05.65 18.3 758 141 212
W14×61 102 254 3831612424.937.488.65 27.5 640 104 156
W18×50 101 252 3791552338.7613.25.83 16.9 800 128 192
W10×77 97.6 244 3661502252.603.909.18 45.3 455 112 169
W12×65
f
96.8 2373561542313.585.3910.7 35.1 533 94.4 142
W21×44 95.4 238 35814321411.116.84.45 13.0 843 145 217
W16×50 92.0 230 3451412137.6911.45.62 17.2 659 124 186
W18×46 90.7 226 3401382079.6314.64.56 13.7 712 130 195
W14×53 87.1 217 3271362045.227.936.78 22.3 541 103 154
W12×58 86.4 216 3241362053.825.698.87 29.8 475 87.8 132
W10×68 85.3 213 3201321992.583.859.15 40.6 394 97.8 147
W16×45 82.3 205 3091271917.1210.85.55 16.5 586 111 167
W18×40 78.4 196 2941191808.9413.24.49 13.1 612 113 169
W14×48 78.4 196 2941231845.097.676.75 21.1 484 93.8 141
W12×53 77.9 194 2921231853.655.508.76 28.2 425 83.5 125
W10×60 74.6 186 2801161752.543.829.08 36.6 341 85.7 129
W16×40 73.0 182 2741131706.6710.05.55 15.9 518 97.6 146
W12×50 71.9 179 2701121693.975.986.92 23.8 391 90.3 135
W8×67 70.1 175 2631051591.752.597.49 47.6 272 103 154
W14×43 69.6 174 2611091644.887.286.68 20.0 428 83.6 125
W10×54 66.6 166 2501051582.483.759.04 33.6 303 74.7 112
Zx
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:29 AM Page 25

Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
W18×35 66.5 166 2491011518.1412.34.31 12.3 510 106 159
W12×45 64.2 160 2411011513.805.806.89 22.4 348 81.1 122
W16×36 64.0 160 240 98.71486.249.365.37 15.2 448 93.8 141
W14×38 61.5 153 231 95.41435.378.205.47 16.2 385 87.4 131
W10×49 60.4 151 227 95.41432.463.718.97 31.6 272 68.0 102
W8×58 59.8 149 224 90.81371.702.557.42 41.6 228 89.3 134
W12×40 57.0 142 214 89.91353.665.546.85 21.1 307 70.2 105
W10×45 54.9 137 206 85.81292.593.897.10 26.9 248 70.7 106
W14×34 54.6 136 205 84.91285.017.555.40 15.6 340 79.8 120
W16×31 54.0 135 203 82.41246.8610.34.13 11.8 375 87.5 131
W12×35 51.2 128 192 79.61204.346.455.44 16.6 285 75.0 113
W8×48 49.0 122 184 75.41131.672.557.35 35.2 184 68.0 102
W14×30 47.3 118 177 73.41104.636.955.26 14.9 291 74.5 112
W10×39 46.8 117 176 73.51112.533.786.99 24.2 209 62.5 93.7
W16×26
v
44.2 110166 67.11015.938.983.96 11.2 301 70.5 106
W12×30 43.1 108 162 67.41013.975.965.37 15.6 238 64.0 95.9
W14×26 40.2 100 151 61.792.75.338.113.81 11.0 245 70.9 106
W8×40 39.8 99.3 149 62.093.21.642.467.21 29.9 146 59.4 89.1
W10×33 38.8 96.8 146 61.191.92.393.626.85 21.8 171 56.4 84.7
W12×26 37.2 92.8 140 58.387.73.615.465.33 14.9 204 56.1 84.2
W10×30 36.6 91.3 137 56.685.13.084.614.84 16.1 170 63.0 94.5
W8×35 34.7 86.6 130 54.581.91.622.437.17 27.0 127 50.3 75.5
W14×22 33.2 82.8 125 50.676.14.787.273.67 10.4 199 63.0 94.5
W10×26 31.3 78.1 117 48.773.22.914.344.80 14.9 144 53.6 80.3
W8×31
f
30.4 75.8114 48.072.21.582.377.18 24.8 110 45.6 68.4
W12×22 29.3 73.1 110 44.466.74.687.063.00 9.13 156 64.0 95.9
W8×28 27.2 67.9 102 42.463.81.672.505.72 21.0 98.0 45.9 68.9
W10×22 26.0 64.9 97.540.560.92.684.024.70 13.8 118 49.0 73.4
W12×19 24.7 61.6 92.637.255.94.276.432.90 8.61 130 57.3 86.0
W8×24 23.1 57.6 86.636.554.91.602.405.69 18.9 82.7 38.9 58.3
W10×19 21.6 53.9 81.032.849.43.184.763.09 9.73 96.3 51.0 76.5
W8×21 20.4 50.9 76.531.847.81.852.774.45 14.8 75.3 41.4 62.1
3–26 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 26

W-SHAPE SELECTION TABLES 3–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-2 (continued)
W-Shapes
Selection by Z x
Shape
Zx
kip-ftkip-ft kips
Lp
kips
Mpx/ΩbφbMpx φbMrxMrx/Ωb
Lr
kips kips
in.
3
LRFDASD ASD
kip-ft kip-ft
ftLRFDASDLRFD ftin.
4
ASDLRFD
Ix
Fy= 50 ksi
BF/ΩbφbBF V nx/ΩvφvVnx
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
W12×16 20.1 50.1 75.429.944.93.805.732.73 8.05 103 52.8 79.2
W10×17 18.7 46.7 70.128.342.52.984.472.98 9.16 81.9 48.5 72.7
W12×14
v
17.4 43.465.326.039.13.435.172.66 7.73 88.6 42.8 64.3
W8×18 17.0 42.4 63.826.539.91.742.614.34 13.5 61.9 37.4 56.2
W10×15 16.0 39.9 60.024.136.22.754.142.86 8.61 68.9 46.0 68.9
W8×15 13.6 33.9 51.020.631.01.902.853.09 10.1 48.0 39.7 59.6
W10×12
f
12.6 31.246.919.028.62.363.532.87 8.05 53.8 37.5 56.3
W8×13 11.4 28.4 42.817.326.01.762.672.98 9.27 39.6 36.8 55.1
W8×10
f
8.87 21.932.913.620.51.542.303.14 8.52 30.8 26.8 40.2
Zx
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 27

3–28 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-3
W-Shapes
Selection by I x
Shape Shape Shape Shape
in.
4
Ix
in.
4
Ix
in.
4
Ix
in.
4
Ix
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W36×652
h
50600 W44 ×230 20800 W40 ×167 11600 W33 ×118 5900
W30×391
h
20700 W33×201 11600 W30 ×132 5770
W40×593
h
50400 W40×278 20500 W36 ×182 11300 W24 ×176 5680
W40×249 19600 W27 ×258 10800 W27 ×146 5660
W40×503
h
41600 W36×282 19600 W14 ×605
h
10800 W18×258
h
5510
W36×529
h
39600 W33 ×318 19500 W24 ×306
h
10700 W14×370
h
5440
W40×264 19400 W36 ×170 10500 W30 ×124 5360
W36×487
h
36000 W30×357
h
18700 W30×211 10300 W21 ×201 5310
W36×262 17900 W24 ×162 5170
W40×431
h
34800 W33×291 17700 W40×149 9800
W36×441
h
32100 W40 ×235 17400 W36 ×160 9760 W30×116 4930
W36×256 16800 W27 ×235 9700 W18 ×234
h
4900
W40×397
h
32000 W30×326
h
16800 W24×279
h
9600 W14×342
h
4900
W14×550
h
9430 W27×129 4760
W44×335 31100 W40 ×215 16700 W33×169 9290 W21 ×182 4730
W40×392
h
29900 W36 ×247 16700 W30 ×191 9200 W24 ×146 4580
W40×372
h
29600 W27 ×368
h
16200 W36×150 9040
W40×362
h
28900 W33 ×263 15900 W27 ×217 8910 W30×108 4470
W36×395
h
28500 W36 ×231 15600 W24 ×250 8490 W18 ×211 4330
W30×173 8230 W14 ×311
h
4330
W44×290 27000 W40 ×211 15500 W14×500
h
8210 W21×166 4280
W36×361
h
25700 W36 ×232 15000 W33 ×152 8160 W27 ×114 4080
W40×324 25600 W27 ×194 7860 W12 ×336
h
4060
W27×539
h
25600 W40×199 14900 W24×131 4020
W40×331
h
24700 W30 ×292 14900 W36×135 7800
W40×327
h
24500 W27 ×336
h
14600 W24×229 7650 W30×99 3990
W33×387
h
24300 W14 ×730
h
14300 W33×141 7450 W18 ×192 3870
W33×241 14200 W14 ×455
h
7190 W14×283
h
3840
W44×262 24100 W24×370
h
13400 W27×178 7020 W21 ×147 3630
W36×330 23300 W18 ×311
h
6970 W27×102 3620
W40×297 23200 W40×183 13200 W24×207 6820
W33×354
h
22000 W36 ×210 13200
W40×277 21900 W30 ×261 13100 W33×130 6710
W40×294 21900 W27 ×307
h
13100 W30×148 6680
W36×302 21100 W33 ×221 12900 W14 ×426
h
6600
W14×665
h
12400 W27×161 6310
W36×194 12100 W24 ×192 6260
W27×281 11900 W18 ×283
h
6170
W24×335
h
11900 W14×398
h
6000
W30×235 11700
Ix
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 28

W-SHAPE SELECTION TABLES 3–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-3 (continued)
W-Shapes
Selection by I x
Shape Shape Shape Shape
in.
4
Ix
in.
4
Ix
in.
4
Ix
in.
4
Ix
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W30×90 3610 W24 ×68 1830 W21 ×44 843 W16 ×26 301
W12×305
h
3550 W21 ×83 1830 W12 ×96 833 W14 ×30 291
W24×117 3540 W18 ×97 1750 W18 ×50 800 W12 ×35 285
W18×175 3450 W14 ×145 1710 W14 ×74 795 W10 ×49 272
W14×257 3400 W12 ×170 1650 W16 ×57 758 W8 ×67 272
W27×94 3270 W21 ×73 1600 W12 ×87 740 W10 ×45 248
W21×132 3220 W14 ×68 722
W12×279
h
3110 W24×62 1550 W10×112 716 W14×26 245
W24×104 3100 W18 ×86 1530 W18 ×46 712 W12 ×30 238
W18×158 3060 W14 ×132 1530 W12 ×79 662 W8 ×58 228
W14×233 3010 W16 ×100 1490 W16 ×50 659 W10 ×39 209
W24×103 3000 W21 ×68 1480 W14 ×61 640
W21×122 2960 W12 ×152 1430 W10 ×100 623 W12×26 204
W14×120 1380
W27×84 2850 W18 ×40 612 W14 ×22 199
W18×143 2750 W24×55 1350 W12×72 597 W8 ×48 184
W12×252
h
2720 W21 ×62 1330 W16 ×45 586 W10 ×33 171
W24×94 2700 W18 ×76 1330 W14 ×53 541 W10 ×30 170
W21×111 2670 W16 ×89 1300 W10 ×88 534
W14×211 2660 W14 ×109 1240 W12 ×65 533 W12×22 156
W18×130 2460 W12 ×136 1240 W8 ×40 146
W21×101 2420 W21 ×57 1170 W16×40 518 W10×26 144
W12×230
h
2420 W18 ×71 1170
W14×193 2400 W18×35 510 W12 ×19 130
W21×55 1140 W14×48 484 W8 ×35 127
W24×84 2370 W16×77 1110 W12 ×58 475 W10 ×22 118
W18×119 2190 W14 ×99 1110 W10 ×77 455 W8 ×31 110
W14×176 2140 W18 ×65 1070 W16 ×36 448
W12×210 2140 W12 ×120 1070 W14 ×43 428 W12×16 103
W14×90 999 W12 ×53 425 W8 ×28 98.0
W24×76 2100 W10×68 394 W10 ×19 96.3
W21×93 2070 W21×50 984 W12×50 391
W18×106 1910 W18 ×60 984 W14 ×38 385 W12×14 88.6
W14×159 1900 W8 ×24 82.7
W12×190 1890 W21×48 959 W16 ×
31 375 W10×17 81.9
W16×67 954 W12 ×45 348 W8 ×21 75.3
W12×106 933 W10 ×60 341 W10 ×15 68.9
W18×55 890 W14 ×34 340 W8 ×18 61.9
W14×82 881 W12 ×40 307
W10×54 303 W10×12 53.8
W8×15 48.0
W8×13 39.6
W8×10 30.8
Ix
AISC_Part 3A:14th Ed. 2/24/11 8:40 AM Page 29

3–30 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-4
W-Shapes
Selection by Z y
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Fy= 50 ksi
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC Specification
Section A3.1c.φb=0.90
φ
v=1.00
W14×283
h
274 6841030
W12×336
h
274 6841030
W40×362
h
270 6741010
W24×370
h
267 6661000
W36×330 265 661 994
W30×326
h
252 629945
W27×336
h
252 629945
W33×318 250 624 938
W14×257 246 614 923
W12×305
h
244 609915
W36×302 241 601 904
W40×324 239 596 896
W24×335
h
238 594893
W44×335 236 589 885
W27×307
h
227 566851
W33×291 226 564 848
W36×282 223 556 836
W30×292 223 556 836
W14×233 221 551 829
W12×279
h
220 549825
W40×297 215 536 806
W24×306
h
214 534803
W40×392
h
212 519780
W18×311
h
207 516776
W27×281 206 514 773
W44×290 205 511 769
W40×277 204 509 765
W36×262 204 509 765
W33×263 202 504 758
W14×211 198 494 743
W30×261 196 489 735
W12×252
h
196 489735
W24×279
h
193 482724
W36×247 190 474 713
W27×258 187 467 701
W18×283
h
185 462694
W44×262 182 454 683
W40×249 182 454 683
W33×241 182 454 683
W14×193 180 449 675
W12×230
h
177 442664
W36×231 176 439 660
W30×235 175 437 656
W40×331
h
172 423636
W24×250 171 427 641
W27×235 168 419 630
W18×258
h
166 414623
W33×221 164 409 615
W14×176 163 407 611
W12×210 159 397 596
W44×230
f
157 392589
W40×215 156 389 585
W30×211 155 387 581
W27×217 154 384 578
W24×229 154 384 578
W40×294 150 373 561
W18×234
h
149 372559
W33×201 147 367 551
W14×730
h
816 20403060
W14×665
h
730 18202740
W14×605
h
652 16302450
W14×550
h
583 14502190
W36×652
h
581 14502180
W14×500
h
522 13001960
W40×593
h
481 12001800
W14×455
h
468 11701760
W36×529
h
454 11301700
W27×539
h
437 10901640
W14×426
h
434 10801630
W36×487
h
412 10301550
W14×398
h
402 10001510
W40×503
h
394 9831480
W14×370
h
370 9231390
W36×441
h
368 9181380
W14×342
h
338 8431270
W40×431
h
328 8181230
W36×395
h
325 8111220
W33×387
h
312 7781170
W30×391
h
310 7731160
W14×311
h
304 7581140
W40×397
h
300 7491130
W36×361
h
293 7311100
W33×354
h
282 7041060
W30×357
h
279 6961050
W27×368
h
279 6961050
W40×372
h
277 6911040
Zy
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 30

W-SHAPE SELECTION TABLES 3–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-4 (continued)
W-Shapes
Selection by Z y
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Fy= 50 ksi
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
W14×159 146 364 548
W12×190 143 357 536
W40×278 140 348 523
W30×191 138 344 518
W40×199 137 342 514
W36×256 137 342 514
W24×207 137 342 514
W27×194 136 339 510
W21×201 133 332 499
W14×145 133 332 499
W40×264 132 329 495
W18×211 132 329 495
W24×192 126 314 473
W12×170 126 314 473
W30×173 123 307 461
W36×232 122 304 458
W27×178 122 304 458
W21×182 119 297 446
W18×192 119 297 446
W40×235 118 294 443
W24×176 115 287 431
W14×132 113 282 424
W12×152 111 277 416
W27×161 109 272 409
W21×166 108 269 405
W36×210 107 267 401
W18×175 106 264 398
W40×211 105 262 394
W24×162 105 262 394
W14×120 102 254 383
W12×136 98.0 245 368
W36×194 97.7 244 366
W27×146 97.7 244 366
W18×158 94.8 237 356
W24×146 93.2 233 350
W14×109 92.7 231 348
W21×147 92.6 231 347
W36×182 90.7 226 340
W40×183 88.3 220 331
W18×143 85.4 213 320
W12×120 85.4 213 320
W33×169 84.4 211 317
W36×170 83.8 209 314
W14×99
f
83.6 207311
W21×132 82.3 205 309
W24×131 81.5 203 306
W36×160 77.3 193 290
W18×130 76.7 191 288
W40×167 76.0 190 285
W21×122 75.6 189 283
W14×90
f
75.6 181273
W12×106 75.1 187 282
W33×152 73.9 184 277
W24×117 71.4 178 268
W36×150 70.9 177 266
W10×112 69.2 173 260
W18×119 69.1 172 259
W21×111 68.2 170 256
W30×148 68.0 170 255
W12×96 67.5 168 253
W33×141 66.9 167 251
W24×104 62.4 156 234
W40×149 62.2 155 233
W21×101 61.7 154 231
W10×100 61.0 152 229
W18×106 60.5 151 227
W12×87 60.4 151 227
W36×135 59.7 149 224
W33×130 59.5 148 223
W30×132 58.4 146 219
W27×129 57.6 144 216
W18×97 55.3 138 207
W16×100 54.9 137 206
W12×79 54.3 135 204
W30×124 54.0 135 203
W10×88 53.1 132 199
W33×118 51.3 128 192
W27×114 49.3 123 185
W30×116 49.2 123 185
W12×72 49.2 123 185
W18×86 48.4 121 182
W16×89 48.1 120 180
W10×77 45.9 115 172
W14×82 44.8 112 168
W12×65
f
44.1 107161
W30×108 43.9 110 165
W27×102 43.4 108 163
W18×76 42.2 105 158
W24×103 41.5 104 156
W16×77 41.1 103 154
W14×74 40.5 101 152
W10×68 40.1 100 150
W27×94 38.8 96.8 146
W30×99 38.6 96.3 145
W24×94 37.5 93.6 141
W14×68 36.9 92.1 138
W16×67 35.5 88.6 133
Zy
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 31

Table 3-4 (continued)
W-Shapes
Selection by Z y
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Fy= 50 ksi
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Shape
Zy
kip-ftkip-ft
Mny/ΩbφbMny
in.
3
LRFDASD
Ωb=1.67
Ω
v=1.50
ASD
LRFD
f
Shape exceeds compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
3–32 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W10×60 35.0 87.3 131
W30×90 34.7 86.6 130
W21×93 34.7 86.6 130
W27×84 33.2 82.8 125
W14×61 32.8 81.8 123
W8×67 32.7 81.6 123
W24×84 32.6 81.3 122
W12×58 32.5 81.1 122
W10×54 31.3 78.1 117
W21×83 30.5 76.1 114
W12×53 29.1 72.6 109
W24×76 28.6 71.4 107
W10×49 28.3 70.6 106
W8×58 27.9 69.6 105
W21×73 26.6 66.4 99.8
W18×71 24.7 61.6 92.6
W24×68 24.5 61.1 91.9
W21×68 24.4 60.9 91.5
W8×48 22.9 57.1 85.9
W18×65 22.5 56.1 84.4
W14×53 22.0 54.9 82.5
W21×62 21.7 54.1 81.4
W12×50 21.3 53.1 79.9
W18×60 20.6 51.4 77.3
W10×45 20.3 50.6 76.1
W14×48 19.6 48.9 73.5
W12×45 19.0 47.4 71.3
W16×57 18.9 47.2 70.9
W18×55 18.5 46.2 69.4
W8×40 18.5 46.2 69.4
W21×55 18.4 45.9 69.0
W14×43 17.3 43.2 64.9
W10×39 17.2 42.9 64.5
W12×40 16.8 41.9 63.0
W18×50 16.6 41.4 62.3
W16×50 16.3 40.7 61.1
W8×35 16.1 40.2 60.4
W24×62 15.7 39.1 58.8
W21×48
f
14.9 36.755.2
W21×57 14.8 36.9 55.5
W16×45 14.5 36.2 54.4
W8×31
f
14.1 35.152.8
W10×33 14.0 34.9 52.5
W24×55 13.3 33.1 49.8
W16×40 12.7 31.7 47.6
W21×50 12.2 30.4 45.8
W14×38 12.1 30.2 45.4
W18×46 11.7 29.2 43.9
W12×35 11.5 28.7 43.1
W16×36 10.8 26.9 40.5
W14×34 10.6 26.4 39.8
W21×44 10.2 25.4 38.2
W8×28 10.1 25.2 37.9
W18×40 10.0 25.0 37.5
W12×30 9.56 23.9 35.9
W14×30 8.99 22.4 33.7
W10×30 8.84 22.1 33.2
W8×24 8.57 21.4 32.1
W12×26 8.17 20.4 30.6
W18×35 8.06 20.1 30.2
W10×26 7.50 18.7 28.1
W16×31 7.03 17.5 26.4
W10×22 6.10 15.2 22.9
W8×21 5.69 14.2 21.3
W14×26 5.54 13.8 20.8
W16×26 5.48 13.7 20.6
W8×18 4.66 11.6 17.5
W14×22 4.39 11.0 16.5
W12×22 3.66 9.13 13.7
W10×19 3.35 8.36 12.6
W12×19 2.98 7.44 11.2
W10×17 2.80 6.99 10.5
W8×15 2.67 6.66 10.0
W10×15 2.30 5.74 8.63
W12×16 2.26 5.63 8.46
W8×13 2.15 5.36 8.06
W12×14 1.90 4.74 7.13
W10×12
f
1.74 4.306.46
W8×10
f
1.66 4.076.12
Zy
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 32

W-SHAPE SELECTION TABLES 3–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-5
W-Shapes
Selection by I y
Shape Shape Shape Shape
in.
4
Iy
in.
4
Iy
in.
4
Iy
in.
4
Iy
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14×730
h
4720 W14 ×283
h
1440 W14 ×193 931 W14 ×132 548
W40×372
h
1420 W40 ×249 926 W21 ×201 542
W14×665
h
4170 W36×330 1420 W44 ×262 923 W24 ×192 530
W30×357
h
1390 W24 ×306
h
919 W36 ×256 528
W14×605
h
3680 W40×362
h
1380 W27 ×258 859 W40 ×278 521
W27×368
h
1310 W30 ×235 855 W12 ×170 517
W14×550
h
3250 W36×302 1300 W33 ×221 840 W27 ×161 497
W36×652
h
3230 W33 ×318 1290
W14×176 838 W14 ×120 495
W14×500
h
2880 W14 ×257 1290 W12×252
h
828 W40 ×264 493
W30×326
h
1240 W24 ×279
h
823 W18 ×211 493
W14×455
h
2560 W40×324 1220 W40 ×392
h
803 W21 ×182 483
W40×593
h
2520 W44 ×335 1200 W44 ×230 796 W24 ×176 479
W36×282 1200 W40 ×215 803 W36 ×232 468
W36×529
h
2490 W12×336
h
1190 W18 ×311
h
795 W12 ×152 454
W27×336
h
1180 W27 ×235 769
W14×426
h
2360 W33×291 1160 W30 ×211 757 W14×109 447
W36×487
h
2250 W24 ×370
h
1160 W33 ×201 749 W40 ×235 444
W27×146 443
W14×398
h
2170 W14 ×233 1150 W14 ×159 748 W24×162 443
W27×539
h
2110 W30 ×292 1100 W12 ×230
h
742 W18 ×192 440
W40×503
h
2040 W40 ×297 1090 W24 ×250 724 W21 ×166 435
W36×441
h
1990 W36 ×262 1090 W27 ×217 704 W36 ×210 411
W27×307
h
1050 W18 ×283
h
704
W14×370
h
1990 W12×305
h
1050 W40 ×199 695 W14×99 402
W44×290 1040 W12 ×136 398
W14×342
h
1810 W40×277 1040 W14×145 677 W24×146 391
W36×395
h
1750 W33 ×263 1040 W30 ×191 673 W18 ×175 391
W40×431
h
1690 W24 ×335
h
1030 W12 ×210 664 W40 ×211 390
W33×387
h
1620 W24 ×229 651 W21 ×147 376
W14×211 1030 W40×331
h
644 W36 ×194 375
W14×311
h
1610 W36×247 1010 W40 ×327
h
640
W36×361
h
1570 W30 ×261 959 W18 ×258
h
628
W30×391
h
1550 W27 ×281 953 W27 ×194 619
W40×397
h
1540 W36 ×231 940 W30 ×173 598
W33×354
h
1460 W12 ×279
h
937 W12 ×190 589
W33×241 933 W24 ×207 578
W40×294 562
W18×234
h
558
W27×178 555
Iy
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 33

3–34 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-5 (continued)
W-Shapes
Selection by I y
Shape Shape Shape Shape
in.
4
Iy
in.
4
Iy
in.
4
Iy
in.
4
Iy
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14×90 362 W12 ×65 174 W8 ×48 60.9 W8 ×28 21.7
W36×182 347 W30 ×116 164 W18 ×71 60.3 W21 ×44 20.7
W18×158 347 W16 ×89 163 W14 ×53 57.7 W12 ×30 20.3
W12×120 345 W27 ×114 159 W21 ×62 57.5 W14 ×30 19.6
W24×131 340 W10 ×77 154 W12 ×50 56.3 W18 ×40 19.1
W21×132 333 W18 ×76 152 W18 ×65 54.8
W40×183 331 W14 ×82 148 W8×24 18.3
W36×170 320 W30 ×108 146 W10×45 53.4 W12×26 17.3
W18×143 311 W27 ×102 139 W14 ×48 51.4 W10 ×30 16.7
W33×169 310 W16 ×77 138 W18 ×60 50.1 W18 ×35 15.3
W21×122 305 W14 ×74 134 W10 ×26 14.1
W12×106 301 W10 ×68 134
W12×45 50.0 W16×31 12.4
W24×117 297 W30 ×99 128
W36×160 295 W27 ×94 124 W8×40 49.1 W10 ×22 11.4
W40×167 283 W14 ×68 121 W21 ×55 48.4
W18×130 278 W24 ×103 119 W14 ×43 45.2 W8×21 9.77
W21×111 274 W16 ×67 119 W16 ×26 9.59
W33×152 273 W10×39 45.0 W14×26 8.91
W36×150 270 W10×60 116 W18×55 44.9
W12×96 270 W30 ×90 115 W12 ×40 44.1 W8×18 7.97
W24×104 259 W24 ×94 109 W16 ×57 43.1 W14 ×22 7.00
W18×119 253 W14 ×61 107 W12 ×22 4.66
W21×101 248 W8×35 42.6 W10×19 4.29
W33×141 246
W12×58 107 W18×50 40.1 W12 ×19 3.76
W27×84 106 W21 ×48 38.7
W12×87 241 W16×50 37.2 W10×17 3.56
W10×112 236 W10×54 103
W40×149 229 W8×31 37.1 W8 ×15 3.41
W30×148 227 W12×53 95.8 W10×33 36.6
W36×135 225 W24 ×84 94.4 W24 ×62 34.5 W10×15 2.89
W18×106 220 W16 ×45 32.8 W12 ×16 2.82
W33×130 218 W10×49 93.4 W21×57 30.6
W21×93 92.9 W24 ×55 29.1 W8×13 2.73
W12×79 216 W8×67 88.6 W16 ×40 28.9 W12 ×14 2.36
W10×100 207 W24 ×76 82.5 W14 ×38 26.7
W18×97 201 W21 ×83 81.4 W21
×50 24.9 W10×12 2.18
W30×132 196 W8 ×58 75.1 W16 ×36 24.5
W21×73 70.6 W12 ×35 24.5 W8×10 2.09
W12×72 195 W24×68 70.4 W14 ×34 23.3
W33×118 187 W21 ×68 64.7 W18 ×46 22.5
W16×100 186
W27×129 184
W30×124 181
W10×88 179
W18×86 175
Iy
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 34

17 1810 2720
18 1800 2700 1510 2260 1360 2040
19 1700 2560 1480 2230 1330 2010
20 1620 2430 1410 2120 1270 1910 1090 1640
21 1540 2310 1340 2010 1210 1810 1050 1570
22 1470 2210 1280 1920 1150 1730 998 1500
23 1410 2110 1220 1840 1100 1660 955 1430
24 1350 2030 1170 1760 1060 1590 915 1380
25 1290 1940 1130 1690 1010 1520 878 1320
26 1240 1870 1080 1630 975 1470 844 1270
27 1200 1800 1040 1570 939 1410 813 1220
28 1150 1740 1010 1510 905 1360 784 1180
29 1120 1680 970 1460 874 1310 757 1140
30 1080 1620 938 1410 845 1270 732 1100
32 1010 1520 879 1320 792 1190 686 1030
34 951 1430 828 1240 746 1120 646 971
36 898 1350 782 1180 704 1060 610 917
38 851 1280 741 1110 667 1000 578 868
40 808 1220 704 1060 634 953 549 825
42 770 1160 670 1010 604 907 523 786
44 735 1100 640 961 576 866 499 750
46 703 1060 612 920 551 828 477 717
48 674 1010 586 881 528 794 457 688
50 647 972 563 846 507 762 439 660
52 622 935 541 813 487 733 422 635
54 599 900 521 783 469 706 407 611
56 577 868 503 755 453 680 392 589
58 558 838 485 729 437 657 379 569
60 539 810 469 705 422 635 366 550
62 522 784 454 682 409 615 354 532
64 505 759 440 661 396 595 343 516
66 490 736 426 641 384 577 333 500
68 476 715 414 622 373 560 323 485
70 462 694 402 604 362 544 314 471
72 449 675 391 588 352 529 305 458
Wc/Ωb φbWc,kip-ft32300 48600 28100 42300 25300 38100 22000 33000
Mp/ΩbφbMp,kip-ft4040 6080 3520 5290 3170 4760 2740 4130
Mr/Ωb φbMr,kip-ft2460 3700 2170 3260 1940 2910 1700 2550
BF/Ωb φbBF,kips 59.4 89.5 54.9 82.5 52.6 79.1 46.8 71.2
Vn/Ωv φvVn,kips 906 1360 754 1130 680 1020 547 822
Zx, in.
3
1620 1410 1270 1100
Lp, ft 12.3 12.3 12.3 12.1
Lr, ft 38.9 36.9 35.7 34.3
Span, ft
Table 3-6
Maximum Total
Uniform Load, kips
W-Shapes
Shape
335
Design LRFDASD
Fy= 50 ksi
290 262
W44×
LRFDASD LRFDASD
230
v
LRFDASD
Ωb=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with
Fy=50 ksi; therefore, φ v=0.90 and Ω v=1.67.
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
W44
MAXIMUM TOTAL UNIFORM LOAD TABLES 3–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 35

Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
3–36 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
593
h
Design
LRFDASD
Fy= 50 ksi
503
h
431
h
W40×
LRFDASD LRFDASD
397
h
392
h
372
h
LRFDASD LRFDASD LRFDASD
W40
14 23603540
15 22803420
16 21303210
17 308046202590389022103320 2010302018802830
18 306046002570387021703270200030001900285018602800
19 290043602440366020603090189028401800270017602650
20 275041402320348019602940180027001710257016802520
21 262039402210331018602800171025701630244016002400
22 250037602100316017802670163024501550233015202290
23 240036002010303017002560156023501480223014602190
24 230034501930290016302450150022501420214014002100
25 220033101850278015602350144021601370205013402020
26 212031801780268015002260138020801310197012901940
27 204030701720258014502180133020001260190012401870
28 197029601650249014002100128019301220183012001800
29 190028601600240013502030124018601180177011601740
30 184027601540232013001960120018001140171011201680
32 172025901450218012201840112016901070160010501580
34 16202440136020501150173010601590100015109861480
36 153023001290193010901630998150094814309311400
38 145021801220183010301550945142089813508821330
40 13802070116017409781470898135085312808381260
42 13101970110016609311400855129081312207981200
44 12501880105015808891340817123077611707621150
46 12001800101015108501280781117074211207291100
48 1150173096514508151230749113071110706991050
50 1100166092613907821180719108068310306711010
52 10601590891134075211306911040656987645969
54 10201530858129072410906651000632950621933
56 984148082712406991050642964609916599900
58 950143079812006751010619931588884578869
60 91813807721160652980599900569855559840
62 88913407471120631948579871551827541813
64 86112907241090611919561844533802524788
66 83512507021050593891544818517777508764
68 81012206811020575865528794502754493741
70 7871180662994559840513771488733479720
72 7651150643967543817499750474713466700
551008280046300696003910058800359005400034100513003350050400
6890104005790870048907350449067504270641041906300
409061403460520029504440272041002510378025503830
55.484.455.383.153.680.452.478.460.890.851.777.9
15402310130019501110166010001500118017709421410
2760 2320 1960 1800 1710 1680
13.4 13.1 12.9 12.9 9.33 12.7
63.9 55.2 49.1 46.7 38.3 44.4
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 36

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
362
h
Design
LRFDASD
Fy= 50 ksi
331
h
327
h
W40×
LRFDASD LRFDASD
324 297 294
LRFDASD LRFDASD LRFDASD
W40
32700492002850042900281004230029100438002650039900.02530038100
409061503570536035205290364054803320499031704760
248037302110318021003150224033602040307018902840
51.477.359.188.258.087.449.074.147.871.656.985.4
909136099614909631440804121074011108561280
1640 1430 1410 1460 1330 1270
12.7 9.08 9.11 12.6 12.5 9.01
44.0 33.8 33.6 41.2 39.3 31.5
14 1990299019302890 17102570
15 1900286018802820 16902540
16 1780268017602640 15802380
17 1680252016602490 1480222014902240
18 182027301590238015602350161024101470222014102120
19 172025901500226014802230153023101400210013302010
20 164024601430215014102120146021901330200012701910
21 156023401360204013402010139020901260190012101810
22 149022401300195012801920132019901210181011501730
23 142021401240187012201840127019001150173011001660
24 136020501190179011701760121018301110166010601590
25 131019701140172011301690117017501060160010101520
26 12601890110016501080163011201680102015309751470
27 1210182010601590104015701080162098314809391410
28 1170176010201530101015101040156094814309051360
29 11301700984148097014601000151091513808741310
30 1090164095114309381410971146088513308451270
32 1020154089213408791320911137083012507921190
34 963145083912608281240857129078111707461120
36 909137079311907821180809122073711107041060
38 861129075111307411110767115069910506671000
40 8181230714107070410607291100664998634953
42 7791170680102067010106941040632950604907
44 7441120649975640961662995603907576866
46 7121070620933612920634952577867551828
48 6821030595894586881607913553831528794
50 655984571858563846583876531798507762
52 630946549825541813560842511767487733
54 606911529794521783540811492739469706
56 585879510766503755520782474713453680
58 564848492740485729502755458688437657
60 546820476715469705486730442665422635
62 528794460692454682470706428644409615
64 511769446670440661455684415623396595
66 496745432650426641442664402605384577
68 481724420631414622429644390587373560
70 468703408613402604416626379570362544
72 455683396596391588405608369554352529
AISC_Part 3A:14th Ed. 2/24/11 8:41 AM Page 37

3–38 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
278
Design LRFDASD
Fy= 50 ksi
277 264
W40×
LRFDASD LRFDASD
249 235 215
LRFDASD LRFDASD LRFDASD
W40
238003570025000375002260033900224003360020200303001920028900
297044603120469028204240279042002520379024103620
178026801920289017002550173026101530230015002250
55.382.845.868.753.881.342.964.451.076.739.459.3
82812406599897681150591887659989507761
1190 1250 1130 1120 1010 964
8.90 12.6 8.90 12.5 8.97 12.5
30.4 38.8 29.7 37.2 28.4 35.6
14 16602480 15402300
15 15802380 15002260 13201980
16 14802230 14102120 12601890
17 14002100 13301990 11901780
18 132019801320198012501880 11201680
19 125018801310197011901780118017701060159010101520
20 11901790125018801130170011201680101015209621450
21 1130170011901790107016101060160096014409161380
22 1080162011301700103015401020153091613808751310
23 10301550108016309811470972146087713208371260
24 9901490104015609401410931140084012608021210
25 950143099815009021360894134080612107701160
26 914137096014408671300860129077511707401110
27 880132092413908351260828124074711207131070
28 848128089113408061210798120072010806871030
29 81912308601290778117077111606951040664997
30 79211908321250752113074511206721010641964
32 7421120780117070510606991050630947601904
34 69910507341100663997658988593891566851
36 6609926931040627942621933560842534803
38 625939657987594892588884531797506761
40 594893624938564848559840504758481723
42 566850594893537807532800480721458689
44 540811567852513770508764458689437657
46 516776542815490737486730438659418629
48 495744520781470706466700420631401603
50 475714499750451678447672403606385578
52 457687480721434652430646388583370556
54 440661462694418628414622373561356536
56 424638446670403605399600360541344516
58 410616430647389584385579348522332499
60 396595416625376565373560336505321482
62 383576402605364547361542325489310466
64 371558390586352530349525315473301452
66 360541378568342514339509305459292438
68 349525367551332499329494296446283425
70 339510356536322484319480288433275413
72 330496347521313471310467280421267402
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 38

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
211
Design LRFDASD
Fy= 50 ksi
199 183
W40×
LRFDASD LRFDASD
167 149
v
LRFDASD LRFDASD
W40
18100272001730026100154002320013800208001190017900
2260 3400 217032601930 2900 1730 26001490 2240
1370 2060 134020201180 1770 1050 1580 896 1350
48.6 73.1 37.6 56.144.166.5 41.7 62.538.3 57.4
591 887 503 755 507 761 502 753 432 650
906 869 774 693 598
8.87 12.2 8.80 8.48 8.09
27.2 34.3 25.8 24.8 23.6
13 10001510865 1300
14 9881490853 1280
15 11801770 10101520 9221390796 1200
16 11301700 9661450 8651300746 1120
17 1060160010101510 9091370 8141220702 1060
18 10001510 9641450 8581290 7681160663 997
19 9521430 9131370 8131220 7281090628 944
20 9041360 8671300 7721160 6921040597 897
21 8611290 8261240 7361110 659 990 568 854
22 8221240 7881190 7021060 629 945 543 815
23 7861180 7541130 6721010 601 904 519 780
24 7531130 7231090 644 968 576 866 497 748
25 7231090 6941040 618 929 553 832 477 718
26 6961050 6671000 594 893 532 800 459 690
27 6701010 642 966 572 860 512 770 442 664
28 646 971 619 931 552 829 494 743 426 641
29 624 937 598 899 533 801 477 717 412 619
30 603 906 578 869 515 774 461 693 398 598
32 565 849 542 815 483 726 432 650 373 561
34 532 799 510 767 454 683 407 611 351 528
36 502 755 482 724 429 645 384 578 332 498
38 476 715 456 686 407 611 364 547 314 472
40 452 680 434 652 386 581 346 520 298 449
42 431 647 413 621 368 553 329 495 284 427
44 411 618 394 593 351 528 314 473 271 408
46 393 591 377 567 336 505 301 452 259 390
48 377 566 361 543 322 484 288 433 249 374
50 362 544 347 521 309 464 277 416 239 359
52 348 523 334 501 297 447 266 400 230 345
54 335 503 321 483 286 430 256 385 221 332
56 323 485 310 466 276 415 247 371 213 320
58 312 469 299 449 266 400 238 358 206 309
60 301 453 289 435 257 387 231 347 199 299
62 292 438 280 420 249 375 223 335 193 289
64 283 425 271 407 241 363 216 325 187 280
66 274 412 263 395 234 352 210 315 181 272
68 266 400 255 383 227 341 203 306 176 264
70 258 388 248 372 221 332 198 297 171 256
72 251 378 241 362 215 323 192 289 166 249
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 39

3–40 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
652
h
Design
LRFDASD
Fy= 50 ksi
529
h
487
h
W36×
LRFDASD LRFDASD
441
h
395
h
361
h
LRFDASD LRFDASD LRFDASD
W36
581008730046500699004250063900381005730034100513003090046500
7260109005810874053107990477071604270641038705810
430064603480522032004800288043302600391023603540
46.870.346.470.146.069.545.367.944.967.243.665.6
1620243012801920118017701060159093714108511280
2910 2330 2130 1910 1710 1550
14.5 14.1 14.0 13.8 13.7 13.6
77.7 64.3 59.9 55.5 50.9 48.2
17 32404860
18 323048502560384023603540211031701870281017002550
19 306045902450368022403360201030201800270016302450
20 290043702330350021303200191028701710257015502330
21 277041602210333020203040182027301630244014702210
22 264039702110318019302900173026001550233014102110
23 253038002020304018502780166024901480223013502020
24 242036401940291017702660159023901420214012901940
25 232034901860280017002560152022901370205012401860
26 223033601790269016402460147022001310197011901790
27 215032301720259015702370141021201260190011501720
28 207031201660250015202280136020501220183011001660
29 200030101600241014702200131019801180177010701600
30 194029101550233014202130127019101140171010301550
32 18202730145021801330200011901790107016009671450
34 17102570137020601250188011201690100015109101370
36 1610243012901940118017801060159094814308591290
38 1530230012201840112016801000151089813508141220
40 145021801160175010601600953143085312807731160
42 138020801110166010101520908136081312207371110
44 13201980106015909661450866130077611707031060
46 12601900101015209241390829125074211206731010
48 121018209691460886133079411907111070645969
50 116017509301400850128076211506831030619930
52 11201680894134081812307331100656987595894
54 10801620861129078711807061060632950573861
56 10401560830125075911406811020609916552830
58 1000151080212107331100657988588884533802
60 968146077511707091070635955569855516775
62 937141075011306861030615924551827499750
64 90813607271090664998596895533802483727
66 88013207051060644968578868517777469705
68 85412806841030625940561843502754455684
70 8301250664999607913545819488733442664
72 8071210646971590888529796474713430646
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 40

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
330
Design LRFDASD
Fy= 50 ksi
302 282
W36×
LRFDASD LRFDASD
262 247 231
LRFDASD LRFDASD LRFDASD
W36
281004230025500384002380035700220003300020600309001920028900
352052903190480029704460274041302570386024003610
217032601970297018302760170025501590240014902240
42.263.440.560.839.659.038.157.937.455.735.753.7
76911507051060657985620930587881555832
1410 1280 1190 1100 1030 963
13.5 13.5 13.4 13.3 13.2 13.1
45.5 43.6 42.2 40.6 39.4 38.6
17 124018601170176011101660
18 154023101410212013101970122018301140172010701610
19 148022301340202012501880116017401080163010101520
20 14102120128019201190179011001650103015509611440
21 1340201012201830113017001050157097914709151380
22 128019201160175010801620998150093414008741310
23 122018401110167010301550955143089413408361260
24 11701760106016009901490915138085712908011200
25 11301690102015409501430878132082212407691160
26 1080163098314809141370844127079111907391110
27 1040157094614208801320813122076111407121070
28 1010151091213708481280784118073411006861030
29 97014608811320819123075711407091070663996
30 93814108521280792119073211006851030641963
32 8791320798120074211206861030642966601903
34 828124075111306991050646971605909565850
36 78211807101070660992610917571858534803
38 74111106721010625939578868541813506760
40 7041060639960594893549825514773481722
42 6701010608914566850523786489736458688
44 640961581873540811499750467702437657
46 612920555835516776477717447672418628
48 586881532800495744457688428644400602
50 563846511768475714439660411618384578
52 541813491738457687422635395594370556
54 521783473711440661407611381572356535
56 503755456686424638392589367552343516
58 485729440662410616379569354533331498
60 469705426640396595366550343515320482
62 454682412619383576354532332498310466
64 440661399600371558343516321483300451
66 426641387582360541333500311468291438
68 414622376565349525323485302454283425
70 402604365549339510314471294441275413
72 391588355533330496305458286429267401
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 41

3–42 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
256
Design LRFDASD
Fy= 50 ksi
232 210
W36×
LRFDASD LRFDASD
194 182 170
LRFDASD LRFDASD LRFDASD
W36
208003120018700281001660025000153002300014300215001330020000
259039002340351020803120191028801790269016702510
156023501410212012601890116017401090164010101530
46.570.044.867.042.363.440.461.438.958.437.856.1
7181080646968609914558838526790492738
1040 936 833 767 718 668
9.36 9.25 9.11 9.04 9.01 8.94
31.5 30.0 28.5 27.6 27.0 26.4
13 1220183011201680105015809851480
14 14402150129019401190179010901640102015409521430
15 1380208012501870111016701020153095514408891340
16 130019501170176010401560957144089613508331250
17 12201840110016509781470901135084312707841180
18 11501730104015609241390851128079612007411110
19 1090164098314808751320806121075411307021050
20 1040156093414008311250765115071710806671000
21 98814908901340792119072911006821030635954
22 9441420849128075611406961050651979606911
23 9031360812122072310906661000623937580871
24 865130077811706931040638959597898556835
25 830125074711206651000612920573862533802
26 79812007191080639961589885551828513771
27 76911606921040616926567852531798494742
28 74111106671000594893547822512769476716
29 7161080644968573862528793494743460691
30 6921040623936554833510767478718444668
32 649975584878520781478719448673417626
34 611918549826489735450677422634392589
36 577867519780462694425639398598370557
38 546821492739438658403606377567351527
40 519780467702416625383575358539333501
42 494743445669396595365548341513317477
44 472709425638378568348523326490303455
46 451678406610361543333500312468290436
48 432650389585346521319479299449278418
50 415624374562333500306460287431267401
52 399600359540320481294443276414256385
54 384578346520308463284426265399247371
56 371557334501297446273411256385238358
58 358538322484287431264397247371230346
60 346520311468277417255384239359222334
62 335503301453268403247371231347215323
64 324488292439260390239360224337208313
66 315473283425252379232349217326202304
68 305459275413245368225338211317196295
70 297446267401238357219329205308190286
72 288433259390231347213320199299185278
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 42

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
160
Design LRFDASD
Fy= 50 ksi
150 135
v
W36× W33×
LRFDASD LRFDASD
387
h
354
h
318
LRFDASD LRFDASD LRFDASD
W36-W33
125001870011600174001020015300311004680028300426002530038100
156023401450218012701910389058503540533031704760
947142088013207671150236035402170326019402910
36.154.234.451.931.747.838.357.837.456.636.855.4
468702449673384577907136082612407321100
624 581 509 1560 1420 1270
8.83 8.72 8.41 13.3 13.2 13.1
25.8 25.3 24.3 53.3 49.8 46.5
12 8981350
13 936140089213407671150
14 890134082812507261090
15 830125077311606771020
16 77811707251090635 954
17 73311006821030598 898
18 6921040644 968564 848
19 656 985610 917535 804
20 623 936580 872508 764
21 593 891552 830484 727
22 566 851527 792462 694
23 542 814504 758442 664
24 519 780483 726423 636
25 498 749464 697406 611
26 479 720446 670391 587
27 461 693430 646376 566
28 445 669414 623363 545
29 429 646400 601350 527
30 415 624387 581339 509
32 389 585362 545317 477
34 366 551341 513299 449
36 346 520322 484282 424
38 328 493305 459267 402
40 311 468290 436254 382
42 297 446276 415242 364
44 283 425264 396231 347
46 271 407252 379221 332
48 259 390242 363212 318
50 249 374232 349203 305
52 240 360223 335195 294
54 231 347215 323188 283
56 222 334207 311181 273
58 215 323200 301175 263
60 208 312193 291169 255
62 201 302187 281164 246
64 195 293181 272159 239
66 189 284176 264154 231
68 183 275171 256149 225
70 178 267166 249145 218
72 173 260161 242141 212
181027201650248014602200
173026001570237014102120
164024601490224013302010
156023401420213012701910
148022301350203012101810
142021301290194011501730
135020301230185011001660
130019501180178010601590
125018701130170010101520
12001800109016409751470
11501730105015809391410
11101670101015209051360
1070161097714708741310
1040156094514208451270
973146088613307921190
916138083412507461120
865130078711807041060
819123074611206671000
77811707091070634953
74111106751010604907
7081060644968576866
6771020616926551828
649975590888528794
623936567852507762
599900545819487733
577867525789469706
556836506761453680
537807489734437657
519780472710422635
502755457687409615
487731443666396595
472709429645384577
458688417626373560
445669405609362544
432650394592352529
AISC_Part 3A:14th Ed. 2/24/11 8:42 AM Page 43

3–44 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
291
Design LRFDASD
Fy= 50 ksi
263 241
W33×
LRFDASD LRFDASD
221 201 169
LRFDASD LRFDASD LRFDASD
W33
232003480020800312001880028200171002570015400232001260018900
289043502590390023503530214032101930290015702360
17802680161024101450218013301990120018009591440
36.054.234.151.933.250.231.847.830.345.634.251.5
6681000600900568852525788482723453679
1160 1040 940 857 773 629
13.0 12.9 12.8 12.7 12.6 8.83
43.8 41.6 39.7 38.2 36.7 26.7
13 9061360
14 8971350
15 8371260
16 114017001050158096414507851180
17 1340200012001800110016601010151090813607391110
18 129019301150173010401570950143085712906971050
19 1220183010901640987148090013508121220661993
20 1160174010401560938141085512907711160628944
21 110016609881490893134081512207351100598899
22 105015809441420853128077811707011050571858
23 101015109031360816123074411206711010546820
24 9651450865130078211807131070643966523786
25 9261390830125075011306841030617928502755
26 891134079812007221080658989593892483726
27 858129076911606951040634952571859465699
28 827124074111106701010611918551828448674
29 79812007161080647972590887532800433651
30 77211606921040625940570857514773418629
32 7241090649975586881535803482725392590
34 6811020611918552829503756454682369555
36 643967577867521783475714429644349524
38 609916546821494742450677406610330497
40 579870519780469705428643386580314472
42 551829494743447671407612367552299449
44 526791472709426641389584351527285429
46 503757451678408613372559335504273410
48 482725432650391588356536321483262393
50 463696415624375564342514309464251377
52 445669399600361542329494297446241363
54 429644384578347522317476286429232349
56 413621371557335504305459276414224337
58 399600358538323486295443266400216325
60 386580346520313470285429257387209315
62 373561335503303455276415249374202304
64 362544324488293441267402241362196295
66 351527315473284427259390234351190286
68 340512305459276415252378227341185278
70 331497297446268403244367220331179270
72 322483288433261392238357214322174262
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:32 AM Page 44

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
152
Design LRFDASD
Fy= 50 ksi
141 130
W33× W30×
LRFDASD LRFDASD
118
v
391
h
357
h
LRFDASD LRFDASD LRFDASD
W33-W30
1120016800103001540093201400082801250028900435002630039600
139021001280193011701750104015603620544032904950
851128078211807091070627 9422180328019902990
31.748.330.345.729.343.127.240.631.447.231.347.2
425638403604384 576325 48990313508131220
559 514 467 415 1450 1320
8.72 8.58 8.44 8.19 13.0 12.9
25.7 25.0 24.2 23.4 58.8 54.4
12 80612107681150650977
13 851128078911907171080637958
14 797120073311006661000592889
15 74411206841030621934552830
16 6971050641964583876518778
17 656986603907548824487732
18 620932570857518778460692
19 587883540812491737436655
20 558839513771466701414623
21 531799489734444667394593
22 507762466701424637377566
23 485729446670405609360541
24 465699427643388584345519
25 446671410617373560331498
26 429645395593359539319479
27 413621380571345519307461
28 398599366551333500296445
29 385578354532321483286429
30 372559342514311467276415
32 349524321482291438259389
34 328493302454274412244366
36 310466285428259389230346
38 294441270406245369218328
40 279419256386233350207311
42 266399244367222334197296
44 254381233350212318188283
46 243365223335203305180271
48 232349214321194292173259
50 223335205308186280166249
52 215323197297179269159239
54 207311190286173259153231
56 199299183275166250148222
58 192289177266161242143215
60 186280171257155234138208
62 180270165249150226134201
64 174262160241146219129195
66 169254155234141212126189
68 164247151227137206122183
70 159240147220133200118178
72 155233142214129195115173
1810271016302440
1700256015502330
1610242014602200
1520229013902080
1450218013201980
1380207012501890
1320198012001800
1260189011501720
1210181011001650
1160174010501580
1110167010101520
107016109761470
103015509411410
99815009091370
96514508781320
90413608231240
85112807751160
80412107321100
76211406931040
7241090659990
6891040627943
658989599900
629946573861
603906549825
579870527792
557837507762
536806488733
517777470707
499750454683
482725439660
467702425639
452680412619
439659399600
426640387582
413621376566
402604366550
AISC_Part 3A:14th Ed. 2/24/11 8:43 AM Page 45

3–46 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
326
h
Design
LRFDASD
Fy= 50 ksi
292 261
W30×
LRFDASD LRFDASD
235 211 191
LRFDASD LRFDASD LRFDASD
W30
238003570021200318001880028300169002540015000225001350020300
297044602640398023503540211031801870282016802530
182027301620244014502180131019601160175010501580
30.345.629.744.929.144.028.042.726.940.525.638.6
7391110653979588882520779479718436654
1190 1060 943 847 751 675
12.7 12.6 12.5 12.4 12.3 12.2
50.6 46.9 43.4 41.0 38.7 36.8
15 95814408721310
16 1480222013101960118017601040156093714108421270
17 140021001240187011101660994149088213307931190
18 132019801180177010501570939141083312507491130
19 12501880111016709911490890134078911907091070
20 11901790106015909411410845127075011306741010
21 1130170010101510896135080512107141070642964
22 108016209621450856129076811606811020612920
23 10301550920138081812307351100652980586880
24 9901490882133078411807041060625939561844
25 9501430846127075311306761020600901539810
26 914137081412207241090650977577867518779
27 880132078411806971050626941555834499750
28 848128075611406721010604908535805481723
29 81912307301100649976583876517777465698
30 79211907051060627943564847500751449675
32 7421120661994588884528794468704421633
34 6991050622935554832497747441663396596
36 660992588883523786470706416626374563
38 625939557837495744445669394593355533
40 594893529795471707423635375563337506
42 566850504757448674403605357536321482
44 540811481723428643384578341512306460
46 516776460691409615368552326490293440
48 495744441663392589352529312469281422
50 475714423636376566338508300451269405
52 457687407612362544325489288433259389
54 440661392589349524313471278417250375
56 424638378568336505302454268402241362
58 410616365548325488291438258388232349
60 396595353530314472282424250376225338
62 383576341513304456273410242363217327
64 371558331497294442264397234352211316
66 360541321482285429256385227341204307
68 349525311468277416249374220331198298
70 339510302454269404242363214322192289
72 330496294442261393235353208313187281
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:35 AM Page 46

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
173
Design LRFDASD
Fy= 50 ksi
148 132
W30×
LRFDASD LRFDASD
124 116 108
LRFDASD LRFDASD LRFDASD
W30
1210018200998015000872013100814012200754011300691010400
1510228012501880109016401020153094314208631300
94514207611140664 998620932575 864522 785
24.136.829.043.926.940.526.139.024.837.423.535.5
398597399 599373 559353530339 509325 487
607 500 437 408 378 346
12.1 8.05 7.95 7.88 7.74 7.59
35.5 24.9 23.8 23.2 22.6 22.1
10 650 974
11 745112070710606781020628 944
12 798120072710906791020629 945576 865
13 76811506711010626 942580 872531 798
14 7131070623 936582 874539 810493 741
15 79611906651000582 874543 816503 756460 692
16 7571140624 938545 819509 765472 709432 649
17 7131070587 882513 771479 720444 667406 611
18 6731010554 833485 728452 680419 630384 577
19 638 958525 789459 690429 644397 597363 546
20 606 911499 750436 656407 612377 567345 519
21 577 867475 714415 624388 583359 540329 494
22 551 828454 682396 596370 556343 515314 472
23 527 792434 652379 570354 532328 493300 451
24 505 759416 625363 546339 510314 473288 433
25 485 728399 600349 524326 490302 454276 415
26 466 700384 577335 504313 471290 436266 399
27 449 674370 556323 486302 453279 420256 384
28 433 650356 536312 468291 437269 405247 371
29 418 628344 517301 452281 422260 391238 358
30 404 607333 500291 437271 408251 378230 346
32 379 569312 469273 410254 383236 354216 324
34 356 536294 441257 386240 360222 334203 305
36 337 506277 417242 364226 340210 315192 288
38 319 479263 395230 345214 322199 298182 273
40 303 455250 375218 328204 306189 284173 260
42 288 434238 357208 312194 291180 270164 247
44 275 414227 341198 298185 278171 258157 236
46 263 396217 326190 285177 266164 247150 226
48 252 379208 313182 273170 255157 236144 216
50 242 364200 300174 262163 245151 227138 208
52 233 350192 288168 252157 235145 218133 200
54 224 337185 278162 243151 227140 210128 192
56 216 325178 268156 234145 219135 203123 185
58 209 314172 259150 226140 211130 196119 179
60 202 304166 250145 219136 204126 189115 173
62 195 294161 242141 211131 197122 183111 167
64 189 285156 234136 205127 191118 177108 162
66 184 276151 227132 199123 185114 172105 157
68 178 268147 221128 193120 180111 167102 153
70 173 260143 214125 187116 175108 16298.7148
72 168 253139 208121 182113 170105 15895.9144
AISC_Part 3A:14th Ed. 2/24/11 8:43 AM Page 47

3–48 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
99
Design LRFDASD
Fy= 50 ksi
90
v
539
h
W30× W27×
LRFDASD LRFDASD
368
h
336
h
307
h
LRFDASD LRFDASD LRFDASD
W30-W27
62309360565084903770056700248003720022600339002060030900
7781170706106047207090309046502820424025703860
47070642864327404120185027801700255015502330
22.233.420.630.826.239.324.937.625.037.725.137.7
30946324937412801920839126075611306871030
312 283 1890 1240 1130 1030
7.42 7.38 12.9 12.3 12.2 12.0
21.3 20.9 88.5 62.0 57.0 52.6
10 618 927
11 566 851498 749
12 519 780471 708
13 479 720435 653
14 445 669403 606
15 415 624377 566
16 389 585353 531
17 366 551332 499
18 346 520314 472
19 328 493297 447
20 311 468282 425
21 297 446269 404
22 283 425257 386
23 271 407246 369
24 259 390235 354
25 249 374226 340
26 240 360217 327
27 231 347209 314
28 222 334202 303
29 215 323195 293
30 208 312188 283
32 195 293177 265
34 183 275166 250
36 173 260157 236
38 164 246149 223
40 156 234141 212
42 148 223134 202
44 142 213128 193
46 135 203123 185
48 130 195118 177
50 125 187113 170
52 120 180109 163
54 115 173105 157
56 111 167101 152
58 107 16197.4146
60 104 15694.1142
62 100 15191.1137
64 97.314688.3133
66 94.414285.6129
68 91.613883.1125
70 89.013480.7121
72 86.513078.5118
256038401680252015102270
25103780165024801500226013702060
23603540155023301410212012801930
22203340146021901330199012101820
21003150138020701250188011401720
19902980130019601190178010801630
18902840124018601130170010301550
1800270011801770107016109791470
1710258011301690103015409341400
164024701080162098114708941340
157023601030155094014108571290
15102270990149090213608221240
14502180952143086713007911190
14002100917138083512607611140
13502030884133080612107341100
13001960853128077811707091070
12601890825124075211306851030
1180177077311607051060642966
111016707281090663997605909
105015806881030627942571858
9931490651979594892541813
9431420619930564848514773
8981350589886537807489736
8571290563845513770467702
8201230538809490737447672
7861180516775470706428644
7541130495744451678411618
7251090476715434652395594
6991050458689418628381572
6741010442664403605367552
650978427641389584354533
629945413620376565343515
608915399600364547332498
589886387581352530321483
572859375564342514311468
555834364547332499302454
539810354531322484294441
524788344517313471286429
AISC_Part 3A:14th Ed. 2/24/11 8:44 AM Page 48

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
281
Design LRFDASD
Fy= 50 ksi
258 235
W27×
LRFDASD LRFDASD
217 194 178
LRFDASD LRFDASD LRFDASD
W27
187002810017000256001540023200142002130012600189001140017100
234035102130320019302900177026701570237014202140
1420214013001960118017801100165097614708821330
24.836.924.436.524.136.023.035.122.333.821.632.5
621932568853522784471707422632403605
936 852 772 711 631 570
12.0 11.9 11.8 11.7 11.6 11.5
49.1 45.9 42.9 40.8 38.2 36.4
14 1140171010401570 84312608061210
15 124018601130170010301540943141084012607581140
16 11701760106016009631450887133078711807111070
17 11001650100015009061360835125074111106691010
18 104015609451420856129078811907001050632950
19 9831480895135081112207471120663996599900
20 9341400850128077011607101070630947569855
21 8901340810122073411006761020600901542814
22 849128077311607001050645970572860517777
23 812122073911106701010617927548823495743
24 77811707091070642965591889525789474713
25 74711206801020616926568853504757455684
26 7191080654983593891546820484728438658
27 6921040630947571858526790466701421633
28 6671000607913550827507762450676406611
29 644968586881531799489736434653392590
30 623936567852514772473711420631379570
32 584878531799482724443667394592356534
34 549826500752453681417627370557335503
36 519780472710428643394593350526316475
38 492739448673406609373561331498299450
40 467702425639385579355533315473284428
42 445669405609367551338508300451271407
44 425638386581350526323485286430259389
46 406610370556335503309464274412247372
48 389585354533321483296444262394237356
50 374562340511308463284427252379228342
52 359540327492296445273410242364219329
54 346520315473285429263395233351211317
56 334501304456275414253381225338203305
58 322484293441266399245368217326196295
60 311468283426257386237356210316190285
62 301453274412249374229344203305184276
64 292439266399241362222333197296178267
66 283425258387233351215323191287172259
68 275413250376227341209314185278167251
70 267401243365220331203305180270
72 259390236355
Beam Properties
AISC_Part 3A:14th Ed. 2/24/11 8:44 AM Page 49

3–50 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
161
Design LRFDASD
Fy= 50 ksi
146 129
W27×
LRFDASD LRFDASD
114 102 94
LRFDASD LRFDASD LRFDASD
W27
10300155009260139007880119006850103006090915055508340
12801930116017409861480856129076111406941040
80012007231090603 906522 785466701424638
20.631.319.929.523.435.021.732.820.129.819.128.5
364546332 497337 505311 467279419264395
515 464 395 343 305 278
11.4 11.3 7.81 7.70 7.59 7.49
34.7 33.3 24.2 23.1 22.3 21.6
10 558 837527 791
11 6731010622934553 832504 758
12 657988571858507 763462 695
13 663995606912527792468 704427 642
14 7291090662994563846489735435 654396 596
15 6851030617928526790456686406 610370 556
16 642966579870493741428643380 572347 521
17 605909545819464697403605358 538326 491
18 571858515773438658380572338 508308 463
19 541813487733415624360542320 482292 439
20 514773463696394593342515304 458277 417
21 489736441663375564326490290 436264 397
22 467702421633358539311468277 416252 379
23 447672403605343515298447265 398241 363
24 428644386580329494285429254 381231 348
25 411618370557315474274412244 366222 334
26 395594356535303456263396234 352213 321
27 381572343516292439254381225 339206 309
28 367552331497282423245368217 327198 298
29 354533319480272409236355210 316191 288
30 343515309464263395228343203 305185 278
32 321483289435246370214322190 286173 261
34 302454272409232349201303179 269163 245
36 286429257387219329190286169 254154 232
38 271407244366207312180271160 241146 219
40 257386232348197296171257152 229139 209
42 245368221331188282163245145 218132 199
44 234351210316179269156234138 208126 190
46 223336201303171258149224132 199121 181
48 214322193290164247143214127 191116 174
50 206309185278158237137206122 183111 167
52 198297178268152228132198117 176107 160
54 190286172258146219127191113 169103 154
56 184276165249141212122184109 16399.1149
58 177266160240136204118177105 15895.7144
60 171258154232131198114172101 15392.5139
62 16624914922512719111016698.214889.5135
64 16124114521812318510716195.114386.7130
66 15623414021111918010415692.213984.1126
68 151227136205116174101151
AISC_Part 3A:14th Ed. 2/24/11 8:44 AM Page 50

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
84
Design LRFDASD
Fy= 50 ksi
370
h
335
h
W27× W24×
LRFDASD LRFDASD
306
h
279
h
250
LRFDASD LRFDASD LRFDASD
W27-W24
48707320
609915
372559
17.626.4
246368
244
7.31
20.8
9 491 737
10 487 732
11 443 665
12 406 610
13 375 563
14 348 523
15 325 488
16 304 458
17 286 431
18 271 407
19 256 385
20 244 366
21 232 349
22 221 333
23 212 318
24 203 305
25 195 293
26 187 282
27 180 271
28 174 261
29 168 252
30 162 244
32 152 229
34 143 215
36 135 203
38 128 193
40 122 183
42 116 174
44 111 166
46 106 159
48 101 153
50 97.4146
52 93.7141
54 90.2136
56 87.0131
58 84.0126
60 81.2122
62 78.6118
64 76.1114
66 73.8111
68
70
1700255015202280137020501240186010901640
1610242014502190131019801190179010601590
150022601360204012301840111016709901490
141021201270191011501730104015709281400
13301990120018001080163098014708741310
12501880113017001020154092613908251240
1190178010701610969146087713207821170
1130170010201530920138083312507431120
107016109691460876132079411907071060
103015409251390837126075811406751010
9811470885133080012007251090646970
9401410848128076711506941040619930
9021360814122073611106671000594893
867130078311807081060641963571858
835126075411306821020617928550827
80612107271090657988595895530797
77811707021060635954575864512770
75211306791020613922556835495744
7051060636956575864521783464698
663997599900541814490737437656
627942566850511768463696413620
594892536805484728439659391587
564848509765460692417626371558
537807485729438659397596354531
513770463695418629379569338507
490737443665400601362545323485
470706424638383576347522309465
451678407612368553333501297446
434652392588354532321482286429
418628377567341512309464275413
403605364546329494298447265399
389584351528317477287432256385
376565339510307461278418248372
364547328494297446269404240360
352530318478288432260391232349
342514308464279419253380
332499299450
322484
22600339002040030600184002770016700251001490022300
2820424025403830230034602080313018602790
1670251015102270138020701250188011201690
20.030.019.930.219.729.819.729.619.729.3
851128075911406831020619929547821
1130 1020 922 835 744
11.6 11.4 11.3 11.2 11.1
69.2 63.1 57.9 53.4 48.7
AISC_Part 3A:14th Ed. 2/24/11 8:44 AM Page 51

3–52 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
229
Design LRFDASD
Fy= 50 ksi
207 192
W24×
LRFDASD LRFDASD
176 162 146
LRFDASD LRFDASD LRFDASD
W24
1350020300121001820011200168001020015300934014000834012500
168025301510227013902100127019201170176010401570
103015409271390858129078611807231090648 974
19.028.918.928.618.428.018.127.717.926.817.025.8
499749447671413620378567353 529321 482
675 606 559 511 468 418
11.0 10.9 10.8 10.7 10.8 10.6
45.2 41.7 39.7 37.4 35.8 33.7
13 99815008941340826124075611307051060642963
14 96214508641300797120072911006671000596896
15 8981350806121074411206801020623936556836
16 842127075611406971050637958584878521784
17 79311907121070656986600902549826491738
18 74911306721010620932567852519780464697
19 7091070637957587883537807492739439660
20 6741010605909558839510767467702417627
21 642964576866531799486730445669397597
22 612920550826507762464697425638379570
23 586880526790485729443667406610363545
24 561844504758465699425639389585348523
25 539810484727446671408613374562334502
26 518779465699429645392590359540321482
27 499750448673413621378568346520309464
28 481723432649398599364548334501298448
29 465698417627385578352529322484288432
30 449675403606372559340511311468278418
32 421633378568349524319479292439261392
34 396596356535328493300451275413245369
36 374563336505310466283426259390232348
38 355533318478294441268403246369220330
40 337506302455279419255383234351209314
42 321482288433266399243365222334199299
44 306460275413254381232348212319190285
46 293440263395243365222333203305181273
48 281422252379232349212319195293174261
50 269405242364223335204307187281167251
52 259389233350215323196295180270160241
54 250375224337207311189284173260155232
56 241362216325199299182274167251149224
58 232349209313192289176264161242144216
60 225338202303186280170256156234139209
62 217327195293180270165247151226
64 211316189284
AISC_Part 3A:14th Ed. 2/24/11 8:44 AM Page 52

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
131
Design LRFDASD
Fy= 50 ksi
117 104
W24×
LRFDASD LRFDASD
103 94 84
LRFDASD LRFDASD LRFDASD
W24
7390111006530981057708670559084005070762044706720
9231390816123072110806991050634953559840
575 864508764451677428643388583342515
16.324.615.423.314.321.318.227.417.326.016.224.2
296 445267401241362270404250375227340
370 327 289 280 254 224
10.5 10.4 10.3 7.03 6.99 6.89
31.9 30.4 29.2 21.9 21.2 20.3
9 453680
10 539809501751447672
11 482723508764461693406611
12 593889535802481723466700422635373560
13 568854502755444667430646390586344517
14 528793466701412619399600362544319480
15 492740435654385578373560338508298448
16 462694408613361542349525317476279420
17 434653384577339510329494298448263395
18 410617363545320482310467282423248373
19 389584344516304456294442267401235354
20 369555326491288434279420253381224336
21 352529311467275413266400241363213320
22 336505297446262394254382230346203305
23 321483284427251377243365220331194292
24 308463272409240361233350211318186280
25 295444261392231347224336203305179269
26 284427251377222333215323195293172258
27 274411242363214321207311188282166249
28 264396233350206310200300181272160240
29 255383225338199299193290175263154232
30 246370218327192289186280169254149224
32 231347204307180271175263158238140210
34 217326192289170255164247149224132198
36 205308181273160241155233141212124187
38 194292172258152228147221133201118177
40 185278163245144217140210127191112168
42 176264155234137206133200121181106160
44 168252148223131197127191115173102153
46 16124114221312518812118311016697.2146
48 15423113620412018111617510615993.1140
50 14822213119611517311216810115289.4134
52 14221312618911116710716297.514786.0129
54 13720612118210716110315693.914182.8124
56 13219811717510315599.815090.513679.8120
58 12719111316999.514996.414587.413177.1116
60 12318510916496.114593.114084.512774.5112
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:38 AM Page 53

Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
76
Design LRFDASD
Fy= 50 ksi
68 62
W24× W21×
LRFDASD LRFDASD
55
v
201 182
LRFDASD LRFDASD LRFDASD
W24-W21
399060003530531030504590267040201060015900950014300
4997504426643825743345031320199011901790
307462269404229344199299 80512107281090
15.122.614.121.216.124.114.722.214.522.014.421.8
210315197295204306167252 419628377 565
200 177 153 134 530 476
6.78 6.61 4.87 4.73 10.7 10.6
19.5 18.9 14.4 13.9 46.2 42.7
3–54 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7 408611335503
8 382574334503
9 421631393590339510297447
10 399600353531305459267402
11 363545321483278417243365
12 333500294443254383223335
13 307462272408235353206309
14 285429252379218328191287
15 266400236354204306178268
16 250375221332191287167251
17 235353208312180270157236
18 222333196295170255149223
19 210316186279161242141212
20 200300177266153230134201
21 190286168253145219127191
22 181273161241139209122183
23 174261154231133200116175
24 166250147221127191111168
25 160240141212122184107161
26 154231136204117177103155
27 148222131197113170 99.1149
28 143214126190109164 95.5144
29 138207122183105158 92.2139
30 133200118177102153 89.2134
32 125188110166 95.4143 83.6126
34 117176104156 89.8135 78.7118
36 11116798.1148 84.8128 74.3112
38 10515893.0140 80.4121 70.4106
40 99.815088.3133 76.3115 66.9101
42 95.014384.1126 72.7109 63.795.7
44 90.713680.3121 69.4104 60.891.4
46 86.813076.8115 66.499.858.187.4
48 83.212573.6111 63.695.655.783.8
50 79.812070.7106 61.191.853.580.4
52 76.811567.9102 58.788.351.477.3
54 73.911165.498.356.685.049.574.4
56 71.310763.194.854.582.047.871.8
58 68.810360.991.652.779.146.169.3
83712607541130
81412207311100
75611406791020
7051060633952
661994594893
622935559840
588883528793
557837500752
529795475714
504757452680
481723432649
460691413621
441663396595
423636380571
407612365549
392589352529
378568339510
365548328492
353530317476
331497297446
311468279420
294442264397
278418250376
264398238357
252379226340
240361216325
230346207310
220331198298
212318190286
203306183275
196294176264
189284170255
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:41 AM Page 54

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
166
Design LRFDASD
Fy= 50 ksi
147 132
W21×
LRFDASD LRFDASD
122 111 101
LRFDASD LRFDASD LRFDASD
W21
86201300074501120066509990613092105570837050507590
108016209311400831125076611506961050631949
664 998575 864515774477717435654396596
14.221.213.720.713.219.912.919.312.418.911.817.7
338 506318 477283425260391237355214321
432 373 333 307 279 253
10.6 10.4 10.3 10.3 10.2 10.2
39.9 36.3 34.2 32.7 31.2 30.1
11 636955567850521781473710428642
12 6751010620933554833511768464698421633
13 663997573861511768471708428644388584
14 616926532799475714438658398598361542
15 575864496746443666409614371558337506
16 539810465699415624383576348523316474
17 507762438658391588360542328492297446
18 479720414622369555340512309465281422
19 454682392589350526323485293441266399
20 431648372560332500306461278419252380
21 411617355533317476292439265399240361
22 392589338509302454279419253380230345
23 375563324487289434266400242364220330
24 359540310466277416255384232349210316
25 345518298448266400245368223335202304
26 332498286430256384236354214322194292
27 319480276414246370227341206310187281
28 308463266400237357219329199299180271
29 297447257386229344211318192289174262
30 287432248373222333204307186279168253
32 269405233350208312191288174262158237
34 254381219329195294180271164246149223
36 240360207311185278170256155233140211
38 227341196294175263161242147220133200
40 216324186280166250153230139209126190
42 205309177266158238146219133199120181
44 196295169254151227139209127190115173
46 187282162243144217133200121182110165
48 180270155233138208128192116174105158
50 172259149224133200123184111167101152
52 16624914321512819211817710716197.1146
54 160240138207123185113171
56 154231
AISC_Part 3A:14th Ed. 2/24/11 8:45 AM Page 55

3–56 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
f
Shape does not meet compact limit for flexure with Fy= 50 ksi.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
8393
Design LRFDASD
Fy= 50 ksi
73 68
W21×
LRFDASD LRFDASD
62
LRFDASD LRFDASD
W21
4410 6630 3910 5880 3430 5160 3190 48002870 4320
551 829 489 735 429 645 399 600 359 540
335 504 299 449 264 396 245 368 222 333
14.6 22.013.8 20.8 12.9 19.4 12.5 18.811.6 17.5
251 376 220 331 193 289 181 272 168 252
221 196 172 160 144
6.50 6.46 6.39 6.36 6.25
21.3 20.2 19.2 18.7 18.1
8 501 752441 661386579 363 544 336504
9 490 737435 653381573 355 533 319480
10 441 663391 588343516 319 480287432
11 401 603356 535312469 290 436261393
12 368 553326 490286430 266 400240360
13 339 510301 452264397 246 369221332
14 315 474279 420245369 228 343205309
15 294 442261 392229344 213 320192288
16 276 414245 368215323 200 300180270
17 259 390230 346202304 188 282169254
18 245 368217 327191287 177 267160240
19 232 349206 309181272 168 253151227
20 221 332196 294172258 160 240144216
21 210 316186 280163246 152 229137206
22 201 301178 267156235 145 218131196
23 192 288170 256149224 139 209125188
24 184 276163 245143215 133 200120180
25 176 265156 235137206 128 192115173
26 170 255150 226132198 123 185111166
27 163 246145 218127191 118 178106160
28 158 237140 210123184 114 171103154
29 152 229135 203118178 110 166 99.1149
30 147 221130 196114172 106 160 95.8144
32 138 207122 184107161 99.8150 89.8135
34 130 195115 173101152 93.9141 84.5127
36 123 184109 163 95.4143 88.7133 79.8120
38 116 174103 155 90.3136 84.0126 75.6114
40 110 166 97.8147 85.8129 79.8120 71.9108
42 105 158 93.1140 81.7123 76.0114 68.4103
44 100 151 88.9134 78.0117 72.6109 65.398.2
46 95.9144 85.0128 74.6112 69.4104 62.593.9
48 91.9138 81.5122 71.5108 66.5100 59.990.0
50 88.2133 78.2118 68.7103 63.996.057.586.4
52 84.8128 75.2113 66.099.261.492.355.383.1
54 81.7123
AISC_Part 3A:14th Ed. 2/24/11 8:45 AM Page 56

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
5557
Design LRFDASD
Fy= 50 ksi
50 48
f
W21×
LRFDASD LRFDASD
44
LRFDASD LRFDASD
W21
2570 3870 2510 3780 2200 33002120 31801900 2860
322 484 314 473 274 413 265 398 238 358
194 291 192 289 165 248 162 244 143 214
13.4 20.3 10.8 16.3 12.1 18.3 9.8914.811.1 16.8
171 256 156 234 158 237 144 216 145 217
129 126 110 107 95.4
4.77 6.11 4.59 5.86 4.45
14.3 17.4 13.6 16.5 13.0
6 316474 290 435
7 342 513 314 471288 433272 409
8 322 484312 468 274 413265 398238 358
9 286 430279 420 244 367235 354212 318
10 257 387251 378 220 330212 318190 286
11 234 352229 344 200 300193 289173 260
12 215 323210 315 183 275176 265159 239
13 198 298193 291 169 254163 245146 220
14 184 276180 270 157 236151 227136 204
15 172 258168 252 146 220141 212127 191
16 161 242157 236 137 206132 199119 179
17 151 228148 222 129 194125 187112 168
18 143 215140 210 122 183118 177106 159
19 136 204132 199 116 174111 168100 151
20 129 194126 189 110 165106 159 95.2143
21 123 184120 180 105 157101 152 90.7136
22 117 176114 172 99.8150 96.3145 86.6130
23 112 168109 164 95.5143 92.1138 82.8124
24 107 161105 158 91.5138 88.2133 79.3119
25 103 155101 151 87.8132 84.7127 76.2114
26 99.0149 96.7145 84.4127 81.5122 73.2110
27 95.4143 93.1140 81.3122 78.4118 70.5106
28 92.0138 89.8135 78.4118 75.6114 68.0102
29 88.8133 86.7130 75.7114 73.0110 65.798.7
30 85.8129 83.8126 73.2110 70.6106 63.595.4
32 80.5121 78.6118 68.6103 66.299.559.589.4
34 75.7114 74.0111 64.697.162.393.656.084.2
36 71.5108 69.9105 61.091.758.888.452.979.5
38 67.8102 66.299.557.886.855.783.850.175.3
40 64.496.862.994.554.982.552.979.647.671.6
42 61.392.159.990.052.378.650.475.845.368.1
44 58.588.057.285.949.975.048.172.343.365.0
46 56.084.154.782.247.771.746.069.241.462.2
48 53.680.652.478.845.768.844.166.339.759.6
50 51.577.450.375.643.966.042.463.738.157.2
52 49.574.448.472.742.263.5
AISC_Part 3A_14th Ed._February 25, 2013 14-11-10 10:43 AM Page 57

3–58 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
311
h
Design
LRFDASD
Fy= 50 ksi
283
h
258
h
W18×
LRFDASD LRFDASD
234
h
211 192
LRFDASD LRFDASD LRFDASD
W18
1500022600135002030012200183001100016500978014700882013300
188028301690254015202290137020601220184011001660
109016409871480898135081412207321100664 998
11.216.811.116.710.916.510.816.410.716.210.616.1
6781020613920550826490734439 658392 588
754 676 611 549 490 442
10.4 10.3 10.2 10.1 9.96 9.85
81.1 73.6 67.3 61.4 55.7 51.0
11 136020301230184011001650979147087813207831180
12 125018901120169010201530913137081512307351110
13 11601740104015609381410843127075211306791020
14 107016209641450871131078311806991050630947
15 10001510900135081312207311100652980588884
16 9411410843127076211506851030611919551829
17 885133079411907171080645969575865519780
18 836126075011306781020609915543817490737
19 79211907101070642965577867515774464698
20 75211306751010610917548824489735441663
21 7171080643966581873522784466700420631
22 6841030613922554833498749445668401603
23 654983587882530797476716425639384577
24 627943562845508764457686408613368553
25 602905540811488733438659391588353530
26 579870519780469705421633376565339510
27 557838500751452679406610362544327491
28 537808482724436655391588349525315474
29 519780465699421632378568337507304457
30 502754450676407611365549326490294442
31 485730435654393591353531315474285428
32 470707422634381573342515306459276414
33 456685409615370555332499296445267402
34 443665397596359539322484288432259390
35 430646386579348524313471279420252379
36 418628375563339509304458272408245368
37 407611365548330495296445264397238358
38 396595355534321482288433257387232349
39 386580346520313470281422251377226340
40 376566337507305458274412245368221332
42 358539321483290436261392233350210316
44 342514307461277417249374222334201301
46 327492293441265398238358213320192288
48 314471281423254382228343204306184276
50 301452270406244367219329196294176265
52 289435259390235353211317
54 279419250376
AISC_Part 3A:14th Ed. 2/24/11 8:45 AM Page 58

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
175
Design LRFDASD
Fy= 50 ksi
158 143
W18×
LRFDASD LRFDASD
130 119 106
LRFDASD LRFDASD LRFDASD
W18
79401190071101070064309660579087005230786045906900
9931490888134080312107241090654983574 863
601 903541 814493740447672403606356 536
10.615.810.515.910.315.710.215.410.115.29.7314.6
356 534319 479285427259388249373221 331
398 356 322 290 262 230
9.75 9.68 9.61 9.54 9.50 9.40
46.9 42.8 39.6 36.6 34.3 31.8
10 498747441662
11 7121070638957569854517776475715417627
12 662995592890536805482725436655383575
13 611918547822494743445669402605353531
14 567853508763459690413621374561328493
15 530796474712428644386580349524306460
16 497746444668402604362544327491287431
17 467702418628378568340512308462270406
18 441663395593357537322483291437255383
19 418628374562338508305458275414242363
20 397597355534321483289435261393230345
21 378569338509306460276414249374219329
22 361543323485292439263395238357209314
23 345519309464279420252378227342200300
24 331498296445268403241363218328191288
25 318478284427257386232348209314184276
26 306459273411247372223335201302177265
27 294442263396238358214322194291170256
28 284426254381230345207311187281164246
29 274412245368222333200300180271158238
30 265398237356214322193290174262153230
31 256385229345207312187281169254148223
32 248373222334201302181272163246143216
33 241362215324195293175264158238139209
34 234351209314189284170256154231135203
35 227341203305184276165249149225131197
36 221332197297179268161242145218128192
37 215323192289174261156235141212124186
38 209314187281169254152229138207121182
39 204306182274165248148223134202118177
40 199299178267161242145218131197115173
42 189284169254153230138207125187109164
44 181271161243146220132198119179104157
46 17326015423214021012618911417199.8150
48 166249148223134201121181
50 159239
AISC_Part 3A:14th Ed. 2/24/11 8:46 AM Page 59

3–60 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
97
Design LRFDASD
Fy= 50 ksi
86 76
W18×
LRFDASD LRFDASD
71 65 60
LRFDASD LRFDASD LRFDASD
W18
421063303710558032504890291043802650399024603690
526 791464 698407 611364548332 499307 461
328 494290 436255 383222333204 307189 284
9.4114.19.0113.68.5012.810.415.89.9815.09.6214.4
199 299177 265155 232183275166 248151 227
211 186 163 146 133 123
9.36 9.29 9.22 6.00 5.97 5.93
30.4 28.6 27.1 19.6 18.8 18.2
7 366549
8 364548331497302453
9 324487295443273410
10 398597353530309464291438265399246.0369
11 383575338507296445265398241363223335
12 351528309465271408243365221333205308
13 324487286429250376224337204307189284
14 301452265399232349208313190285175264
15 281422248372217326194292177266164246
16 263396232349203306182274166249153231
17 248372218328191288171258156235144217
18 234352206310181272162243147222136205
19 222333195294171257153231140210129194
20 211317186279163245146219133200123185
21 201301177266155233139209126190117176
22 191288169254148222132199121181112168
23 183275161243141213127190115173107160
24 175264155233136204121183111166102154
25 168253149223130196117175106160 98.2148
26 162243143215125188112168102153 94.4142
27 156234138207120181108162 98.3148 90.9137
28 150226133199116175104156 94.8143 87.7132
29 145218128192112169100151 91.5138 84.7127
30 14021112418610816397.1146 88.5133 81.8123
31 13620412018010515894.0141 85.6129 79.2119
32 13219811617410215391.1137 83.0125 76.7115
33 12819211316998.614888.3133 80.4121 74.4112
34 12418610916495.714485.7129 78.1117 72.2109
35 12018110615993.014083.3125 75.8114 70.1105
36 11717610315590.413680.9122 73.7111 68.2103
37 11417110015187.913278.8118 71.7108 66.499.7
38 11116797.714785.612976.7115 69.9105 64.697.1
39 10816295.214383.412574.7112 68.1102 63.094.6
40 10515892.814081.312272.9110 66.499.861.492.3
42 10015188.413377.511669.4104 63.295.058.587.9
44 95.714484.412773.911166.299.560.390.755.883.9
46 91.613880.7121 63.495.257.786.7
AISC_Part 3A:14th Ed. 2/24/11 8:46 AM Page 60

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
55
Design LRFDASD
Fy= 50 ksi
50 46
W18× W16×
LRFDASD LRFDASD
40 35 100
LRFDASD LRFDASD LRFDASD
W18-W16
224033602020303018102720156023501330200039505940
279 420252 379226 340196 294166 249494 743
172 258155 233138 207119 180101 151306 459
9.1513.88.7613.29.6314.68.9413.28.1412.37.8611.9
141 212128 192130 195113 169106 159199 298
112 101 90.7 78.4 66.5 198
5.90 5.83 4.56 4.49 4.31 8.87
17.6 16.9 13.7 13.1 12.3 32.8
6 261391226338212319
7 282424256383259389224336190285
8 279420252379226340196294166249
9 248373224337201302174261147222
10 224336202303181272156235133200
11 203305183275165247142214121181
12 186280168253151227130196111166
13 172258155233139209120181102153
14 160240144216129194112168 94.8143
15 149224134202121181104157 88.5133
16 140210126189113170 97.8147 83.0125
17 132198119178106160 92.1138 78.1117
18 124187112168101151 86.9131 73.7111
19 118177106159 95.3143 82.4124 69.9105
20 112168101152 90.5136 78.2118 66.499.8
21 106160 96.0144 86.2130 74.5112 63.295.0
22 102153 91.6138 82.3124 71.1107 60.390.7
23 97.2146 87.7132 78.7118 68.0102 57.786.7
24 93.1140 84.0126 75.4113 65.298.055.383.1
25 89.4134 80.6121 72.4109 62.694.153.179.8
26 86.0129 77.5117 69.6105 60.290.551.176.7
27 82.8124 74.7112 67.1101 58.087.149.273.9
28 79.8120 72.0108 64.797.255.984.047.471.3
29 77.1116 69.5104 62.493.854.081.145.868.8
30 74.5112 67.2101 60.390.752.278.444.266.5
31 72.1108 65.097.758.487.850.575.942.864.4
32 69.9105 63.094.756.685.048.973.541.562.3
33 67.7102 61.191.854.982.547.471.340.260.5
34 65.898.859.389.153.280.046.069.239.058.7
35 63.996.057.686.651.777.744.767.237.957.0
36 62.193.356.084.250.375.643.565.336.955.4
37 60.490.854.581.948.973.542.363.635.953.9
38 58.888.453.179.747.671.641.261.934.952.5
39 57.386.251.777.746.469.840.160.334.051.2
40 55.984.050.475.845.368.039.158.833.249.9
42 53.280.048.072.143.164.837.356.031.647.5
44 50.876.445.868.941.161.835.653.530.245.3
398597
395594
359540
329495
304457
282424
263396
247371
232349
220330
208313
198297
188283
180270
172258
165248
158238
152228
146220
141212
136205
132198
127192
124186
120180
116175
113170
110165
107161
104156
101152
98.8149
94.1141
AISC_Part 3A:14th Ed. 2/24/11 8:46 AM Page 61

3–62 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
7789
Design LRFDASD
Fy= 50 ksi
67 57
W16×
LRFDASD LRFDASD
50
LRFDASD LRFDASD
W16
3490 52502990 45002590 39002100 31501840 2760
437 656 374 563 324 488 262 394 230 345
271 407 234 352 204 307 161 242 141 213
7.7611.6 7.3411.1 6.8910.4 7.9812.0 7.6911.4
176 265 150 225 129 193 141 212 124 186
175 150 130 105 92.0
8.80 8.72 8.69 5.65 5.62
30.2 27.8 26.1 18.3 17.2
7 282 423248372
8 262 394230345
9 353 529300 450 233 350204307
10 349 525299 450258386 210 315184276
11 318 477272 409236355 191 286167251
12 291 438250 375216325 175 263153230
13 269 404230 346200300 161 242141212
14 250 375214 321185279 150 225131197
15 233 350200 300173260 140 210122184
16 218 328187 281162244 131 197115173
17 205 309176 265153229 123 185108162
18 194 292166 250144217 116 175102153
19 184 276158 237137205 110 166 96.6145
20 175 263150 225130195 105 158 91.8138
21 166 250143 214124186 99.8150 87.4131
22 159 239136 205118177 95.3143 83.5125
23 152 228130 196113170 91.1137 79.8120
24 146 219125 188108163 87.3131 76.5115
25 140 210120 180104156 83.8126 73.5110
26 134 202115 173 99.8150 80.6121 70.6106
27 129 194111 167 96.1144 77.6117 68.0102
28 125 188107 161 92.7139 74.9113 65.698.6
29 120 181103 155 89.5134 72.3109 63.395.2
30 116 175 99.8150 86.5130 69.9105 61.292.0
31 113 169 96.6145 83.7126 67.6102 59.289.0
32 109 164 93.6141 81.1122 65.598.457.486.3
33 106 159 90.7136 78.6118 63.595.555.683.6
34 103 154 88.1132 76.3115 61.692.654.081.2
35 99.8150 85.5129 74.1111 59.990.052.578.9
36 97.0146 83.2125 72.1108 58.287.551.076.7
37 94.4142 80.9122 70.1105 56.685.149.674.6
38 91.9138 78.8118 68.3103 55.282.948.372.6
39 89.6135 76.8115 66.5100 53.780.847.170.8
40 87.3131 74.9113 64.997.552.478.845.969.0
42 83.2125
AISC_Part 3A:14th Ed. 2/24/11 8:46 AM Page 62

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
4045
Design LRFDASD
Fy= 50 ksi
36 31
W16×
LRFDASD LRFDASD
26
v
LRFDASD LRFDASD
W16
1640 24701460 219012801920 1080 1620 882 1330
205 309 182 274 160 240 135 203 110 166
127 191 113 170 98.7148 82.4124 67.1101
7.1210.8 6.6710.0 6.24 9.36 6.8610.3 5.93 8.98
111 167 97.6146 93.8141 87.5131 70.5106
82.3 73.0 64.0 54.0 44.2
5.55 5.55 5.37 4.13 3.96
16.5 15.9 15.2 11.8 11.2
6 188281175 262141 212
7 223 333195 293 182 274154 231126 189
8 205 309182 274 160 240135 203110 166
9 183 274162 243 142 213120 180 98.0147
10 164.0247146 219 128 192108 162 88.2133
11 149 224132 199 116 175 98.0147 80.2121
12 137 206121 183 106 160 89.8135 73.5111
13 126 190112 168 98.3148 82.9125 67.9102
14 117 176104 156 91.2137 77.0116 63.094.7
15 110 165 97.1146 85.2128 71.9108 58.888.4
16 103 154 91.1137 79.8120 67.4101 55.182.9
17 96.6145 85.7129 75.1113 63.495.351.978.0
18 91.3137 80.9122 71.0107 59.990.049.073.7
19 86.5130 76.7115 67.2101 56.785.346.469.8
20 82.1123 72.9110 63.996.053.981.044.166.3
21 78.2118 69.4104 60.891.451.377.142.063.1
22 74.7112 66.299.558.187.349.073.640.160.3
23 71.4107 63.495.255.583.546.970.438.457.7
24 68.4103 60.791.353.280.044.967.536.855.3
25 65.798.858.387.651.176.843.164.835.353.0
26 63.295.056.084.249.173.841.562.333.951.0
27 60.891.454.081.147.371.139.960.032.749.1
28 58.788.252.078.245.668.638.557.931.547.4
29 56.685.150.275.544.066.237.255.930.445.7
30 54.882.348.673.042.664.035.954.029.444.2
31 53.079.647.070.641.261.934.852.328.542.8
32 51.377.245.568.439.960.033.750.627.641.4
33 49.874.844.266.438.758.232.749.126.740.2
34 48.372.642.964.437.656.531.747.625.939.0
35 46.970.541.662.636.554.930.846.325.237.9
36 45.668.640.560.835.553.329.945.024.536.8
37 44.466.739.459.234.551.929.143.823.835.8
38 43.265.038.357.633.650.528.442.623.234.9
39 42.163.337.456.232.849.227.641.522.634.0
40 41.161.736.454.8
AISC_Part 3A:14th Ed. 2/24/11 8:46 AM Page 63

3–64 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
730
h
Design
LRFDASD
Fy= 50 ksi
665
h
605
h
W14×
LRFDASD LRFDASD
550
h
500
h
455
h
LRFDASD LRFDASD LRFDASD
W14
331004980029500444002630039600236003540021000315001870028100
414062303690555032904950294044302620394023403510
224033602010302018202730163024401460220013201980
7.3511.17.1010.76.8110.36.6510.16.439.656.249.36
138020601220183010901630962144085812907681150
1660 1480 1320 1180 1050 936
16.6 16.3 16.1 15.9 15.6 15.5
275 253 232 213 196 179
12 275041302450367021703260192028801720258015402300
13 255038302270342020303050181027201610242014402160
14 237035602110317018802830168025301500225013302010
15 221033201970296017602640157023601400210012501870
16 207031101850278016502480147022101310197011701760
17 195029301740261015502330139020801230185011001650
18 184027701640247014602200131019701160175010401560
19 17402620155023401390208012401860110016609831480
20 16602490148022201320198011801770105015809341400
21 1580237014102110125018901120169099815008901340
22 1510226013402020120018001070161095314308491280
23 1440217012801930115017201020154091113708121220
24 138020801230185011001650981148087313107781170
25 133019901180178010501580942142083812607471120
26 127019201140171010101520906136080612107191080
27 12301840109016409761470872131077611706921040
28 11801780106015909411410841126074911306671000
29 1140172010201530909137081212207231090644968
30 110016609851480878132078511806991050623936
31 107016109531430850128076011406761020603906
32 10401560923139082312407361110655984584878
33 10001510895135079812007141070635955566851
34 9751460869131077511606931040616926549826
35 9471420844127075311306731010599900534802
36 920138082112307321100654983582875519780
37 896135079812007121070637957566851505759
38 872131077711706931040620932552829492739
39 850128075711406761020604908537808479720
40 82812507391110659990589885524788467702
42 78911907031060627943561843499750445669
44 75311306711010599900535805476716425638
46 7201080642965573861512770456685406610
48 6901040615925549825491738437656
50 663996591888527792471708
52 667958568854507762
54 614922547822
56 592889
AISC_Part 3B_14th Ed._Nov. 19, 2012 14-11-10 10:48 AM Page 64

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
426
h
Design
LRFDASD
Fy= 50 ksi
398
h
370
h
W14×
LRFDASD LRFDASD
342
h
311
h
283
h
LRFDASD LRFDASD LRFDASD
W14
173002610016000240001470022100134002020012000181001080016300
217032602000300018402760168025201500226013502030
123018501150172010601590975146088413308021200
6.169.235.958.965.878.805.738.625.598.445.528.36
7031050648972594891539809482723431646
869 801 736 672 603 542
15.3 15.2 15.1 15.0 14.8 14.7
168 158 148 138 125 114
12 1410211013001940119017801080162096414508621290
13 1330201012301850113017001030155092613908321250
14 124018601140172010501580958144086012907731160
15 11601740107016009791470894134080212107211080
16 1080163099915009181380838126075211306761020
17 102015309401410864130078911907081060636956
18 96414508881340816123074511206691010601903
19 9131370841126077311607061060633952569856
20 8671300799120073511006711010602905541813
21 826124076111407001050639960573861515774
22 788119072710906681000610916547822492739
23 75411306951040639960583877523787470707
24 72310906661000612920559840501754451678
25 6941040640961588883537806481724433650
26 6671000615924565849516775463696416625
27 642966592890544818497747446670401602
28 619931571858525789479720430646386581
29 598899551829507761463695415624373561
30 578869533801490736447672401603361542
31 560841516775474712433650388584349525
32 542815500751459690419630376565338508
33 526790484728445669406611365548328493
34 510767470707432649395593354532318478
35 496745457687420631383576344517309465
36 482724444668408613373560334503301452
37 469705432649397597363545325489292439
38 456686421632387581353531317476285428
39 445668410616377566344517309464277417
40 434652400601367552335504301452270407
42 413621381572350526319480287431
44 394593363546334502
46 377567
AISC_Part 3B:14th Ed. 2/24/11 8:49 AM Page 65

3–66 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
257
Design LRFDASD
Fy= 50 ksi
233 211
W14×
LRFDASD LRFDASD
193 176 159
LRFDASD LRFDASD LRFDASD
W14
9720146008700131007780117007090107006390960057308610
12201830109016409731460886133079812007161080
7251090655984590887541814491738444667
5.548.285.408.155.307.945.307.935.207.835.177.85
387581342514308462276414252378224335
487 436 390 355 320 287
14.6 14.5 14.4 14.3 14.2 14.1
104 95.0 86.6 79.4 73.2 66.7
12 77411606851030615923552828505757447671
13 74811206691010599900545819491738441662
14 6941040622934556836506761456686409615
15 648974580872519780472710426640382574
16 608913544818487731443666399600358538
17 572859512769458688417626376565337506
18 540812483727432650394592355533318478
19 512769458688410616373561336505302453
20 486731435654389585354533319480286431
21 463696414623371557337507304457273410
22 442664396595354532322484290436260391
23 423635378569338509308463278417249374
24 405609363545324488295444266400239359
25 389584348523311468283426255384229344
26 374562335503299450273410246369220331
27 360541322484288433262394237356212319
28 347522311467278418253380228343205308
29 335504300451268403244367220331198297
30 324487290436259390236355213320191287
31 314471281422251377229344206310185278
32 304457272409243366221333200300179269
33 295443264396236355215323194291174261
34 286430256385229344208313188282168253
35 278417249374222334202304182274164246
36 270406242363216325197296177267159239
37 263395235354210316192288173259155233
38 256384229344205308186280168253
39 249375223335200300
40 243365218327
AISC_Part 3B:14th Ed. 2/24/11 8:49 AM Page 66

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
145
Design LRFDASD
Fy= 50 ksi
132 120
W14×
LRFDASD LRFDASD
109 99
f
90
f
LRFDASD LRFDASD LRFDASD
W14
519078004670702042306360383057603440517030504590
649975584878529795479720430646382574
405609365549332499302454274412250375
5.137.695.157.745.097.655.017.544.917.364.827.26
201302190284171257150225138207123185
260 234 212 192 173 157
14.1 13.3 13.2 13.2 13.5 15.1
61.7 55.8 51.9 48.5 45.3 42.5
12 403604379569342513300450275413246370
13 399600359540326489295443264397235353
14 371557334501302454274411246369218328
15 346520311468282424255384229344204306
16 324488292439264398240360215323191287
17 305459275413249374225339202304180270
18 288433259390235353213320191287170255
19 273411246369223335202303181272161242
20 259390234351212318192288172258153230
21 247371222334202303182274164246145219
22 236355212319192289174262156235139209
23 226339203305184277167250149225133200
24 216325195293176265160240143215127191
25 208312187281169254153230137207122184
26 200300180270163245147222132199117177
27 192289173260157236142213127191113170
28 185279167251151227137206123185109164
29 179269161242146219132199119178105158
30 173260156234141212128192115172102153
31 16725215122613720512418611116798.5148
32 16224414621913219912018010716195.4143
33 15723614221312819311617510415792.5139
34 15322913720612418711316910115289.8135
35 14822313320112118210916598.214887.3131
36 144217130195118177
37 140211
AISC_Part 3B:14th Ed. 2/24/11 8:49 AM Page 67

3–68 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
82
Design LRFDASD
Fy= 50 ksi
74 68
W14×
LRFDASD LRFDASD
61 53 48
LRFDASD LRFDASD LRFDASD
W14
277041702510378023003450204030601740261015602350
347521314473287431254383217327196294
215323196294180270161242136204123184
5.408.105.318.055.197.814.937.485.227.935.097.67
14621912819211617410415610315493.8141
139 126 115 102 87.1 78.4
8.76 8.76 8.69 8.65 6.78 6.75
33.2 31.0 29.3 27.5 22.3 21.1
8 206309188282
9 292438256383232349209313193290174261
10 277417251378230345204306174261156235
11 252379229344209314185278158238142214
12 231348210315191288170255145218130196
13 213321193291177265157235134201120181
14 198298180270164246145219124187112168
15 185278168252153230136204116174104157
16 17326115723614321612719110916397.8147
17 16324514822213520312018010215492.1138
18 15423214021012819211317096.614586.9131
19 14621913219912118210716191.513882.4124
20 13920912618911517310215386.913178.2118
21 13219912018010916496.914682.812474.5112
22 12619011417210415792.513979.011971.1107
23 12118110916499.815088.513375.611468.0102
24 11617410515895.614484.812872.410965.298.0
25 11116710115191.813881.412269.510562.694.1
26 10716096.714588.313378.311866.910160.290.5
27 10315493.114085.012875.411364.496.858.087.1
28 99.114989.813582.012372.710962.193.355.984.0
29 95.714486.713079.211970.210659.990.154.081.1
30 92.513983.812676.511567.910258.087.152.278.4
31 89.513581.112274.011165.798.756.184.350.575.9
32 86.713078.611871.710863.695.654.381.748.973.5
33 84.112676.211569.610561.792.752.779.247.471.3
34 81.612374.011167.510159.990.051.176.946.069.2
35 79.311971.910865.698.6
AISC_Part 3B:14th Ed. 2/24/11 8:50 AM Page 68

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
43
Design LRFDASD
Fy= 50 ksi
38 34
W14×
LRFDASD LRFDASD
30 26 22
LRFDASD LRFDASD LRFDASD
W14
13902090123018501090164094414208021210663996
17426115323113620511817710015182.8125
10916495.414384.912873.411061.792.750.676.1
4.887.285.378.205.017.554.636.955.338.114.787.27
83.612587.413179.812074.511270.910663.094.5
69.6 61.5 54.6 47.3 40.2 33.2
6.68 5.47 5.40 5.26 3.81 3.67
20.0 16.2 15.6 14.9 11.0 10.4
5 142213126189
6 160239149224134201110166
7 17526215623413520311517294.7142
8 16725115323113620511817710015182.8125
9 15423213620512118210515889.213473.6111
10 13920912318510916494.414280.212166.399.6
11 12619011216899.114985.812972.911060.290.5
12 11617410215490.813778.711866.910155.283.0
13 10716194.414283.812672.610961.792.851.076.6
14 99.214987.713277.811767.410157.386.147.371.1
15 92.613981.812372.710962.994.653.580.444.266.4
16 86.813176.711568.110259.088.750.175.441.462.3
17 81.712372.210964.196.455.583.547.270.939.058.6
18 77.211668.210360.591.052.578.844.667.036.855.3
19 73.111064.697.157.486.249.774.742.263.534.952.4
20 69.510461.492.354.581.947.271.040.160.333.149.8
21 66.299.458.587.951.978.045.067.638.257.431.647.4
22 63.194.955.883.949.574.542.964.536.554.830.145.3
23 60.490.853.480.247.471.241.061.734.952.428.843.3
24 57.987.051.176.945.468.339.359.133.450.327.641.5
25 55.683.549.173.843.665.537.856.832.148.226.539.8
26 53.480.347.271.041.963.036.354.630.946.425.538.3
27 51.577.345.568.340.460.735.052.629.744.724.536.9
28 49.674.643.865.938.958.533.750.728.743.123.735.6
29 47.972.042.363.637.656.532.648.927.741.622.934.3
30 46.369.640.961.536.354.631.547.326.740.222.133.2
31 44.867.439.659.535.252.830.545.825.938.921.432.1
32 43.465.338.457.734.151.229.544.325.137.720.731.1
33 42.163.337.255.933.049.628.643.024.336.520.130.2
34 40.961.436.154.332.148.227.841.723.635.519.529.3
35 35.152.731.146.8
AISC_Part 3B:14th Ed. 2/24/11 8:50 AM Page 69

3–70 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
336
h
Design
LRFDASD
Fy= 50 ksi
305
h
279
h
W12×
LRFDASD LRFDASD
252
h
230
h
210
LRFDASD LRFDASD LRFDASD
W12
12000181001070016100960014400854012800770011600695010400
1500226013402010120018001070161096314508681310
844127076011406861030617927561843510767
4.767.194.646.974.506.754.436.684.316.514.256.45
598897531797487730431647390584347520
603 537 481 428 386 348
12.3 12.1 11.9 11.8 11.7 11.6
150 137 126 114 105 95.8
9 973146086212907791170
10 12001790106015909601440854128077011606941040
11 109016409741460873131077711707001050631949
12 10001510893134080012007121070642965579870
13 926139082512407391110657988593891534803
14 860129076611506861030610917550827496746
15 80212107151070640962570856514772463696
16 75211306701010600902534803482724434653
17 7081060631948565849503755453681409614
18 6691010595895533802475713428643386580
19 633952564848505759450676406609366549
20 602905536806480722427642385579347522
21 573861510767457687407611367551331497
22 547822487732436656388584350526316475
23 523787466700417627371558335503302454
24 501754447671400601356535321483289435
25 481724429644384577342514308463278418
26 463696412620369555329494296445267402
27 446670397597356534316476285429257387
28 430646383575343515305459275414248373
29 415624370556331498295443266399240360
30 401603357537320481285428257386232348
31 388584346520310465276414249374224337
32 376565335503300451267401241362217326
33 365548325488291437259389233351210316
34 354532315474282424251378227341204307
35 344517306460274412244367220331198298
36 334503298448267401237357214322193290
37 325489290435259390231347208313
38 317476282424253380225338
39 309464275413246370
40 301452268403
41 294441
42 287431
AISC_Part 3B:14th Ed. 2/24/11 8:50 AM Page 70

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
190
Design LRFDASD
Fy= 50 ksi
170 152
W12×
LRFDASD LRFDASD
136 120 106
LRFDASD LRFDASD LRFDASD
W12
621093305490825048507290427064203710558032704920
77611706861030606911534803464698409615
459690410617365549325488285428253381
4.186.334.116.154.066.104.026.063.945.953.935.89
305458269403238358212318186279157236
311 275 243 214 186 164
11.5 11.4 11.3 11.2 11.1 11.0
87.3 78.5 70.6 63.2 56.5 50.7
9 372558
10 611916538806477715423635371558315472
11 564848499750441663388584338507298447
12 517778457688404608356535309465273410
13 478718422635373561329494286429252378
14 443666392589346521305459265399234351
15 414622366550323486285428248372218328
16 388583343516303456267401232349205308
17 365549323485285429251378218328193289
18 345518305458269405237357206310182273
19 327491289434255384225338195294172259
20 310467274413243365214321186279164246
21 296444261393231347203306177266156234
22 282424250375220331194292169254149224
23 270406239359211317186279161243142214
24 259389229344202304178268155233136205
25 248373220330194292171257149223131197
26 239359211317187280164247143215126189
27 230346203306180270158238138207121182
28 222333196295173260153229133199117176
29 214322189284167251147221128192113170
30 207311183275162243142214124186109164
31 200301177266156235138207120180106159
32 194292172258152228133201116174102154
33 188283166250147221129195
34 183274161243143214
35 177267157236
36 172259
AISC_Part 3B_14th Ed._Nov. 19, 2012 14-11-10 10:49 AM Page 71

3–72 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
96
Design LRFDASD
Fy= 50 ksi
87 79
W12×
LRFDASD LRFDASD
72 65
f
58
LRFDASD LRFDASD LRFDASD
W12
293044102630396023803570216032401900285017202590
367551329495297446269405237356216324
229344206310187281170256154231136205
3.855.783.815.733.785.673.695.563.585.393.825.69
14021012919311717510615994.414287.8132
147 132 119 108 96.8 86.4
10.9 10.8 10.8 10.7 10.7 8.87
46.7 43.1 39.9 37.5 35.1 29.8
9 176264
10 279419258386233350212317189283172259
11 267401240360216325196295172259157236
12 245368220330198298180270158237144216
13 226339203305183275166249146219133199
14 210315188283170255154231135204123185
15 196294176264158238144216126190115173
16 183276165248148223135203118178108162
17 173259155233140210127191112168101152
18 16324514622013219812018010515895.8144
19 15423213920812518811317199.815090.8136
20 14722113219811917910816294.814286.2130
21 14021012518911317010315490.313682.1123
22 13320012018010816298.014786.213078.4118
23 12819211517210315593.714182.412475.0113
24 12218411016599.014989.813579.011971.9108
25 11717610515895.014386.213075.811469.0104
26 11317010115291.413782.912572.911066.399.7
27 10916397.614788.013279.812070.210663.996.0
28 10515894.114184.812877.011667.710261.692.6
29 10115290.913781.912374.311265.498.359.589.4
30 97.814787.813279.211971.910863.295.057.586.4
31 94.614285.012876.6115
AISC_Part 3B_14th Ed._Nov. 19, 2012 14-11-10 10:53 AM Page 72

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
53
Design LRFDASD
Fy= 50 ksi
50 45
W12×
LRFDASD LRFDASD
40 35 30
LRFDASD LRFDASD LRFDASD
W12
15502340144021601280193011401710102015408601290
194292179270160241142214128192108162
12318511216910115189.913579.612067.4101
3.655.503.975.983.805.803.665.544.346.453.975.96
83.512590.313581.112270.210575.011364.095.9
77.9 71.9 64.2 57.0 51.2 43.1
8.76 6.92 6.89 6.85 5.44 5.37
28.2 23.8 22.4 21.1 16.6 15.6
6 150225128192
7 181271162243 146219123185
8 179270160241140211128192108162
9 16725015924014221412619011417195.6144
10 15523414421612819311417110215486.0129
11 14121213019611617510315592.914078.2118
12 13019512018010716194.814385.212871.7108
13 12018011016698.614887.513278.611866.299.5
14 11116710315491.513881.312273.011061.492.4
15 10415695.714485.412875.811468.110257.486.2
16 97.214689.713580.112071.110763.996.053.880.8
17 91.513784.412775.411366.910160.190.450.676.1
18 86.413079.712071.210763.295.056.885.347.871.8
19 81.812375.511467.410159.990.053.880.845.368.1
20 77.711771.810864.196.356.985.551.176.843.064.7
21 74.011168.310361.091.754.281.448.773.141.061.6
22 70.710665.298.058.287.551.777.746.569.839.158.8
23 67.610262.493.855.783.749.574.344.466.837.456.2
24 64.897.459.889.953.480.347.471.342.664.035.853.9
25 62.293.557.486.351.377.045.568.440.961.434.451.7
26 59.889.955.283.049.374.143.865.839.359.133.149.7
27 57.686.653.279.947.571.342.163.337.956.931.947.9
28 55.583.551.377.045.868.840.661.136.554.930.746.2
29 53.680.649.574.444.266.439.259.035.253.029.744.6
30 51.877.947.871.942.764.2 34.151.228.743.1
31 33.049.5
AISC_Part 3B:14th Ed. 2/24/11 8:50 AM Page 73

3–74 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi;
therefore, φ
v=0.90 and Ω v=1.67.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
26
Design LRFDASD
Fy= 50 ksi
22 19
W12× W10×
LRFDASD LRFDASD
16 14
v
112
LRFDASD LRFDASD LRFDASD
W12
743112058587949374140160334752229304410
92.814073.111061.692.650.175.443.465.3367551
58.387.744.466.737.255.929.944.926.039.1220331
3.615.464.687.064.276.433.805.733.435.172.694.03
56.184.264.095.957.386.052.879.242.864.3172258
37.2 29.3 24.7 20.1 17.4 147
5.33 3.00 2.90 2.73 2.66 9.47
14.9 9.13 8.61 8.05 7.73 64.1
3 106158
4 12819211517210015185.5129
5 11717698.614880.212169.5104
6 11216897.514782.212466.910157.987.0
7 10615983.512670.410657.386.149.674.6
8 92.814073.111061.692.650.175.443.465.3
9 82.512465.097.754.882.344.667.038.658.0
10 74.311258.587.949.374.140.160.334.752.2
11 67.510153.279.944.867.436.554.831.647.5
12 61.993.048.773.341.161.833.450.328.943.5
13 57.185.845.067.637.957.030.946.426.740.2
14 53.079.741.862.835.252.928.743.124.837.3
15 49.574.439.058.632.949.426.740.223.234.8
16 46.469.836.654.930.846.325.137.721.732.6
17 43.765.634.451.729.043.623.635.520.430.7
18 41.362.032.548.827.441.222.333.519.329.0
19 39.158.730.846.325.939.021.131.718.327.5
20 37.155.829.244.024.737.120.130.217.426.1
21 35.453.127.841.923.535.319.128.716.524.9
22 33.850.726.640.022.433.718.227.415.823.7
23 32.348.525.438.221.432.217.426.215.122.7
24 30.946.524.436.620.530.916.725.114.521.8
25 29.744.623.435.219.729.616.024.113.920.9
26 28.642.922.533.819.028.515.423.213.420.1
27 27.541.321.732.618.327.414.922.312.919.3
28 26.539.920.931.417.626.514.321.512.418.6
29 25.638.520.230.317.025.613.820.812.018.0
30 24.837.219.529.316.424.713.420.1
344516
326490
293441
267401
245368
226339
210315
196294
183276
173259
163245
154232
147221
140210
133200
128192
122184
117176
113170
109163
105158
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 74

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
100
Design LRFDASD
Fy= 50 ksi
88 77
W10×
LRFDASD LRFDASD
68 60 54
LRFDASD LRFDASD LRFDASD
W10
259039002260339019502930170025601490224013302000
324488282424244366213320186280166250
196294172259150225132199116175105158
2.644.002.623.942.603.902.583.852.543.822.483.75
151226131196112169 97.8147 85.7129 74.7112
130 113 97.6 85.3 74.6 66.6
9.36 9.29 9.18 9.15 9.08 9.04
57.9 51.2 45.3 40.6 36.6 33.6
8 302453261392225337196293 171257149224
9 288433251377216325189284 165249148222
10 259390226339195293170256149224133200
11 236355205308177266155233135203121182
12 216325188283162244142213124187111167
13 200300173261150225131197115172102154
14 18527916124213920912218310616095.0143
15 17326015022613019511417199.314988.6133
16 16224414121212218310616093.114083.1125
17 15322913319911517210015187.613278.2118
18 14421712518810816394.614282.712473.9111
19 13720511917810315489.613578.411870.0105
20 13019511317097.414685.112874.511266.599.9
21 12418610716192.813981.112270.910763.395.1
22 11817710315488.613377.411667.710260.490.8
23 11317098.114784.712774.011164.797.357.886.9
24 10816394.014181.212270.910762.093.355.483.3
25 10415690.213677.911768.110259.689.553.279.9
26 99.815086.713074.911365.598.4
27 96.114483.5126
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 75

3–76 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
49
Design LRFDASD
Fy= 50 ksi
45 39
W10×
LRFDASD LRFDASD
33 30 26
LRFDASD LRFDASD LRFDASD
W10
1210181011001650934140077411607311100625939
151227137206117 176 96.8146 91.3137 78.1117
95.4143 85.8129 73.5111 61.191.956.685.148.773.2
2.463.712.593.892.533.782.393.623.084.612.914.34
68.0102 70.7106 62.593.756.484.763.094.553.680.3
60.4 54.9 46.8 38.8 36.6 31.3
8.97 7.10 6.99 6.85 4.84 4.80
31.6 26.9 24.2 21.8 16.1 14.9
5 126189107161
6 113169122183104157
7 14121212518711116610415789.3134
8 13620413720611717696.814691.313778.1117
9 13420112218310415686.112981.212269.4104
10 12118111016593.414077.411673.111062.593.9
11 11016599.615084.912870.410666.499.856.885.4
12 10015191.313777.811764.597.060.991.552.178.3
13 92.713984.312771.910859.689.556.284.548.172.2
14 86.112978.311866.710055.383.152.278.444.667.1
15 80.412173.111062.393.651.677.648.773.241.762.6
16 75.311368.510358.487.848.472.845.768.639.058.7
17 70.910764.596.954.982.645.668.543.064.636.855.2
18 67.010160.991.551.978.043.064.740.661.034.752.2
19 63.595.457.786.749.273.940.861.338.457.832.949.4
20 60.390.654.882.446.770.238.758.236.554.931.247.0
21 57.486.352.278.444.566.936.955.434.852.329.844.7
22 54.882.449.874.942.563.835.252.933.249.928.442.7
23 52.478.847.671.640.661.033.750.631.847.727.240.8
24 50.275.545.768.638.958.532.348.530.445.826.039.1
25 48.272.543.865.9 29.243.925.037.6
26 28.142.2
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 76

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3 -10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
22
Design LRFDASD
Fy= 50 ksi
19 17
W10× W8×
LRFDASD LRFDASD
15 12
f
67
LRFDASD LRFDASD LRFDASD
W10-W8
51978043164837356131948025037514002100
64.997.553.981.046.770.139.960.031.246.9175263
40.560.932.849.428.342.524.136.219.028.6105159
2.684.023.184.762.984.472.754.142.363.531.752.59
49.073.451.076.548.572.746.068.937.556.3103154
26.0 21.6 18.7 16.0 12.6 70.1
4.70 3.09 2.98 2.86 2.87 7.49
13.8 9.73 9.16 8.61 8.05 47.6
3 97.014591.913875.0113
4 10215393.314079.812062.493.8
5 97.914786.213074.711263.996.049.975.0
6 86.513071.910862.293.553.280.041.662.5
7 74.111161.692.653.380.145.668.635.753.6
8 64.997.553.981.046.770.139.960.031.246.9
9 57.786.747.972.041.562.335.553.327.741.7
10 51.978.043.164.837.356.131.948.025.037.5
11 47.270.939.258.933.951.029.043.622.734.1
12 43.265.035.954.031.146.826.640.020.831.3
13 39.960.033.249.828.743.224.636.919.228.9
14 37.155.730.846.326.740.122.834.317.826.8
15 34.652.028.743.224.937.421.332.016.625.0
16 32.448.826.940.523.335.120.030.015.623.5
17 30.545.925.438.122.033.018.828.214.722.1
18 28.843.324.036.020.731.217.726.713.920.8
19 27.341.122.734.119.629.516.825.313.119.7
20 25.939.021.632.418.728.116.024.012.518.8
21 24.737.120.530.917.826.715.222.911.917.9
22 23.635.519.629.517.025.514.521.811.317.1
23 22.633.918.728.216.224.413.920.910.916.3
24 21.632.518.027.015.623.413.320.010.415.6
25 20.831.217.225.914.922.4
205308
200300
175263
155234
140210
127191
117175
108162
99.9150
93.3140
87.5131
82.3124
77.7117
73.6111
70.0105
66.6100
63.695.6
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 77

3–78 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
58
Design LRFDASD
Fy= 50 ksi
48 40
W8×
LRFDASD LRFDASD
35 31
f
28
LRFDASD LRFDASD LRFDASD
W8
11901790978147079411906931040606911543816
149224122 184 99.3149 86.6130 75.8114 67.9102
90.8137 75.4113 62.093.254.581.948.072.242.463.8
1.702.551.672.551.642.461.622.431.582.371.672.50
89.3134 68.0102 59.489.150.375.545.668.445.968.9
59.8 49.0 39.8 34.7 30.4 27.2
7.42 7.35 7.21 7.17 7.18 5.72
41.6 35.2 29.9 27.0 24.8 21.0
5 91.9138
6 179268 119178101151.091.213790.5136
7 17125613620411317198.914986.613077.6117
8 14922412218499.314986.613075.811467.9102
9 13319910916388.313377.011667.410160.390.7
10 11917997.814779.411969.310460.691.154.381.6
11 10916388.913472.210963.094.655.182.849.474.2
12 99.515081.512366.299.557.786.850.575.945.268.0
13 91.813875.211361.191.853.380.146.670.141.862.8
14 85.312869.910556.785.349.574.443.365.138.858.3
15 79.612065.298.053.079.646.269.440.460.736.254.4
16 74.611261.191.949.774.643.365.137.956.933.951.0
17 70.210657.586.546.770.240.761.235.753.631.948.0
18 66.399.754.381.744.166.338.557.833.750.630.245.3
19 62.894.451.577.441.862.836.554.831.948.028.642.9
20 59.789.748.973.539.759.734.652.130.345.627.140.8
21 56.885.446.670.0
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 78

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: For beams laterally unsupported, see Table 3-10.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-6 (continued)
Maximum Total
Uniform Load, kips
W-Shapes
Shape
24
Design LRFDASD
Fy= 50 ksi
21 18
W8×
LRFDASD LRFDASD
15 13 10
f
LRFDASD LRFDASD LRFDASD
W8
461693407612339510271408228342175263
57.686.650.976.542.463.833.951.028.442.821.932.9
36.554.931.847.826.539.920.631.017.326.013.620.5
1.602.401.852.771.742.611.902.851.762.671.542.30
38.958.341.462.137.456.239.759.636.855.126.840.2
23.1 20.4 17.0 13.6 11.4 8.87
5.69 4.45 4.34 3.09 2.98 3.14
18.9 14.8 13.5 10.1 9.27 8.52
3 79.511973.511053.780.5
4 82.812474.911267.910256.985.543.765.7
5 77.711781.412267.910254.381.645.568.435.052.6
6 76.811567.910256.685.045.268.037.957.029.243.8
7 65.999.058.287.448.572.938.858.332.548.925.037.6
8 57.686.650.976.542.463.833.951.028.442.821.932.9
9 51.277.045.268.037.756.730.245.325.338.019.429.2
10 46.169.340.761.233.951.027.140.822.834.217.526.3
11 41.963.037.055.630.846.424.737.120.731.115.923.9
12 38.457.833.951.028.342.522.634.019.028.514.621.9
13 35.553.331.347.126.139.220.931.417.526.313.520.2
14 32.949.529.143.724.236.419.429.116.324.412.518.8
15 30.746.227.140.822.634.018.127.215.222.811.717.5
16 28.843.325.438.321.231.917.025.514.221.410.916.4
17 27.140.824.036.020.030.016.024.013.420.110.315.5
18 25.638.522.634.018.928.315.122.712.619.09.7214.6
19 24.336.521.432.217.926.814.321.512.018.09.2113.8
20 20.430.617.025.513.620.4
AISC_Part 3B:14th Ed. 2/24/11 8:51 AM Page 79

3–80 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: Beams must be laterally supported if Table 3 -7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-7
Maximum Total
Uniform Load, kips
S-Shapes
Shape
121
Design LRFDASD
Fy= 36 ksi
106 100
S24× S20×
LRFDASD LRFDASD
90 80 96
LRFDASD LRFDASD LRFDASD
S24-S20
440066104010603034305160319048002930441028504280
550826501753429645399599366551356 535
324488302454250376235353220331207 312
11.417.111.016.511.617.511.417.110.816.27.6311.5
282423219328257386216324173259234 351
306 279 239 222 204 198
6.37 6.54 5.29 5.41 5.58 5.54
26.2 24.7 20.7 19.8 19.2 24.9
6 515772 468702
7 564 847 491737432648 407611
8 550 826 429645399599346518356535
9 489 734437 656382574354533326490316475
10 440 661401 603343516319480293441285428
11 400 601365 548312469290436267401259389
12 366 551334 502286430266400244367237356
13 338 508308 464264397245369226339219329
14 314 472286 430245369228343209315203305
15 293 441267 402229344213320195294190285
16 275 413251 377215323199300183275178267
17 259 389236 354202304188282172259167252
18 244 367223 335191287177266163245158238
19 231 348211 317181272168252154232150225
20 220 330200 301172258160240147220142214
21 209 315191 287164246152228140210136204
22 200 300182 274156235145218133200129194
23 191 287174 262149224139208127192124186
24 183 275167 251143215133200122184119178
25 176 264160 241137206128192117176114171
26 169 254154 232132199123184113169109164
27 163 245149 223127191118178109163105158
28 157 236143 215123184114171105157102153
29 152 228138 208118178110165101152 98.1147
30 147 220134 201114172106160 97.7147 94.9143
32 137 207125 188107161 99.7150 91.6138 88.9134
34 129 194118 177101152 93.8141 86.2130 83.7126
36 122 184111 16795.4143 88.6133 81.4122 79.0119
38 116 174106 15990.4136 84.0126 77.2116 74.9113
40 110 165100 15185.9129 79.8120 73.3110 71.1107
42 105 15795.514381.8123 76.0114 69.8105 67.8102
44 99.915091.113778.1117 72.5109 66.6100 64.797.2
46 95.614487.213174.7112 69.4104 63.795.861.993.0
48 91.613883.512671.6108 66.599.961.191.859.389.1
50 88.013280.212168.7103 63.895.958.688.156.985.5
52 84.612777.111666.199.361.492.256.484.7
54 81.412274.311263.695.659.188.854.381.6
56 78.511871.610861.392.257.085.652.478.7
58 75.811469.110459.289.055.082.750.576.0
60 73.311066.810057.286.053.279.948.973.4
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 80

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: Beams must be laterally supported if Table 3 -7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-7 (continued)
Maximum Total
Uniform Load, kips
S-Shapes
Shape
86
Design LRFDASD
Fy= 36 ksi
75 66
S20× S18× S15×
LRFDASD LRFDASD
70 54.7 50
LRFDASD LRFDASD LRFDASD
S20-S15
263039502180328020003000178026801490225011101660
329 494273 410250 375223335187281138208
195 293161 242150 225130195112168 81.4122
7.5311.37.7411.67.4911.36.129.195.988.994.076.12
193 289183 274145 218184276119179119178
183 152 139 124 104 77.0
5.66 4.83 4.95 4.50 4.75 4.29
23.4 19.3 18.3 19.7 17.3 18.3
4 369553 238356
5 366549 356536 221333
6 386579364547291436297446239358184277
7 376565312469285429255383214321158238
8 329494273410250375223335187281138208
9 292439243365222334198298166250123185
10 263395218328200300178268149225111166
11 239359199298182273162243136204101151
12 219329182274166250149223125187 92.2139
13 202304168253154231137206115173 85.1128
14 188282156235143214127191107160 79.0119
15 175264146219133200119179 99.6150 73.8111
16 164247137205125188111167 93.4140 69.2104
17 155233128193118177105158 87.9132 65.197.8
18 14622012118211116799.0149 83.0125 61.592.4
19 13820811517310515893.8141 78.7118 58.287.5
20 131198109164 99.915089.1134 74.7112 55.383.2
21 125188104156 95.114384.9128 71.2107 52.779.2
22 120180 99.3149 90.813681.0122 67.9102 50.375.6
23 114172 95.0143 86.913177.5116 65.097.748.172.3
24 110165 91.0137 83.212574.3112 62.393.646.169.3
25 105158 87.4131 79.912071.3107 59.889.944.366.5
26 101152 84.0126 76.811568.5103 57.586.442.664.0
27 97.4146 80.9122 74.011166.099.255.483.241.061.6
28 93.9141 78.0117 71.310763.695.753.480.239.559.4
29 90.7136 75.3113 68.910461.492.451.577.538.257.4
30 87.7132 72.8109 66.610059.489.349.874.936.9
32 82.2124 68.3103 62.493.855.783.746.770.234.652.0
34 77.4116 64.296.658.888.352.478.844.066.132.548.9
36 73.1110 60.791.255.583.449.574.441.562.430.746.2
38 69.2104 57.586.452.679.046.970.539.359.1
40 65.798.854.682.149.975.144.667.037.456.2
42 62.694.152.078.247.671.542.463.835.653.5
44 59.889.849.674.645.468.240.560.934.051.1
46 57.285.947.571.443.465.3
48 54.882.445.568.441.662.6
50 52.679.143.765.740.060.0
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 81

Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
3–82 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
Ω
v=1.50
Note: Beams must be laterally supported if Table 3 -7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-7 (continued)
Maximum Total
Uniform Load, kips
S-Shapes
Shape
42.9
Design LRFDASD
Fy= 36 ksi
50 40.8
S15× S12× S10×
LRFDASD LRFDASD
35 31.8 35
LRFDASD LRFDASD LRFDASD
S15-S10
994149087513207571140641963601903509765
124187109 164 94.7142 80.1120 75.1113 63.695.6
74.7112 63.695.656.785.247.972.045.568.437.055.6
4.016.032.223.332.313.482.453.692.433.661.512.26
88.8133119 178 79.8120 74.0111 60.590.785.5128
69.2 60.9 52.7 44.6 41.8 35.4
4.41 4.29 4.41 4.08 4.16 3.74
16.8 24.9 20.8 17.2 16.3 21.4
2 171257
3 237356 170255
4 219329160240148222121 127 191
5 178266175263151228128193120181102153
6 16624914621912619010716110015084.8127
7 14221412518810816391.613885.812972.7109
8 12418710916494.714280.112075.111363.695.6
9 11016697.214684.212671.210766.710056.585.0
10 99.414987.513275.711464.196.360.190.350.976.5
11 90.413679.612068.910358.387.654.682.146.269.5
12 82.912572.911063.194.953.480.350.175.242.463.7
13 76.511567.310158.387.649.374.146.269.539.158.8
14 71.010762.594.054.181.345.868.842.964.536.354.6
15 66.399.658.387.750.575.942.764.240.060.233.951.0
16 62.293.454.782.247.371.140.160.237.556.431.847.8
17 58.587.951.577.444.667.037.756.735.353.129.945.0
18 55.283.048.673.142.163.235.653.533.450.228.342.5
19 52.378.746.169.239.959.933.750.731.647.526.840.2
20 49.774.743.865.837.956.932.048.230.045.125.438.2
21 47.471.241.762.636.154.230.545.928.643.024.236.4
22 45.267.939.859.834.451.729.143.827.341.023.134.8
23 43.265.038.157.232.949.527.941.926.139.322.133.2
24 41.462.336.554.831.647.426.740.125.037.621.231.9
25 39.859.835.052.630.345.525.638.524.036.120.330.6
26 38.257.533.750.629.143.824.737.123.134.7
27 36.855.432.448.728.142.223.735.722.233.4
28 35.553.431.347.027.040.722.934.421.532.2
29 34.351.530.245.426.139.322.133.220.731.1
30 33.149.829.243.825.237.921.432.120.030.1
32 31.146.7
34 29.244.0
36 27.641.5
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 82

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: Beams must be laterally supported if Table 3 -7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Span, ft
Table 3-7 (continued)
Maximum Total
Uniform Load, kips
S-Shapes
Shape
25.4
Design LRFDASD
Fy= 36 ksi
23 18.4
S10× S8× S6× S5×
LRFDASD LRFDASD
17.25 12.5 10
LRFDASD LRFDASD LRFDASD
S10 -S5
407611276 415237 356151227121183 81.3122
50.876.434.551.829.644.618.928.415.222.810.215.3
30.946.520.430.618.127.211.016.59.2313.96.169.26
1.582.380.9481.420.9741.460.4600.6910.5160.7750.3410.512
44.867.250.876.231.246.840.260.320.030.115.423.1
28.3 19.2 16.5 10.5 8.45 5.66
3.95 3.31 3.44 2.80 2.92 2.66
16.5 18.2 15.3 19.9 14.5 14.4
2 102152 75.4113 30.846.2
3 92.013862.493.750.375.640.160.127.140.8
4 89.613469.010459.389.137.756.730.445.620.330.6
5 81.312255.282.947.471.330.245.424.336.516.324.5
6 67.810246.069.139.559.425.137.820.230.413.620.4
7 58.187.339.459.233.950.921.632.417.326.111.617.5
8 50.876.434.551.829.644.618.928.415.222.810.215.3
9 45.267.930.746.126.339.616.825.213.520.39.0413.6
10 40.761.127.641.523.735.615.122.712.118.38.1312.2
11 37.055.625.137.721.632.413.720.611.016.67.3911.1
12 33.950.923.034.619.829.712.618.910.115.26.7810.2
13 31.347.021.231.918.227.411.617.49.3414.0
14 29.143.719.729.616.925.510.816.28.6713.0
15 27.140.818.427.615.823.810.115.18.1012.2
16 25.438.217.225.914.822.3
17 23.936.016.224.413.921.0
18 22.634.015.323.013.219.8
19 21.432.214.521.812.518.8
20 20.330.613.820.711.917.8
21 19.429.1
22 18.527.8
23 17.726.6
24 16.925.5
25 16.324.5
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 83

3–84 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/Ωb φbWc,kip-ft
Mp/ΩbφbMp,kip-ft
Mr/Ωb φbMr,kip-ft
BF/Ωb φbBF,kips
Vn/Ωv φvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.50
Note: Beams must be laterally supported if Table 3 -7 is used.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=1.00
Beam Properties
ASD LRFD
Table 3 -7 (continued)
Maximum Total
Uniform Load, kips
S-Shapes
Fy= 36 ksi
S4-S3
58.1 87.3 50.3 75.6 33.8 50.8 27.9 41.9
7.26 10.9 6.29 9.45 4.22 6.35 3.49 5.24
4.25 6.39 3.81 5.73 2.44 3.67 2.10 3.16
0.190 0.285 0.202 0.304 0.08990.135 0.102 0.154
18.8 28.2 11.1 16.7 15.1 22.6 7.34 11.0
4.04 3.50 2.35 1.94
2.35 2.40 2.14 2.16
18.2 14.6 22.0 15.7
Span, ft
Shape
9.5
Design LRFDASD
7.7 7.5
S4× S3×
LRFDASD LRFDASD
5.7
LRFDASD
2 29.0 43.6 22.2 33.4 16.9 25.4 13.9 21.0
3 19.4 29.1 16.8 25.2 11.3 16.9 9.2914.0
4 14.5 21.8 12.6 18.9 8.4412.7 6.9710.5
5 11.6 17.5 10.1 15.1 6.7510.2 5.58 8.38
6 9.6814.5 8.3812.6 5.63 8.46 4.65 6.98
7 8.2912.5 7.1910.8 4.82 7.25 3.98 5.99
8 7.2610.9 6.29 9.45
9 6.45 9.70 5.59 8.40
10 5.81 8.73 5.03 7.56
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 84

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8
Maximum Total
Uniform Load, kips
C-Shapes
Shape
50
Design LRFDASD
Fy= 36 ksi
40 33.9
C15× C12×
LRFDASD LRFDASD
30 25 20.7
LRFDASD LRFDASD LRFDASD
C15-C12
984148082612407301100486730423635368553
123 185103 155 91.3137 60.791.352.879.446.069.1
67.7102 58.587.952.879.434.051.030.245.427.040.6
3.465.193.585.403.585.362.183.302.223.352.163.25
139 209101 152 77.6117 79.2119 60.190.343.865.8
68.5 57.5 50.8 33.8 29.4 25.6
3.60 3.68 3.75 3.17 3.24 3.32
19.6 16.1 14.5 15.4 13.4 12.1
3 278418 158238120181
4 24637020230315523312118310615987.5132
5 19729616524814621997.114684.512773.6111
6 16424713820712218381.012270.410661.392.2
7 14121111817710415769.410460.490.752.679.0
8 12318510315591.313760.791.352.879.446.069.1
9 10916491.813881.112254.081.146.970.640.961.4
10 98.414882.612473.011048.673.042.363.536.855.3
11 89.513575.111366.499.844.266.438.457.733.450.3
12 82.012368.910460.891.440.560.835.252.930.746.1
13 75.711463.695.556.284.437.456.232.548.828.342.5
14 70.310659.088.752.178.434.752.130.245.426.339.5
15 65.698.655.182.848.773.232.448.728.242.324.536.9
16 61.592.551.677.645.668.630.445.626.439.723.034.6
17 57.987.048.673.142.964.528.642.924.937.421.632.5
18 54.782.245.969.040.661.027.040.623.535.320.430.7
19 51.877.943.565.438.457.825.638.422.233.419.429.1
20 49.274.041.362.136.554.924.336.521.131.818.427.6
21 46.970.539.359.134.852.323.134.820.130.217.526.3
22 44.767.337.656.533.249.922.133.219.228.916.725.1
23 42.864.335.954.031.747.721.131.718.427.616.024.0
24 41.061.734.451.830.445.720.230.417.626.515.323.0
25 39.459.233.149.729.243.919.429.216.925.414.722.1
26 37.956.931.847.828.142.218.728.116.324.414.221.3
27 36.554.830.646.027.040.618.027.015.623.513.620.5
28 35.252.829.544.426.139.217.326.115.122.713.119.7
29 33.951.028.542.825.237.816.725.214.621.912.719.1
30 32.849.327.541.424.336.616.224.314.121.212.318.4
31 31.847.726.740.123.635.4
32 30.846.225.838.822.834.3
33 29.844.825.037.622.133.3
34 29.043.524.336.521.532.3
35 28.142.323.635.520.931.4
36 27.341.123.034.520.330.5
37 26.640.022.333.619.729.7
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 85

3–86 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Shape
2530
Design LRFDASD
Fy= 36 ksi
20 15.3
C10× C9×
LRFDASD LRFDASD
20
LRFDASD LRFDASD
384 577 332 499 279 419 229 343 243 365
48.0 72.1 41.5 62.434.9 52.428.6 42.9 30.4 45.6
26.0 39.1 22.9 34.419.9 29.917.0 25.5 17.0 25.5
1.27 1.91 1.40 2.111.48 2.221.44 2.16 1.12 1.68
87.0131 68.0102 49.0 73.731.0 46.7 52.2 78.4
26.7 23.1 19.4 15.9 16.9
2.78 2.81 2.87 2.96 2.66
20.1 16.1 13.0 11.0 14.6
2 174 262 136 205 98.0147 104157
3 128 192 111 166 92.9140 62.193.381.0122
4 95.9144 83.0125 69.7105 57.185.960.791.3
5 76.7115 66.499.855.883.845.768.748.673.0
6 64.096.155.383.246.569.838.157.240.560.8
7 54.882.447.471.339.859.932.649.134.752.1
8 48.072.141.562.434.952.428.642.930.445.6
9 42.664.136.955.431.046.625.438.227.040.6
10 38.457.733.249.927.941.922.934.324.336.5
11 34.952.430.245.425.338.120.831.222.133.2
12 32.048.127.741.623.234.919.028.620.230.4
13 29.544.425.538.421.432.217.626.418.728.1
14 27.441.223.735.619.929.916.324.517.326.1
15 25.638.422.133.318.627.915.222.916.224.3
16 24.036.020.731.217.426.214.321.515.222.8
17 22.633.919.529.416.424.613.420.214.321.5
18 21.332.018.427.715.523.312.719.113.520.3
19 20.230.417.526.314.722.112.018.112.819.2
20 19.228.816.624.913.921.011.417.212.118.3
21 18.327.515.823.813.320.010.916.411.617.4
22 17.426.215.122.712.719.010.415.611.016.6
23 16.725.114.421.712.118.29.9314.9
24 16.024.013.820.811.617.59.5214.3
25 15.323.113.320.011.216.89.1413.7
C10-C9
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 86

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Shape
13.415
Design LRFDASD
Fy= 36 ksi
18.75 13.7
C9× C8×
LRFDASD LRFDASD
11.5
LRFDASD LRFDASD
195 294 181 272 200 300 158 238 138 208
24.4 36.7 22.6 34.025.0 37.519.8 29.717.3 26.0
14.2 21.4 13.3 20.013.8 20.811.3 17.010.2 15.4
1.18 1.77 1.17 1.770.8291.240.9291.390.9091.36
33.2 49.9 27.1 40.850.4 75.731.4 47.122.8 34.2
13.6 12.6 13.9 11.0 9.63
2.74 2.77 2.49 2.55 2.59
11.4 10.7 16.0 11.7 10.4
2 66.499.7 99.9150 62.794.2
3 65.197.954.281.566.6100 52.779.245.568.4
4 48.973.445.368.049.975.139.559.434.652.0
5 39.158.836.254.440.060.031.647.527.741.6
6 32.649.030.245.433.350.026.339.623.134.7
7 27.942.025.938.928.542.922.633.919.829.7
8 24.436.722.634.025.037.519.829.717.326.0
9 21.732.620.130.222.233.417.626.415.423.1
10 19.529.418.127.220.030.015.823.813.820.8
11 17.826.716.524.718.227.314.421.612.618.9
12 16.324.515.122.716.625.013.219.811.517.3
13 15.022.613.920.915.423.112.218.310.616.0
14 14.021.012.919.414.321.411.317.09.8914.9
15 13.019.612.118.113.320.010.515.89.2313.9
16 12.218.411.317.012.518.89.8814.98.6513.0
17 11.517.310.716.011.817.79.3014.08.1412.2
18 10.916.310.115.111.116.78.7813.27.6911.6
19 10.315.59.5314.310.515.88.3212.57.2810.9
20 9.7714.79.0513.69.9915.07.9011.96.9210.4
21 9.3114.08.6213.0
22 8.8813.48.2312.4
C9-C8
AISC_Part 3B:14th Ed. 2/24/11 8:52 AM Page 87

3–88 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Shape
12.2514.75
Design LRFDASD
Fy= 36 ksi
9.8 13
C7× C6×
LRFDASD LRFDASD
10.5
LRFDASD LRFDASD
140 211 122 183 103 155 105 157 88.8133
17.5 26.3 15.222.8 12.9 19.413.1 19.711.1 16.7
9.7814.7 8.7013.1 7.6311.5 7.2710.9 6.34 9.53
0.6200.9310.6610.9860.6771.010.4130.6230.4580.689
37.9 57.0 28.442.7 19.0 28.633.9 51.024.4 36.6
9.75 8.46 7.19 7.29 6.18
2.34 2.36 2.41 2.18 2.20
14.8 12.2 10.2 16.3 12.6
2 70.1105 56.985.538.057.252.478.744.466.7
3 46.770.240.560.934.451.834.952.529.644.5
4 35.052.730.445.725.838.826.239.422.233.4
5 28.042.124.336.520.731.121.031.517.826.7
6 23.435.120.330.517.225.917.526.214.822.2
7 20.030.117.426.114.822.215.022.512.719.1
8 17.526.315.222.812.919.413.119.711.116.7
9 15.623.413.520.311.517.311.617.59.8714.8
10 14.021.112.218.310.315.510.515.78.8813.3
11 12.719.111.116.69.3914.19.5214.38.0712.1
12 11.717.610.115.28.6112.98.7313.17.4011.1
13 10.816.29.3514.17.9511.98.0612.16.8310.3
14 10.015.08.6813.17.3811.17.4811.26.349.53
15 9.3414.08.1112.26.8910.46.9810.55.928.90
16 8.7613.27.6011.46.469.72
17 8.2412.47.1510.76.089.14
C7-C6
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 88

74.2111 63.194.851.076.740.861.334.952.532.949.5
9.2713.97.8911.96.389.595.107.674.376.564.116.18
5.478.224.486.733.765.652.884.332.513.782.413.63
0.4770.7130.2870.4350.3130.4710.1650.2490.1780.2660.1860.279
15.523.321.031.612.318.516.625.012.819.29.5214.3
5.16 4.39 3.55 2.84 2.43 2.29
2.23 2.02 2.04 1.86 1.84 1.85
10.2 13.9 10.4 15.3 12.3 11.0
2 31.046.731.547.424.636.920.430.717.526.216.524.7
3 24.737.221.031.617.025.613.620.411.617.511.016.5
4 18.527.915.823.712.819.210.215.38.7313.18.2312.4
5 14.822.312.619.010.215.38.1612.36.9810.56.589.89
6 12.418.610.515.88.5012.86.8010.25.828.755.498.24
7 10.615.99.0113.57.2911.05.838.764.997.504.707.07
8 9.2713.97.8911.96.389.595.107.674.376.564.116.18
9 8.2412.47.0110.55.678.524.536.823.885.833.665.50
10 7.4211.16.319.485.107.674.086.133.495.253.294.95
11 6.7410.15.748.624.646.97
12 6.189.295.267.904.256.39
13 5.708.57
14 5.307.96
15 4.947.43
MAXIMUM TOTAL UNIFORM LOAD TABLES 3–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Shape
98.2
Design LRFDASD
Fy= 36 ksi
6.7 7.25 6.25
C6× C4×C5×
LRFDASD LRFDASD LRFDASD
5.4
LRFDASD LRFDASD
C6-C4
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 89

3–90 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-8 (continued)
Maximum Total
Uniform Load, kips
C-Shapes
Shape
64.5
Design LRFDASD
Fy= 36 ksi
5 4.1
C4× C3×
LRFDASD LRFDASD
3.5
LRFDASD LRFDASD
30.5 45.825.0 37.621.8 32.819.0 28.517.8 26.8
3.81 5.723.13 4.702.73 4.102.37 3.562.23 3.35
2.30 3.461.74 2.611.55 2.321.38 2.081.31 1.97
0.1840.2760.07600.1140.08610.1300.09300.1390.09620.144
6.47 9.7213.8 20.810.0 15.0 6.60 9.915.12 7.70
2.12 1.74 1.52 1.32 1.24
1.90 1.72 1.69 1.66 1.64
10.1 20.0 15.4 12.3 11.2
2 12.919.412.518.810.916.49.4914.38.9113.4
3 10.215.3 8.3412.5 7.2810.96.329.505.948.93
4 7.6211.4 6.259.405.468.214.747.134.466.70
5 6.099.165.007.524.376.573.795.703.565.36
6 5.087.634.176.263.645.473.164.752.974.46
7 4.356.543.575.373.124.692.714.072.553.83
8 3.815.72
9 3.395.09
10 3.054.58
C4-C3
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 90

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
58
Design LRFDASD
Fy= 36 ksi
51.9 45.8
MC18× MC13×
LRFDASD LRFDASD
42.7 50 40
LRFDASD LRFDASD LRFDASD
1370206012501890114017101080162087413107361110
171258157236142214135203109 164 92.0138
94.3142 87.5132 80.7121 77.3116 60.791.352.779.2
5.167.815.267.875.237.935.177.802.083.132.283.42
163245140210116175105157132 199 94.2142
95.4 87.3 79.2 75.1 60.8 51.2
4.25 4.29 4.37 4.45 4.41 4.50
19.1 17.5 16.1 15.6 27.6 21.7
3 265398188283
4 326490279420233350 218328184276
5 274412251377228342210315175263147221
6 229343209314190285180270146219123184
7 196294179269163244154232125188105158
8 17125815723614221413520310916492.0138
9 15222913921012619012018097.114681.8123
10 13720612518911417110816287.413173.6111
11 12518711417110315698.114779.411966.9101
12 11417210515794.914389.913572.810961.392.2
13 10515996.514587.613283.012567.210156.685.1
14 97.914789.613581.312277.111662.493.852.679.0
15 91.413783.612675.911472.010858.387.649.173.7
16 85.712978.411871.110767.510154.682.146.069.1
17 80.612173.811167.010163.595.451.477.343.365.1
18 76.211469.710563.295.060.090.148.573.040.961.4
19 72.210866.099.259.990.056.885.446.069.138.758.2
20 68.610362.794.356.985.554.081.143.765.736.855.3
21 65.398.159.789.854.281.551.477.241.662.535.052.7
22 62.393.757.085.751.777.849.173.739.759.733.450.3
23 59.689.654.582.049.574.446.970.538.057.132.048.1
24 57.185.952.378.647.471.345.067.636.454.730.746.1
25 54.882.450.275.445.568.443.264.935.052.529.444.2
26 52.779.348.372.543.865.841.562.433.650.528.342.5
27 50.876.346.569.842.263.440.060.132.448.627.341.0
28 49.073.644.867.340.761.138.557.931.246.926.339.5
29 47.371.143.365.039.259.037.255.930.145.325.438.1
30 45.768.741.862.937.957.036.054.129.143.824.536.9
32 42.864.439.258.935.653.533.750.727.341.023.034.6
34 40.360.636.955.533.550.331.747.7
36 38.157.234.952.431.647.530.045.1
38 36.154.233.049.630.045.028.442.7
40 34.351.531.447.128.542.827.040.6
42 32.649.129.944.927.140.725.738.6
44 31.246.828.542.925.938.924.536.9
MC18-MC13
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 91

3–92 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
35
Design LRFDASD
Fy= 36 ksi
31.8 50
MC13× MC12×
LRFDASD LRFDASD
45 40 35
LRFDASD LRFDASD LRFDASD
6681000624937812122074711206861030621933
83.5126 78.0117101 153 93.4140 85.7129 77.6117
48.873.346.169.456.584.952.779.249.073.745.368.0
2.343.552.313.441.652.531.772.651.872.821.922.92
75.2113 63.194.8130 195110 166 91.6138 72.2108
46.5 43.4 56.5 52.0 47.7 43.2
4.54 4.58 4.54 4.54 4.58 4.62
19.4 18.4 31.5 27.5 24.2 21.4
3 259390220331183275
4 150226126190203305187281171258144217
5 134201125187162244149225137206124187
6 111167104156135203125187114172103156
7 95.514389.113411617410716097.914788.7133
8 83.512678.011710115393.414085.712977.6117
9 74.311269.310490.213683.012576.211469.0104
10 66.810062.493.781.212274.711268.610362.193.3
11 60.891.356.785.273.811167.910262.393.756.484.8
12 55.783.752.078.167.710262.393.657.185.951.777.8
13 51.477.348.072.162.593.957.586.452.779.347.871.8
14 47.771.744.667.058.087.253.480.249.073.644.366.7
15 44.667.041.662.554.181.449.874.945.768.741.462.2
16 41.862.839.058.650.776.346.770.242.864.438.858.3
17 39.359.136.755.147.871.844.066.140.360.636.554.9
18 37.155.834.752.145.167.841.562.438.157.234.551.8
19 35.252.932.849.342.764.239.359.136.154.232.749.1
20 33.450.231.246.940.661.037.456.234.351.531.046.7
21 31.847.829.744.638.758.135.653.532.649.129.644.4
22 30.445.728.442.636.955.534.051.131.246.828.242.4
23 29.143.727.140.835.353.132.548.829.844.827.040.6
24 27.841.926.039.133.850.931.146.828.642.925.938.9
25 26.740.224.937.532.548.829.944.927.441.224.837.3
26 25.738.624.036.131.246.928.743.226.439.623.935.9
27 24.837.223.134.730.145.227.741.625.438.223.034.6
28 23.935.922.333.529.043.626.740.124.536.822.233.3
29 23.034.621.532.328.042.125.838.723.635.521.432.2
30 22.333.520.831.227.140.724.937.422.934.320.731.1
32 20.931.419.529.3
MC13-MC12
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 92

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
31
Design LRFDASD
Fy= 36 ksi
14.3 10.6
MC12× MC10×
LRFDASD LRFDASD
41.1 33.6 28.5
LRFDASD LRFDASD LRFDASD
571858229343167251565849484728431648
71.3107 28.642.920.831.370.6106 60.591.053.981.0
42.463.716.024.011.617.439.659.535.052.531.847.8
1.902.852.493.732.724.111.001.501.131.711.221.83
57.486.338.858.329.544.3103155 74.4112 55.082.6
39.7 15.9 11.6 39.3 33.7 30.0
4.62 2.04 1.45 4.75 4.79 4.83
19.8 7.11 4.83 35.7 27.3 23.0
2 77.611759.088.6206309
3 76.211455.683.5188283149224110165
4 11517357.185.941.762.6141212121182108162
5 11417245.768.733.350.111317096.914686.2130
6 95.114338.157.227.841.894.114180.712171.9108
7 81.512332.649.123.835.880.712169.210461.692.6
8 71.310728.642.920.831.370.610660.591.053.981.0
9 63.495.325.438.218.527.862.894.353.880.947.972.0
10 57.185.822.934.316.725.156.584.948.472.843.164.8
11 51.978.020.831.215.222.851.377.244.066.239.258.9
12 47.571.519.028.613.920.947.170.740.460.735.954.0
13 43.966.017.626.412.819.343.465.337.356.033.249.8
14 40.861.316.324.511.917.940.360.634.652.030.846.3
15 38.057.215.222.911.116.737.756.632.348.528.743.2
16 35.753.614.321.510.415.735.353.130.345.526.940.5
17 33.650.413.420.29.8114.733.249.928.542.825.438.1
18 31.747.612.719.19.2613.931.447.226.940.424.036.0
19 30.045.112.018.18.7713.229.744.725.538.322.734.1
20 28.542.911.417.28.3412.528.242.424.236.421.632.4
21 27.240.810.916.47.9411.926.940.423.134.720.530.9
22 25.939.010.415.67.5811.425.738.622.033.119.629.5
23 24.837.39.9314.97.2510.924.636.921.131.618.728.2
24 23.835.79.5214.36.9510.423.535.420.230.318.027.0
25 22.834.39.1413.76.6710.022.634.019.429.117.225.9
26 21.933.08.7913.26.419.64
27 21.131.88.4612.76.179.28
28 20.430.68.1612.35.958.95
29 19.729.67.8811.85.758.64
30 19.028.67.6211.45.568.35
MC12-MC10
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 93

3–94 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
25
Design LRFDASD
Fy= 36 ksi
22 8.4
MC10× MC9×
LRFDASD LRFDASD
6.5 25.4 23.9
LRFDASD LRFDASD LRFDASD
377566344516114171 84.8127338 508323 486
47.170.742.964.514.221.410.615.942.263.540.460.8
27.741.625.838.78.0412.15.778.6824.536.923.835.7
1.291.931.281.931.752.651.952.910.9671.450.9821.49
49.173.937.556.422.033.019.729.552.478.746.670.0
26.2 23.9 7.92 5.90 23.5 22.5
4.13 4.15 1.52 1.09 4.20 4.20
19.2 17.5 5.03 3.57 22.5 21.1
2 44.066.139.359.1
3 98.3148 37.957.028.342.510515793.1140
4 94.114175.011328.542.821.231.984.412780.8121
5 75.311368.710322.834.217.025.567.510264.797.2
6 62.894.357.286.019.028.514.121.256.384.653.981.0
7 53.880.849.173.716.324.412.118.248.272.546.269.4
8 47.170.742.964.514.221.410.615.942.263.540.460.8
9 41.862.938.257.412.619.09.4214.237.556.435.954.0
10 37.756.634.351.611.417.18.4812.733.850.832.348.6
11 34.251.431.246.910.315.67.7111.630.746.129.444.2
12 31.447.228.643.09.4914.37.0710.628.142.326.940.5
13 29.043.526.439.78.7613.26.529.8026.039.024.937.4
14 26.940.424.536.98.1312.26.069.1024.136.323.134.7
15 25.137.722.934.47.5911.45.658.5022.533.821.632.4
16 23.535.421.532.37.1110.75.307.9721.131.720.230.4
17 22.133.320.230.46.7010.14.997.5019.929.919.028.6
18 20.931.419.128.76.329.504.717.0818.828.218.027.0
19 19.829.818.127.25.999.004.466.7117.826.717.025.6
20 18.828.317.225.85.698.554.246.3716.925.416.224.3
21 17.926.916.424.65.428.154.046.0716.124.215.423.1
22 17.125.715.623.55.177.783.855.7915.423.114.722.1
23 16.424.614.922.44.957.443.695.54
24 15.723.614.321.54.747.133.535.31
25 15.122.613.720.64.556.843.395.10
MC10-MC9
AISC_Part 3B:14th Ed. 2/24/11 8:53 AM Page 94

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
22.8
Design LRFDASD
Fy= 36 ksi
21.4 20
MC8× MC7×
LRFDASD LRFDASD
18.7 8.5 22.7
LRFDASD LRFDASD LRFDASD
274 413262 393236 354224 33799.9150236354
34.351.632.749.129.544.328.042.112.518.829.544.3
20.030.119.429.117.125.716.524.87.3211.017.025.5
0.7241.090.7331.100.7751.160.7781.170.9701.460.4930.741
44.266.438.858.341.462.236.554.918.527.845.568.4
19.1 18.2 16.4 15.6 6.95 16.4
4.25 4.25 3.61 3.61 2.08 4.33
24.0 22.4 19.6 18.4 7.42 29.7
2 82.8124 37.055.791.1137
3 88.413377.611778.611873.111033.350.078.6118
4 68.610365.498.358.988.656.084.225.037.558.988.6
5 54.982.552.378.647.170.844.867.420.030.047.170.8
6 45.768.843.665.539.359.037.456.216.625.039.359.0
7 39.258.937.456.233.750.632.048.114.321.433.750.6
8 34.351.632.749.129.544.328.042.112.518.829.544.3
9 30.545.829.143.726.239.424.937.411.116.726.239.4
10 27.441.326.239.323.635.422.433.79.9915.023.635.4
11 25.037.523.835.721.432.220.430.69.0813.621.432.2
12 22.934.421.832.819.629.518.728.18.3212.519.629.5
13 21.131.720.130.218.127.217.225.97.6811.518.127.2
14 19.629.518.728.116.825.316.024.17.1310.716.825.3
15 18.327.517.426.215.723.614.922.56.6610.015.723.6
16 17.225.816.324.614.722.114.021.16.249.3814.722.1
17 16.124.315.423.113.920.813.219.85.888.8313.920.8
18 15.222.914.521.813.119.712.518.75.558.34
19 14.421.713.820.712.418.611.817.75.267.90
20 13.720.613.119.711.817.711.216.84.997.51
MC8-MC7
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 95

3–96 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Shape
1819.1
Design LRFDASD
Fy= 36 ksi
15.3 16.3
MC6×MC7×
LRFDASD LRFDASD
15.1
LRFDASD LRFDASD
208 313 168 253 142 214 149 225 141 212
26.0 39.2 21.0 31.6 17.8 26.8 18.7 28.1 17.7 26.5
15.5 23.2 12.4 18.7 10.6 16.0 10.9 16.4 10.4 15.7
0.5230.7970.3560.5350.3720.5590.3730.5600.3840.568
31.9 47.9 29.4 44.2 26.4 39.7 29.1 43.7 24.5 36.9
14.5 11.7 9.91 10.4 9.83
4.33 4.37 4.37 3.69 3.68
24.4 28.5 23.7 24.6 22.7
2 58.888.452.879.358.287.549.073.7
3 63.795.856.084.247.571.449.874.947.170.8
4 52.178.342.063.235.653.537.456.235.353.1
5 41.762.633.650.528.542.829.944.928.342.5
6 34.752.228.042.123.735.724.937.423.535.4
7 29.844.724.036.120.330.621.432.120.230.3
8 26.039.221.031.617.826.818.728.117.726.5
9 23.234.818.728.115.823.816.625.015.723.6
10 20.831.316.825.314.221.414.922.514.121.2
11 18.928.515.323.012.919.513.620.412.819.3
12 17.426.114.021.111.917.812.518.711.817.7
13 16.024.112.919.411.016.511.517.310.916.3
14 14.922.412.018.110.215.310.716.010.115.2
15 13.920.911.216.89.4914.39.9615.09.4214.2
16 13.019.6
17 12.318.4
MC7-MC6
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 96

MAXIMUM TOTAL UNIFORM LOAD TABLES 3–97
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-9 (continued)
Maximum Total
Uniform Load, kips
MC-Shapes
Fy= 36 ksi
MC4× MC3×
MC6-MC3
Wc/ΩbφbWc, kip-ft
Mp/ΩbφbMp,kip-ft
Mr/ΩbφbMr,kip-ft
BF/ΩbφbBF,kips
Vn/ΩvφvVn,kips
Zx, in.
3
Lp, ft
Lr, ft
Ω
b=1.67
Ω
v=1.67
Note: For beams laterally unsupported, see Table 3 -11.
Available strength tabulated above heavy line is limited by available shear strength.
φb=0.90
φ
v=0.90
Beam Properties
ASD LRFD
Span, ft
Shape
712
Design LRFDASD
6.5 13.8
MC6×
LRFDASD LRFDASD
7.1
LRFDASD LRFDASD
107 161 64.7 97.2 61.5 92.4 79.5119 32.2 48.4
13.4 20.2 8.0812.2 7.6911.6 9.9314.9 4.02 6.05
7.8511.8 4.79 7.20 4.60 6.92 5.57 8.372.28 3.42
0.4140.6270.4900.7440.4850.7350.1260.1890.07450.113
24.1 36.213.9 20.9 12.0 18.1 25.9 38.912.1 18.2
7.47 4.50 4.28 5.53 2.24
3.01 2.24 2.24 3.03 2.34
16.4 8.96 8.61 37.6 25.7
2 48.172.327.841.824.136.239.759.716.124.2
3 35.853.821.632.420.530.826.539.810.716.1
4 26.840.316.224.315.423.119.929.98.0512.1
5 21.532.312.919.412.318.515.923.96.449.68
6 17.926.910.816.210.315.413.219.95.378.06
7 15.323.19.2413.9 8.7913.211.417.14.606.91
8 13.420.28.0812.2 7.6911.6 9.9314.9
9 11.917.97.1910.8 6.8310.3 8.8313.3
10 10.716.16.479.726.159.247.9511.9
11 9.7614.75.888.845.598.40
12 8.9513.45.398.105.137.70
13 8.2612.44.977.484.737.11
14 7.6711.54.626.944.396.60
15 7.1610.84.316.484.106.16
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 97

3–98 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 98

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–99
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W40x593
W40x593
W40x503
W36X652
W36X652
W36X529
W36X487
LRFD
Table 3-10
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
12000
11550
11100
10650
10200
9750
9300
8850
8400
7950
7500
8000 7700
7400
7100
6800
6500
6200
5900
5600
5300
5000
4 162840526476
Unbraced Length (3-ft increments)
Available Moment,
M
n

b
(60 kip-ft increments) and φ
b
M
n
(90 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 99

3–100 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
7500
7200
6900
6600
6300
6000
5700
5400
5100
4800
4500
5000 4800
4600
4400
4200
4000
3800
3600
3400
3200
3000
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(40 kip-ft increments) and φ
b
M
n
(60 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 100

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–101
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
7500
7200
6900
6600
6300
6000
5700
5400
5100
4800
4500
5000
4800
4600
4400
4200
4000
3800
3600
3400
3200
3000
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(40 kip-ft increments) and φ
b
M
n
(60 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 101

3–102 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
4500
4350
4200
4050
3900
3750
3600
3450
3300
3150
3000
3000 2900
2800
2700
2600
2500
2400
2300
2200
2100
2000
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(20 kip-ft increments) and φ
b
M
n
(30 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 102

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–103
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
4500
4350
4200
4050
3900
3750
3600
3450
3300
3150
3000
3000 2900
2800
2700
2600
2500
2400
2300
2200
2100
2000
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(20 kip-ft increments) and φ
b
M
n
(30 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 103

3–104 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
3000
2940
2880
2820
2760
2700
2640
2580
2520
2460
2400
2000 1960
1920
1880
1840
1800
1760
1720
1680
1640
1600
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(8 kip-ft increments) and φ
b
M
n
(12 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 104

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–105
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
3000
2940
2880
2820
2760
2700
2640
2580
2520
2460
2400
2000 1960
1920
1880
1840
1800
1760
1720
1680
1640
1600
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(8 kip-ft increments) and φ
b
M
n
(12 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 105

3–106 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
2400
2340
2280
2220
2160
2100
2040
1980
1920
1860
1800
1600 1560
1520
1480
1440
1400
1360
1320
1280
1240
1200
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(8 kip-ft increments) and φ
b
M
n
(12 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 106

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–107
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
2400
2340
2280
2220
2160
2100
2040
1980
1920
1860
1800
1600
1560
1520
1480
1440
1400
1360
1320
1280
1240
1200
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(8 kip-ft increments) and φ
b
M
n
(12 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 107

3–108 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1800
1770
1740
1710
1680
1650
1620
1590
1560
1530
1500
1200
1180
1160
1140
1120
1100
1080
1060
1040
1020
1000
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(4 kip-ft increments) and φ
b
M
n
(6 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 108

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–109
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1800
1770
1740
1710
1680
1650
1620
1590
1560
1530
1500
1200 1180
1160
1140
1120
1100
1080
1060
1040
1020
1000
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(4 kip-ft increments) and φ
b
M
n
(6 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 109

3–110 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1500
1485
1470
1455
1440
1425
1410
1395
1380
1365
1350
1000
990
980
970
960
950
940
930
920
910
900
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 110

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–111
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1500
1485
1470
1455
1440
1425
1410
1395
1380
1365
1350
1000
990
980
970
960
950
940
930
920
910
900
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 111

3–112 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1350
1335
1320
1305
1290
1275
1260
1245
1230
1215
1200
900 890
880
870
860
850
840
830
820
810
800
6 101418222630
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 112

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–113
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1350
1335
1320
1305
1290
1275
1260
1245
1230
1215
1200
900 890
880
870
860
850
840
830
820
810
800
30 34 38 42 46 50 54
Unbraced Length (1-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 113

3–114 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1200
1185
1170
1155
1140
1125
1110
1095
1080
1065
1050
800
790
780
770
760
750
740
730
720
710
700
6 8 10 12 14 16 18 20 22
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 114

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–115
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1200
1185
1170
1155
1140
1125
1110
1095
1080
1065
1050
800 790
780
770
760
750
740
730
720
710
700
22 24 26 28 30 32 34 36 38
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 115

3–116 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1050
1035
1020
1005
990
975
960
945
930
915
900
700 690
680
670
660
650
640
630
620
610
600
6 8 10 12 14 16 18 20 22
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 116

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–117
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
1050
1035
1020
1005
990
975
960
945
930
915
900
700
690
680
670
660
650
640
630
620
610
600
22 24 26 28 30 32 34 36 38
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 117

3–118 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
900
885
870
855
840
825
810
795
780
765
750
600
590
580
570
560
550
540
530
520
510
500
6 8 10 12 14 16 18 20 22
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 118

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–119
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
900
885
870
855
840
825
810
795
780
765
750
600
590
580
570
560
550
540
530
520
510
500
22 24 26 28 30 32 34 36 38
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 119

3–120 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
750
735
720
705
690
675
660
645
630
615
600
500 490
480
470
460
450
440
430
420
410
400
6 8 10 12 14 16 18 20 22
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 120

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–121
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
750
735
720
705
690
675
660
645
630
615
600
500
490
480
470
460
450
440
430
420
410
400
22 24 26 28 30 32 34 36 38
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 121

3–122 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W27x84
W24x84
W24x76
W24x76
W24x68
W24x68
W24x68
W24x62
W24x62
W24x55
W21x93
W21x93
W21x83
W21x83
W21x83
W21x73
W21x73
W21x68
W21x68
W21x68
W21x62
W21x62
W21x55
W18x86
W18x86
W18x76
W18x76
W18x71
W18x71
W18x65
W16x89
W16x89
W16x77
W16x77
W16x77
W16x67
W14x9
9
W14x90
W14x90
W14x82
W14x82
W14x74
W12x106
W12x106
W12x96
W12x96
W12x87
W12x87
W10x112
W10x112
W10x100
W21x55
W21x57
W18x60
W14x82
W21x62
W18x71
W24x62
W12x96
W16x67
W21x57
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
600
585
570
555
540
525
510
495
480
465
450
400 390
380
370
360
350
340
330
320
310
300
4 6 8 101214161820
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 122

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–123
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W30x108
W30x99
W30x99
W30x90
W30x90
W30x90
W27x114
W27x102
W27x102
W27x94
W27x94
W27x94
W27x84
W27x84
W24x117
W24x104
W24x104
W24x103
W24x103
W24x94
W24x94
W24x84
W21x111
W21x111
W21x101
W21x101W21x93
W18x119
W18x106
W18x106
W18x106
W18x97
W18x97
W18x86
W18x86
W16x100
W16x100
W16x89
W16x89
W14x109
W14x99
W14x99
W14x90
W12x120
W12x106
W12x96
W10x112
W18x76
W21x83
W21x93
W14x90
W27x84
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
600
585
570
555
540
525
510
495
480
465
450
400
390
380
370
360
350
340
330
320
310
300
20 22 24 26 28 30 32 34 36
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 123

3–124 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W24x68
W24x68
W24x62
W24x62
W24x62
W24x55
W24x55
W21x73
W21x73
W21x68
W21x68
W21x68
W21x62
W21x62
W21x55
W21x55
W21x55
W21x48
W21x48
W21x57
W21x57
W21x57
W21x50
W21x50
W21x44
W18x71
W18x71
W18x65
W18x65
W18x65
W18x60
W18x60
W18x55
W18x55
W18x55
W18x50
W18x50
W18x46
W16x77
W16x67
W16x67
W16x57
W16x57
W16x50
W14x82
W14x74
W14x68
W14x68
W14x61
W14x61
W14x53
W12x87
W12x79
W12x79
W12x72
W12x72
W12x65
W12x65
W12x58
W10x10
0
W10x88
W10x88
W10x77
W10x77
W10x68
W14x53
W12x58
W16x50
W16x45
W21x44
W18x50
W14x61
W16x57
W21x48
W18x55
W21x50
W10x77
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
450
435
420
405
390
375
360
345
330
315
300
300
290
280
270
260
250
240
230
220
210
200
4 6 8 101214161820
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 124

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–125
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W27x84W24x94
W24x84
W24x84
W24x76
W24x68
W21x93
W21x93
W21x83
W21x83
W21x73
W18x97
W18x86
W18x86
W18x86
W18x76
W18x76
W16x100
W16x89
W16x89
W16x77
W16x77
W16x77
W16x67
W16x67
W14x90
W14x82
W14x82
W14x74
W14x74
W14x68
W12x96
W12x87
W12x79
W12x79
W12x72
W12x72
W10x100
W10x88
W10x77
W24x76
W12x65
W21x68
W18x71
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
450
435
420
405
390
375
360
345
330
315
300
300 290
280
270
260
250
240
230
220
210
200
20 22 24 26 28 30 32 34 36
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 125

3–126 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
300
294
288
282
276
270
264
258
252
246
240
200
196
192
188
184
180
176
172
168
164
160
2 4 6 8 10 12 14 16 18
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 126

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–127
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
300
294
288
282
276
270
264
258
252
246
240
200
196
192
188
184
180
176
172
168
164
160
18 20 22 24 26 28 30 32 34
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 127

3–128 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
240
234
228
222
216
210
204
198
192
186
180
160
156
152
148
144
140
136
132
128
124
120
2 4 6 8 10 12 14 16 18
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 128

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–129
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
240
234
228
222
216
210
204
198
192
186
180
160 156
152
148
144
140
136
132
128
124
120
18 20 22 24 26 28 30 32 34
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 129

3–130 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
180
174
168
162
156
150
144
138
132
126
120
120 116
112
108
104
100
96
92
88
84
80
2 4 6 8 10 12 14 16 18
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 130

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–131
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
180
174
168
162
156
150
144
138
132
126
120
120 116
112
108
104
100
96
92
88
84
80
18 20 22 24 26 28 30 32 34
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 131

3–132 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
120
114
108
102
96
90
84
78
72
66
60
80 76
72
68
64
60
56
52
48
44
40
2 4 6 8 10 12 14 16 18
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 132

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–133
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
120
114
108
102
96
90
84
78
72
66
60
80
76
72
68
64
60
56
52
48
44
40
18 20 22 24 26 28 30 32 34
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 133

3–134 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-10 (continued)
W-Shapes
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=50 ksi
Cb=1
60
54
48
42
36
30
24
18
12
6
0
40 36
32
28
24
20
16
12
8
4
0
2 4 6 8 10 12 14 16 18
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3B:14th Ed. 2/24/11 8:54 AM Page 134

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–135
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-11
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
270
258
246
234
222
210
198
186
174
162
150
180 172
164
156
148
140
132
124
116
108
100
0246810121416
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(2 kip-ft increments) and φ
b
M
n
(3 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 135

LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
150
144
138
132
126
120
114
108
102
96
90
100
96
92
88
84
80
76
72
68
64
60
0246810121416
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
3–136 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 136

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–137
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
150
144
138
132
126
120
114
108
102
96
90
100
96
92
88
84
80
76
72
68
64
60
16 18 20 22 24 26 28 30 32
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(1 kip-ft increments) and φ
b
M
n
(1.5 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 137

3–138 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
90
87
84
81
78
75
72
69
66
63
60
60 58
56
54
52
50
48
46
44
42
40
0246810121416
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(0.5 kip-ft increments) and φ
b
M
n
(0.75 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 138

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–139
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
90
87
84
81
78
75
72
69
66
63
60
60 58
56
54
52
50
48
46
44
42
40
16 18 20 22 24 26 28 30 32
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(0.5 kip-ft increments) and φ
b
M
n
(0.75 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 139

3–140 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C12x30
C12x30
C12x25
C12x25
C12x20.7
C12x20.7
C10x30
C10x25
C10x25
C10x25
C10x20
C10x20
C10x15.3
C10x15.3
C9x20
C9x20
C9x15
C9x15
C9x13.4
C8x18.75
C8x13.75
MC12x10.6
MC10x25
MC10x25
MC10x22
MC10x22
MC9x25.4
MC9x25.4
MC9x23.9
MC9x23.9
MC8x22.8
MC8x22.8
MC8x21.4
MC8x21.4
MC8x20
MC8x20
MC8x18.7
MC8x18.7
MC12x14.3
MC12x14.3
C8x18.75
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
60
57
54
51
48
45
42
39
36
33
30
40
38
36
34
32
30
28
26
24
22
20
0246810121416
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(0.5 kip-ft increments) and φ
b
M
n
(0.75 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:56 AM Page 140

PLOTS OF AVAILABLE FLEXURAL STRENGTH VS. UNBRACED LENGTH 3–141
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
60
57
54
51
48
45
42
39
36
33
30
40 38
36
34
32
30
28
26
24
22
20
16 18 20 22 24 26 28 30 32
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(0.5 kip-ft increments) and φ
b
M
n
(0.75 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 141

3–142 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C10x20
C10x15.3
C9x20
C9x15
C9x15
C9x13.4
C9x13.4
C8x11.5
C8x11.5
MC12x10.6
MC12x10.6
MC10x8.4
MC10x8.4MC10x8.4
MC10x6.5
MC10x6.5
MC8x18.7
MC8x8.5
MC8x8.5
MC12x14.3
C8x13.75
C8x18.75
C12x20.7
C8x13.75
LRFD
Table 3-11 (continued)
Channels
Available Moment vs. Unbraced Length
ASD
kip-ftkip-ft
φ
bMnMn/Ωb
Fy=36 ksi
Cb=1
30
27
24
21
18
15
12
9
6
3
0
20
18
16
14
12
10
8
6
4
2
0
0246810121416
Unbraced Length (0.5-ft increments)
Available Moment,
M
n

b
(0.5 kip-ft increments) and φ
b
M
n
(0.75 kip-ft increments)
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 142

AVAILABLE FLEXURAL STRENGTH OF HSS 3–143
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
φb=0.90
ASD LRFD
Table 3-12
Available Flexural
Strength, kip-ft
Rectangular HSS
Shape Mn/ΩbφbMn
LRFDASD
Fy= 46 ksi
Mn/ΩbφbMn
X-Axis Y-Axis
Shape
Mn/ΩbφbMnMn/ΩbφbMn
X-Axis Y-Axis
LRFDASD LRFDASD LRFDASD
HSS20-HSS12
HSS20×12×
5
/8528794350527
1
/2432 649254382
3
/8305 459169255
5
/16226 339130196
HSS20×8×
5
/8425638209314
1
/2349 524152229
3
/8269 404101152
5
/16223 33676.8115
HSS20×4×
1
/226439762.794.3
3
/8205 30842.263.4
5
/16171 25732.148.3
1
/4131 19822.834.3
HSS18×6×
5
/8310466140210
1
/2257 386102153
3
/8198 29868.0102
5
/16168 25252.278.5
1
/4132 19837.356.1
HSS16×12×
5
/8379569310466
1
/2310 466240360
3
/8221 333159238
5
/16166 249123185
HSS16×8×
5
/8296445182273
1
/2243 366142213
3
/8188 28394.3142
5
/16159 24073.0110
1
/4119 17852.679.1
HSS16×4×
5
/821332174.6112
1
/2177 26758.888.3
3
/8138 20839.459.2
5
/16117 17630.445.7
1
/4 94.314221.832.8
3
/1666.910013.920.9
HSS14×10×
5
/8275414218328
1
/2227 341180271
3
/8175 263120180
5
/16137 20793.2140
1
/4 97.314668.2103
HSS14×6×
5
/8204306111167
1
/2169254 92.7139
3
/8131198 62.694.2
5
/16112168 48.773.2
1
/4 90.9137 35.253.0
3
/1662.794.322.834.2
HSS14×4×
5
/8168252 65.498.3
1
/2140211 55.483.3
3
/8110165 37.556.3
5
/1693.3140 29.243.9
1
/4 76.2115 21.131.8
3
/1655.483.213.620.4
HSS12×10×
1
/2181272160240
3
/8140211116175
5
/16111166 88.7133
1
/4 78.9119 65.598.5
HSS12×8×
5
/8188283142214
1
/2156235118178
3
/8122183 86.8130
5
/16103155 66.399.7
1
/4 77.8117 48.873.4
3
/1650.075.232.148.3
HSS12×6×
5
/8158237 96.6145
1
/2132198 80.9122
3
/8103155 59.990.1
5
/1687.5132 46.169.4
1
/4 71.4107 33.850.8
3
/1649.674.622.033.1
HSS12×4×
5
/8127192 56.384.6
1
/2107161 47.971.9
3
/884.2127 35.853.8
5
/1671.9108 27.741.6
1
/4 58.888.420.330.5
3
/1644.366.613.119.7
HSS12×3
1
/2×
3
/879.6120 30.245.4
5
/1667.9102 23.435.1
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 143

3–144 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
φb=0.90
ASD LRFD
Table 3-12 (continued)
Available Flexural
Strength, kip-ft
Rectangular HSS
Shape Mn/ΩbφbMn
LRFDASD
Fy= 46 ksi
Mn/ΩbφbMn
X-Axis Y-Axis
Shape
Mn/ΩbφbMnMn/ΩbφbMn
X-Axis Y-Axis
LRFDASD LRFDASD LRFDASD
HSS12×3×
5
/1664.096.219.228.8
1
/4 52.579.014.121.2
3
/1639.659.59.1513.7
HSS12×2×
5
/1656.284.511.216.8
1
/4 46.369.58.3712.6
3
/1634.952.45.488.24
HSS10×8×
5
/8143215122184
1
/2119179102153
3
/893.014079.8120
5
/1679.011963.895.9
1
/4 60.090.246.169.2
3
/1639.058.630.746.2
HSS10×6×
5
/811817782.1123
1
/2 98.714869.1104
3
/877.511654.481.8
5
/1666.199.343.965.9
1
/4 54.181.331.847.9
3
/1637.957.021.131.7
HSS10×5×
3
/869.810542.964.5
5
/1659.689.534.752.2
1
/4 48.873.425.338.0
3
/1637.356.116.725.1
HSS10×4×
5
/892.613947.270.9
1
/2 78.311840.360.6
3
/862.093.232.248.4
5
/1653.179.826.139.3
1
/4 43.665.519.128.7
3
/1633.450.212.618.9
1
/8 20.731.16.8410.3
HSS10×3
1
/2
1/2 73.2
11033.850.8
3
/858.287.427.240.8
5
/1649.874.922.133.2
1
/4 41.061.616.124.3
3
/1631.547.310.616.0
1
/8 20.330.55.758.65
HSS10×3×
3
/854.381.622.333.6
5
/1646.670.018.127.3
1
/4 38.457.713.320.0
3
/1629.544.38.7513.2
1
/8 19.028.54.727.10
HSS10×2×
3
/846.670.013.219.9
5
/1640.160.310.816.2
1
/4 33.249.87.8611.8
3
/1625.638.45.257.89
1
/8 16.324.62.834.25
HSS9×7×
5
/811116793.0140
1
/2 92.914078.1117
3
/872.911061.492.3
5
/1662.293.452.478.7
1
/4 50.976.537.356.0
3
/1632.348.625.037.6
HSS9×5×
5
/888.313358.187.3
1
/2 74.711249.374.1
3
/859.188.839.258.9
5
/1650.575.933.650.5
1
/4 41.562.424.336.5
3
/1631.847.816.224.3
HSS9×3×
1
/2 56.484.824.837.3
3
/845.267.920.230.4
5
/1638.958.517.526.3
1
/4 32.148.312.719.1
3
/1624.737.28.5012.8
HSS8×6×
5
/882.812467.7102
1
/2 69.910557.386.1
3
/855.383.145.468.2
5
/1647.371.138.858.4
1
/4 38.858.430.145.2
3
/1627.541.419.729.7
HSS12-HSS8
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 144

AVAILABLE FLEXURAL STRENGTH OF HSS 3–145
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
φb=0.90
ASD LRFD
Table 3-12 (continued)
Available Flexural
Strength, kip-ft
Rectangular HSS
Shape Mn/ΩbφbMn
LRFDASD
Fy= 46 ksi
Mn/ΩbφbMn
X-Axis Y-Axis
Shape
Mn/ΩbφbMnMn/ΩbφbMn
X-Axis Y-Axis
LRFDASD LRFDASD LRFDASD
HSS8×4×
5
/863.094.738.157.2
1
/253.880.932.849.3
3
/843.064.726.439.6
5
/1637.055.622.734.2
1
/430.545.917.826.7
3
/1623.535.311.817.7
1
/814.722.16.539.82
HSS8×3×
1
/245.868.822.133.3
3
/836.955.518.127.2
5
/1631.947.915.723.6
1
/426.439.612.318.6
3
/1620.430.68.1912.3
1
/813.820.84.526.79
HSS8×2×
3
/830.846.310.615.9
5
/1626.740.19.3314.0
1
/422.233.47.3711.1
3
/1617.225.94.907.37
1
/811.717.62.714.07
HSS7×5×
1
/250.275.439.659.6
3
/840.160.231.747.7
5
/1634.451.827.341.1
1
/428.442.722.633.9
3
/1621.832.814.922.4
1
/812.118.28.4712.7
HSS7×4×
1
/243.264.929.043.6
3
/834.752.223.435.2
5
/1630.045.020.330.5
1
/424.837.316.825.3
3
/1619.128.711.216.8
1
/812.118.16.339.51
HSS7×3×
1
/236.254.419.429.2
3
/829.444.216.024.0
5
/1625.538.313.920.9
1
/421.231.811.617.4
3
/1616.424.67.8011.7
1
/811.317.04.386.58
HSS7×2×
1
/417.526.46.9410.4
3
/1613.720.54.677.01
1
/8 9.4914.32.633.95
HSS6×5×
1
/239.559.434.852.3
3
/831.847.828.042.1
5
/1627.441.224.236.3
1
/422.734.120.030.1
3
/1617.526.314.521.8
1
/8 9.8014.78.1212.2
HSS6×4×
1
/233.650.525.237.9
3
/827.341.020.530.8
5
/1623.635.417.826.7
1
/419.629.414.822.2
3
/1615.222.810.816.2
1
/8 9.6514.56.079.12
HSS6×3×
1
/227.741.716.725.1
3
/822.734.213.820.8
5
/1619.829.712.118.2
1
/416.524.810.115.2
3
/1612.819.37.4611.2
1
/8 8.8913.44.206.31
HSS6×2×
3
/818.227.47.9411.9
5
/1616.024.07.0510.6
1
/413.420.25.999.01
3
/1610.515.84.466.70
1
/8 7.3311.02.523.79
HSS5×4×
1
/225.137.821.532.2
3
/820.630.917.626.5
5
/1617.926.915.323.0
1
/414.922.412.819.2
3
/1611.617.49.9515.0
1
/8 7.4511.25.728.60
HSS8-HSS5
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 145

3–146 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
φb=0.90
ASD LRFD
Table 3-12 (continued)
Available Flexural
Strength, kip-ft
Rectangular HSS
Shape Mn/ΩbφbMn
LRFDASD
Fy= 46 ksi
Mn/ΩbφbMn
X-Axis Y-Axis
Shape
Mn/ΩbφbMnMn/ΩbφbMn
X-Axis Y-Axis
LRFDASD LRFDASD LRFDASD
HSS5×3×
1
/220.330.514.021.1
3
/816.825.311.717.6
5
/1614.722.110.315.4
1
/412.418.68.6513.0
3
/169.6614.56.7910.2
1
/8 6.7310.13.965.95
HSS5×2
1
/2×
1
/411.116.76.7810.2
3
/168.7013.15.358.04
1
/8 6.089.143.144.72
HSS5×2×
3
/813.119.76.629.95
5
/1611.617.45.918.88
1
/4 9.8114.75.057.59
3
/167.7411.64.026.04
1
/8 5.438.162.373.57
HSS4×3×
3
/811.717.79.5814.4
5
/1610.415.68.4712.7
1
/4 8.7613.27.1710.8
3
/166.9010.45.668.50
1
/8 4.847.273.735.61
HSS4×2
1
/2×
3
/810.315.57.3411.0
5
/169.1213.76.539.82
1
/4 7.7511.65.578.37
3
/166.139.224.426.65
1
/8 4.326.492.944.42
HSS4×2×
3
/8 8.8213.35.307.96
5
/167.8811.84.767.16
1
/4 6.7410.14.106.17
3
/165.378.073.294.94
1
/8 3.805.712.213.32
HSS3
1
/2×2
1
/2×
3
/8 8.2412.46.489.74
5
/167.3511.15.798.71
1
/4 6.289.444.967.46
3
/165.007.513.965.95
1
/8 3.545.322.814.22
HSS3
1
/2×2×
1
/45.418.133.635.46
3
/164.336.512.924.40
1
/83.094.642.093.15
HSS3
1
/2×1
1
/2×
1
/44.536.822.433.65
3
/163.675.511.992.99
1
/82.643.961.452.17
HSS3×2
1
/2×
5
/165.758.655.067.60
1
/44.957.444.366.55
3
/163.965.963.495.25
1
/82.824.242.493.74
HSS3×2×
5
/164.857.293.625.45
1
/44.216.333.164.75
3
/163.405.112.563.85
1
/82.443.661.842.77
HSS3×1
1
/2×
1
/43.475.212.093.14
3
/162.834.261.732.59
1
/82.053.091.261.90
HSS3×1×
3
/162.273.410.9911.49
1
/81.672.510.7471.12
HSS2
1
/2×2×
1
/43.144.732.694.04
3
/162.563.862.203.30
1
/81.862.791.592.39
HSS2
1
/2×1
1
/2×
1
/42.543.811.752.64
3
/162.103.161.462.20
1
/81.542.311.081.62
HSS2
1
/2×1×
3
/161.642.460.8261.24
1
/81.221.840.6290.945
HSS2
1
/4×2×
3
/162.193.282.013.03
1
/81.592.391.472.20
HSS2×1
1
/2×
3
/161.472.201.201.80
1
/81.091.640.8931.34
HSS2×1×
3
/161.101.660.6610.994
1
/80.8401.260.5110.768
HSS5-HSS2
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 146

AVAILABLE FLEXURAL STRENGTH OF HSS 3–147
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-13
Available Flexural
Strength, kip-ft
Square HSS
Fy= 46 ksi
Shape
Mn/Ωb φbMn
LRFDASD
Shape
Mn/Ωb φbMn
LRFDASD
HSS16-HSS2
HSS16×16×
5
/8 459690
1
/2 352 529
3
/8 232 348
5
/16 181 272
HSS14×14×
5
/8 347521
1
/2 285 428
3
/8 185 278
5
/16 145 219
HSS12×12×
5
/8 250376
1
/2 206 309
3
/8 149 223
5
/16 113 169
1
/4 83.3 125
3
/16 55.7 83.8
HSS10×10×
5
/8 168252
1
/2 139 210
3
/8 108 163
5
/16 86.1 129
1
/4 61.6 92.5
3
/16 41.4 62.3
HSS9×9×
5
/8 133200
1
/2 111 167
3
/8 86.8 130
5
/16 73.8 111
1
/4 51.7 77.8
3
/16 35.0 52.5
1
/8 20.0 30.1
HSS8×8×
5
/8 103154
1
/2 86.0 129
3
/8 67.6 102
5
/16 57.6 86.6
1
/4 44.1 66.3
3
/16 28.8 43.3
1
/8 16.5 24.8
HSS7×7×
5
/8 75.9114
1
/2 64.1 96.4
3
/8 50.7 76.2
5
/16 43.4 65.2
1
/4 35.6 53.6
3
/16 23.1 34.7
1
/8 13.3 20.0
HSS6×6×
5
/8 53.280.0
1
/2 45.4 68.3
3
/8 36.3 54.6
5
/16 31.2 46.9
1
/4 25.7 38.7
3
/16 18.5 27.8
1
/8 10.4 15.6
HSS5
1
/2×5
1
/2×
3
/8 30.0 45.1
5
/16 25.9 38.9
1
/4 21.4 32.2
3
/16 16.4 24.6
1
/8 8.98 13.5
HSS5×5×
1
/2 30.045.0
3
/8 24.3 36.5
5
/16 21.0 31.6
1
/4 17.5 26.2
3
/16 13.5 20.3
1
/8 7.67 11.5
HSS4
1
/2×4
1
/2×
1
/2 23.4 35.2
3
/8 19.2 28.8
5
/16 16.7 25.1
1
/4 13.9 20.9
3
/16 10.8 16.3
1
/8 6.43 9.66
HSS4×4×
1
/2 17.726.6
3
/8 14.7 22.1
5
/16 12.8 19.3
1
/4 10.8 16.2
3
/16 8.42 12.7
1
/8 5.48 8.23
HSS3
1
/2×3
1
/2×
3
/8 10.8 16.2
5
/16 9.50 14.3
1
/4 8.03 12.1
3
/16 6.33 9.51
1
/8 4.44 6.67
HSS3×3×
3
/8 7.4611.2
5
/16 6.66 10.0
1
/4 5.69 8.55
3
/16 4.53 6.81
1
/8 3.21 4.82
HSS2
1
/2×2
1
/2×
5
/16 4.32 6.49
1
/4 3.75 5.64
3
/16 3.03 4.55
1
/8 2.17 3.27
HSS2
1
/4×2
1
/4×
1
/4 2.93 4.41
3
/16 2.39 3.60
1
/8 1.73 2.60
HSS2×2×
1
/4 2.213.33
3
/16 1.83 2.75
1
/8 1.34 2.02
Ωb=1.67
Note: Values are reduced for compactness criteria, when appropriate. See Table 1-12A for limiting
dimensions for compactness.
φb=0.90
ASD LRFD
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 147

3–148 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-14
Available Flexural
Strength, kip-ft
Round HSS
Fy= 42 ksi
Shape
Mn/Ωb φbMn
LRFDASD
Shape
Mn/Ωb φbMn
LRFDASD
HSS20-
HSS6.625
Ωb=1.67
f
Shape exceeds compact limit for flexure with Fy=42 ksi.φb=0.90
ASD LRFD
HSS20×0.500 371 558 HSS8.625×0.625 78.9 119
0.375
f
273 410 0.500 65.0 97.6
0.375 50.1 75.3
HSS18×0.500 300 450 0.322 43.6 65.5
0.375
f
225 338 0.250 34.4 51.7
0.188
f
25.9 39.0
HSS16×0.625 289 435
0.500 235 353 HSS7.625×0.375 38.8 58.2
0.438 207 312 0.328 34.3 51.5
0.375 179 269
0.312
f
147 221 HSS7.500×0.500 48.3 72.6
0.250
f
114 171 0.375 37.4 56.3
0.312 31.7 47.7
HSS14×0.625 220 331 0.250 25.8 38.8
0.500 179 268 0.188 19.6 29.4
0.375 136 205
0.312 115 172 HSS7×0.500 41.7 62.7
0.250
f
88.8 133 0.375 32.4 48.7
0.312 27.5 41.3
HSS12.750×0.500 147 221 0.250 22.4 33.6
0.375 113 169 0.188 17.0 25.5
0.250
f
74.6 112 0.125
f
11.0 16.6
HSS10.750×0.500 103 155 HSS6.875×0.500 40.1 60.3
0.375 79.2 119 0.375 31.2 46.9
0.250 54.0 81.2 0.312 26.5 39.8
0.250 21.6 32.4
HSS10×0.625 108 163 0.188 16.4 24.6
0.500 88.7 133
0.375 68.2 102 HSS6.625×0.500 37.1 55.7
0.312 57.5 86.4 0.432 32.7 49.1
0.250 46.6 70.0 0.375 28.8 43.3
0.188
f
34.0 51.2 0.312 24.5 36.8
0.280 22.1 33.2
HSS9.625×0.500 81.8 123 0.250 20.0 30.0
0.375 63.0 94.6 0.188 15.2 22.8
0.312 53.2 79.9 0.125
f
9.97 15.0
0.250 43.1 64.8
0.188
f
31.7 47.7
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 148

AVAILABLE FLEXURAL STRENGTH OF HSS 3–149
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-14 (continued)
Available Flexural
Strength, kip-ft
Round HSS
Fy= 42 ksi
Shape
Mn/Ωb φbMn
LRFDASD
Shape
Mn/Ωb φbMn
LRFDASD
HSS6-
HSS1.66
Ωb=1.67
f
Shape exceeds compact limit for flexure with Fy=42 ksi.φb=0.90
ASD LRFD
HSS6×0.500 29.9 45.0 HSS3.500×0.313 6.30 9.47
0.375 23.4 35.2 0.300 6.08 9.14
0.312 19.9 29.9 0.250 5.22 7.85
0.280 18.0 27.0 0.216 4.59 6.90
0.250 16.2 24.4 0.203 4.35 6.53
0.188 12.4 18.6 0.188 4.04 6.07
0.125
f
8.30 12.5 0.125 2.79 4.19
HSS5.563×0.500 25.4 38.2 HSS3×0.250 3.75 5.63
0.375 19.9 29.9 0.216 3.31 4.97
0.258 14.3 21.4 0.203 3.13 4.71
0.188 10.6 15.9 0.188 2.92 4.38
0.134 7.69 11.6 0.152 2.42 3.63
0.134 2.15 3.23
HSS5.500×0.500 24.8 37.2 0.125 2.02 3.04
0.375 19.4 29.2
0.258 13.9 20.9 HSS2.875×0.250 3.42 5.14
0.203 2.86 4.30
HSS5×0.500 20.1 30.2 0.188 2.66 4.00
0.375 15.9 23.8 0.125 1.85 2.78
0.312 13.5 20.4
0.258 11.4 17.1 HSS2.500×0.250 2.52 3.79
0.250 11.1 16.7 0.188 1.98 2.97
0.188 8.50 12.8 0.125 1.38 2.08
0.125 5.80 8.72
HSS2.375×0.250 2.25 3.38
HSS4.500×0.375 12.6 19.0 0.218 2.01 3.03
0.337 11.5 17.3 0.188 1.77 2.66
0.237 8.45 12.7 0.154 1.50 2.25
0.188 6.83 10.3 0.125 1.24 1.87
0.125 4.67 7.02
HSS1.900×0.188 1.09 1.64
HSS4×0.313 8.41 12.6 0.145 0.883 1.33
0.250 6.94 10.4 0.120 0.746 1.12
0.237 6.60 9.91
0.226 6.33 9.51 HSS1.660×0.140 0.639 0.961
0.220 6.19 9.31
0.188 5.34 8.03
0.125 3.67 5.51
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 149

3–150 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 150

AVAILABLE FLEXURAL STRENGTH OF HSS 3–151
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pipe 2
1
/2xx-Strong 5.08 7.64
Pipe 2
1
/2x-Strong 3.09 4.64
Pipe 2
1
/2Std. 2.39 3.59
Pipe 2 xx-Strong 2.79 4.19
Pipe 2 x-Strong 1.68 2.53
Pipe 2 Std. 1.25 1.87
Pipe 1
1
/2x-Strong 0.958 1.44
Pipe 1
1
/2Std. 0.736 1.11
Pipe 1
1
/4x-Strong 0.686 1.03
Pipe 1
1
/4Std. 0.533 0.801
Pipe 1 x-Strong 0.385 0.579
Pipe 1 Std. 0.308 0.463
Pipe
3
/4x-Strong 0.207 0.311
Pipe
3
/4Std. 0.164 0.247
Pipe
1
/2x-Strong 0.120 0.180
Pipe
1
/2Std. 0.0969 0.146
Table 3-15
Pipe
Available Flexural Strength,
kip-ft
Fy= 35 ksi
Shape
LRFDASD
Shape
LRFDASD
Ωb=1.67 φb=0.90
ASD LRFD
Pipe 12 x-Strong 123 184
Pipe 12 Std. 93.8 141
Pipe 10 x-Strong 86.0 129
Pipe 10 Std. 64.4 96.8
Pipe 8 xx-Strong 87.2 131
Pipe 8 x-Strong 54.1 81.4
Pipe 8 Std. 36.3 54.6
Pipe 6 xx-Strong 47.9 72.0
Pipe 6 x-Strong 27.3 41.0
Pipe 6 Std. 18.5 27.8
Pipe 5 xx-Strong 29.1 43.7
Pipe 5 x-Strong 16.6 24.9
Pipe 5 Std. 11.9 17.9
Pipe 4 xx-Strong 16.6 24.9
Pipe 4 x-Strong 9.65 14.5
Pipe 4 Std. 7.07 10.6
Pipe 3
1
/2x-Strong 7.11 10.7
Pipe 3
1
/2Std. 5.30 7.96
Pipe 3 xx-Strong 8.55 12.8
Pipe 3 x-Strong 5.08 7.64
Pipe 3 Std. 3.83 5.75
Mn/Ωb φbMn Mn/Ωb φbMn
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 151

3–152 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-16a
Available Shear Stress, ksi
Tension Field Action NOT Included
ASD
Fy= 36 ksi
19.4
18.0
15.0
12.0
10.5
9.00
7.50
6.00
4.50
3.00
12.9
12.0
10.0
8.00
7.00
6.00
5.00
4.00
3.00
2.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
φ
h
a
φ
φ
t
hw
φ
Ωv=1.67φv=0.90
ASDLRFD
60
80
100
120
140
160
180
200
220
240
260
280
300
320
φvVn
Aw
Vn
ΩvAw
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 152

STRENGTH OF OTHER FLEXURAL MEMBERS 3–153
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-16b
Available Shear Stress, ksi
Tension Field Action Included
ASD
Fy= 36 ksi
19.4
18.0
15.0
12.0
10.5
9.00
12.9
12.0
10.0
8.00
7.00
6.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
φ
h
a
φ
φ
t
hw
φ
Ωv=1.67φv=0.90
ASDLRFD
60
80
100
120
140
160
180
200
220
240
260
280
300
320
φvVn
Aw
Vn
ΩvAw
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 153

3–154 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-17a
Available Shear Stress, ksi
Tension Field Action NOT Included
ASD
Fy= 50 ksi
27.0
24.0
21.0
18.0
15.0
12.0
10.5
9.00
7.50
6.00
4.50
3.00
18.0
16.0
14.0
12.0
10.0
8.00
7.00
6.00
5.00
4.00
3.00
2.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
φ
h
a
φ
φ
t
hw
φ
Ωv=1.67φv=0.90
ASDLRFD
60
80
100
120
140
160
180
200
220
240
260
280
300
320
φvVn
Aw
Vn
ΩvAw
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 154

STRENGTH OF OTHER FLEXURAL MEMBERS 3–155
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD
Table 3-17b
Available Shear Stress, ksi
Tension Field Action Included
ASD
Fy= 50 ksi
27.0
24.0
21.0
18.0
15.0
12.0
10.5
18.0
16.0
14.0
12.0
10.0
8.00
7.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
φ
h
a
φ
φ
t
hw
φ
Ωv=1.67φv=0.90
ASDLRFD
60
80
100
120
140
160
180
200
220
240
260
280
300
320
φvVn
Aw
Vn
ΩvAw
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 155

3–156 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
/8 6.15 89.5 37.8 19.3 11.2 7.05 0.00195
3
/16 8.70 302 127 65.3 37.8 23.8 0.00659
1
/4 11.3 716 302 155 89.5 56.4 0.0156
5
/16 13.8 1400 590 302 175 110 0.0305
3
/8 16.4 2420 1020 522 302 190 0.0527
1
/2 21.5 5730 2420 1240 716 451 0.125
5
/8 26.6 11200 4720 2420 1400 881 0.244
3
/4 31.7 19300 8160 4180 2420 1520 0.422
7
/8 36.8 30700 13000 6630 3840 2420 0.670
1 41.9 45800 19300 9900 5730 3610 1.00
1
1
/4 52.1 89500 37800 19300 11200 7050 1.95
1
1
/2 62.3 155000 65300 33400 19300 12200 3.38
1
3
/4 72.5 246000 104000 53100 30700 19300 5.36
2 82.7 367000 155000 79200 45800 28900 8.00
3
/16 8.70 15.9 11.2 8.16 4.72 2.97 0.00659
1
/4 11.3 37.8 26.5 19.3 11.2 7.05 0.0156
5
/16 13.8 73.8 51.8 37.8 21.9 13.8 0.0305
3
/8 16.4 127 89.5 65.3 37.8 23.8 0.0527
1
/2 21.5 302 212 155 89.5 56.4 0.125
5
/8 26.6 590 414 302 175 110 0.244
3
/4 31.7 1020 716 522 302 190 0.422
7
/8 36.8 1620 1140 829 480 302 0.670
1 41.9 2420 1700 1240 716 451 1.00
1
1
/4 52.1 4720 3320 2420 1400 881 1.95
1
1
/2 62.3 8160 5730 4180 2420 1520 3.38
1
3
/4 72.5 13000 9100 6630 3840 2420 5.36
2 82.7 19300 13600 9900 5730 3610 8.00
Table 3-18a
Raised Pattern Floor
Plate Deflection-Controlled
Applications
Recommended Maximum
Uniformly Distributed Service Load,
lb/ft
2
Plate thickness t,
in.
Theoretical
weight,
lb/ft
2
Span, ft
21.5 32.5 3.5
Moment of
inertia per ft
of width,
in.
4
/ft
Plate thickness
t,
in.
Theoretical
weight,
lb/ft
2
Span, ft
4.54 657
Moment of
inertia per ft
of width,
in.
4
/ft
Note: Material conforms to ASTM A786.
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 156

1
/8 6.15 222 33312518879.812055.483.340.761.20.0469
3
/16 8.70 499 75028142218027012518891.7138 0.105
1
/4 11.3 887 1330499750319480222333163245 0.188
5
/16 13.8 1390 20807801170499750347521255383 0.293
3
/8 16.4 2000 3000112016907191080499750367551 0.422
1
/2 21.5 3550 533020003000128019208871330652980 0.750
5
/8 26.6 5540 833031204690200030001390208010201530 1.17
3
/4 31.7 79801200044906750287043202000300014702200 1.69
7
/8 36.8 109001630061109190391058802720408020003000 2.30
1 41.9 1420021300798012000511076803550533026103920 3.00
1
1
/4 52.1 22200
3330012500188007980120005540833040706120 4.69
1
1
/2 62.3 31900
480001800027000115001730079801200058708820 6.75
1
3
/4 72.5 43500
65300245003680015600235001090016300798012000 9.19
2 82.7 56800853003190048000204003070014200213001040015700 12.0
3
/16 8.70 70.2 10555.483.344.967.531.246.922.934.4 0.105
1
/4 11.3 125 18898.614879.812055.483.340.761.2 0.188
5
/16 13.8 195 29315423112518886.613063.695.7 0.293
3
/8 16.4 281 42222233318027012518891.7138 0.422
1
/2 21.5 499 750394593319480222333163245 0.750
5
/8 26.6 780 1170616926499750347521255383 1.17
3
/4 31.7 1120 169088713307191080499750367551 1.69
7
/8 36.8 1530 23001210181097814706791020499750 2.30
1 41.9 2000 300015802370128019208871330652980 3.00
1
1
/4 52.1 3120
469024603700200030001390208010201530 4.69
1
1
/2 62.3 4490
675035505330287043202000300014702200 6.75
1
3
/4 72.5 6110
919048307260391058802720408020003000 9.19
2 82.7 79801200063109480511076803550533026103920 12.0
STRENGTH OF OTHER FLEXURAL MEMBERS 3–157
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-18b
Raised Pattern Floor Plate
Flexural-Strength-Controlled
Applications
Recommended Maximum
Uniformly Distributed Load,
lb/ft
2
Plate
thickness
t,
in.
Theoretical
weight,
lb/ft
2
Span, ft
21.5 32.5 3.5
ASDASDDesign ASDASD ASDLRFDLRFD LRFDLRFD LRFD
Plastic
section
modulus
per ft of
width, in.
3
/ft
Note: Material conforms to ASTM A786.
Plate
thickness
t,
in.
Theoretical
weight,
lb/ft
2
Span, ft
4.54 657
ASDASDDesign ASDASD ASDLRFDLRFD LRFDLRFD LRFD
Plastic
section
modulus
per ft of
width, in.
3
/ft
AISC_Part 3C:14th Ed. 2/24/11 8:57 AM Page 157

Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W40
3–158 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W40×297 33204990TFL 0 4370 4770 7170488073304990750051007660
2 0.413 3710 4700 7060479072004880734049807480
3 0.825 3060 4610 6930469070504770716048407280
4 1.24 2410 4510 6790457068804630697047007060
BFL 1.65 1760 4400 6620445066804490675045306820
6 4.58 1420 4320 6490436065504390660044306650
7 8.17 1090 4180 6280421063204240637042606410
W40×294 31704760TFL 0 4310 4770 7180488073404990750051007660
2 0.483 3730 4710 7080480072204900736049907500
3 0.965 3150 4630 6960471070804790720048707320
4 1.45 2570 4540 6820460069204670701047307110
BFL 1.93 1990 4430 6660448067404530681045806880
6 5.71 1540 4300 6470434065204380658044206640
7 10.0 1080 4080 6130411061704130621041606250
W40×278 29704460TFL 0 4120 4540 6820464069704740713048507280
2 0.453 3570 4480 6730457068604660700047507130
3 0.905 3030 4410 6620448067304560685046306960
4 1.36 2490 4320 6490438065904440668045106770
BFL 1.81 1940 4220 6350427064204320649043706570
6 5.67 1490 4100 6160413062104170627042106320
7 10.1 1030 3870 5820390058603920590039505930
W40×277 31204690TFL 0 4080 4440 6680454068304650698047507140
2 0.395 3450 4370 6580446067004550683046306960
3 0.790 2830 4290 6450436065604440667045106770
4 1.19 2200 4200 6310426064004310648043706560
BFL 1.58 1580 4100 6160413062104170627042106330
6 4.20 1300 4030 6060406061104090615041306200
7 7.58 1020 3920 5890394059303970597040006010
W40×264 28204240TFL 0 3870 4250 6390435065304440668045406820
2 0.433 3360 4190 6300428064304360655044406680
3 0.865 2840 4120 6200419063004270641043406520
4 1.30 2330 4040 6080410061704160625042206340
BFL 1.73 1810 3950 5940400060104040608040906150
6 5.53 1390 3840 5770387058203910587039405930
7 9.92 968 3630 5460366055003680554037105570
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 158

COMPOSITE BEAM SELECTION TABLES 3–159
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W40
W40×297 52107820531079905420815055308320564084805750864058608810
50707620516077605250790053508040544081805530831056208450
49207390500075105070762051507740522078505300797053808080
47607150482072404880733049407420500075105060760051207690
45806880462069504670701047107080475071404800721048407280
44606710450067604530681045706870460069204640697046707030
42906450432064904340653043706570440066104430665044506690
W40×294 52007820531079805420815055308310563084705740863058508790
50807640518077805270792053608060545082005550834056408480
49507430502075505100767051807790526079105340802054208140
48007210486073004920740049907500505075905120769051807790
46306960468070304730711047807180483072604880733049307410
44606700449067604530681045706870461069304650699046907040
41906290421063304240637042706410429064504320650043506540
W40×278 49507440505075905150775052607900536080605460821055608360
48307270492074005010753051007670519078005280794053708070
47107080478071904860730049307420501075305090764051607760
45706870463069604690705047507150482072404880733049407430
44206640447067104510678045606860461069304660700047107080
42506380428064404320649043606550439066004430666044706720
39705970400060104030605040506090408061304100617041306200
W40×277 48507290495074405050759051507750526079005360805054608210
47207090481072204890735049807480506076105150774052407870
45806880465069804720709047907200486073004930741050007510
44206640448067304530681045906890464069704700706047507140
42506390429064504330651043706570441066304450669044906750
41606250419063004220635042606400429064504320650043506540
40206040405060804070612041006160412062004150623041706270
W40×264 46306970473071104830726049207400502075505120769052107840
45306800461069304690706047807180486073104950743050307560
44106620448067304550684046206940469070504760716048307260
42806430433065204390660044506690451067804570686046306950
41306210418062804230635042706420432064904360655044106620
39805980401060304050608040806140412061904150624041906290
37305610376056403780568038005720383057503850579038805830
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 159

Ωb=1.67
3–160 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W40
W40×249 27904200TFL 0 3680 3980 5980407061204160626042506390
2 0.355 3110 3920 5890400060104070612041506240
3 0.710 2550 3850 5780391058803970597040406070
4 1.07 1990 3770 5660382057403870581039205890
BFL 1.42 1430 3680 5520371055803750563037805690
6 4.03 1180 3620 5440365054803680553037105570
7 7.45 919 3520 5290354053203560536035905390
W40×235 25203790TFL 0 3460 3770 5660385057903940592040306050
2 0.395 2980 3720 5580379057003860581039405920
3 0.790 2510 3650 5490372055903780568038405780
4 1.19 2040 3580 5390364054603690554037405620
BFL 1.58 1570 3510 5270354053303580539036205450
6 5.16 1220 3410 5130344051803470522035005270
7 9.44 864 3250 4880327049203290495033104980
W40×215 24103620TFL 0 3180 3410 5120349052403560536036405480
2 0.305 2690 3350 5040342051403490524035605340
3 0.610 2210 3300 4950335050403410512034605200
4 0.915 1730 3230 4850327049203320498033605050
BFL 1.22 1250 3160 4740319047903220484032504880
6 3.80 1020 3110 4670313047103160475031804780
7 7.29 794 3020 4540304045703060460030804630
W40×211 22603400TFL 0 3110 3360 5050344051703520529035905400
2 0.355 2690 3320 4990338050903450519035205290
3 0.710 2270 3260 4910332049903380508034305160
4 1.07 1850 3200 4810325048803300495033405020
BFL 1.42 1430 3140 4710317047703210482032404870
6 5.00 1100 3050 4590308046303110467031404710
7 9.35 776 2900 4370292043902940442029604450
W40×199 21703260TFL 0 2940 3130 4710321048203280493033505040
2 0.268 2520 3090 4640315047303210483032804920
3 0.535 2090 3040 4560309046403140472031904800
4 0.803 1670 2980 4480302045403060460031104670
BFL 1.07 1250 2920 4390295044302980448030104530
6 4.09 992 2860 4300289043402910438029404410
7 8.04 735 2760 4150278041702800420028104230
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 160

COMPOSITE BEAM SELECTION TABLES 3–161
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W40
W40×249 43506530444066704530681046206950471070804800722049007360
42306360431064704380659044606710454068204620694047007060
41006170417062604230636042906450436065504420664044806740
39705960402060304060611041106180416062604210633042606410
38205740385057903890585039305900396059504000601040306060
37405610377056603790570038205750385057903880584039105880
36105430363054603660550036805530370055603730560037505630
W40×235 41106180420063104280644043706570446067004540683046306960
40106030409061404160626042406370431064804390659044606700
39105870397059604030606040906150416062504220634042806440
37905690384057703890585039405920399060004040608040906150
36605500370055603740562037805680382057403860580039005860
35405310357053603600541036305450366055003690554037205590
33305010336050403380508034005110342051403440517034605210
W40×215 37205600380057203880583039605950404060704120619042006310
36205450369055503760565038205750389058503960595040306050
35205280357053703630545036805530374056203790570038505780
34005110344051803490524035305310357053703620544036605500
32804930331049803340502033705070340051203440516034705210
32104820323048603260490032804940331049703340501033605050
31004660312046903140472031604750318047803200481032204840
W40×211 36705520375056403830575039005870398059804060610041406220
35805390365054903720559037905690385057903920589039905990
34905250355053303600542036605500372055903770567038305760
33905090343051603480523035305300357053703620544036605510
32804930331049803350503033905090342051403460520034905250
31604760319048003220484032504880327049203300496033305000
29804480300045103020454030404570306046003080463031004660
W40×199 34305150350052603570537036505480372055903790570038705810
33405020340051103460521035305300359054003650549037205580
32504880330049603350503034005110345051903510527035605350
31504730319047903230486032704920331049803360504034005110
30404570307046203110467031404710317047603200481032304850
29604450299044903010453030404560306046003090464031104670
28304260285042802870431028904340291043702920439029404420
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 161

3–162 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W40-W36
W40×183 19302900TFL 0 2670 2860 4300293044002990450030604600
2 0.300 2310 2820 4240288043302940441029904500
3 0.600 1960 2780 4180283042502880432029204400
4 0.900 1600 2730 4100277041602810422028504280
BFL 1.20 1250 2680 4020271040702740411027704160
6 4.77 958 2610 3920263039502650399026804030
7 9.25 666 2480 3720249037502510377025303800
W40×167 17302600TFL 0 2470 2620 3940268040302740412028004220
2 0.258 2160 2590 3890264039702700405027504130
3 0.515 1860 2550 3840260039002640397026904040
4 0.773 1550 2510 3770255038302590389026303950
BFL 1.03 1250 2470 3710249037602530380025603850
6 4.95 933 2390 3600242036302440367024603700
7 9.82 616 2240 3370226034002280342022903440
W40×149 14902240TFL 0 2190 2310 3470236035502420363024703710
2 0.208 1950 2280 3430233035002380357024303650
3 0.415 1700 2250 3380229034502340351023803580
4 0.623 1460 2220 3340226033902290345023303500
BFL 0.830 1210 21903290222033302250338022803420
6 5.15 879 2110 3170213032002150324021803270
7 10.4 548 1950 2930196029501980297019902990
W36×302 31904800TFL 0 4450 4590 6890470070604810723049207390
2 0.420 3750 4510 6780460069204700706047907200
3 0.840 3050 4420 6640449067504570687046406980
4 1.26 2350 4310 6480437065704430665044906740
BFL 1.68 1640 4190 6290423063604270642043106480
6 4.06 1380 4120 6200416062504190630042306350
7 6.88 1110 4030 6050405060904080613041106170
W36×282 29704460TFL 0 4150 4250 6390435065404460670045606850
2 0.393 3490 4180 6280427064104350654044406670
3 0.785 2840 4090 6150417062604240637043106470
4 1.18 2190 4000 6010405060904110617041606260
BFL 1.57 1540 3890 5840393059003970596040006020
6 4.00 1290 3830 5760386058003890585039305900
7 6.84 1040 3740 5620376056603790569038105730
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 162

COMPOSITE BEAM SELECTION TABLES 3–163
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W40-W36
W40×183 31304700319048003260490033205000339051003460520035205300
30504590311046703170476032204850328049303340502034005110
29704470302045403070462031204690317047603220484032704910
28904340293044002970446030104520305045803090464031304700
28004210283042602860430028904350292044002960444029904490
27004060273041002750413027704170280042002820424028504280
25403820256038502580387025903900261039202630395026403970
W40×167 28704310293044002990449030504580311046803170477032404860
28004210286042902910438029704460302045403070462031304700
27404110278041802830425028804320292043902970446030204530
26704010271040702740412027804180282042402860430029004360
25903900262039402650399026904040272040802750413027804180
24903740251037702530381025603840258038802600391026303950
23103470232034902340351023503540237035602380358024003600
W40×149 25203790258038802630396026904040274041202800420028504290
24703720252037902570386026203940267040102720408027704160
24203640246037002510377025503830259038902630396026804020
23703560240036102440367024803720251037802550383025803880
23103470234035202370356024003610243036502460370024903740
22003300222033402240337022603400229034302310347023303500
20003010202030302030305020403070206030902070311020903130
W36×302 50307560514077305250789053608060547082305580839057008560
48807340498074805070762051607760526079005350804054408180
47207090480072104870732049507440502075505100767051807780
45406830460069204660701047207090478071804840727049007360
43506540439066004430666044706730452067904560685046006910
42606410430064604330651043706560440066104430667044706720
41406220416062604190630042206340425063804270642043006470
W36×282 46607010477071704870732049707480508076305180779052807940
45306810461069404700707047907200488073304960746050507590
43806580445066904520679045906900466070104730711048007220
42206340427064204330650043806580444066704490675045406830
40406080408061304120619041606250420063104230636042706420
39605950399060004020605040506090409061404120619041506240
38405770387058103890585039205890394059303970597040006010
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 163

3–164 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W36
W36×262 27404130TFL 0 3860 3940 5920404060704130621042306350
2 0.360 3260 3870 5820396059404040607041206190
3 0.720 2660 3800 5710386058103930591040006010
4 1.08 2070 3710 5580376056603820573038705810
BFL 1.44 1470 3610 5430365054903690554037205600
6 3.96 1220 3560 5350359053903620544036505480
7 6.96 965 3460 5210349052403510528035405310
W36×256 25903900TFL 0 3770 3890 5850398059904080613041706270
2 0.433 3240 3830 5760391058803990600040706120
3 0.865 2710 3760 5650383057503900586039605960
4 1.30 2180 3680 5530373056103790569038405780
BFL 1.73 1650 3590 5390363054503670552037105580
6 5.18 1300 3490 5250352053003560535035905390
7 8.90 941 3330 5010335050403380508034005110
W36×247 25703860TFL 0 3630 3680 5530377056703860580039505940
2 0.338 3070 3620 5440370055603770567038505790
3 0.675 2510 3550 5340361054303680553037405620
4 1.01 1950 3470 5220352052903570536036205440
BFL 1.35 1400 3380 5090342051403450519034905240
6 3.95 1150 3330 5000336050503390509034105130
7 7.02 906 3240 4860326049003280493033004970
W36×232 23403510TFL 0 3400 3490 5240357053703660550037405620
2 0.393 2930 3430 5160351052703580538036505490
3 0.785 2450 3370 5070343051603500525035605350
4 1.18 1980 3300 4960335050403400511034505190
BFL 1.57 1500 3220 4840326049003300496033305010
6 5.04 1180 3140 4720317047603200481032304850
7 8.78 850 2990 4500301045303040456030604590
W36×231 24003610TFL 0 3410 3450 5180353053103620543037005560
2 0.315 2890 3390 5090346052003530531036105420
3 0.630 2370 3330 5000338050903440518035005270
4 0.945 1850 3250 4890330049603350503033905100
BFL 1.26 1330 3170 4770321048203240487032704920
6 3.88 1090 3120 4690315047303170477032004810
7 7.03 853 3030 4560305045903070462030904650
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 164

COMPOSITE BEAM SELECTION TABLES 3–165
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W36
W36×262 43206500442066404520679046106930471070804810722049007370
42006310428064304360656044406680453068004610692046907050
40606110413062104200631042606410433065104400661044606710
39205890397059704020604040706120412062004180628042306350
37605650380057103830576038705820391058703940593039805980
36805530371055703740562037705670380057103830576038605800
35605350358053903610542036305460366054903680553037005570
W36×256 42606410436065504450669045506830464069704730712048307260
41506240423063604320649044006610448067304560685046406970
40306060410061604170626042306360430064704370657044406670
39005860395059404010602040606100412061904170627042206350
37505640379057003830576038805830392058903960595040006010
36205440365054903690554037205590375056403780569038205740
34205150345051803470522035005250352052903540532035705360
W36×247 40406080413062104220635043106480440066204500676045906890
39305900400060204080613041606250423063604310648043906590
38005710386058103930590039906000405060904110618041806280
36705510372055803760566038105730386058003910588039605950
35205300356053503590540036305450366055103700556037305610
34405170347052203500526035305300356053503590539036205430
33305000335050303370507033905100342051403440517034605200
W36×232 38305750391058804000601040806130417062604250639043306520
37305600380057103870582039505930402060404090615041606260
36205440368055303740562038005710386058003920590039805990
35005260355053303600541036505480370055603750563038005710
33705070341051203450518034805240352052903560535036005410
32604890329049403310498033405030337050703400511034305160
30804630310046603120469031404720316047503180479032104820
W36×231 37905690387058203960595040406070413062004210633043006460
36805530375056403820575038905850397059604040607041106180
35605350362054403680553037405620380057103860580039205890
34405170348052403530531035805380362054403670551037205580
33104970334050203370507034105120344051703470522035005270
3230485032604890328049303310498033405020336050603390 5100
31204680314047203160475031804780320048103220484032404880
AISC_Part 3C:14th Ed. 2/24/11 8:58 AM Page 165

3–166 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kip in. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W36
W36×210 20803120TFL 0 3100 3140 4720322048403300496033705070
2 0.340 2680 3100 4660316047603230486033004960
3 0.680 2270 3050 4580310046603160475032204830
4 1.02 1850 2990 4490303045603080463031304700
BFL 1.36 1440 2920 4390296044402990450030304550
6 5.04 1100 2840 4260286043002890435029204390
7 9.03 774 2690 4040271040702730410027504130
W36×194 19102880TFL 0 2850 2880 4330295044403020454030904650
2 0.315 2470 2840 4270290043602960445030204540
3 0.630 2090 2790 4200284042702900435029504430
4 0.945 1710 2740 4120278041802820424028704310
BFL 1.26 1330 2680 4030271040802750413027804180
6 4.93 1020 2600 3910263039502650399026804030
7 8.94 713 2470 3710248037302500376025203790
W36×182 17902690TFL 0 2680 2690 4050276041502830425029004350
2 0.295 2320 2660 3990271040802770417028304250
3 0.590 1970 2610 3930266040002710407027604150
4 0.885 1610 2560 3850260039102640397026804040
BFL 1.18 1250 2510 3770254038202570387026003910
6 4.89 961 2440 3670246037002490374025103770
7 8.91 670 2310 3470233035002340352023603550
W36×170 16702510TFL 0 2500 2510 3770257038602630396026904050
2 0.275 2170 2470 3720253038002580388026303960
3 0.550 1840 2430 3660248037302520379025703860
4 0.825 1510 2390 3590243036502460370025003760
BFL 1.10 1180 2340 3520237035602400360024303650
6 4.83 903 2270 3420230034502320348023403520
7 8.91 625 2150 3230217032502180328022003300
W36×160 15602340TFL 0 2350 2350 3530240036102460370025203790
2 0.255 2040 2310 3480236035502410363024703710
3 0.510 1740 2280 3420232034902360355024103620
4 0.765 1430 2240 3360227034102310347023403520
BFL 1.02 1130 2190 3290222033402250338022803420
6 4.82 857 2130 3200215032302170326021903290
7 8.96 588 2010 3020202030402040306020503080
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 166

COMPOSITE BEAM SELECTION TABLES 3–167
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W36
W36×210 34505190353053003610542036805540376056503840577039205880
33705060343051603500526035705360363054603700556037705660
32704920333050003390509034405170350052603550534036105430
31704770322048403260491033104980336050403400511034505180
30604610310046603140471031704770321048203240488032804930
29504430297044703000451030304550306045903080464031104680
27604160278041802800421028204240284042702860430028804330
W36×194 31604760324048603310497033805080345051803520529035905400
30904640315047303210482032704910333050103390510034505190
30004510305045903100467031604740321048203260490033104980
29104370295044402990450030404560308046303120469031604760
28104230284042802880433029104380294044302980448030104530
27104070273041002760414027804180281042202830426028604300
25403810256038402570387025903900261039202630395026403980
W36×182 29604450303045503100465031604750323048503300495033605060
28904340295044303000452030604600312046903180478032404860
28104220286043002910437029604440301045203050459031104660
27204100276041602810422028504280289043402930440029704460
26303960267040102700405027304100276041502790419028204240
25303810256038502580388026103920263039502650399026804030
23803570239036002410362024303650244036702460370024803720
W36×170 27604140282042402880433029404430301045203070461031304710
26904040274041202800420028504290291043702960445030104530
26203930266040002710407027504140280042102850428028904350
25403820258038702610393026503990269040402730410027704160
24603690249037402520378025503830258038702600391026303960
23603550239035802410362024303650245036902480372025003750
22103320223033502240337022603400227034202290344023103470
W36×160 25803880264039702700405027604140281042302870432029304410
25203780257038602620394026704010272040902770417028204240
24503680249037502540381025803880262039402670401027104070
23803580241036302450368024903740252037902560384025903900
23003460233035102360355023903590242036302450368024703720
22103330223033602260339022803420230034502320349023403520
20703110208031302100315021103170213031902140322021503240
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 167

3–168 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin.
LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W36-W33
W36×150 14502180TFL 0 2220 2210 3310226034002320348023703560
2 0.235 1930 2180 3270222033402270341023203490
3 0.470 1650 2140 3220218032802220334022703410
4 0.705 1370 2110 3160214032202170327022103320
BFL 0.940 1090 20703110209031502120319021503230
6 4.82 820 2000 3010202030402040307020603100
7 9.09 554 1880 2830190028501910287019302890
W36×135 12701910TFL 0 2000 1970 2960202030402070311021203190
2 0.198 1760 1950 2930199029902030306020803120
3 0.395 1520 1920 2880196029402000300020303060
4 0.593 1280 1890 2840192028901950294019902980
BFL 0.790 1050 18602790188028301910287019402910
6 4.92 773 1790 2700181027201830275018502780
7 9.49 499 1670 2510168025301690254017102560
W33×221 21403210TFL 0 3270 3090 4640317047603250489033305010
2 0.320 2760 3030 4560310046603170477032404870
3 0.640 2250 2970 4460303045503080463031404720
4 0.960 1750 2900 4360294044202990449030304560
BFL 1.28 1240 2820 4240285042902880433029104380
6 3.67 1030 2770 4170280042102830425028504290
7 6.42 816 2700 4060272040902740412027604150
W33×201 19302900TFL 0 2960 2780 4180285042902930440030004510
2 0.288 2500 2730 4110279042002860429029204390
3 0.575 2050 2680 4020273041002780418028304250
4 0.863 1600 2620 3930266039902700405027404110
BFL 1.15 1150 2550 3830258038702600392026303960
6 3.65 944 2500 3760253038002550383025703870
7 6.52 739 2430 3650245036802470371024903740
W33×169 15702360TFL 0 2480 2330 3510240036002460369025203790
2 0.305 2120 2300 3450235035302400361024603690
3 0.610 1770 2250 3390230034502340352023903590
4 0.915 1420 2210 331022403370 2280342023103470
BFL 1.22 1070 2150 3230218032702200331022303350
6 4.28 845 2100 3150212031902140322021603250
7 7.66 619 2010 3020202030402040307020603090
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 168

COMPOSITE BEAM SELECTION TABLES 3–169
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W36-W33
W36×150 24303650248037302540381025903900265039802700406027604140
23703560242036302460370025103780256038502610392026603990
23103470235035302390359024303650247037102510378025503840
22403370228034202310347023403520238035802410363024503680
21703270220033102230335022603390228034302310347023403510
20803130210031602130320021503230217032602190329022103320
19402910195029401970296019802980199030002010302020203040
W36×135 21703260222033402270341023203490237035602420364024703710
21203190217032502210332022503390230034502340352023803580
20703110211031702150323021803280222033402260340023003450
20203030205030802080313021103180215032202180327022103320
19602950199029902010303020403070207031102090315021203190
18702810189028401910287019302900195029301970296019902990
17202580173026001740262017502640177026601780267017902690
W33×221 34105130349052503580538036605500374056203820574039005860
33104970338050803450518035105280358053903650549037205590
32004800325048903310497033605060342051403480522035305310
30704620312046903160475032104820325048803290495033405010
29404430298044703010452030404570307046103100466031304710
28804320290043602930440029504440298044803010452030304560
27804180280042102820424028404270286043002880433029004360
W33×201 30704620315047303220484033004950337050603440517035205290
29804480304045703110467031704760323048603290495033605040
28804330293044102980448030304560309046403140472031904790
27704170281042302850429028904350293044102970447030104530
26604000269040402720409027504130278041702810422028304260
26003900262039402640398026704010269040502720408027404120
25003760252037902540382025603850258038802600390026203930
W33×169 25803880264039702700407027704160283042502890434029504440
25103770256038502610393026704010272040902770417028304250
24303650247037202520379025603850261039202650399027004050
23503530238035802420363024503690249037402520379025603850
22603390229034302310347023403510237035502390360024203640
21803280220033102230335022503380227034102290344023103470
20703110209031402100316021203180213032102150323021603250
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 169

3–170 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W33-W30
W33×152 13902100TFL 0 2250 2100 3160216032402210333022703410
2 0.265 1940 2070 3110212031802160325022103330
3 0.530 1630 2030 3050207031102110317021503240
4 0.795 1320 1990 2990202030402060309020903140
BFL 1.06 1020 1950 2920197029602000300020203040
6 4.34 788 1890 2850191028701930290019502930
7 7.91 561 1800 2710182027301830275018402770
W33×141 12801930TFL 0 2080 1930 2900198029802030306020903140
2 0.240 1800 1900 2860195029301990299020403060
3 0.480 1520 1870 2810191028701950292019802980
4 0.720 1250 1830 2760186028001900285019302900
BFL 0.960 971 1790 2700182027301840277018702810
6 4.34 745 1740 2620176026501780268018002700
7 8.08 519 1650 2480166025001680252016902540
W33×130 11701750TFL 0 1920 1770 2660182027401870281019202880
2 0.214 1670 1750 2630179026901830275018702810
3 0.428 1420 1720 2580175026401790269018202740
4 0.641 1180 1690 2540172025801750262017802670
BFL 0.855 932 1650 2490168025201700256017202590
6 4.39 705 1600 2410162024401640246016602490
7 8.30 479 1510 2270152022901530230015402320
W33×118 10401560TFL 0 1740 1600 2400164024701680253017302600
2 0.185 1520 1580 2370161024201650248016902540
3 0.370 1310 1550 2330158023801620243016502480
4 0.555 1100 1520 2290155023301580237016102420
BFL 0.740 884 1500 2250152022801540232015602350
6 4.47 659 1450 2170146022001480222015002250
7 8.56 434 1350 2030136020501370206013802080
W30×116 943 1420TFL 0 1710 1450 2180149022401540231015802370
2 0.213 1490 1430 2150146022001500226015402310
3 0.425 1260 1400 2110143021501460220015002250
4 0.638 1040 1370 2060140021001430214014502180
BFL 0.850 818 1340 2020136020501380208014002110
6 3.98 623 1300 1960132019801330200013502030
7 7.43 428 1230 1840124018601250187012601890
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 170

COMPOSITE BEAM SELECTION TABLES 3–171
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W33-W30
W33×152 23203490238035802440366024903750255038302600391026604000
22603400231034702360354024103620245036902500376025503830
21903300223033602280342023203480236035402400360024403660
21203190216032402190329022203340225033902290344023203490
20503080207031102100315021203190215032302170327022003310
19702960199029902010302020303050205030802070311020903140
18602790187028101890283019002850191028801930290019402920
W33×141 21403210219032902240337022903450235035202400360024503680
20803130213032002170326022203330226034002310347023503530
20203040206031002100315021403210217032702210332022503380
19602940199029902020304020503080208031302110318021403220
18902840192028801940292019602950199029902010302020403060
18202730184027601850279018702820189028401910287019302900
17002560172025801730260017402620175026401770266017802680
W33×130 19602950201030202060310021103170215032402200331022503380
19102880196029402000300020403060208031302120319021603250
18602800190028501930290019702960200030102040306020703120
18002710183027601860280018902850192028901950293019802980
17502630177026601790269018202730184027601860280018902830
16702510169025401710257017302590174026201760265017802670
15602340157023601580237015902390160024101620243016302450
W33×118 17702660181027301860279019002860194029201990299020303050
17302600176026501800271018402770188028201920288019502940
16802530171025801750263017802670181027201850277018802820
16302460166025001690254017202580174026201770266018002700
15802380161024201630245016502480167025101700255017202580
15102270153023001550232015602350158023701590240016102420
13902100141021101420213014302140144021601450218014602190
W30×116 16202440166025001710257017502630179026901830276018802820
15802370161024201650248016902540172025901760265018002700
15302300156023401590239016202440165024901680253017202580
14802220150022601530230015502340158023801610241016302450
14202140144021701470220014902230151022601530229015502320
13602050138020701390210014102120143021401440217014602190
12701910128019201290194013001950131019701320199013302000
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 171

3–172 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W30-W27
W30×108 863 1300TFL 0 1590 1340 2010138020701420213014602190
2 0.190 1390 1320 1980135020301380208014202130
3 0.380 1190 1290 1940132019901350203013802080
4 0.570 987 1270 1910129019401320198013402020
BFL 0.760 787 1240 1870126019001280193013001960
6 4.04 592 1200 1800121018301230185012401870
7 7.63 396 1120 1690113017001140172011501730
W30×99 778 1170TFL 0 1450 1220 1830126018901290194013302000
2 0.168 1270 1200 1800123018501260190013001950
3 0.335 1100 1180 1780121018201240186012601900
4 0.503 922 1160 1740118017801210181012301850
BFL 0.670 747 1140 1710116017401170177011901790
6 4.19 555 1100 1650111016701120169011401710
7 7.88 363 1020 1530103015401040156010501570
W30×90 706 1060TFL 0 1320 1100 1650113017001160175012001800
2 0.153 1160 1080 1630111016701140171011701760
3 0.305 998 1070 1600109016401110168011401710
4 0.458 839 1050 1570107016001090164011101670
BFL 0.610 681 1030 1540104015701060159010801620
6 4.01 505 989 1490100015101010153010301540
7 7.76 329 920 1380928140093714109451420
W27×102 761 1140TFL 0 1500 1160 1750120018101240186012801920
2 0.208 1290 1140 1720117017701210181012401860
3 0.415 1090 1120 1680115017201170176012001800
4 0.623 878 1090 1640111016701140171011601740
BFL 0.830 670 1060 1600108016201100165011101670
6 3.40 523 1030 1550105015701060159010701610
7 6.27 375 984 148099314901000151010101520
W27×94 694 1040TFL 0 1380 1060 1600110016501130170011701750
2 0.186 1190 1040 1570107016101100166011301700
3 0.373 1010 1020 1540105015801070161011001650
4 0.559 821 1000 1500102015301040157010601600
BFL 0.745 635 976 147099214901010151010201540
6 3.45 490 947 1420959144097114609831480
7 6.41 345 897 1350905136091413709221390
AISC_Part 3C:14th Ed. 2/24/11 8:59 AM Page 172

COMPOSITE BEAM SELECTION TABLES 3–173
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W30-W27
W30×108 14902250153023101570237016102430165024801690254017302600
14502190149022401520229015602340159023901630245016602500
14102120144021701470221015002260153023001560234015902390
13702050139020901420213014402170147022001490224015102280
13201980134020101360204013802070140021001420213014402160
12601890127019101290194013001960132019801330200013502030
11601750117017601180178011901790120018101210182012201840
W30×99 13602050140021001440216014702210151022701540232015802380
13302000136020401390209014202140146021901490223015202280
12901940132019801350202013702060140021001430215014602190
12501880127019201300195013201990134020201370205013902090
12101820123018501250188012701910129019301300196013201990
11501730116017501180177011901790121018101220183012301850
10501590106016001070161010801630109016401100165011101670
W30×90 12301850126019001300195013302000136020501390210014302150
12001800123018401260189012801930131019701340202013702060
11601750119017901210183012401860126019001290194013101970
11301700115017301170176011901790121018201230186012601890
10901640111016701130170011501720116017501180177012001800
10401560105015801070160010801620109016401100166011201680
95314309611440969146097814709861480994149010001510
W27×102 13101970135020301390209014302140146022001500226015402310
12701910130019601340201013702060140021001430215014602200
12301840125018801280193013101970134020101360205013902090
11801770120018101220184012501870127019001290194013101970
11301700115017201160175011801770120018001210183012301850
10901630110016501110167011301690114017101150173011601750
10201540103015501040156010501580106015901070161010801620
W27×94 12001810124018601270191013001960134020101370206014102120
11601750119017901220184012501880128019301310197013402020
11201690115017301170176012001800122018401250188012701920
10801630111016601120169011401720116017501180178012101810
10401560105015901070161010901630110016601120168011301700
9961500101015101020153010301550104015701060159010701610
9311400940141094814309571440965145097414609831480
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 173

3–174 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W27-W24
W27×84 609 915TFL 0 1240 946 142097714701010151010401560
2 0.160 1080 929 14009561440983148010101520
3 0.320 915 911 1370934140095714409801470
4 0.480 755 892 1340911137093014009491430
BFL 0.640 595 872 1310887133090213609161380
6 3.53 452 843 1270855128086613008771320
7 6.64 309 793 1190800120080812108161230
W24×94 634 953TFL 0 1390 978 1470101015201050157010801630
2 0.219 1190 957 144098714801020153010501570
3 0.438 988 934 14009591440983148010101510
4 0.656 790 909 1370928140094814309681450
BFL 0.875 591 881 1320896135091113709261390
6 3.05 469 858 1290869131088113208931340
7 5.43 346 819 1230828124083712608451270
W24×84 559 840TFL 0 1240 866 1300897135092713909581440
2 0.193 1060 848 1270874131090113509271390
3 0.385 888 828 1240850128087213108941340
4 0.578 714 806 1210824124084212708601290
BFL 0.770 540 783 1180797120081012208241240
6 3.02 425 761 1140772116078211807931190
7 5.48 309 725 1090733110074011107481120
W24×76 499 750TFL 0 1120 780 1170808121083612608631300
2 0.170 967 764 1150788118081212208361260
3 0.340 814 747 1120767115078711808071210
4 0.510 662 728 1090745112076111407781170
BFL 0.680 509 708 1060721108073411007461120
6 2.99 394 687 1030697105070710607161080
7 5.59 280 651 97965898966510006721010
W24×68 442 664TFL 0 1010 695 1040720108074511207701160
2 0.146 874 681 1020703106072510907461120
3 0.293 743 666 1000685103070410607221090
4 0.439 611 651 978666100068110206971050
BFL 0.585 480 635 9546479726589906701010
6 3.04 366 613 922623936632949641963
7 5.80 251 577 867583876589886595895
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 174

COMPOSITE BEAM SELECTION TABLES 3–175
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W27-W24
W27×84 10701610110016501130170011601750119017901220184012501880
10401560106016001090164011201680114017201170176012001800
10001510103015401050158010701610109016401120168011401710
968145098714801010151010201540104015701060160010801620
931140094614209611440976147099114901010151010201530
8881340900135091113709221390933140094514209561440
8241240831125083912608471270854128086213008701310
W24×94 11201680115017301190178012201830125018901290194013201990
10801620111016601130171011601750119017901220184012501880
10301550106015901080163011101660113017001160174011801770
9881480101015101030154010501570107016001090163011101660
940141095514409701460985148099915001010152010301550
9041360916138092813909391410951143096314509751460
8541280863130087113108801320888134089713509061360
W24×84 989 1490102015301050158010801630111016701140172011701760
954143098014701010151010301550106015901090163011101670
9161380939141096114409831480101015101030154010501580
8781320895135091313709311400949143096714509851480
8371260851128086413008781320891134090413609181380
8041210814122082512408351260846127085612908671300
7561140764115077111607791170787118079411908021210
W24×76 891 1340919138094714209751470100015101030155010601590
86012908841330909137093314009571440981147010101510
8281240848127086813108891340909137092914009501430
7941190811122082712408441270860129087713208931340
7591140772116078411807971200810122082312408351260
7261090736111074611207561140766115077511707851180
6791020686103069310407001050707106071410707211080
W24×68 795 1190820123084512708701310895135092013809451420
7681150790119081212208341250855129087713208991350
7411110759114077811707961200815122083312508521280
7121070727109074211207581140773116078811808041210
6821030694104070610607181080730110074211207541130
65097765999066810006771020686103069610507051060
602904608914614923620933627942633951639961
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 175

3–176 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W24-W21
W24×62 382 574TFL 0 910 629 94565297967410106971050
2 0.148 806 618 9296389596589906791020
3 0.295 702 607 912624938642964659991
4 0.443 598 594 893609916624938639961
BFL 0.590 495 581 874594892606911618929
6 3.45 361 555 834564848573862582875
7 6.56 228 509 764514773520781526790
W24×55 334 503TFL 0 810 558 838578869598899618929
2 0.126 721 549 825567852585879603906
3 0.253 633 539 810555834571858586881
4 0.379 544 529 795542815556836570856
BFL 0.505 456 518 779529796541813552830
6 3.46 329 493 742502754510766518779
7 6.67 203 449 675454682459690464697
W21×73 429 645TFL 0 1080 676 1020703106073011007561140
2 0.185 921 660 992683103070610607291100
3 0.370 768 642 96666299468110207001050
4 0.555 614 624 9376399606549836701010
BFL 0.740 461 603 907615924626941638959
6 2.58 365 586 881595895604908613922
7 4.69 269 559 840566851573861579871
W21×68 399 600TFL 0 1000 626 94165197967610207011050
2 0.171 858 612 9196339516549836761020
3 0.343 717 596 895613922631949649976
4 0.514 575 578 869593891607912621934
BFL 0.685 434 560 842571858582874593891
6 2.60 342 544 817552830561843569856
7 4.74 250 518 778524787530797536806
W21×62 359 540TFL 0 915 571 858594892616926639961
2 0.154 788 558 838577868597897617927
3 0.308 662 544 817560842577867593891
4 0.461 535 528 794542814555834568854
BFL 0.615 408 512 770523785533801543816
6 2.54 318 497 747505759513771521782
7 4.78 229 472 709477717483726489734
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 176

COMPOSITE BEAM SELECTION TABLES 3–177
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W24-W21
W24×62 720 1080742112076511507881180811122083312508561290
6991050719108073911107591140779117079912008191230
6771020694104071210707291100747112076411507821180
654983669101068410306991050714107072911007441120
6319486439676559856681000680102069210407051060
591889600902609916618929627943636956645970
531798537807543816548824554833560841565850
W24×55 639 96065999067910206991050719108074011107601140
6219336399606579876751010693104071110707291100
602905618929634953650976665100068110206971050
583876597897610917624938637958651978665999
564847575864586881598898609915620932632950
526791534803543816551828559840567853576865
469705474713479720484728489735494743499751
W21×73 783 1180810122083712608641300890134091713809441420
7521130775116079812008211230844127086713008901340
7191080738111075711407771170796120081512208341250
6851030700105071510807311100746112076111407771170
64997666199367210106841030695104070710607181080
62393663294964196365097765999066810006771020
586881593891599901606911613921620931626941
W21×68 726 1090751113077611708011200826124085112808761320
6971050719108074011107611140783118080412108261240
6671000685103070310607211080739111075711407741160
6369566509776649996791020693104070810607221080
6039076149236259396369566479726579886681000
578868586881595894603907612920620933629945
543816549825555834561844568853574862580872
W21×62 662 995685103070810607311100753113077611707991200
63695665698667610206951050715107073511007541130
610916626941643966659991676102069210407091070
582874595895609915622935635955649975662995
553831563847573862584877594893604908614923
529794536806544818552830560842568854576866
494743500752506760511769517777523786529795
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 177

3–178 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W21
W21×57 322 484TFL 0 835 523 786544817565849585880
2 0.163 728 512 769530797548824566851
3 0.325 622 500 751515775531798546821
4 0.488 515 487 732500751513771526790
BFL 0.650 409 473 712484727494742504758
6 2.93 309 455 684463695470707478718
7 5.40 209 424 637429645435653440661
W21×55 314 473TFL 0 810 501 753521784542814562844
2 0.131 703 490 737508763525789543816
3 0.261 595 478 719493741508764523786
4 0.392 488 466 700478719490737502755
BFL 0.522 381 453 681462695472709481723
6 2.62 292 437 657445668452679459690
7 5.00 203 411 618417626422634427641
W21×50 274 413TFL 0 735 455 684473711491739510766
2 0.134 648 446 670462694478719494743
3 0.268 560 436 656450677464698478719
4 0.401 473 426 640438658450676461694
BFL 0.535 386 415 624425639435653444668
6 2.91 285 397 597404607411618418629
7 5.56 184 366 550370557375563379570
W21×48 265 398TFL 0 705 433 650450677468703485730
2 0.108 617 424 637439660455683470706
3 0.215 530 414 623428643441662454682
4 0.323 442 404 608415624426641437658
BFL 0.430 355 394 592403606412619421632
6 2.71 266 379 569385579392589398599
7 5.26 176 352 529356535361542365549
W21×44 238 358TFL 0 650 401 602417626433651449675
2 0.113 577 393 591407612422634436656
3 0.225 504 385 579398598410617423636
4 0.338 431 377 566388583398599409615
BFL 0.450 358 368 553377567386580395594
6 2.92 260 351 527357537364547370556
7 5.71 163 320 481324487328493332499
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 178

COMPOSITE BEAM SELECTION TABLES 3–179
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W21
W21×57 606 9116279436489746691010690104071010707311100
58587960390662193363996065798867510206941040
562845577868593891609915624938640961655985
539809551829564848577867590887603906616925
514773524788535804545819555834565850575865
486730493742501753509765517776524788532800
445669450677455684461692466700471708476716
W21×55 582 87560290562293664396666399668310307031060
5608425788685958956139216309486489746651000
538808553831568853582875597898612920627942
515774527792539810551828563847576865588883
491738500752510766519781529795538809548823
466701474712481723488734496745503756510767
432649437656442664447672452679457687462695
W21×50 528 794546821565849583876601904620932638959
510767527791543816559840575864591889607913
492740506761520782534803548824562845576866
473711485729497747509764520782532800544818
454682463696473711483725492740502754512769
425639433650440661447671454682461693468704
384577389584393591398598402605407612412619
W21×48 503 756521783538809556835573862591888609915
485729501753516776532799547822562845578868
467702480722494742507762520782533802547821
449674460691471707482724493741504757515774
429645438659447672456685465699474712483725
405609412619418629425639432649438659445669
369555374562378568383575387582391588396595
W21×44 465 700482724498748514773530797547821563846
451677465699479721494742508764523785537807
435654448673461692473711486730498749511768
420631431647441663452679463696474712484728
404607413620422634431647440661448674457687
377566383576390586396595403605409615416625
336505340511344518348524352530357536361542
AISC_Part 3C:14th Ed. 2/24/11 9:00 AM Page 179

3–180 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W18
W18×60 307 461TFL 0 880 487 733509766531799553832
2 0.174 749 474 712492740511768530796
3 0.348 617 459 690474713490736505759
4 0.521 486 443 666455684467702479720
BFL 0.695 355 426 640435653444667452680
6 2.18 287 414 623422634429644436655
7 3.80 220 398 598403606409614414623
W18×55 279 420TFL 0 810 447 671467702487732507762
2 0.158 691 434 653452679469705486731
3 0.315 573 421 633435654450676464697
4 0.473 454 407 612418629430646441663
BFL 0.630 336 392 589400602409614417627
6 2.15 269 381 572387582394592401603
7 3.86 203 364 547369555374563379570
W18×50 252 379TFL 0 735 403 606422634440662458689
2 0.143 628 392 590408613424637439660
3 0.285 521 381 572394592407611420631
4 0.428 414 368 553378569389584399600
BFL 0.570 308 355 533362545370556378568
6 2.08 246 345 518351527357537363546
7 3.82 184 329 495334502339509343516
W18×46 226 340TFL 0 675 372 559389585406610423635
2 0.151 583 363 545377567392589406611
3 0.303 492 353 530365548377567389585
4 0.454 400 342 513352528362543372558
BFL 0.605 308 330 496338508345519353531
6 2.42 239 318 478324487330496336505
7 4.36 169 299 450303456308462312469
W18×40 196 294TFL 0 590 322 485337507352529367551
2 0.131 511 314 472327491340511352530
3 0.263 432 306 459316475327492338508
4 0.394 353 296 445305459314472323485
BFL 0.525 274 287 431294441300451307462
6 2.26 211 276 415282423287431292439
7 4.27 148 260 390263396267401271407
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 180

COMPOSITE BEAM SELECTION TABLES 3–181
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W18
W18×60 575 86559789861993164196466399768510307071060
548824567852586880605909623937642965661993
521782536805551829567852582875598898613921
491739504757516775528793540812552830564848
461693470707479720488733497747506760514773
443666450677457688465698472709479720486731
420631425639431647436656442664447672453680
W18×55 527 793548823568854588884608914629945649975
503756521782538808555834572860590886607912
478719493740507762521783535805550826564848
452680464697475714486731498748509765520782
425639434652442664450677459690467702476715
408613414623421633428643434653441663448673
384578389585395593400601405608410616415623
W18×50 477 717495744513772532799550827568854587882
455684471708486731502755518778533802549825
433650446670459689472709485728498748511767
409615420631430646440662451677461693471708
385579393591401602408614416625424637431649
369555375564381573388583394592400601406610
348523352530357537362543366550371557375564
W18×46 440 661456686473711490737507762524787541813
421633435655450676465698479720494742508764
402604414622426640438659451677463696475714
382573392588402603412618421633431648441663
361542369554376565384577392589399600407612
342514348523354532360541366550372559378568
316475320481325488329494333500337507341513
W18×40 381 573396595411617425639440662455684470706
365549378568391587403606416626429645442664
349524359540370556381573392589403605413621
332498340512349525358538367551376565384578
314472321482328493335503341513348523355534
297447303455308463313471318479324486329494
274412278418282424286429289435293440297446
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 181

3–182 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W18-W16
W18×35 166 249TFL 0 515 279 419292438305458317477
2 0.106 451 272 409284426295443306460
3 0.213 388 265 399275413285428294443
4 0.319 324 258 388266400274412282425
BFL 0.425 260 251 377257387264396270406
6 2.37 194 240 360245368250375254382
7 4.56 129 222 334225338228343232348
W16×45 205 309TFL 0 665 333 501350526367551383576
2 0.141 566 323 486337507351528366549
3 0.283 466 312 469324487336504347522
4 0.424 367 301 452310466319479328493
BFL 0.565 267 288 433295443302453308463
6 1.77 217 280 421286430291438297446
7 3.23 166 269 404273411277417281423
W16×40 182 274TFL 0 590 294 443309465324487339509
2 0.126 502 285 429298448310466323485
3 0.253 413 276 414286430296445307461
4 0.379 325 265 399274411282423290436
BFL 0.505 237 255 383261392267401272409
6 1.70 192 248 373253380258387262394
7 3.16 148 238 358242363246369249375
W16×36 160 240TFL 0 530 263 396276415290435303455
2 0.108 455 255 384267401278418289435
3 0.215 380 247 372257386266400276414
4 0.323 305 239 359246370254382262393
BFL 0.430 229 230 346236354241363247371
6 1.82 181 223 334227341232348236355
7 3.46 133 211 318215323218328221333
W16×31 135 203TFL 0 457 227 341238358249375261392
2 0.110 396 220 331230346240361250376
3 0.220 335 214 321222334231347239359
4 0.330 274 207 311214321221332227342
BFL 0.440 213 200 300205308210316216324
6 2.00 164 192 289196295200301204307
7 3.80 114 180 270183275186279188283
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 182

COMPOSITE BEAM SELECTION TABLES 3–183
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W18-W16
W18×35 330 496343516356535369554382574394593407612
317477329494340511351528362545374562385578
304457314472323486333501343515352530362544
291437299449307461315473323485331497339510
277416283426290435296445303455309465316474
259390264397269404274411279419283426288433
235353238358241363244367248372251377254382
W16×45 400 601416626433651450676466701483726499751
380571394592408613422634436655450677464698
359539370557382574394592405609417627429644
337507346521355534365548374562383576392589
315473322483328493335503342513348523355533
302454307462313470318478324486329495334503
286429290436294442298448302454306460310467
W16×40 353 531368553383575397597412620427642442664
335504348523360542373561385579398598410617
317476327492338507348523358538368554379569
298448306460314472322484330496338509347521
278418284427290436296445302454308463314472
267401272409277416282423286430291438296445
253380257386260391264397268402271408275413
W16×36 316 475329495342515356535369555382574395594
301452312469324486335503346520358537369555
285429295443304457314471323486333500342514
269405277416284428292439300450307462315473
253380259389264397270406276414281423287432
241362245368250375254382259389263396268402
225338228343231348235353238358241363245367
W16×31 272 409284426295443306460318478329495341512
260391270405280420290435299450309465319480
247372256384264397272409281422289434297447
234352241362248373255383262393268404275414
221332226340232348237356242364248372253380
208313212319216325221332225338229344233350
191287194292197296200300203304205309208313
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 183

3–184 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W16-W14
W16×26 110 166TFL 0 384 189 284198298208312217327
2 0.0863 337 184 276192289201302209314
3 0.173 289 179 269186280193291201301
4 0.259 242 174 261180270186279192288
BFL 0.345 194 168 253173260178267183275
6 2.05 145 161 241164247168252171258
7 4.01 96.0 148 223151226153230155234
W14×38 153 231TFL 0 560 253 380267401281422295443
2 0.129 473 244 367256384268402279420
3 0.258 386 234 352244367254381263396
4 0.386 299 224 337232348239360247371
BFL 0.515 211 214 321219329224337229345
6 1.38 176 209 313213320217327222333
7 2.53 140 201 303205308208313212319
W14×34 136 205TFL 0 500 225 338237356250375262394
2 0.114 423 217 326227342238357248373
3 0.228 346 208 313217326226339234352
4 0.341 270 200 300206310213320220330
BFL 0.455 193 190 286195293200301205308
6 1.42 159 186 279190285193291197297
7 2.61 125 179 269182273185278188283
W14×30 118 177TFL 0 443 197 295208312219329230345
2 0.0963 378 190 285199300209314218328
3 0.193 313 183 275191287199298206310
4 0.289 248 176 264182273188283194292
BFL 0.385 183 168 253173260177266182273
6 1.46 147 163 245167250170256174261
7 2.80 111 156 234158238161242164246
W14×26 100 151TFL 0 385 172 258181273191287201301
2 0.105 332 166 250175262183275191287
3 0.210 279 161 241168252175262182273
4 0.315 226 155 232160241166249172258
BFL 0.420 173 148 223153230157236161243
6 1.67 135 143 215146220149225153230
7 3.18 96.1 134 202137205139209141213
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 184

COMPOSITE BEAM SELECTION TABLES 3–185
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W16-W14
W16×26 227 341237356246370256384265399275413285428
218327226340234352243365251377259390268403
208312215323222334229345237356244366251377
198297204306210315216324222333228343234352
188282192289197296202304207311212318217326
175263179268182274186279189285193290197296
158237160241163244165248167252170255172259
W14×38 309 464323485337506351527365548379569393590
291438303455315473327491338508350526362544
273410283425292439302454311468321482331497
254382262393269404276416284427291438299449
235353240361245369250376256384261392266400
226340230346235353239360244366248373252379
215324219329222334226340229345233350236355
W14×34 274 413287431299450312469324488337506349525
259389269405280421291437301453312468322484
243365252378260391269404277417286430295443
227340233351240361247371253381260391267401
210315214322219330224337229344234351239359
201303205309209315213321217327221333225338
191287194292197297201301204306207311210316
W14×30 241 362252378263395274412285428296445307461
228342237356246370256385265399275413284427
214322222334230345238357245369253381261392
201301207311213320219329225339231348238357
186280191287196294200301205308209315214321
178267181273185278189284192289196295200300
167250169255172259175263178267180271183275
W14×26 210 316220330229345239359248373258388268402
199300208312216325224337233349241362249374
188283195294202304209315216325223336230346
177266183275188283194292200300205309211317
166249170256174262179269183275187282192288
156235160240163245166250170255173260176265
144216146220149223151227153231156234158238
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 185

3–186 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W14-W12
W14×22 82.8 125TFL 0 325 143 215151228159240168252
2 0.0838 283 139 209146220153230160241
3 0.168 241 135 202141211147220153229
4 0.251 199 130 195135203140210145218
BFL 0.335 157 125 188129194133200137206
6 1.67 119 120 180123184126189129193
7 3.32 81.1 111 167113170115173117176
W12×30 108 162TFL 0 440 179 269190285201302212318
2 0.110 368 171 258181271190285199299
3 0.220 296 164 246171257178268186279
4 0.330 224 155 234161242167251172259
BFL 0.440 153 147 221151227155232158238
6 1.10 131 144 216147221151226154231
7 1.92 110 140 211143215146219149223
W12×26 92.8 140TFL 0 383 155 232164247174261183275
2 0.0950 321 148 223156235164247172259
3 0.190 259 142 213148223155232161242
4 0.285 198 135 203140210145217150225
BFL 0.380 136 128 192131197134202138207
6 1.07 116 125 188128192131197134201
7 1.94 95.6 121 183124186126190129193
W12×22 73.1 110TFL 0 324 132 198140210148222156234
2 0.106 281 127 191134202141213148223
3 0.213 238 123 185129193135202141211
4 0.319 196 118 177123185128192133199
BFL 0.425 153 113 170117175120181124187
6 1.66 117 107 162110166113170116175
7 3.03 81.0 99.8 150102153104156106159
W12×19 61.6 92.6TFL 0 279 113 169120180126190133201
2 0.0875 243 109 164115173121182127191
3 0.175 208 105 158110166116174121182
4 0.263 173 101 152106159110165114172
BFL 0.350 138 97.3 146101151104157108162
6 1.68 104 92.3 13994.914397.4146100150
7 3.14 69.6 84.7 12786.413088.213389.9135
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 186

COMPOSITE BEAM SELECTION TABLES 3–187
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W14-W12
W14×22 176 264184276192288200301208313216325224337
167251174262181273188283195294203304210315
159238165247171256177266183275189284195293
150225155233160240165248170255175262180270
141212145218149223153229157235160241164247
132198135202138207140211143216146220149225
119179121182123185125188127191129194131198
W12×30 223 335234351245368255384266400277417288433
208313217327226340236354245368254382263396
193290201301208313215324223335230346237357
178267183276189284195293200301206309211318
162244166250170255174261177267181272185278
157236160241164246167251170256173261177266
151227154232157236160240162244165248168252
W12×26 193 290202304212318221333231347240361250376
180271188283196295204307212319220331228343
168252174262181271187281193291200300206310
155232160240164247169255174262179269184277
141212145217148222151228155233158238162243
137205139210142214145218148223151227154231
131197133200136204138208141211143215145218
W12×22 164 247172259180271188283196295205307213320
155234162244169255176265183276191286198297
147220152229158238164247170256176265182274
137207142214147221152229157236162243167251
128193132198136204140210143215147221151227
119179122183125188128192131197134201137205
108162110165112168114171116174118177120180
W12×19 140 211147221154232161242168253175263182274
133200139209145219151228158237164246170255
126189131197136205142213147221152228157236
119178123185127191132198136204140211145217
111167115172118177121183125188128193132198
103154105158108162110166113170116174118178
91.713893.414095.114396.914698.6148100151102153
AISC_Part 3C:14th Ed. 2/24/11 9:01 AM Page 187

3–188 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W12-W10
W12×16 50.1 75.4TFL 0 236 94.0 14199.9150106159112168
2 0.0663209 91.313796.5145102153107161
3 0.133 183 88.6 13393.114097.7147102154
4 0.199 156 85.7 12989.613593.514197.4146
BFL 0.265 130 82.8 12486.012989.213492.5139
6 1.71 94.3 77.6 11779.912082.312484.6127
7 3.32 58.9 69.6 10571.110772.510974.0111
W12×14 43.4 65.3TFL 0 208 82.5 12487.713292.914098.1147
2 0.0563186 80.312184.912889.513594.2142
3 0.113 163 77.9 11782.012386.112990.2135
4 0.169 141 75.5 11479.111982.612486.1129
BFL 0.225 119 73.1 11076.111479.011982.0123
6 1.68 85.3 68.3 10370.410672.610974.7112
7 3.35 52.0 60.8 91.462.193.363.495.364.797.2
W10×26 78.1 117TFL 0 381 136 204145218155233164247
2 0.110 317 129 194137206145218153230
3 0.220 254 122 184129193135203141213
4 0.330 190 115 173120180125187129195
BFL 0.440 127 108 162111167114171117176
6 0.886 111 106 159108163111167114171
7 1.49 95.1 103 155105158108162110166
W10×22 64.9 97.5TFL 0 325 115 173123185131197139209
2 0.0900 273 110 165116175123185130196
3 0.180 221 104 157110165115173121181
4 0.270 169 98.4 148103154107161111167
BFL 0.360 118 92.5 13995.414398.3148101152
6 0.962 99.3 90.1 13592.513995.014397.5147
7 1.72 81.1 87.0 13189.113491.113793.1140
W10×19 53.9 81.0TFL 0 281 99.6 150107160114171121181
2 0.0988241 95.5144102153108162114171
3 0.198 202 91.2 13796.3145101152106160
4 0.296 162 86.8 13090.813794.914398.9149
BFL 0.395 122 82.1 12385.212888.213391.3137
6 1.25 96.2 78.5 11880.912283.312585.8129
7 2.29 70.3 73.7 11175.411377.211678.9119
AISC_Part 3C:14th Ed. 2/24/11 9:02 AM Page 188

COMPOSITE BEAM SELECTION TABLES 3–189
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W12-W10
W12×16 118.0177123.0185129.0194135.0203141.0212147.0221153.0230
112169117176123184128192133200138208143216
107161111167116174120181125188130195134202
101152105158109164113170117176121182125187
95.714499.0149102154105158109163112168115173
87.013189.413491.713894.114196.414598.8148101152
75.511377.011678.411879.912081.412282.812584.3127
W12×14 103 155108163114171119179124186129194134202
98.8148103155108162113169117176122183127190
94.214298.3148102154106160111166115172119178
89.613593.114096.7145100151104156107161111166
85.012887.913290.913793.914196.814699.8150103154
76.811579.011981.112283.212585.312887.513189.6135
66.099.267.310168.610369.910571.210772.510973.8111
W10×26 174 261183275193290202304212318221332231347
161242169254177266185277193289200301208313
148222154232160241167251173260179270186279
134202139209144216148223153230158237163244
120181123186127190130195133200136205139209
117175119179122184125188128192130196133200
113169115173117176120180122183124187127191
W10×22 147 221155234164246172258180270188282196294
137206144216151226157236164247171257178267
126190132198137206143215148223154231159239
115173120180124186128192132199136205141211
104157107161110165113170116174119179122183
100150102154105158107161110165112169115173
95.114397.114699.2149101152103155105158107161
W10×19 128 192135202142213149223156234163244170255
120180126189132198138207144216150225156234
111167116175121183126190132198137205142213
103155107161111167115173119179123185127191
94.314297.4146100151103156107160110165113169
88.213290.613693.014095.414397.8147100151103154
80.712182.412484.212785.912987.713289.413491.2137
AISC_Part 3C:14th Ed. 2/24/11 9:02 AM Page 189

3–190 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape kip-ftPNA c
LRFDASD
Mp/ΩbφbMp
Fy= 50 ksi
∑Qn
2
Y1
a
Y2
b
, in.
kipin. LRFDASD
2.5 3 3.5
LRFDASD LRFDASD LRFDASD
W10
W10×17 46.7 70.1TFL 0 250 87.8 13294.0141100151106160
2 0.0825216 84.412789.813595.2143101151
3 0.165 183 80.9 12285.512890.013594.6142
4 0.248 150 77.2 11681.012284.712788.5133
BFL 0.330 117 73.5 11076.411579.311982.2124
6 1.31 89.8 69.7 10571.910874.211176.4115
7 2.45 62.4 64.4 96.865.999.167.510169.1104
W10×15 39.9 60.0TFL 0 221 77.0 11682.512488.013293.5140
2 0.0675194 74.211279.111983.912688.7133
3 0.135 167 71.4 10775.611479.712083.9126
4 0.203 140 68.5 10372.010875.511378.9119
BFL 0.270 113 65.5 98.468.310371.110773.9111
6 1.35 83.8 61.5 92.563.695.665.798.767.8102
7 2.60 55.1 55.8 83.957.286.058.688.059.990.1
W10×12 31.2 46.9TFL 0 177 61.3 92.165.798.770.110574.5112
2 0.0525156 59.1 88.963.094.866.910070.8106
3 0.105 135 57.0 85.760.490.763.795.867.1101
4 0.158 115 54.8 82.457.786.760.591.063.495.3
BFL 0.210 93.8 52.5 78.954.982.457.286.059.589.5
6 1.30 69.0 49.2 73.950.976.552.679.154.481.7
7 2.61 44.3 44.3 66.645.468.246.569.947.671.5
AISC_Part 3C:14th Ed. 2/24/11 9:02 AM Page 190

COMPOSITE BEAM SELECTION TABLES 3–191
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωb=1.67
a
Y1 =distance from top of the steel beam to plastic neutral axis
b
Y2 =distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.φb=0.90
ASD LRFD
Table 3-19 (continued)
Composite W-Shapes
Available Strength in Flexure,
kip-ft
Shape
LRFDASD LRFDASD
Fy= 50 ksi
5.5
Y2
b
, in.
LRFDASD
54.54
LRFDASD
6 6.5 7
LRFDASD LRFDASD LRFDASD
W10
W10×17 113.0169.0119.0179.0125.0188.0131.0197.0138.0207.0144.0216.0150.0225.0
106159111167117176122184128192133200138208
99.2149104156108163113170117177122183127190
92.213996.014499.7150103156107161111167115172
85.212888.113291.013793.914196.814699.8150103154
78.611880.912283.112585.412887.613289.813592.1138
70.610672.210873.711175.311376.811578.411880.0120
W10×15 99.0149104157110165115174121182126190132198
93.514198.4148103155108162113170118177123184
88.013292.213996.3145100151105157109164113170
82.412485.912989.413492.914096.414599.8150103155
76.711579.512082.312485.212888.013290.813693.6141
69.910572.010874.111176.211478.211880.312182.4124
61.392.262.794.264.196.365.498.366.810068.210269.6105
W10×12 78.911983.312587.713292.213996.6145101152105158
74.711278.611882.512486.413090.313694.214298.1147
70.510673.911177.311680.612184.012687.413190.8136
66.299.669.110472.010874.811277.711780.512183.4125
61.993.064.296.566.610068.910471.210773.611175.9114
56.184.357.886.959.589.561.292.163.094.664.797.266.499.8
48.773.249.874.950.976.552.078.253.179.854.281.555.383.2
AISC_Part 3C:14th Ed. 2/24/11 9:02 AM Page 191

a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
3–192 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W40×297 TFL 0 4370 44100 45100 46100 47100 48100 49200 50300 51400 52500 53600 54800
(23200) 2 0.413 3710 42400 43300 44200 45200 46100 47100 48100 49100 50100 51200 52200
3 0.825 3060 40500 41300 42100 42900 43800 44600 45500 46400 47300 48300 49200
4 1.24 2410 38100 38800 39500 40200 40900 41700 42500 43200 44000 44800 45700
BFL 1.65 1760 35200 35800 36400 36900 37500 38100 38800 39400 40000 40700 41400
6 4.58 1420 33500 34000 34400 34900 35400 36000 36500 37000 37600 38100 38700
7 8.17 1090 31600 32000 32300 32800 33200 33600 34000 34500 34900 35400 35800
W40×294 TFL 0 4310 43100 44100 45100 46100 47100 48200 49300 50400 51500 52600 53800
(21900) 2 0.483 3730 41600 42500 43400 44400 45300 46300 47300 48300 49400 50400 51500
3 0.965 3150 39800 40700 41500 42300 43200 44100 45000 45900 46900 47800 48800
4 1.45 2570 37800 38500 39200 40000 40800 41500 42300 43200 44000 44900 45700
BFL 1.93 1990 35300 35900 36600 37200 37800 38500 39200 39900 40600 41300 42000
6 5.71 1540 33100 33600 34100 34600 35200 35700 36300 36900 37500 38100 38700
7 10.0 1080 30400 30800 31200 31600 32000 32400 32900 33300 33800 34200 34700
W40×278 TFL 0 4120 40600 41500 42500 43400 44400 45400 46400 47500 48500 49600 50700
(20500) 2 0.453 3570 39200 40000 40900 41800 42700 43600 44600 45600 46500 47600 48600
3 0.905 3030 37500 38300 39100 39900 40800 41600 42500 43400 44300 45200 46100
4 1.36 2490 35700 36300 37100 37800 38500 39300 40000 40800 41600 42500 43300
BFL 1.81 1940 33400 34000 34600 35200 35800 36500 37100 37800 38500 39200 39900
6 5.67 1490 31200 31700 32200 32700 33200 33700 34300 34800 35400 36000 36600
7 10.1 1030 28500 28900 29300 29700 30100 30500 30900 31300 31700 32200 32600
W40×277 TFL 0 4080 41400 42300 43200 44100 45100 46100 47100 48100 49100 50200 51300
(21900) 2 0.395 3450 39700 40600 41400 42300 43200 44100 45000 45900 46900 47800 48800
3 0.790 2830 37800 38600 39300 40100 40900 41700 42500 43400 44200 45100 46000
4 1.19 2200 35500 36200 36800 37500 38200 38800 39500 40300 41000 41700 42500
BFL 1.58 1580 32800 33300 33800 34300 34900 35400 36000 36500 37100 37700 38300
6 4.20 1300 31300 31700 32200 32600 33100 33600 34100 34600 35100 35600 36100
7 7.58 1020 29700 30100 30400 30800 31200 31600 32000 32400 32800 33200 33700
W40×264 TFL 0 3870 38100 39000 39900 40800 41700 42600 43600 44600 45600 46600 47600
(19400) 2 0.433 3360 36800 37600 38400 39300 40100 41000 41900 42800 43700 44700 45600
3 0.865 2840 35300 36000 36700 37500 38300 39100 39900 40700 41500 42400 43300
4 1.30 2330 33500 34100 34800 35500 36200 36900 37600 38300 39100 39800 40600
BFL 1.73 1810 31300 31900 32400 33000 33600 34200 34800 35400 36100 36700 37400
6 5.53 1390 29300 29800 30200 30700 31200 31700 32200 32700 33200 33800 34300
7 9.92 968 26900 27200 27600 28000 28300 28700 29100 29500 29900 30300 30700
W40
F
y= 50 ksiILB
AISC_Part 3D:14th Ed. 2/24/11 9:03 AM Page 192

a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
COMPOSITE BEAM SELECTION TABLES 3–193
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W40×249 TFL 0 3680 36900 37700 38500 39400 40300 41100 42000 43000 43900 44800 45800
(19600) 2 0.355 3110 35500 36200 37000 37700 38500 39300 40200 41000 41900 42700 43600
3 0.710 2550 33800 34400 35100 35800 36500 37200 38000 38700 39500 40300 41100
4 1.07 1990 31800 32300 32900 33500 34100 34700 35400 36000 36700 37300 38000
BFL 1.42 1430 29300 29700 30200 30700 31200 31700 32200 32700 33200 33700 34300
6 4.03 1180 28000 28400 28800 29200 29600 30100 30500 30900 31400 31900 32300
7 7.45 919 26500 26800 27200 27500 27900 28200 28600 28900 29300 29700 30100
W40×235 TFL 0 3460 33900 34700 35500 36300 37100 37900 38800 39600 40500 41400 42300
(17400) 2 0.395 2980 32700 33400 34100 34800 35600 36400 37200 38000 38800 39600 40500
3 0.790 2510 31300 31900 32600 33300 33900 34600 35400 36100 36800 37600 38400
4 1.19 2040 29600 30200 30800 31400 32000 32600 33200 33900 34500 35200 35900
BFL 1.58 1570 27700 28200 28700 29200 29700 30200 30700 31300 31800 32400 33000
6 5.16 1220 26000 26400 26800 27200 27700 28100 28500 29000 29400 29900 30400
7 9.44 864 24000 24300 24600 24900 25300 25600 25900 26300 26600 27000 27400
W40×215 TFL 0 3180 31400 32100 32800 33500 34200 35000 35800 36600 37400 38200 39000
(16700) 2 0.305 2690 30200 30800 31400 32100 32800 33500 34200 34900 35600 36400 37200
3 0.610 2210 28700 29300 29900 30500 31100 31700 32300 33000 33600 34300 35000
4 0.915 1730 27100 27500 28000 28500 29100 29600 30100 30700 31300 31800 32400
BFL 1.22 1250 25000 25400 25800 26200 26600 27000 27500 27900 28400 28800 29300
6 3.80 1020 23800 24200 24500 24900 25200 25600 26000 26300 26700 27100 27500
7 7.29 794 22600 22800 23100 23400 23700 24000 24300 24600 25000 25300 25600
W40×211 TFL 0 3110 30100 30800 31500 32200 33000 33700 34500 35200 36000 36800 37700
(15500) 2 0.355 2690 29100 29700 30400 31000 31700 32400 33100 33800 34500 35300 36100
3 0.710 2270 27800 28400 29000 29600 30200 30900 31500 32200 32800 33500 34200
4 1.07 1850 26400 26900 27400 28000 28500 29100 29600 30200 30800 31400 32000
BFL 1.42 1430 24700 25200 25600 26000 26500 27000 27400 27900 28400 28900 29500
6 5.00 1100 23100 23500 23900 24200 24600 25000 25400 25800 26200 26700 27100
7 9.35 776 21300 21600 21900 22200 22500 22800 23100 23400 23700 24000 24400
W40×199 TFL 0 2940 28300 28900 29600 30300 30900 31600 32300 33100 33800 34500 35300
(14900) 2 0.268 2520 27300 27900 28500 29100 29700 30300 31000 31700 32300 33000 33700
3 0.535 2090 26000 26600 27100 27700 28200 28800 29400 30000 30600 31200 31900
4 0.803 1670 24600 25100 25500 26000 26500 27000 27500 28100 28600 29100 29700
BFL 1.07 1250 22900 23300 23700 24100 24500 24900 25300 25700 26200 26600 27100
6 4.09 992 21700 22000 22300 22600 23000 23300 23700 24100 24400 24800 25200
7 8.04 735 20300 20500 20800 21000 21300 21600 21900 22200 22500 22800 23100
Fy= 50 ksi
W40 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:03 AM Page 193

a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
3–194 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W40×183 TFL 0 2670 25500 26100 26700 27300 27900 28600 29200 29900 30500 31200 31900
(13200) 2 0.300 2310 24600 25200 25700 26300 26900 27500 28100 28700 29300 29900 30600
3 0.600 1960 23600 24100 24600 25100 25700 26200 26800 27300 27900 28500 29100
4 0.900 1600 22400 22900 23300 23800 24200 24700 25200 25700 26200 26700 27200
BFL 1.20 1250 21100 21400 21800 22200 22600 23000 23400 23800 24300 24700 25200
6 4.77 958 19700 20000 20300 20700 21000 21300 21700 22000 22400 22700 23100
7 9.25 666 18100 18400 18600 18800 19100 19300 19600 19900 20100 20400 20700
W40×167 TFL 0 2470 22800 23300 23900 24400 25000 25600 26200 26800 27400 28000 28700
(11600) 2 0.258 2160 22000 22500 23000 23600 24100 24600 25200 25800 26300 26900 27500
3 0.515 1860 21200 21700 22100 22600 23100 23600 24100 24600 25200 25700 26300
4 0.773 1550 20200 20600 21100 21500 21900 22400 22800 23300 23800 24300 24800
BFL 1.03 1250 19100 19500 19800 20200 20600 21000 21400 21800 22200 22600 23100
6 4.95 933 17700 18000 18300 18600 18900 19300 19600 19900 20300 20600 21000
7 9.82 616 16100 16300 16500 16700 17000 17200 17400 17700 17900 18200 18400
W40×149 TFL 0 2190 19600 20000 20500 21000 21500 22000 22500 23100 23600 24200 24700
(9800) 2 0.208 1950 19000 19400 19900 20300 20800 21300 21800 22300 22800 23300 23900
3 0.415 1700 18300 18700 19100 19600 20000 20500 20900 21400 21900 22300 22800
4 0.623 1460 17600 18000 18400 18700 19100 19600 20000 20400 20800 21300 21700
BFL 0.830 1210 16700 17100 17400 17800 18100 18500 18900 19200 19600 20000 20400
6 5.15 879 15400 15700 15900 16200 16500 16800 17100 17400 17700 18000 18300
7 10.4 548 13700 13900 14100 14300 14500 14700 14900 15100 15300 15500 15800
W36×302 TFL 0 4450 40100 41000 42000 42900 43900 44900 46000 47100 48100 49200 50400
(21100) 2 0.420 3750 38500 39300 40200 41100 42000 42900 43900 44800 45800 46800 47900
3 0.840 3050 36500 37300 38100 38900 39700 40500 41300 42200 43100 44000 44900
4 1.26 2350 34200 34900 35500 36200 36900 37600 38300 39000 39800 40600 41300
BFL 1.68 1640 31300 31800 32300 32900 33400 33900 34500 35100 35700 36300 36900
6 4.06 1380 30100 30500 31000 31400 31900 32400 32900 33400 33900 34400 35000
7 6.88 1110 28700 29000 29400 29800 30200 30600 31000 31500 31900 32300 32800
W36×282 TFL 0 4150 37100 38000 38900 39800 40700 41600 42600 43600 44600 45600 46700
(19600) 2 0.393 3490 35600 36400 37200 38000 38900 39700 40600 41500 42400 43400 44300
3 0.785 2840 33800 34500 35300 36000 36700 37500 38300 39100 39900 40800 41600
4 1.18 2190 31700 32300 32900 33500 34200 34800 35500 36200 36900 37600 38300
BFL 1.57 1540 29100 29600 30000 30500 31000 31500 32100 32600 33100 33700 34300
6 4.00 1290 27900 28300 28700 29200 29600 30100 30500 31000 31500 31900 32400
7 6.84 1040 26600 27000 27300 27700 28100 28400 28800 29200 29600 30000 30500
Fy= 50 ksi
W40-W36ILB
AISC_Part 3D:14th Ed. 2/24/11 9:03 AM Page 194

COMPOSITE BEAM SELECTION TABLES 3–195
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W36×262 TFL 0 3860 34000 34800 35700 36500 37400 38200 39100 40000 41000 41900 42900
(17900) 2 0.360 3260 32700 33400 34200 34900 35700 36500 37300 38200 39000 39900 40800
3 0.720 2660 31100 31700 32400 33100 33800 34500 35200 36000 36700 37500 38300
4 1.08 2070 29200 29700 30300 30900 31500 32100 32700 33400 34000 34700 35400
BFL 1.44 1470 26800 27200 27700 28200 28600 29100 29600 30100 30600 31200 31700
6 3.96 1220 25700 26000 26400 26800 27200 27700 28100 28500 29000 29400 29900
7 6.96 965 24400 24700 25000 25300 25700 26000 26400 26800 27100 27500 27900
W36×256 TFL 0 3770 32900 33700 34500 35400 36200 37100 38000 38900 39800 40700 41700
(16800) 2 0.433 3240 31700 32500 33200 34000 34700 35500 36400 37200 38000 38900 39800
3 0.865 2710 30300 31000 31600 32300 33000 33800 34500 35300 36000 36800 37600
4 1.30 2180 28600 29200 29800 30400 31000 31700 32300 33000 33600 34300 35000
BFL 1.73 1650 26600 27100 27600 28100 28600 29100 29700 30200 30800 31400 32000
6 5.18 1300 25100 25500 25900 26300 26800 27200 27700 28100 28600 29100 29600
7 8.90 941 23300 23600 23900 24200 24600 24900 25300 25600 26000 26400 26700
W36×247 TFL 0 3630 31700 32500 33200 34000 34800 35600 36500 37300 38200 39100 40000
(16700) 2 0.338 3070 30500 31200 31900 32600 33300 34100 34800 35600 36400 37200 38100
3 0.675 2510 29000 29600 30200 30900 31500 32200 32900 33600 34300 35000 35800
4 1.01 1950 27200 27700 28300 28800 29400 29900 30500 31100 31700 32400 33000
BFL 1.35 1400 25100 25500 25900 26300 26800 27200 27700 28200 28700 29200 29700
6 3.95 1150 23900 24300 24700 25000 25400 25800 26200 26600 27100 27500 27900
7 7.02 906 22700 23000 23300 23600 23900 24300 24600 24900 25300 25700 26000
W36×232 TFL 0 3400 29400 30100 30800 31500 32300 33100 33900 34700 35500 36300 37200
(15000) 2 0.393 2930 28300 28900 29600 30300 31000 31700 32500 33200 34000 34800 35500
3 0.785 2450 27000 27600 28200 28800 29500 30100 30800 31500 32200 32900 33600
4 1.18 1980 25600 26100 26600 27200 27700 28300 28900 29500 30100 30700 31300
BFL 1.57 1500 23800 24200 24700 25100 25600 26100 26500 27000 27500 28100 28600
6 5.04 1180 22400 22800 23100 23500 23900 24300 24700 25100 25600 26000 26400
7 8.78 850 20700 21000 21300 21600 21900 22200 22500 22900 23200 23500 23900
W36×231 TFL 0 3410 29600 30300 31000 31700 32500 33200 34000 34800 35700 36500 37300
(15600) 2 0.315 2890 28400 29100 29700 30400 31100 31800 32500 33200 34000 34800 35500
3 0.630 2370 27100 27600 28200 28800 29400 30100 30700 31400 32000 32700 33400
4 0.945 1850 25400 25900 26400 26900 27500 28000 28600 29100 29700 30300 30900
BFL 1.26 1330 23400 23800 24200 24700 25100 25500 25900 26400 26900 27300 27800
6 3.88 1090 22400 22700 23100 23400 23800 24100 24500 24900 25300 25700 26100
7 7.03 853 21200 21500 21800 22100 22400 22700 23000 23300 23600 24000 24300
Fy= 50 ksi
W36 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:03 AM Page 195

3–196 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W36×210 TFL 0 3100 26000 26700 27300 28000 28700 29400 30100 30800 31600 32300 33100
(13200) 2 0.340 2680 25100 25700 26300 26900 27500 28200 28900 29500 30200 30900 31700
3 0.680 2270 24000 24600 25100 25700 26300 26900 27500 28100 28700 29400 30000
4 1.02 1850 22800 23300 23800 24300 24800 25300 25800 26400 26900 27500 28100
BFL 1.36 1440 21300 21700 22200 22600 23000 23500 23900 24400 24900 25300 25800
6 5.04 1100 19900 20300 20600 20900 21300 21700 22000 22400 22800 23200 23600
7 9.03 774 18300 18600 18800 19100 19400 19700 20000 20200 20500 20800 21200
W36×194 TFL 0 2850 23800 24400 25000 25600 26200 26900 27500 28200 28900 29600 30300
(12100) 2 0.315 2470 23000 23500 24100 24600 25200 25800 26400 27000 27700 28300 29000
3 0.630 2090 22000 22500 23000 23500 24000 24600 25100 25700 26300 26900 27500
4 0.945 1710 20900 21300 21800 22200 22700 23200 23700 24200 24700 25200 25700
BFL 1.26 1330 19500 19900 20300 20700 21100 21500 21900 22300 22800 23200 23700
6 4.93 1020 18300 18600 18900 19200 19500 19900 20200 20600 20900 21300 21700
7 8.94 713 16800 17000 17300 17500 17700 18000 18300 18500 18800 19100 19400
W36×182 TFL 0 2680 22200 22700 23300 23900 24400 25000 25700 26300 26900 27600 28300
(11300) 2 0.295 2320 21400 21900 22400 23000 23500 24100 24600 25200 25800 26400 27000
3 0.590 1970 20500 21000 21500 21900 22400 22900 23500 24000 24500 25100 25700
4 0.885 1610 19500 19900 20300 20700 21200 21600 22100 22600 23000 23500 24000
BFL 1.18 1250 18200 18600 18900 19300 19700 20000 20400 20800 21200 21700 22100
6 4.89 961 17000 17300 17600 17900 18200 18600 18900 19200 19600 19900 20200
7 8.91 670 15700 15900 16100 16300 16600 16800 17000 17300 17600 17800 18100
W36×170 TFL 0 2500 20600 21100 21600 22200 22700 23300 23800 24400 25000 25600 26300
(10500) 2 0.275 2170 19900 20400 20800 21300 21800 22400 22900 23400 24000 24600 25100
3 0.550 1840 19100 19500 19900 20400 20900 21300 21800 22300 22800 23300 23900
4 0.825 1510 18100 18500 18900 19300 19700 20100 20500 21000 21400 21900 22400
BFL 1.10 1180 17000 17300 17600 18000 18300 18700 19100 19400 19800 20200 20600
6 4.83 903 15900 16100 16400 16700 17000 17300 17600 17900 18200 18500 18900
7 8.91 625 14500 14700 15000 15200 15400 15600 15800 16100 16300 16600 16800
W36×160 TFL 0 2350 19200 19600 20100 20600 21100 21700 22200 22700 23300 23900 24400
(9760) 2 0.255 2040 18500 18900 19400 19900 20300 20800 21300 21800 22300 22900 23400
3 0.510 1740 17800 18200 18600 19000 19400 19900 20300 20800 21300 21800 22300
4 0.765 1430 16900 17200 17600 18000 18400 18800 19200 19600 20000 20400 20900
BFL 1.02 1130 15900 16200 16500 16800 17100 17500 17800 18200 18600 18900 19300
6 4.82 857 14800 15000 15300 15600 15800 16100 16400 16700 17000 17300 17600
7 8.96 588 13500 13700 13900 14100 14300 14500 14700 15000 15200 15400 15600
Fy= 50 ksi
W36ILB
AISC_Part 3D:14th Ed. 2/24/11 9:03 AM Page 196

COMPOSITE BEAM SELECTION TABLES 3–197
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W36×150 TFL 0 2220 17900 18300 18800 19200 19700 20200 20700 21200 21800 22300 22800
(9040) 2 0.235 1930 17200 17700 18100 18500 19000 19400 19900 20400 20900 21400 21900
3 0.470 1650 16600 16900 17300 17700 18200 18600 19000 19400 19900 20300 20800
4 0.705 1370 15800 16100 16500 16800 17200 17600 18000 18300 18800 19200 19600
BFL 0.940 1090 14900 15200 15500 15800 16100 16400 16700 17100 17400 17800 18100
6 4.82 820 13800 14000 14300 14500 14800 15100 15300 15600 15900 16200 16500
7 9.09 554 12600 12700 12900 13100 13300 13500 13700 13900 14100 14300 14600
W36×135 TFL 0 2000 15600 16000 16400 16900 17300 17700 18200 18600 19100 19600 20100
(7800) 2 0.198 1760 15100 15500 15900 16300 16700 17100 17500 18000 18400 18800 19300
3 0.395 1520 14600 14900 15300 15600 16000 16400 16800 17200 17600 18000 18400
4 0.593 1280 13900 14200 14500 14900 15200 15600 15900 16300 16600 17000 17400
BFL 0.790 1050 13200 13500 13800 14000 14300 14600 15000 15300 15600 15900 16300
6 4.92 773 12200 12400 12600 12900 13100 13300 13600 13800 14100 14400 14700
7 9.49 499 10900 11100 11300 11400 11600 11800 11900 12100 12300 12500 12700
W33×221 TFL 0 3270 24600 25300 25900 26600 27200 27900 28600 29400 30100 30900 31600
(12900) 2 0.320 2760 23600 24200 24800 25400 26000 26700 27300 28000 28700 29300 30100
3 0.640 2250 22500 23000 23500 24000 24600 25200 25700 26300 26900 27500 28200
4 0.960 1750 21100 21500 22000 22400 22900 23400 23900 24400 24900 25400 26000
BFL 1.28 1240 19400 19700 20100 20400 20800 21200 21600 22000 22400 22800 23200
6 3.67 1030 18500 18800 19100 19400 19800 20100 20400 20800 21100 21500 21900
7 6.42 816 17600 17800 18100 18400 18600 18900 19200 19500 19800 20100 20400
W33×201 TFL 0 2960 22100 22700 23300 23800 24500 25100 25700 26400 27000 27700 28400
(11600) 2 0.288 2500 21200 21700 22300 22800 23400 23900 24500 25100 25700 26400 27000
3 0.575 2050 20200 20700 21100 21600 22100 22600 23200 23700 24200 24800 25400
4 0.863 1600 19000 19400 19800 20200 20600 21100 21500 22000 22400 22900 23400
BFL 1.15 1150 17500 17800 18100 18500 18800 19100 19500 19900 20200 20600 21000
6 3.65 944 16700 17000 17200 17500 17800 18100 18400 18700 19100 19400 19700
7 6.52 739 15800 16000 16300 16500 16700 17000 17200 17500 17800 18000 18300
W33×169 TFL 0 2480 18100 18600 19100 19600 20100 20600 21200 21700 22300 22900 23400
(9290) 2 0.305 2120 17400 17900 18300 18800 19300 19700 20200 20700 21300 21800 22300
3 0.610 1770 16700 17100 17500 17900 18300 18700 19200 19600 20100 20600 21100
4 0.915 1420 15700 16100 16400 16800 17200 17600 17900 18300 18800 19200 19600
BFL 1.22 1070 14600 14900 15200 15500 15800 16100 16500 16800 17100 17500 17800
6 4.28 845 13800 14000 14300 14500 14800 15100 15300 15600 15900 16200 16500
7 7.66 619 12800 13000 13200 13400 13600 13800 14000 14300 14500 14700 14900
Fy= 50 ksi
W36-W33 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 197

3–198 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W33×152 TFL 0 2250 16100 16500 16900 17400 17800 18300 18800 19300 19800 20300 20800
(8160) 2 0.265 1940 15500 15900 16300 16700 17100 17600 18000 18500 18900 19400 19900
3 0.530 1630 14800 15200 15500 15900 16300 16700 17100 17500 17900 18400 18800
4 0.795 1320 14000 14300 14600 15000 15300 15700 16000 16400 16800 17100 17500
BFL 1.06 1020 13100 13400 13600 13900 14200 14500 14800 15100 15400 15700 16100
6 4.34 788 12300 12500 12700 12900 13200 13400 13700 13900 14200 14500 14700
7 7.91 561 11300 11500 11700 11800 12000 12200 12400 12600 12800 13000 13200
W33×141 TFL 0 2080 14700 15100 15500 15900 16300 16700 17200 17600 18100 18600 19100
(7450) 2 0.240 1800 14200 14500 14900 15300 15700 16100 16500 16900 17300 17800 18200
3 0.480 1520 13600 13900 14200 14600 14900 15300 15700 16100 16500 16900 17300
4 0.720 1250 12900 13200 13500 13800 14100 14400 14800 15100 15500 15800 16200
BFL 0.960 971 12100 12300 12600 12800 13100 13400 13700 13900 14200 14500 14800
6 4.34 745 11300 11500 11700 11900 12100 12400 12600 12800 13100 13300 13600
7 8.08 519 10300 10500 10700 10800 11000 11200 11300 11500 11700 11900 12100
W33×130 TFL 0 1920 13300 13700 14000 14400 14800 15200 15600 16000 16500 16900 17300
(6710) 2 0.214 1670 12800 13200 13500 13900 14200 14600 15000 15400 15800 16200 16600
3 0.428 1420 12300 12600 12900 13300 13600 13900 14300 14600 15000 15400 15800
4 0.641 1180 11700 12000 12300 12600 12900 13200 13500 13800 14100 14500 14800
BFL 0.855 932 11000 11300 11500 11800 12000 12300 12500 12800 13100 13400 13700
6 4.39 705 10300 10500 10600 10900 11100 11300 11500 11700 12000 12200 12400
7 8.30 479 9350 9490 9640 9790 9950 10100 10300 10400 10600 10800 11000
W33×118 TFL 0 1740 11800 12100 12500 12800 13200 13500 13900 14300 14700 15100 15500
(5900) 2 0.185 1520 11400 11700 12000 12300 12700 13000 13400 13700 14100 14400 14800
3 0.370 1310 11000 11300 11500 11800 12100 12500 12800 13100 13400 13800 14100
4 0.555 1100 10500 10700 11000 11300 11500 11800 12100 12400 12700 13000 13300
BFL 0.740 884 9890 10100 10300 10600 10800 11000 11300 11500 11800 12100 12300
6 4.47 659 9150 9330 9510 9700 9890 10100 10300 10500 10700 10900 11200
7 8.56 434 8260 8390 8530 8660 8800 8950 9090 9250 9400 9560 9720
W30×116 TFL 0 1710 9870 10200 10500 10800 11100 11400 11800 12100 12500 12800 13200
(4930) 2 0.213 1490 9530 9810 10100 10400 10700 11000 11300 11600 12000 12300 12600
3 0.425 1260 9120 9370 9630 9900 10200 10400 10700 11000 11300 11600 12000
4 0.638 1040 8670 8890 9120 9360 9600 9850 10100 10400 10600 10900 11200
BFL 0.850 818 8130 8320 8520 8720 8920 9140 9360 9580 9810 10000 10300
6 3.98 623 7570 7730 7890 8060 8230 8400 8580 8770 8960 9150 9350
7 7.43 428 6910 7030 7150 7270 7400 7530 7670 7810 7950 8090 8240
Fy= 50 ksi
W33-W30ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 198

COMPOSITE BEAM SELECTION TABLES 3–199
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W30×108 TFL 0 1590 9000 9280 9560 9840 10100 10400 10800 11100 11400 11700 12100
(4470) 2 0.190 1390 8700 8950 9220 9480 9760 10000 10300 10600 10900 11300 11600
3 0.380 1190 8350 8590 8830 9070 9330 9590 9850 10100 10400 10700 11000
4 0.570 987 7940 8150 8370 8590 8820 9050 9290 9530 9780 10000 10300
BFL 0.760 787 7470 7650 7840 8030 8230 8430 8640 8850 9060 9290 9510
6 4.04 592 6930 7080 7230 7390 7550 7710 7880 8060 8240 8420 8600
7 7.63 396 6280 6390 6500 6620 6730 6850 6980 7110 7240 7370 7510
W30×99 TFL 0 1450 8110 8350 8610 8870 9140 9420 9700 9990 10300 10600 10900
(3990) 2 0.168 1270 7830 8070 8300 8550 8800 9060 9330 9600 9880 10200 10500
3 0.335 1100 7540 7760 7980 8200 8440 8670 8920 9170 9430 9690 9960
4 0.503 922 7190 7380 7580 7790 8000 8210 8430 8660 8890 9130 9370
BFL 0.670 747 6790 6960 7130 7310 7490 7680 7880 8070 8280 8480 8700
6 4.19 555 6270 6410 6550 6690 6840 7000 7150 7310 7480 7650 7820
7 7.88 363 5640 5740 5840 5950 6050 6160 6280 6390 6510 6640 6760
W30×90 TFL 0 1320 7310 7530 7760 8000 8240 8490 8750 9010 9280 9560 9840
(3610) 2 0.153 1160 7070 7280 7490 7720 7940 8180 8420 8660 8920 9180 9440
3 0.305 998 6790 6990 7190 7390 7600 7820 8040 8260 8500 8730 8980
4 0.458 839 6480 6660 6840 7020 7210 7410 7610 7810 8020 8240 8460
BFL 0.610 681 6130 6280 6440 6600 6760 6940 7110 7290 7470 7660 7850
6 4.01 505 5660 5780 5910 6040 6180 6310 6460 6600 6750 6910 7060
7 7.76 329 5090 5180 5270 5360 5460 5560 5660 5770 5880 5990 6100
W27×102 TFL 0 1500 7250 7480 7730 7980 8240 8510 8780 9060 9350 9650 9950
(3620) 2 0.208 1290 6970 7190 7420 7650 7890 8140 8390 8650 8920 9200 9480
3 0.415 1090 6670 6870 7080 7290 7510 7730 7960 8200 8450 8700 8950
4 0.623 878 6300 6470 6650 6840 7030 7230 7430 7640 7850 8070 8300
BFL 0.830 670 5860 6010 6160 6310 6470 6640 6810 6980 7160 7340 7530
6 3.40 523 5500 5620 5740 5870 6010 6150 6290 6430 6580 6740 6900
7 6.27 375 5070 5170 5260 5360 5470 5570 5680 5800 5910 6030 6150
W27×94 TFL 0 1380 6560 6780 7000 7230 7470 7720 7970 8230 8490 8760 9040
(3270) 2 0.186 1190 6320 6520 6730 6940 7160 7390 7620 7860 8100 8360 8610
3 0.373 1010 6050 6240 6430 6620 6820 7030 7240 7460 7680 7910 8150
4 0.559 821 5730 5890 6060 6230 6400 6590 6770 6970 7160 7370 7580
BFL 0.745 635 5350 5480 5620 5770 5920 6070 6230 6390 6560 6730 6910
6 3.45 490 5000 5110 5230 5350 5470 5600 5730 5870 6010 6150 6290
7 6.41 345 4590 4670 4760 4860 4950 5050 5150 5250 5360 5470 5580
Fy= 50 ksi
W30-W27 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 199

3–200 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W27×84 TFL 0 1240 5770 5960 6160 6360 6580 6790 7020 7250 7480 7730 7970
(2850) 2 0.160 1080 5570 5740 5930 6120 6320 6520 6730 6940 7160 7390 7620
3 0.320 915 5330 5490 5660 5830 6010 6200 6390 6590 6790 6990 7200
4 0.480 755 5060 5200 5360 5510 5670 5840 6010 6180 6360 6540 6730
BFL 0.640 595 4740 4870 5000 5130 5270 5410 5550 5700 5860 6010 6180
6 3.53 452 4410 4510 4620 4730 4840 4960 5080 5200 5330 5460 5590
7 6.64 309 4010 4090 4170 4250 4340 4430 4510 4610 4700 4800 4900
W24×94 TFL 0 1390 5480 5680 5880 6100 6320 6550 6780 7020 7270 7530 7790
(2700) 2 0.219 1190 5260 5450 5640 5840 6040 6250 6470 6690 6920 7150 7390
3 0.438 988 5010 5180 5350 5520 5710 5900 6090 6290 6500 6710 6930
4 0.656 790 4710 4860 5010 5160 5320 5490 5660 5830 6010 6200 6390
BFL 0.875 591 4360 4480 4600 4730 4860 5000 5140 5280 5430 5580 5740
6 3.05 469 4100 4200 4310 4420 4530 4640 4760 4880 5010 5140 5270
7 5.43 346 3810 3890 3970 4060 4140 4230 4330 4420 4520 4630 4730
W24×84 TFL 0 1240 4810 4990 5170 5360 5560 5760 5970 6180 6400 6630 6860
(2370) 2 0.193 1060 4620 4790 4950 5130 5310 5490 5690 5880 6090 6300 6510
3 0.385 888 4410 4560 4710 4870 5030 5200 5370 5550 5740 5930 6120
4 0.578 714 4160 4290 4420 4560 4700 4850 5000 5160 5320 5480 5650
BFL 0.770 540 3850 3960 4070 4190 4310 4430 4550 4680 4820 4960 5100
6 3.02 425 3620 3710 3800 3900 4000 4100 4210 4320 4430 4550 4660
7 5.48 309 3350 3420 3490 3570 3640 3720 3810 3890 3980 4070 4160
W24×76 TFL 0 1120 4280 4440 4600 4770 4950 5130 5320 5510 5710 5910 6120
(2100) 2 0.170 967 4120 4270 4420 4580 4740 4910 5080 5260 5440 5630 5830
3 0.340 814 3930 4070 4210 4350 4500 4650 4810 4970 5140 5310 5490
4 0.510 662 3720 3840 3960 4090 4220 4350 4490 4630 4780 4930 5090
BFL 0.680 509 3460 3560 3660 3770 3880 3990 4110 4230 4360 4480 4610
6 2.99 394 3230 3320 3400 3490 3580 3680 3770 3880 3980 4080 4190
7 5.59 280 2970 3040 3100 3170 3240 3310 3390 3460 3540 3630 3710
W24×68 TFL 0 1010 3760 3900 4050 4200 4360 4520 4690 4860 5040 5220 5410
(1830) 2 0.146 874 3620 3760 3890 4030 4180 4330 4480 4640 4810 4980 5150
3 0.293 743 3470 3590 3710 3840 3980 4110 4260 4400 4550 4710 4870
4 0.439 611 3290 3390 3510 3620 3740 3860 3990 4120 4250 4390 4530
BFL 0.585 480 3080 3170 3260 3360 3460 3570 3670 3790 3900 4020 4140
6 3.04 366 2860 2930 3010 3090 3180 3260 3350 3450 3540 3640 3740
7 5.80 251 2600 2660 2720 2780 2840 2900 2970 3040 3110 3180 3260
Fy= 50 ksi
W27-W24ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 200

COMPOSITE BEAM SELECTION TABLES 3–201
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W24×62 TFL 0 910 3300 3420 3560 3690 3840 3980 4130 4290 4450 4610 4780
(1550) 2 0.148 806 3190 3310 3440 3560 3700 3840 3980 4120 4270 4430 4590
3 0.295 702 3070 3180 3300 3420 3540 3670 3800 3940 4080 4220 4370
4 0.443 598 2930 3040 3140 3250 3360 3480 3600 3720 3850 3980 4110
BFL 0.590 495 2780 2870 2960 3060 3160 3260 3370 3480 3590 3710 3830
6 3.45 361 2540 2610 2690 2770 2850 2930 3020 3110 3200 3290 3390
7 6.56 228 2250 2300 2350 2410 2470 2520 2590 2650 2710 2780 2850
W24×55 TFL 0 810 2890 3010 3120 3250 3370 3500 3640 3770 3920 4060 4210
(1350) 2 0.126 721 2800 2910 3020 3140 3250 3380 3500 3630 3770 3900 4050
3 0.253 633 2700 2800 2910 3010 3120 3240 3360 3480 3600 3730 3860
4 0.379 544 2590 2680 2780 2870 2970 3080 3190 3300 3410 3530 3650
BFL 0.505 456 2460 2540 2630 2720 2810 2900 3000 3100 3200 3300 3410
6 3.46 329 2240 2310 2370 2450 2520 2590 2670 2750 2830 2920 3000
7 6.67 203 1970 2010 2060 2110 2160 2210 2270 2320 2380 2440 2500
W21×73 TFL 0 1080 3310 3450 3590 3740 3900 4060 4220 4390 4570 4750 4940
(1600) 2 0.185 921 3170 3300 3430 3570 3710 3860 4010 4170 4330 4500 4670
3 0.370 768 3020 3140 3260 3380 3510 3640 3780 3920 4070 4220 4380
4 0.555 614 2840 2940 3050 3150 3270 3380 3500 3630 3750 3890 4020
BFL 0.740 461 2620 2710 2790 2880 2980 3070 3170 3270 3380 3490 3600
6 2.58 365 2470 2540 2610 2680 2760 2840 2930 3010 3100 3190 3290
7 4.69 269 2280 2340 2400 2460 2520 2580 2650 2720 2790 2860 2930
W21×68 TFL 0 1000 3060 3180 3320 3450 3600 3750 3900 4060 4220 4390 4560
(1480) 2 0.171 858 2930 3050 3180 3300 3440 3570 3710 3860 4010 4160 4320
3 0.343 717 2800 2900 3010 3130 3250 3370 3500 3630 3770 3910 4050
4 0.514 575 2630 2720 2820 2920 3030 3130 3250 3360 3480 3600 3730
BFL 0.685 434 2430 2510 2590 2670 2760 2850 2940 3040 3140 3240 3340
6 2.60 342 2280 2350 2420 2490 2560 2630 2710 2790 2880 2960 3050
7 4.74 250 2110 2160 2210 2270 2330 2390 2450 2510 2580 2640 2710
W21×62 TFL 0 915 2760 2880 3000 3120 3250 3390 3530 3670 3820 3970 4130
(1330) 2 0.154 788 2650 2760 2870 2990 3110 3240 3360 3500 3640 3780 3920
3 0.308 662 2530 2630 2730 2840 2950 3060 3180 3300 3420 3550 3680
4 0.461 535 2390 2470 2560 2650 2750 2850 2950 3060 3170 3280 3400
BFL 0.615 408 2210 2280 2360 2440 2520 2600 2690 2770 2870 2960 3060
6 2.54 318 2070 2130 2190 2260 2320 2390 2460 2540 2610 2690 2780
7 4.78 229 1900 1950 2000 2050 2100 2150 2210 2270 2330 2390 2450
Fy= 50 ksi
W24-W21 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 201

3–202 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W21×57 TFL 0 835 2490 2590 2700 2820 2940 3060 3190 3320 3460 3600 3740
(1170) 2 0.163 728 2400 2490 2600 2710 2820 2930 3050 3170 3300 3430 3570
3 0.325 622 2290 2380 2480 2580 2680 2780 2890 3010 3120 3240 3370
4 0.488 515 2170 2250 2340 2430 2520 2610 2710 2810 2910 3020 3130
BFL 0.650 409 2030 2110 2180 2250 2330 2410 2500 2580 2670 2770 2860
6 2.93 309 1880 1940 2000 2060 2120 2190 2260 2330 2410 2480 2560
7 5.40 209 1700 1740 1780 1830 1880 1930 1980 2030 2090 2140 2200
W21×55 TFL 0 810 2390 2490 2590 2710 2820 2940 3060 3190 3320 3450 3590
(1140) 2 0.131 703 2300 2390 2490 2590 2700 2810 2930 3040 3160 3290 3420
3 0.261 595 2190 2280 2370 2470 2560 2660 2770 2870 2990 3100 3220
4 0.392 488 2080 2150 2230 2320 2400 2490 2580 2680 2780 2880 2980
BFL 0.522 381 1940 2000 2070 2140 2210 2290 2370 2450 2530 2620 2710
6 2.62 292 1800 1850 1910 1970 2030 2090 2160 2230 2290 2370 2440
7 5.00 203 1640 1680 1720 1770 1810 1860 1910 1960 2010 2070 2120
W21×50 TFL 0 735 2110 2210 2300 2400 2510 2620 2730 2840 2960 3080 3210
(984) 2 0.134 648 2040 2130 2220 2310 2410 2510 2620 2730 2840 2950 3070
3 0.268 560 1960 2040 2130 2210 2300 2400 2490 2590 2690 2800 2910
4 0.401 473 1870 1940 2020 2100 2180 2260 2350 2440 2530 2630 2730
BFL 0.535 386 1760 1830 1890 1960 2030 2110 2180 2260 2350 2430 2520
6 2.91 285 1620 1670 1720 1780 1840 1900 1960 2020 2090 2160 2230
7 5.56 184 1440 1470 1510 1550 1590 1640 1680 1730 1780 1820 1880
W21×48 TFL 0 705 2030 2110 2210 2300 2400 2500 2610 2720 2830 2950 3070
(959) 2 0.108 617 1950 2040 2120 2210 2300 2400 2500 2600 2710 2820 2930
3 0.215 530 1870 1950 2030 2110 2200 2280 2380 2470 2570 2670 2770
4 0.323 442 1780 1850 1920 1990 2070 2150 2230 2320 2400 2490 2590
BFL 0.430 355 1670 1730 1790 1860 1920 1990 2060 2140 2210 2290 2370
6 2.71 266 1540 1590 1640 1690 1750 1810 1860 1920 1990 2050 2120
7 5.26 176 1390 1420 1460 1500 1540 1580 1620 1660 1710 1750 1800
W21×44 TFL 0 650 1830 1920 2000 2090 2180 2280 2370 2480 2580 2690 2800
(843) 2 0.113 577 1780 1850 1930 2020 2100 2190 2280 2380 2480 2580 2680
3 0.225 504 1710 1780 1850 1930 2010 2100 2180 2270 2360 2460 2550
4 0.338 431 1630 1700 1770 1840 1910 1990 2060 2150 2230 2310 2400
BFL 0.450 358 1550 1610 1670 1730 1790 1860 1930 2000 2080 2150 2230
6 2.92 260 1410 1460 1500 1560 1610 1660 1720 1780 1840 1900 1960
7 5.71 163 1240 1270 1310 1340 1380 1420 1460 1500 1540 1580 1630
Fy= 50 ksi
W21ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 202

COMPOSITE BEAM SELECTION TABLES 3–203
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W18×60 TFL 0 880 2070 2170 2270 2380 2490 2610 2730 2860 2990 3130 3270
(984) 2 0.174 749 1980 2070 2170 2270 2370 2480 2590 2710 2830 2950 3080
3 0.348 617 1880 1960 2050 2140 2230 2330 2430 2530 2640 2750 2860
4 0.521 486 1760 1830 1900 1980 2060 2140 2230 2320 2410 2510 2610
BFL 0.695 355 1610 1660 1720 1790 1850 1920 1990 2060 2140 2220 2300
6 2.18 287 1520 1570 1620 1670 1730 1780 1840 1910 1970 2040 2110
7 3.80 220 1420 1460 1500 1540 1590 1640 1680 1730 1790 1840 1900
W18×55 TFL 0 810 1880 1970 2070 2170 2270 2380 2490 2600 2720 2850 2980
(890) 2 0.158 691 1800 1880 1970 2060 2160 2260 2360 2470 2580 2690 2810
3 0.315 573 1710 1790 1860 1950 2030 2120 2210 2310 2410 2510 2620
4 0.473 454 1600 1670 1730 1810 1880 1960 2040 2120 2210 2300 2390
BFL 0.630 336 1470 1520 1580 1640 1700 1760 1830 1900 1970 2040 2110
6 2.15 269 1380 1430 1480 1530 1580 1630 1690 1750 1800 1870 1930
7 3.86 203 1290 1320 1360 1400 1440 1490 1530 1580 1630 1670 1730
W18×50 TFL 0 735 1690 1770 1860 1950 2040 2140 2240 2350 2450 2570 2680
(800) 2 0.143 628 1620 1700 1780 1860 1940 2030 2130 2220 2320 2430 2530
3 0.285 521 1540 1610 1680 1750 1830 1910 2000 2080 2170 2260 2360
4 0.428 414 1440 1500 1560 1630 1700 1770 1840 1910 1990 2070 2160
BFL 0.570 308 1330 1370 1430 1480 1530 1590 1650 1710 1780 1840 1910
6 2.08 246 1250 1290 1330 1380 1420 1470 1520 1580 1630 1690 1740
7 3.82 184 1160 1190 1220 1260 1300 1340 1380 1420 1460 1510 1550
W18×46 TFL 0 675 1540 1610 1690 1780 1860 1950 2040 2140 2240 2340 2450
(712) 2 0.151 583 1480 1550 1620 1700 1780 1860 1950 2040 2130 2220 2320
3 0.303 492 1410 1470 1540 1610 1680 1760 1840 1920 2000 2090 2180
4 0.454 400 1330 1380 1440 1500 1570 1630 1700 1780 1850 1930 2010
BFL 0.605 308 1230 1280 1330 1380 1430 1490 1550 1610 1670 1730 1800
6 2.42 239 1140 1180 1220 1270 1310 1360 1410 1460 1510 1570 1620
7 4.36 169 1040 1070 1100 1140 1170 1210 1250 1280 1320 1370 1410
W18×40 TFL 0 590 1320 1390 1450 1530 1600 1680 1760 1840 1930 2020 2110
(612) 2 0.131 511 1270 1330 1390 1460 1530 1600 1680 1760 1840 1920 2010
3 0.263 432 1210 1270 1320 1390 1450 1510 1580 1650 1730 1800 1880
4 0.394 353 1140 1190 1240 1300 1350 1410 1470 1530 1600 1670 1740
BFL 0.525 274 1060 1100 1150 1190 1240 1290 1340 1390 1450 1510 1560
6 2.26 211 985 1020 1060 1090 1130 1170 1220 1260 1310 1350 1400
7 4.27 148 896 922 950 979 1010 1040 1070 1110 1140 1180 1210
Fy= 50 ksi
W18 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 203

3–204 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W18×35 TFL 0 515 1120 1170 1230 1300 1360 1430 1500 1570 1650 1720 1800
(510) 2 0.106 451 1080 1130 1190 1240 1300 1370 1430 1500 1570 1640 1720
3 0.213 388 1030 1080 1130 1190 1240 1300 1360 1420 1490 1550 1620
4 0.319 324 978 1020 1070 1120 1170 1220 1270 1330 1390 1450 1510
BFL 0.425 260 917 955 995 1040 1080 1130 1170 1220 1270 1320 1380
6 2.37 194 842 873 906 940 975 1010 1050 1090 1130 1170 1220
7 4.56 129 753 776 800 825 851 878 906 935 965 996 1030
W16×45 TFL 0 665 1260 1330 1400 1470 1550 1630 1720 1810 1900 1990 2090
(586) 2 0.141 566 1200 1270 1330 1400 1470 1550 1630 1710 1790 1880 1970
3 0.283 466 1140 1200 1260 1320 1380 1450 1520 1590 1670 1750 1830
4 0.424 367 1060 1110 1160 1220 1270 1330 1390 1450 1520 1590 1660
BFL 0.565 267 971 1010 1050 1090 1140 1190 1230 1290 1340 1390 1450
6 1.77 217 917 950 986 1020 1060 1100 1140 1190 1230 1280 1330
7 3.23 166 854 882 910 940 972 1000 1040 1070 1110 1150 1190
W16×40 TFL 0 590 1110 1170 1230 1300 1370 1440 1520 1590 1670 1760 1850
(518) 2 0.126 502 1060 1120 1170 1240 1300 1370 1430 1510 1580 1660 1740
3 0.253 413 1000 1050 1110 1160 1220 1280 1340 1400 1470 1540 1610
4 0.379 325 937 980 1030 1070 1120 1170 1230 1280 1340 1400 1460
BFL 0.505 237 856 891 927 965 1000 1050 1090 1130 1180 1230 1280
6 1.70 192 808 837 869 901 935 971 1010 1050 1090 1130 1170
7 3.16 148 755 779 804 831 859 888 918 949 982 1020 1050
W16×36 TFL 0 530 973 1030 1080 1140 1200 1270 1340 1410 1480 1550 1630
(448) 2 0.108 455 933 983 1040 1090 1150 1210 1270 1330 1400 1470 1540
3 0.215 380 886 931 979 1030 1080 1130 1190 1250 1310 1370 1440
4 0.323 305 831 871 912 956 1000 1050 1100 1150 1200 1260 1310
BFL 0.430 229 765 797 831 867 905 944 984 1030 1070 1120 1160
6 1.82 181 715 743 772 802 833 866 901 936 973 1010 1050
7 3.46 133 659 680 703 727 752 778 805 833 862 892 923
W16×31 TFL 0 457 827 874 923 974 1030 1080 1140 1200 1260 1330 1400
(375) 2 0.110 396 795 838 884 931 981 1030 1090 1140 1200 1260 1320
3 0.220 335 758 797 838 882 927 974 1020 1070 1130 1180 1240
4 0.330 274 714 749 786 824 864 906 949 995 1040 1090 1140
BFL 0.440 213 663 692 723 756 790 825 862 900 940 982 1020
6 2.00 164 614 639 664 691 720 749 780 812 845 879 914
7 3.80 114 556 574 594 614 636 658 681 705 730 756 783
Fy= 50 ksi
W18-W16ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 204

COMPOSITE BEAM SELECTION TABLES 3–205
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W16×26 TFL 0 384 674 712 753 796 840 887 935 985 1040 1090 1150
(301) 2 0.0863 337 649 686 724 763 805 849 894 941 990 1040 1090
3 0.173 289 621 654 689 726 764 804 846 889 934 980 1030
4 0.259 242 589 619 651 683 718 754 791 830 871 912 956
BFL 0.345 194 551 577 604 633 663 694 727 760 795 832 869
6 2.05 145 505 527 549 572 597 622 649 676 705 734 765
7 4.01 96.0 450 466 482 499 517 535 555 575 596 617 640
W14×38 TFL 0 560 844 896 951 1010 1070 1130 1200 1270 1340 1410 1490
(385) 2 0.129 473 805 853 903 956 1010 1070 1130 1190 1260 1330 1400
3 0.258 386 759 802 847 894 943 995 1050 1100 1160 1220 1290
4 0.386 299 704 741 779 819 861 905 951 999 1050 1100 1150
BFL 0.515 211 636 665 695 726 759 794 830 868 907 948 990
6 1.38 176 604 629 656 683 712 742 774 807 841 877 914
7 2.53 140 568 589 611 634 659 684 710 738 766 796 827
W14×34 TFL 0 500 745 791 840 891 945 1000 1060 1120 1190 1250 1320
(340) 2 0.114 423 711 754 798 845 895 946 1000 1060 1110 1180 1240
3 0.228 346 671 709 749 791 835 881 929 979 1030 1090 1140
4 0.341 270 624 656 691 727 764 804 845 888 933 979 1030
BFL 0.455 193 566 591 618 647 677 708 741 775 811 848 886
6 1.42 159 535 558 581 606 632 659 687 717 748 780 813
7 2.61 125 502 521 540 561 582 605 628 653 678 705 732
W14×30 TFL 0 443 642 682 725 770 817 866 918 972 1030 1090 1150
(291) 2 0.0963 378 614 651 691 732 775 821 868 918 969 1020 1080
3 0.193 313 581 615 650 688 727 767 810 855 901 949 999
4 0.289 248 543 572 603 635 669 704 741 780 820 862 905
BFL 0.385 183 496 520 545 571 599 627 658 689 722 756 791
6 1.46 147 466 486 507 530 553 578 604 630 658 687 717
7 2.80 111 432 448 465 483 502 522 542 564 586 610 634
W14×26 TFL 0 385 553 589 626 665 706 749 794 841 890 941 994
(245) 2 0.105 332 530 563 598 634 672 712 754 797 843 890 938
3 0.210 279 504 534 565 598 633 669 707 746 787 830 874
4 0.315 226 473 499 527 556 586 618 652 686 722 760 799
BFL 0.420 173 436 458 481 506 531 558 586 615 645 677 709
6 1.67 135 405 423 443 463 485 507 530 555 580 607 634
7 3.18 96.1 368 382 397 413 429 447 465 483 503 523 544
Fy= 50 ksi
W16-W14 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 205

3–206 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W14×22 TFL 0 325 453 483 514 547 581 617 655 694 735 778 822
(199) 2 0.0838 283 436 463 492 523 555 588 624 660 698 738 779
3 0.168 241 416 441 467 495 525 555 587 621 656 692 730
4 0.251 199 392 415 438 463 489 517 545 575 606 639 672
BFL 0.335 157 365 384 404 426 448 472 496 522 548 576 605
6 1.67 119 335 351 368 386 404 423 444 465 487 509 533
7 3.32 81.1 301 312 325 338 352 366 381 397 413 430 448
W12×30 TFL 0 440 530 567 606 648 691 737 785 835 887 942 998
(238) 2 0.110 368 504 538 573 611 651 692 736 782 829 879 931
3 0.220 296 473 503 534 567 602 639 678 718 760 804 850
4 0.330 224 435 460 486 514 544 575 607 641 676 713 751
BFL 0.440 153 389 408 428 449 472 495 520 546 573 601 631
6 1.10 131 372 389 407 426 446 467 489 512 536 561 587
7 1.92 110 355 370 385 402 419 438 457 477 498 520 542
W12×26 TFL 0 383 455 487 521 557 594 634 676 719 764 812 861
(204) 2 0.0950 321 433 462 493 526 560 596 634 674 715 758 803
3 0.190 259 407 432 460 489 519 551 585 620 656 694 734
4 0.285 198 375 397 420 444 470 497 525 555 586 618 652
BFL 0.380 136 336 352 370 389 409 429 451 474 498 523 548
6 1.07 116 321 336 351 368 386 404 423 444 465 487 509
7 1.94 95.6 304 317 331 345 360 376 392 410 428 447 467
W12×22 TFL 0 324 371 398 427 458 490 523 559 596 634 674 716
(156) 2 0.106 281 356 381 408 436 466 497 530 564 600 638 676
3 0.213 238 338 361 386 412 439 467 497 528 561 595 631
4 0.319 196 318 339 360 383 408 433 460 487 517 547 578
BFL 0.425 153 294 312 330 350 370 392 414 438 463 489 515
6 1.66 117 270 285 300 316 333 351 370 389 410 431 453
7 3.03 81.0 242 253 265 277 290 303 317 332 347 363 380
W12×19 TFL 0 279 313 336 361 387 414 443 473 505 538 573 608
(130) 2 0.0875 243 300 322 345 369 395 422 450 479 510 542 575
3 0.175 208 286 306 327 349 373 398 423 450 479 508 539
4 0.263 173 270 288 307 327 348 370 393 417 442 469 496
BFL 0.350 138 251 266 283 300 318 337 357 378 400 423 447
6 1.68 104 229 242 255 270 284 300 317 334 352 370 390
7 3.14 69.6 203 212 222 233 244 255 267 280 293 307 321
Fy= 50 ksi
W14-W12ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 206

COMPOSITE BEAM SELECTION TABLES 3–207
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W12×16 TFL 0 236 254 273 294 316 339 363 388 415 442 471 501
(103) 2 0.0663 209 245 263 282 303 324 347 371 396 422 449 477
3 0.133 183 235 252 270 289 309 330 352 375 400 425 451
4 0.199 156 223 239 255 272 291 310 330 351 373 396 420
BFL 0.265 130 210 224 239 254 271 288 306 325 344 365 386
6 1.71 94.3 189 200 212 225 238 251 266 281 297 313 331
7 3.32 58.9 163 171 179 188 197 207 217 228 239 250 262
W12×14 TFL 0 208 220 237 255 274 295 316 338 361 386 411 437
(88.6) 2 0.0563 186 213 229 246 264 283 303 324 346 369 393 418
3 0.113 163 204 219 235 252 270 288 308 328 350 372 395
4 0.169 141 195 209 223 239 255 272 290 309 329 349 370
BFL 0.225 119 184 197 210 224 238 254 270 287 305 323 342
6 1.68 85.3 165 175 186 197 208 221 234 247 261 276 291
7 3.35 52.0 141 148 155 163 171 179 188 198 207 218 228
W10×26 TFL 0 381 339 367 397 429 463 499 536 576 617 661 706
(144) 2 0.110 317 321 346 374 403 434 466 500 536 574 613 655
3 0.220 254 300 322 346 372 399 428 458 490 523 557 594
4 0.330 190 274 292 312 334 356 380 405 431 459 488 518
BFL 0.440 127 241 255 270 286 303 321 340 360 381 402 425
6 0.886 111 232 245 258 273 288 304 321 339 358 377 398
7 1.49 95.1 222 233 245 258 271 286 301 317 333 351 369
W10×22 TFL 0 325 282 306 331 358 387 417 449 483 518 555 593
(118) 2 0.0900 273 267 289 313 337 364 391 420 451 483 517 552
3 0.180 221 251 270 291 312 336 360 386 413 442 472 503
4 0.270 169 230 246 264 282 302 323 345 368 392 417 443
BFL 0.360 118 205 218 232 246 261 277 295 312 331 351 371
6 0.962 99.3 195 206 218 230 244 258 273 289 305 323 341
7 1.72 81.1 183 193 203 214 225 238 250 264 278 293 308
W10×19 TFL 0 281 238 259 281 304 329 355 383 412 443 474 508
(96.3) 2 0.0988 241 227 246 267 288 311 335 361 388 416 445 476
3 0.198 202 215 232 251 270 291 313 336 360 386 413 440
4 0.296 162 200 215 231 248 266 286 306 327 350 373 397
BFL 0.395 122 182 195 208 222 237 253 270 287 306 325 345
6 1.25 96.2 169 179 190 202 215 228 243 257 273 289 306
7 2.29 70.3 153 161 170 179 189 200 211 223 235 248 261
Fy= 50 ksi
W12-W10 ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 207

3–208 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
Y1 = distance from top of the steel beam to plastic neutral axis
bY2 = distance from top of the steel beam to concrete flange force
c
See Figure 3-3c for PNA locations.
d
Value in parentheses is I x(in.
4
) of noncomposite steel shape.
Table 3-20 (continued)
Lower-Bound
Elastic Moment of
Inertia, I
LB, for Plastic
Composite Sections
Shape
d
4
Y2
b
, in.
2 2.5 3 3.5 4.5kipin.
∑QnY1
a
5 5.5 6 6.5 7
PNA
c
W10×17 TFL 0 250 206 224 244 264 286 310 334 360 387 415 445
(81.9) 2 0.0825 216 197 214 232 251 272 293 316 340 365 391 418
3 0.165 183 187 202 219 236 255 274 295 317 340 364 388
4 0.248 150 175 189 203 219 235 253 271 290 311 332 354
BFL 0.330 117 161 173 185 198 212 227 243 259 276 294 313
6 1.31 89.8 148 157 167 178 190 202 215 229 243 258 274
7 2.45 62.4 132 139 147 155 164 173 183 193 204 215 227
W10×15 TFL 0 221 177 193 210 228 248 268 289 312 336 361 387
(68.9) 2 0.0675 194 170 185 201 218 236 255 275 296 318 342 366
3 0.135 167 162 176 190 206 223 240 259 278 299 320 342
4 0.203 140 153 165 178 192 207 223 240 258 276 295 315
BFL 0.270 113 142 153 164 177 190 204 218 233 250 266 284
6 1.35 83.8 128 137 147 157 167 178 190 203 216 229 244
7 2.60 55.1 112 118 125 133 140 148 157 166 175 185 196
W10×12 TFL 0 177 139 152 165 180 195 211 229 247 265 285 306
(53.8) 2 0.0525 156 134 145 158 172 186 201 217 234 252 271 290
3 0.105 135 127 138 150 163 176 190 205 221 237 254 272
4 0.158 115 121 131 142 153 165 178 191 206 221 236 252
BFL 0.210 93.8 113 122 131 141 152 163 175 187 200 214 228
6 1.30 69.0 102 109 116 124 133 142 152 162 173 184 195
7 2.61 44.3 87.9 93.0 98.4 104 110 117 124 131 139 146 155
Fy= 50 ksi
W10ILB
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 208

Table 3-21
Shear Stud Anchor
Nominal Horizontal Shear Strength
for One Steel Headed Stud Anchor, Q
n, kips
3
/8 5.26 5.38 4.28 5.31
1
/2 9.35 9.57 7.60 9.43
5
/8 14.6 15.0 11.9 14.7
3
/4 21.0 21.5 17.1 21.2
3
/8 5.26 5.38 4.28 5.31
1
/2 9.35 9.57 7.60 9.43
5
/8 14.6 15.0 11.9 14.7
3
/4 21.0 21.5 17.1 21.2
3
/8 4.58 4.58 4.28 4.58
1
/2 8.14 8.14 7.60 8.14
5
/8 12.7 12.7 11.9 12.7
3
/4 18.3 18.3 17.1 18.3
3
/8 4.31 4.31 4.28 4.31
1
/2 7.66 7.66 7.60 7.66
5
/8 12.0 12.0 11.9 12.0
3
/4 17.2 17.2 17.1 17.2
3
/8 3.66 3.66 3.66 3.66
1
/2 6.51 6.51 6.51 6.51
5
/8 10.2 10.2 10.2 10.2
3
/4 14.6 14.6 14.6 14.6
3
/8 3.02 3.02 3.02 3.02
1
/2 5.36 5.36 5.36 5.36
5
/8 8.38 8.38 8.38 8.38
3
/4 12.1 12.1 12.1 12.1
3
/8 5.26 5.38 4.28 5.31
1
/2 9.35 9.57 7.60 9.43
5
/8 14.6 15.0 11.9 14.7
3
/4 21.0 21.5 17.1 21.2
3
/8 4.58 4.58 4.28 4.58
1
/2 8.14 8.14 7.60 8.14
5
/8 12.7 12.7 11.9 12.7
3
/4 18.3 18.3 17.1 18.3
3
/8 3.77 3.77 3.77 3.77
1
/2 6.70 6.70 6.70 6.70
5
/8 10.5 10.5 10.5 10.5
3
/4 15.1 15.1 15.1 15.1
COMPOSITE BEAM SELECTION TABLES 3–209
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Deck condition wc= 145 pcf
No deck
f′c= 3 ksi
Stud anchor
diameter,
in.
Fu= 65 ksi
wc= 110 pcf
Lightweight concreteNormal weight concrete
f′c= 3 ksif′c= 4 ksi f′c= 4 ksi
Note:
Tabulated values are applicable only to concrete made with ASTM C33 aggregates for normal weight concrete and ASTM C330
aggregates for lightweight concrete.
After-weld steel headed stud anchor lengths assumed to be ≥Deck height +1.5 in.
w
hr
r
≥15.
w
hr
r
<15.
1
2
3
1
2
3
Strong studs per rib (
R
p
= 0.75) Weak studs per rib (
R
p
= 0.60)
Deck Parallel Deck Perpendicular
n
AISC_Part 3D:14th Ed. 2/17/12 8:35 AM Page 209

3–210 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-22a
Concentrated Load Equivalents
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 210

BEAM DIAGRAMS AND FORMULAS 3–211
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-22b
Cantilevered Beams
Beam Diagrams and Formulas—
Equal Loads, Equally Spaced
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 211

3–212 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-22c
Continuous Beams
Moments and Shear Coefficients—
Equal Spans, Equally Loaded
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 212

BEAM DIAGRAMS AND FORMULAS 3–213
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 213

3–214 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 214

BEAM DIAGRAMS AND FORMULAS 3–215
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D_14th Ed._February 25, 2012 14-11-24 9:34 AM Page 215 (Black plate)

3–216 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 216

BEAM DIAGRAMS AND FORMULAS 3–217
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 4/12/11 2:02 PM Page 217

3–218 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
load
AISC_Part 3D:14th Ed. 4/12/11 2:54 PM Page 218

BEAM DIAGRAMS AND FORMULAS 3–219
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
1M R
V
maxM
1M
AISC_Part 3D_14th Ed._Nov. 19, 2012 12/02/13 11:28 AM Page 219

3–220 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 4/12/11 3:05 PM Page 220

BEAM DIAGRAMS AND FORMULAS 3–221
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
NOTE: For a negative value of
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 221

3–222 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 222

BEAM DIAGRAMS AND FORMULAS 3–223
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
31. CONTINUOUS BEAM — TWO EQUAL SPANS — CONCENTRATED LOAD AT ANY POINT
l from R )
1
29. CONTINUOUS BEAM — TWO EQUAL SPANS — UNIFORM LOAD ON ONE SPAN
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 223

3–224 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 224

BEAM DIAGRAMS AND FORMULAS 3–225
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a
R (l – x)
Table 3-23 (continued)
Shears, Moments and Deflections
AISC_Part 3D_14th Ed._ 01/03/12 10:12 AM Page 225

3–226 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
37. CONTINUOUS BEAM — THREE EQUAL SPANS — ONE END SPAN UNLOADED
38. CONTINUOUS BEAM — THREE EQUAL SPANS — END SPANS LOADED
39. CONTINUOUS BEAM — THREE EQUAL SPANS — ALL SPANS LOADED
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 226

Table 3-23 (continued)
Shears, Moments and Deflections
40. CONTINUOUS BEAM — FOUR EQUAL SPANS — THIRD SPAN UNLOADED
41. CONTINUOUS BEAM — FOUR EQUAL SPANS — LOAD FIRT AND THIRD SPANS
42. CONTINUOUS BEAM — FOUR EQUAL SPANS — ALL SPANS LOADED
BEAM DIAGRAMS AND FORMULAS 3–227
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 3D_14th Ed._February 25, 2012 25/02/13 3:18 PM Page 227

3–228 DESIGN OF FLEXURAL MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 3-23 (continued)
Shears, Moments and Deflections
43. SIMPLE BEAM — ONE CONCENTRATED MOVING LOAD
44. SIMPLE BEAM — TWO EQUAL CONCENTRATED MOVING LOADS
45. SIMPLE BEAM — TWO UNEQUAL CONCENTRATED MOVING LOADS
GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS
AISC_Part 3D:14th Ed. 2/24/11 9:04 AM Page 228

4–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 4
DESIGN OF COMPRESSION MEMBERS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
AVAILABLE COMPRESSIVE STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
LOCAL BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
Determining the Width-to-Thickness Ratios of the Cross Section . . . . . . . . . . . . . . . 4–3
Determining the Slenderness of the Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
EFFECTIVE LENGTH AND COLUMN SLENDERNESS . . . . . . . . . . . . . . . . . . . . . . 4–3
COMPOSITE COMPRESSION MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
Steel Compression—Member Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
Composite Compression—Member Selection Tables . . . . . . . . . . . . . . . . . . . . . . . . 4–9
PART 4 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
STEEL COMPRESSION—MEMBER SELECTION TABLES . . . . . . . . . . . . . . . . . . 4–12
Table 4-1. W-Shapes in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12
Table 4-2. HP-Shapes in Axial Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24
Table 4-3. Rectangular HSS in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . 4–28
Table 4-4. Square HSS in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–52
Table 4-5. Round HSS in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–68
Table 4-6. Pipe in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–85
Table 4-7. WT-Shapes in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–89
Table 4-8. Equal-Leg Double Angles in Axial Compression . . . . . . . . . . . . . . . . . 4–122
Table 4-9. LLBB Double Angles in Axial Compression . . . . . . . . . . . . . . . . . . . . 4–131
Table 4-10. SLBB Double Angles in Axial Compression . . . . . . . . . . . . . . . . . . . 4–146
Table 4-11. Concentrically Loaded Single Angles in Axial Compression . . . . . . . 4–161
Table 4-12. Eccentrically Loaded Single Angles in Axial Compression . . . . . . . . 4–183
COMPOSITE COMPRESSION—MEMBER SELECTION TABLES . . . . . . . . . . . 4–205
Table 4-13. Rectangular HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–205
Table 4-14. Rectangular HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–226
Table 4-15. Square HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–247
AISC_Part 4A:14th Ed. 4/1/11 8:47 AM Page 1

4–2 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-16. Square HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–263
Table 4-17. Round HSS Filled with 4-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–279
Table 4-18. Round HSS Filled with 5-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–296
Table 4-19. Pipe Filled with 4-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–313
Table 4-20. Pipe Filled with 5-ksi Normal Weight Concrete
in Axial Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–317
Table 4-21. Stiffness Reduction Factor τ
b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–321
Table 4-22. Available Critical Stress for Compression Members . . . . . . . . . . . . . . 4–322
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 2

EFFECTIVE LENGTH AND COLUMN SLENDERNESS 4–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to axial compression. For the design of members
subject to eccentric compression or combined axial compression and flexure, see Part 6.
AVAILABLE COMPRESSIVE STRENGTH
The available strength of compression members, φP nor Pn/Ω, which must equal or exceed
the required strength, P
uor Pa, respectively, is determined according to AISC Specification
Chapter E.
LOCAL BUCKLING
Determining the Width-to-Thickness Ratios 
of the Cross Section
Steel compression members are classified on the basis of the width-to-thickness ratios of the
various elements of the cross section. The width-to-thickness ratio is calculated for each ele-
ment of the cross section per AISC SpecificationSection B4.
Determining the Slenderness of the Cross Section
When the width-to-thickness ratios of all compression elements are less than or equal to λ r,
the cross section is nonslender, and Q, the reduction factor for slender compression ele-
ments (elastic local buckling effects), equals 1.0. When the width-to-thickness ratio of a
compression element is greater than λ
r, the cross section is a slender-element cross section
and Qmust be included in the calculation of the available compressive strength. Qis deter-
mined per AISC SpecificationSection E7, and λ
ris determined per AISC Specification
Section B4 and Table B4.1a.
EFFECTIVE LENGTH AND COLUMN SLENDERNESS
Columns are designed for their slenderness, KL/r,per AISC SpecificationSection E2. The
effective length, KL, is equal to the effective length factor, K, multiplied by L, the physical
length between braced points (see AISC SpecificationAppendix 6).
When a stability analysis is performed using the direct analysis method per AISC
Specification Chapter C, K =1.
When a stability analysis is performed using the first-order analysis method in AISC
Specification Appendix Section 7.3, K =1.
When a stability analysis is performed using the effective length method in AISC
Specification Appendix Section 7.2, the following applies:
K =1 for columns braced at each end and whose flexural stiffnesses are not consid-
ered to contribute to lateral stability and resistance to lateral loads.
K =1 for all columns when the ratio of maximum second-order drift to first-order drift
in all stories is less than 1.1.
Kshall be determined from a sidesway buckling analysis for all columns whose flex-
ural stiffnesses are considered to contribute to lateral stability and resistance to lateral
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 3

4–4 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
loads. Guidance on the proper determination of the value of Kis given in AISC
SpecificationCommentary to Appendix Section 7.2.
As indicated in the User Note in AISC SpecificationSection E2, compression member
slenderness, KL/r,should preferably be limited to a maximum of 200. Note that this recom-
mendation does not apply to members that are primarily tension members, but subject to
incidental compression under other load combinations.
Additional information is available in the SSRC Guide to Stability Design Criteria for
Metal Structures(Ziemian, 2010).
COMPOSITE COMPRESSION MEMBERS
For the design of encased composite and filled composite compression members, see AISC
SpecificationSection I2. See also AISC Design Guide 6, Load and Resistance Factor
Design of W-Shapes Encased in Concrete(Griffis, 1992). For further information on com-
posite design and construction, see also Viest et al. (1997).
DESIGN TABLE DISCUSSION
Steel Compression—Member Selection Tables
Table 4-1.  W-Shapes in Axial Compression
Available strengths in axial compression are given for W-shapes with F y=50 ksi (ASTM
A992). The tabulated values are given for the effective length with respect to the y-axis
(KL)
y. However, the effective length with respect to the x-axis (KL) xmust also be investi-
gated. To determine the available strength in axial compression, the table should be entered
at the larger of (KL)
yand (KL) y eq, where
(4-1)
Values of the ratio r
x/ryand other properties useful in the design of W-shape compression
members are listed at the bottom of Table 4-1.
Variables P
wo, Pwi,Pwband P fbshown in Table 4-1 can be used to determine the strength
of W-shapes without stiffeners to resist concentrated forces applied normal to the face(s) of
the flange(s). In these tables it is assumed that the concentrated forces act far enough away
from the member ends that end effects are not considered (end effects are addressed in
Chapter 9). When P
r≤φR nor Rn/Ω, column web stiffeners are not required. Figures 4-1,
4-2 and 4-3 illustrate the limit states and the applicable variables for each.
Web Local Yielding: The variables P
woand P wican be used in the calculation of the avail-
able web local yielding strength for the column as follows:
KL
KL
r
r
yeq
x
x
y
()=
()

LRFD ASD
φRn=Pwo+Pwilb (4-2a) R n/Ω=P wo+Pwilb (4-2b)
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 4

DESIGN TABLE DISCUSSION 4–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
R
n=Fywtw(5k +l b) =5F ywtwk +F ywtwlb, kips (AISC SpecificationEquation J10-2 )
P
wo=φ5F ywtwkfor LRFD and 5F ywtwk/Ωfor ASD, kips
P
wi=φFywtwfor LRFD and F ywtw/Ωfor ASD, kips/in.
k=distance from outer face of flange to the web toe of fillet, in.
l
b=length of bearing, in.
t
w=thickness of web, in.
φ=1.00
Ω=1.50
Web Compression Buckling: The variable P
wbis the available web compression buckling
strength for the column as follows:
where
R
n= (AISC SpecificationEquation J10-8 )
P
wb= for LRFD and for ASD, kips
F
yw= specified minimum yield stress of the web, ksi
h= clear distance between flanges less the fillet or corner radius for rolled shapes, in.
φ= 0.90
Ω= 1.67
Fig. 4-1. Illustration of web local yielding limit state
(AISC Specification Section J10.2).
LRFD ASD
φRn=Pwb (4-3a) R n/Ω=P wb (4-3b)
24
3
tEF
hwyw
φ24
3
tEF
hwyw
24
3
tEF
hwyw
Ω
AISC_Part 4A:14th Ed. 2/17/12 8:48 AM Page 5

4–6 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Flange Local Bending: The variable P fbis the available flange local bending strength for
the column as follows:
where
R
n= , kips (AISC SpecificationEquation J10-1 )
P
fb= for LRFD and / Ωfor ASD, kips
φ= 0.90
Ω= 1.67
Fig. 4-2. Illustration of web compression buckling limit state
(AISC Specification Section J10.5).
LRFD ASD
φRn=Pfb (4-4a) R n/Ω=P fb (4-4b)
Fig. 4-3. Illustration of flange local bending limit state
(AISC Specification Section J10.1).
625
2
.Ftyf f
φ625
2
.Ftyf f 625
2
.Ftyf f
AISC_Part 4A_14th Ed._Nov. 20, 2012 14-11-10 11:07 AM Page 6 (Black plate)

DESIGN TABLE DISCUSSION 4–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-2.  HP-Shapes in Axial Compression
Table 4-2 is similar to Table 4-1, except it covers HP-shapes with F y=50 ksi (ASTM A572
Grade 50).
Table 4-3.  Rectangular HSS in Axial Compression
Available strengths in axial compression are given for rectangular HSS with F y=46 ksi
(ASTM A500 Grade B). The tabulated values are given for the effective length with respect
to the y-axis, (KL)
y. However, the effective length with respect to the x-axis (KL) xmust also
be investigated. To determine the available strength in axial compression, the table should
be entered at the larger of (KL)
yand (KL) y eq, where
(4-1)
Values of the ratio r
x/ryand other properties useful in the design of rectangular HSS com-
pression members are listed at the bottom of Table 4-3.
Table 4-4.  Square HSS in Axial Compression
Table 4-4 is similar to Table 4-3, except that it covers square HSS.
Table 4-5.  Round HSS in Axial Compression
Available strengths in axial compression are given for round HSS with F y=42 ksi (ASTM
A500 Grade B). To determine the available strength in axial compression, the table should
be entered at KL. Other properties useful in the design of compression members are listed
at the bottom of the available column strength tables.
Table 4-6.  Pipe in Axial Compression
Table 4-6 is similar to Table 4-5, except it covers pipe with F y=35 ksi (ASTM A53 Grade B).
Table 4-7.  WT-Shapes in Axial Compression
Available strengths in axial compression, including the limit state of flexural-torsional buck-
ling, are given for WT-shapes with F
y=50 ksi (ASTM A992). Separate tabulated values are
given for the effective lengths with respect to the x- and y-axes, (KL)
xand (KL) y, respec-
tively. Other properties useful in the design of WT-shape compression members are listed at
the bottom of Table 4-7.
Table 4-8.  Equal-Leg Double Angles in Axial Compression
Available strengths in axial compression, including the limit state of flexural-torsional buck-
ling, are given for equal-leg double angles with F
y=36 ksi (ASTM A36), assuming
3
/8-in.
separation between the angles. These values can be used conservatively when a larger sep-
aration is provided. Alternatively, the value of (KL)
ycan be multiplied by the ratio of (r yfor
a
3
/8-in. separation) to (r yfor the actual separation).
Separate tabulated values are given for the effective lengths with respect to the x- and
y-axes, (KL)
xand (KL) y, respectively. For buckling about the x-axis, the available strength
KL
KL
r
r
yeq
x
x
y
()=
()

AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 7

4–8 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is not affected by the number of intermediate connectors. However, for buckling about the
y-axis, the effects of shear deformations of the intermediate connectors must be considered.
The tabulated values for (KL)
yhave been adjusted for the shear deformations in accordance
with AISC SpecificationEquations E6-2a and E6-2b, which is applicable to welded and
pretensioned bolted intermediate shear connectors. The number of intermediate connec-
tors, n, is given in the table and the line of demarcation between the required connector
values is dashed. Intermediate connectors are selected such that the available compression
buckling strength about the y-axis is equal to or greater than 90% of that for compression
buckling of the two angles as a unit. If fewer connectors or snug-tightened bolted interme-
diate connectors are used, the available strength must be recalculated per AISC
SpecificationSection E6. Per AISC SpecificationSection E6.2, the slenderness of the indi-
vidual components of the built-up member based upon the distance between intermediate
connectors, a, must not exceed three-quarters of the controlling slenderness of the overall
built-up compression member.
Other properties useful in the design of double-angle compression members are listed at
the bottom of Table 4-8.
Table 4-9.  LLBB Double Angles in Axial Compression
Table 4-9 is the same as Table 4-8, except that it provides available strengths in axial com-
pression for double angles with long legs back-to-back.
Table 4-10.  SLBB Double Angles in Axial Compression
Table 4-10 is the same as Table 4-8, except that it provides available strengths in axial com-
pression for double angles with short legs back-to-back.
Table 4-11.  Concentrically Loaded Single Angles in Axial
Compression
Available strengths in axial compression are given for single angles, loaded through the cen-
troid of the cross section, with F
y=36 ksi (ASTM A36) based upon the effective length with
respect to the z-axis, (KL)
z. Single angles may be assumed to be loaded through the centroid
when the requirements of AISC SpecificationSection E5 are met, as in these cases the
eccentricity is accounted for and the slenderness is reduced by the restraining effects of the
support at both ends of the member.
Table 4-12.  Eccentrically Loaded Single Angles in Axial
Compression
Available strengths in axial compression are given for eccentrically loaded single angles
with F
y=36 ksi (ASTM A36).
The long leg of the angle is assumed to be attached to a gusset plate with a thickness of
1.5t. The tabulated values assume a load placed at the mid-width of the long leg of the angle
at a distance of 0.75tfrom the face of this leg.
Effective length, KL, is assumed to be the same on all axes (r
x, ry, rzand r w). Table 4-12
considers the combined bending stresses at the heel and the tips of the angle (points A, B
and C in Figure 4-4) produced by axial compression plus biaxial bending moments about
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 8

DESIGN TABLE DISCUSSION 4–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the principal w- and z-axes using AISC SpecificationEquation H2-1. Points A and C are
assumed at the angle mid-thickness at distances band d(respectively) from the heel.
Note that for some sections, such as L3
1
/2×3×
5
/16, the calculated available strength can
increase slightly as the unbraced length increases from zero, and then decrease as the
unbraced length further increases.
Composite Compression—Member Selection Tables
Table 4-13.  Rectangular HSS Filled with 4-ksi Normal Weight
Concrete in Axial Compression
Available strengths in axial compression are given for rectangular HSS with F y=46 ksi
(ASTM A500 Grade B) filled with 4-ksi normal weight concrete. The tabulated values are
given for the effective length with respect to the y-axis (KL)
y. However, the effective length
with respect to the x-axis (KL)
xmust also be investigated. To determine the available strength
in axial compression, the table should be entered at the larger of (KL)
yand (KL) y eq, where
(4-5)
Values of the ratio r
mx/rmyand other properties useful in the design of composite HSS com-
pression members are listed at the bottom of Table 4-13. The variables r
mxand r myare the
radii of gyration for the composite cross section. The ratio r
mx/rmyis determined as
(4-6)
Fig. 4-4. Eccentrically loaded single angle.
KL
KL
r
r
yeq
x
mx
my
()=
()

r
r
PKL
PKLmx
my
ex x x
ey y y
=
()
()
2
2
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 9

4–10 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For compact composite sections, the values of φM nand M n/Ωwere calculated using the
nominal moment strength equations for point B of the interaction diagram in Table C of the
Discussion of Limit State Response of Composite Columns and Beam-Columns Part II:
Application of Design Provisions for the 2005 AISC Specification(Geschwindner, 2010).
For noncompact sections, the values of φM
nand M n/Ωwere calculated using the closed
formed equations presented in the Commentary Figure C-I3-7.
The available strengths tabulated in Tables 4-13 through 4-20 are given for the indicated
shape with the associated concrete fill. AISC SpecificationSection I2.2b stipulates that the
available compressive strength of a filled composite member need not be less than that spec-
ified for a bare steel member. In these tables, available strengths controlled by the bare steel
acting alone are identified. Additionally, there is no longitudinal reinforcement provided,
because there is no requirement for minimum reinforcement in the AISC Specification. The
use of filled shapes without longitudinal reinforcement is a common industry practice.
Table 4-14.  Square HSS Filled with 4-ksi Normal Weight
Concrete in Axial Compression
Table 4-14 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for square HSS filled with 4-ksi normal weight concrete.
Table 4-15.  Rectangular HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-15 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for rectangular HSS filled with 5-ksi normal weight concrete.
Table 4-16.  Square HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-16 is the same as Table 4-13, except that it provides available strengths in axial com-
pression for square HSS filled with 5-ksi normal weight concrete.
Table 4-17. Round HSS Filled with 4-ksi Normal Weight
Concrete in Axial Compression
Available strengths in axial compression are given for round HSS with F y=42 ksi (ASTM
A500 Grade B) filled with 4-ksi normal weight concrete. To determine the available strength
in axial compression, the table should be entered at the largest effective length, KL. Other
properties useful in the design of compression members are listed at the bottom of Table 4-5.
The values of φM
nand M n/Ωwere calculated using the nominal moment strength equa-
tions for point B of the interaction diagram in Table D of the Discussion of Limit State
Response of Composite Columns and Beam-Columns Part II: Application of Design
Provisions for the 2005 AISC Specification (Geschwindner, 2010).
Table 4-18.  Round HSS Filled with 5-ksi Normal Weight
Concrete in Axial Compression
Table 4-18 is the same as Table 4-17, except that it provides available strengths in axial com-
pression for round HSS filled with 5-ksi normal weight concrete.
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 10

PART 4 REFERENCES 4–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-19.  Pipe Filled with 4-ksi Normal Weight Concrete in
Axial Compression
Available strengths in axial compression are given for pipe with F y=35 ksi (ASTM A53
Grade B) filled with 4-ksi normal weight concrete. To determine the available strength in
axial compression, the table should be entered at the largest effective length, KL. Other prop-
erties useful in the design of compression members are listed at the bottom of Table 4-6.
Table 4-20.  Pipe Filled with 5-ksi Normal Weight Concrete in
Axial Compression
Table 4-20 is the same as Table 4-19, except that it provides available strengths in axial com-
pression for pipe filled with 5-ksi normal weight concrete.
Table 4-21. Stiffness Reduction Factor τb
When an analysis is performed using the effective length method in AISC Specification
Appendix Section 7.2, that procedure requires determination of the effective length factor,
K. A common method of determining Kis through the use of alignment charts provided in
the AISC Specification Commentary.
When column buckling occurs in the inelastic range, the alignment charts usually give
conservative results. For more accurate solutions, inelastic K-factors can be determined
from the alignment chart by using τ
btimes the elastic modulus of the columns in the equa-
tion for G. The stiffness reduction factor, τ
b,is the ratio of the tangent modulus, E T, to the
elastic modulus, E. Values are tabulated for steels with F
y=35 ksi, 36 ksi, 42 ksi, 46 ksi
and 50 ksi.
Table 4-22. Available Critical Stress for Compression
Members
Table 4-22 provides the available critical stress for various ratios of Kl/r, for materials with
a minimum specified yield strength of 35 ksi, 36 ksi, 42 ksi, 46 ksi and 50 ksi.
PART 4 REFERENCES
Geschwindner, L.F. (2010), “Discussion of Limit State Responses of Composite Columns
and Beam-Columns Part II: Application of Design Provisions for the 2005 AISC
Specification,” Engineering Journal, AISC, Vol. 47, No. 2, 2nd Quarter, pp. 131–139,
Chicago, IL.
Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Sakla, S. (2001), “Tables for the Design Strength of Eccentrically-Loaded Single Angle
Struts,”Engineering Journal, AISC, Vol. 38, No. 3, 3rd Quarter, pp. 127–136, Chicago, IL.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A. (1997),
Composite Construction Design for Buildings, ASCE, New York, NY.
Ziemian, R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures, 6th Ed.,
John Wiley and Sons, Hoboken, NJ.
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 11

Shape W14 ×
lb/ft 730
h
665
h
605
h
550
h
500
h
455
h
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0644096705870882053308010485072904400661040106030
11607091305530831050107530455068404120620037505640
12601090305470822049507440450067604070612037105570
13594089205400811048907350444066704020604036605500
14586088105330801048207250438065803960595036005420
15578086905250789047507140431064803900586035505330
16569085605170777046807030424063803840577034905240
17561084305090765046006920417062703770566034205150
18551082905000752045206790410061603700556033605050
19542081404910738044406670402060403630545032904950
20532079904820724043506540394059203550534032204840
22511076704620695041706260377056603390510030804620
24489073404420664039805980359054003230486029204400
26466070004200632037805680341051203060460027704160
28442066503990599035805380322048402890434026103920
30418062903760566033705070303045602720408024503680
32394059303540532031704760284042702540382022903440
34370055603320499029604450265039902370356021303200
36346052003100465027604140246037002200330019702960
38322048502880433025603840228034302030305018202730
40299045002670401023603550210031601870280016702510
42277041602460369021703270193029001710257015202290
44255038302260339019902990176026501560234013902080
46233035102060310018202730161024201420214012701910
48214032201900285016702510148022201310196011601750
50197029701750263015402310136020501200181010701610
Properties
Pwo, kips 2820 42302410362020603090175026301500224012801920
Pwi, kips/in. 102 15494.314286.713079.311973.011067.3101
Pwb, kips 44000 6610034400517002660040100205003080015900239001250018800
Pfb, kips 4510 67803820575032404870273041002290345019302900
Lp, ft 16.6 16.3 16.1 15.9 15.6 15.5
Lr, ft 275 253 232 213 196 179
Ag, in.
2
215 196 178 162 147 134
Ix, in.
4
14300 12400 10800 9430 8210 7190
Iy, in.
4
4720 4170 3680 3250 2880 2560
ry, in. 4.69 4.62 4.55 4.49 4.43 4.38
rx/ry 1.74 1.73 1.71 1.70 1.69 1.67
Pex(KL)
2
/10
4
, k-in.
2
409000 355000 309000 270000 235000 206000
Pey(KL)
2
/10
4
, k-in.
2
135000 119000 105000 93000 82400 73300
ASD LRFD
Ωc=1.67 φc=0.90
4–12 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-1
Available Strength in 
Axial Compression, kips
W-Shapes
W14
Fy= 50 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
AISC_Part 4A:14th Ed. 2/23/11 10:01 AM Page 12

Shape W14 ×
lb/ft 426
h
398
h
370
h
342
h
311
h
283
h
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0374056203500526032604900302045402740411024903750
11350052603270492030404570282042302550383023203480
12345051903230485030004510278041802510377022903440
13341051203180478029604450274041202470372022503380
14335050403130471029104380270040502430366022103330
15330049603080463028704310265039802390360021803270
16324048703030455028104230260039102350353021403210
17318047902970447027604150255038402300346020903150
18312046902920438027104070250037602260339020503080
19306046002850429026503980245036802210332020003010
20299045002790420025903890239036002160324019602940
22286042902660400024703710228034202050308018602800
24271040802530380023403520216032401940292017602640
26256038502390359022103320204030601830275016602490
28241036302250338020803120191028701710258015502330
30226034002100316019402920179026801600240014502170
32211031701960295018102720166025001490223013402020
34196029501820273016702520154023101370206012401860
36181027301680253015402320142021301260190011401710
38167025101550232014202130130019501160174010401560
4015302300141021301300195011801780105015809451420
421390209012901930118017701070161095414308571290
44127019101170176010701610979147086913107811170
4611601750107016109801470896135079512007151070
48107016009851480900135082312407301100656986
50 98314809071360830125075811406731010605909
Properties
Pwo, kips 1140 171010101520902135078811806721010574861
Pwi, kips/in. 62.7 94.059.088.555.383.051.377.047.070.543.064.5
Pwb, kips 10100 15100842012700692010400554083204250639032604900
Pfb, kips 1730 260015202280132019901140172095614408021210
Lp, ft 15.3 15.2 15.1 15.0 14.8 14.7
Lr, ft 168 158 148 138 125 114
Ag, in.
2
125 117 109 101 91.4 83.3
Ix, in.
4
6600 6000 5440 4900 4330 3840
Iy, in.
4
2360 2170 1990 1810 1610 1440
ry, in. 4.34 4.31 4.27 4.24 4.20 4.17
rx/ry 1.67 1.66 1.66 1.65 1.64 1.63
Pex(KL)
2
/10
4
, k-in.
2
189000 172000 156000 140000 124000 110000
Pey(KL)
2
/10
4
, k-in.
2
67500 62100 57000 51800 46100 41200
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
W14
Fy= 50 ksi
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 13

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
Shape W14 ×
lb/ft 257 233 211 193 176 159
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0226034002050308018602790170025601550233014002100
6221033302010301018102730166025001510228013702050
7220033001990299018002700165024801500226013502030
8218032701970296017802680163024501490224013402010
9215032401950293017602650161024301470221013301990
10213032001930290017402620159024001450218013101970
11210031601900286017202580157023601430215012901940
12207031101870282016902550155023301410212012701910
13204030601840277016702510153022901390209012501880
14201030101810273016402460150022501360205012301850
15197029601780268016102420147022101340201012101810
16193029001750263015802370144021701310197011801780
17189028501710257015402320141021201280193011601740
18185027901670252015102270138020801260189011301700
19181027201640246014802220135020301230184011001660
20177026601600240014402160132019801200180010701620
22168025201510228013602050125018701130170010201530
2415902380143021501290193011701770107016009571440
261490224013402020121018201100166099815008961350
281400210012601890113017001030155093114008351250
30130019501170175010501570954143086313007731160
3212001810108016209681460881132079612007131070
34111016709941490890134081012207301100653982
36102015309111370815122074011106671000596896
38 9281400830125074111106731010605909540812
40 841126075111306701010608914546821487733
Properties
Pwo, kips 490 735414621353529303454264396222333
Pwi, kips/in. 39.3 59.035.753.532.749.029.744.527.741.524.837.3
Pwb, kips 2480 37301850278014302150107016108701310628944
Pfb, kips 668 1000554832455684388583321483265398
Lp, ft 14.6 14.5 14.4 14.3 14.2 14.1
Lr, ft 104 95.0 86.6 79.4 73.2 66.7
Ag, in.
2
75.6 68.5 62.0 56.8 51.8 46.7
Ix, in.
4
3400 3010 2660 2400 2140 1900
Iy, in.
4
1290 1150 1030 931 838 748
ry, in. 4.13 4.10 4.07 4.05 4.02 4.00
rx/ry 1.62 1.62 1.61 1.60 1.60 1.60
Pex(KL)
2
/10
4
, k-in.
2
97300 86200 76100 68700 61300 54400
Pey(KL)
2
/10
4
, k-in.
2
36900 32900 29500 26600 24000 21400
ASD LRFD
Ωc=1.67 φc=0.90
4–14 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W14
Fy= 50 ksi
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 14

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
W14
Fy= 50 ksi
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Shape W14 ×
lb/ft 145 132 120 109 99 90
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0128019201160175010601590958144087113107931190
6125018801130170010301550932140084812707721160
7124018601120168010201530923139083912607641150
8123018401110166010101510913137083012507551140
912101820109016409941490901135081912307451120
1012001800108016209801470888134080712107351100
1111801770106016009651450874131079411907231090
1211601750104015709481430859129078011707101070
1311401720102015409311400843127076611506971050
1411201690100015109121370826124075011306821030
151100165098214808921340808121073311006671000
16108016209601440872131078911907161080652979
17106015909371410850128077011606981050635955
18103015509131370828124075011306801020618929
1910101510888133080512107291100661994601903
20 9801470862130078211807081060642964583877
22 927139081012207341100664998602904547822
24 872131075611406851030620931561843509766
26 81612307021060635955574863519781472709
28 7591140648974586880529796478719434653
30 7031060594893537807485729438658397597
32 647973542814489735441663398598361543
34 593891491738443665399600360541326490
36 540812442664398598359539323485292439
38 489735397596357536322484290435262394
40 441663358538322484290437261393237356
Properties
Pwo, kips 192 28717526315122712819211216796.1144
Pwi, kips/in. 22.7 34.021.532.319.729.517.526.316.224.314.722.0
Pwb, kips 476 716407611312469220330173260129194
Pfb, kips 222 33419929816524913820811417194.3142
Lp, ft 14.1 13.3 13.2 13.2 13.5 15.1
Lr, ft 61.7 55.8 51.9 48.5 45.3 42.5
Ag, in.
2
42.7 38.8 35.3 32.0 29.1 26.5
Ix, in.
4
1710 1530 1380 1240 1110 999
Iy, in.
4
677 548 495 447 402 362
ry, in. 3.98 3.76 3.74 3.73 3.71 3.70
rx/ry 1.59 1.67 1.67 1.67 1.66 1.66
Pex(KL)
2
/10
4
, k-in.
2
48900 43800 39500 35500 31800 28600
Pey(KL)
2
/10
4
, k-in.
2
19400 15700 14200 12800 11500 10400
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 15

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
4–16 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W14
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Shape W14 ×
lb/ft 82 746861534843
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 7191080653981599900536805467702422634374562
6 6761020614922562845503756421633380572339510
7 661993600902550826492739406610366551327491
8 644968585879536805479720389585351527312470
9 626940568854520782465699371557334502297447
10606910550827503756450676351528316475281422
11584878531797485729433651331497298447264397
12562844510767466701416626310465279419247371
13538809489735446671398599288433259390229345
14514772467701426640380571267401240360212318
15489735444667405608361543246369221331194292
16464697421633384577342514225338202303177267
17438659398598362544323485205308183276161242
18413620375563341512304456185278166249145218
19387582352529320480285428166250149224130196
20362545329495299449266399150226134202117177
2231447228542825838822934512418611116797.1146
2426740224336521933019529310415793.214081.6123
2622834320731118728116624988.813379.411969.5104
2819729517926816124214321576.611568.510359.990.1
3017125715623414021112518766.710059.789.752.278.5
3215022613720512318511016558.688.1
3413320012118210916497.0146
3611917910816297.514786.5130
3810716096.914687.513177.7117
4096.314587.513179.011970.1105
Properties
Pwo, kips 123 18510415590.613677.511677.111667.410156.985.4
Pwi, kips/in. 17.025.515.022.513.820.812.518.812.318.511.317.010.215.3
Pwb, kips 201 30213820710816380.112076.711559.589.543.064.7
Pfb, kips 137 20611517397.014677.811781.512366.299.652.679.0
Lp, ft 8.76 8.76 8.69 8.65 6.78 6.75 6.68
Lr, ft 33.2 31.0 29.3 27.5 22.3 21.1 20.0
Ag, in.
2
24.0 21.8 20.0 17.9 15.6 14.1 12.6
Ix, in.
4
881 795 722 640 541 484 428
Iy, in.
4
148 134 121 107 57.7 51.4 45.2
ry, in. 2.48 2.48 2.46 2.45 1.92 1.91 1.89
rx/ry 2.44 2.44 2.44 2.44 3.07 3.06 3.08
Pex(KL)
2
/10
4
, k-in.
2
25200 22800 20700 18300 15500 13900 12300
Pey(KL)
2
/10
4
, k-in.
2
4240 3840 3460 3060 1650 1470 1290
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 16

Shape W12 ×
lb/ft 336
h
305
h
279
h
252
h
230
h
210
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0296044502680403024503690222033302030305018502780
6287043102590390023703570214032201960294017902680
7284042602560385023403520212031801930291017602650
8280042102530380023103470209031401910286017402610
9276041502490374022803420206030901880282017102570
10271040802450368022403360202030301840277016802520
11266040002400361021903300198029701800271016402470
12261039202350354021503230194029101760265016102420
13255038402300346021003150189028401720259015702360
14249037502250338020503080184027701680252015302300
15243036602190329019903000179027001630245014802230
16237035602130320019402910174026201580238014402160
17230034602070310018802820169025401540231013902100
18223033502000301018202730163024601480223013502030
19216032501940291017602640158023701430215013001950
20209031401870281017002550152022901380207012501880
22194029101730261015702360141021101270191011501730
24179026901600240014402170129019401170175010501580
2616402460146021901320198011701760106015909551440
281490224013201990119017901060159095414308591290
30135020301190179010701610949143085412807671150
3212101820107016009541430843127075611406781020
34108016209451420845127074611206701010600902
36 9591440843127075411306661000597898535805
38 861129075711406761020598898536806481722
40 77711706831030610917539811484727434652
Properties
Pwo, kips 1050 158089713407831170665998574861492738
Pwi, kips/in. 59.3 89.054.381.551.076.546.770.043.064.539.359.0
Pwb, kips 10000 1510076901160063809590487073203810573029304400
Pfb, kips 1640 24601370207011401720947142080212106761020
Lp, ft 12.3 12.1 11.9 11.8 11.7 11.6
Lr, ft 150 137 126 114 105 95.8
Ag, in.
2
98.9 89.5 81.9 74.1 67.7 61.8
Ix, in.
4
4060 3550 3110 2720 2420 2140
Iy, in.
4
1190 1050 937 828 742 664
ry, in. 3.47 3.42 3.38 3.34 3.31 3.28
rx/ry 1.85 1.84 1.82 1.81 1.80 1.80
Pex(KL)
2
/10
4
, k-in.
2
116000 102000 89000 77900 69300 61300
Pey(KL)
2
/10
4
, k-in.
2
34100 30100 26800 23700 21200 19000
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W12
Fy= 50 ksi
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 17

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
4–18 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W12
Fy= 50 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Shape W12 ×
lb/ft 190 170 152 136 120 106
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016802520150022501340201011901800105015809341400
616202430144021701290194011501730101015208981350
716002400142021401270191011301710100015008861330
81570236014002110125018801120168098414808711310
91550232013802070123018501100165096614508551290
101520228013502030121018101080162094714208381260
111490223013201990118017701050158092513908191230
121450218012901940115017301030154090313607991200
131420213012601900112016901000150087913207771170
14138020701230184010901640972146085412807551130
15134020101190179010601590942142082812407311100
16130019501150173010301540912137080012007071060
1712601890112016809921490881132077311606821030
181210182010801620957144084912807441120656987
191170176010401560921138081612307151070631948
20113016909971500885133078411806861030604908
2210301560916138081112207171080626942552829
24 944142083412507371110651978567853499750
26 85512807541130665999586880510766448673
28 76711506751010595894523786454682398598
30 6841030600902527793462695400601350526
32 603906528794464697406610352528308462
34 534803468704411617360541311468272410
36 476716418628366551321482278417243365
38 428643375563329494288433249375218328
40 386580338508297446260391225338197296
Properties
Pwo, kips 412 617346518290435244365201302162242
Pwi, kips/in. 35.3 53.032.048.029.043.526.339.523.735.520.330.5
Pwb, kips 2120 319015802370117017608781320637957405609
Pfb, kips 567 852455684367551292439231347183276
Lp, ft 11.5 11.4 11.3 11.2 11.1 11.0
Lr, ft 87.3 78.5 70.6 63.2 56.5 50.7
Ag, in.
2
56.0 50.0 44.7 39.9 35.2 31.2
Ix, in.
4
1890 1650 1430 1240 1070 933
Iy, in.
4
589 517 454 398 345 301
ry, in. 3.25 3.22 3.19 3.16 3.13 3.11
rx/ry 1.79 1.78 1.77 1.77 1.76 1.76
Pex(KL)
2
/10
4
, k-in.
2
54100 47200 40900 35500 30600 26700
Pey(KL)
2
/10
4
, k-in.
2
16900 14800 13000 11400 9870 8620
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 18

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W12
Fy= 50 ksi
Shape W12 ×
lb/ft9687797265
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 844127076611506951040632 949 572 859
6 811122073611106671000606 911 549 825
7 80012007261090657 988 597 898 540 812
8 78711807141070646 971 587 883 531 798
9 77211607001050634 953 576 866 521 783
10 75611406851030620 932 564 847 510 766
11 73911106701010606 910 550 827 497 747
12 7201080653 981 590 887 536 806 484 728
13 7011050635 954 574 862 521 783 470 707
14 6801020616 925 556 836 505 759 456 685
15 659 990 596 896 538 809 489 735 441 663
16 637 957 576 865 520 781 472 709 426 640
17 614 923 555 834 501 753 455 683 410 616
18 591 888 534 802 481 723 437 656 393 591
19 567 852 512 770 462 694 419 629 377 567
20 543 816 490 737 442 664 401 602 360 542
22 495 744 446 671 402 604 364 547 327 492
24 447 672 403 605 362 544 328 493 294 442
26 401 602 360 541 323 486 292 440 262 394
28 356 535 319 480 286 430 259 389 231 348
30 312 469 280 421 250 376 226 340 202 304
32 274 413 246 370 220 331 199 299 178 267
34 243 365 218 327 195 293 176 265 157 236
36 217 326 194 292 174 261 157 236 140 211
38 195 293 174 262 156 234 141 212 126 189
40 176 264 157 237 141 212 127 191 114 171
Properties
Pwo, kips 138 206 121 182 10415691.0137 78.0117
Pwi, kips/in. 18.3 27.517.225.815.723.514.321.513.019.5
Pwb, kips 296 445 243 365 185278 142 213 106159
Pfb, kips 152 228 123 185 10115284.0126 68.5103
Lp, ft 10.9 10.8 10.8 10.7 11.9
Lr, ft 46.7 43.1 39.9 37.5 35.1
Ag, in.
2
28.2 25.6 23.2 21.1 19.1
Ix, in.
4
833 740 662 597 533
Iy, in.
4
270 241 216 195 174
ry, in. 3.09 3.07 3.05 3.04 3.02
rx/ry 1.76 1.75 1.75 1.75 1.75
Pex(KL)
2
/10
4
, k-in.
2
23800 21200 18900 17100 15300
Pey(KL)
2
/10
4
, k-in.
2
7730 6900 6180 5580 4980
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:02 AM Page 19

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
4–20 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W12
Fy= 50 ksi
Note: Heavy line indicates KL/ryequal to or greater than 200.
Shape W12 ×
lb/ft5853504540
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 509 765 467 702 437 657 392 589 350 526
6 479 720 439 660 396 595 355 534 317 476
7 469 705 429 646 382 574 342 515 305 459
8 457 687 419 629 367 551 329 494 293 440
9 445 668 407 611 350 526 313 471 279 420
10 431 647 394 592 332 500 297 447 265 398
11 416 625 380 571 314 472 281 422 250 375
12 400 601 365 549 295 443 263 396 234 352
13 384 577 350 526 275 413 246 369 218 328
14 367 551 334 502 255 384 228 343 202 304
15 349 525 318 478 236 355 210 316 187 281
16 332 499 301 453 217 326 193 290 171 257
17 314 472 285 428 198 298 176 265 156 235
18 296 445 268 403 180 270 160 240 142 213
19 278 418 252 378 162 244 144 216 127 191
20 261 392 235 354 146 220 130 195 115 173
22 227 341 204 307 121 182 107 16195.0143
24 194 292 174 261 102 15390.313679.8120
26 165 249 148 22386.613076.911668.0102
28 143 214 128 19274.711266.399.758.688.1
30 124 187 111 16765.097.857.886.851.176.8
32 109 16497.814757.285.950.876.344.967.5
34 96.714586.6130
36 86.313077.3116
38 77.411669.4104
40 69.910562.694.1
Properties
Pwo, kips 74.4 11267.9102 70.310560.390.550.275.2
Pwi, kips/in. 12.0 18.011.517.312.318.511.216.89.8314.8
Pwb, kips 83.1 12573.3110 88.413365.698.644.867.4
Pfb, kips 76.6 11561.993.076.611561.993.049.674.6
Lp, ft 8.87 8.76 6.92 6.89 6.85
Lr, ft 29.8 28.2 23.8 22.4 21.1
Ag, in.
2
17.0 15.6 14.6 13.1 11.7
Ix, in.
4
475 425 391 348 307
Iy, in.
4
107 95.8 56.3 50.0 44.1
ry, in. 2.51 2.48 1.96 1.95 1.94
rx/ry 2.10 2.11 2.64 2.64 2.64
Pex(KL)
2
/10
4
, k-in.
2
13600 12200 11200 9960 8790
Pey(KL)
2
/10
4
, k-in.
2
3060 2740 1610 1430 1260
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 20

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W10
Fy= 50 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Shape W10 ×
lb/ft 112 100 88 77 68 60
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 9851480877132077811706801020596895530796
6 934140083112507371110643966563846500752
7 917138081512307221090630946552829490737
8 897135079712007061060615925539810479719
9 875131077711706881030599900525789466700
10 851128075511306691000582874509765452679
11 82512407321100647973563846493741437657
12 79812007071060625940543816475714421633
13 76911606811020602905522785457687405608
14 7391110654983578868501753438658388583
15 7081060626941553831479720419629370556
16 6771020598898527792456686399599352530
17 645969569855501754433651379569334502
18 613921540811475714410617358539316475
19 580872511767449675387582338508298448
20 548824482724423636365548318478280421
22 485728425638373560320481279419245368
24 423636370556324487277417241363212318
26 365548318478278417237356206310181271
28 315473274412239360204307178267156234
30 274412239359209313178267155233136204
32 241362210315183276156235136205119179
34 213321186279162244139208121181106159
36 19028616624914521812418610816294.2142
38 17125714922413019511116796.514584.5127
40 15423213420211717610015087.113176.3115
Properties
Pwo, kips 220 33018427515022512118299.514982.6124
Pwi, kips/in. 25.2 37.822.734.020.230.317.726.515.723.514.021.0
Pwb, kips 949 14306901040487732328494229344163245
Pfb, kips 292 43923535318327614221311116786.5130
Lp, ft 9.47 9.36 9.29 9.18 9.15 9.08
Lr, ft 64.1 57.9 51.2 45.3 40.6 36.6
Ag, in.
2
32.9 29.3 26.0 22.7 19.9 17.7
Ix, in.
4
716 623 534 455 394 341
Iy, in.
4
236 207 179 154 134 116
ry, in. 2.68 2.65 2.63 2.60 2.59 2.57
rx/ry 1.74 1.74 1.73 1.73 1.71 1.71
Pex(KL)
2
/10
4
, k-in.
2
20500 17800 15300 13000 11300 9760
Pey(KL)
2
/10
4
, k-in.
2
6750 5920 5120 4410 3840 3320
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 21

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
4–22 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W10
Fy= 50 ksi
Note: Heavy line indicates KL/ryequal to or greater than 200.
Shape W10 ×
lb/ft5449453933
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 473 711 431 648 398 598 344 517 291 437
6 446 671 407 611 363 545 313 470 263 395
7 437 657 398 598 350 527 302 454 253 381
8 427 642 388 584 337 507 290 436 243 365
9 415 624 378 568 322 485 277 416 232 348
10 403 605 366 550 307 461 263 396 220 330
11 389 585 354 532 291 437 249 374 207 311
12 375 564 341 512 274 411 234 352 194 292
13 361 542 327 492 256 385 219 329 181 272
14 345 519 313 471 239 359 203 306 168 253
15 330 495 299 449 222 333 188 283 155 233
16 314 471 284 427 204 307 173 260 142 214
17 297 447 269 404 188 282 158 238 130 195
18 281 422 254 382 171 257 144 217 117 177
19 265 398 239 360 155 234 130 196 106 159
20 249 374 224 337 140 211 118 17795.4143
22 217 327 196 294 116 17497.214678.8118
24 188 282 168 25397.414681.712366.299.5
26 160 240 143 21683.012569.610556.484.8
28 138 207 124 18671.510860.090.248.773.1
30 120 180 108 16262.393.752.378.642.463.7
32 106 15994.714254.882.346.069.137.356.0
34 93.514183.9126
36 83.412574.8112
38 74.811267.2101
40 67.610260.691.1
Properties
Pwo, kips 69.1 10460.190.165.398.054.181.145.267.8
Pwi, kips/in. 12.3 18.511.317.011.717.510.515.89.6714.5
Pwb, kips 112 16886.6130 94.214268.7103 53.780.7
Pfb, kips 70.8 10658.788.271.910852.679.035.453.2
Lp, ft 9.04 8.97 7.10 6.99 6.85
Lr, ft 33.6 31.6 26.9 24.2 21.8
Ag, in.
2
15.8 14.4 13.3 11.5 9.71
Ix, in.
4
303 272 248 209 171
Iy, in.
4
103 93.4 53.4 45.0 36.6
ry, in. 2.56 2.54 2.01 1.98 1.94
rx/ry 1.71 1.71 2.15 2.16 2.16
Pex(KL)
2
/10
4
, k-in.
2
8670 7790 7100 5980 4890
Pey(KL)
2
/10
4
, k-in.
2
2950 2670 1530 1290 1050
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 22

Table 4-1 (continued)
Available Strength in
Axial Compression, kips
W-Shapes
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
W8
Fy= 50 ksi
Note: Heavy line indicates KL/ryequal to or greater than 200.
Shape W8 ×
lb/ft 675848403531
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 590886512769422634350526308463273411
6 542815470706387581320481281423249374
7 526790455685375563309465272409241362
8 508763439660361543298448262394232348
9 488733422634347521285429251377222333
10 467701403606331497272409239359211317
11 444668384576314473258388226340200301
12 421633363546297447243366213321189283
13 397597342514280421228343200301177266
14 373560321482262394213321187281165248
15 348523299450244367198298174261153230
16 324487278418226340183275160241141212
17 300450257386209314169253147221130195
18 276415236355192288154232135203118178
19 253381216325175264141211123184108162
20 23134719729615923912719111116697.2146
22 19128716324413219810515891.513880.3121
24 16024113720511116688.213376.911667.5101
26 13720511617594.214275.211365.598.557.586.5
28 11817710015181.212264.897.456.584.949.674.5
30 10315487.513170.710656.584.949.274.043.264.9
32 90.313676.911662.293.549.674.643.365.038.057.1
34 79.912068.110255.182.844.066.1
Properties
Pwo, kips 126 19010215372.010857.285.945.968.939.459.1
Pwi, kips/in. 19.0 28.517.025.513.320.012.018.010.315.59.5014.3
Pwb, kips 507 76136354617426212719281.112263.094.7
Pfb, kips 164 24612318587.813258.788.245.968.935.453.2
Lp, ft 7.49 7.42 7.35 7.21 7.17 7.18
Lr, ft 47.6 41.6 35.2 29.9 27.0 24.8
Ag, in.
2
19.7 17.1 14.1 11.7 10.3 9.13
Ix, in.
4
272 228 184 146 127 110
Iy, in.
4
88.6 75.1 60.9 49.1 42.6 37.1
ry, in. 2.12 2.10 2.08 2.04 2.03 2.02
rx/ry 1.75 1.74 1.74 1.73 1.73 1.72
Pex(KL)
2
/10
4
, k-in.
2
7790 6530 5270 4180 3630 3150
Pey(KL)
2
/10
4
, k-in.
2
2540 2150 1740 1410 1220 1060
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 23

Shape HP18 ×
lb/ft 204 181 157 135
Design
Pn/Ωc φcPnPn/Ωc φcPnPn/Ωc φcPnPn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 1800 2710 1590 2390 1380 2080 1190 1800
6 1770 2650 1560 2340 1350 2040 1170 1760
7 1750 2630 1550 2330 1340 2020 1160 1740
8 1740 2610 1540 2310 1330 2000 1150 1730
9 1720 2590 1520 2290 1320 1980 1140 1710
10 1700 2560 1500 2260 1300 1960 1130 1690
11 1680 2530 1490 2230 1290 1940 1110 1670
12 1660 2500 1470 2200 1270 1910 1100 1650
13 1640 2460 1450 2170 1250 1880 1080 1620
14 1610 2420 1420 2140 1230 1850 1060 1600
15 1590 2380 1400 2100 1210 1820 1050 1570
16 1560 2340 1370 2070 1190 1790 1030 1540
17 1530 2300 1350 2030 1170 1760 1010 1510
18 1500 2250 1320 1990 1150 1720 985 1480
19 1470 2210 1290 1950 1120 1680 964 1450
20 1440 2160 1270 1900 1100 1650 942 1420
22 1370 2060 1210 1810 1040 1570 896 1350
24 1300 1950 1140 1720 989 1490 848 1280
26 1230 1850 1080 1620 933 1400 800 1200
28 1160 1740 1010 1530 876 1320 750 1130
30 1080 1630 950 1430 819 1230 700 1050
32 1010 1520 884 1330 761 1140 650 977
34 936 1410 820 1230 705 1060 601 904
36 865 1300 756 1140 650 977 553 831
38 795 1190 695 1040 596 896 507 761
40 728 1090 635 954 544 818 461 693
Properties
Pwo, kips 435 653 363 545 297 446 241 362
Pwi, kips/in. 37.7 56.5 33.3 50.0 29.0 43.5 25.0 37.5
Pwb, kips 1830 2740 1270 1910 840 1260 535 804
Pfb, kips 239 359 187 281 142 213 105 158
Lp, ft 15.2 15.1 18.1 21.4
Lr, ft 67.8 61.3 55.8 50.5
Ag, in.
2
60.2 53.2 46.2 39.9
Ix, in.
4
3480 3020 2570 2200
Iy, in.
4
1120 974 833 706
ry, in. 4.31 4.28 4.25 4.21
rx/ry 1.76 1.76 1.75 1.76
Pex(KL)
2
/10
4
, k-in.
2
99600 86400 73600 63000
Pey(KL)
2
/10
4
, k-in.
2
32100 27900 23800 20200
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-2
Available Strength in
Axial Compression, kips
HP-Shapes
4–24 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HP18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Fy= 50 ksi
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 24

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–25
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
HP16
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
Shape HP16 ×
lb/ft 183 162 141 121 101 88
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01610243014302150125018801070161089513507491130
61570236013902090122018301040157087113107291100
71560234013802070120018101030155086213007221080
81540232013602050119017901020154085212807141070
91520229013502020118017701010152084112607051060
10150022601330200011601740995149082912506941040
11148022301310197011401720979147081612306841030
12146021901290193011201690962145080212106721010
1314302150126019001100166094414207871180659991
1414102110124018601080163092613907711160646971
1513802070121018201060159090613607541130632950
1613502020119017801030156088513307361110617928
1713201980116017401010152086313007181080602905
181280193011301700985148084112606991050587882
191250188011001650958144081812306791020570857
20122018301070161093114007941190659991554833
22115017201010151087613207461120618929520782
2410701610942142081912306961050576866485729
261000150087713207611140646971534802450676
28 927139081112207031060596896491739415623
30 85412807461120645970546821450676380571
32 78311806821030589886498748409615346520
34 7131070620932535804451678370556313471
36 646971561843482725405609331498281423
38 581873503756433651364547297447253380
40 524787454682391587328494268404228343
Properties
Pwo, kips 435 653363545300451241362189283155232
Pwi, kips/in. 37.7 56.533.350.029.243.825.037.520.831.318.027.0
Pwb, kips 2100 3160145021909741460612920356535229345
Pfb, kips 239 35918728114321510515873.111054.682.0
Lp, ft 13.6 13.5 13.4 16.7 20.2 22.9
Lr, ft 67.6 60.2 54.5 48.6 43.6 40.6
Ag, in.
2
53.9 47.7 41.7 35.8 29.9 25.8
Ix, in.
4
2490 2190 1870 1590 1300 1110
Iy, in.
4
803 697 599 504 412 349
ry, in. 3.86 3.82 3.79 3.75 3.71 3.68
rx/ry 1.76 1.77 1.77 1.78 1.78 1.78
Pex(KL)
2
/10
4
, k-in.
2
71300 62700 53500 45500 37200 31800
Pey(KL)
2
/10
4
, k-in.
2
23000 19900 17100 14400 11800 9990
ASD LRFD
Ωc=1.67 φc=0.90
AISC_Part 4A:14th Ed._ 2/17/12 8:54 AM Page 25

Shape HP14 × HP12×
lb/ft 117 102 89 73
c
84 74
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010301550901135078111706239377371110653981
610001500875131075811406059097051060624938
7 9901490865130075011305988996941040614923
8 9771470855128074011105908876811020603906
9 9641450843127073011005828756671000591888
10 949143082912507181080573861652980577867
11 933140081512207051060563846636955562845
12 916138080012006921040552830618929546821
13 897135078311806771020541813599901530796
14 87813207661150662995528794580872512770
15 85712907481120646971516775560842494743
16 83612607291100629946502755539810476715
17 81312207091070612920489735518779457687
18 79011906891030594893475713496746437658
19 76711506681000576866460691474713418628
20 7431120646972557838445669452680398599
22 6941040603906519780415623408614359540
24 643967558839480722384577365549320482
26 593891514772441663353531323486283426
28 543816470706403606322484283425247372
30 494742427641365549292439247371216324
32 446671385579329494263396217326189285
34 400602344518294441235354192289168252
36 357537307462262394210316171257150225
38 320482276414235353188283154231134202
40 289435249374212319170256139208121182
Properties
Pwo, kips 201 302162243134201100150158236132198
Pwi, kips/in. 26.8 40.323.535.320.530.816.825.322.834.320.230.3
Pwb, kips 790 1190531798354532195294572859393591
Pfb, kips 121 18293.014070.810647.771.787.813269.6105
Lp, ft 12.9 15.6 17.8 21.2 10.4 11.9
Lr, ft 50.5 45.7 41.7 37.6 41.3 37.9
Ag, in.
2
34.4 30.1 26.1 21.4 24.6 21.8
Ix, in.
4
1220 1050 904 729 650 569
Iy, in.
4
443 380 326 261 213 186
ry, in. 3.59 3.56 3.53 3.49 2.94 2.92
rx/ry 1.66 1.66 1.67 1.67 1.75 1.75
Pex(KL)
2
/10
4
, k-in.
2
34900 30100 25900 20900 18600 16300
Pey(KL)
2
/10
4
, k-in.
2
12700 10900 9330 7470 6100 5320
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
HP14-HP12
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
4–26 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 4A_14th Ed._ 22/02/12 2:45 PM Page 26

Shape HP12 × HP10× HP8×
lb/ft 63 53
c
57 42 36
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 551 828 460 691 500 751 371 558 317 477
6 526 791 439 660 469 706 348 523 287 432
7 518 778 432 649 459 690 340 511 277 416
8 508 763 424 637 447 672 331 497 266 400
9 497 747 415 623 434 652 321 482 254 381
10 485 729 405 608 420 631 310 465 241 362
11 472 710 394 592 404 608 298 448 227 341
12 459 690 383 575 388 584 286 430 213 320
13 445 668 371 557 372 559 273 411 199 299
14 430 646 358 538 355 533 260 391 184 277
15 414 622 345 519 337 506 247 371 170 256
16 398 598 332 499 319 480 233 351 156 235
17 382 574 318 478 301 453 220 330 143 214
18 365 549 304 457 283 426 206 310 129 194
19 348 524 290 436 265 399 193 290 117 175
20 332 498 276 415 248 373 180 270 105 158
22 298 448 248 373 214 322 154 232 86.9131
24 265 399 221 332 182 273 131 196 73.0110
26 234 351 194 292 155 233 111 167 62.293.5
28 203 305 169 254 133 201 95.9144 53.780.7
30 177 266 147 221 116 175 83.5126 46.770.3
32 156 234 129 194 102 154 73.4110 41.161.8
34 138 207 114 172 90.5136 65.097.7
36 123 185 102 153 80.7121 58.087.2
38 110 166 91.6138 72.5109 52.178.2
40 99.6150 82.7124 65.498.347.070.6
Properties
Pwo, kips 107 161 81.9123 118 177 78.2117 83.8126
Pwi, kips/in. 17.2 25.814.521.818.828.313.820.814.822.3
Pwb, kips 243 365 147 221 397 597 158 237 241 363
Pfb, kips 49.6 74.635.453.259.789.833.049.637.155.7
Lp, ft 14.4 16.6 8.65 12.3 6.90
Lr, ft 34.0 31.1 34.8 28.3 27.3
Ag, in.
2
18.4 15.5 16.7 12.4 10.6
Ix, in.
4
472 393 294 210 119
Iy, in.
4
153 127 101 71.7 40.3
ry, in. 2.88 2.86 2.45 2.41 1.95
rx/ry 1.76 1.76 1.71 1.71 1.72
Pex(KL)
2
/10
4
, k-in.
2
13500 11200 8410 6010 3410
Pey(KL)
2
/10
4
, k-in.
2
4380 3630 2890 2050 1150
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Table 4-2 (continued)
Available Strength in
Axial Compression, kips
HP-Shapes
HP12-HP8
Fy= 50 ksi
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 4A:14th Ed._ 2/17/12 9:17 AM Page 27

4–28 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS20×12× HSS16×12×
5
/8
1 /2
c 3
/8
c 5
/16
c 5
/8
1 /2
tdesign, in. 0.581 0.465 0.349 0.291 0.581 0.465
lb/ft 127 103 78.5 65.9 110 89.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 9641450740111049574337556383512506781020
6 9501430732110049073737256082212406681000
7 945142073011004887343725588181230664998
8 940141072610904877313705578121220660992
9 933140072310904847283695558071210655985
10 926139071910804827253685538001200650978
11 919138071410704807213675517931190645969
12 910137070910704777173655497861180639960
13 901135070410604747123635467771170632950
14 892134069810504707073615437691160625940
15 881132069210404677023605407591140618929
16 871131068510304636963575377491130610917
17 859129067810204596903555347391110602905
18 847127067110104556843535307281090593892
19 83512506639974516773505267171080584878
20 82212406559854466703475227051060575864
21 80912206479724416633455186931040565850
22 79511906389594366563425136811020556835
23 78111706299454316483385096681000545820
24 7661150619931425639335504655985535804
25 7521130610916420631331497642965524788
26 7361110599901414622327491628944514772
27 7211080587882408613322485614923503755
28 7051060575864402604318478600902491738
29 6901040562845395594313471586881480721
30 6731010549826389584309464572859468704
32 641963523787375563299449543816445669
34 608914497747361542289434513772422634
36 575864471708346519278418484727398599
38 542815444668330496267401455684375563
40 510766418629314472255384426640352528
Properties
Ag, in.
2
35.0 28.3 21.5 18.1 30.3 24.6
Ix, in.
4
1880 1550 1200 1010 1090 904
Iy, in.
4
851 705 547 464 700 581
ry, in. 4.93 4.99 5.04 5.07 4.80 4.86
rx/ry 1.49 1.48 1.48 1.48 1.25 1.25
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
HSS20-HSS16
c
Shape is slender for compression with Fy=46 ksi.
AISC_Part 4A:14th Ed. 2/23/11 10:03 AM Page 28

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×12× HSS16×8×
3
/8
c 5
/16
c 5
/8
1 /2
3 /8
c 5
/16
c
tdesign, in. 0.349 0.291 0.581 0.465 0.349 0.291
lb/ft 68.3 57.4 93.3 76.1 58.1 48.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 4797203645477081060576865405609310466
6 4747123615436851030558838396595304457
7 4727103605416771020551829393590302454
8 4707063595406681000544818389585299450
9 468703358537658989536806385579297446
10 465699356535647972527792380572294441
11 462694354533634954518778375564290436
12 459689353530621934507762370556286430
13 455684351527607913496746364547282424
14 451678348524593891485728358537278418
15 447672346520577868472710351527273411
16 443665344516561844460691344516268403
17 438658341512545819447671336505263395
18 433651338508528793433651328493258387
19 428644335504510767419630320480252378
20 423635332499493741405609311467246369
21 417627329494475714391587302453239360
22 411618325489457686376565292438233350
23 405609321482438659362544281422226340
24 399600316475420631347522270405219329
25 393590312468402604332500259389212319
26 386580307461384577318478248372205307
27 379570302454366550303456237356197296
28 372559297446348523289434226339189284
29 365548292438330497275413215323181273
30 357537286430313471261392205307173260
32 341513275414280421234352184277156235
34 324487264396248373208313164247140210
36 306460252378221333186279146220125188
38 288433239360199299167250131197112168
40 271407227341179269150226119178101152
Properties
Ag, in.
2
18.7 15.7 25.7 20.9 16.0 13.4
Ix, in.
4
702 595 815 679 531 451
Iy, in.
4
452 384 274 230 181 155
ry, in. 4.91 4.94 3.27 3.32 3.37 3.40
rx/ry 1.25 1.24 1.72 1.72 1.71 1.71
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS16
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 29

4–30 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×8× HSS14×10×
1
/4
c 5
/8
1 /2
3 /8
c 5
/16
c 1
/4
c
tdesign, in. 0.233 0.581 0.465 0.349 0.291 0.233
lb/ft 39.4 93.3 76.1 58.1 48.9 39.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
02243377081060576865432649336505237356
62203316921040564847425639331497235353
72193296871030559840422635329495234351
82173276811020554833419630327492233350
92163246741010549825416625325488232348
102143216661000543815412620322484230346
11211318657988536805408613319480229344
12209314648974529794404607316475227342
13206310638960521783399599313470226339
14203306628944512770393591309464224336
15200301617927504757387581305459222333
16197297605910495743380571301452219330
17194291593892485729373560297446217326
18190286581873475714365549292439215323
19187281568853465698358537287431212319
20183275554833454682350525282424209315
21179269541812443666341513277416206310
22175262527791432649333500271408203306
23170256512770421632324488266399200301
24166249498748409615316475260390196295
25161242483726397597307461254381192289
26156235468704385579298448248372188282
27151227453681374561289434241362184276
28146220438659362543280421235353179269
29141212423636349525271407228343175263
30136204408614337507262393221332170256
32125187378569314471244366206309161242
34113171349525290436226339191287151227
36102153320482267401208313176265141212
38 91.3137293440244367191287162243131196
40 82.4124266399223334174262148223120181
Properties
Ag, in.
2
10.8 25.7 20.9 16.0 13.4 10.8
Ix, in.
4
368 687 573 447 380 310
Iy, in.
4
127 407 341 267 227 186
ry, in. 3.42 3.98 4.04 4.09 4.12 4.14
rx/ry 1.70 1.30 1.29 1.29 1.29 1.29
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS16-HSS14
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 30

Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×10× HSS12×8×
1
/2
3 /8
5 /16
c 1
/4
c 5
/8
1 /2
tdesign, in. 0.465 0.349 0.291 0.233 0.581 0.465
lb/ft 69.3 53.0 44.6 36.0 76.3 62.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 523787402604327491234351578869474712
6 512769394591321482231347559840458688
7 508763390587319479230346552829452680
8 503756387582317476229344544817446671
9 498748383576314472228342535804439660
10 492739379569311468226340525789431648
11 486730374562308463225337514773423636
12 479720369554305458223335503756414622
13 471709363546301452221332491738404607
14 464697357537297446219329478719394592
15 455685351528293440216325465699383576
16 447672345518288433214322451678372560
17 438658338508283425211318437657361543
18 428644331497277417209314422635349525
19 419629324486271408206309408613337507
20 409614316475265398203305392590325489
21 399599308463259389199300377567313470
22 388583300452252379196294362544301452
23 377567292439246369192288346520288433
24 367551284427239359187282331497276414
25 356535276415232349183275315474263396
26 345518268402225338179268300451251377
27 334501259390218328174261285429239359
28 322485251377211317169254270406227341
29 311468242364204307164247256385215323
30 300451234351197296159240242363203306
32 278418217326183275149224214321181272
34 256385200301169254139208189285160241
36 235353184277156234128192169254143215
38 214322169253143214117176152228128193
40 194292153230130195107161137206116174
Properties
Ag, in.
2
19.0 14.6 12.2 9.90 21.0 17.2
Ix, in.
4
395 310 264 216 397 333
Iy, in.
4
298 234 200 164 210 178
ry, in. 3.96 4.01 4.04 4.07 3.16 3.21
rx/ry 1.15 1.15 1.15 1.15 1.37 1.37
ASD LRFD
Ωc=1.67 φc=0.90
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS12
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 31

Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
4–32 DESIGN OF COMPRESSION MEMBERS
Shape
HSS12×8× HSS12×6×
3
/8
5 /16
c 1
/4
c 3
/16
c 5
/8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.581 0.465
lb/ft 47.9 40.4 32.6 24.7 67.8 55.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0364546296445218327136204515774421633
6352529289434213320134201485728397597
7348523286430211317133200474712389585
8343516283425209314132199462695380571
9338508280420207311131197449675369555
10332499276415204307130196435653358538
11326490272408202303129194420631346520
12319480267401199298128192403606333501
13312469262394195294127190387581320481
14304458257386192288125188369555306460
15297446250376188283124186352529292439
16288433243365184277122183334502278418
17280421236355180271120180316474263396
18271407229344176265118177297447249374
19262394221333172258116174279420234352
20253380214321167251114171261393220330
21244367206310162244111167244366206309
22235352198298157236109164227341192288
23225338190286152228106160210316178268
24216324183274147220103156194291165248
25206310175263141212100151178268152229
2619729616725113620497.0146165248141211
2718828215923913019593.6141153230130196
2817926915222812418690.2136142214121182
2917025514421711817786.7130133199113170
3016124213720511216883.2125124186106159
3214421612218410015175.911410916492.9140
3412719210816389.213468.5103 96.414582.2124
3611417196.814579.512061.191.886.012973.4110
3810215386.813171.410754.882.477.211665.899.0
40 92.113878.411864.496.849.574.4 59.489.3
Properties
Ag, in.
2
13.2 11.1 8.96 6.76 18.7 15.3
Ix, in.
4
262 224 184 140 321 271
Iy, in.
4
140 120 98.8 75.7 107 91.1
ry, in. 3.27 3.29 3.32 3.35 2.39 2.44
rx/ry 1.37 1.37 1.36 1.36 1.73 1.73
ASD LRFD
Ωc=1.67 φc=0.90
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS12
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 32

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×6× HSS10×8×
3
/8
5 /16
c 1
/4
c 3
/16
c 5
/8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.581 0.465
lb/ft 42.8 36.1 29.2 22.2 67.8 55.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0325489264396192288126189515774421633
6307462253380185278122183497746407611
7301453249374183274120181490737402604
8294442244367180270119179483726396595
9286430239360177265117176474713389585
10278418234352173260115173465699382574
11269404227341169254113170456685374562
12260390219330165248111166445669366550
13250375211317160241108162434652357537
14239360203305156234105158422635348522
15229344194291150226103154410616338508
1621832718527814521899.5150397597328493
1720731117626413920996.3145384577317477
1819629416725113320092.9140371557307461
1918527815823712719189.4134357537296444
2017426214822312118285.8129343516284428
2116324513921011417182.1123329495273411
2215322913119610716178.2118315474262394
2314221412218310015074.2112301453251377
24132199113171 93.114070.1105287432239360
25122184105158 86.513066.099.2273411228343
26113170 97.3146 80.012061.792.8259390217326
27105157 90.2136 74.211157.386.1246370206309
28 97.4146 83.9126 69.010453.380.1233349195293
29 90.8136 78.2118 64.396.649.774.7219330184277
30 84.9128 73.1110 60.190.346.469.8207311174262
32 74.6112 64.296.552.879.440.861.3182274154231
34 66.199.356.985.546.870.336.154.3161242136205
36 58.988.650.776.341.762.732.248.5144216121183
38 52.979.545.568.437.456.328.943.5129194109164
40 47.771.741.161.833.850.826.139.211617598.4148
Properties
Ag, in.
2
11.8 9.92 8.03 6.06 18.7 15.3
Ix, in.
4
215 184 151 116 253 214
Iy, in.
4
72.9 62.8 51.9 40.0 178 151
ry, in. 2.49 2.52 2.54 2.57 3.09 3.14
rx/ry 1.72 1.71 1.71 1.70 1.19 1.19
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS12-HSS10
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 33

4–34 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×8× HSS10×6×
3
/8
5 /16
1 /4
c 3
/16
c 5
/8
tdesign, in. 0.349 0.291 0.233 0.174 0.581
lb/ft 42.8 36.1 29.2 22.2 59.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 325 489273 411212 318 133 200 452 679
6 314 472264 397206 310 131 197 424 637
7 310 466261 392204 307 130 196 414 623
8 306 460257 387202 303 129 194 403 606
9 301 452253 381199 300 128 193 391 588
10 296 444249 374197 295 127 191 378 569
11 290 435244 367194 291 126 189 365 548
12 283 426239 359190 286 124 187 350 526
13 277 416233 351187 280 123 185 335 504
14 270 405228 342183 275 121 182 319 480
15 262 394221 333179 269 119 179 303 456
16 255 383215 323174 262 117 176 287 432
17 247 371209 314170 255 115 173 271 407
18 239 359202 303164 247 113 170 255 383
19 231 346195 293159 239 111 166 239 359
20 222 334188 283153 230 108 162 223 335
21 214 321181 272148 222 105 158 207 311
22 205 308174 261142 213 103 154 192 288
23 196 295167 251136 205 99.4149 177 266
24 188 282160 240130 196 95.9144 163 245
25 179 269152 229125 187 92.4139 150 225
26 171 257145 218119 179 88.9134 139 208
27 162 244138 208113 170 85.2128 129 193
28 154 232131 197108 162 81.5123 120 180
29 146 219125 187102 154 77.8117 111 168
30 138 207118 177 96.9146 74.0111 104 157
32 122 184105 158 86.5130 66.499.891.5138
34 108 163 92.9140 76.6115 58.988.581.1122
36 96.7145 82.8125 68.3103 52.578.972.3109
38 86.8130 74.3112 61.392.147.170.864.997.6
40 78.3118 67.1101 55.383.242.563.9
Properties
Ag, in.
2
11.8 9.92 8.03 6.06 16.4
Ix, in.
4
169 145 119 91.4 201
Iy, in.
4
120 103 84.7 65.1 89.4
ry, in. 3.19 3.22 3.25 3.28 2.34
rx/ry 1.19 1.19 1.18 1.18 1.50
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS10
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 34

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×6×
1
/2
3 /8
5 /16
1 /4
c 3
/16
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174
lb/ft 48.9 37.7 31.8 25.8 19.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 372 559 286 431 241 363 186 279 123 185
6 350 526 270 406 228 343 178 268 119 179
7 342 514 265 398 223 336 175 263 117 176
8 334 501 258 388 218 328 172 259 116 174
9 324 487 251 377 212 319 168 253 114 171
10 314 472 243 366 206 309 164 247 111 167
11 303 455 235 354 199 299 160 241 109 164
12 291 438 227 341 192 289 155 234 106 160
13 279 420 218 327 185 277 150 226 103 155
14 267 401 208 313 177 266 144 216 100 151
15 254 382 199 299 169 254 138 207 97.0146
16 241 362 189 284 161 242 131 197 93.5141
17 228 342 179 269 152 229 125 187 90.0135
18 215 323 169 254 144 217 118 177 86.2130
19 202 303 159 239 136 204 111 167 82.4124
20 189 284 149 225 128 192 105 157 78.4118
21 176 265 140 210 120 180 98.2148 74.3112
22 164 246 130 196 112 168 91.8138 70.1105
23 152 228 121 182 104 157 85.6129 65.898.9
24 140 210 112 169 96.7145 79.5120 61.492.3
25 129 194 103 155 89.3134 73.5110 57.085.6
26 119 179 95.6144 82.5124 68.0102 52.779.1
27 110 166 88.7133 76.5115 63.094.748.873.4
28 103 154 82.4124 71.2107 58.688.145.468.2
29 95.7144 76.8116 66.399.754.682.142.363.6
30 89.4134 71.8108 62.093.251.176.739.659.4
32 78.6118 63.194.954.581.944.967.434.852.2
34 69.6105 55.984.048.372.539.759.730.846.3
36 62.193.349.975.043.064.735.553.327.541.3
38 55.783.844.867.338.658.131.847.824.737.0
40 40.460.734.952.428.743.222.233.4
Properties
Ag, in.
2
13.5 10.4 8.76 7.10 5.37
Ix, in.
4
171 137 118 96.9 74.6
Iy, in.
4
76.8 61.8 53.3 44.1 34.1
ry, in. 2.39 2.44 2.47 2.49 2.52
rx/ry 1.49 1.49 1.48 1.48 1.48
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS10
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 35

4–36 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×5× HSS9×7×
3
/8
5 /16
1 /4
c 3
/16
c 5
/8
tdesign, in. 0.349 0.291 0.233 0.174 0.581
lb/ft 35.1 29.7 24.1 18.4 59.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 266 400 225 338 173 260 114 171 452 679
6 245 368 207 312 163 245 108 163 430 647
7 238 358 201 303 159 240 106 160 423 636
8 230 345 195 293 155 233 104 156 414 623
9 221 332 187 282 151 227 102 153 405 609
10 212 318 180 270 146 219 98.7148 395 593
11 202 303 171 257 140 210 95.7144 384 577
12 191 287 163 244 133 200 92.4139 372 559
13 180 271 154 231 126 189 88.9134 360 541
14 170 255 144 217 119 178 85.1128 347 521
15 159 238 135 203 111 167 81.2122 334 501
16 148 222 126 190 104 156 77.0116 320 481
17 137 206 117 176 96.8145 72.7109 306 460
18 126 190 108 163 89.6135 68.2103 292 439
19 116 174 99.5150 82.6124 63.695.5278 417
20 106 159 91.1137 75.9114 58.888.4263 396
21 96.2145 82.9125 69.2104 53.981.0249 375
22 87.6132 75.5113 63.194.849.173.8235 353
23 80.2121 69.1104 57.786.744.967.5221 333
24 73.6111 63.495.353.079.641.362.0208 312
25 67.9102 58.587.948.873.438.057.2194 292
26 62.794.354.181.245.167.935.252.9182 273
27 58.287.550.175.341.962.932.649.0169 253
28 54.181.346.670.138.958.530.345.6157 236
29 50.475.843.465.336.354.528.342.5146 220
30 47.170.840.661.033.951.026.439.7137 205
32 41.462.335.753.629.844.823.234.9120 180
34 36.755.231.647.526.439.720.630.9106 160
36 94.9143
38 85.1128
40 76.8115
Properties
Ag, in.
2
9.67 8.17 6.63 5.02 16.4
Ix, in.
4
120 104 85.8 66.2 174
Iy, in.
4
40.6 35.2 29.3 22.7 117
ry, in. 2.05 2.07 2.10 2.13 2.68
rx/ry 1.72 1.72 1.71 1.70 1.22
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS10-HSS9
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 36

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×7×
1
/2
3 /8
5 /16
1 /4
c 3
/16
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174
lb/ft 48.9 37.7 31.8 25.8 19.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 372 559 286 431 241 363 195 293 129 194
6 355 533 274 412 231 347 187 282 126 189
7 349 524 269 405 227 342 184 277 125 188
8 342 514 264 397 223 335 181 272 123 186
9 335 503 259 389 218 328 177 267 122 183
10 327 491 253 380 213 321 173 261 120 181
11 318 478 246 370 208 313 169 254 118 178
12 308 464 239 359 202 304 165 247 116 174
13 299 449 232 348 196 295 160 240 113 170
14 288 433 224 337 190 285 155 232 110 166
15 278 417 216 325 183 275 149 224 108 162
16 267 401 208 312 176 265 144 216 104 157
17 255 384 199 300 169 254 138 208 101 152
18 244 367 191 287 162 244 133 199 97.8147
19 233 350 182 274 155 233 127 191 94.3142
20 221 332 174 261 148 222 121 182 90.7136
21 210 315 165 248 140 211 115 173 86.9131
22 198 298 156 235 133 200 109 164 83.1125
23 187 281 148 222 126 190 104 156 79.2119
24 176 264 139 209 119 179 97.9147 75.1113
25 165 248 131 197 112 168 92.3139 70.9107
26 154 232 123 185 105 158 86.8131 66.8100
27 144 217 115 173 98.7148 81.5122 62.894.3
28 134 201 107 161 92.1138 76.2115 58.888.4
29 125 188 99.8150 85.8129 71.1107 54.982.5
30 117 175 93.2140 80.2121 66.499.851.377.1
32 103 154 81.9123 70.5106 58.487.745.167.8
34 90.8137 72.6109 62.593.951.777.739.960.0
36 81.0122 64.797.355.783.746.169.335.653.5
38 72.7109 58.187.350.075.141.462.232.048.1
40 65.698.752.478.845.167.837.456.228.943.4
Properties
Ag, in.
2
13.5 10.4 8.76 7.10 5.37
Ix, in.
4
149 119 102 84.1 64.7
Iy, in.
4
100 80.4 69.2 57.2 44.1
ry, in. 2.73 2.78 2.81 2.84 2.87
rx/ry 1.22 1.22 1.21 1.21 1.21
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS9
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 37

4–38 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×5×
5
/8
1 /2
3 /8
5 /16
1 /4
c 3
/16
c
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0386580320480247371209314169254112168
6351527292439227341192289157236106159
7339510283425220331187281152229104156
8326490272409213319180271147221102153
9312468261392204307173261142213 98.8149
10297446249374195294166250136204 95.8144
11281422236355186279158238130195 92.6139
12264397223335176265150225123185 89.0134
13247372210315166250142213116175 85.2128
14230346196294156234133200110165 81.2122
15214321182274146219124187103154 77.0116
1619729616925313520311617495.8144 72.6109
1718027115523312518810716189.0134 68.1102
18165247142214115173 99.114982.3124 63.194.9
19149224130195106159 91.013775.7114 58.287.5
20135202117177 96.5145 83.212569.4104 53.480.3
21122184107160 87.5131 75.511363.295.048.773.3
22111167 97.1146 79.7120 68.810357.686.544.466.8
23102153 88.8134 72.9110 62.994.652.779.240.661.1
24 93.5141 81.6123 67.0101 57.886.948.472.737.356.1
25 86.2130 75.2113 61.792.853.380.144.667.034.451.7
26 79.7120 69.5104 57.185.849.374.041.262.031.847.8
27 73.9111 64.596.952.979.545.768.638.257.429.544.3
28 68.7103 59.990.149.274.042.563.835.553.427.441.2
29 64.196.355.984.045.969.039.659.533.149.825.638.4
30 59.990.052.278.542.964.437.055.631.046.523.935.9
32 52.679.145.969.037.756.632.548.927.240.921.031.6
34 28.843.324.136.218.627.9
Properties
Ag, in.
2
14.0 11.6 8.97 7.59 6.17 4.67
Ix, in.
4
133 115 92.5 79.8 66.1 51.1
Iy, in.
4
52.0 45.2 36.8 32.0 26.6 20.7
ry, in. 1.92 1.97 2.03 2.05 2.08 2.10
rx/ry 1.60 1.59 1.58 1.58 1.57 1.58
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS9
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 38

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×6×
5
/8
1 /2
3 /8
5 /16
1 /4
tdesign, in. 0.581 0.465 0.349 0.291 0.233
lb/ft 50.8 42.1 32.6 27.6 22.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 386 580 320 480 247 371 209 314 170 255
6 360 542 299 450 232 349 197 296 160 241
7 352 529 293 440 227 342 193 289 157 236
8 342 514 285 428 221 333 188 282 153 230
9 331 498 276 415 215 323 182 274 149 224
10 320 480 267 401 208 313 177 266 144 217
11 307 462 257 386 201 302 171 256 139 209
12 294 442 247 371 193 290 164 247 134 202
13 281 422 236 354 185 278 157 236 129 194
14 267 401 225 337 177 266 150 226 123 185
15 253 380 213 320 168 253 143 215 117 177
16 238 358 202 303 159 240 136 204 112 168
17 224 337 190 285 151 227 129 193 106 159
18 210 315 178 268 142 213 121 182 99.9150
19 196 294 167 251 133 200 114 171 94.0141
20 182 273 156 234 125 187 107 160 88.2133
21 168 253 144 217 116 175 99.6150 82.4124
22 155 233 134 201 108 162 92.6139 76.8115
23 142 214 123 185 100 150 85.9129 71.4107
24 131 196 113 170 92.1138 79.2119 66.099.2
25 120 181 104 157 84.9128 73.0110 60.891.5
26 111 167 96.4145 78.5118 67.5101 56.384.6
27 103 155 89.4134 72.8109 62.694.152.278.4
28 96.0144 83.1125 67.6102 58.287.548.572.9
29 89.5135 77.5116 63.194.854.381.645.268.0
30 83.7126 72.4109 58.988.650.776.242.363.5
32 73.5111 63.695.751.877.844.667.037.155.8
34 65.197.956.484.745.969.039.559.332.949.4
36 58.187.350.375.640.961.535.252.929.344.1
38 45.167.836.755.231.647.526.339.6
40 28.542.923.835.7
Properties
Ag, in.
2
14.0 11.6 8.97 7.59 6.17
Ix, in.
4
114 98.2 79.1 68.3 56.6
Iy, in.
4
72.3 62.5 50.6 43.8 36.4
ry, in. 2.27 2.32 2.38 2.40 2.43
rx/ry 1.26 1.25 1.25 1.25 1.25
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS8
AISC_Part 4A:14th Ed. 2/23/11 10:04 AM Page 39

4–40 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×6× HSS8×4×
3
/16
c 5
/8
1 /2
3 /8
5 /16
tdesign, in. 0.174 0.581 0.465 0.349 0.291
lb/ft 17.1 42.3 35.2 27.5 23.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 119 180 322 484 268 403 209 314 177 266
6 114 172 277 416 232 349 183 274 155 233
7 113 169 262 393 221 332 174 261 148 223
8 110 166 246 369 208 313 164 247 140 211
9 108 162 228 343 194 292 154 232 132 198
10 105 159 211 317 180 271 144 216 123 185
11 103 154 193 290 166 249 133 200 114 171
12 99.6150 175 263 151 227 122 183 105 157
13 96.3145 157 236 137 206 111 167 95.6144
14 92.9140 140 211 123 185 100 151 86.7130
15 89.2134 124 186 110 165 90.1135 78.0117
16 85.4128 109 163 96.6145 80.1120 69.6105
17 81.0122 96.4145 85.6129 71.0107 61.792.7
18 76.6115 85.9129 76.4115 63.395.155.082.7
19 72.2108 77.1116 68.5103 56.885.449.474.2
20 67.8102 69.6105 61.993.051.377.144.667.0
21 63.595.463.194.956.184.346.569.940.460.8
22 59.389.157.586.551.176.842.463.736.855.4
23 55.282.952.679.146.870.338.858.333.750.7
24 51.276.948.372.743.064.635.653.531.046.5
25 47.270.944.667.039.659.532.849.328.542.9
26 43.665.6 36.655.030.345.626.439.6
27 40.560.8 24.536.8
28 37.656.6
29 35.152.7
30 32.849.3
32 28.843.3
34 25.538.4
36 22.834.2
38 20.430.7
40 18.427.7
Properties
Ag, in.
2
4.67 11.7 9.74 7.58 6.43
Ix, in.
4
43.7 82.0 71.8 58.7 51.0
Iy, in.
4
28.2 26.6 23.6 19.6 17.2
ry, in. 2.46 1.51 1.56 1.61 1.63
rx/ry 1.24 1.75 1.74 1.73 1.73
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS8
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 40

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×4× HSS7×5×
1
/4
3 /16
c 1
/8
c 1
/2
3 /8
tdesign, in. 0.233 0.174 0.116 0.465 0.349
lb/ft 19.0 14.5 9.86 35.2 27.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 144 217 100 151 56.084.2268 403 209 314
6 127 191 91.9138 52.278.4244 366 191 287
7 121 183 88.8134 50.876.4236 354 185 278
8 115 173 85.4128 49.374.1226 340 178 267
9 109 163 81.6123 47.671.5216 325 171 256
10 102 153 77.3116 45.768.6206 309 163 244
11 94.3142 72.7109 43.665.5195 292 154 232
12 87.0131 67.3101 41.462.2183 275 146 219
13 79.7120 61.892.939.058.6171 257 137 206
14 72.5109 56.484.836.554.9159 240 128 192
15 65.498.451.176.833.950.9148 222 119 179
16 58.788.246.069.231.246.8136 204 110 166
17 52.278.441.161.728.442.6125 187 101 153
18 46.569.936.655.025.438.2113 171 93.0140
19 41.862.832.949.422.834.3103 154 84.8127
20 37.756.629.744.620.631.092.7139 76.8115
21 34.251.426.940.418.728.184.1126 69.6105
22 31.146.824.536.817.025.676.6115 63.495.4
23 28.542.822.433.715.623.470.1105 58.087.2
24 26.239.320.631.014.321.564.496.853.380.1
25 24.136.219.028.513.219.859.389.249.173.8
26 22.333.517.626.412.218.354.982.545.468.3
27 20.731.116.324.511.317.050.976.542.163.3
28 15.122.710.515.847.371.139.258.9
29 44.166.336.554.9
30 41.261.934.151.3
32 30.045.1
Properties
Ag, in.
2
5.24 3.98 2.70 9.74 7.58
Ix, in.
4
42.5 33.1 22.9 60.6 49.5
Iy, in.
4
14.4 11.3 7.90 35.6 29.3
ry, in. 1.66 1.69 1.71 1.91 1.97
rx/ry 1.72 1.70 1.71 1.31 1.30
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS8-HSS7
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 41

4–42 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×5× HSS7×4×
5
/16
1 /4
3 /16
c 1
/8
c 1
/2
tdesign, in. 0.291 0.233 0.174 0.116 0.465
lb/ft 23.3 19.0 14.5 9.86 31.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 177 266 144 217 107 161 59.289.0243 365
6 162 244 133 199 100 151 56.785.2209 314
7 157 236 128 193 97.9147 55.883.9198 298
8 151 228 124 186 94.6142 54.882.3186 280
9 145 218 119 179 91.0137 53.680.5174 261
10 139 208 114 171 87.1131 52.278.5160 241
11 132 198 108 163 82.9125 50.876.3147 221
12 125 187 103 154 78.7118 49.073.7134 201
13 117 176 96.6145 74.3112 47.070.6121 181
14 110 165 90.6136 69.8105 44.867.3108 162
15 102 154 84.6127 65.398.142.563.995.6144
16 94.7142 78.6118 60.891.340.260.484.1126
17 87.3131 72.7109 56.384.637.756.774.5112
18 80.2121 66.9101 52.078.135.252.966.499.9
19 73.2110 61.392.147.771.732.749.159.689.6
20 66.499.955.883.943.665.530.145.253.880.9
21 60.390.650.676.139.659.527.441.248.873.4
22 54.982.546.169.336.154.225.037.544.566.8
23 50.275.542.263.433.049.622.834.340.761.2
24 46.169.438.758.230.345.621.031.537.456.2
25 42.563.935.753.727.942.019.329.034.451.8
26 39.359.133.049.625.838.817.926.8
27 36.554.830.646.023.936.016.624.9
28 33.951.028.542.822.333.515.423.2
29 31.647.526.539.920.831.214.421.6
30 29.544.424.837.319.429.213.420.2
32 26.039.021.832.817.025.611.817.7
34 15.122.710.415.7
Properties
Ag, in.
2
6.43 5.24 3.98 2.70 8.81
Ix, in.
4
43.0 35.9 27.9 19.3 50.7
Iy, in.
4
25.5 21.3 16.6 11.6 20.7
ry, in. 1.99 2.02 2.05 2.07 1.53
rx/ry 1.30 1.30 1.29 1.29 1.57
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS7
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 42

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×4×
3
/8
5 /16
1 /4
3 /16
c 1
/8
c
tdesign, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 190 285 161 242 131 197 97.7147 55.182.8
6 165 248 141 212 115 173 88.1132 50.976.4
7 157 236 134 202 110 166 84.2127 49.474.2
8 148 222 127 191 104 157 79.8120 47.771.7
9 138 208 119 179 98.1148 75.2113 45.868.9
10 129 193 111 167 91.7138 70.4106 43.865.8
11 119 178 103 154 85.0128 65.398.241.562.4
12 108 163 94.1141 78.2118 60.390.639.158.8
13 98.4148 85.7129 71.5107 55.283.036.655.0
14 88.6133 77.5116 64.997.550.275.533.951.0
15 79.2119 69.5104 58.487.845.368.131.246.9
16 70.0105 61.892.952.378.540.761.128.342.6
17 62.093.254.882.346.369.636.154.325.438.1
18 55.383.248.973.441.362.132.248.422.634.0
19 49.774.643.865.937.155.828.943.520.330.5
20 44.867.439.659.533.550.326.139.218.327.6
21 40.761.135.953.930.445.623.735.616.625.0
22 37.055.732.749.227.741.621.632.415.222.8
23 33.950.929.945.025.338.019.729.713.920.8
24 31.146.827.541.323.234.918.127.212.719.1
25 28.743.125.338.121.432.216.725.111.717.6
26 26.539.923.435.219.829.815.423.210.816.3
27 18.427.614.321.510.115.1
28 9.3514.1
Properties
Ag, in.
2
6.88 5.85 4.77 3.63 2.46
Ix, in.
4
41.8 36.5 30.5 23.8 16.6
Iy, in.
4
17.3 15.2 12.8 10.0 7.03
ry, in. 1.58 1.61 1.64 1.66 1.69
rx/ry 1.56 1.55 1.54 1.54 1.53
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS7
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 43

4–44 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×5×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
024336519028516124213119710015057.987.0
1242364189284161242131197 99.715057.886.9
2240361188282160240130196 99.014957.686.6
3237356185278157237128193 97.914757.286.0
4232349182273155233126190 96.214556.785.2
5226340177267151227124186 94.214256.084.2
6220330172259147221120181 91.713855.282.9
7212318167250142214116175 88.913454.281.4
8203305160241137206112169 85.812953.079.7
9194291153230131197108162 82.312451.777.7
10184276146219125188103154 78.711850.275.5
11174261138207118178 97.4146 74.811248.673.0
12163245130195112168 92.1138 70.810646.569.8
13152228122183105157 86.5130 66.710044.266.5
14141212113170 97.8147 81.0122 62.593.941.963.0
15130196105158 90.8137 75.4113 58.387.639.559.3
1611917996.7145 83.9126 69.8105 54.181.337.055.6
1710916488.7133 77.2116 64.396.750.075.234.451.6
18 98.914980.9122 70.6106 59.088.746.069.131.647.6
19 89.113473.3110 64.296.653.880.942.163.229.043.6
20 80.412166.299.558.087.248.873.338.357.526.539.8
21 72.911060.090.252.779.144.366.534.752.224.036.1
22 66.499.954.782.248.072.140.360.631.647.521.932.9
23 60.891.450.075.243.966.036.955.528.943.520.030.1
24 55.883.946.069.140.360.633.950.926.639.918.427.6
25 51.577.342.463.737.255.831.246.924.536.816.925.4
26 47.671.539.258.934.351.628.943.422.634.015.723.5
27 44.166.336.354.631.947.926.840.221.031.614.521.8
28 41.061.633.850.829.644.524.937.419.529.313.520.3
29 38.257.531.547.327.641.523.234.918.227.412.618.9
30 35.753.729.444.225.838.821.732.617.025.611.817.7
Properties
Ag, in.
2
8.81 6.88 5.85 4.77 3.63 2.46
Ix, in.
4
41.1 33.9 29.6 24.7 19.3 13.4
Iy, in.
4
30.8 25.5 22.3 18.7 14.6 10.2
ry, in. 1.87 1.92 1.95 1.98 2.01 2.03
rx/ry 1.16 1.16 1.15 1.15 1.15 1.15
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS6
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 44

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 28.4 22.4 19.1 15.6 12.0 8.16
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
021732617025614521811817890.313654.181.3
121632517025514421711817790.013553.981.0
221332116825214321411717589.013453.580.4
320931416424714021011517287.413152.979.5
420330516024013620511216885.212851.978.1
519529315423113119810816282.512450.876.3
618627914722112618910415679.211949.474.2
717626414021012018098.614875.611447.771.7
816524813219811317093.214071.510845.868.9
915323012318510615987.513267.210143.865.8
10141212114171 98.314881.512362.794.341.562.4
11129194105157 90.613675.411358.187.439.158.7
1211717695.3143 82.912569.210453.480.336.554.8
1310515886.1129 75.211363.094.748.873.333.750.7
14 93.314077.2116 67.710256.985.644.266.530.846.4
15 82.312468.7103 60.591.051.176.839.859.827.941.9
16 72.310960.591.053.580.545.468.335.553.425.037.5
17 64.096.253.680.647.471.340.360.531.547.322.233.4
18 57.185.947.871.942.363.635.954.028.142.219.829.8
19 51.377.142.964.538.057.132.248.425.237.917.826.7
20 46.369.538.758.234.351.529.143.722.734.216.024.1
21 42.063.135.152.831.146.726.439.720.631.014.521.9
22 38.257.532.048.128.342.624.036.118.828.213.319.9
23 35.052.629.344.025.938.922.033.117.225.812.118.2
24 32.148.326.940.423.835.820.230.415.823.711.116.7
25 29.644.524.837.321.933.018.628.014.621.910.315.4
26 20.330.517.225.913.520.29.4914.3
27 12.518.88.8013.2
Properties
Ag, in.
2
7.88 6.18 5.26 4.30 3.28 2.23
Ix, in.
4
34.0 28.3 24.8 20.9 16.4 11.4
Iy, in.
4
17.8 14.9 13.2 11.1 8.76 6.15
ry, in. 1.50 1.55 1.58 1.61 1.63 1.66
rx/ry 1.39 1.38 1.37 1.37 1.37 1.36
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS6
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 45

4–46 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815122712919410615980.712147.771.7
119028615022512819210515880.212147.571.4
218627914722112518910315578.711847.070.6
3179268142213121182 99.815076.311546.069.2
4169254135203116174 95.314373.111044.767.2
5158237126190109163 89.913569.110443.064.7
6145218117176101151 83.712664.697.041.061.6
713119710716092.2139 76.911659.689.538.758.1
811717696.014483.2125 69.710554.381.636.154.2
910215485.112874.1111 62.493.848.873.433.249.9
10 88.413374.411265.097.855.282.943.465.330.145.2
11 75.211364.196.456.384.748.172.338.157.326.640.0
12 63.295.054.481.748.072.241.462.333.149.723.234.9
13 53.880.946.369.640.961.535.353.128.342.519.929.9
14 46.469.839.960.035.353.030.445.724.436.617.225.8
15 40.460.834.852.330.746.226.539.921.231.915.022.5
16 35.553.430.646.027.040.623.335.018.728.113.219.8
17 31.547.327.140.723.936.020.631.016.524.911.717.5
18 28.142.224.236.321.432.118.427.714.722.210.415.6
19 21.732.619.228.816.524.813.219.99.3314.0
20 14.922.411.918.08.4212.7
21 7.6411.5
Properties
Ag, in.
2
6.95 5.48 4.68 3.84 2.93 2.00
Ix, in.
4
26.8 22.7 20.1 17.0 13.4 9.43
Iy, in.
4
8.69 7.48 6.67 5.70 4.55 3.23
ry, in. 1.12 1.17 1.19 1.22 1.25 1.27
rx/ry 1.76 1.74 1.74 1.72 1.71 1.71
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS6
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 46

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815122712919410615980.712152.679.1
119128615022612819310515880.412152.478.8
218828314822312719110415679.511952.078.1
318427614521812418710215378.011751.277.0
4178268141212121181 99.314976.011450.275.4
5171257136204116175 95.914473.411048.973.4
6163244130195111167 91.813870.410647.371.0
7153230123185106159 87.213167.010145.468.3
814321511517399.3149 82.312463.395.243.365.1
913219910716292.6139 76.911659.489.340.961.4
1012218399.314985.7129 71.410755.383.138.157.2
1111016690.913778.6118 65.798.851.176.735.253.0
12 99.515082.512471.6108 60.190.346.870.332.448.7
13 88.813374.311264.697.254.481.842.664.029.544.4
14 78.611866.499.757.987.049.073.638.457.826.740.2
15 68.710358.788.351.477.343.765.734.451.824.036.1
16 60.490.851.677.645.368.038.658.030.646.021.432.2
17 53.580.445.768.740.160.334.251.427.140.719.028.5
18 47.771.740.861.335.853.730.545.824.236.316.925.4
19 42.864.436.655.032.148.227.441.121.732.615.222.8
20 38.758.133.049.729.043.524.737.119.629.413.720.6
21 35.152.730.045.026.339.522.433.717.826.712.418.7
22 31.948.027.341.023.936.020.430.716.224.311.317.0
23 29.243.925.037.521.932.918.728.114.822.210.415.6
24 26.840.422.934.520.130.217.225.813.620.49.5114.3
25 21.131.818.527.915.823.812.518.88.7713.2
26 14.622.011.617.48.1012.2
27 7.5211.3
Properties
Ag, in.
2
6.95 5.48 4.68 3.84 2.93 2.00
Ix, in.
4
21.2 17.9 15.8 13.4 10.6 7.42
Iy, in.
4
14.9 12.6 11.1 9.46 7.48 5.27
ry, in. 1.46 1.52 1.54 1.57 1.60 1.62
rx/ry 1.20 1.19 1.19 1.19 1.19 1.19
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS5
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 47

4–48 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016624913219811317092.814071.110746.369.5
116424713119611216992.213970.610646.069.2
216024112819211016590.313669.210445.468.2
315423212318510615987.313167.010144.366.6
414621911717610115283.212564.096.242.864.4
5135203109164 94.614278.211860.490.841.061.6
6124186101151 87.513272.610956.284.538.758.2
711116791.4137 79.812066.499.851.777.636.054.1
8 98.414881.7123 71.810859.990.146.970.432.849.3
9 85.712972.0108 63.795.753.380.241.963.029.544.3
10 73.411062.593.955.783.746.870.437.155.726.239.4
11 61.792.753.480.348.072.140.661.032.348.623.034.6
12 51.877.945.067.740.761.134.652.027.841.820.030.0
13 44.266.438.457.734.752.129.544.323.735.617.125.7
14 38.157.233.149.729.944.925.438.220.530.714.722.1
15 33.249.928.843.326.039.122.133.317.826.812.819.3
16 29.243.825.338.122.934.419.529.215.723.511.316.9
17 25.838.822.433.720.330.517.225.913.920.89.9915.0
18 23.034.620.030.118.127.215.423.112.418.68.9113.4
19 18.027.016.224.413.820.711.116.78.0012.0
20 10.015.17.2210.8
Properties
Ag, in.
2
6.02 4.78 4.10 3.37 2.58 1.77
Ix, in.
4
16.4 14.1 12.6 10.7 8.53 6.03
Iy, in.
4
7.18 6.25 5.60 4.81 3.85 2.75
ry, in. 1.09 1.14 1.17 1.19 1.22 1.25
rx/ry 1.51 1.51 1.50 1.50 1.49 1.48
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS5
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 48

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×2
1
/2× HSS4×3×
1
/4
3 /16
1 /8
c 3
/8
5 /16
1 /4
tdesign, in. 0.233 0.174 0.116 0.349 0.291 0.233
lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 86.513066.499.843.064.611316997.014680.2120
1 85.712965.898.842.764.111216896.214579.6120
2 83.212564.096.141.862.910916494.114177.9117
3 79.311961.091.740.560.810515890.613675.1113
4 74.011157.286.038.658.099.314985.912971.4107
5 67.810252.679.036.254.492.513980.212166.9101
6 61.091.747.571.433.149.884.912873.811161.993.0
7 53.880.842.163.229.544.476.611566.910056.384.7
8 46.569.836.655.025.938.968.110259.789.750.676.0
9 39.459.231.246.922.333.559.689.652.478.844.767.2
10 32.749.226.239.318.928.451.377.145.468.239.058.6
11 27.040.621.632.515.723.643.565.338.758.233.550.4
12 22.734.118.227.313.219.836.554.932.649.028.442.7
13 19.429.115.523.311.216.931.146.827.841.724.236.3
14 16.725.113.420.19.6914.626.840.323.936.020.931.3
15 14.521.911.617.58.4412.723.435.120.931.318.227.3
16 12.819.210.215.47.4211.120.530.918.327.516.024.0
17 9.0613.66.579.8818.227.416.224.414.121.3
18 16.224.414.521.812.619.0
19 11.317.0
Properties
Ag, in.
2
3.14 2.41 1.65 4.09 3.52 2.91
Ix, in.
4
9.40 7.51 5.34 7.93 7.14 6.15
Iy, in.
4
3.13 2.53 1.82 5.01 4.52 3.91
ry, in. 0.999 1.02 1.05 1.11 1.13 1.16
rx/ry 1.73 1.74 1.71 1.25 1.26 1.25
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS5-HSS4
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 49

4–50 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×3× HSS4×2
1
/2×
3
/16
1 /8
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.174 0.116 0.349 0.291 0.233 0.174
lb/ft 8.15 5.61 13.4 11.6 9.66 7.51
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
061.792.742.463.810315589.013473.511156.785.3
161.392.142.163.310215388.013272.810956.284.5
260.090.241.362.198.414885.212870.610654.682.0
358.087.240.060.193.014080.712167.110152.078.1
455.383.138.257.385.812974.811262.493.848.673.0
552.078.236.054.077.511667.910256.985.644.566.9
648.272.533.450.268.410360.390.650.976.540.060.1
744.166.330.746.158.988.652.478.844.567.035.353.0
839.859.927.841.749.774.744.667.038.257.430.545.8
935.553.324.837.340.961.537.155.732.148.325.938.9
1031.146.821.932.933.249.930.245.426.439.721.532.3
1127.040.519.028.627.441.225.037.621.832.817.726.7
1223.034.616.324.623.034.621.031.618.327.514.922.4
1319.629.413.920.919.629.517.926.915.623.512.719.1
1416.925.412.018.016.925.415.423.213.520.210.916.5
1514.722.110.515.714.722.213.420.211.717.69.5414.3
1612.919.49.1913.8 10.315.58.3812.6
1711.517.28.1412.2
1810.215.47.2610.9
19 9.1713.86.529.80
20 5.888.84
Properties
Ag, in.
2
2.24 1.54 3.74 3.23 2.67 2.06
Ix, in.
4
4.93 3.52 6.77 6.13 5.32 4.30
Iy, in.
4
3.16 2.27 3.17 2.89 2.53 2.06
ry, in. 1.19 1.21 0.922 0.947 0.973 0.999
rx/ry 1.25 1.26 1.46 1.46 1.45 1.44
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS4
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 50

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×2
1
/2× HSS4×2×
1
/8
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.116 0.349 0.291 0.233 0.174 0.116
lb/ft 5.18 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
039.158.893.414081.012267.210152.178.235.853.8
138.858.391.713879.612066.199.451.377.135.353.1
237.756.786.813075.611463.094.849.073.733.850.9
336.054.179.211969.510458.287.545.568.431.547.4
433.850.869.710561.792.752.178.241.061.628.643.0
531.146.859.289.052.979.545.167.835.853.825.237.9
628.242.348.472.843.965.937.856.930.445.621.632.4
725.037.638.257.535.152.830.746.225.037.518.027.0
821.832.829.444.227.341.024.136.319.929.914.621.9
918.728.123.234.921.532.419.128.715.723.711.517.3
1015.723.618.828.317.426.215.523.212.819.29.3514.1
1113.019.515.523.414.421.712.819.210.515.87.7311.6
1210.916.413.119.612.118.210.716.18.8613.36.499.76
13 9.3014.0 7.5511.35.538.31
14 8.0212.1
15 6.9910.5
16 6.149.23
17 5.448.18
Properties
Ag, in.
2
1.42 3.39 2.94 2.44 1.89 1.30
Ix, in.
4
3.09 5.60 5.13 4.49 3.66 2.65
Iy, in.
4
1.49 1.80 1.67 1.48 1.22 0.898
ry, in. 1.03 0.729 0.754 0.779 0.804 0.830
rx/ry 1.43 1.77 1.75 1.75 1.73 1.72
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-3 (continued)
Available Strength in
Axial Compression, kips
Rectangular HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS4
AISC_Part 4A:14th Ed. 2/23/11 10:05 AM Page 51

4–52 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×16× HSS14×14×
1
/2
3 /8
c 5
/16
c 5
/8
1 /2
3 /8
c
tdesign, in. 0.465 0.349 0.291 0.581 0.465 0.349
lb/ft 103 78.5 65.9 110 89.7 68.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 780117052178238157283512506781020498748
6 773116051877937957082512406701010494743
7 770116051777737956982112306671000493741
8 76711505167763785688171230664998491738
9 76411505157743775678131220660992489736
10 76111405137723765668081210656986487733
11 75711405127693755648021210652980485729
12 75311305107673745637961200647972483726
13 74811205087643735617901190642965480722
14 74311205067613725597831180636956477718
15 73811105047583715577751170630947474713
16 73211005027553705557681150624938471708
17 72710905007513685537591140618928468703
18 72010804977473675517511130611918464697
19 71410704957433655497421110603907460691
20 70710604927393635467321100596896454683
21 70010504897353615437221090588884448674
22 69310404867303605407121070580872442665
23 68510304827253585377021050572859436656
24 67810204797203565346911040563846430646
25 67010104757143535316801020554833423636
26 6619944727093515286691010545820416626
27 653981468703349524657988536806410616
28 644968464697346520646970527792403605
29 635955459691344517634953517777395594
30 626941455684341513622934507763388583
32 608913446670336504597897488733373561
34 588884436656330495572859467702358538
36 569855426640323486546821447671343515
38 549825415623316476520782426640327492
40 528794403606309465494743405609311468
Properties
Ag, in.
2
28.3 21.5 18.1 30.3 24.6 18.7
Ix=Iy, in.
4
1130 873 739 897 743 577
rx=ry, in. 6.31 6.37 6.39 5.44 5.49 5.55
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS16-HSS14
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 52

Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS14-HSS12
Shape
HSS14×14× HSS12×12×
5
/16
c 5
/8
1 /2
3 /8
5 /16
c 1
/4
c
tdesign, in. 0.291 0.581 0.465 0.349 0.291 0.233
lb/ft 57.4 93.3 76.1 58.1 48.9 39.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 3665517081060576865441662350526239359
6 3645476961050567852434652347521237356
7 3635466921040563847431648345519236355
8 3625456881030560841429644344517236354
9 3615436821030555835426640342515235353
10 3605416761020551828422634340512234351
11 3595396701010546820418629338509233350
12 357537663997540812414622336505232348
13 356535656985534803410616334502230346
14 354532648973528793405609331498229344
15 352529639961521783400601328494227342
16 350526630947514773394593325489226339
17 348523621933507761389584322484224337
18 346520611918499750383576319479222334
19 344516601903491738377567315474220331
20 341513590887482725371557311468218328
21 339509580871474712364547306459216325
22 336505568854465699357537300451214321
23 333500557837456685351527294442211318
24 330496545819446671343516289434209314
25 327491533801437656336505283425206310
26 323486521783427642329494276416203306
27 320481509764417627321483270406201301
28 316476496745407612314472264397198297
29 313470483726397597306460258387194292
30 309464471707387581298449251378191287
32 301452445669366550283425238358184277
34 292439419630345519267402225338177266
36 283425393591325488251378212319169254
38 273411368552304457236354199299161242
40 263395342515284426220331186280151228
Properties
Ag, in.
2
15.7 25.7 20.9 16.0 13.4 10.8
Ix=Iy, in.
4
490 548 457 357 304 248
rx=ry, in. 5.58 4.62 4.68 4.73 4.76 4.79
ASD LRFD
Ωc=1.67 φc=0.90
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 53

4–54 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×12× HSS10×10×
3
/16
c 5
/8
1 /2
3 /8
5 /16
1 /4
c
tdesign, in. 0.174 0.581 0.465 0.349 0.291 0.233
lb/ft 29.8 76.3 62.5 47.9 40.4 32.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 142213578869474712364546306460228342
6 141212565849463696355534299449224337
7 141212560841459690353530297446223336
8 140211554833454683349525294442222334
9 140211548823449676345519291437221331
10 140210541813444667341513287432219329
11 139209533802438658337506284426217326
12 139208525789431648332499279420215323
13 138208516776424638327491275414213320
14 137207507762417627321483271407211316
15 137206497748409615316474266399208313
16 136205487732401603309465261392205308
17 135203477716393590303455255384202304
18 135202465700384577296446250375199299
19 134201454682375563290435244367196295
20 133200442665365549283425238358193289
21 132198430647356535275414232349188283
22 131197418628346520268403226340183275
23 130195406610336505260392220330178268
24 129193393591326490253380213321173260
25 128192380572316474245369207311168253
26 126190368552305459237357201301163245
27 125188355533295443230345194292158237
28 124186342514285428222333187282152229
29 122184329495274412214322181272147221
30 121182316475264397206310174262142213
32 118177291437243366191287161243132198
34 115173266400223336175264149223121182
36 111167242364204307161241136205111167
38 108162219329185278146220124187102153
40 10415619829716725113219911216992.1138
Properties
Ag, in.
2
8.15 21.0 17.2 13.2 11.1 8.96
Ix=Iy, in.
4
189 304 256 202 172 141
rx=ry, in. 4.82 3.80 3.86 3.92 3.94 3.97
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS12-HSS10
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 54

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×10× HSS9×9×
3
/16
c 5
/8
1 /2
3 /8
5 /16
1 /4
c
tdesign, in. 0.174 0.581 0.465 0.349 0.291 0.233
lb/ft 24.7 67.8 55.7 42.8 36.1 29.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0137206515774421633325489273411219330
6136204500751409615316475266399215323
7135203494743405609313470263395213320
8135202488734400601309465260391211317
9134201481723395593305458257386208312
10133200474712388584300452253380205308
11132199465700382574296444249374202303
12132198457686375563290436244367198298
13131196447672367552285428240360194292
14130195437657359540279419235353190286
15128193427641351527272409230345186280
16127191416625342514266399224337182273
17126189404608333501259389219328177267
18125187393590324487252379213320173260
19123185381572314472245368207311168252
20122183368554304457237357201301163245
21120180356535294442230345194292158237
22118178343516284427222334188283153230
23116175331497274412214322182273148222
24115172318478264396207311175263142214
25113169305459253381199299169253137206
26111166292439243365191287162244132198
27108163280420233350183275156234127190
28106159267401223335175264149224121183
29104156255383213319168252143214116175
30101152242364203305160241136205111167
32 96.0144218328183275145218124186101152
34 90.313619529316424713119711216891.4137
36 84.212717426214722011717610015082.0123
38 77.711715623513219810515889.913573.6111
40 70.610614121211917994.814381.112266.499.8
Properties
Ag, in.
2
6.76 18.7 15.3 11.8 9.92 8.03
Ix=Iy, in.
4
108 216 183 145 124 102
rx=ry, in. 4.00 3.40 3.45 3.51 3.54 3.56
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS10-HSS9
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 55

4–56 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×9× HSS8×8×
3
/16
c 1
/8
c 5
/8
1 /2
3 /8
5 /16
tdesign, in. 0.174 0.116 0.581 0.465 0.349 0.291
lb/ft 22.2 15.0 59.3 48.9 37.7 31.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
013420164.496.8452679372559286431241363
613219863.895.9434653358538276415233350
713119763.695.6428644353531273410230346
813019663.495.2421633348523269404226340
913019563.194.8414622342513264397223335
1012919362.894.4405609335503259389219329
1112819262.493.9396596328492254381214322
1212619062.193.3386581320481248372209315
1312518861.792.7376565311468242363204307
1412418661.292.0365549303455235353199299
1512218460.791.3354532294441228343193290
1612018160.290.5342514284427221333187282
1711917859.789.7330496275413214322181273
1811717659.188.8318478265398207311175263
1911517358.587.9306459255383199299169254
2011317057.886.9293440245367191288162244
2111116657.185.9280421234352184276156234
2210816356.484.8267402224337176264150225
2310615955.683.6255383214321168253143215
2410315554.882.4242364203306160241137205
2510115154.081.1230345193290153229130195
26 97.714753.179.8217326183275145218124186
27 94.714252.178.3205308173260137206117176
28 91.613851.176.9193290163246130195111167
29 88.413350.175.3182273154231123184105158
30 84.912849.073.7170256145217116174 99.1149
32 77.311646.770.2149225127191102153 87.5131
34 70.010544.266.413219911316990.2136 77.5116
36 62.994.541.462.211817710015180.5121 69.1104
38 56.584.938.457.710615990.213672.2109 62.093.2
40 51.076.635.052.695.614481.412265.298.056.084.1
Properties
Ag, in.
2
6.06 4.09 16.4 13.5 10.4 8.76
Ix=Iy, in.
4
78.2 53.5 146 125 100 85.6
rx=ry, in. 3.59 3.62 2.99 3.04 3.10 3.13
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS9-HSS8
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 56

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×8× HSS7×7×
1
/4
3 /16
c 1
/8
c 5
/8
1 /2
3 /8
tdesign, in. 0.233 0.174 0.116 0.581 0.465 0.349
lb/ft 25.8 19.6 13.3 50.8 42.1 32.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019629413019563.094.7386580320480247371
618928412719162.293.5366550304457235354
718628012619061.993.0359540298448231348
818427612518861.692.5351528292439227341
918127212418661.292.0343515285429222333
1017726712218460.891.3333501278417216325
1117426112118260.390.6323486270405210316
1217025511917959.789.8313470261393204306
1316624911717659.288.9302453252379197296
1416224311517458.588.0290436243365190286
1515723611317057.987.0278418233350183275
1615222911116757.285.9266399223336175264
1714722210916356.484.7253381213320168252
1814321410615955.683.5241362203305160241
1913720710315554.782.2228343193290152229
2013219910015153.780.8215324182274145217
2112719197.014652.779.3203305172259137206
2212218393.014051.777.7191287162244129194
2311717589.113450.676.0179268152229122183
2411116885.212849.474.3167251143214114172
2510616081.312248.272.4155233133200107161
2610115277.411646.970.5144216124186100150
27 96.014473.611145.568.4133201115173 92.9140
28 91.013769.810544.166.2124186107161 86.4130
29 86.012966.199.342.664.011617499.6150 80.6121
30 81.212262.593.941.061.610816293.1140 75.3113
32 71.810855.483.237.556.495.014381.8123 66.299.4
34 63.695.649.073.733.750.684.112672.4109 58.688.1
36 56.785.343.765.730.045.275.111364.697.152.378.6
38 50.976.539.359.027.040.567.410158.087.246.970.5
40 46.069.135.453.224.336.660.891.452.378.742.363.6
Properties
Ag, in.
2
7.10 5.37 3.62 14.0 11.6 8.97
Ix=Iy, in.
4
70.7 54.4 37.4 93.4 80.5 65.0
rx=ry, in. 3.15 3.18 3.21 2.58 2.63 2.69
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS8-HSS7
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 57

4–58 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×7× HSS6×6×
5
/16
1 /4
3 /16
c 1
/8
c 5
/8
1 /2
tdesign, in. 0.291 0.233 0.174 0.116 0.581 0.465
lb/ft 27.6 22.4 17.1 11.6 42.3 35.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
020931417025512418761.792.7322484268403
619930016224412018160.590.9299450250376
719629516024011917960.090.2291438244367
819228915723511717759.589.5283425237356
918828315323011617459.088.6273410229344
1018327615022511317058.387.6262394221332
1117826814621911016657.686.6251378212319
1217326014121210716156.885.4240360203305
1316825213720610415656.084.1228342193290
1416224313219910015155.082.7215324183275
1515623412719196.814654.081.2203305173260
1615022512218493.114052.979.6190286163245
1714321511717689.313451.877.8178267153230
1813720611216985.512850.575.9165249143215
1913019610716181.612349.273.9153231133200
2012418610215377.611747.871.8142213123185
2111717696.614573.711146.369.5130196114171
2211116791.413769.810544.767.1119179104157
2310515786.313066.099.143.064.6109163 95.6144
24 98.314881.312262.293.441.261.999.8150 87.8132
25 92.213976.311558.487.839.359.192.0138 80.9122
26 86.313071.510754.882.437.356.185.1128 74.8112
27 80.412166.810051.277.035.252.978.9119 69.4104
28 74.811262.193.447.771.733.049.673.4110 64.596.9
29 69.710557.987.044.566.830.746.268.4103 60.190.4
30 65.197.954.181.341.662.528.743.263.996.056.284.4
32 57.286.047.671.536.554.925.338.056.284.449.474.2
34 50.776.242.163.332.448.622.433.649.774.843.765.7
36 45.268.037.656.528.943.420.030.044.466.739.058.6
38 40.661.033.750.725.938.917.926.9
40 36.655.130.445.823.435.116.224.3
Properties
Ag, in.
2
7.59 6.17 4.67 3.16 11.7 9.74
Ix=Iy, in.
4
56.1 46.5 36.0 24.8 55.2 48.3
rx=ry, in. 2.72 2.75 2.77 2.80 2.17 2.23
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS7-HSS6
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 58

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×6×
3
/8
5 /16
1 /4
3 /16
1 /8
c
tdesign, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 27.5 23.3 19.0 14.5 9.86
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 209 314 177 266 144 217 110 165 59.689.6
6 195 293 166 249 135 204 103 155 57.886.8
7 191 286 162 244 132 199 101 151 57.185.8
8 185 279 158 237 129 194 98.2148 56.384.6
9 180 270 153 230 125 188 95.3143 55.483.3
10 173 260 148 222 121 182 92.3139 54.481.8
11 167 250 142 214 117 175 89.0134 53.380.1
12 160 240 136 205 112 168 85.5129 52.178.3
13 152 229 130 196 107 161 81.9123 50.776.2
14 145 218 124 187 102 153 78.2118 49.374.0
15 137 206 118 177 96.9146 74.4112 47.771.6
16 130 195 111 167 91.8138 70.5106 46.069.1
17 122 183 105 158 86.6130 66.6100 44.166.3
18 114 172 98.4148 81.4122 62.794.242.263.4
19 107 160 92.0138 76.2115 58.888.440.160.2
20 99.1149 85.7129 71.1107 55.082.737.756.7
21 91.8138 79.5120 66.299.451.277.035.252.9
22 84.7127 73.6111 61.392.147.671.532.749.2
23 77.8117 67.7102 56.685.144.066.230.345.6
24 71.4107 62.293.552.078.140.560.927.942.0
25 65.898.957.386.147.972.037.356.125.838.7
26 60.891.453.079.644.366.634.551.923.835.8
27 56.484.849.173.841.161.732.048.122.133.2
28 52.578.845.768.738.257.429.844.720.530.9
29 48.973.542.664.035.653.527.741.719.128.8
30 45.768.739.859.833.350.025.939.017.926.9
32 40.260.435.052.629.244.022.834.215.723.6
34 35.653.531.046.625.938.920.230.313.920.9
36 31.747.727.641.523.134.718.027.112.418.7
38 28.542.824.837.320.731.216.224.311.116.8
Properties
Ag, in.
2
7.58 6.43 5.24 3.98 2.70
Ix=Iy, in.
4
39.5 34.3 28.6 22.3 15.5
rx=ry, in. 2.28 2.31 2.34 2.37 2.39
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS6
AISC_Part 4A:14th Ed. 2/23/11 10:06 AM Page 59

4–60 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5
1
/2×5
1
/2× HSS5×5×
3
/8
5 /16
1 /4
3 /16
1 /8
c 1
/2
tdesign, in. 0.349 0.291 0.233 0.174 0.116 0.465
lb/ft 24.9 21.2 17.3 13.3 9.01 28.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019028516124213119710015058.087.2217326
1189284161242131197 99.815058.087.1216325
2188282160240130196 99.214957.886.9215322
3186279158237129194 98.114757.586.4211318
4183275156234127191 96.714557.085.7207311
5179269153229125187 94.914356.484.8202303
6175263149224122183 92.813955.783.7195294
7170255145218118178 90.313654.882.4188283
8164247140211115172 87.513253.880.9180271
9158238135203111166 84.512752.779.2171257
10151228130195106160 81.212251.477.3162244
11145217124186101153 77.811750.075.2152229
12137206118177 96.6145 74.111148.572.8142214
13130195112168 91.6138 70.410646.770.3132199
14122184105158 86.5130 66.610044.967.5122184
1511517298.8148 81.3122 62.794.242.964.5112169
1610716192.3139 76.1114 58.888.340.460.7103154
17 99.214985.9129 70.9107 54.982.537.856.893.2140
18 91.713879.6120 65.898.951.076.735.252.984.1126
19 84.512773.5110 60.891.447.371.032.749.175.5113
20 77.411667.5101 55.984.143.665.530.245.468.1102
21 70.510661.692.751.277.040.060.227.841.861.892.9
22 64.296.556.284.446.770.136.554.925.438.256.384.6
23 58.788.351.477.242.764.233.450.223.335.051.577.4
24 53.981.147.270.939.258.930.746.121.432.147.371.1
25 49.774.743.565.436.154.328.342.519.729.643.665.5
26 46.069.140.260.433.450.226.239.318.227.440.360.6
27 42.664.137.356.031.046.624.236.416.925.437.456.2
28 39.659.634.752.128.843.322.533.915.723.634.852.2
29 36.955.532.348.626.940.421.031.614.622.032.448.7
30 34.551.930.245.425.137.719.629.513.720.630.345.5
Properties
Ag, in.
2
6.88 5.85 4.77 3.63 2.46 7.88
Ix=Iy, in.
4
29.7 25.9 21.7 17.0 11.8 26.0
rx=ry, in. 2.08 2.11 2.13 2.16 2.19 1.82
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
HSS5
1∕2-HSS5
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 60

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×5× HSS4
1
/2×4
1
/2×
3
/8
5 /16
1 /4
3 /16
1 /8
c 1
/2
tdesign, in. 0.349 0.291 0.233 0.174 0.116 0.465
lb/ft 22.4 19.1 15.6 12.0 8.16 25.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
017025614521811817890.313656.484.8191288
117025514421711817890.113556.484.7191287
216825314321511717689.413456.184.3189283
316625014121311617488.313355.783.7185278
416324513920911417186.813055.182.8180271
515923913520411116784.812754.381.6174262
615423213219810816282.512453.480.2167252
714922312719110415779.812052.378.5159240
814321412218310015176.911651.076.6151227
9136204117175 95.914473.711149.574.4141213
10129194111167 91.313770.210647.871.9132198
11122183105157 86.513066.610045.768.7122183
1211417298.5148 81.412262.894.443.264.9112168
1310716092.1138 76.311559.088.740.661.1102153
14 98.914985.6129 71.110755.182.838.057.292.0138
15 91.313779.2119 66.099.251.277.035.453.282.6124
16 83.812672.9110 60.991.547.471.232.849.473.5110
17 76.411566.7100 55.984.043.665.530.345.565.197.8
18 69.410460.791.351.076.739.960.027.841.858.087.2
19 62.593.954.982.546.369.636.454.625.438.252.178.3
20 56.484.849.674.541.862.832.949.423.034.647.070.7
21 51.276.944.967.637.957.029.844.820.931.442.664.1
22 46.670.041.061.534.551.927.240.819.028.638.958.4
23 42.664.137.556.331.647.524.937.417.426.235.553.4
24 39.258.934.451.729.043.622.834.316.024.132.649.1
25 36.154.231.747.726.740.221.031.614.722.230.145.2
26 33.450.229.344.124.737.219.529.213.620.527.841.8
27 30.946.527.240.922.934.518.027.112.619.0
28 28.843.225.338.021.332.116.825.211.817.7
29 26.840.323.635.419.929.915.623.511.016.5
Properties
Ag, in.
2
6.18 5.26 4.30 3.28 2.23 6.95
Ix=Iy, in.
4
21.7 19.0 16.0 12.6 8.80 18.1
rx=ry, in. 1.87 1.90 1.93 1.96 1.99 1.61
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS5-HSS4
1∕2
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 61

4–62 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4
1
/2×4
1
/2× HSS4×4×
3
/8
5 /16
1 /4
3 /16
1 /8
c 1
/2
tdesign, in. 0.349 0.291 0.233 0.174 0.116 0.465
lb/ft 19.8 17.0 13.9 10.7 7.31 21.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
015122712919410615980.712154.481.8166249
115022612819310515880.512154.381.6165248
214922412719110415779.712054.081.1163244
314622012518810315478.411853.480.3159239
414321512218410015176.711552.578.8153231
5138208119178 97.514774.611251.076.7147221
6133200114172 94.114172.010849.374.2139209
7127191109164 90.313669.110447.471.3131196
8121182104156 86.012965.999.145.368.1121182
911417198.3148 81.412262.593.943.064.6112168
1010716092.2139 76.511558.888.440.661.0102153
11 99.214985.9129 71.510755.082.738.157.292.0138
12 91.513879.6120 66.499.851.276.935.553.382.2124
13 83.912673.2110 61.292.047.371.132.949.472.8109
14 76.411566.8100 56.184.343.465.330.345.563.795.8
15 69.110460.691.151.176.739.659.527.741.655.583.5
16 62.093.254.782.146.269.435.954.025.237.948.873.3
17 55.283.048.873.441.562.432.448.622.834.243.265.0
18 49.274.043.665.537.055.628.943.420.430.738.658.0
19 44.266.439.158.833.249.925.939.018.327.534.652.0
20 39.959.935.353.030.045.123.435.216.524.931.246.9
21 36.254.432.048.127.240.921.231.915.022.528.342.6
22 33.049.529.243.824.837.319.429.113.720.525.838.8
23 30.245.326.740.122.734.117.726.612.518.823.635.5
24 27.741.624.536.820.831.316.324.411.517.3
25 25.538.422.634.019.228.815.022.510.615.9
26 23.635.520.931.417.726.713.920.89.7814.7
27 21.932.919.429.116.524.712.819.39.0713.6
28 18.027.115.323.011.918.08.4412.7
29 11.116.77.8611.8
Properties
Ag, in.
2
5.48 4.68 3.84 2.93 2.00 6.02
Ix=Iy, in.
4
15.3 13.5 11.4 9.02 6.35 11.9
rx=ry, in. 1.67 1.70 1.73 1.75 1.78 1.41
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
c
Shape is slender for compression with Fy=46 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
HSS4
1∕2-HSS4
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 62

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×4×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 132 198 113 170 92.8140 71.1107 48.873.3
1 131 197 112 169 92.4139 70.8106 48.673.0
2 129 194 111 167 91.3137 69.9105 48.072.1
3 126 190 109 163 89.4134 68.5103 47.170.8
4 123 184 105 158 86.8130 66.6100 45.868.9
5 118 177 101 152 83.6126 64.296.644.266.5
6 112 168 96.5145 79.8120 61.592.442.463.7
7 106 159 91.2137 75.6114 58.387.740.360.6
8 98.8149 85.4128 71.0107 54.982.538.057.2
9 91.6138 79.3119 66.199.351.377.135.653.5
10 84.1126 73.0110 61.091.747.571.433.149.7
11 76.5115 66.6100 55.984.043.665.630.545.8
12 69.0104 60.390.650.876.339.859.827.941.9
13 61.792.854.081.245.768.736.054.025.338.0
14 54.782.248.072.240.861.332.248.522.834.3
15 47.972.042.263.536.154.328.743.120.430.6
16 42.163.337.155.831.747.725.338.018.027.1
17 37.356.132.949.428.142.322.433.616.024.0
18 33.350.029.344.125.137.720.030.014.221.4
19 29.944.926.339.622.533.817.926.912.819.2
20 27.040.523.835.720.330.516.224.311.517.3
21 24.436.721.532.418.427.714.722.110.515.7
22 22.333.519.629.516.825.213.420.19.5314.3
23 20.430.618.027.015.423.112.218.48.7213.1
24 18.728.116.524.814.121.211.216.98.0112.0
25 13.019.510.415.67.3811.1
26 6.8210.3
Properties
Ag, in.
2
4.78 4.10 3.37 2.58 1.77
Ix=Iy, in.
4
10.3 9.14 7.80 6.21 4.40
rx=ry, in. 1.47 1.49 1.52 1.55 1.58
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS4
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 63

4–64 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3
1
/2×3
1
/2×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 14.7 12.7 10.5 8.15 5.61
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 113 169 97.0146 80.2120 61.792.742.463.8
1 112 168 96.4145 79.7120 61.492.242.263.4
2 110 165 94.7142 78.4118 60.490.841.662.5
3 107 160 92.0138 76.2115 58.888.440.560.9
4 102 154 88.3133 73.3110 56.785.239.158.7
5 96.7145 83.8126 69.8105 54.081.237.356.0
6 90.4136 78.6118 65.698.651.076.635.252.9
7 83.5126 72.9110 61.091.747.671.532.949.5
8 76.2115 66.8100 56.284.443.966.030.545.8
9 68.7103 60.590.951.176.840.160.327.942.0
10 61.292.054.281.446.069.136.354.525.338.1
11 53.880.947.972.140.961.532.448.722.734.1
12 46.870.341.963.036.054.128.743.120.230.3
13 40.160.336.254.431.347.125.137.817.726.7
14 34.652.031.246.927.040.621.732.715.423.1
15 30.145.327.240.823.535.418.928.513.420.2
16 26.539.823.935.920.731.116.625.011.817.7
17 23.535.221.231.818.327.514.722.210.415.7
18 20.931.418.928.416.324.613.219.89.3114.0
19 18.828.216.925.514.722.011.817.78.3612.6
20 16.925.515.323.013.219.910.716.07.5411.3
21 15.423.113.920.812.018.09.6614.56.8410.3
22 10.916.48.8013.26.239.37
Properties
Ag, in.
2
4.09 3.52 2.91 2.24 1.54
Ix=Iy, in.
4
6.49 5.84 5.04 4.05 2.90
rx=ry, in. 1.26 1.29 1.32 1.35 1.37
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS3
1∕2
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 64

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3×3×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
lb/ft 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 93.4140 81.0122 67.2101 52.178.235.853.8
1 92.6139 80.3121 66.7100 51.777.735.653.4
2 90.2136 78.3118 65.1 97.950.575.934.852.3
3 86.4130 75.1113 62.6 94.148.773.233.650.5
4 81.3122 70.9107 59.3 89.146.269.432.048.1
5 75.3113 65.898.955.2 83.043.264.930.045.1
6 68.5103 60.190.350.6 76.139.859.827.841.7
7 61.292.053.981.045.7 68.736.154.325.338.1
8 53.880.847.671.540.6 61.132.348.622.834.2
9 46.469.841.362.135.6 53.428.542.820.230.3
10 39.459.335.353.030.6 46.024.737.117.626.5
11 32.949.429.644.525.9 39.021.131.815.222.9
12 27.641.524.937.421.8 32.817.826.812.919.4
13 23.535.421.231.818.6 27.915.222.811.016.5
14 20.330.518.327.416.0 24.113.119.79.4814.2
15 17.726.615.923.913.9 21.011.417.18.2612.4
16 15.523.314.021.012.3 18.410.015.17.2610.9
17 13.820.712.418.610.9 16.38.8713.36.439.66
18 11.016.69.6914.67.9111.95.738.62
19 7.1010.75.157.73
Properties
Ag, in.
2
3.39 2.94 2.44 1.89 1.30
Ix=Iy, in.
4
3.78 3.45 3.02 2.46 1.78
rx=ry, in. 1.06 1.08 1.11 1.14 1.17
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS3
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 65

4–66 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/2×2
1
/2× HSS2
1
/4×2
1
/4×
5
/16
1 /4
3 /16
1 /8
1 /4
tdesign, in. 0.291 0.233 0.174 0.116 0.233
lb/ft 8.45 7.11 5.59 3.90 6.26
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 64.797.354.381.642.463.829.544.347.972.0
1 63.996.153.680.642.063.129.243.847.271.0
2 61.692.551.877.840.661.028.342.545.267.9
3 57.886.948.873.438.457.726.840.341.963.0
4 53.079.645.067.635.653.425.037.537.856.7
5 47.371.240.460.832.248.422.734.233.049.6
6 41.362.035.553.428.542.920.330.528.042.1
7 35.152.730.545.924.737.117.726.623.134.7
8 29.143.725.638.520.931.515.122.818.427.7
9 23.535.220.931.517.426.112.719.114.621.9
10 19.028.617.025.514.121.210.415.611.817.7
11 15.723.614.021.111.717.5 8.6012.9 9.7514.7
12 13.219.811.817.79.8014.7 7.2210.9 8.1912.3
13 11.216.910.015.18.3512.6 6.159.256.9810.5
14 9.6914.68.6513.07.2010.8 5.317.98
15 7.5311.36.279.434.626.95
16 4.066.11
Properties
Ag, in.
2
2.35 1.97 1.54 1.07 1.74
Ix=Iy, in.
4
1.82 1.63 1.35 0.998 1.13
rx=ry, in. 0.880 0.908 0.937 0.965 0.806
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS2
1∕2-HSS2
1∕4
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 66

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/4×2
1
/4× HSS2×2×
3
/16
1 /8
1 /4
3 /16
1 /8
tdesign, in. 0.174 0.116 0.233 0.174 0.116
lb/ft 4.96 3.48 5.41 4.32 3.05
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 37.756.726.339.641.662.532.849.323.134.8
1 37.255.926.039.140.861.332.248.422.834.2
2 35.753.625.037.638.557.830.545.821.632.5
3 33.350.023.435.234.952.427.941.919.929.9
4 30.245.421.432.130.445.724.636.917.726.6
5 26.740.119.028.625.538.320.931.415.222.9
6 22.934.416.524.820.630.917.125.712.719.0
7 19.128.713.920.915.924.013.520.410.215.3
8 15.523.311.517.212.218.310.415.7 7.9311.9
9 12.318.5 9.1813.8 9.6414.5 8.2412.4 6.279.42
10 9.9715.0 7.4311.2 7.8111.7 6.6710.0 5.087.63
11 8.2412.4 6.149.236.469.705.528.294.206.31
12 6.9210.4 5.167.76 4.636.973.535.30
13 5.908.874.406.61
14 3.795.70
Properties
Ag, in.
2
1.37 0.956 1.51 1.19 0.840
Ix=Iy, in.
4
0.953 0.712 0.747 0.641 0.486
rx=ry, in. 0.835 0.863 0.704 0.733 0.761
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-4 (continued)
Available Strength in
Axial Compression, kips
Square HSS
Fy= 46 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
Note: Heavy line indicates KL/ryequal to or greater than 200.
HSS2
1∕4-HSS2
AISC_Part 4A:14th Ed. 2/23/11 10:07 AM Page 67

4–68 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS20× HSS18× HSS16×
0.500 0.375 0.500 0.375 0.625 0.500
tdesign, in. 0.465 0.349 0.465 0.349 0.581 0.465
lb/ft 104 78.7 93.5 70.7 103 82.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 71710805418136449684887337071060571858
6 71210705378076399604847276991050565849
7 71010705368056379574837256971050563846
8 70810605348036349544817236931040560842
9 70610605338016329504797206901040557838
10 70410605317986299464777176861030554833
11 70110505297956269414757136821020551828
12 69810505277926239364727106771020547823
13 69510405247886199314707066721010543817
14 69110405227846159254677016671000539810
15 6881030519780611919464697661994534803
16 6841030516775607912460692655984530796
17 6791020513771602905457687649975524788
18 6751010510766598898453681642965519780
19 6701010506761593891449676635954514772
20 6661000503755587883446670628943508763
21 661993499750582874441663620932502754
22 655985495744576866437657612920495744
23 650977491738570857433650604908489735
24 644968487731564848428643596895482725
25 638960482725558838423636587882475714
26 632951478718551828418629578869468704
27 626941473711544818413621569856461693
28 620932468704538808408614560842454682
29 613922464697531797403606551828446670
30 607912459689523787398598541813438659
32 593891448674509765387581522784423635
34 579870438658493742375564502754407611
36 564847426641478718363546481723390587
38 549824415624462694351528460692374562
40 533801403606446670339510440661357537
Properties
Ag, in.
2
28.5 21.5 25.6 19.4 28.1 22.7
I, in.
4
1360 1040 985 754 838 685
r, in. 6.91 6.95 6.20 6.24 5.46 5.49
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS20-HSS16
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 68

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16× HSS14×
0.438 0.375 0.312 0.250 0.625 0.500
tdesign, in. 0.407 0.349 0.291 0.233 0.581 0.465
lb/ft 72.9 62.6 52.3 42.1 89.4 72.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 500752433650362544289435616926498748
6 495744428643358539286430608913491738
7 493742426641357537285429604908489734
8 491738425638356534284427601903486730
9 489735423635354532283425597897483725
10 486731420632352529281423592891479720
11 483726418628350526279420588883475714
12 480721415624347522278417582875471708
13 476716412619345519276414577867467701
14 473710409614342515274411571858462694
15 469704405609339510271408564848457686
16 465698402604336506269404557838451678
17 460691398598333501266400550827445670
18 455684394592330496264396543816439661
19 451677390586326491261392535804433651
20 445669385579323485258388527792427641
21 440662381572319480255384518779420631
22 435653376565315474252379510766413621
23 429645371558311468249374501753406610
24 423636366550307461246369492739399599
25 417627361543303455242364482725391588
26 411618356535298448239359473711384577
27 405608350527294442235353463696376565
28 398599345518289435231348453681368553
29 392589339510284428228342443666360541
30 385579333501280420224337433651352529
32 371558322484270406216325412620336504
34 357537310465260391208313392589319479
36 343516297447250375200301371557302454
38 329494285428239360192288350526285429
40 314472272409229344184276329495269404
Properties
Ag, in.
2
19.9 17.2 14.4 11.5 24.5 19.8
I, in.
4
606 526 443 359 552 453
r, in. 5.51 5.53 5.55 5.58 4.75 4.79
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS16-HSS14
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 69

Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
4–70 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14× HSS12.750×
0.375 0.312 0.250 0.500 0.375 0.250
tdesign, in. 0.349 0.291 0.233 0.465 0.349 0.233
lb/ft 54.6 45.7 36.8 65.5 49.6 33.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 377567314472254382450677342514230346
6 372559310466251377443665336506227341
7 370557309464249375440661334503225339
8 368553307461248373437657332499224336
9 366550305458246370433651330495222334
10 363546303455245368430646327491220331
11 360542300451243365425639324486218328
12 357537298448241362421633320481216324
13 354532295443238358416625317476213321
14 350526292439236355411617313470211317
15 346521289434234351405609308464208313
16 342515286429231347399600304457205309
17 338508282424228343393591300450202304
18 334501278418225338387582295443199299
19 329494274413222334380572290436196294
20 324487270407219329373561285428192289
21 319480266400215324366551279420189284
22 314472262394212319359540274412185278
23 309464258387209313352528268403182273
24 303456253380205308344517263395178267
25 298447249374201302336505257386174261
26 292439244366197297328493251377170255
27 286430239359194291320481245368166249
28 280421234352190285312469239359162243
29 274412229344186279304457233349158237
30 268403224337182273296444226340154231
32 256385214322173261279419214321145218
34 243366204306165248262394201302137206
36 231347193290157235246369189284128193
38 218328183275148223229345176265120181
40 206309172259140210213320164247112168
Properties
Ag, in.
2
15.0 12.5 10.1 17.9 13.6 9.16
I, in.
4
349 295 239 339 262 180
r, in. 4.83 4.85 4.87 4.35 4.39 4.43
ASD LRFD
Ωc=1.67 φc=0.90
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS14-
HSS12.750
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 70

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10.750× HSS10×
0.500 0.375 0.250 0.625 0.500 0.375
tdesign, in. 0.465 0.349 0.233 0.581 0.465 0.349
lb/ft 54.8 41.6 28.1 62.6 50.8 38.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 377567287431194291433650350525267401
6 368554280421189284420632340511259390
7 365549278417188282416625337506257386
8 361543275413186279411618333500254382
9 357537272409184276406610328493251377
10 353530269404182273400601324486247371
11 348523265398179269393591318478243365
12 343515261392177265386580313470239359
13 337507257386174261378569307461234352
14 331497252379171257370557300451230345
15 325488248372168252362544294441225338
16 318478243365164247353531287431219330
17 311468237357161242344517280420214322
18 304457232349157237335503272409208313
19 296446226340154231325488264397203304
20 289434221332150225315473256385197296
21 281422215323146220305458248373191287
22 273410209314142214295443240361184277
23 265398203305138208284427232349178268
24 257386197296134201274412224336172259
25 249374191287130195264396215324166249
26 240361184277126189253380207311159240
27 232349178268122183243365199299153230
28 224336172258117176232349191286147221
29 215323166249113170222334182274141211
30 207311159239109164212319174262134202
32 190286147221101151192289158238122184
34 17426213520392.5139173260143215111166
36 15923912318584.612715523212819299.3149
38 14421611216877.011613920811517389.1134
40 13019510115169.510412518810415680.4121
Properties
Ag, in.
2
15.0 11.4 7.70 17.2 13.9 10.6
I, in.
4
199 154 106 191 159 123
r, in. 3.64 3.68 3.72 3.34 3.38 3.41
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS10.750-
HSS10
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 71

4–72 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10× HSS9.625×
0.312 0.250 0.188 0.500 0.375 0.312
tdesign, in. 0.291 0.233 0.174 0.465 0.349 0.291
lb/ft 32.3 26.1 19.7 48.8 37.1 31.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0223336180270135203337507257386215322
6217327175263132198327491249374208313
7215324173261130196323486246370206310
8213320171258129194319480243366204306
9210316169254127191315473240361201302
10207311167251125189310466236355198297
11204306164247124186304457232349194292
12200301162243121183299449228343191287
13197296159238119179292439223336187281
14193290155234117176286429218328183275
15189283152229114172279419213320179269
16184277149223112168272408208312174262
17180270145218109164264397202304170255
18175263141212106160257386197295165248
19170256138207104156249374191287160240
20165248134201101151241362185278155233
2116024113019597.7147232349179268150225
2215523312618994.6142224337172259145218
2315022612118291.6138216324166250140210
2414521811717688.5133207312160240134202
2514021011317085.3128199299153231129194
2613420210916482.2124191287147221124186
2712919410515779.1119182274141212119178
2812418610015175.9114174262135202113171
2911917896.314572.8109166249128193108163
3011417192.113869.7105158237122184103155
3210315584.012663.795.714221411116693.4140
34 93.714176.211457.886.812719199.114983.9126
36 84.112668.510352.178.311317088.413374.8112
38 75.511461.592.546.770.210215379.311967.1101
40 68.210255.583.442.263.491.813871.610860.691.1
Properties
Ag, in.
2
8.88 7.15 5.37 13.4 10.2 8.53
I, in.
4
105 85.3 64.8 141 110 93.0
r, in. 3.43 3.45 3.47 3.24 3.28 3.30
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS10-
HSS9.625
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 72

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9.625× HSS8.625×
0.250 0.188 0.625 0.500 0.375 0.322
tdesign, in. 0.233 0.174 0.581 0.465 0.349 0.300
lb/ft 25.1 19.0 53.5 43.4 33.1 28.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0173260130195370556299450228343197297
6168252126190355534288433220330190286
7166250125188350527284427217326188282
8164247124186345518280420214321185278
9162243122183338509275413210315182273
10159240120181332498269405206309178268
11157236118178324487263396201303175262
12154231116174316475257386197296171256
13151227114171308462250376192288166250
14148222111167299449243366186280162243
15144217109163289435236354181272157236
16141211106160280420228343175263152229
17137206103155270406220331169255147221
18133200101151260390212319163246142213
1912919497.7147250375204307157236137206
2012518894.7142239359196294151227131198
2112118291.7138229344188282145218126190
2211717688.6133218328179269139208121181
2311317085.5128208312171257132199115173
2410916482.4124197297163244126189110165
2510515779.2119187281154232120180105157
2610015176.111417726614622011417199.3149
27 96.314572.911016725113820810816294.1141
28 92.113869.810515723713019610215389.0134
29 88.013266.8100148222123185 95.914484.0126
30 83.912663.795.7138208115173 90.313679.1119
32 76.011457.786.8122183101152 79.411969.6105
34 68.310352.078.210816289.7135 70.310661.792.7
36 61.091.746.569.896.214580.0120 62.794.355.082.7
38 54.782.341.762.786.313071.8108 56.384.649.474.2
40 49.474.237.656.677.911764.897.550.876.344.667.0
Properties
Ag, in.
2
6.87 5.17 14.7 11.9 9.07 7.85
I, in.
4
75.9 57.7 119 100 77.8 68.1
r, in. 3.32 3.34 2.85 2.89 2.93 2.95
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS9.625-
HSS8.625
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 73

4–74 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8.625× HSS7.625× HSS7.500×
0.250 0.188 0.375 0.328 0.500 0.375
tdesign, in. 0.233 0.174 0.349 0.305 0.465 0.349
lb/ft 22.4 17.0 29.1 25.6 37.4 28.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0154232116175201302176265259389197296
6149224112169191288168253246370188282
7147221111166188283165248242363184277
8145218109164184277162244236355180271
9142214107161180271158238231347176265
10140210105158176264155232225338172258
11137206103155171257150226218328167251
12134201101151166249146219211317162243
1313019698.3148160241141212204306156235
1412719195.7144155232136205196294150226
1512318593.0140149224131197188282144217
1611918090.2136143215126189180270138208
1711617487.3131137205120181172258132199
1811216884.3127130196115173163245126189
1910816281.3122124187110165155233120180
2010315578.2118118177104156146220113171
21 99.214975.111311216898.6148138208107161
22 95.014372.010810515993.1140130195101152
23 90.913768.8103 99.414987.813212218394.9143
24 86.713065.798.893.414082.512411417189.0134
25 82.512462.694.187.513177.311610616083.1125
26 78.411859.589.581.712372.3109 98.614877.5116
27 74.311256.584.976.111467.3101 91.413771.9108
28 70.410653.580.470.710662.694.185.012866.8100
29 66.499.950.676.065.999.158.487.779.311962.393.6
30 62.694.147.771.761.692.654.582.074.111158.287.5
32 55.283.042.163.354.181.447.972.065.197.851.276.9
34 48.973.537.356.148.072.142.563.857.786.745.368.1
36 43.665.633.350.042.864.337.956.951.477.340.460.7
38 39.258.829.944.938.457.734.051.146.269.436.354.5
40 35.353.126.940.534.752.130.746.141.762.632.749.2
Properties
Ag, in.
2
6.14 4.62 7.98 7.01 10.3 7.84
I, in.
4
54.1 41.3 52.9 47.1 63.9 50.2
r, in. 2.97 2.99 2.58 2.59 2.49 2.53
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
HSS8.625-
HSS7.500
AISC_Part 4B:14th Ed. 2/23/11 10:09 AM Page 74

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7.500× HSS7×
0.312 0.250 0.188 0.500 0.375 0.312
tdesign, in. 0.291 0.233 0.174 0.465 0.349 0.291
lb/ft 24.0 19.4 14.7 34.7 26.6 22.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0166249134201101151240361183276154232
6158237127192 95.9144226340173260146219
7155233125188 94.3142222333170255143215
8152228123185 92.5139216325165249139210
9148223120180 90.4136210316161242136204
10145217117176 88.2133204306156235132198
11141211114171 85.8129197296151227127192
12136205110166 83.2125190285146219123185
13132198107160 80.5121182273140210118178
14127191103155 77.7117174262134201113170
1512218399.0149 74.8112166249128192108163
1611717695.0143 71.8108158237122183103155
1711216890.9137 68.710314922511517397.8147
1810716086.7130 65.698.614121210916492.6139
1910115282.5124 62.593.913319910315587.3131
20 96.214578.3118 59.489.212418796.614582.1123
21 91.013774.1111 56.284.511617590.513677.0116
22 85.812970.0105 53.179.910816384.512771.9108
23 80.712165.999.050.175.310115178.611867.0101
24 75.711461.993.047.170.893.114072.911062.293.6
25 70.810657.987.144.166.385.812967.210157.586.4
26 66.199.354.181.341.362.079.411962.293.453.279.9
27 61.492.250.375.638.457.773.611157.686.649.374.1
28 57.185.746.870.335.753.768.410353.680.645.868.9
29 53.279.943.665.533.350.163.895.950.075.142.764.2
30 49.774.740.861.331.146.859.689.646.770.239.960.0
32 43.765.735.853.827.441.152.478.841.061.735.152.8
34 38.758.231.747.724.236.446.469.836.454.631.146.7
36 34.551.928.342.521.632.541.462.232.448.727.741.7
38 31.046.625.438.219.429.237.255.829.143.724.937.4
40 28.042.022.934.517.526.3
Properties
Ag, in.
2
6.59 5.32 4.00 9.55 7.29 6.13
I, in.
4
42.9 35.2 26.9 51.2 40.4 34.6
r, in. 2.55 2.57 2.59 2.32 2.35 2.37
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS7.500-
HSS7
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 75

4–76 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7× HSS6.875×
0.250 0.188 0.125 0.500 0.375 0.312
tdesign, in. 0.233 0.174 0.116 0.465 0.349 0.291
lb/ft 18.0 13.7 9.19 34.1 26.1 21.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
012418793.814163.194.9235354180271151228
611817788.813359.889.9221333170255143215
711517387.113158.788.2216325166250140210
811316985.112857.486.2211317162243136205
911016582.912555.984.0205308157237133199
1010716080.612154.381.7198298153229129193
1110315578.011752.779.2191287147221124187
12 99.615075.311350.976.5184276142212120180
13 95.814472.510949.073.7176265136205115173
14 91.913869.610547.170.7168253130196110165
15 87.913266.610045.167.7160240124186105158
16 83.812663.595.543.064.715222811817799.8150
17 79.612060.490.840.961.514321511216894.5142
18 75.411357.386.138.958.413520310515889.3134
19 71.210754.181.436.855.3127190 99.014984.1126
20 67.010151.076.734.752.1118178 92.813978.9119
21 62.994.547.972.032.649.0110166 86.713073.8111
22 58.888.444.967.530.646.0103154 80.712168.8103
23 54.982.541.963.028.643.094.9143 74.911364.096.1
24 51.076.739.058.726.640.087.4131 69.210459.289.0
25 47.271.036.254.424.837.280.6121 63.895.954.682.0
26 43.765.633.550.322.934.474.5112 59.088.750.575.8
27 40.560.831.046.621.231.969.1104 54.782.246.870.3
28 37.656.628.843.419.729.764.296.550.976.543.565.4
29 35.152.726.940.418.427.659.990.047.471.340.661.0
30 32.849.325.137.817.225.855.984.144.366.637.957.0
32 28.843.322.133.215.122.749.273.938.958.533.350.1
34 25.538.419.629.413.420.143.565.534.551.929.544.4
36 22.834.217.426.211.917.938.858.430.846.226.339.6
38 20.430.715.723.510.716.1 27.641.523.635.5
40 14.121.29.6714.5
Properties
Ag, in.
2
4.95 3.73 2.51 9.36 7.16 6.02
I, in.
4
28.4 21.7 14.9 48.3 38.2 32.7
r, in. 2.39 2.41 2.43 2.27 2.31 2.33
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS7–
HSS6.875
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 76

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.875× HSS6.625×
0.250 0.188 0.500 0.432 0.375
tdesign, in. 0.233 0.174 0.465 0.402 0.349
lb/ft 17.7 13.4 32.7 28.6 25.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 122 184 92.0138 226 340 198 297 173 260
6 115 173 87.0131 212 318 185 278 162 244
7 113 170 85.2128 207 311 181 272 158 238
8 110 166 83.2125 201 302 176 264 154 232
9 107 161 81.0122 195 293 170 256 150 225
10 104 157 78.6118 188 282 165 247 145 217
11 101 151 76.1114 181 272 158 238 139 209
12 97.1146 73.4110 173 260 152 228 134 201
13 93.2140 70.5106 165 248 145 218 128 192
14 89.3134 67.6102 157 236 138 208 122 183
15 85.2128 64.697.1149 224 131 197 116 174
16 81.1122 61.592.5141 211 124 186 109 164
17 76.9116 58.487.8132 199 117 175 103 155
18 72.7109 55.383.1124 186 109 164 96.7145
19 68.6103 52.178.4116 174 102 154 90.5136
20 64.496.849.073.7108 162 95.2143 84.4127
21 60.390.746.069.199.6150 88.3133 78.4118
22 56.384.643.064.692.0138 81.6123 72.6109
23 52.478.740.060.184.4127 75.1113 66.9101
24 48.673.037.255.977.5116 68.9104 61.492.4
25 44.867.434.351.671.4107 63.595.556.685.1
26 41.462.331.747.766.099.358.788.352.478.7
27 38.457.829.444.261.292.054.581.948.573.0
28 35.753.727.441.156.985.650.676.145.167.9
29 33.350.125.538.353.179.847.271.042.163.3
30 31.146.823.835.849.674.644.166.339.359.1
32 27.441.121.031.543.665.538.858.334.651.9
34 24.236.418.627.938.658.034.451.630.646.0
36 21.632.516.624.934.451.830.646.127.341.0
38 19.429.214.922.3
Properties
Ag, in.
2
4.86 3.66 9.00 7.86 6.88
I, in.
4
26.8 20.6 42.9 38.2 34.0
r, in. 2.35 2.37 2.18 2.20 2.22
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS6.875-
HSS6.625
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 77

4–78 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.625×
0.312 0.280 0.250 0.188 0.125
tdesign, in. 0.291 0.260 0.233 0.174 0.116
lb/ft 21.1 19.0 17.0 12.9 8.69
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 146 219 131 197 118 177 88.8133 59.689.6
6 137 205 123 185 111 166 83.5126 56.184.4
7 134 201 120 180 108 163 81.7123 54.982.5
8 130 196 117 176 105 158 79.6120 53.680.5
9 126 190 114 171 102 154 77.3116 52.178.2
10 122 183 110 165 99.0149 74.9113 50.475.8
11 118 177 106 159 95.5143 72.3109 48.773.2
12 113 170 102 153 91.7138 69.5104 46.970.4
13 108 162 97.3146 87.8132 66.6100 44.967.5
14 103 155 92.9140 83.8126 63.695.643.064.6
15 97.9147 88.3133 79.7120 60.591.040.961.5
16 92.7139 83.6126 75.6114 57.486.338.958.4
17 87.5132 78.9119 71.4107 54.381.636.855.3
18 82.3124 74.3112 67.2101 51.276.934.752.1
19 77.1116 69.6105 63.094.748.072.232.649.0
20 71.9108 65.097.758.988.545.067.630.545.9
21 66.9101 60.591.054.882.441.963.028.542.9
22 62.093.356.184.450.976.539.058.626.539.9
23 57.386.151.978.047.170.836.154.224.637.0
24 52.679.147.771.743.365.133.350.022.734.1
25 48.572.944.066.139.960.030.646.120.931.5
26 44.967.440.661.136.955.528.342.619.429.1
27 41.662.537.756.734.251.426.339.518.027.0
28 38.758.135.052.731.847.824.436.716.725.1
29 36.154.232.749.129.744.622.834.215.623.4
30 33.750.630.545.927.741.721.332.014.521.9
32 29.644.526.840.324.436.618.728.112.819.2
34 26.239.423.835.721.632.416.624.911.317.0
36 23.435.221.231.919.328.914.822.210.115.2
38 13.319.99.0613.6
Properties
Ag, in.
2
5.79 5.20 4.68 3.53 2.37
I, in.
4
29.1 26.4 23.9 18.4 12.6
r, in. 2.24 2.25 2.26 2.28 2.30
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS6.625
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 78

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×
0.500 0.375 0.312 0.280 0.250 0.188
tdesign, in. 0.465 0.349 0.291 0.260 0.233 0.174
lb/ft 29.4 22.6 19.0 17.1 15.4 11.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
020330615623413119711817710616080.0120
120330515623413119711817710615979.8120
220230315523213019611717610515879.3119
319930015323012919411617410415678.5118
419629515122612719111417110315477.4116
519228914822212418711216810115175.9114
6187281144216121183109164 98.314874.2112
7182273140210118177106160 95.614472.2109
8176264135203114172103155 92.613970.0105
9169254130196110166 99.1149 89.313467.6102
10162243125188106159 95.2143 85.812964.997.6
11154231119179101152 91.0137 82.112362.193.4
12146220113170 96.1144 86.6130 78.211759.289.0
13138207107161 91.0137 82.1123 74.111156.284.5
14130195101152 85.8129 77.4116 70.010553.279.9
1512118294.8143 80.6121 72.8109 65.898.950.075.2
1611317088.5133 75.4113 68.1102 61.692.646.970.5
1710515782.3124 70.2105 63.495.357.486.343.865.8
18 96.514576.2114 65.097.858.888.453.380.140.761.2
19 88.613370.2105 60.090.254.481.749.374.137.756.6
20 81.012264.496.855.282.950.075.145.468.234.752.2
21 73.611158.788.250.475.845.768.841.662.531.947.9
22 67.010153.580.445.969.041.762.637.956.929.143.7
23 61.392.248.973.542.063.238.157.334.752.126.640.0
24 56.384.644.967.538.658.035.052.631.847.824.536.8
25 51.978.041.462.335.653.532.348.529.344.122.533.9
26 48.072.138.357.632.949.429.844.927.140.820.831.3
28 41.462.233.049.628.442.625.738.723.435.118.027.0
30 36.054.228.843.224.737.122.433.720.430.615.723.5
32 31.747.625.338.021.732.619.729.617.926.913.820.7
34 15.923.812.218.3
Properties
Ag, in.
2
8.09 6.20 5.22 4.69 4.22 3.18
I, in.
4
31.2 24.8 21.3 19.3 17.6 13.5
r, in. 1.96 2.00 2.02 2.03 2.04 2.06
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS6
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 79

4–80 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6× HSS5.563×
0.125 0.500 0.375 0.258 0.188 0.134
tdesign, in. 0.116 0.465 0.349 0.240 0.174 0.124
lb/ft 7.85 27.1 20.8 14.6 10.8 7.78
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
053.880.918728214421610115274.211253.380.1
153.780.718728114321610115174.011153.279.9
253.480.2185279142214 99.815073.511052.879.4
352.879.4183275141211 98.614872.610952.278.4
452.178.3179270138207 96.914671.410751.377.1
551.176.9175263135203 94.714269.810550.275.5
650.075.2170256131197 92.213968.010248.973.5
748.773.2164247127191 89.213465.999.047.471.2
847.271.0158237122183 85.912963.595.545.768.7
945.668.5151226117175 82.312461.091.643.966.0
1043.965.9143215111167 78.511858.287.541.963.0
1142.063.2135203105158 74.511255.383.239.959.9
1240.160.312719199.2149 70.310652.378.737.756.7
1338.157.311917893.0140 66.199.349.374.035.553.4
1436.154.211016686.7130 61.892.846.169.333.350.1
1534.051.110215380.4121 57.486.343.064.631.146.7
1631.947.993.914174.2112 53.179.939.959.928.843.4
1729.844.885.912968.2102 48.973.536.855.326.740.1
1827.841.778.111762.393.644.867.433.850.824.536.8
1925.738.770.610656.685.140.961.430.946.522.433.7
2023.835.763.795.751.176.837.055.628.142.220.430.7
2121.832.857.886.846.369.633.550.425.538.318.527.8
2220.030.052.679.142.263.530.645.923.234.916.925.3
2318.327.548.272.438.658.128.042.021.231.915.423.2
2416.825.244.266.535.553.325.738.619.529.314.221.3
2515.523.240.861.332.749.123.735.618.027.013.119.6
2614.321.537.756.630.245.421.932.916.625.012.118.1
2812.318.532.548.826.139.218.928.414.321.510.415.6
3010.716.128.342.522.734.116.424.712.518.89.0613.6
32 9.4414.2 7.9712.0
34 8.3612.6
Properties
Ag, in.
2
2.14 7.45 5.72 4.01 2.95 2.12
I, in.
4
9.28 24.4 19.5 14.2 10.7 7.84
r, in. 2.08 1.81 1.85 1.88 1.91 1.92
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS6-
HSS5.563
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 80

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5.500× HSS5×
0.500 0.375 0.258 0.500 0.375 0.312
tdesign, in. 0.465 0.349 0.240 0.465 0.349 0.291
lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
018527814221499.8150166250128193108163
118527714221399.6150166249128192108162
218327514121198.8149164247127190107160
318127113920997.6147161243125187105158
417726613620595.8144158237122183103154
517326013320093.7141153230118178 99.9150
616825212919491.1137147221114172 96.5145
716224312518888.1132141212109164 92.6139
815523312018084.8127134201104157 88.3133
914822211517281.212212619098.6148 83.6126
1014021110916477.311611817892.7139 78.8118
1113319910315573.311011016686.6130 73.7111
1212418797.114669.110410215380.3121 68.5103
1311617490.913764.897.493.514174.1111 63.395.1
1410816284.712760.590.985.312867.9102 58.187.3
15 99.515078.411856.284.477.311661.892.853.079.6
16 91.313772.310951.978.069.510455.883.948.072.2
17 83.412566.299.647.771.762.093.250.275.443.265.0
18 75.711460.490.843.665.655.383.144.767.238.658.1
19 68.210254.782.239.759.649.674.640.160.334.752.1
20 61.592.549.474.235.853.944.867.336.254.531.347.0
21 55.883.944.867.332.548.940.661.032.949.428.442.7
22 50.976.440.861.329.644.537.055.629.945.025.938.9
23 46.569.937.356.127.140.733.950.927.441.223.735.6
24 42.764.234.351.524.937.431.146.725.237.821.732.7
25 39.459.231.647.522.934.528.743.123.234.920.030.1
26 36.454.729.243.921.231.926.539.821.432.218.527.8
28 31.447.225.237.918.327.5
30 21.933.015.923.9
Properties
Ag, in.
2
7.36 5.65 3.97 6.62 5.10 4.30
I, in.
4
23.5 18.8 13.7 17.2 13.9 12.0
r, in. 1.79 1.83 1.86 1.61 1.65 1.67
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS5.500-
HSS5
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 81

4–82 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5× HSS4.500×
0.258 0.250 0.188 0.125 0.375 0.337
tdesign, in. 0.240 0.233 0.174 0.116 0.349 0.313
lb/ft 13.1 12.7 9.67 6.51 16.5 15.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
090.313687.813266.499.844.867.3114172104156
190.013587.513266.299.544.667.1114171103155
289.213486.713065.698.644.266.5113169102153
387.813285.412864.697.143.665.5110166 99.9150
485.912983.512663.395.142.764.2107161 97.1146
583.612681.212261.692.541.662.5103155 93.7141
680.812178.511859.589.540.260.598.8148 89.6135
777.611775.411357.286.038.758.293.6141 85.0128
874.111172.010854.782.237.155.788.1132 80.0120
970.310668.310352.078.135.253.082.1123 74.7112
1066.299.664.496.849.173.733.350.176.0114 69.2104
1162.193.360.390.746.069.231.347.169.7105 63.695.5
1257.886.956.284.543.064.629.344.063.595.457.987.1
1353.580.452.078.239.859.927.240.857.386.152.478.7
1449.274.047.871.936.755.225.137.751.377.147.070.6
1545.067.643.765.733.650.523.034.645.668.541.862.8
1640.961.439.759.730.646.021.031.640.160.336.855.3
1736.955.535.953.927.741.619.128.635.553.432.649.0
1833.049.632.148.324.937.417.225.831.747.629.143.7
1929.644.628.843.322.333.515.423.228.442.726.139.2
2026.840.226.039.120.130.313.920.925.738.623.535.4
2124.336.523.635.518.327.512.619.023.335.021.432.1
2222.133.221.532.316.625.011.517.321.231.919.529.3
2320.230.419.729.615.222.910.515.819.429.217.826.8
2418.627.918.127.114.021.09.6514.517.826.816.424.6
2517.125.716.625.012.919.48.9013.4
2615.823.815.423.111.917.98.2312.4
2813.720.513.319.910.315.47.0910.7
Properties
Ag, in.
2
3.59 3.49 2.64 1.78 4.55 4.12
I, in.
4
10.2 9.94 7.69 5.31 9.87 9.07
r, in. 1.69 1.69 1.71 1.73 1.47 1.48
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS5-
HSS4.500
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 82

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4.500× HSS4×
0.237 0.188 0.125 0.313 0.250
tdesign, in. 0.220 0.174 0.116 0.291 0.233
lb/ft 10.8 8.67 5.85 12.3 10.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 74.4112 59.489.240.260.585.3128 69.4104
1 74.2111 59.188.940.160.384.8127 69.1104
2 73.3110 58.587.939.759.683.5126 68.0102
3 71.9108 57.486.238.958.581.4122 66.499.7
4 70.0105 55.984.037.957.078.6118 64.196.3
5 67.6102 54.081.236.755.275.1113 61.392.1
6 64.997.551.877.935.253.071.0107 58.087.1
7 61.792.849.374.133.650.566.599.954.381.7
8 58.387.646.670.031.847.861.692.650.475.8
9 54.682.143.765.729.944.956.584.946.369.6
10 50.876.340.761.127.841.951.377.142.163.3
11 46.870.437.656.525.838.746.169.337.957.0
12 42.964.534.451.823.735.641.061.733.850.8
13 39.058.631.347.121.632.536.254.329.844.8
14 35.252.828.342.519.629.431.547.326.039.1
15 31.547.325.438.117.626.427.441.222.634.0
16 27.941.922.533.915.723.624.136.219.929.9
17 24.737.120.030.013.920.921.332.117.626.5
18 22.033.117.826.812.418.619.028.615.723.6
19 19.829.716.024.011.116.717.125.714.121.2
20 17.826.814.421.710.015.115.423.212.719.1
21 16.224.313.119.79.1013.714.021.011.617.4
22 14.722.211.917.98.2912.512.719.110.515.8
23 13.520.310.916.47.5811.4
24 12.418.610.015.06.9710.5
25 11.417.29.2313.96.429.65
Properties
Ag, in.
2
2.96 2.36 1.60 3.39 2.76
I, in.
4
6.79 5.54 3.84 5.87 4.91
r, in. 1.52 1.53 1.55 1.32 1.33
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS4.500-
HSS4
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 83

4–84 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×
0.237 0.226 0.220 0.188 0.125
tdesign, in. 0.220 0.210 0.205 0.174 0.116
lb/ft 9.53 9.12 8.89 7.66 5.18
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 65.698.762.994.561.492.252.679.035.753.7
1 65.398.262.694.061.191.852.378.635.553.4
2 64.496.761.692.760.290.451.677.535.052.7
3 62.894.460.190.458.788.250.375.634.251.4
4 60.791.258.187.356.785.248.673.133.149.8
5 58.087.255.683.554.381.546.670.031.747.7
6 55.082.652.779.151.477.244.166.330.145.3
7 51.677.549.474.248.272.541.462.328.342.6
8 47.972.045.968.944.867.338.557.926.439.7
9 44.066.242.263.441.261.935.553.324.436.6
10 40.160.338.457.737.556.432.448.622.333.5
11 36.254.434.652.133.850.829.243.920.230.3
12 32.348.530.946.530.245.426.139.318.127.2
13 28.642.927.441.126.740.123.134.816.124.2
14 25.037.523.935.923.335.120.330.514.221.3
15 21.732.720.831.320.330.517.726.612.418.6
16 19.128.718.327.517.926.815.523.310.916.3
17 16.925.416.224.415.823.813.820.79.6314.5
18 15.122.714.521.714.121.212.318.48.5912.9
19 13.620.413.019.512.719.011.016.67.7111.6
20 12.218.411.717.611.417.29.9414.96.9510.5
21 11.116.710.616.010.415.69.0213.66.319.48
22 10.115.29.6814.69.4514.28.2112.35.758.64
Properties
Ag, in.
2
2.61 2.50 2.44 2.09 1.42
I, in.
4
4.68 4.50 4.41 3.83 2.67
r, in. 1.34 1.34 1.34 1.35 1.37
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-5 (continued)
Available Strength in
Axial Compression, kips
Round HSS
Fy= 42 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
HSS4
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 84

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 12 Pipe 10 Pipe 8
XS Std XS Std XXS XS
tdesign, in. 0.465 0.349 0.465 0.340 0.816 0.465
lb/ft 65.5 49.6 54.8 40.5 72.5 43.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 367551287432316476241362419630249375
6 362544283426310466236355405609242363
7 360541282424308463235353400601239359
8 358538280421305459233350394593236354
9 355534278418303455231347388583232349
10 353530276415299450228343381573228343
11 350526274412296445226339373561224337
12 347521272408292439223335365549220330
13 343516269405288433220330357536215323
14 340511266400284427217326348523210315
15 336505263396279420213320338508204307
16 332499260391274413210315328494199299
17 328493257386269405206310318478193290
18 323486254381264397202304308463187282
19 319479250376259389198298297447181273
20 314472246370253381194291286430175263
21 309464243365248372190285275414169254
22 304457239359242363185278264397163245
23 298449235353236354181272253380156235
24 293440230346230345176265242364150225
25 288432226340224336172258231347144216
26 282424222333217327167251220331137206
27 276415217327211317162244209314131197
28 270406213320205308157236198298125188
29 264397208313198298153229188283119178
30 258388204306192288148222178267113169
32 246370194292179269138207158237101152
34 23435118527716625012819314021089.7135
36 22133317526315423111917912418780.0120
38 20931416524814221311016511216871.8108
40 19729615623413019510115210115264.897.5
Properties
Ag, in.
2
17.5 13.7 15.1 11.5 20.0 11.9
I, in.
4
339 262 199 151 154 100
r, in. 4.35 4.39 3.64 3.68 2.78 2.89
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-6
Available Strength in
Axial Compression, kips
Pipe
Fy= 35 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
PIPE 12-PIPE 8
AISC_Part 4B:14th Ed. 2/23/11 10:10 AM Page 85

4–86 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 8 Pipe 6 Pipe 5
Std XXS XS Std XXS
tdesign, in. 0.300 0.805 0.403 0.261 0.699
lb/ft 28.6 53.2 28.6 19.0 38.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 165 247 308 463 164 247 109 164 224 337
6 160 240 290 436 155 233 103 155 205 309
7 158 237 283 426 152 229 101 153 199 299
8 156 234 276 415 149 224 99.3149 192 288
9 154 231 268 403 145 218 96.9146 184 277
10 151 227 260 391 141 212 94.2142 176 264
11 148 223 251 377 136 205 91.4137 167 251
12 146 219 241 362 132 198 88.4133 158 237
13 143 214 231 347 127 191 85.2128 149 223
14 139 209 221 332 122 183 81.9123 139 209
15 136 204 210 316 116 175 78.5118 130 195
16 132 199 199 299 111 167 75.1113 120 181
17 129 194 188 283 106 159 71.6108 111 167
18 125 188 177 267 100 151 68.0102 102 153
19 121 182 167 250 94.7142 64.496.893.1140
20 117 176 156 234 89.2134 60.991.584.5127
21 113 170 145 218 83.8126 57.386.276.7115
22 109 164 135 203 78.5118 53.981.069.9105
23 105 158 125 188 73.3110 50.575.863.996.1
24 101 152 115 173 68.3103 47.170.858.788.2
25 96.9146 106 160 63.395.143.965.954.181.3
26 92.8139 98.2148 58.588.040.661.150.075.2
27 88.7133 91.1137 54.381.637.756.746.469.7
28 84.7127 84.7127 50.575.835.052.743.164.8
29 80.7121 78.9119 47.070.732.749.140.260.4
30 76.8115 73.8111 44.066.130.545.9
32 69.1104 64.897.438.658.126.840.3
34 61.792.757.486.334.251.423.835.7
36 55.082.7 30.545.921.231.9
38 49.474.2
40 44.667.0
Properties
Ag, in.
2
7.85 14.7 7.83 5.20 10.7
I, in.
4
68.1 63.5 38.3 26.5 32.2
r, in. 2.95 2.08 2.20 2.25 1.74
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-6 (continued)
Available Strength in
Axial Compression, kips
Pipe
Fy= 35 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
PIPE 8-PIPE 5
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 86

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 5 Pipe 4
XS Std XXS XS Std
tdesign, in. 0.349 0.241 0.628 0.315 0.221
lb/ft 20.8 14.6 27.6 15.0 10.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 120 180 84.0126 161 241 86.8130 62.093.2
6 111 167 78.0117 140 210 76.9116 55.283.0
7 108 162 75.9114 133 200 73.6111 52.979.6
8 105 157 73.5111 126 189 70.0105 50.475.8
9 101 152 71.0107 118 177 66.199.347.771.8
10 96.8146 68.2103 110 165 62.093.144.967.5
11 92.5139 65.398.1101 152 57.786.842.063.1
12 88.1132 62.293.692.7139 53.480.338.958.5
13 83.5125 59.188.884.3127 49.173.835.954.0
14 78.7118 55.883.976.0114 44.967.432.949.5
15 74.0111 52.679.068.1102 40.761.230.045.1
16 69.2104 49.374.160.390.736.755.127.140.8
17 64.496.946.069.153.580.332.849.224.436.6
18 59.889.842.864.347.771.729.243.921.732.7
19 55.283.039.659.542.864.326.239.419.529.3
20 50.776.336.554.938.658.023.735.617.626.5
21 46.469.833.550.435.052.621.532.316.024.0
22 42.363.630.645.931.948.019.629.414.621.9
23 38.758.228.042.029.243.917.926.913.320.0
24 35.553.425.738.6 16.424.712.218.4
25 32.849.223.735.6 11.316.9
26 30.345.521.932.9
27 28.142.220.330.5
28 26.139.218.928.4
29 24.336.617.626.4
30 22.734.216.424.7
Properties
Ag, in.
2
5.73 4.01 7.66 4.14 2.96
I, in.
4
19.5 14.3 14.7 9.12 6.82
r, in. 1.85 1.88 1.39 1.48 1.51
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-6 (continued)
Available Strength in
Axial Compression, kips
Pipe
Fy= 35 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
PIPE 5-PIPE 4
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 87

4–88 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 3
1
/2 Pipe 3
XS Std XXS XS Std
tdesign, in. 0.296 0.211 0.559 0.280 0.201
lb/ft 12.5 9.12 18.6 10.3 7.58
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 71.9108 52.478.7108 163 59.389.143.465.2
6 61.692.645.267.985.6129 48.472.735.753.7
7 58.287.542.864.478.6118 44.967.533.350.1
8 54.682.140.360.671.2107 41.362.030.746.2
9 50.876.337.656.563.795.737.556.328.042.2
10 46.870.334.852.256.284.533.650.625.338.1
11 42.864.331.947.949.073.629.944.922.634.0
12 38.758.229.043.642.163.326.239.420.030.0
13 34.852.326.239.435.953.922.734.117.526.2
14 31.046.623.435.230.946.519.629.415.122.7
15 27.341.020.831.326.940.517.125.613.119.8
16 24.036.118.327.523.735.615.022.511.617.4
17 21.332.016.224.421.031.513.320.010.215.4
18 19.028.514.521.7 11.817.89.1313.7
19 17.025.613.019.5 10.616.08.1912.3
20 15.423.111.717.6
21 13.920.910.616.0
22 9.6814.6
Properties
Ag, in.
2
3.43 2.50 5.17 2.83 2.07
I, in.
4
5.94 4.52 5.79 3.70 2.85
r, in. 1.31 1.34 1.06 1.14 1.17
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-6 (continued)
Available Strength in
Axial Compression, kips
Pipe
Fy= 35 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
Note: Heavy line indicates KL/requal to or greater than 200.
PIPE 3
1∕2-PIPE 3
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 88

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT18 ×
lb/ft 151
c
141
c
131
c
123.5
c
115.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01210181010501580921138081312207121070
101170175010201530894134079111906941040
121150173010001510883133078111706861030
1411301700 9871480870131077011606771020
1611101670 9691460854128075811406671000
1810801630 949143083812607441120655 985
2010601590 927139081912307291090643 966
2210301540 903136079912007121070629 945
249971500 878132077811706941040614 924
269641450 851128075611406751020599 900
289311400 82312407321100656 986583 876
308961350 79411907081060635 955566 850
328601290 76411506821030614 923548 824
348231240 7331100657 987592 890530 796
367861180 7021060630 947570 857511 768
407111070 639 961576 866524 788473 711
01210181010501580921138081312207121070
1010401560 899135077811706811020592 889
1210201540 887133076911606741010586 881
1410001500 87013107561140664 998578 869
169701460 84612707381110650 977568 853
189331400 81712307151070632 950554 832
208921340 78411806871030610 917536 806
228471270 7471120657 987585 880516 776
247991200 7081060624 938558 839494 742
267491130 6671000589 886529 795470 706
286991050 625 939554 832499 750445 669
30649 975 582 875518 778468 704419 630
32599 900 540 811481 723437 657393 591
34550 826 498 749445 669406 611367 551
36502 754 457 687410 616376 565341 512
40412 619 379 569342 514317 477290 436
Properties
Ag, in.
2
44.5 41.5 38.5 36.3 34.1
rx, in. 5.37 5.36 5.36 5.36 5.36
ry, in. 3.82 3.80 3.76 3.74 3.71
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
WT18
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 89

4–90 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT18 ×
lb/ft 128
c
116
c
105
c
97
c
91
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01040156083912607351100599 900 509 765
101000151081612307161080585 879 499 749
12992149080612107071060579 870 494 743
14976147079511906981050572 860 489 734
16959144078211806871030564 848 482 725
18939141076811506751010555 835 476 715
2091813807521130662 994545 820 468 703
2289513407351100647 973535 804 460 691
2487013107161080632 949523 787 451 678
2684412706971050615 925511 769 441 663
2881712306771020598 899499 749 431 648
307891190656 985580 872485 729 421 633
327601140634 953562 844471 708 410 616
347301100611 919543 816457 687 399 599
367001050588 884523 786442 665 387 582
40638 960541 814483 726412 619 363 546
01040156083912607351100599 900 509 765
1083812606801020575 864472 709 402 604
127971200650 978552 830456 685 390 586
147471120614 923523 787435 655 375 563
166901040572 860490 736411 617 356 535
18630 947527 792452 680383 576 334 503
20569 855480 721413 620353 531 311 467
22507 762432 650372 560322 485 286 430
24447 672385 579333 500291 438 261 393
26389 585340 511294 442261 392 236 355
28338 508296 445257 386231 347 212 319
30296 445260 391226 339203 306 188 283
32261 393230 345200 300180 271 167 251
34232 349204 307178 267161 242 149 224
36208 312183 275160 240144 217 134 201
40169 254149 224130 196118 177 109 164
Properties
Ag, in.
2
37.6 34.0 30.9 28.5 26.8
rx, in. 5.66 5.63 5.65 5.62 5.62
ry, in. 2.65 2.62 2.58 2.56 2.55
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
WT18
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 90

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT18 ×
lb/ft 85
c
80
c
75
c
67.5
c
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0424 637 367 552 324 486 271 407
10416 625 361 542 318 478 267 401
12412 620 358 538 316 475 265 398
14408 614 355 533 313 471 263 395
16404 607 351 527 310 466 261 392
18398 599 347 521 307 461 258 388
20393 590 342 514 303 456 255 383
22387 581 337 507 299 449 252 379
24380 571 332 499 295 443 248 373
26373 560 326 490 290 436 245 368
28365 549 320 481 285 428 241 362
30357 537 314 471 279 420 237 356
32349 525 307 461 274 412 232 349
34340 512 300 451 268 403 228 342
36331 498 293 440 262 394 223 335
40313 470 278 417 249 375 213 320
0424 637 367 552 324 486 271 407
10335 503 288 432 249 375 197 295
12327 491 281 422 244 367 193 290
14315 474 272 410 237 357 188 282
16302 453 262 393 229 344 181 272
18286 429 249 374 218 328 173 261
20268 402 234 352 206 310 165 247
22249 374 219 329 194 291 155 233
24229 344 203 305 180 271 144 217
26209 315 186 280 166 250 133 201
28190 285 170 255 152 229 122 184
30171 256 154 231 138 208 111 168
32152 228 138 207 125 187 100 151
34136 204 123 185 112 168 90.5 136
36122 183 111 167 101 151 81.9 123
40 99.9 150 91.1 137 82.9 125
Properties
Ag, in.
2
25.0 23.5 22.1 19.9
rx, in. 5.61 5.61 5.62 5.66
ry, in. 2.53 2.50 2.47 2.38
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT18
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 91

4–92 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT16.5 ×
lb/ft 193.5
h
177
h
159 145.5
c
131.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01710257015602340140021101270191010401570
101640246015002250134020201220183010001510
1216102420147022101320198011901800 9861480
1415702370144021601290194011701760 9661450
1615402310140021101260189011401710 9441420
1814902250136020501220184011101660 9191380
2014502180132019801180178010701610 8921340
2214002100128019201140172010301550 8631300
24135020301230184011001650 9951490 8331250
26129019401180177010501580 9531430 8011200
28124018601130169010101510 9111370 7681150
301180177010701610 9581440 8671300 7341100
321120169010201530 9091370 8231240 7001050
3410601600 9641450 8591290 7781170 664 999
3610001510 9101370 8101220 7331100 629 946
408861330 8021200 7121070 644 968 559 840
01710256015602340140021101270191010401570
1015302300139020901230185011001650 8991350
1214802230134020201200180010801620 8831330
1414302150130019501150173010401570 8611290
1613702060124018601100166010001510 8311250
18130019601180177010501580 9561440 7961200
201230186011201680 9921490 9041360 7571140
221160175010501580 9331400 8491280 7141070
2410901630 9831480 8721310 7921190 6701010
2610101520 9141370 8101220 7341100 625 939
289361410 8441270 7481120 6761020 579 871
308601290 7751170 6861030 618 929 534 802
327861180 7081060 626 940 562 845 489 735
347141070 642 965 567 852 508 763 445 670
36644 968 578 869 509 766 455 684 403 606
40523 786 470 706 414 622 371 557 328 494
Properties
Ag, in.
2
57.0 52.1 46.8 42.8 38.7
rx, in. 5.07 5.03 4.99 4.96 4.93
ry, in. 3.77 3.74 3.71 3.68 3.65
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
c
Shape is slender for compression with Fy=50 ksi.
WT16.5
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 92

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT16.5 ×
lb/ft 120.5
c
110.5
c
100.5
c
84.5
c
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 921 1380 780 1170 638 960 466 700
10 887 1330 754 1130 619 930 454 683
12 873 1310 742 1120 611 918 449 675
14 857 1290 729 1100 601 903 443 666
16 838 1260 714 1070 590 887 437 656
18 817 1230 698 1050 578 868 429 645
20 794 1190 680 1020 564 848 421 633
22 770 1160 660 993 550 826 412 620
24 744 1120 640 962 535 803 403 605
26 717 1080 618 929 518 779 393 590
28 689 1040 596 896 501 753 382 574
30 660 992 573 861 484 727 371 558
32 631 948 549 825 466 700 360 540
34 601 903 524 788 447 672 348 523
36 570 857 500 751 428 643 336 504
40 510 766 450 677 390 586 311 467
0 921 1380 780 1170 638 960 466 700
10 774 1160 648 974 524 787 382 574
12 763 1150 640 962 518 779 369 555
14 746 1120 628 944 510 767 353 530
16 724 1090 611 919 499 751 333 501
18 696 1050 591 888 485 729 312 468
20 664 997 566 851 468 703 288 433
22 628 945 538 809 448 673 264 397
24 591 889 509 765 426 641 240 361
26 553 831 478 719 403 606 216 325
28 514 772 446 671 379 570 193 290
30 474 713 415 623 354 533 171 256
32 436 655 383 575 330 496 151 227
34 398 598 352 528 305 459 134 202
36 361 543 321 483 281 422 120 181
40 295 443 264 397 234 352 98.1 147
Properties
Ag, in.
2
35.6 32.6 29.7 24.7
rx, in. 4.96 4.95 4.95 5.12
ry, in. 3.62 3.59 3.56 2.50
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
WT16.5
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 93

4–94 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT16.5 ×
lb/ft 76
c
70.5
c
65
c
59
c
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0390 586 325 489 284 426 235 353
10381 573 319 479 278 418 231 347
12377 567 316 475 276 415 229 344
14373 560 312 469 273 410 227 341
16368 553 308 464 270 406 225 338
18362 544 304 457 266 400 222 334
20356 535 299 450 262 394 219 329
22349 524 294 442 258 388 216 324
24342 513 289 434 254 381 212 319
26334 502 283 425 249 374 209 314
28325 489 276 415 244 366 205 308
30317 476 270 405 238 358 201 302
32308 463 263 395 232 349 196 295
34299 449 256 384 226 340 192 288
36289 435 248 373 220 331 187 281
40270 405 233 350 208 312 177 267
0390 586 325 489 284 426 235 353
10311 467 257 386 216 325 172 259
12302 454 250 376 212 318 169 253
14291 437 242 364 205 308 164 246
16277 416 231 348 197 295 158 237
18260 391 219 329 187 281 151 227
20242 364 205 308 176 264 143 214
22224 336 191 286 164 246 134 201
24205 308 175 264 151 227 124 187
26186 279 160 241 138 208 114 172
28167 251 145 218 125 189 104 157
30149 223 130 196 113 170 94.5 142
32132 198 116 174 101 152 84.8 127
34118 177 104 156 90.3 136 76.3 115
36106 159 93.2 140 81.3 122 68.9 103
40 86.3 130 76.3 115
Properties
Ag, in.
2
22.5 20.7 19.1 17.4
rx, in. 5.14 5.15 5.18 5.20
ry, in. 2.47 2.43 2.38 2.32
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT16.5
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 94

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT15 ×
lb/ft 195.5
h
178.5
h
163
h
146 130.5 117.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
017202590157023601440216012901940115017309881480
1016402470149022501360205012201840109016409381410
1216102410146022001330201011901790107016109171380
1415602350142021401300195011601750104015608931340
1615202280138020801260189011301690101015108661300
181470221013302010122018301090163097114608361260
201410213012801930117017601040157093314008041210
22136020401230185011201680999150089213407701160
24130019501170176010701610952143085012807341100
26123018501120168010101520903136080612106981050
281170176010601590959144085312807611140660992
30110016609971500904136080312107161080622934
32104015609361410848127075211306701010583877
349731460875132079211907021060625940545819
36907136081512307371110652980580872507762
4078111706991050630947556836494743434652
017202590157023601440216012901930115017309881480
1015602340141021201280193011401710101015108531280
121510226013702050124018601100166097214608351250
141450218013101970119017901060159093214008081210
161380208012501880113017101010152088913407741160
18131019701190179010801620956144084112607351100
20124018601120168010101520900135079111906931040
221160175010501580948142084112607391110648974
24108016309771470881132078211806861030602905
2610001510903136081412207221080632950556835
28922139083012507471120662995579870509765
30843127075811406811020603906526791464697
3276611506881030617927546820475714419630
346921040620932555834490737425639376566
36619931555834495744438658380571337506
40503755450677402604356535309464274412
Properties
Ag, in.
2
57.6 52.5 48.0 43.0 38.5 34.7
rx, in. 4.61 4.56 4.52 4.48 4.46 4.41
ry, in. 3.67 3.64 3.60 3.58 3.53 3.51
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
c
Shape is slender for compression with Fy=50 ksi.
WT15
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 95

4–96 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT15 ×
lb/ft 105.5
c
95.5
c
86.5
c
74
c
66
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
083312506871030557 838469 704384 577
107941190657 987536 805452 680372 558
127781170644 968527 791445 669366 551
147591140630 946516 775437 657360 542
167371110613 922504 757428 644354 531
187131070595 894490 737418 628346 520
206881030575 865476 715407 612338 508
22661 993555 833460 692395 594329 494
24632 950532 800444 667382 575319 480
26602 905509 766427 641369 555309 465
28572 860486 730409 615355 534299 449
30541 813462 694391 587341 513288 433
32510 766437 657372 559327 491277 416
34478 719412 620353 531312 469265 399
36447 672387 582334 502297 446254 382
40387 581339 509296 445267 401230 346
083312506871030557 838469 704384 577
107041060574 862460 691374 561297 447
126921040565 850455 683355 533284 428
146731010553 831446 671331 498268 403
16649 975536 805435 654305 459249 374
18620 931514 773420 632277 417228 343
20587 882490 736403 606249 374207 310
22551 829463 696383 576221 332185 278
24515 773434 653362 544193 290163 245
26477 717405 609340 511167 251142 214
28439 660375 564317 477145 218124 186
30402 604346 520295 443127 191109 164
32365 549316 476272 408112 168 96.3145
34330 496288 433249 375 99.6150 85.8129
36296 445260 391228 342 89.1134 76.8115
40241 362212 319187 281
Properties
Ag, in.
2
31.1 28.0 25.4 21.8 19.5
rx, in. 4.43 4.42 4.42 4.63 4.66
ry, in. 3.49 3.46 3.42 2.28 2.25
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT15
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 96

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–97
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT15 ×
lb/ft 62
c
58
c
54
c
49.5
c
45
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0327 492292 439 256 384 214 322 159 239
10318 478284 427 249 374 209 314 156 235
12314 472280 422 246 370 207 311 155 233
14309 465277 416 243 365 204 307 153 231
16304 457272 409 239 360 202 303 152 228
18298 448267 401 235 354 198 298 150 225
20291 438261 393 231 347 195 293 147 222
22284 427255 384 226 339 191 287 145 218
24277 416249 374 220 331 187 281 143 214
26269 404242 364 215 323 183 275 140 210
28261 392235 353 209 314 178 268 137 206
30252 379228 342 203 305 173 261 134 201
32243 365220 331 196 295 168 253 131 196
34234 351212 319 190 285 163 245 127 192
36224 337204 307 183 275 158 238 124 186
40205 309188 282 169 255 147 221 117 176
0327 492292 439 256 384 214 322 159 239
10253 381221 332 187 282 152 229 115 173
12244 366213 320 181 272 147 222 112 169
14231 347203 305 173 260 141 212 109 163
16216 325190 286 163 245 134 201 104 157
18199 300176 265 152 228 125 188 98.9149
20182 273161 242 139 209 116 174 92.9140
22164 247146 219 126 190 106 159 86.4130
24146 220130 196 114 171 95.3143 79.6120
26129 194115 173 101 152 85.1128 72.6109
28113 169101 152 88.5133 75.2113 65.798.7
3099.1149 88.8133 78.2118 66.6100 58.788.3
3287.7132 78.8118 69.5105 59.489.352.579.0
3478.2118 70.3106 62.293.453.280.047.270.9
3670.1105 63.194.8
Properties
Ag, in.
2
18.2 17.1 15.9 14.5 13.2
rx, in. 4.66 4.67 4.69 4.71 4.69
ry, in. 2.23 2.19 2.15 2.10 2.09
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT15
AISC_Part 4B:14th Ed. 2/23/11 10:11 AM Page 97

4–98 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT13.5 ×
lb/ft 129 117.5 108.5 97
c
89
c
80.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01140171010401560958144081912307361110605909
10107016109731460896135076711506921040571859
12104015609451420870131074611206731010557837
1410001510913137084012607211080651979541813
169651450878132080712106931040627943522785
18924139083912607711160663997601904502755
20879132079812007321100632949573862481723
22832125075611406921040598899544818458689
2478411807111070651978563847514772435654
2673411006661000609915528794483725411617
286841030620932566851492740451678386580
30635954575864524787457686420631361543
32585880530796482724421633388584336506
34537807486730441663387581358538312469
36490737443666401603353531328493288433
40402604362544327492290435270406242364
01140171010401560958144081912307361110605909
1010101510908136083212507031060616925502755
129671450872131080012006831030601904493740
14922139083212507631150657987580872478719
16874131078811807221090624938553831459690
18822123074011106791020588884522784436655
2076711506901040633951549825488733411617
227111070639960586880508764452679383576
24653982587882538808467702416625355534
26596896535804490737426640379570326491
28540812484727443666386579343516298448
30486730434653398598346520308463270406
32433651386581353531308463274412243365
34384577343515314472274411244366217326
36343515306460280421245368218328194292
40278418249374228342199299178267158238
Properties
Ag, in.
2
38.1 34.7 32.0 28.6 26.3 23.8
rx, in. 4.02 4.00 3.96 3.94 3.97 3.95
ry, in. 3.36 3.33 3.32 3.29 3.25 3.23
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
WT13.5
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 98

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–99
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT13.5 ×
lb/ft 73
c
64.5
c
57
c
51
c
47
c
42
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0493742432649351527262394217326176264
10469704412619336505253380210316171257
12458689403606330496249374207311169253
14446670394592322485244367204306166250
16433650383575314472239359200300163245
18418628371557305459233350196294160241
20402604358538296444227341191287157235
22385578344517285429220331186279153230
24367551329495274412213320180271149224
26348524314472263395206309175263145218
28330495298449251377198297169254140211
30310467283425239359190285163245136204
32291438267401227341181273156235131197
34272409250376214322173260150225126190
36253381235352202303165247143216121182
40216325203305177266148222130196111167
0493742432649351527262394217326176264
10406610341513270406204306167251130196
12399600321482256385195294161242126190
14390586296445239359185277153230121182
16377566269405220330172258144216115172
18361542242363199298158238133200107161
20342514214321177266143216122183 98.7148
22321483186280156234129193110166 90.1135
24300451160240135204114172 98.9149 81.3122
26278418137206117175100150 87.7132 72.7109
28256385119179101152 87.1131 76.8115 64.196.4
3023435210415688.9134 76.5115 67.6102 56.685.1
3221231991.813878.6118 67.7102 59.990.050.375.7
3419228881.612369.9105 60.390.653.480.345.067.6
3617225872.911062.694.0
40140211
Properties
Ag, in.
2
21.6 18.9 16.8 15.0 13.8 12.4
rx, in. 3.95 4.13 4.15 4.14 4.16 4.18
ry, in. 3.20 2.21 2.18 2.15 2.12 2.07
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT13.5
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 99

4–100 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT12 ×
lb/ft 185
h
167.5
h
153
h
139.5
h
125 114.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0163024501470221013402020123018501100166010101510
1015202280136020501240187011301700102015309271390
121470221013201980120018101100165098114708941340
141410212012701900116017401050158094014108561290
161350203012101820110016601000151089613508151230
18129019301150173010501570950143084812707711160
2012201830109016309871480895134079812007241090
2211401720102015309251390837126074511206761020
24107016009511430861129077911706921040627942
269921490881132079712007191080638959577868
28916138081212207331100661993585879528794
30841126074411206701010603906532800480722
3276711506771020609915546821482724434652
346961050613921550827492740433651389584
36627943550827492740440661386581347521
40508764446670399599356536313470281422
0163024501470221013402020123018401100166010101510
101460220013101970119018001090163096914608791320
121400211012601890114017201040156092613908391260
14133020001190179010801630984148087713207941190
16126018901120169010201530925139082312407451120
1811801770105015809521430862130076711506931040
20109016409721460881132079712007081060639961
2210101510894134080912207311100648974584878
24919138081512307371110664998588884529796
26833125073811106651000599900529796476715
287501130662995596896535805472710424637
306691010589886529796474713417627373561
32591889520781466700417627367552328493
34524788460692413621370556325489291438
36468703411618369554330496290437260391
40379570333501299449268402236354211317
Properties
Ag, in.
2
54.5 49.1 44.9 41.0 36.8 33.6
rx, in. 3.78 3.73 3.69 3.65 3.61 3.58
ry, in. 3.27 3.23 3.20 3.17 3.14 3.11
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
WT12
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 100

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–101
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT12 ×
lb/ft 103.5 96 88 81 73
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
09071360844127077211607161080605 909
10834125077611707091070657 987558 839
12804121074811206831030632 950539 810
1477011607151080653 982605 909516 776
1673311006801020621 933574 863492 740
186921040642 965586 880542 814466 700
20649 976602 905549 825507 763438 658
22605 910561 843511 768472 709409 615
24561 843519 780472 710436 656380 571
26516 775477 717433 652400 602350 527
28471 708435 654395 594365 548321 483
30428 643395 593358 538330 496292 440
32386 580355 534322 484297 446265 398
34345 518317 477287 431264 397238 357
36308 462283 425256 385236 354212 319
40249 374229 345207 312191 287172 258
09071360844127077211607161080605 909
1078711807281090660 991605 909504 758
1275111306941040629 945577 867488 734
147101070657 987594 893546 821466 701
166651000616 925557 837512 770439 660
18618 929572 860517 777476 715410 616
20570 856527 792475 715438 659378 568
22520 781481 722433 651400 602345 519
24470 707435 653391 588362 544313 470
26422 634390 586350 526324 488281 422
28375 563346 520310 467288 433250 375
30329 495304 457272 409253 380220 330
32290 436268 402240 360223 335194 291
34257 387237 357213 320198 297172 259
36230 345212 319190 286177 266154 231
40186 280172 259154 232144 216125 188
Properties
Ag, in.
2
30.3 28.2 25.8 23.9 21.5
rx, in. 3.55 3.53 3.51 3.50 3.50
ry, in. 3.08 3.07 3.04 3.05 3.01
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
WT12
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 101

4–102 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT12 ×
lb/ft 65.5
c
58.5
c
52
c
51.5
c
47
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0511 769409 615317 476349 525 292 439
10474 713382 574299 449329 494 276 415
12459 690371 557291 438320 481 270 405
14441 663358 538282 424310 467 262 394
16422 634344 517272 410299 450 254 381
18401 602328 493262 393287 432 244 367
20379 569312 468250 376274 412 234 352
22355 534294 443238 358261 392 224 336
24332 498277 416225 339247 371 212 319
26308 462258 388213 319232 349 201 302
28284 426240 361199 300218 327 189 285
30260 391222 334186 280203 305 178 267
32237 356204 307173 260188 283 166 249
34214 322187 280160 240174 261 154 232
36193 289170 255147 221160 240 143 215
40156 234138 208123 185133 199 121 181
0511 769409 615317 476349 525 292 439
10416 625327 491249 375267 401 223 335
12405 608320 481246 369246 369 207 311
14389 585310 466240 360222 333 189 284
16369 554297 446232 348197 296 169 255
18345 519280 422221 333171 258 149 225
20320 481262 394209 314147 221 130 195
22294 442243 365196 294124 186 110 166
24267 402223 335182 273105 157 93.7141
26241 362203 305167 252 89.6135 80.4121
28215 323183 275153 230 77.6117 69.7105
30190 286164 246139 208 67.8102 61.091.7
32168 252145 218125 188 59.889.853.880.9
34149 224129 194111 167
36134 201116 174100 150
40109 164 94.5142 81.7123
Properties
Ag, in.
2
19.3 17.2 15.3 15.1 13.8
rx, in. 3.52 3.51 3.51 3.67 3.67
ry, in. 2.97 2.94 2.91 1.99 1.98
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT12
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 102

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–103
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT12 ×
lb/ft 42
c
38
c
34
c
31
c
27.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0225 338 180 271 146 219 142 214 109 163
10215 323 173 260 140 211 137 206 105 158
12210 316 170 255 138 207 135 203 104 156
14205 308 166 249 135 203 132 199 102 153
16199 300 162 243 132 199 129 194 99.9150
18193 290 157 236 129 194 126 189 97.7147
20186 280 152 229 125 188 122 184 95.3143
22179 269 147 221 121 183 118 178 92.8139
24171 257 142 213 117 176 114 172 90.0135
26163 245 136 204 113 170 110 165 87.1131
28155 233 130 195 109 163 105 159 84.1126
30147 221 124 186 104 156 101 152 81.0122
32139 208 117 176 99.2149 96.2145 77.8117
34130 196 111 167 94.5142 91.5138 74.5112
36122 183 105 158 89.6135 86.7130 71.1107
40105 158 92.3139 80.0120 77.2116 64.496.8
0225 338 180 271 146 219 142 214 109 163
10172 258 136 205 107 160 90.2136 68.2103
12162 244 130 195 102 154 80.9122 62.093.2
14150 226 121 182 96.3145 70.4106 54.982.6
16137 205 112 168 89.3134 59.789.747.471.3
18122 184 101 152 81.5122 49.374.139.959.9
20108 162 90.4136 73.4110 41.061.633.450.2
2294.0141 79.8120 65.298.034.551.928.342.5
2480.5121 69.3104 57.285.9
2669.3104 59.889.949.574.5
2860.290.452.178.343.365.1
3052.779.345.768.738.157.3
3246.670.040.460.7
Properties
Ag, in.
2
12.4 11.2 10.00 9.11 8.10
rx, in. 3.67 3.68 3.70 3.79 3.80
ry, in. 1.95 1.92 1.87 1.38 1.34
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT12
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 103

4–104 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT10.5 ×
lb/ft 100.5 91 83 73.5 66 61
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0886133080212107311100647972581873535804
1079411907181080652980579870519780477717
1275711406831030620932551828494742454682
147151070645969584878520782466700428643
166691010603906546820487732436655400601
18621934559840505759451678403606370556
20572859513771463696415624370557339510
22521784467702421633378568337507308464
24471709422634379570341513304457278418
26423635377567338508305459272408248373
28375564334502299449271407241362219330
30330496293440262393238357211317192288
32290436257387230345209314185278169253
34257386228343204306185278164247149225
36229344203306182273165248146220133200
40186279165248147221134201119178108162
0886133080212107311100647972581873535804
1077411606971050632949548824486730439660
127371110663996601903521783462694423636
146951040625939566851491738435654401603
16649975583877528794458688406610375563
18601903540811489734423636375563346519
20551828494743448673387582343515315474
22501753449675406611351527311467285428
24451678404607365549315473279419254382
26402605360541325489280420247372225338
28355534317477287431246370217326196295
30311467277417251377215323190285172258
32273411244367220331189284167251151227
34242364216325195294168252148223134202
36216325193290175262150225132199120181
4017526415723514221312218310816297.6147
Properties
Ag, in.
2
29.6 26.8 24.4 21.6 19.4 17.9
rx, in. 3.10 3.07 3.04 3.08 3.06 3.04
ry, in. 3.02 3.00 2.99 2.95 2.93 2.91
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
WT10.5
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 104

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–105
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT10.5 ×
lb/ft 55.5
c
50.5
c
46.5
c
41.5
c
36.5
c
34
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0447671368552396596312469233351197296
10402604334502360541286430217325184276
12384577320481345518275414210315178268
14364546305458328493263396202303172259
16341513288432310465250376193290165249
18318478270405290436236354183275158238
20294441251377270405221331173260150226
22269404231348249374205308163245142213
24244367212318228342189285152228133200
26220330192289207311174261141212125187
28196295174261186280158238130196116174
30174261155233167250143215119179107161
32153229138207148222128193109164 98.5148
34135203122183131196114172 98.7148 90.1135
36121181109163117175102153 88.8133 82.0123
4097.614788.113294.4142 82.5124 71.9108 66.8100
0447671368552396596312469233351197296
10364547298448276415222334170256145218
12354531292438243366199299155233134201
14338508281422209314174262138208121181
16318478267401175263149223121181107160
18296445251377142214124186103155 92.6139
20272409233350117175102153 86.4130 78.9119
2224837221432197.0146 84.9128 72.2108 66.299.5
2422333619529381.9123 71.8108 61.191.956.184.4
2619930017626470.1105 61.492.452.478.848.272.4
2817626515723760.691.153.279.945.468.241.862.8
3015423213921052.979.646.569.839.759.736.554.9
32136205123185
34121182109165
3610816397.9147
4088.113279.7120
Properties
Ag, in.
2
16.3 14.9 13.7 12.2 10.7 10.0
rx, in. 3.03 3.01 3.25 3.22 3.21 3.20
ry, in. 2.90 2.89 1.84 1.83 1.81 1.80
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT10.5
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 105

4–106 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT10.5 ×
lb/ft 31
c
27.5
c
24
c
28.5
c
25
c
22
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
015823812719098.014715022511717790.0135
1014922412018193.614114121211216886.1129
1214521811717691.713813820710916484.4127
1414121211417289.613513420110616082.5124
1613620411116687.113112919410315580.3121
1813119610716084.5127124186 99.414977.9117
2012518810315481.6123119178 95.614475.3113
2211917998.114778.5118113170 91.513872.5109
2411316993.514075.3113107161 87.313169.6105
2610615988.713371.9108101152 82.912566.6100
2899.515083.812668.4103 94.9143 78.411863.595.4
3092.914078.811864.997.588.7133 73.911160.390.6
3286.413073.811161.392.182.5124 69.310457.085.7
3479.912068.910357.786.776.5115 64.797.353.880.8
3673.511164.096.154.181.370.5106 60.290.550.576.0
4061.492.254.581.947.070.759.188.851.577.444.166.4
015823812719098.014715022511717790.0135
1011717690.713666.7100 96.2145 73.311055.383.1
1210916485.412863.395.183.4125 64.396.649.274.0
1499.615078.811858.988.570.1105 54.682.042.563.9
1689.213471.310753.780.857.185.944.967.535.753.6
1878.511863.495.348.272.446.069.236.554.829.344.0
2067.910255.483.342.463.837.856.830.145.324.336.6
2257.786.747.671.536.755.231.547.4
2449.073.740.661.131.647.5
2642.263.435.152.727.441.2
2836.655.030.545.9
Properties
Ag, in.
2
9.13 8.10 7.07 8.37 7.36 6.49
rx, in. 3.21 3.23 3.26 3.29 3.30 3.31
ry, in. 1.77 1.73 1.66 1.35 1.30 1.26
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT10.5
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 106

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–107
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT9 ×
lb/ft 87.5 79 71.5 65 59.5 53
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
076911606951040629945575864527792467702
10663997597897538809491738451678399600
12621933558839502755458688421633373560
14575864515775463696422634388584343516
16526790470707422634383576354532313470
18475714424638380571344518318478281422
20424638378568337507305459283425249375
22374563332500296445267402248373219328
24327491289434256385231347215323189284
26281422248372219329197297184276162243
28242364214321189284170256158238139209
30211317186280165247148223138207121182
32185279164246145217130196121182107160
3416424714521812819311517310716194.5142
3614622012919411417210315595.814484.3127
4011917810515792.613983.412577.611768.3103
076911606951040629945575864527792467702
10661993594892535804486730440662385578
12622936559840503756457686414622362544
14580871520782468703424638385578336505
16534803479720430647390586354532308464
18487732436655391588354532321483280421
20439659392589352528318478288433251377
22391588349525312470282424256385222334
24345518307462274412247372224337194292
26300452267401238358214322194292168252
28259390230346205309185278168252145218
30226340201302179269161242146220126190
32199299177266158237142213129193111167
3417626515723514021012618911417298.7148
3615723614021012518711216910215388.2133
4012719111317010115291.013782.612471.5108
Properties
Ag, in.
2
25.7 23.2 21.0 19.2 17.6 15.6
rx, in. 2.66 2.63 2.60 2.58 2.60 2.59
ry, in. 2.76 2.74 2.72 2.70 2.69 2.66
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
WT9
AISC_Part 4B:14th Ed. 2/23/11 10:12 AM Page 107

4–108 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT9 ×
lb/ft 48.5 43
c
38
c
35.5
c
32.5
c
30
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0425639356534274412299450250376210315
10362544306459239360262393221332187281
12337507286430226339246370209314178267
14310466264397210316230345196295168252
16282424241363194292212319182273157235
18253380218327177266193291167251145218
20224336194292160240175262152229133200
22195294171257143215156234137206121182
24169253149223126190138207122184109164
2614421612819211016612018110816297.1146
28124186110165 95.3143104156 94.114185.9129
30108162 95.8144 83.1125 90.6136 81.912375.1113
3294.9143 84.2127 73.0110 79.6120 72.010866.099.2
3484.0126 74.6112 64.797.270.5106 63.895.958.587.9
3675.0113 66.5100 57.786.762.994.556.985.552.278.4
4060.791.253.981.046.770.250.976.646.169.342.363.5
0425639356534274412299450250376210315
10347522287431219330200301171258147221
12327491274412212319173259150225130195
14303456258387202304144217127191112168
1627941923835818928411717610515893.7141
18253380217326174262 93.5140 84.412776.6115
20226340195293159238 76.3115 68.910462.694.1
22200301173260143215 63.395.257.386.152.178.3
24175263152229127191 53.480.348.472.744.066.1
26151227132198112169 45.768.641.362.137.656.6
28131196114172 97.7147 39.559.335.753.732.648.9
30114171 99.8150 85.4128
32100151 88.0132 75.4113
3489.1134 78.1117 66.9101
3679.6120 69.8105 59.990.0
4064.697.056.785.248.773.1
Properties
Ag, in.
2
14.2 12.7 11.1 10.4 9.55 8.82
rx, in. 2.56 2.55 2.54 2.74 2.72 2.71
ry, in. 2.65 2.63 2.61 1.70 1.69 1.68
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT9
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 108

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–109
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT9 ×
lb/ft 27.5
c
25
c
23
c
20
c
17.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0178 267 136 205 129 193 87.3131 70.9107
10160 241 125 187 118 177 81.5123 66.6100
12153 230 120 180 114 171 79.1119 64.897.4
14145 218 114 172 109 163 76.3115 62.794.3
16136 204 108 163 103 155 73.3110 60.490.8
18127 190 102 153 97.1146 69.9105 57.987.1
20117 176 95.2143 90.8137 66.499.855.383.1
22107 161 88.3133 84.4127 62.794.252.578.8
2497.1146 81.3122 77.9117 58.888.449.574.5
2687.4131 74.4112 71.4107 54.982.646.670.0
2878.0117 67.5101 65.097.751.076.743.565.4
3069.0104 60.991.558.888.347.170.840.560.9
3260.691.154.581.952.779.343.365.037.556.4
3453.780.748.372.646.970.539.559.434.551.9
3647.972.043.164.841.862.935.954.031.747.6
4038.858.334.952.533.950.929.243.926.239.3
0178 267 136 205 129 193 87.3131 70.9107
10125 188 98.8149 80.0120 58.387.745.067.6
12112 168 90.0135 67.5101 51.076.639.659.4
1497.5147 80.0120 55.082.643.365.133.750.6
1682.8125 69.6105 43.465.235.853.727.941.9
1868.7103 59.389.134.752.228.843.422.634.0
2056.384.749.474.228.442.623.635.518.728.0
2247.070.641.262.0
2439.759.734.952.5
2634.051.129.945.0
Properties
Ag, in.
2
8.10 7.34 6.77 5.88 5.15
rx, in. 2.71 2.70 2.77 2.76 2.79
ry, in. 1.67 1.65 1.29 1.27 1.22
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT9
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 109

4–110 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT8 ×
lb/ft 50 44.5 38.5
c
33.5
c
28.5
c
25
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0440662392590334501252379236355182273
10359540320481271408210316199299156235
12329494292439248372194291185278146220
14296445263395222334176265169254135203
16262394232349196295158237153229124186
18228343202304171256139209136204112168
2019629417326014621912118211918099.5150
2216524814621912218410415610415687.7132
24138208122184103154 87.6132 88.313376.4115
26118177104157 87.5132 74.7112 75.211365.598.5
2810215389.9135 75.5113 64.496.764.997.556.584.9
3088.613378.3118 65.898.856.184.356.584.949.274.0
3277.911768.8103 57.886.949.374.149.774.743.365.0
3469.010461.091.651.276.943.765.644.066.138.357.6
3661.592.554.481.745.768.638.958.539.259.034.251.4
40 31.847.827.741.6
0440661392589334501252379236355182273
10362545319480269404204306153230122184
12337507297447252379194292130195106159
1431046627341023234918227310616088.7133
16281423247372210316167251 84.412772.4109
18252378221332188282151227 67.210157.987.0
20222334195293165248135203 54.882.347.271.0
22193291170255143215119179 45.568.339.259.0
24166249145218122184104157 38.357.633.149.8
26142213124186105157 89.6135 32.749.228.342.5
28122184107161 90.4136 77.5117
3010716093.4140 78.9119 67.7102
3293.814182.2123 69.5104 59.789.7
3483.212572.8109 61.692.652.979.6
3674.211265.097.755.082.747.371.1
4060.290.552.779.344.767.138.457.7
Properties
Ag, in.
2
14.7 13.1 11.3 9.81 8.39 7.37
rx, in. 2.28 2.27 2.24 2.22 2.41 2.40
ry, in. 2.51 2.49 2.47 2.46 1.60 1.59
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT8
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 110

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–111
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT8 ×
lb/ft 22.5
c
20
c
18
c
15.5
c
13
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0144 216 102 153 87.6132 65.498.346.670.1
10126 189 91.6138 79.2119 60.190.443.565.4
12118 178 87.3131 75.8114 57.987.142.263.4
14111 166 82.5124 72.0108 55.583.440.761.1
16102 153 77.3116 67.8102 52.779.339.058.6
1893.2140 71.8108 63.395.149.874.937.255.9
2084.2127 66.199.458.788.246.770.235.253.0
2275.3113 60.490.853.981.043.565.433.250.0
2466.6100 54.682.149.273.940.360.631.246.8
2658.387.649.073.744.566.837.155.729.143.7
2850.475.843.665.539.960.033.850.926.940.5
3043.966.038.457.735.553.430.746.124.837.3
3238.658.033.750.731.347.127.741.622.834.2
3434.251.429.944.927.741.724.737.120.831.2
3630.545.826.640.024.737.222.033.118.828.3
40 20.030.117.926.815.323.0
0144 216 102 153 87.6132 65.498.346.670.1
1099.0149 74.4112 61.492.341.762.729.243.9
1287.1131 67.3101 55.883.935.753.725.538.3
1474.5112 59.489.249.474.329.644.621.632.4
1662.193.351.277.042.764.223.835.717.626.5
1850.375.743.365.136.254.319.128.714.321.5
2041.261.935.853.829.945.0
2234.251.529.844.925.037.6
2428.943.525.237.921.231.9
2624.737.221.632.5
Properties
Ag, in.
2
6.63 5.89 5.29 4.56 3.84
rx, in. 2.39 2.37 2.41 2.45 2.47
ry, in. 1.57 1.56 1.52 1.17 1.12
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT8
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 111

4–112 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT7 ×
lb/ft 66 60 54.5 49.5 45 41
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0581873530797479720437657395594359540
10409614370556330496300450270405264397
12350526316474280421254381228343231347
14291438262393231347209313187281197295
16236355211317184277166250148223163246
18187281167251145219131197117176132199
2015222813520311817710616094.9143107161
2212518811216897.4146 87.813278.4118 88.6133
2410515893.814181.8123 73.811165.999.174.4112
2689.713579.912069.7105 62.994.556.284.463.495.3
2877.311668.910460.190.4 54.782.2
30 47.671.6
0581873530796479720437657395594359540
10534802485729438658397597357536297446
12517777470706424637384577345519276415
14497747452679408612370556332500253380
16476715432650390586353531318478228343
18453680411618371557336505302454204306
20428643388584350526317477286429179269
22402604365549329494298448268403155234
24376565341512307461278418250376133199
26349525316475285428258388232349113170
28322484292439263395238357214321 97.7147
30296444268402241362218327196294 85.2128
32270405244367219330198298178268 74.9113
34245368221332199299179270161242 66.499.8
36220331199298178268161242145217 59.289.0
40178268161242145217130196117176 48.072.2
Properties
Ag, in.
2
19.4 17.7 16.0 14.6 13.2 12.0
rx, in. 1.73 1.71 1.68 1.67 1.66 1.85
ry, in. 3.76 3.74 3.73 3.71 3.70 2.48
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
Note: Heavy line indicates KL/requal to or greater than 200.
WT7
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 112

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–113
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT7 ×
lb/ft 37 34 30.5
c
26.5
c
24
c
21.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0326491299450260392223336186280146219
10237357217326190286168252143215115173
12206310188283165249148223128192104156
1417526315924014021112819211116792.1138
1614521713219811617510816295.214380.0120
18116175106159 93.5141 88.713379.712068.1102
2094.2142 85.5128 75.8114 71.910865.298.057.085.6
2277.9117 70.7106 62.694.159.589.453.981.047.170.8
2465.498.359.489.252.679.150.075.145.368.139.659.5
2655.783.850.676.044.867.442.664.038.658.033.750.7
2848.172.0243.665.638.758.136.755.233.350.029.143.7
3041.962.938.057.133.750.632.048.129.043.625.338.1
0326490299450260392223336186280146219
10269404245368212318166249140211112169
12250376227342199299148222126189102154
1422934420831318327512819311116691.0137
1620731118828316524910916495.214379.5120
18185278168252148222 90.513680.112068.2103
20163244147221130195 73.811166.099.257.486.3
22141212127191113169 61.292.054.882.347.771.7
24120181109163 96.0144 51.577.546.169.340.260.4
26103154 92.6139 82.0123 44.066.139.459.234.351.6
2888.7133 80.0120 70.9106 38.057.134.051.129.744.6
3077.3116 69.7105 61.892.933.149.829.744.625.938.9
3268.0102 61.392.254.481.829.143.8
3460.390.654.481.748.272.5
3653.880.848.572.943.164.7
4043.665.539.359.134.952.5
Properties
Ag, in.
2
10.9 10.0 8.96 7.80 7.07 6.31
rx, in. 1.82 1.81 1.80 1.88 1.88 1.86
ry, in. 2.48 2.46 2.45 1.92 1.91 1.89
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT7
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 113

4–114 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT7 ×
lb/ft 19
c
17
c
15
c
13
c
11
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0127 190 99.9150 80.9122 61.993.043.665.6
10105 157 84.3127 69.6105 54.682.039.459.1
1296.1144 78.3118 65.197.951.677.637.656.5
1487.0131 71.7108 60.290.548.472.735.653.6
1677.5117 64.897.455.182.744.967.433.550.4
1868.0102 57.886.949.774.741.261.931.247.0
2058.888.450.876.444.466.737.456.228.943.4
2250.175.244.166.339.158.833.750.626.539.8
2442.163.237.756.734.151.230.045.124.136.2
2635.953.932.148.329.244.026.439.721.732.7
2830.946.527.741.625.237.923.034.619.429.2
3026.940.524.136.322.033.020.130.217.325.9
3223.735.621.231.919.329.017.626.515.222.8
3421.031.518.828.217.125.715.623.513.420.2
0127 190 99.9150 80.9122 61.993.043.665.6
1086.5130 69.5104 55.282.935.853.825.738.6
1275.2113 61.592.449.374.129.043.621.432.2
1463.495.452.879.442.764.222.633.917.125.8
1652.178.344.366.536.154.217.526.413.420.2
1841.862.836.154.229.744.614.021.0
2034.151.229.544.324.436.6
2228.342.524.536.920.330.5
2423.935.920.731.117.225.9
Properties
Ag, in.
2
5.58 5.00 4.42 3.85 3.25
rx, in. 2.04 2.04 2.07 2.12 2.14
ry, in. 1.55 1.53 1.49 1.08 1.04
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT7
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 114

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–115
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT6 ×
lb/ft 29 26.5 25 22.5 20
c
17.5
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0255383233350219329196295155233132199
4237356216325205308183276146219126190
6216324197296188283169254135203119179
8189284173261168252150226121183110165
1016024014722114521812919410615998.9149
1213019512018012118210816289.813587.0131
14102153 94.2142 97.6147 86.813073.811174.8112
1678.2117 72.3109 76.2115 67.610258.788.262.994.5
1861.892.857.185.960.290.553.480.346.469.751.677.6
2050.075.246.369.648.873.343.365.037.656.541.862.8
2241.362.138.357.540.360.635.853.831.046.734.551.9
2434.752.232.148.333.950.930.145.226.139.229.043.6
26 28.943.425.638.522.233.424.737.2
28 21.332.0
0255383233350219328196295155233132199
4242364219329202304170255133200113169
6235353212318192289167251131197108163
822433720230417826815923912619099.4149
1021131819128716224414521811717687.4131
1219729617726714421712919410615974.2112
1418127216324512518811216893.414061.191.8
16164246147221107160 95.014380.612148.673.1
18147220131198 88.8133 78.811868.210238.758.1
20129194116174 72.5109 64.296.556.484.831.447.3
22113169100151 60.090.253.279.946.870.326.139.2
2496.5145 85.8129 50.575.944.867.339.459.222.033.0
2682.3124 73.2110 43.164.738.257.433.650.5
2871.1107 63.295.137.255.833.049.629.043.6
3062.093.155.182.932.448.728.843.225.338.0
3254.581.948.572.928.542.825.338.022.333.5
Properties
Ag, in.
2
8.52 7.78 7.30 6.56 5.84 5.17
rx, in. 1.50 1.51 1.60 1.59 1.57 1.76
ry, in. 2.51 2.48 1.96 1.95 1.94 1.54
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT6
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 115

4–116 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT6 ×
lb/ft 15
c
13
c
11
c
9.5
c
8
c
7
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
093.114064.797.368.610349.975.037.957.028.142.2
489.613562.794.366.499.748.572.937.055.627.541.4
685.312860.490.763.795.746.870.435.954.026.840.3
879.712057.285.960.190.344.667.034.451.725.938.9
1073.011053.380.155.883.941.963.032.548.924.737.1
1265.698.648.973.551.076.638.858.330.445.723.335.1
1457.886.944.266.445.868.835.553.328.142.221.832.8
1650.075.139.359.140.560.831.948.025.638.520.230.4
1842.463.734.551.835.252.828.442.623.134.718.527.8
2035.252.929.744.730.145.224.937.420.530.916.825.2
2229.143.725.237.925.237.921.532.318.127.115.122.6
2424.436.721.231.921.231.918.327.415.723.613.420.1
2620.831.318.127.218.127.115.623.413.420.211.817.7
2817.927.015.623.415.623.413.420.211.617.410.215.3
30 13.620.411.717.610.115.28.8913.4
32 8.8713.37.8211.7
093.114064.797.368.610349.975.037.957.028.142.2
478.111753.981.052.178.337.055.625.638.518.627.9
676.111453.079.643.565.431.947.922.333.516.524.9
871.510750.876.432.949.425.037.517.626.513.620.4
1064.597.047.270.922.834.317.927.012.719.210.215.3
1256.484.742.563.816.224.312.819.39.2814.07.5411.3
1447.871.937.256.012.018.0
1639.559.431.948.0
1831.847.826.840.2
2025.938.922.033.1
2221.532.318.327.5
2418.127.215.423.2
Properties
Ag, in.
2
4.40 3.82 3.24 2.79 2.36 2.08
rx, in. 1.75 1.75 1.90 1.90 1.92 1.92
ry, in. 1.52 1.51 0.847 0.821 0.773 0.753
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT6
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 116

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–117
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT5 ×
lb/ft 22.5 19.5 16.5 15 13
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0199 298 172 258 145 218 132 199 103 154
4178 267 154 231 131 196 122 184 95.4143
6155 233 134 202 114 172 111 166 87.1131
8128 192 111 166 95.0143 96.0144 76.6115
10100 150 86.5130 74.8112 80.2121 65.097.7
1273.9111 63.996.055.883.964.396.753.279.9
1454.381.646.970.541.061.649.574.441.963.0
1641.662.535.954.031.447.237.957.032.248.4
1832.849.428.442.724.837.329.945.025.538.3
2026.640.023.034.620.130.224.336.420.631.0
22 20.030.117.025.6
24 16.825.314.321.5
0199 298 172 258 145 218 132 199 103 154
4187 281 160 241 133 199 115 173 86.7130
6178 267 152 229 126 189 103 155 81.3122
8166 249 141 213 117 176 89.0134 71.5107
10151 227 129 193 106 160 73.3110 59.789.8
12135 203 115 172 94.4142 57.786.747.871.8
14118 177 99.9150 82.0123 43.565.336.655.0
16101 152 85.3128 69.6105 33.450.228.242.4
1884.8127 71.2107 57.886.926.539.822.433.6
2069.5105 58.287.547.170.821.532.318.227.3
2257.586.448.272.439.058.617.826.715.122.6
2448.472.740.560.932.849.3
2641.262.034.551.928.042.1
2835.653.529.844.824.236.3
3031.046.626.039.021.131.7
3227.341.022.834.318.527.8
Properties
Ag, in.
2
6.63 5.73 4.85 4.42 3.81
rx, in. 1.24 1.24 1.26 1.45 1.44
ry, in. 2.01 1.98 1.94 1.37 1.36
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT5
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 117

4–118 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT5 ×
lb/ft 11
c
9.5
c
8.5
c
7.5
c
6
c
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
080.9122 73.2110 62.894.453.580.531.447.2
475.7114 68.8103 59.389.150.776.130.145.3
669.8105 63.795.755.182.847.371.028.643.0
862.293.457.285.949.874.842.964.526.740.1
1053.680.549.774.843.765.737.956.924.436.6
1244.767.242.063.137.256.032.548.921.832.8
1436.154.234.351.630.846.327.240.919.128.7
1628.242.327.240.824.837.322.133.216.424.7
1822.233.421.532.319.629.517.526.413.820.8
2018.027.117.426.115.923.914.221.411.417.1
2214.922.414.421.613.119.711.717.7 9.4114.1
2412.518.812.118.211.016.6 9.8714.8 7.9111.9
26 9.3914.1 8.4112.6 6.7410.1
080.9122 73.2110 62.894.453.580.531.447.2
465.197.855.583.545.368.035.753.720.831.3
662.093.244.767.236.655.029.043.518.027.1
855.583.432.248.426.239.320.630.914.021.1
1046.970.521.532.317.526.313.920.9 9.9915.0
1237.957.015.122.712.418.6 9.9314.9 7.2510.9
1429.344.111.216.89.2113.8
1622.734.1
1818.027.1
2014.722.1
2212.218.3
Properties
Ag, in.
2
3.24 2.81 2.50 2.21 1.77
rx, in. 1.46 1.54 1.56 1.57 1.57
ry, in. 1.33 0.874 0.844 0.810 0.785
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT5
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 118

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–119
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT4 ×
lb/ft 33.5 29 24 20 17.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0295 443 256 384 211 317 176 264 154 231
4253 380 218 328 177 267 148 222 129 193
6209 314 179 269 143 215 119 179 103 154
8160 240 135 204 106 159 88.1132 75.0113
10113 170 94.6142 71.5108 59.889.950.375.6
1278.6118 65.798.749.774.741.562.434.952.5
1457.886.848.272.536.554.930.545.925.638.6
1644.266.536.955.527.942.023.435.119.629.5
0295 443 256 384 211 317 176 264 154 231
4283 425 245 368 202 303 167 251 145 219
6270 405 233 351 192 289 159 238 138 208
8253 380 218 328 180 270 148 222 129 194
10232 349 200 301 165 247 135 203 118 177
12210 315 181 271 148 222 121 182 105 158
14186 279 160 240 130 196 106 160 92.5139
16161 243 138 208 113 170 91.4137 79.4119
18138 207 118 177 95.7144 77.1116 66.9100
20115 173 98.1147 79.4119 63.595.455.082.7
2295.3143 81.1122 65.698.752.578.945.568.4
2480.1120 68.2102 55.282.944.266.438.357.5
2668.2103 58.187.347.070.737.656.632.649.0
2858.888.450.175.340.661.032.548.828.142.3
3051.377.043.665.635.353.128.342.524.536.9
3245.167.738.457.731.146.724.937.421.632.4
Properties
Ag, in.
2
9.84 8.54 7.05 5.87 5.14
rx, in. 1.05 1.03 0.986 0.988 0.968
ry, in. 2.12 2.10 2.08 2.04 2.03
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
Note: Heavy line indicates KL/requal to or greater than 200.
WT4
AISC_Part 4B:14th Ed. 2/23/11 10:13 AM Page 119

4–120 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT4 ×
lb/ft 15.5 14 12 10.5
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0137 205 123 185 106 159 92.2 139
4114 171 105 157 89.5 135 80.6 121
6 91.2 137 85.1 128 72.5 109 68.2 102
8 66.6 100 63.7 95.8 54.0 81.1 53.9 81.0
10 44.7 67.2 43.9 65.9 36.9 55.4 39.8 59.9
12 31.0 46.6 30.5 45.8 25.6 38.5 28.0 42.1
14 22.8 34.3 22.4 33.6 18.8 28.3 20.6 30.9
16 17.5 26.2 17.1 25.8 14.4 21.7 15.8 23.7
18 12.4 18.7
0137 205 123 185 106 159 92.2 139
4128 192 113 170 96.4 145 79.3 119
6122 183 105 157 89.2 134 69.9 105
8114 171 93.8 141 79.9 120 58.5 87.9
10104 156 81.4 122 69.3 104 46.4 69.8
12 92.8 140 68.4 103 58.2 87.4 34.9 52.4
14 81.4 122 55.7 83.7 47.2 71.0 25.7 38.7
16 69.8 105 43.8 65.8 37.1 55.7 19.8 29.7
18 58.7 88.2 34.6 52.1 29.4 44.1 15.6 23.5
20 48.2 72.5 28.1 42.2 23.8 35.8 12.7 19.1
22 39.9 60.0 23.2 34.9 19.7 29.6
24 33.6 50.5 19.5 29.4 16.6 24.9
26 28.6 43.0 16.7 25.0 14.1 21.2
28 24.7 37.1
30 21.5 32.4
32 18.9 28.4
Properties
Ag, in.
2
4.56 4.12 3.54 3.08
rx, in. 0.969 1.01 0.999 1.12
ry, in. 2.02 1.62 1.61 1.26
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
Note: Heavy line indicates KL/requal to or greater than 200.
WT4
AISC_Part 4B:14th Ed. 2/23/11 10:14 AM Page 120

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–121
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape WT4 ×
lb/ft 9 7.5 6.5 5
c
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 78.7 118 66.5 99.9 57.5 86.4 32.5 48.8
4 69.2 104 59.4 89.2 51.4 77.3 29.8 44.8
6 58.8 88.4 51.5 77.4 44.7 67.3 26.8 40.3
8 46.9 70.5 42.3 63.5 36.8 55.3 23.1 34.7
10 35.0 52.6 32.8 49.2 28.7 43.1 19.0 28.6
12 24.8 37.2 24.0 36.0 21.1 31.6 15.0 22.6
14 18.2 27.4 17.6 26.4 15.5 23.3 11.3 17.1
16 13.9 20.9 13.5 20.2 11.8 17.8 8.69 13.1
18 11.0 16.5 10.6 16.0 9.36 14.1 6.87 10.3
20 8.62 13.0 7.58 11.4 5.56 8.36
0 78.7 118 66.5 99.9 57.5 86.4 32.5 48.8
4 65.2 98.0 48.1 72.3 38.5 57.8 23.0 34.5
6 57.5 86.4 37.6 56.6 30.1 45.2 19.5 29.3
8 48.0 72.1 26.3 39.6 20.7 31.2 14.7 22.1
10 37.9 56.9 17.3 25.9 13.6 20.5 10.1 15.2
12 28.1 42.3 12.1 18.2 9.60 14.4 7.21 10.8
14 20.8 31.3 8.94 13.4 7.11 10.7 5.37 8.07
16 16.0 24.1
18 12.7 19.1
20 10.3 15.5
Properties
Ag, in.
2
2.63 2.22 1.92 1.48
rx, in. 1.14 1.22 1.23 1.20
ry, in. 1.23 0.876 0.843 0.840
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-7 (continued)
Available Strength in
Axial Compression, kips
WT-Shapes
Fy= 50 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
WT4
AISC_Part 4B:14th Ed. 2/23/11 10:14 AM Page 121

Shape
2L8×8×
1
1
/8 1
7
/8
3 /4
5 /8
9 /16
c
lb/ft 114 102 90.0 77.8 65.4 59.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
07241090651978573862496 745417 627362544
27211080648973571857493 741415 624360541
47091070638959562845486 730409 614355534
66911040622934548824474 712399 600347521
86661000600901529795458 688385 579336504
10636955573861505760437 657369 554322484
12600902541813478719414 622349 525306459
14561843506761448673388 583328 493287432
16519779469704415624360 541304 458268403
18475713429646381572330 497280 421247372
20430646390586346520300 451255 383226340
22385579350526311468270 406230 346205308
24342513311467277416241 362205 309184277
26300451273411244367213 320182 273164246
28260391237357213320185 279159 239144217
30226340207311185278161 243138 208126189
32199299182273163245142 213122 183111166
34176265161242144217126 189108 16298.0147
36157236144216129193112 16896.114487.4131
38141212129194115173101 15186.213078.4118
4012719111617510415790.813677.811770.8106
07241090651978573862496 745417 627362544
66891040613922532800449 674334 502280420
96711010597898518779437 657332 499278418
12647972576865500751422 634328 493275413
15616927549825477716403 605321 483270406
18582874518778438658371 557304 456258388
21532799473711405609343 515284 426243365
24488733434652370556313 471260 390225337
27442664393591333501282 424234 352204306
30396595352529296446251 378208 312182273
33351527312468260391221 332182 273160241
36307461272410237356200 301165 247139209
39265398235353204307172 259142 213126189
42229344203305176265149 224123 185109164
45199300177266154231130 196108 16295.8144
48175264156234135204115 17394.914384.6127
51156234138208120181102 15382.312775.2113
5413920912318510716191.013775.411367.3101
5712518711116696.414581.812367.810260.691.1
Properties of 2 angles—
3
/8in. back to back
Ag,in.
2
33.6 30.2 26.6 23.0 19.4 17.5
rx,in. 2.41 2.43 2.45 2.46 2.48 2.49
ry,in. 3.54 3.52 3.50 3.47 3.45 3.44
Properties of single angle
rz,in. 1.56 1.56 1.57 1.57 1.58 1.58
ASD LRFD
Ωc=1.67φc=0.90
4–122 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-8
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
No. of
connectors
a
b
2
3
2L8
AISC_Part 4C:14th Ed. 2/23/11 10:36 AM Page 122

Shape
2L8×8× 2L6×6×
1
/2
c 1
7
/8
3 /4
5 /8
lb/ft 52.8 74.8 66.2 57.4 48.4
Design
Pn/ΩcφcPn Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFD ASDLRFDASDLRFDASDLRFDASDLRFD
0309 464 474 713420 632364 548 308 463
2307 462 470 706416 626361 543 306 459
4303 456 457 686405 609351 528 297 447
6297 446 436 655387 581335 504 284 427
8287 432 408 613362 545315 473 267 401
10276 415 374 563334 501290 436 246 370
12263 395 337 507301 453262 394 223 336
14248 373 298 448267 401233 350 199 299
16232 349 259 389232 349203 305 174 261
18215 323 220 331199 299174 261 149 224
20198 297 184 276167 250146 219 126 189
22180 270 152 228138 207121 181 104 157
24162 244 128 192116 174101 152 87.7132
26145 218 109 164 98.6148 86.4130 74.8112
28129 194 93.8141 85.1128 74.5112 64.596.9
30113 170 74.1111 64.997.656.184.4
3299.2149
3487.9132
3678.4118
3870.4106
4063.595.4
0309 464 474 713420 632364 548 308 463
6227 341 449 674395 593338 508 280 421
9225 339 429 644377 567323 485 268 402
12223 336 402 605354 532303 455 251 377
15220 331 371 558326 490279 419 231 347
18212 319 327 491287 431245 368 203 306
21202 304 287 432252 379215 323 178 268
24189 284 248 372217 326184 277 153 230
27174 261 209 314183 275155 233 129 194
30156 235 173 260151 227128 192 106 159
33139 209 143 215125 188106 159 87.8132
36122 183 120 181105 158 89.0134 74.0111
39110 166 103 154 89.6135 75.9114 63.194.9
4296.2145 88.5133 77.3116 65.598.554.582.0
4584.5127 77.1116 67.4101
4874.8112
5166.6100
5459.789.7
5753.880.8
Properties of 2 angles—
3
/8in. back to back
Ag,in.
2
15.7 22.0 19.5 16.9 14.3
rx,in. 2.49 1.79 1.81 1.82 1.84
ry,in. 3.43 2.72 2.70 2.67 2.65
Properties of single angle
rz,in. 1.59 1.17 1.17 1.17 1.17
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–123
AMERICANINSTITUTE OFSTEELCONSTRUCTION
No. of
connectors
a
b
2
3
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
Y-Y Axis X-X Axis
2L8-2L6
AISC_Part 4C:14th Ed. 2/23/11 10:36 AM Page 123

4–124 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×6×
9
/16
1 /2
7 /16
c 3
/8
c 5
/16
c
lb/ft 43.8 39.2 34.4 29.8 24.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0278 418 248 373 214 322 172 259 131 196
2276 414 246 369 212 319 171 257 130 195
4268 403 239 360 207 311 167 251 127 191
6257 386 229 344 198 298 160 241 123 184
8241 363 215 324 187 281 152 228 117 175
10223 335 199 299 173 260 141 212 109 165
12202 304 181 272 157 237 130 195 101 152
14180 271 161 243 141 212 117 176 92.4139
16158 237 141 213 124 186 104 156 83.0125
18136 204 122 183 107 161 90.8136 73.6111
20115 172 103 155 91.2137 78.1117 64.396.7
2295.2143 85.8129 76.1114 66.199.355.483.3
2480.0120 72.1108 63.996.155.583.447.070.7
2668.2102 61.492.354.581.947.371.140.160.2
2858.888.353.079.647.070.640.861.334.551.9
3051.277.046.169.440.961.535.553.430.145.2
0278 418 248 373 214 322 172 259 131 196
6248 373 215 323 167 250 126 190 88.0132
9237 357 206 310 164 247 125 188 87.2131
12218 328 190 286 158 238 121 182 85.4128
15199 299 174 261 148 223 116 174 82.5124
18177 267 155 233 134 202 106 160 77.9117
21155 232 136 204 117 177 94.6142 71.3107
24132 198 116 174 100 151 81.8123 63.295.0
27115 173 101 152 87.4131 69.0104 54.582.0
3094.5142 83.1125 72.0108 59.990.048.072.2
3378.5118 69.1104 60.090.350.275.440.661.0
3666.199.458.387.650.876.342.664.034.652.1
3956.584.949.874.943.565.436.554.929.944.9
4248.873.343.164.737.656.631.747.626.039.0
Properties of 2 angles—
3
/8in. back to back
Ag,in.
2
12.9 11.5 10.2 8.76 7.34
rx,in. 1.85 1.86 1.86 1.87 1.88
ry,in. 2.64 2.63 2.62 2.60 2.59
Properties of single angle
rz,in. 1.18 1.18 1.18 1.19 1.19
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
No. of
connectors
a
b
2
3
2L6
AISC_Part 4C:14th Ed. 2/23/11 10:36 AM Page 124

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–125
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L5×5×
7
/8
3 /4
5 /8
1 /2
7 /16
3 /8
c 5
/16
c
lb/ft 54.4 47.2 40.0 32.4 28.6 24.6 20.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0345518302454254382207310182273155232121181
2340511298448251377204306180270153230119179
4327491286430241363196295173260147221115173
6305458267402226340184276162244138208109164
8277417243366206310168252148223127191101151
1024536821532418327514922513219911317090.9137
1221131718627915923813019511517399.014980.2121
1417726515623413420110916597.214684.212769.2104
1614421612719111016590.113580.312169.910558.387.7
1811417210115387.813272.210964.596.956.584.948.172.3
2092.713982.212471.110758.588.052.278.545.868.839.058.6
2276.611567.910258.888.448.472.743.264.937.856.832.248.4
2464.496.757.185.849.474.340.661.136.354.531.847.827.140.7
26 23.134.7
0345518302454254382207310182273155232121181
233750729344024436619228916524812318589.2134
433249828843323936018928416224412318488.9134
632248428042023335018427615823712218388.4133
831046626940422333617726615222812018187.5132
1029544325538321231916825214221311617585.4128
1227741623936019929915723713219811016682.4124
1425137721732618027114321512118210215477.9117
1622934419729716424713019511016593.114072.1108
1820631017726714722111717598.014783.112565.398.2
2018327515723713119610315586.213073.011058.187.4
2216124213820711417290.113574.811263.295.051.076.6
2414021011917998.614877.511767.310156.785.246.169.3
2611918010215384.212766.399.657.686.648.773.239.859.8
2810315587.913272.710957.386.149.874.942.263.534.752.1
3089.913576.711563.495.350.075.243.565.437.055.630.445.7
3279.011967.410155.883.944.066.238.457.632.649.026.940.4
3470.010559.889.849.574.439.158.734.051.229.043.623.936.0
3662.593.953.380.244.266.434.952.430.445.725.939.021.432.2
3856.184.3
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
16.0 14.0 11.8 9.58 8.44 7.30 6.14
rx, in. 1.49 1.50 1.52 1.53 1.54 1.55 1.56
ry, in. 2.30 2.27 2.25 2.22 2.21 2.20 2.19
Properties of single angle
rz, in. 0.971 0.972 0.975 0.980 0.983 0.986 0.990
ASD LRFD
Ωc=1.67φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L5
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 125

4–126 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L4×4×
3
/4
5 /8
1 /2
7 /16
3 /8
5 /16
1 /4
c
lb/ft 37.0 31.4 25.6 22.6 19.6 16.4 13.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
023535319929916224314221412318510315575.9114
223034619529315823813921012118210115274.6112
421532418327514922413119711417195.414370.7106
619329016424713420211817810315586.413064.797.3
816624914221311617410315489.513475.311357.285.9
1013620511717696.314585.512874.711263.194.848.873.3
1210716193.114076.711568.310359.990.150.876.440.160.3
1480.812170.710658.587.952.378.646.169.339.359.131.947.9
1661.993.054.181.444.867.340.160.235.353.030.145.224.637.0
1848.973.542.864.335.453.231.647.627.941.923.835.719.429.2
20 34.652.128.743.125.638.522.633.919.328.915.723.7
023535319929916224314221412318510315575.9114
223034519329015423213420111317082.912555.984.1
422433618828215022613019611016682.412455.783.7
621532318027014421612518810615981.412255.182.8
820230416925413520411717699.515079.211954.181.3
1018728215623512518810816392.113875.111352.378.5
1216624913820811116695.814481.512267.210148.372.6
1414722112218497.614784.512771.910859.489.343.665.6
1612819210615984.512773.011062.293.551.277.038.457.7
1810916490.113571.710861.892.952.779.243.264.932.949.5
2091.613875.011359.589.551.276.943.665.535.653.527.641.5
2275.711462.193.349.374.142.463.736.254.429.744.623.134.8
2463.795.752.278.541.562.435.753.730.545.925.137.719.629.5
2654.381.644.566.935.453.230.545.826.139.221.532.316.925.3
2846.870.438.457.730.646.026.339.622.533.818.627.914.622.0
3040.861.333.550.326.740.123.034.519.629.5
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
10.9 9.22 7.50 6.60 5.72 4.80 3.86
rx, in. 1.18 1.20 1.21 1.22 1.23 1.24 1.25
ry, in. 1.88 1.85 1.83 1.81 1.80 1.79 1.78
Properties of single angle
rz, in. 0.774 0.774 0.776 0.777 0.779 0.781 0.783
ASD LRFD
Ωc=1.67φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L4
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 126

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–127
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3
1
/2×3
1
/2×
1
/2
7 /16
3 /8
5 /16
1 /4
c
lb/ft 22.2 19.6 17.0 14.4 11.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0140 211 125 187 108 162 90.5136 70.7106
1139 209 124 186 107 161 90.0135 70.3106
2136 205 121 182 105 158 88.2133 69.0104
3132 198 117 176 102 153 85.4128 66.9101
4126 189 112 168 96.9146 81.6123 64.196.3
5118 177 105 158 91.3137 77.0116 60.691.1
6109 164 97.7147 84.9128 71.7108 56.785.2
7100 150 89.5135 77.9117 65.899.052.378.6
890.2136 80.9122 70.6106 59.789.847.771.7
980.3121 72.1108 63.094.853.580.443.064.6
1070.4106 63.595.455.683.647.371.038.257.4
1161.091.655.182.848.472.741.262.033.650.5
1251.978.147.170.841.562.435.553.429.143.8
1344.366.540.160.335.453.130.345.524.937.5
1438.257.434.652.030.545.826.139.221.532.3
1533.250.030.145.326.639.922.734.218.728.2
1629.243.926.539.823.335.120.030.016.524.8
1725.938.923.535.320.731.117.726.614.621.9
18 15.823.713.019.6
0140 211 125 187 108 162 90.5136 70.7106
2135 203 119 178 101 152 82.1123 55.182.8
4130 196 115 172 97.6147 79.5120 54.782.3
6123 185 109 163 92.3139 75.4113 53.980.9
8114 172 100 151 85.4128 69.8105 51.978.0
10101 151 88.3133 75.3113 61.892.847.371.1
1288.1132 77.1116 65.798.854.081.241.862.8
1475.1113 65.698.655.984.046.069.235.653.6
1662.593.954.481.746.369.638.257.429.544.4
1850.676.043.965.937.456.130.846.323.935.9
2041.061.735.653.530.445.625.137.719.529.3
2234.051.029.544.325.237.820.831.316.224.4
2428.642.924.837.321.231.817.526.313.720.6
2624.436.621.231.818.127.215.022.511.717.6
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
6.50 5.78 5.00 4.20 3.40
rx, in. 1.05 1.06 1.07 1.08 1.09
ry, in. 1.63 1.61 1.60 1.59 1.57
Properties of single angle
rz, in. 0.679 0.681 0.683 0.685 0.688
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L3
1
/2
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 127

4–128 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3×3×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c
lb/ft 18.8 16.6 14.4 12.2 9.80 7.42
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
011917910515791.013776.711562.193.342.964.4
111817710415690.113576.111461.592.542.563.9
211517210115287.713274.011159.990.141.562.4
310916496.414583.812670.810657.386.239.960.0
410215490.313678.611866.599.953.981.037.756.7
593.914183.012572.410961.392.149.874.835.152.8
684.612775.011365.498.355.583.445.267.932.248.4
774.811266.499.858.187.349.474.240.360.529.043.6
864.997.657.886.950.676.143.264.935.353.025.838.7
955.383.149.374.243.365.137.055.730.345.622.533.9
1046.269.441.362.136.454.731.246.925.638.519.429.1
1138.157.334.251.430.145.325.938.921.332.016.424.6
1232.148.228.743.225.338.121.732.717.926.913.820.7
1327.341.024.536.821.632.418.527.915.322.911.717.6
1423.535.421.131.718.628.016.024.013.219.810.115.2
15 18.427.616.224.413.920.911.517.28.8013.2
011917910515791.013776.711562.193.342.964.4
211517310115186.313071.110754.882.331.146.7
411016596.214582.612468.110252.679.030.846.3
610215489.413476.711563.395.149.173.830.245.4
890.413678.911967.710255.984.043.665.528.643.0
1078.311868.310358.688.048.372.537.856.825.838.8
1265.698.657.185.949.073.640.360.531.747.622.133.3
1453.380.046.369.639.659.532.548.825.638.518.227.3
1641.862.836.254.431.046.525.338.020.030.114.421.7
1833.049.728.743.124.536.920.130.215.923.911.617.4
2026.840.323.335.019.929.916.324.512.919.59.4814.3
2222.233.319.228.916.524.813.520.310.716.17.8911.9
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
5.52 4.86 4.22 3.56 2.88 2.18
rx, in. 0.895 0.903 0.910 0.918 0.926 0.933
ry, in. 1.43 1.42 1.41 1.39 1.38 1.37
Properties of single angle
rz, in. 0.580 0.580 0.581 0.583 0.585 0.586
ASD LRFD
Ωc=1.67φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L3
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 128

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–129
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L2
1
/2×2
1
/2×
1
/2
3 /8
5 /16
1 /4
3 /16
c
lb/ft 15.4 11.8 10.0 8.20 6.14
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
097.4146 74.6112 62.994.651.377.138.157.3
196.1144 73.6111 62.193.450.676.137.756.6
292.1138 70.7106 59.789.748.773.236.354.5
385.9129 66.099.355.984.045.668.634.151.2
477.8117 60.190.350.976.541.762.631.246.9
568.6103 53.280.045.267.937.155.727.941.9
658.888.445.968.939.058.732.148.324.336.5
749.073.638.557.832.949.427.240.820.631.0
839.759.731.447.226.940.522.333.617.125.7
931.547.325.037.621.532.317.926.913.820.7
1025.538.320.330.517.426.214.521.811.216.8
1121.131.716.725.214.421.612.018.09.2313.9
1217.726.614.121.112.118.210.115.17.7611.7
097.4146 74.6112 62.994.651.377.138.157.3
195.7144 72.4109 60.390.647.871.829.945.0
294.3142 71.3107 59.489.247.170.729.944.9
392.0138 69.5105 57.986.945.969.029.744.6
488.9134 67.1101 55.883.944.366.629.444.2
585.0128 64.196.453.380.142.363.628.943.5
680.5121 60.791.250.375.740.060.228.142.2
773.6111 55.483.345.969.136.655.026.339.5
867.8102 51.076.642.263.433.650.524.436.6
961.892.946.469.738.357.530.545.922.233.4
1055.783.741.762.634.351.627.441.219.930.0
1149.674.637.055.730.445.724.336.517.726.6
1243.765.832.548.926.740.121.331.915.423.2
1338.157.328.242.423.034.618.327.613.320.0
1432.949.524.436.619.929.915.923.811.617.4
1528.743.121.231.917.326.113.920.810.115.2
1625.237.918.728.115.322.912.218.38.9513.5
1722.333.616.624.913.520.310.816.37.9612.0
1819.930.014.822.212.118.29.6614.57.1210.7
1917.926.913.320.010.916.38.6813.16.409.62
2016.224.312.018.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
4.52 3.46 2.92 2.38 1.80
rx, in. 0.735 0.749 0.756 0.764 0.771
ry, in. 1.23 1.21 1.19 1.18 1.17
Properties of single angle
rz, in. 0.481 0.481 0.481 0.482 0.482
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L2
1
/2
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 129

4–130 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L2×2×
3
/8
5 /16
1 /4
3 /16
1 /8
c
lb/ft 9.40 7.84 6.38 4.88 3.30
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
059.188.850.075.240.761.231.046.719.329.0
157.886.949.073.639.960.030.445.719.028.5
254.281.445.969.137.556.428.643.018.027.0
348.673.041.362.133.850.825.938.916.424.7
441.762.735.653.529.344.022.533.714.521.8
534.351.629.444.224.336.518.728.112.318.5
627.040.623.335.019.329.115.022.510.115.2
720.430.617.726.614.722.111.517.3 8.0012.0
815.623.513.520.311.317.08.8013.2 6.169.25
912.318.510.716.18.9113.46.9510.4 4.867.31
10 7.2210.95.638.463.945.92
059.188.850.075.240.761.231.046.719.329.0
157.886.948.673.039.058.628.542.914.121.2
256.585.047.571.438.157.327.942.014.121.2
354.581.945.768.736.755.126.940.514.021.0
451.877.843.465.234.852.325.638.413.820.7
548.572.940.661.032.548.823.935.913.420.2
643.565.336.354.629.143.721.432.212.619.0
739.158.832.649.026.139.219.228.911.617.5
834.652.028.843.323.034.516.925.410.415.7
930.145.325.037.619.929.914.622.0 9.1413.7
1025.838.821.332.016.925.412.418.7 7.8511.8
1121.732.617.926.814.121.210.415.6 6.629.94
1218.227.415.022.611.917.98.7513.1 5.628.45
1315.523.412.819.310.115.27.4711.2 4.837.26
1413.420.111.116.68.7613.26.469.714.196.30
1511.717.69.6314.57.6411.55.648.473.675.51
1610.315.48.4712.76.7210.14.967.46
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
2.74 2.32 1.89 1.44 0.982
rx, in. 0.591 0.598 0.605 0.612 0.620
ry, in. 1.01 0.996 0.982 0.967 0.951
Properties of single angle
rz, in. 0.386 0.386 0.387 0.389 0.391
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-8 (continued)
Available Strength in
Axial Compression, kips
Double Angles—Equal Legs
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L2
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 130

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–131
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L8×6×
1
7
/8
3 /4
5 /8
9 /16
c 1
/2
c 7
/16
c
lb/ft 88.4 78.2 67.6 57.0 51.4 46.0 40.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0565849496745431648361543314472267402220330
4554832486731423636354533309464263395216325
6540812475713413621346520302454257387212319
8522785459690399600335503293440250375206310
10500751439660383575321483281422240361199300
12474712416626363546305458268402229345191287
14444668391588341513287431252379217326181273
16413621363546318477268402236355204306171257
18380571335503293440247371219329189285160240
20346521305459267402226340201302175263148223
22313470276414242364205308183275160240137205
24279420247371217326184276165248145218125188
26247371218328192289164246148222130196113170
28216325191288169254144217131197116175102153
3018828316725114722112618911517210315490.8136
3216624914722012919511016610115190.113580.2120
3414722013019511517297.914789.213479.912071.0107
3613119711617410215487.313179.612071.210763.395.2
3811717610415691.813878.311871.410763.996.156.885.4
4010615993.814182.912570.710664.596.957.786.751.377.1
42 75.211364.196.458.587.952.378.646.569.9
0565849496745431648361543314472267402220330
4528794456685385579302453254382208312162244
6516776446670377566299449252379206310161242
8500752432649365549294442248373203306159239
10480722415623351527286430243365199300156235
12457686394593334502275414234352194291153229
14420631363545307462255383219329183274146219
16389585336505285428236355204307171258138207
18357536308463261393216325188282159239129194
20324486279420237356195293170256145218119179
22291437251377212319174262153230131197109163
2425838822333418828315423113520311717697.9147
2622734119529416524813420111817810315587.2131
2819729616925514321511617510315590.013576.8115
3017225814822212518810215390.713679.311968.0102
3215122713019611016690.113580.312170.410660.590.9
3413420211617498.114780.112071.510762.894.454.181.3
3612018010315587.713271.710864.196.356.384.748.773.2
3810816292.914078.811864.697.157.786.850.876.444.066.1
4097.214683.912671.310758.487.852.378.646.169.239.960.0
4288.3133
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
26.2 23.0 20.0 16.8 15.2 13.6 12.0
rx, in. 2.49 2.50 2.52 2.54 2.55 2.55 2.56
ry, in. 2.52 2.50 2.47 2.45 2.44 2.43 2.42
Properties of single angle
rz, in. 1.28 1.28 1.29 1.29 1.30 1.30 1.31
ASD LRFD
Ωc=1.67φc=0.90
Table 4-9
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L8 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 131

4–132 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L8×4×
1
7
/8
3 /4
5 /8
9 /16
c 1
/2
c 7
/16
c
lb/ft 74.8 66.2 57.4 48.4 43.8 39.2 34.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0479719423635366551307462269404228343187281
4469706415623360541302453264397224337184277
6458689405609351528295443258388220330181271
8443666392589340511285429250376213321176264
10424638375564326490274412241362206309170255
12402605356535310466260391229345196295163245
14378568335503292438245368217326186280155233
16352529312469272409229344203305175263146220
18324487288433251378212318188283163245137206
20296444263395230346194291173260151226127191
22267402238358208313176264158237138207117176
24239360214321187281158238143214125188107162
2621231919028516725014121212819211317097.6147
2818628016725114722112418711317010115288.0132
3016224414621912819310916399.615089.613578.7118
3214321412819211316995.514487.513278.711869.7105
3412619011317099.815084.612777.511769.710561.892.9
3611316910115289.013475.511369.210462.293.555.182.8
3810115290.713679.912067.710262.193.355.883.949.574.3
4091.213781.812372.110861.191.956.084.250.475.744.667.1
42 74.211265.498.355.583.350.876.445.768.740.560.9
0479719423635366551307462269404228343187281
4429645370557311467256385218327178268140210
6406610350526294442245368209314172258135203
8375564323486272408227341195293161242128192
10330496284427239359198298171258143216115173
12288432247371208312170256148223125188102153
1424436720931417626414221312418710615987.5131
1620230417225914521711517210115287.013172.9110
1816324513820811617492.113881.612370.610659.789.7
2013219911216994.614275.511367.110158.387.649.574.4
2211016593.314078.611863.094.656.184.348.873.441.762.6
2492.513978.711866.399.753.280.047.571.441.462.335.553.3
2679.011967.2101
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
22.2 19.6 17.0 14.3 13.0 11.6 10.2
rx, in. 2.51 2.53 2.55 2.56 2.57 2.58 2.59
ry, in. 1.60 1.57 1.55 1.52 1.51 1.50 1.49
Properties of single angle
rz, in. 0.844 0.846 0.850 0.856 0.859 0.863 0.867
ASD LRFD
Ωc=1.67φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L8 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:37 AM Page 132

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–133
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L7×4×
3
/4
5 /8
1 /2
c 7
/16
c 3
/8
c
lb/ft 52.4 44.2 35.8 31.4 27.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0334 502 280 421 218 328 182 274 145 218
4326 490 273 411 213 321 178 268 142 213
6316 475 265 399 207 312 173 261 139 208
8303 455 254 382 199 299 167 251 134 201
10286 430 241 362 189 284 159 239 128 192
12267 402 225 338 177 267 150 225 121 182
14246 370 208 312 165 247 140 210 114 171
16225 338 190 285 151 227 129 193 106 159
18202 304 171 257 137 206 117 176 97.1146
20180 270 152 229 123 184 106 159 88.4133
22158 237 134 201 109 163 94.6142 79.7120
24137 205 116 175 95.0143 83.5125 71.1107
26117 176 99.8150 82.1123 72.9110 62.894.4
28101 151 86.1129 70.8106 63.094.654.982.5
3087.8132 75.0113 61.692.754.982.447.871.9
3277.2116 65.999.054.281.448.272.542.063.2
3468.4103 58.487.748.072.142.764.237.255.9
3661.091.652.178.342.864.338.157.333.249.9
0334 502 280 421 218 328 182 274 145 218
4295 443 238 357 178 268 143 215 108 162
6279 420 225 339 172 259 138 208 105 158
8259 389 209 314 161 243 131 197 100 150
10228 343 185 277 143 215 117 177 91.3137
12200 300 161 243 125 188 104 156 81.7123
14171 256 138 207 106 159 88.6133 71.1107
16142 213 114 171 87.3131 73.8111 60.190.4
18115 172 91.9138 70.4106 60.190.349.674.5
2093.3140 75.0113 57.886.949.674.541.262.0
2277.4116 62.493.748.372.641.562.434.752.2
2465.398.152.679.140.961.535.253.029.644.4
2655.783.845.067.635.052.7
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
15.5 13.0 10.5 9.26 8.00
rx, in. 2.21 2.23 2.25 2.26 2.27
ry, in. 1.61 1.58 1.56 1.55 1.54
Properties of single angle
rz, in. 0.855 0.860 0.866 0.869 0.873
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L7 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 133

4–134 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×4×
7
/8
3 /4
5 /8
9 /16
lb/ft 54.4 47.2 40.0 36.2
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0345 518 300 450 252 379 229 343
4333 501 290 435 244 366 221 332
6319 479 277 417 234 351 212 318
8300 451 261 393 220 331 200 300
10277 416 242 363 204 307 185 278
12252 378 220 331 186 279 169 254
14224 337 197 296 166 250 151 228
16197 296 173 260 146 220 133 201
18170 255 150 225 127 191 116 174
20144 216 127 191 108 162 98.6148
22119 179 106 159 90.1 135 82.5124
24100 151 89.0134 75.7 114 69.3104
26 85.5 128 75.9114 64.5 97.0 59.1 88.8
28 73.7 111 65.4 98.3 55.6 83.6 50.9 76.6
30 64.2 96.5 57.0 85.6 48.5 72.9 44.4 66.7
0345 518 300 450 252 379 229 343
4319 480 273 410 224 336 199 298
6304 456 259 390 213 320 189 284
8283 425 241 363 198 298 176 265
10251 378 214 322 176 264 156 235
12222 334 189 284 155 233 138 208
14192 289 163 244 133 200 119 179
16162 244 137 205 112 168 99.8150
18134 201 112 168 91.5 138 81.5123
20109 163 91.1137 74.5 112 66.5 99.9
22 89.9 135 75.5113 61.9 93.0 55.2 83.0
24 75.7 114 63.5 95.5 52.1 78.3 46.6 70.0
26 64.6 97.0 54.2 81.5 44.5 66.9 39.8 59.8
28 55.7 83.7 46.8 70.4
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
16.0 13.9 11.7 10.6
rx, in. 1.86 1.88 1.89 1.90
ry, (in. 1.71 1.68 1.66 1.65
Properties of single angle
rz, in. 0.854 0.856 0.859 0.861
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L6 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 134

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–135
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×4×
1
/2
7 /16
c 3
/8
c 5
/16
c
lb/ft 32.4 28.6 24.6 20.6
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0205 308 175 264 142 213 108 162
4198 298 170 255 138 207 105 158
6190 286 163 245 133 200 102 153
8179 269 154 232 126 189 97.0 146
10166 250 144 216 118 177 91.4 137
12152 228 131 198 109 163 84.9 128
14136 205 118 178 98.7 148 77.9 117
16120 181 105 158 88.3 133 70.5 106
18104 157 91.7 138 77.8 117 62.9 94.6
20 89.2134 78.8 118 67.6 102 55.5 83.4
22 74.7112 66.5 99.9 57.8 86.9 48.2 72.5
24 62.8 94.4 55.8 83.9 48.7 73.2 41.3 62.1
26 53.5 80.4 47.6 71.5 41.5 62.4 35.2 52.9
28 46.1 69.4 41.0 61.7 35.8 53.8 30.4 45.6
30 40.2 60.4 35.7 53.7 31.2 46.9 26.5 39.8
32 31.4 47.2 27.4 41.2 23.2 34.9
0205 308 175 264 142 213 108 162
4173 260 143 215 111 166 78.6 118
6164 247 139 209 108 162 77.0 116
8154 231 132 198 103 155 74.2 112
10137 206 118 177 93.7 141 68.9 104
12121 182 104 156 83.6 126 62.7 94.2
14104 157 89.0 134 72.5 109 55.4 83.3
16 87.7132 74.3 112 61.2 92.0 47.7 71.7
18 71.6108 60.3 90.7 50.3 75.6 40.0 60.1
20 58.5 88.0 49.5 74.4 41.5 62.4 33.3 50.1
22 48.7 73.2 41.3 62.1 34.8 52.3 28.1 42.2
24 41.1 61.8 35.0 52.6 29.5 44.3 24.0 36.0
26 35.1 52.8 30.0 45.0 25.3 38.1 20.7 31.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
9.50 8.36 7.22 6.06
rx, in. 1.91 1.92 1.93 1.94
ry, in. 1.64 1.62 1.61 1.60
Properties of single angle
rz, in. 0.864 0.867 0.870 0.874
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L6 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 135

4–136 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×3
1
/2×
1
/2
3 /8
c 5
/16
c
lb/ft 30.6 23.4 19.6
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD
0 194 292 135 203 103 155
2 192 289 134 202 102 154
4 188 282 131 197 100 151
6 180 271 127 190 96.9 146
8 170 256 120 181 92.5 139
10 158 237 112 169 87.1 131
12 144 217 104 156 81.0 122
14 130 195 94.0 141 74.3 112
16 115 172 84.1 126 67.2 101
18 99.6 150 74.1 111 60.0 90.2
20 85.2 128 64.4 96.8 52.9 79.5
22 71.6 108 55.1 82.8 46.0 69.1
24 60.1 90.4 46.4 69.8 39.4 59.2
28 44.2 66.4 34.1 51.3 29.0 43.5
30 38.5 57.8 29.7 44.7 25.2 37.9
32 33.8 50.8 26.1 39.3 22.2 33.3
0 194 292 135 203 103 155
2 166 250 107 161 76.5 115
4 160 240 105 158 75.2 113
6 150 225 101 152 72.6 109
8 133 200 91.9 138 67.3 101
10 116 175 81.0 122 60.6 91.0
12 98.0 147 68.7 103 52.5 78.9
14 79.8 120 56.3 84.6 43.9 66.0
16 62.8 94.4 44.7 67.2 35.6 53.5
18 50.1 75.3 36.1 54.2 29.0 43.5
20 40.9 61.4 29.6 44.5 24.0 36.0
22 34.0 51.0 24.7 37.2 20.1 30.2
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
9.00 6.88 5.78
rx, in. 1.92 1.93 1.94
ry, in. 1.40 1.38 1.37
Properties of single angle
rz, in. 0.756 0.763 0.767
ASD LRFD
Ωc=1.67φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
No. of
connectors
a
b
2
2L6 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 136

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–137
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L5×3
1
/2×
3
/4
5 /8
1 /2
3 /8
c 5
/16
c
lb/ft 39.6 33.6 27.2 20.8 17.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0252 379 213 319 172 259 129 194 101 151
2249 374 210 316 170 256 128 192 99.6150
4240 360 202 304 164 247 123 185 96.4145
6225 338 190 286 155 232 116 175 91.3137
8206 310 174 262 142 213 107 161 84.7127
10184 276 156 234 127 191 96.3145 76.8115
12160 241 136 204 111 167 84.6127 68.2103
14136 204 115 173 95.1143 72.5109 59.389.1
16112 169 95.7144 79.3119 60.891.450.475.8
1890.6136 77.3116 64.396.749.774.742.063.1
2073.4110 62.694.152.178.340.260.534.251.4
2260.691.151.777.843.164.733.350.028.342.5
2450.976.643.565.436.254.427.942.023.835.7
0252 379 213 319 172 259 129 194 101 151
2241 362 199 300 157 235 108 162 79.1119
4232 348 192 289 151 227 106 159 78.0117
6218 327 180 271 142 213 102 153 75.5113
8195 293 161 242 127 190 92.6139 69.9105
10172 258 141 212 111 167 81.6123 62.594.0
12147 221 120 181 94.8143 69.3104 53.980.9
14122 183 99.6150 78.4118 56.985.644.867.4
1698.6148 79.8120 62.694.145.268.036.154.2
1881.9123 63.395.249.874.936.254.529.143.7
2066.599.951.477.340.560.929.644.523.935.9
2255.082.742.664.033.650.524.637.019.930.0
2446.369.637.556.428.342.520.831.316.925.4
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
11.7 9.86 8.00 6.10 5.12
rx, in. 1.55 1.56 1.58 1.59 1.60
ry, in. 1.53 1.50 1.48 1.46 1.44
Properties of single angle
rz, in. 0.744 0.746 0.750 0.755 0.758
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L5 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 137

4–138 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L5×3×
1
/2
7 /16
3 /8
c 5
/16
c 1
/4
c
lb/ft 25.6 22.6 19.6 16.4 13.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0162 243 143 214 121 182 94.8142 67.2101
2160 240 141 212 120 180 93.8141 66.6100
4154 231 136 204 116 174 90.8136 64.897.4
6145 218 128 193 109 164 86.1129 61.993.0
8133 200 118 177 101 151 79.9120 58.087.1
10119 179 106 159 90.6136 72.6109 53.380.1
12104 157 92.7139 79.7120 64.597.048.172.3
1489.2134 79.3119 68.5103 56.284.442.764.1
1674.3112 66.299.557.586.547.972.037.155.8
1860.390.753.981.047.270.939.960.031.747.6
2048.973.443.765.638.257.432.649.026.639.9
2240.460.736.154.231.647.526.940.522.033.0
2433.951.030.345.626.539.922.634.018.527.7
0162 243 143 214 121 182 94.8142 67.2101
2145 218 124 186 102 153 75.1113 49.374.1
4137 206 118 177 98.5148 73.1110 48.272.4
6125 189 108 162 91.7138 68.9104 46.069.1
8107 161 92.2139 78.6118 60.490.741.462.3
1089.1134 76.8115 65.097.750.876.335.853.9
1271.0107 61.292.051.277.040.861.329.644.5
1454.081.246.670.038.858.431.447.223.435.1
1641.762.636.054.130.245.424.636.918.527.8
1833.149.728.643.024.136.219.729.615.022.5
2026.940.423.335.019.629.516.124.2
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.50 6.62 5.72 4.82 3.88
rx, in. 1.58 1.59 1.60 1.61 1.62
ry, in. 1.24 1.23 1.22 1.21 1.19
Properties of single angle
rz, in. 0.642 0.644 0.646 0.649 0.652
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L5 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 138

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–139
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L4×3
1
/2×
1
/2
3 /8
5 /16
c 1
/4
c
lb/ft 23.8 18.2 15.4 12.4
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0151 227 116 174 96.7 145 71.6 108
2148 222 113 170 94.9 143 70.3 106
4139 209 107 161 89.5 135 66.7 100
6126 189 97.0146 81.3 122 61.2 92.0
8109 165 84.7127 71.0 107 54.2 81.4
10 91.4 137 71.1107 59.6 89.6 46.3 69.6
12 73.3 110 57.5 86.4 48.2 72.4 38.2 57.5
14 56.4 84.8 44.6 67.0 37.4 56.3 30.5 45.8
16 43.2 64.9 34.1 51.3 28.7 43.1 23.6 35.4
18 34.1 51.3 27.0 40.6 22.7 34.0 18.6 28.0
20 27.6 41.5 21.9 32.8 18.3 27.6 15.1 22.7
0151 227 116 174 96.7 145 71.6 108
2143 215 105 158 79.6 120 54.6 82.1
4138 207 102 153 78.8 118 54.2 81.4
6130 196 95.9144 76.7 115 53.1 79.8
8117 176 86.3130 70.9 107 50.2 75.5
10103 156 76.6115 63.2 95.0 45.9 69.1
12 89.2 134 66.1 99.3 54.3 81.6 40.4 60.7
14 74.7 112 55.4 83.2 45.1 67.9 34.2 51.5
16 60.8 91.4 45.1 67.7 36.3 54.6 28.2 42.3
18 51.0 76.7 37.8 56.8 30.5 45.8 23.8 35.7
20 41.4 62.3 30.7 46.2 24.9 37.4 19.5 29.3
22 34.3 51.6 25.5 38.3 20.7 31.1 16.3 24.5
24 28.9 43.4 21.5 32.3 17.5 26.2 13.8 20.7
26 24.6 37.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.00 5.36 4.50 3.64
rx, in. 1.23 1.25 1.25 1.26
ry, in. 1.57 1.55 1.53 1.52
Properties of single angle
rz, in. 0.716 0.719 0.721 0.723
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L4 LLBB
3
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 139

4–140 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L4×3×
5
/8
1 /2
3 /8
5 /16
c 1
/4
c
lb/ft 27.2 22.2 17.0 14.4 11.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0172 259 140 211 107 161 89.8135 66.599.9
2169 253 137 206 105 158 88.2133 65.398.2
4159 239 129 195 99.5149 83.3125 62.093.3
6144 216 117 176 90.4136 75.9114 56.985.6
8125 188 102 154 79.1119 66.6100 50.575.9
10104 157 85.6129 66.6100 56.284.543.365.1
1283.6126 68.9104 54.081.145.868.835.853.9
1464.396.653.280.042.163.335.953.928.743.1
1649.274.040.861.232.248.527.541.322.233.4
1838.958.532.248.425.538.321.732.617.626.4
2031.547.426.139.220.631.017.626.414.221.4
0172 259 140 211 107 161 89.8135 66.599.9
2164 247 131 198 96.5145 75.3113 52.178.2
4157 235 125 188 91.9138 73.8111 51.176.9
6144 217 115 173 84.7127 69.7105 49.073.6
8125 188 99.2149 73.2110 60.891.443.865.9
10106 159 83.7126 61.892.951.176.837.656.5
1286.3130 67.9102 50.175.441.161.730.846.3
1467.9102 52.979.539.058.531.647.524.136.3
1654.982.442.764.131.447.324.536.918.928.4
1843.465.333.850.825.037.519.529.415.122.7
2035.252.927.441.220.330.515.923.912.418.6
2229.143.822.734.1
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.98 6.50 4.98 4.18 3.38
rx, in. 1.23 1.24 1.26 1.27 1.27
ry, in. 1.35 1.32 1.30 1.29 1.27
Properties of single angle
rz, in. 0.631 0.633 0.636 0.638 0.639
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
2L4 LLBB
3
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 140

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–141
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3
1
/2×3×
1
/2
7 /16
3 /8
5 /16
1 /4
c
lb/ft 20.4 18.2 15.8 13.2 10.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0130 196 115 173 100 150 84.1126 65.798.8
2127 191 112 169 97.5147 82.0123 64.296.4
4117 176 104 156 90.3136 75.9114 59.789.7
6103 154 91.1137 79.5119 66.8100 52.979.5
885.2128 75.9114 66.599.955.984.044.667.1
1067.2101 60.190.352.879.444.466.835.954.0
1250.175.345.267.939.960.033.550.427.541.4
1436.855.433.249.929.444.124.737.120.430.6
1628.242.425.438.222.533.818.928.415.623.4
18 20.130.217.826.714.922.412.318.5
0130 196 115 173 100 150 84.1126 65.798.8
2124 187 109 163 92.7139 75.5113 52.879.4
4119 178 104 156 88.5133 72.1108 52.178.3
6110 165 95.9144 81.9123 66.7100 50.175.3
894.9143 83.0125 70.9107 57.987.044.867.3
1080.7121 70.5106 60.390.749.274.038.457.7
1266.299.557.886.849.474.240.360.531.447.2
1454.882.447.771.838.958.531.647.524.637.0
1642.563.937.055.631.647.425.638.520.130.2
1833.750.629.344.025.037.620.430.616.024.1
2027.341.023.835.720.330.616.624.913.119.7
2222.634.019.729.616.825.313.720.610.916.3
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
6.04 5.34 4.64 3.90 3.16
rx, in. 1.07 1.08 1.09 1.09 1.10
ry, in. 1.37 1.36 1.35 1.33 1.32
Properties of single angle
rz, in. 0.618 0.620 0.622 0.624 0.628
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L3
1
/2LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 141

4–142 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3
1
/2×2
1
/2×
1
/2
3 /8
5 /16
1 /4
c
lb/ft 18.8 14.4 12.2 9.80
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 119 179 91.4 137 77.2 116 60.3 90.7
1 119 178 90.8 137 76.7 115 60.0 90.1
2 116 175 89.1 134 75.3 113 58.9 88.6
3 113 169 86.4 130 73.0 110 57.2 86.0
4 108 162 82.7 124 69.9 105 55.0 82.6
5 102 153 78.2 117 66.2 99.5 52.1 78.4
6 94.5 142 72.9 110 61.8 92.9 48.9 73.5
7 86.9 131 67.2 101 57.1 85.8 45.3 68.1
8 78.8 118 61.2 92.0 52.1 78.2 41.5 62.4
9 70.5 106 55.0 82.7 46.9 70.5 37.6 56.5
10 62.3 93.7 48.8 73.4 41.7 62.7 33.7 50.6
11 54.4 81.8 42.8 64.4 36.7 55.1 29.8 44.8
12 46.8 70.4 37.1 55.7 31.8 47.8 26.0 39.2
13 39.9 60.0 31.7 47.6 27.2 40.9 22.5 33.8
14 34.4 51.7 27.3 41.1 23.5 35.3 19.4 29.1
15 30.0 45.1 23.8 35.8 20.5 30.8 16.9 25.4
16 26.3 39.6 20.9 31.4 18.0 27.0 14.8 22.3
17 23.3 35.1 18.5 27.9 15.9 23.9 13.1 19.7
18 20.8 31.3 16.5 24.8 14.2 21.4 11.7 17.6
0 119 179 91.4 137 77.2 116 60.3 90.7
1 114 172 84.8 127 69.1 104 49.5 74.4
2 113 169 83.4 125 67.9 102 49.2 74.0
3 109 164 81.0 122 66.0 99.2 48.6 73.1
4 105 158 77.8 117 63.5 95.4 47.6 71.6
5 99.8 150 73.9 111 60.3 90.6 46.0 69.1
6 91.3 137 67.7 102 55.2 83.0 42.8 64.3
7 83.9 126 62.2 93.4 50.8 76.3 39.5 59.3
8 76.1 114 56.4 84.7 46.0 69.1 35.8 53.8
9 68.1 102 50.4 75.7 41.1 61.7 32.0 48.0
10 60.1 90.4 44.4 66.8 36.2 54.3 28.1 42.2
11 52.4 78.7 38.6 58.0 31.4 47.1 24.3 36.6
12 47.2 70.9 33.0 49.6 26.8 40.2 20.8 31.2
13 40.3 60.6 29.6 44.5 22.9 34.4 17.9 26.8
14 34.8 52.4 25.6 38.5 19.8 29.8 15.5 23.3
15 30.4 45.7 22.4 33.6 18.1 27.3 13.6 20.4
16 26.7 40.2 19.7 29.6 16.0 24.0 12.0 18.1
17 23.7 35.6 17.5 26.3 14.2 21.3 10.7 16.1
18 21.2 31.8 15.6 23.4 12.7 19.1 9.56 14.4
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
5.54 4.24 3.58 2.90
rx, in. 1.08 1.10 1.11 1.12
ry, in. 1.13 1.11 1.09 1.08
Properties of single angle
rz, in. 0.532 0.535 0.538 0.541
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
No. of
connectors
a
b
2
3
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
2L3
1
/2LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 142

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–143
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3×2
1
/2×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c
lb/ft 17.0 15.2 13.2 11.2 9.00 6.78
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010816295.714483.212570.310656.985.539.359.1
110716194.914382.512469.710556.484.839.058.6
210415692.313980.312167.910255.082.738.157.3
399.314988.313376.811565.097.652.779.236.755.1
493.114082.912572.210961.191.949.674.634.852.2
585.712976.411566.610056.584.945.969.032.448.7
677.511769.210460.490.851.377.141.862.829.844.8
768.810361.592.553.980.945.868.937.456.226.940.5
860.090.253.880.847.170.840.260.432.949.424.036.1
951.377.246.169.340.560.934.752.128.442.721.131.7
1043.264.938.958.434.251.529.444.124.136.318.227.3
1135.753.732.248.428.442.724.436.720.130.215.523.3
1230.045.127.140.723.935.920.530.916.925.413.019.5
1325.638.423.134.720.430.617.526.314.421.711.116.7
1422.133.119.929.917.626.415.122.712.418.79.5514.4
1519.228.917.326.015.323.013.119.710.816.38.3212.5
010816295.714483.212570.310656.985.539.359.1
110515892.313979.311965.498.350.676.030.445.6
210315590.813778.011764.496.849.874.830.245.5
310015188.413375.911462.794.248.572.930.045.1
496.814585.112873.011060.390.746.770.329.644.5
592.313981.012269.510457.486.344.667.029.043.5
687.013174.211163.695.752.779.241.061.627.541.4
779.411968.410358.688.248.673.037.856.825.938.9
872.810962.293.553.380.244.266.434.451.723.935.9
966.099.255.984.047.972.039.759.630.946.421.632.5
1059.188.849.674.542.463.835.152.827.441.119.329.0
1152.378.643.465.237.155.830.746.223.935.917.025.5
1245.768.739.459.233.650.627.841.821.532.414.722.1
1339.459.333.950.928.943.423.835.818.527.813.320.0
1434.051.229.243.924.937.520.631.016.024.111.6
1529.744.625.538.321.832.718.027.114.021.010.215.3
1626.139.222.433.719.128.815.823.812.318.59.0013.5
1723.134.819.929.917.025.514.121.111.016.58.0112.0
1820.731.017.726.715.222.812.618.99.7914.77.1810.8
1918.527.915.924.013.620.511.317.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
5.00 4.44 3.86 3.26 2.64 2.00
rx, in. 0.910 0.917 0.924 0.932 0.940 0.947
ry, in. 1.18 1.16 1.15 1.14 1.12 1.11
Properties of single angle
rz, in. 0.516 0.516 0.517 0.518 0.520 0.521
ASD LRFD
Ωc=1.67φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L3 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 143

4–144 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3×2×
1
/2
3 /8
5 /16
1 /4
3 /16
c
lb/ft 15.4 11.8 10.0 8.20 6.14
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
097.4146 75.4113 63.895.951.777.836.054.1
196.6145 74.8112 63.395.151.377.135.753.7
294.0141 72.9110 61.792.750.075.234.952.5
389.9135 69.8105 59.188.848.072.133.650.6
484.5127 65.798.855.783.745.368.031.948.0
578.0117 60.891.451.677.642.063.129.844.8
670.7106 55.383.147.070.738.357.627.541.3
762.994.649.474.342.163.334.451.724.937.5
855.182.843.465.337.155.730.345.622.333.5
947.371.137.556.332.148.226.339.519.629.5
1039.960.031.847.827.341.022.533.717.025.6
1133.149.826.539.822.834.318.828.314.521.9
1227.941.922.333.519.228.815.823.712.318.4
1323.735.719.028.516.324.513.520.210.415.7
1420.530.816.424.614.121.211.617.49.0013.5
1517.826.814.321.412.318.410.115.27.8411.8
16 6.8910.4
097.4146 75.4113 63.895.951.777.836.054.1
194.0141 71.1107 58.688.145.368.028.643.0
291.7138 69.3104 57.185.844.166.328.342.6
388.0132 66.499.754.782.242.363.627.841.7
483.0125 62.493.851.477.339.959.926.840.3
574.8112 56.184.446.369.536.054.124.837.2
667.3101 50.375.741.562.332.348.522.533.8
759.589.444.266.536.454.728.442.619.929.9
851.577.438.157.231.347.024.436.617.225.8
943.765.732.148.226.339.520.530.814.521.8
1038.357.627.841.822.734.117.626.512.018.1
1131.747.723.034.618.828.314.722.010.115.2
1226.740.119.429.215.923.912.418.68.5712.9
1322.834.216.624.913.620.410.615.97.3611.1
1419.729.514.321.511.717.69.1713.86.399.60
1517.125.812.518.8
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
4.52 3.50 2.96 2.40 1.83
rx, in. 0.922 0.937 0.945 0.953 0.961
ry, in. 0.940 0.911 0.897 0.883 0.869
Properties of single angle
rz, in. 0.425 0.426 0.428 0.431 0.435
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y AxisX-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L3 LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 144

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–145
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L2
1
/2×2×
3
/8
5 /16
1 /4
3 /16
c
lb/ft 10.6 9.00 7.24 5.50
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 66.8 100 56.9 85.5 46.1 69.3 34.8 52.2
1 66.0 99.2 56.2 84.5 45.6 68.5 34.3 51.6
2 63.5 95.4 54.1 81.3 43.9 66.0 33.1 49.8
3 59.5 89.4 50.8 76.3 41.3 62.0 31.2 46.9
4 54.3 81.7 46.5 69.9 37.8 56.9 28.7 43.1
5 48.4 72.7 41.5 62.3 33.8 50.9 25.8 38.8
6 42.0 63.1 36.1 54.2 29.5 44.4 22.6 34.0
7 35.5 53.3 30.6 46.0 25.1 37.8 19.4 29.1
8 29.2 43.9 25.3 38.1 20.9 31.4 16.2 24.3
9 23.4 35.2 20.4 30.6 16.9 25.3 13.2 19.8
10 19.0 28.5 16.5 24.8 13.7 20.5 10.7 16.1
11 15.7 23.6 13.6 20.5 11.3 17.0 8.83 13.3
12 13.2 19.8 11.5 17.2 9.49 14.3 7.42 11.2
13 8.08 12.1 6.32 9.50
0 66.8 100 56.9 85.5 46.1 69.3 34.8 52.2
1 64.4 96.7 54.0 81.1 42.4 63.8 28.4 42.7
2 62.8 94.4 52.7 79.2 41.4 62.3 28.2 42.3
3 60.4 90.7 50.6 76.0 39.8 59.8 27.7 41.7
4 57.0 85.7 47.8 71.8 37.6 56.5 26.9 40.4
5 53.1 79.7 43.1 64.8 34.0 51.1 24.8 37.3
6 47.4 71.3 38.9 58.5 30.7 46.1 22.6 33.9
7 42.3 63.6 34.4 51.7 27.1 40.8 20.0 30.0
8 37.1 55.7 29.9 44.9 23.5 35.4 17.3 25.9
9 31.9 48.0 25.4 38.2 20.0 30.1 14.6 21.9
10 27.0 40.6 22.3 33.5 17.5 26.3 12.7 19.0
11 22.4 33.7 18.5 27.8 14.5 21.8 10.6 15.9
12 18.9 28.4 15.6 23.4 12.3 18.4 8.97 13.5
13 16.1 24.2 13.3 20.0 10.5 15.7 7.68 11.5
14 13.9 20.9 11.5 17.3 9.05 13.6 6.66 10.0
15 12.1 18.2 10.0 15.1 7.89 11.9 5.82 8.75
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
3.10 2.64 2.14 1.64
rx, in. 0.766 0.774 0.782 0.790
ry, in. 0.957 0.943 0.930 0.916
Properties of single angle
rz, in. 0.419 0.420 0.423 0.426
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-9 (continued)
Available Strength in
Axial Compression, kips
Double Angles—LLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
2
3
2L2
1
/2LLBB
AISC_Part 4C:14th Ed. 2/23/11 10:38 AM Page 145

4–146 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L8×6×
1
7
/8
3 /4
5 /8
9 /16
c 1
/2
c 7
/16
c
lb/ft 88.4 78.2 67.6 57.0 51.4 46.0 40.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0565849496745431648361543314472267402220330
4542815476716414623347522303455258388213320
6515774453681394593331498289435247372205308
8479720422635368553309465271408233350194291
10437657386580337506284426250375215324180271
12391587346520302454255383226339196295165248
14342514304456265399225338200301175263149224
16293441261393229344195293175262154231132199
18246370220331193291165248149225133200115174
2020230418227316024013720612618911317099.2149
2216725115022613219911417110415694.014183.8126
2414021112619011116795.414387.313179.011970.5106
2612018010816294.614281.312274.411267.310160.090.2
2810315592.713981.512370.110564.196.458.087.251.877.8
30 45.167.8
0565849496745431648361543314472267402220330
4552829481723414622300451253380206310160241
6546821476716410616300451252379206310160241
8538809469705404607300450252379206309160241
10528793461692396595299449251378205309160240
12516775450676387582298447251377205308159240
16486731424638365548292439247371203304158238
20438659382574329494272408234352195293154232
24394593344517296445246369214322182273147221
28348523303456261392217326191286164246135203
32301453262394225339187281166249144216120181
36256385223335191287158238141212123185105157
4022233419329016524813620512218310415689.3134
4418427616024013720511317010115289.713577.6117
4815523213420211517395.114385.512875.711465.798.7
5213219811517298.114781.212273.011064.797.356.384.6
5611417198.814884.612770.110563.194.856.084.148.773.2
6099.114986.112973.811161.291.955.082.748.973.442.563.9
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
26.2 23.0 20.0 16.8 15.2 13.6 12.0
rx, in. 1.72 1.74 1.75 1.77 1.78 1.79 1.80
ry, in. 3.77 3.75 3.72 3.70 3.69 3.68 3.66
Properties of single angle
rz, in. 1.28 1.28 1.29 1.29 1.30 1.30 1.31
ASD LRFD
Ωc=1.67φc=0.90
Table 4-10
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
4
2L8 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 146

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–147
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L8×4×
1
7
/8
3 /4
5 /8
9 /16
c 1
/2
c 7
/16
c
lb/ft 74.8 66.2 57.4 48.4 43.8 39.2 34.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0479719423635366551307462269404228343187281
4427642378568328493276415243365207312171258
6370556328493286430241363214321184277154231
8303455270405236355200300179269156235132199
10234352210315184277157236142214126189109163
1217125715423113620411617510816297.114685.6129
1412518911317099.815085.612979.311972.110864.597.0
1696.014486.413076.411565.598.560.791.255.282.949.474.3
18 43.665.539.058.7
0479719423635366551307462269404228343187281
4474712417627361542258388218328178268139209
6469705413621358537258387218328178268139209
8463696408614353531258387218328178268139209
10456685402604347522258387218328178268139209
12447672394592340511257387218328178268139209
16425638374562323485256385217327178267139208
20389585343515296445245369215323176265138207
24356535313471270406225339198298168253135203
28320481282423243365202304179269154231127192
32283426249374214322179268159239137206115174
36247371217325186280155233138208120181102154
4021131818527915923913219911917910415689.3134
4418227416024013720511116610015088.313376.8115
4815323013420211517293.014084.112674.311264.997.6
5213119611417297.814779.211971.710863.495.355.483.3
5611316998.614884.412768.410361.993.054.782.247.871.9
6098.114785.912973.511061.091.753.981.047.771.741.762.7
6486.313075.511364.697.153.680.647.471.341.963.036.755.1
6876.4115
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
22.2 19.6 17.0 14.3 13.0 11.6 10.2
rx, in. 1.03 1.04 1.05 1.06 1.07 1.08 1.09
ry, in. 4.08 4.06 4.03 4.00 3.99 3.97 3.96
Properties of single angle
rz, in. 0.844 0.846 0.850 0.856 0.859 0.863 0.867
ASD LRFD
Ωc=1.67φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
6
7
2L8 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 147

4–148 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L7×4×
3
/4
5 /8
1 /2
c 7
/16
c 3
/8
c
lb/ft 52.4 44.2 35.8 31.4 27.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0334 502 280 421 218 328 182 274 145 218
4301 453 254 381 199 299 167 251 134 201
6264 397 224 336 176 265 149 224 121 181
8220 331 188 282 149 225 128 192 105 157
10174 262 150 225 121 181 105 158 87.2131
12131 197 114 171 92.9140 82.3124 69.7105
1496.3145 83.8126 68.9104 61.993.053.480.3
1673.7111 64.196.452.779.347.471.240.961.5
1858.287.550.776.241.762.637.456.232.348.6
0334 502 280 421 218 328 182 274 145 218
4328 493 273 411 179 269 142 214 107 161
6324 487 270 406 179 269 142 214 107 161
8318 479 265 399 179 268 142 214 107 160
10311 468 260 390 178 268 142 214 107 160
12303 455 253 380 178 267 142 213 106 160
16283 425 236 354 176 264 141 212 106 159
20251 378 209 315 163 245 135 203 104 156
24222 334 185 278 145 218 122 184 97.9147
28192 289 160 241 126 189 107 161 87.7132
32163 245 135 204 107 161 92.0138 76.2115
36145 203 112 168 88.6133 77.1116 64.797.3
40113 169 93.4140 72.2108 63.294.953.880.8
4493.1140 77.3116 59.789.852.378.644.667.0
4878.3118 65.097.650.275.544.066.237.656.4
5266.7100 55.483.242.864.437.656.432.148.2
5657.586.547.871.837.055.532.448.727.741.6
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
15.5 13.0 10.5 9.26 8.00
rx, in. 1.08 1.10 1.11 1.12 1.12
ry, in. 3.48 3.46 3.43 3.42 3.40
Properties of single angle
rz, in. 0.855 0.860 0.866 0.869 0.873
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
5
2L7 SLBB
6
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 148

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–149
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×4×
7
/8
3 /4
5 /8
9 /16
lb/ft 54.4 47.2 40.0 36.2
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0345 518 300 450 252 379 229 343
4312 469 272 409 229 345 208 313
6275 414 241 362 204 306 185 278
8231 347 204 306 172 259 157 236
10184 277 164 246 139 209 128 192
12140 210 126 189 107 161 98.6148
14103 155 92.9140 79.6120 73.4110
16 78.9119 71.1107 60.9 91.6 56.2 84.4
18 62.4 93.7 56.2 84.4 48.1 72.3 44.4 66.7
0345 518 300 450 252 379 229 343
4338 508 293 440 245 368 221 331
6332 499 288 432 240 361 217 326
8324 487 281 422 235 353 211 318
10314 473 272 409 227 342 205 308
12303 455 262 394 219 329 197 296
16268 402 231 348 193 290 174 262
20233 350 201 302 168 252 151 227
24197 296 169 255 141 212 127 191
28161 242 138 208 115 172 103 155
32132 198 113 170 93.1140 83.7126
36104 156 89.2134 73.6111 66.2 99.5
40 84.3127 72.3109 59.7 89.7 53.7 80.7
44 69.7105 59.8 89.8 49.3 74.2 44.4 66.7
48 58.6 88.0 50.2 75.5 41.5 62.3 37.3 56.1
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
16.0 13.9 11.7 10.6
rx, in. 1.10 1.12 1.13 1.14
ry, in. 2.96 2.94 2.91 2.90
Properties of single angle
rz, in. 0.854 0.856 0.859 0.861
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
5
2L6 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 149

4–150 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×4×
1
/2
7 /16
c 3
/8
c 5
/16
c
lb/ft 32.4 28.6 24.6 20.6
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0205 308 175 264 142 213 108 162
4187 280 160 241 131 197 100 151
6166 249 143 216 118 177 91.5 138
8141 212 123 184 102 154 80.5 121
10114 172 100 151 84.9 128 68.3 103
12 88.4133 78.5118 67.7 102 55.8 83.9
14 65.7 98.8 58.9 88.5 51.7 77.8 44.0 66.2
16 50.3 75.7 45.1 67.8 39.6 59.5 33.8 50.8
18 39.8 59.8 35.6 53.5 31.3 47.0 26.7 40.2
0205 308 175 264 142 213 108 162
4196 295 143 215 110 166 77.9 117
6193 289 143 215 110 165 77.8 117
8188 283 143 215 110 165 77.7 117
10182 274 142 214 109 165 77.5 116
12175 263 141 212 109 164 77.2 116
16155 233 132 198 105 157 75.7 114
20134 202 116 174 94.4 142 71.4 107
24113 170 97.7147 80.8 121 63.3 95.1
28 91.8138 79.7120 66.7 100 53.5 80.4
32 72.2108 62.8 94.4 53.3 80.1 43.8 65.9
36 57.1 85.9 49.8 74.8 42.3 63.6 35.0 52.7
40 47.8 71.8 40.4 60.8 34.4 51.7 28.5 42.9
44 39.5 59.4 33.5 50.3 28.5 42.8 23.7 35.6
48 33.2 50.0 28.1 42.3
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
9.50 8.36 7.22 6.06
rx, in. 1.14 1.15 1.16 1.17
ry, in. 2.89 2.88 2.86 2.85
Properties of single angle
rz, in. 0.864 0.867 0.870 0.874
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
5
2L6 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 150

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–151
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L6×3
1
/2×
1
/2
3 /8
c 5
/16
c
lb/ft 30.6 23.4 19.6
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD
0 194 292 135 203 103 155
1 192 289 134 202 102 154
2 188 282 131 198 100 151
3 180 271 127 191 97.2 146
4 170 256 121 181 92.9 140
5 158 238 113 170 87.8 132
6 145 218 105 157 81.8 123
7 131 196 95.3 143 75.3 113
8 116 174 85.6 129 68.4 103
9 101 151 75.9 114 61.4 92.3
10 86.4 130 66.2 99.5 54.4 81.8
11 72.7 109 57.0 85.7 47.6 71.5
12 61.1 91.9 48.3 72.6 41.1 61.8
13 52.1 78.3 41.1 61.8 35.1 52.7
14 44.9 67.5 35.5 53.3 30.2 45.4
15 39.1 58.8 30.9 46.4 26.3 39.6
16 34.4 51.7 27.2 40.8 23.1 34.8
0 194 292 135 203 103 155
6 185 278 105 158 74.7 112
8 180 271 105 158 74.6 112
10 175 263 105 158 74.5 112
12 169 253 105 157 74.3 112
14 161 242 104 156 74.1 111
16 150 225 102 153 73.4 110
18 141 211 98.1 148 72.3 109
20 131 197 92.8 139 70.2 106
22 121 182 86.6 130 66.8 100
24 111 166 80.1 120 62.7 94.2
26 101 151 73.4 110 58.1 87.4
28 91.0 137 66.8 100 53.4 80.3
30 81.5 122 60.4 90.8 48.8 73.3
32 72.3 109 54.2 81.4 44.2 66.4
34 64.1 96.3 48.1 72.4 39.7 59.7
38 51.3 77.1 38.6 58.1 31.9 48.0
42 42.0 63.2 31.7 47.6 26.2 39.4
46 35.1 52.7 26.5 39.8 21.9 32.9
48 32.2 48.4 24.3 36.5 20.1 30.3
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
9.00 6.88 5.78
rx, in. 0.968 0.984 0.991
ry, in. 2.96 2.94 2.92
Properties of single angle
rz, in. 0.756 0.763 0.767
ASD LRFD
Ωc=1.67φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
No. of
connectors
a
b
5
2L6 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 151

4–152 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L5×3
1
/2×
3
/4
5 /8
1 /2
3 /8
c 5
/16
c
lb/ft 39.6 33.6 27.2 20.8 17.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0252 379 213 319 172 259 129 194 101 151
1250 376 211 317 171 257 128 193 100 150
2244 367 206 310 167 251 126 189 98.0147
3235 353 198 298 161 242 121 182 94.8143
4222 334 188 282 153 230 115 173 90.5136
5207 310 175 263 143 214 108 162 85.3128
6189 284 161 241 131 197 99.9150 79.2119
7170 256 145 218 119 179 91.0137 72.7109
8151 227 129 194 106 160 81.7123 65.898.9
9132 198 113 170 93.3140 72.4109 58.888.3
10113 170 97.6147 80.8121 63.294.951.877.8
1195.7144 82.9125 68.9104 54.381.745.067.7
1280.5121 69.6105 58.087.246.069.138.658.0
1368.6103 59.389.249.474.339.258.932.949.4
1459.188.851.276.942.664.033.850.828.442.6
1551.577.444.667.037.155.829.444.324.737.1
1645.368.039.258.932.649.025.938.921.732.6
17 22.934.519.228.9
0252 379 213 319 172 259 129 194 101 151
6239 360 201 302 161 243 106 159 77.7117
8231 348 194 292 156 234 106 159 77.4116
10221 333 185 279 149 224 104 157 76.9116
12210 315 176 264 141 212 102 153 75.9114
14191 288 160 241 128 193 94.8142 72.8109
16176 265 147 222 118 177 87.5132 68.4103
18161 241 134 202 107 161 79.6120 63.194.8
20145 217 121 181 96.4145 71.5108 57.286.0
22129 194 107 161 85.6129 63.595.451.377.1
24114 171 94.5142 75.1113 55.783.745.468.3
2699.0149 82.2123 65.197.848.272.439.859.8
2885.4128 70.9107 56.284.441.662.634.551.8
3074.4112 61.892.849.073.636.354.630.145.3
3265.498.354.381.643.164.732.048.126.539.9
3458.087.148.172.338.257.428.442.623.535.4
3846.469.838.557.930.646.022.734.218.928.4
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
11.7 9.86 8.00 6.10 5.12
rx, in. 0.974 0.987 1.00 1.02 1.02
ry, in. 2.47 2.45 2.42 2.39 2.38
Properties of single angle
rz, in. 0.744 0.746 0.750 0.755 0.758
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
2L5 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 152

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–153
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L5×3×
1
/2
7 /16
3 /8
c 5
/16
c 1
/4
c
lb/ft 25.6 22.6 19.6 16.4 13.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0162 243 143 214 121 182 94.8142 67.2101
1160 240 141 212 120 180 93.8141 66.7100
2155 232 137 205 116 175 91.2137 65.097.7
3146 220 129 194 110 166 86.9131 62.493.7
4135 203 120 180 102 154 81.2122 58.888.4
5122 184 108 163 93.0140 74.4112 54.582.0
6108 163 96.1144 82.7124 66.9101 49.774.8
793.6141 83.3125 72.1108 59.088.744.667.0
879.1119 70.7106 61.592.451.176.839.359.1
965.498.458.788.251.377.143.365.134.151.3
1053.279.947.771.741.963.036.054.129.143.7
1143.966.039.459.334.752.129.844.724.436.6
1236.955.533.149.829.143.825.037.620.530.8
1331.547.328.242.424.837.321.332.017.426.2
14 18.427.615.022.6
0162 243 143 214 121 182 94.8142 67.2101
6153 230 134 202 100 150 73.7111 48.172.3
8148 222 130 195 99.8150 73.5111 48.072.2
10142 213 124 187 99.2149 73.3110 47.972.0
12134 202 118 177 97.4146 72.7109 47.671.5
14123 185 108 162 91.3137 70.5106 47.170.7
16114 171 99.6150 84.7127 66.7100 45.969.0
18104 156 90.9137 77.5116 61.792.843.865.8
2094.0141 82.1123 70.0105 56.384.740.761.1
2284.0126 73.3110 62.694.150.876.337.255.8
2474.3112 64.897.455.383.245.368.133.550.4
2665.197.856.685.148.472.740.060.129.944.9
2856.384.648.973.541.862.934.952.427.341.1
3049.073.742.664.136.554.930.445.724.036.0
3243.164.837.556.432.148.326.840.321.131.8
3438.257.433.249.928.542.823.835.718.828.2
3830.646.026.640.022.834.319.128.615.122.6
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.50 6.62 5.72 4.82 3.88
rx, in. 0.824 0.831 0.838 0.846 0.853
ry, in. 2.50 2.48 2.47 2.46 2.44
Properties of single angle
rz, in. 0.642 0.644 0.646 0.649 0.652
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
5
2L5 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 153

4–154 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L4×3
1
/2×
1
/2
3 /8
5 /16
1 /4
c
lb/ft 23.8 18.2 15.4 12.4
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0151 227 116 174 96.7 145 71.6 108
1150 225 115 172 96.1 144 71.1 107
2147 221 112 169 94.1 142 69.9 105
3142 213 109 163 91.0 137 67.8 102
4135 203 104 156 86.8 131 65.0 97.7
5127 190 97.3 146 81.7 123 61.5 92.5
6117 176 90.2 136 75.9 114 57.6 86.5
7107 161 82.5 124 69.6 105 53.2 80.0
8 96.4145 74.4 112 62.9 94.5 48.6 73.1
9 85.5129 66.2 99.5 56.1 84.3 43.9 65.9
10 74.9113 58.1 87.3 49.4 74.2 39.1 58.8
11 64.6 97.1 50.3 75.6 42.9 64.4 34.5 51.8
12 54.9 82.5 42.8 64.4 36.7 55.1 30.0 45.1
13 46.8 70.3 36.5 54.9 31.2 46.9 25.7 38.7
14 40.3 60.6 31.5 47.3 26.9 40.5 22.2 33.4
15 35.1 52.8 27.4 41.2 23.5 35.3 19.3 29.1
16 30.9 46.4 24.1 36.2 20.6 31.0 17.0 25.5
17 27.3 41.1 21.3 32.1 18.3 27.4 15.1 22.6
0151 227 116 174 96.7 145 71.6 108
6137 205 102 153 78.3 118 53.6 80.6
8129 194 96.2 145 76.7 115 52.9 79.5
10117 176 87.4 131 71.8 108 50.9 76.5
12106 159 78.9 119 65.4 98.3 47.6 71.5
14 93.8141 69.9 105 58.0 87.1 43.1 64.7
16 81.6123 60.7 91.3 50.3 75.6 38.0 57.0
18 69.7105 51.7 77.7 42.7 64.2 32.7 49.2
20 58.3 87.7 43.1 64.8 35.4 53.3 27.6 41.5
22 48.3 72.6 35.7 53.7 29.5 44.3 23.0 34.6
24 40.6 61.1 30.1 45.2 24.8 37.3 19.5 29.3
26 34.6 52.1 25.7 38.6 21.2 31.9 16.7 25.1
28 29.9 44.9 22.2 33.3 18.4 27.6 14.4 21.7
30 26.1 39.2 19.3 29.1 16.0 24.1 12.6 19.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.00 5.36 4.50 3.64
rx, in. 1.04 1.05 1.06 1.07
ry, in. 1.89 1.86 1.85 1.83
Properties of single angle
rz, in. 0.716 0.719 0.721 0.723
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
No. of
connectors
a
b
3
2L4 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 154

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–155
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L4×3×
5
/8
1 /2
3 /8
5 /16
1 /4
c
lb/ft 27.2 22.2 17.0 14.4 11.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0172 259 140 211 107 161 89.8135 66.599.9
1170 256 139 208 106 160 89.0134 65.999.0
2165 248 134 202 103 155 86.4130 64.296.4
3156 235 128 192 98.2148 82.3124 61.492.3
4145 218 119 179 91.6138 76.8116 57.786.8
5132 198 108 163 83.7126 70.4106 53.380.2
6117 176 96.7145 75.0113 63.295.048.472.8
7102 154 84.6127 65.999.155.783.743.264.9
887.2131 72.5109 56.885.448.172.337.956.9
972.8109 60.891.548.072.140.761.232.649.0
1059.589.449.975.139.659.533.850.827.641.5
1149.273.941.362.032.749.227.942.022.934.5
1241.362.134.752.127.541.323.535.319.329.0
1335.252.929.644.423.435.220.030.016.424.7
1430.345.625.538.320.230.417.225.914.221.3
0172 259 140 211 107 161 89.8135 66.599.9
6159 239 129 193 97.0146 74.1111 51.176.8
8151 227 122 183 91.8138 73.0110 50.776.1
10141 212 113 171 85.5129 68.4103 49.073.7
12126 189 101 152 76.4115 62.393.746.069.1
14113 170 90.5136 68.2103 55.483.241.762.6
1699.4149 79.5120 59.990.048.272.436.855.3
1886.1129 68.6103 51.677.541.161.731.947.9
2073.3110 58.287.543.765.635.853.827.140.7
2261.392.148.572.836.354.629.744.723.635.5
2451.577.440.861.330.645.925.137.719.929.9
2643.966.034.752.226.139.221.432.217.025.6
2837.956.930.045.122.533.818.527.814.722.1
3033.049.626.139.319.629.516.124.212.919.3
3229.043.623.034.517.225.9
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
7.98 6.50 4.98 4.18 3.38
rx, in. 0.845 0.858 0.873 0.880 0.887
ry, in. 1.98 1.95 1.93 1.91 1.90
Properties of single angle
rz, in. 0.631 0.633 0.636 0.638 0.639
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
4
2L4 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:39 AM Page 155

4–156 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3
1
/2×3×
1
/2
7 /16
3 /8
5 /16
1 /4
c
lb/ft 20.4 18.2 15.8 13.2 10.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0130 196 115 173 100 150 84.1126 65.798.8
1129 194 114 171 99.1149 83.3125 65.297.9
2125 188 111 166 96.3145 81.0122 63.495.4
3119 179 106 159 91.8138 77.3116 60.791.2
4111 167 98.6148 85.9129 72.4109 57.085.7
5102 153 90.4136 78.8118 66.5100 52.779.1
691.3137 81.2122 71.0107 60.090.247.871.8
780.3121 71.6108 62.794.353.179.942.664.0
869.3104 62.093.154.481.746.269.437.356.0
958.688.152.679.046.269.539.459.232.048.2
1048.572.943.765.638.557.933.049.627.140.7
1140.160.236.154.231.847.927.341.022.533.8
1233.750.630.345.626.840.222.934.418.928.4
1328.743.125.838.822.834.319.529.316.124.2
1424.737.222.333.519.729.616.825.313.920.9
15 14.722.012.118.2
0130 196 115 173 100 150 84.1126 65.798.8
6117 175 102 154 87.9132 72.6109 51.777.7
8108 163 95.0143 81.6123 67.5101 50.275.5
1095.7144 83.7126 72.0108 59.689.545.969.1
1284.1126 73.4110 63.194.952.378.640.761.2
1472.2109 62.994.554.081.244.867.335.052.5
1660.591.052.679.045.167.837.456.229.243.9
1849.574.442.864.336.755.130.445.623.835.7
2041.762.636.054.129.844.724.737.119.429.1
2234.551.829.844.824.637.020.430.716.124.2
2429.043.625.137.720.731.217.225.913.620.4
2624.737.121.432.117.726.614.722.111.617.4
2821.332.0
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
6.04 5.34 4.64 3.90 3.16
rx, in. 0.877 0.885 0.892 0.900 0.908
ry, in. 1.69 1.67 1.66 1.65 1.63
Properties of single angle
rz, in. 0.618 0.620 0.622 0.624 0.628
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
2L3
1
/2SLBB
4
AISC_Part 4C:14th Ed. 2/23/11 10:40 AM Page 156

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–157
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3
1
/2×2
1
/2×
1
/2
3 /8
5 /16
1 /4
c
lb/ft 18.8 14.4 12.2 9.80
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0119 179 91.4 137 77.2 116 60.3 90.7
1118 177 90.1 135 76.1 114 59.5 89.4
2112 169 86.2 129 72.8 109 57.1 85.8
3104 156 80.0 120 67.7 102 53.3 80.2
4 93.3140 72.1 108 61.2 92.0 48.5 72.8
5 81.2122 63.2 94.9 53.7 80.7 42.8 64.4
6 68.5103 53.7 80.7 45.8 68.8 36.9 55.4
7 56.1 84.3 44.3 66.6 37.9 57.0 30.8 46.4
8 44.4 66.7 35.5 53.3 30.5 45.8 25.1 37.8
9 35.1 52.7 28.0 42.1 24.1 36.2 20.0 30.0
10 28.4 42.7 22.7 34.1 19.5 29.4 16.2 24.3
11 23.5 35.3 18.8 28.2 16.1 24.3 13.4 20.1
12 13.6 20.4 11.2 16.9
0119 179 91.4 137 77.2 116 60.3 90.7
2117 176 88.8 134 74.1 111 48.6 73.0
4114 171 86.2 130 72.0 108 48.5 72.9
6108 163 82.1 123 68.5 103 48.2 72.4
8101 152 76.5 115 63.9 96.1 47.3 71.1
10 90.4136 68.2 102 57.0 85.7 44.0 66.1
12 80.3121 60.4 90.8 50.5 75.9 39.4 59.2
14 69.8105 52.3 78.6 43.7 65.7 34.2 51.5
16 59.3 89.2 44.3 66.6 37.0 55.6 29.0 43.7
18 49.4 74.2 36.7 55.1 30.6 46.0 24.1 36.2
20 40.3 60.5 29.8 44.8 24.9 37.4 19.6 29.5
22 33.3 50.0 24.7 37.1 20.6 31.0 16.3 24.4
24 28.0 42.0 20.7 31.2 17.3 26.0 13.7 20.6
26 23.8 35.8 17.7 26.6 14.8 22.2 11.7 17.6
28 20.6 30.9 15.3 22.9 12.7 19.2 10.1 15.2
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
5.54 4.24 3.58 2.90
rx, in. 0.701 0.716 0.723 0.731
ry, in. 1.76 1.73 1.72 1.70
Properties of single angle
rz, in. 0.532 0.535 0.538 0.541
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
2L3
1
/2SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:40 AM Page 157

4–158 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3×2
1
/2×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c
lb/ft 17.0 15.2 13.2 11.2 9.00 6.78
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010816295.714483.212570.310656.985.539.359.1
110616094.314282.012369.310456.184.438.858.4
210215390.313678.611866.599.953.981.037.456.3
394.414284.012673.211062.093.250.375.735.253.0
485.212875.911466.399.756.384.645.868.832.448.6
574.611266.710058.487.749.774.740.560.829.043.6
663.595.456.985.549.975.042.664.134.952.425.338.1
752.478.847.170.841.562.435.653.529.243.921.632.5
842.063.237.957.033.650.428.943.423.835.818.027.1
933.249.930.045.126.639.922.934.518.928.514.622.0
1026.940.424.336.521.532.418.627.915.323.011.817.8
1122.233.420.130.217.826.715.423.112.719.09.7814.7
12 16.925.415.022.512.919.410.616.08.2212.4
010816295.714483.212570.310656.985.539.359.1
210515893.114080.412167.110152.979.529.944.9
410115289.413477.111664.396.750.876.429.744.7
694.514283.512571.910860.090.247.571.429.344.1
883.512673.711163.495.353.079.642.063.127.942.0
1072.810964.296.555.182.746.069.136.554.925.237.9
1261.592.454.181.346.369.638.658.030.746.221.632.5
1450.475.744.266.537.756.631.447.225.037.517.926.8
1641.662.636.554.830.946.425.738.620.430.614.221.4
1832.949.528.843.324.436.720.330.516.224.311.817.7
2026.740.123.435.119.829.816.524.813.119.79.5914.4
2222.133.119.329.116.424.613.620.510.916.37.9612.0
2418.527.916.224.413.820.711.517.29.1513.8
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
5.00 4.44 3.86 3.26 2.64 2.00
rx, in. 0.718 0.724 0.731 0.739 0.746 0.753
ry, in. 1.49 1.48 1.46 1.45 1.44 1.42
Properties of single angle
rz, in. 0.516 0.516 0.517 0.518 0.520 0.521
ASD LRFD
Ωc=1.67φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
4
2L3 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:40 AM Page 158

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–159
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L3×2×
1
/2
3 /8
5 /16
1 /4
3 /16
c
lb/ft 15.4 11.8 10.0 8.20 6.14
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
097.4146 75.4113 63.895.951.777.836.054.1
195.0143 73.6111 62.393.650.576.035.253.0
287.9132 68.4103 58.087.147.170.833.149.8
377.3116 60.590.951.477.341.963.029.844.9
464.697.150.976.543.565.335.653.525.838.8
551.277.040.861.335.052.628.843.321.432.2
638.658.031.146.826.940.422.333.517.025.6
728.442.723.034.519.929.916.624.913.019.5
821.732.717.626.415.222.912.719.09.9414.9
917.225.813.920.912.018.110.015.07.8511.8
097.4146 75.4113 63.895.951.777.836.054.1
295.8144 73.8111 62.093.249.674.627.941.9
492.3139 71.0107 59.789.747.871.827.841.8
686.7130 66.7100 56.084.144.867.327.741.6
877.4116 59.489.349.874.839.960.026.840.3
1068.2103 52.278.543.765.635.052.624.536.9
1258.487.844.667.037.255.929.844.821.332.0
1448.673.137.055.630.746.224.637.017.826.8
1640.761.130.846.325.538.319.729.614.521.8
1832.448.624.436.720.230.316.124.311.917.9
2026.239.419.829.816.424.613.119.79.6914.6
2221.732.616.424.613.520.310.816.38.0312.1
2418.227.413.820.711.417.1 9.1113.76.7610.2
2615.523.3
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
4.52 3.50 2.96 2.40 1.83
rx, in. 0.543 0.555 0.562 0.569 0.577
ry, in. 1.56 1.54 1.52 1.51 1.49
Properties of single angle
rz, in. 0.425 0.426 0.428 0.431 0.435
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
4
5
2L3 SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:40 AM Page 159

4–160 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
2L2
1
/2×2×
3
/8
5 /16
1 /4
3 /16
c
lb/ft 10.6 9.00 7.24 5.50
Design
Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn Pn/Ωc φcPn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 66.8 100 56.9 85.5 46.1 69.3 34.8 52.2
1 65.3 98.2 55.6 83.6 45.1 67.8 34.0 51.2
2 61.0 91.6 52.0 78.2 42.3 63.5 32.0 48.0
3 54.3 81.7 46.5 69.9 37.9 57.0 28.8 43.3
4 46.2 69.5 39.7 59.7 32.5 48.9 24.9 37.4
5 37.6 56.5 32.5 48.8 26.7 40.2 20.6 31.0
6 29.2 43.9 25.4 38.1 21.0 31.6 16.4 24.6
7 21.8 32.7 19.0 28.5 15.8 23.8 12.5 18.7
8 16.7 25.0 14.5 21.8 12.1 18.2 9.53 14.3
9 13.2 19.8 11.5 17.3 9.57 14.4 7.53 11.3
0 66.8 100 56.9 85.5 46.1 69.3 34.8 52.2
2 64.8 97.4 54.8 82.4 43.8 65.9 28.0 42.0
4 61.3 92.2 51.8 77.9 41.4 62.2 27.7 41.7
6 55.9 84.0 47.2 71.0 36.8 55.3 26.6 39.9
8 47.7 71.7 40.3 60.5 31.6 47.5 23.5 35.3
10 39.7 59.7 33.5 50.3 26.0 39.0 19.4 29.1
12 31.8 47.7 26.7 40.1 20.4 30.6 15.2 22.9
14 24.3 36.5 20.4 30.6 16.0 24.0 11.9 18.0
16 18.6 28.0 15.6 23.5 12.3 18.4 9.20 13.8
18 14.7 22.1 12.3 18.6 9.71 14.6 7.29 11.0
20 11.9 17.9 10.0 15.0 7.87 11.8 5.92 8.90
Properties of 2 angles—
3
/8in. back to back
Ag, in.
2
3.10 2.64 2.14 1.64
rx, in. 0.574 0.581 0.589 0.597
ry, in. 1.27 1.26 1.24 1.23
Properties of single angle
rz, in. 0.419 0.420 0.423 0.426
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-10 (continued)
Available Strength in
Axial Compression, kips
Double Angles—SLBB
Fy= 36 ksi
Effective length,
KL
(ft), with respect to indicated axis
Y-Y Axis X-X Axis
a
For Y-Y axis, welded or pretensioned bolted intermediate connectors must be used.
b
For required number of intermediate connectors, see the discussion of Table 4-8.
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/requal to or greater than 200.
No. of
connectors
a
b
3
4
2L2
1
/2SLBB
AISC_Part 4C:14th Ed. 2/23/11 10:40 AM Page 160

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–161
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L8×8×
1
1
/8 1
7
/8
3 /4
5 /8
9 /16
c
lb/ft 56.9 51.0 45.0 38.9 32.7 29.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0362544326489287431248373208313181272
1361543324488286430247371208312181272
2358538321483283426245368206309179269
3352529317476279419241362203305177265
4345518310465273410236355198298173260
5335504301453265399230345193290169253
6324487291437257386222334187281163245
7311467279420247371213320180270157236
8297446267401235354204306172258150226
9281423253380223336193290163245143215
10265399238358211317182274154231135204
11248373223336198297171257144217127192
12231348208312184277159239135202119179
13214322192289170256147222125188111167
14197296177266157236136204115173102154
15180270161243144216124187105158 94.2142
16163245147220130196113170 95.9144 86.0129
17147221132199118177102153 86.8130 78.1117
18132198118178106159 91.3137 77.9117 70.5106
1911817810616094.8142 82.0123 69.9105 63.395.1
20107160 95.914485.5129 74.0111 63.194.957.185.9
21 96.8145 87.013177.6117 67.1101 57.386.151.877.9
22 88.2133 79.211970.7106 61.191.952.278.447.271.0
23 80.7121 72.510964.797.255.984.147.771.743.264.9
24 74.1111 66.610059.489.351.477.243.865.939.759.6
25 68.3103 61.492.254.882.347.371.240.460.736.655.0
26 63.194.956.785.350.676.143.865.837.456.133.850.8
Properties
Ag, in.
2
16.8 15.1 13.3 11.5 9.69 8.77
rz, in. 1.56 1.56 1.57 1.57 1.58 1.58
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
L8
AISC_Part 4C:14th Ed. 4/12/11 3:30 PM Page 161

4–162 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L8×8× L8×6×
1
/2
c
1
7
/8
3 /4
5 /8
9 /16
c
lb/ft 26.4 44.2 39.1 33.8 28.5 25.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0154232282424248373215324181272157236
1154231281422247371214322180270157235
2152229277417243366211318177267155232
3150226271407238357207311174261151227
4148222262394230346200301168253147221
5144216252378221332192289161243141212
6140210239359210315183275153231135203
7135203225338198297172259145217127192
8129194210316184277161242135203119180
9124186194292170256149224125188111167
10117176178267156235137205115172102154
11111166161242142213124187104157 93.5141
12104156145218127191112168 94.0141 84.7127
13 97.1146129194113170 99.7150 83.9126 76.0114
14 90.2136114171100150 88.2133 74.2112 67.7102
15 83.3125 99.6150 87.4131 77.1116 64.997.659.789.7
16 76.5115 87.5132 76.8115 67.8102 57.185.852.478.8
17 69.9105 77.5117 68.1102 60.090.250.576.046.569.8
18 63.595.569.1104 60.791.253.680.545.167.841.462.3
19 57.386.162.193.354.581.948.172.240.560.837.255.9
20 51.777.756.084.249.273.943.465.236.554.933.650.4
21 46.970.550.876.444.667.039.359.133.149.830.445.8
22 42.764.2
23 39.158.8
24 35.954.0
25 33.149.8
26 30.646.0
Properties
Ag, in.
2
7.84 13.1 11.5 9.99 8.41 7.61
rz, in. 1.59 1.28 1.28 1.29 1.29 1.30
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8
AISC_Part 4C:14th Ed. 4/12/11 3:30 PM Page 162

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–163
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L8×6× L8×4×
1
/2
c 7
/16
c
1
7
/8
3 /4
5 /8
lb/ft 23.0 20.2 37.4 33.1 28.7 24.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0134201110165239360211317183275154231
1133200109164237356209314181272152229
2132198108163229345202304175264148222
3129194106159217327192288167250140211
4125188103155202303178268155233130196
512118199.9150183276162243141212119179
611517395.9144163245144217125189106160
710916491.3137142214126189109165 92.8140
810315586.3130121182107161 93.5141 79.5120
9 96.014481.0122101152 89.5135 78.2118 66.7100
10 88.813375.4113 82.5124 73.1110 64.096.254.882.3
11 81.512269.7105 68.2103 60.490.852.979.545.368.0
12 74.211163.996.157.386.150.876.344.566.838.057.2
13 67.010158.287.548.873.443.365.037.956.932.448.7
14 60.090.152.679.042.163.337.356.132.749.127.942.0
15 53.380.047.270.9
16 46.970.441.963.0
17 41.562.437.155.8
18 37.055.633.149.8
19 33.249.929.744.7
20 30.045.126.840.3
21 27.240.924.336.6
Properties
Ag, in.
2
6.80 5.99 11.1 9.79 8.49 7.16
rz, in. 1.30 1.31 0.844 0.846 0.850 0.856
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8
AISC_Part 4C:14th Ed. 4/12/11 3:30 PM Page 163

4–164 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L8×4× L7×4×
9
/16
c 1
/2
c 7
/16
c 3
/4
5 /8
1 /2
c
lb/ft 21.9 19.6 17.2 26.2 22.1 17.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
013420211417193.6141167251140211109164
113320011317092.8140165248139208108163
212919411016590.5136160241134202105158
312318510515886.7130152228128192100151
411517298.314881.612314121211917993.6141
510515890.413675.611412919410816385.7129
6 94.114181.612368.810311517396.914677.0116
7 82.812472.410961.592.510015184.812767.8102
8 71.410762.994.654.181.385.912972.710958.688.1
9 60.490.853.880.846.870.372.010861.191.849.774.6
10 50.075.145.167.739.759.759.188.850.275.441.261.9
11 41.362.137.356.033.149.848.873.441.562.334.051.1
12 34.752.231.347.127.841.841.061.634.852.428.643.0
13 29.644.526.740.123.735.734.952.529.744.624.436.6
14 25.538.323.034.620.530.730.145.325.638.521.031.6
Properties
Ag, in.
2
6.49 5.80 5.11 7.74 6.50 5.26
rz, in. 0.859 0.863 0.867 0.855 0.860 0.866
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8-L7
AISC_Part 4C:14th Ed. 4/12/11 3:31 PM Page 164

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–165
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L7×4× L6×6×
7
/16
c 3
/8
c
1
7
/8
3 /4
5 /8
lb/ft 15.7 13.6 37.4 33.1 28.7 24.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 91.013772.4109237356210316182274154231
1 90.213671.8108236354209314181273153230
2 87.813270.1105232349206309178268150226
3 83.812667.2101226339200301174261146220
4 78.611863.495.2217326192289167251141211
5 72.410958.888.3206310183275159239134201
6 65.598.453.680.6194292172259149225126189
7 58.187.448.172.3181272160241139209117176
8 50.776.142.463.8166250147222128192108162
9 43.465.236.855.3151228134202116175 98.1148
10 36.454.831.447.2136205121182105158 88.3133
11 30.245.326.339.5121182108162 93.3140 78.6118
12 25.338.122.133.2107161 94.7142 82.2123 69.2104
13 21.632.518.828.393.0140 82.4124 71.5108 60.390.6
14 18.628.016.224.480.2121 71.1107 61.792.752.078.1
15 69.9105 61.993.153.780.745.368.1
16 61.492.354.481.847.271.039.859.8
17 54.481.748.272.541.862.935.353.0
18 48.572.943.064.637.356.131.447.3
19 43.565.438.658.033.550.328.242.4
Properties
Ag, in.
2
4.63 4.00 11.0 9.75 8.46 7.13
rz, in. 0.869 0.873 1.17 1.17 1.17 1.17
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L7-L6
AISC_Part 4C:14th Ed. 4/12/11 3:31 PM Page 165

4–166 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L6×6× L6×4×
9
/16
1 /2
7 /16
c 3
/8
c 5
/16
c 7
/8
lb/ft 21.9 19.6 17.2 14.9 12.4 27.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
013920912418710716086.112965.398.2172259
113820812418610615985.712965.197.8171257
213620412218310415784.412764.296.5165249
313219911817810215382.412462.894.4157236
4127192114171 97.914779.612060.991.5146219
5121182109163 93.314076.211558.587.9133200
6114172102154 88.113272.210955.783.8119178
710616095.3143 82.212467.810252.679.1104156
8 98.114787.8132 75.911463.094.749.274.088.7133
9 89.513480.0120 69.410458.087.245.768.774.3112
10 80.712172.2108 62.794.352.879.442.063.160.991.5
11 72.010864.496.756.184.447.771.738.357.550.375.6
12 63.595.456.885.449.774.742.664.134.652.042.363.6
13 55.483.349.674.543.565.437.756.731.046.536.054.2
14 47.871.942.864.337.756.633.049.627.541.331.146.7
15 41.762.637.356.032.849.328.843.224.136.2
16 36.655.032.849.228.843.325.338.021.231.8
17 32.448.829.043.625.538.422.433.718.828.2
18 28.943.525.938.922.834.220.030.016.725.2
19 26.039.023.234.920.530.717.927.015.022.6
Properties
Ag, in.
2
6.45 5.77 5.08 4.38 3.67 8.00
rz, in. 1.18 1.18 1.18 1.19 1.19 0.854
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4C:14th Ed. 4/12/11 3:32 PM Page 166

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–167
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L6×4×
3
/4
5 /8
9 /16
1 /2
7 /16
c
lb/ft 23.6 20.0 18.1 16.2 14.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 150 225 126 190 114 172 102 154 87.7132
1 148 223 125 188 113 170 101 152 86.8130
2 144 216 121 182 110 165 98.3148 84.3127
3 136 205 115 173 104 157 93.5140 80.3121
4 127 191 107 161 97.2146 87.0131 74.9113
5 116 174 97.7147 88.6133 79.4119 68.6103
6 103 155 87.3131 79.2119 71.0107 61.692.6
7 90.1135 76.4115 69.4104 62.393.654.281.5
8 77.2116 65.598.459.589.453.580.346.870.3
9 64.797.355.082.650.075.145.067.639.659.5
10 53.179.845.167.841.161.837.055.632.849.3
11 43.965.937.356.134.051.030.646.027.140.7
12 36.955.431.347.128.542.925.738.622.834.2
13 31.447.226.740.124.336.521.932.919.429.2
14 27.140.723.034.621.031.518.928.416.725.1
Properties
Ag, in.
2
6.94 5.86 5.31 4.75 4.18
rz, in. 0.856 0.859 0.861 0.864 0.867
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4C:14th Ed. 4/12/11 3:32 PM Page 167

4–168 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L6×4× L6×3
1
/2×
3
/8
c 5
/16
c 1
/2
3 /8
c 5
/16
c
lb/ft 12.3 10.3 15.3 11.7 9.80
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 71.0107 54.081.197.0146 67.6102 51.577.3
1 70.3106 53.580.495.7144 66.8100 50.976.5
2 68.4103 52.278.592.0138 64.596.949.374.1
3 65.498.350.175.386.1129 60.891.346.870.3
4 61.392.247.371.178.5118 55.984.143.465.2
5 56.584.944.066.169.6105 50.375.539.459.3
6 51.176.840.260.460.290.444.166.335.152.7
7 45.468.236.154.350.676.137.856.830.545.9
8 39.659.531.948.041.562.431.647.526.039.1
9 33.950.927.841.733.149.825.838.821.732.7
10 28.542.823.835.726.840.320.931.417.726.7
11 23.635.420.030.022.233.317.326.014.722.0
12 19.829.816.825.218.628.014.521.812.318.5
13 16.925.414.321.5
14 14.621.912.318.5
Properties
Ag, in.
2
3.61 3.03 4.50 3.44 2.89
rz, in. 0.870 0.874 0.756 0.763 0.767
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4C:14th Ed. 4/12/11 3:32 PM Page 168

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–169
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L5×5×
7
/8
3 /4
5 /8
1 /2
7 /16
3 /8
c
lb/ft 27.2 23.6 20.0 16.2 14.3 12.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
017225915022612719110315591.013777.3116
117125714922412619010215490.313676.8115
216725114621912318510015088.213375.0113
3160241140210118178 96.214584.812772.2109
4152228132199112168 91.013780.212168.4103
5141212123185104157 84.812774.811263.996.0
612919411316995.4143 77.711768.610358.788.2
711617510215386.0129 70.110561.993.153.179.9
810315590.013576.3115 62.393.655.182.847.471.2
9 89.913578.611866.7100 54.581.948.272.441.662.5
10 77.211667.410157.386.146.970.541.562.435.954.0
11 65.197.856.985.548.472.739.759.635.252.930.646.0
12 54.782.247.871.840.761.133.350.129.644.425.738.7
13 46.670.040.761.234.652.128.442.725.237.921.932.9
14 40.260.435.152.829.944.924.536.821.732.618.928.4
15 35.052.630.646.026.039.121.332.118.928.416.524.7
16 30.846.226.940.422.934.418.828.216.625.014.521.7
Properties
Ag, in.
2
8.00 6.98 5.90 4.79 4.22 3.65
rz, in. 0.971 0.972 0.975 0.980 0.983 0.986
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4C:14th Ed. 4/12/11 3:33 PM Page 169

4–170 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L5×5× L5×3
1
/2×
5
/16
c 3
/4
5 /8
1 /2
3 /8
c 5
/16
c
lb/ft 10.3 19.8 16.8 13.6 10.4 8.70
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 60.490.712619010616086.213064.697.150.375.6
1 59.990.112418710515885.112863.895.949.774.7
2 58.788.211917910115181.712361.392.248.072.1
3 56.685.1111168 94.014176.411557.586.445.267.9
4 53.981.0101152 85.512869.510452.478.841.562.4
5 50.676.089.5135 75.611461.692.546.670.137.356.0
6 46.870.477.0116 65.197.853.179.840.460.732.649.1
7 42.764.264.596.954.581.944.667.034.151.227.941.9
8 38.457.852.578.944.466.836.454.728.042.123.335.0
9 34.151.241.762.735.453.129.043.622.433.719.028.5
10 29.844.833.850.828.643.023.535.318.127.315.423.1
11 25.738.627.942.023.735.619.429.215.022.512.719.1
12 21.832.823.535.319.929.916.324.512.618.910.716.0
13 18.627.9
14 16.024.1
15 14.021.0
16 12.318.4
Properties
Ag, in.
2
3.07 5.85 4.93 4.00 3.05 2.56
rz, in. 0.990 0.744 0.746 0.750 0.755 0.758
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4C:14th Ed. 4/12/11 3:33 PM Page 170

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–171
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L5×3
1
/2× L5×3×
1
/4
c 1
/2
7 /16
3 /8
c 5
/16
c 1
/4
c
lb/ft 7.00 12.8 11.3 9.80 8.20 6.60
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
035.953.980.812271.410760.691.147.471.233.650.5
135.553.479.411970.110559.589.546.670.133.149.8
234.451.775.111366.399.756.484.844.466.731.747.7
332.649.068.510360.591.051.677.640.961.429.644.4
430.345.660.290.553.380.045.568.536.454.826.740.2
527.641.451.076.745.267.938.858.331.447.223.535.3
624.636.941.762.737.055.531.947.926.239.420.130.2
721.432.232.849.329.143.825.338.021.231.916.725.0
818.327.525.237.922.433.719.529.316.624.913.420.2
915.323.019.929.917.726.615.423.113.119.710.616.0
1012.518.816.124.214.321.512.518.710.615.98.6112.9
1110.315.5
12 8.6913.1
Properties
Ag, in.
2
2.07 3.75 3.31 2.86 2.41 1.94
rz, in. 0.761 0.642 0.644 0.646 0.649 0.652
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4C:14th Ed. 4/12/11 3:33 PM Page 171

4–172 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L4×4×
3
/4
5 /8
1 /2
7 /16
3 /8
5 /16
lb/ft 18.5 15.7 12.8 11.3 9.80 8.20
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
011717699.414980.812271.110761.792.751.677.5
111617498.114779.812070.310660.991.550.976.6
211116894.514276.911667.710258.688.149.173.8
310515788.713372.210863.595.555.182.846.169.3
4 95.814481.212266.199.358.287.550.575.942.363.6
5 85.512872.410959.088.752.078.145.167.837.856.9
6 74.411263.094.751.477.245.368.039.359.133.049.6
7 63.194.853.580.343.665.638.457.833.450.228.142.2
8 52.278.444.266.536.154.331.847.927.741.723.335.1
9 42.063.135.653.529.143.725.738.622.433.618.928.4
10 34.051.128.843.323.635.420.831.318.127.215.323.0
11 28.142.323.835.819.529.317.225.815.022.512.619.0
12 23.635.520.030.116.424.614.421.712.618.910.615.9
13 9.0413.6
Properties
Ag, in.
2
5.44 4.61 3.75 3.30 2.86 2.40
rz, in. 0.774 0.774 0.776 0.777 0.779 0.781
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
Note: Heavy line indicates KL/rzequal to or greater than 200.
L4
AISC_Part 4C:14th Ed. 4/12/11 3:34 PM Page 172

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–173
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L4×4× L4×3
1
/2× L4×3×
1
/4
c 1
/2
3 /8
5 /16
1 /4
c 5
/8
lb/ft 6.60 11.9 9.10 7.70 6.20 13.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
037.957.075.411357.886.848.472.735.853.886.0129
137.556.474.311256.985.647.771.635.353.184.4127
236.354.571.110754.581.945.668.633.951.079.7120
334.351.566.099.350.676.142.463.831.847.772.5109
431.747.659.689.545.768.738.357.629.043.563.495.3
528.643.052.178.440.060.233.650.525.738.653.480.3
625.338.044.366.634.151.228.743.122.233.443.365.1
721.832.836.654.928.242.323.735.618.728.133.850.9
818.427.729.344.022.634.019.128.715.323.125.938.9
915.222.923.134.817.926.815.122.712.318.420.530.8
1012.418.618.728.114.521.712.218.39.9314.916.624.9
1110.215.315.523.312.018.010.115.28.2112.3
12 8.5812.9 8.4812.76.9010.4
13 7.3111.0
Properties
Ag, in.
2
1.93 3.50 2.68 2.25 1.82 3.99
rz, in. 0.783 0.716 0.719 0.721 0.723 0.631
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L4
AISC_Part 4C:14th Ed. 4/12/11 3:34 PM Page 173

4–174 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L4×3× L3
1
/2×3
1
/2×
1
/2
3 /8
5 /16
1 /4
c 1
/2
7 /16
lb/ft 11.1 8.50 7.20 5.80 11.1 9.80
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 70.110553.780.744.967.533.249.970.110562.393.6
1 68.710352.779.244.166.332.749.168.910461.392.1
2 65.097.649.874.841.762.731.046.765.698.658.487.7
3 59.188.845.368.238.057.128.542.960.490.853.880.8
4 51.877.839.859.833.450.225.338.153.980.948.072.1
5 43.765.633.650.528.242.421.832.746.469.841.462.2
6 35.553.327.341.123.034.618.127.138.858.334.652.0
7 27.741.721.432.218.127.214.521.831.347.028.042.0
8 21.231.916.424.713.920.911.316.924.436.721.932.9
9 16.825.213.019.511.016.58.8913.419.329.017.326.0
10 13.620.410.515.88.8813.37.2010.815.623.514.021.0
11 12.919.411.617.4
Properties
Ag, in.
2
3.25 2.49 2.09 1.69 3.25 2.89
rz, in. 0.633 0.636 0.638 0.639 0.679 0.681
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L4–L3
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:35 PM Page 174

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–175
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L3
1
/2×3
1
/2× L3
1
/2×3×
3
/8
5 /16
1 /4
c 1
/2
7 /16
3 /8
lb/ft 8.50 7.20 5.80 10.2 9.10 7.90
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 53.981.045.368.035.453.265.197.857.686.550.075.2
1 53.079.744.566.934.852.363.895.956.484.849.073.7
2 50.575.942.463.833.250.060.190.453.279.946.269.5
3 46.670.039.158.830.846.354.581.848.272.441.963.0
4 41.662.535.052.527.641.547.471.242.063.136.654.9
5 35.954.030.245.424.036.139.659.635.252.830.646.1
6 30.045.125.338.020.330.531.947.928.342.524.737.1
7 24.336.520.530.816.624.924.636.921.932.919.128.7
8 19.028.616.124.213.119.718.828.316.725.214.622.0
9 15.022.612.719.110.415.614.922.313.219.911.617.4
10 12.218.310.315.58.4012.612.018.110.716.19.3714.1
11 10.115.18.5012.86.9410.4
Properties
Ag, in.
2
2.50 2.10 1.70 3.02 2.67 2.32
rz, in. 0.683 0.685 0.688 0.618 0.620 0.622
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:35 PM Page 175

4–176 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L3
1
/2×3× L3
1
/2×2
1
/2×
5
/16
1 /4
c 1
/2
3 /8
5 /16
1 /4
c
lb/ft 6.60 5.40 9.40 7.20 6.10 4.90
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
042.063.232.949.459.789.745.768.738.658.030.245.3
141.262.032.348.558.187.444.566.937.656.529.444.2
238.958.430.545.953.680.641.161.834.752.227.341.0
335.353.027.841.846.970.536.054.130.545.824.136.2
430.846.324.436.738.958.529.945.025.438.120.230.4
525.838.820.731.130.645.923.635.420.030.116.124.3
620.931.316.925.322.734.217.626.415.022.612.318.4
716.224.313.219.916.725.112.919.411.016.69.0413.6
812.418.610.215.312.819.29.9014.98.4512.76.9210.4
9 9.7814.78.0312.1 5.478.22
10 7.9311.96.509.78
Properties
Ag, in.
2
1.95 1.58 2.77 2.12 1.79 1.45
rz, in. 0.624 0.628 0.532 0.535 0.538 0.541
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:35 PM Page 176

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–177
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L3×3×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c
lb/ft 9.40 8.30 7.20 6.10 4.90 3.71
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 59.589.452.478.745.568.438.457.731.046.721.432.2
1 58.287.451.277.044.566.837.556.430.445.621.031.6
2 54.481.747.971.941.662.535.152.728.442.719.829.7
3 48.673.042.864.337.255.931.447.225.438.217.926.9
4 41.562.436.554.931.847.726.940.421.832.715.523.3
5 33.950.929.844.825.939.022.033.017.826.813.019.5
6 26.439.723.335.020.330.517.225.814.021.010.415.6
7 19.829.717.426.215.222.812.919.410.515.87.9712.0
8 15.122.813.320.011.617.59.8714.88.0412.16.109.18
9 12.018.010.515.89.1813.87.8011.76.359.544.827.25
Properties
Ag, in.
2
2.76 2.43 2.11 1.78 1.44 1.09
rz, in. 0.580 0.580 0.581 0.583 0.585 0.586
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
AISC_Part 4C:14th Ed. 4/12/11 3:36 PM Page 177

4–178 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L3×2
1
/2×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c
lb/ft 8.50 7.60 6.60 5.60 4.50 3.39
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 53.981.047.971.941.662.535.152.828.542.819.729.5
1 52.478.746.569.940.460.834.251.327.741.619.228.8
2 48.172.342.764.237.155.831.447.225.438.217.826.7
3 41.762.737.055.732.248.427.241.022.133.215.623.5
4 34.251.430.345.626.439.722.433.618.227.313.119.7
5 26.439.823.535.320.530.817.326.114.121.210.415.6
6 19.329.017.125.815.022.512.719.110.315.67.8611.8
7 14.221.312.618.911.016.59.3214.07.6011.45.788.69
8 10.916.39.6414.58.4112.67.1310.75.828.754.436.65
Properties
Ag, in.
2
2.50 2.22 1.93 1.63 1.32 1.00
rz, in. 0.516 0.516 0.517 0.518 0.520 0.521
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
AISC_Part 4C:14th Ed. 4/12/11 3:36 PM Page 178

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–179
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L3×2× L2
1
/2×2
1
/2×
1
/2
3 /8
5 /16
1 /4
3 /16
c 1
/2
lb/ft 7.70 5.90 5.00 4.10 3.07 7.70
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
048.773.237.756.731.948.025.938.918.027.148.773.2
146.770.236.254.430.646.024.837.317.426.147.170.9
241.261.931.948.027.040.622.033.015.623.442.764.2
333.450.225.938.922.033.017.926.913.019.536.354.5
424.937.419.329.116.524.713.520.210.015.128.843.3
517.025.613.319.911.317.09.3114.07.2310.921.532.3
611.817.89.2113.87.8611.86.469.715.037.5615.222.8
7 8.7013.16.7710.25.788.684.757.143.705.5611.116.7
8 8.5312.8
Properties
Ag, in.
2
2.26 1.75 1.48 1.20 0.917 2.26
rz, in. 0.425 0.426 0.428 0.431 0.435 0.481
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3-L2
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:36 PM Page 179

4–180 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L2
1
/2×2
1
/2× L2
1
/2×2×
3
/8
5 /16
1 /4
3 /16
c 3
/8
lb/ft 5.90 5.00 4.10 3.07 5.30
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 37.356.131.547.325.738.619.128.733.450.2
1 36.154.230.545.824.837.318.527.832.048.1
2 32.749.227.641.522.533.816.825.228.142.3
3 27.841.723.435.219.128.714.321.522.734.0
4 22.133.218.628.015.222.911.417.216.725.2
5 16.424.713.920.911.317.1 8.5612.911.417.1
6 11.617.4 9.7914.7 8.0212.0 6.079.127.8911.9
7 8.5312.8 7.2010.8 5.898.854.466.70
8 6.539.815.518.284.516.783.415.13
Properties
Ag, in.
2
1.73 1.46 1.19 0.901 1.55
rz, in. 0.481 0.481 0.482 0.482 0.419
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:37 PM Page 180

STEEL COMPRESSION—MEMBER SELECTION TABLES 4–181
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L2
1
/2×2× L2
1
/2×1
1
/2×
5
/16
1 /4
3 /16
c 1
/4
3 /16
c
lb/ft 4.50 3.62 2.75 3.19 2.44
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 28.542.823.134.717.326.120.430.715.323.1
1 27.341.022.133.216.625.019.028.514.321.5
2 24.036.019.529.314.722.115.222.911.517.4
3 19.329.015.823.712.018.010.515.8 8.1012.2
4 14.321.511.717.6 8.9913.5 6.379.574.967.45
5 9.7214.6 7.9912.0 6.209.324.076.123.174.77
6 6.7510.1 5.558.344.306.47
7 4.967.464.086.133.164.75
Properties
Ag, in.
2
1.32 1.07 0.818 0.947 0.724
rz, in. 0.420 0.423 0.426 0.321 0.324
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
1
/2
AISC_Part 4C:14th Ed. 4/12/11 3:37 PM Page 181

4–182 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
L2×2×
3
/8
5 /16
1 /4
3 /16
1 /8
c
lb/ft 4.70 3.92 3.19 2.44 1.65
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 29.544.425.037.620.330.615.623.49.6514.5
1 28.142.223.835.719.329.114.822.29.2313.9
2 24.136.220.430.716.625.012.719.18.0612.1
3 18.728.115.823.812.919.4 9.9214.96.439.66
4 13.119.711.116.7 9.0513.6 6.9810.54.687.04
5 8.5212.8 7.2210.8 5.908.874.566.863.134.71
6 5.928.905.017.534.106.163.174.762.183.27
Properties
Ag, in.
2
1.37 1.16 0.944 0.722 0.491
rz, in. 0.386 0.386 0.387 0.389 0.391
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-11 (continued)
Available Strength in
Axial Compression, kips
Concentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
AISC_Part 4C:14th Ed. 4/12/11 3:37 PM Page 182

Shape
L8×8×
1
1
/8 1
7
/8
3 /4
5 /8
9 /16
c
lb/ft 56.9 51.0 45.0 38.9 32.7 29.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0174262167251159240149224127191109165
1173261166250159239149223127190109164
2172258165248157237147221126190109164
3169254162244155233145217125189108163
4165249158238151227141212124187107161
5161242154232147221137206123185106159
6155234148224141213132199121181103154
7149225142215136205126191115174 99.4149
8143216136206129195120182110166 96.1144
9136206129196123186114172104157 92.7139
1012919512218511617610716397.8148 89.4134
1112218511517510916610115391.7139 84.6128
12114174108165102155 94.214385.6130 79.0120
13107163101154 95.5145 87.813479.6121 73.6112
1410015394.6144 89.0136 81.612473.9113 68.3104
15 93.714388.1134 82.7126 75.611668.4104 63.296.5
16 87.313381.9125 76.7117 70.010763.196.558.489.2
17 81.112475.9116 71.0109 64.698.858.188.953.882.3
18 75.111570.1107 65.5100 59.490.953.481.649.575.7
19 69.610664.999.360.592.554.783.749.075.045.469.4
20 64.799.060.292.156.085.650.577.345.269.141.863.9
21 60.392.256.085.752.079.546.871.641.863.938.659.0
22 56.386.152.279.948.474.043.566.538.759.235.754.7
23 52.680.548.874.645.169.040.562.036.055.033.250.7
24 49.375.545.769.942.264.537.857.833.551.330.947.2
25 46.370.942.865.539.560.435.454.131.347.928.844.1
26 37.156.733.150.729.344.827.041.2
Properties
Ag, in.
2
16.8 15.1 13.3 11.5 9.69 8.77
rz, in. 1.56 1.56 1.57 1.57 1.58 1.58
ASD LRFD
Ωc=1.67 φc=0.90
Table 4-12
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–183
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8
AISC_Part 4D:14th Ed. 4/12/11 3:14 PM Page 183

Shape
L8×8× L8×6×
1
/2
c, f
1
7
/8
3 /4
5 /8
9 /16
c
lb/ft 26.4 44.2 39.1 33.8 28.5 25.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 91.0137161241158238157236153231155233
1 90.8137160240158237156235152229153230
2 90.4136158238155234154231148224148223
3 89.8135155234152229150226142215141213
4 89.0134151228147223144218135204133201
5 87.9132146221138209136206126192124189
6 85.6129135205128194125190118181115175
7 82.7124124189118180115175108165104159
8 79.812011417410816510415997.1149 93.4143
9 76.8115105160 98.315194.214487.1134 83.6129
10 73.8111 95.5146 89.313785.013178.0120 74.7115
11 70.9106 87.0134 81.012476.711869.8108 66.7103
12 67.9101 79.1122 73.311369.110662.696.759.792.3
13 64.996.671.8110 66.310262.296.056.186.753.482.7
14 62.091.965.1100 60.092.456.086.550.377.847.974.2
15 58.287.258.990.754.183.450.477.845.069.742.966.5
16 53.982.353.682.549.075.645.570.340.562.738.559.7
17 49.776.048.975.244.668.841.363.836.756.734.853.9
18 45.870.144.868.940.862.937.758.233.451.631.648.9
19 42.164.441.263.437.457.734.553.230.547.128.844.6
20 38.759.238.058.534.553.131.748.927.943.226.440.8
21 35.754.635.154.131.949.129.245.125.739.724.337.5
22 33.050.5
23 30.646.8
24 28.543.6
25 26.640.6
26 24.837.9
Properties
Ag, in.
2
7.84 13.1 11.5 9.99 8.41 7.61
rz, in. 1.59 1.28 1.28 1.29 1.29 1.30
ASD LRFD
Ωc=1.67 φc=0.90
4–184 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 184

Shape
L8×6× L8×4×
1
/2
c,f 7
/16
c, f
1
7
/8
3 /4
5 /8
lb/ft 23.0 20.2 37.4 33.1 28.7 24.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
012218489.513468.210265.898.863.695.661.893.0
112218389.513467.610265.197.963.094.761.292.0
212118289.213465.899.063.395.261.392.259.389.3
312118188.113263.094.960.491.158.588.256.384.9
412118086.913059.489.757.086.154.882.952.479.3
511918186.012855.584.053.080.350.776.948.173.0
610816585.812751.277.748.773.946.370.443.666.3
7 97.614988.112846.971.344.367.541.963.839.159.7
8 87.513482.812742.564.840.061.037.657.434.953.3
9 78.112073.711438.358.435.954.833.551.230.947.3
10 69.610765.510134.252.231.948.829.645.427.241.6
11 62.196.058.390.330.646.828.443.526.340.324.036.8
12 55.485.851.980.627.542.125.539.023.536.021.332.7
13 49.576.846.472.124.938.022.935.121.132.319.029.2
14 44.368.841.564.522.534.520.731.819.029.117.126.2
15 39.861.737.257.9
16 35.655.333.451.9
17 32.149.930.046.7
18 29.145.227.242.2
19 26.541.124.738.4
20 24.337.622.635.0
21 22.334.520.732.1
Properties
Ag, in.
2
6.80 5.99 11.1 9.79 8.49 7.16
rz, in. 1.30 1.31 0.844 0.846 0.850 0.856
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–185
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 185

Shape
L8×4× L7×4×
9
/16
c 1
/2
c, f 7
/16
c, f 3
/4
5 /8
1 /2
c
lb/ft 21.9 19.6 17.2 26.2 22.1 17.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 60.090.257.586.454.782.265.298.062.193.459.289.0
1 59.389.256.885.454.181.364.496.961.492.458.587.9
2 57.486.454.982.652.178.562.293.659.489.556.384.8
3 54.482.051.978.349.274.358.888.756.284.852.879.8
4 50.576.448.172.845.568.954.983.052.178.848.673.6
5 46.270.143.966.641.462.850.476.547.572.143.866.7
6 41.763.639.560.237.256.645.869.642.765.139.159.7
7 37.457.035.353.933.150.641.162.738.158.234.652.9
8 33.250.831.347.929.344.936.756.133.851.730.446.6
9 29.445.027.642.425.839.632.649.829.745.626.640.9
10 25.839.624.337.322.734.928.743.926.039.923.235.6
11 22.734.821.332.719.930.525.338.822.935.120.231.1
12 20.130.818.828.917.526.922.534.520.231.117.827.4
13 17.927.516.725.715.523.820.130.918.027.715.824.2
14 16.124.714.923.013.821.318.127.816.224.814.121.6
Properties
Ag, in.
2
6.49 5.80 5.11 7.74 6.50 5.26
rz, in. 0.859 0.863 0.867 0.855 0.860 0.866
ASD LRFD
Ωc=1.67 φc=0.90
4–186 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L8-L7
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 186

Shape
L7×4× L6×6×
7
/16
c, f 3
/8
c, f
1
7
/8
3 /4
5 /8
lb/ft 15.7 13.6 37.4 33.1 28.7 24.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 56.384.653.179.910215398.914993.514187.3131
1 55.683.652.478.810115298.314892.914086.7130
2 53.480.450.375.799.515096.714591.313785.1128
3 50.075.647.071.096.914694.014188.613382.5124
4 45.869.442.965.093.414190.413685.112879.1119
5 41.262.738.458.589.113586.113080.912275.0113
6 36.655.934.052.084.412881.312376.211570.4106
7 32.349.429.945.879.312076.111571.110865.599.2
8 28.343.426.140.273.911270.710765.910060.491.8
9 24.738.022.835.168.510465.399.360.692.255.484.3
10 21.533.219.830.663.296.360.091.455.584.650.577.0
11 18.728.817.226.658.088.554.983.750.677.245.869.9
12 16.425.315.123.253.181.050.076.345.970.141.463.2
13 14.522.313.320.548.373.845.369.341.463.437.256.9
14 12.919.911.818.143.866.940.962.637.357.133.451.0
15 39.860.937.156.833.751.630.146.0
16 36.455.733.851.730.646.927.241.6
17 33.451.030.947.327.942.824.737.8
18 30.746.928.443.425.639.122.634.5
19 28.343.326.139.923.536.020.731.7
Properties
Ag, in.
2
4.63 4.00 11.0 9.75 8.46 7.13
rz, in. 0.869 0.873 1.17 1.17 1.17 1.17
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–187
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L7-L6
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 187

Shape
L6×6× L6×4×
9
/16
1 /2
7 /16
c 3
/8
c, f 5
/16
c, f 7
/8
lb/ft 21.9 19.6 17.2 14.9 12.4 27.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 83.312577.611764.897.450.776.236.054.071.9108
1 82.812477.411664.697.150.676.035.953.971.0107
2 81.312276.911664.296.550.275.435.653.568.3103
3 78.811974.811363.595.349.674.535.252.964.296.9
4 75.511471.610862.593.848.773.234.652.059.389.7
5 71.610867.810259.989.846.670.033.950.953.981.8
6 67.210263.596.157.385.844.466.733.049.548.573.9
7 62.494.658.989.353.781.342.263.331.847.743.566.3
8 57.687.454.282.449.475.040.059.930.045.138.759.1
9 52.780.249.675.445.168.637.856.428.342.434.252.4
10 48.073.245.068.640.962.435.552.926.539.730.046.1
11 43.566.440.762.137.056.433.349.324.737.026.540.6
12 39.260.036.655.933.250.830.245.723.034.323.536.1
13 35.353.932.850.229.845.627.141.521.231.521.032.2
14 31.648.329.344.826.640.624.237.119.428.718.928.9
15 28.443.426.340.223.836.421.733.117.525.9
16 25.639.223.736.221.432.819.429.715.723.3
17 23.335.621.532.819.429.617.626.814.221.1
18 21.232.519.529.917.626.915.924.312.919.1
19 19.429.717.927.316.124.614.522.211.717.4
Properties
Ag, in.
2
6.45 5.77 5.08 4.38 3.67 8.00
rz, in. 1.18 1.18 1.18 1.19 1.19 0.854
ASD LRFD
Ωc=1.67 φc=0.90
4–188 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 188

Shape
L6×4×
3
/4
5 /8
9 /16
1 /2
7 /16
c
lb/ft 23.6 20.0 18.1 16.2 14.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 70.1105 67.4101 66.299.564.096.262.493.7
1 69.1104 66.399.765.197.963.195.061.492.4
2 66.299.863.295.361.993.260.591.158.688.4
3 61.993.558.788.757.887.356.285.054.282.0
4 56.785.953.881.652.779.950.977.348.874.1
5 51.478.048.573.747.171.745.369.043.165.7
6 46.170.243.165.841.663.639.760.737.657.5
7 41.062.638.058.136.555.934.653.132.550.0
8 36.255.433.351.031.848.830.046.128.143.2
9 31.848.829.044.627.642.526.039.924.237.3
10 27.842.625.238.823.936.822.434.420.832.1
11 24.437.422.033.820.832.019.429.917.927.7
12 21.533.119.429.818.228.017.026.115.624.1
13 19.229.417.126.416.124.815.023.013.821.2
14 17.226.415.323.514.322.113.320.512.218.8
Properties
Ag, in.
2
6.94 5.86 5.31 4.75 4.18
rz, in. 0.856 0.859 0.861 0.864 0.867
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–189
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 189

Shape
L6×4× L6×3
1
/2×
3
/8
c, f 5
/16
c, f 1
/2
3 /8
c, f 5
/16
c, f
lb/ft 12.3 10.3 15.3 11.7 9.80
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 58.988.553.380.247.170.843.665.640.460.7
1 57.987.153.380.146.469.842.964.539.659.6
2 55.283.251.077.044.366.740.661.337.556.5
3 50.977.047.071.141.061.937.356.434.351.9
4 45.669.342.063.837.056.133.250.530.546.3
5 40.161.236.756.132.749.829.144.426.640.6
6 34.853.331.748.728.643.725.238.522.935.1
7 30.046.127.241.924.837.921.633.219.630.1
8 25.839.823.336.021.332.718.528.416.725.7
9 22.234.220.031.018.228.015.724.214.222.0
10 19.029.417.226.615.724.113.420.712.118.7
11 16.425.314.822.913.721.011.617.810.416.1
12 14.222.012.819.812.018.410.115.69.0313.9
13 12.519.311.217.3
14 11.017.09.8315.2
Properties
Ag, in.
2
3.61 3.03 4.50 3.44 2.89
rz, in. 0.870 0.874 0.756 0.763 0.767
ASD LRFD
Ωc=1.67 φc=0.90
4–190 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L6
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 190

Shape
L5×5×
7
/8
3 /4
5 /8
1 /2
7 /16
3 /8
c
lb/ft 27.2 23.6 20.0 16.2 14.3 12.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 71.610868.910465.798.760.691.056.685.146.569.8
1 71.110768.410365.197.960.090.256.184.346.369.6
2 69.410466.710063.495.558.487.954.682.245.868.9
3 66.910164.196.660.891.655.984.252.278.745.167.7
4 63.595.860.791.657.486.752.679.549.174.143.465.1
5 59.590.056.785.853.480.848.873.945.568.841.261.7
6 55.283.752.479.449.174.544.767.841.663.038.358.1
7 50.777.047.972.844.767.940.561.537.657.134.652.5
8 46.270.343.566.240.361.436.355.333.651.230.947.0
9 41.863.839.159.736.155.132.349.329.845.627.441.7
10 37.657.435.053.532.149.128.643.726.340.324.136.8
11 33.651.331.147.628.443.425.138.523.135.321.132.2
12 29.945.827.642.225.138.422.133.720.230.918.428.1
13 26.841.024.737.722.334.119.529.817.827.316.124.7
14 24.236.922.133.919.930.517.326.515.824.214.321.9
15 21.933.420.030.517.927.415.523.814.121.612.719.5
16 19.930.418.127.716.224.714.021.412.719.411.417.5
Properties
Ag, in.
2
8.00 6.98 5.90 4.79 4.22 3.65
rz, in. 0.971 0.972 0.975 0.980 0.983 0.986
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–191
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 191

Shape
L5×5× L5×3
1
/2×
5
/16
c, f 3
/4
5 /8
1 /2
3 /8
c 5
/16
c, f
lb/ft 10.3 19.8 16.8 13.6 10.4 8.70
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
035.453.255.483.354.682.052.979.549.774.746.970.5
135.253.054.982.654.081.351.677.748.773.245.969.1
234.952.453.480.551.377.348.172.645.668.842.864.7
334.351.549.074.146.670.543.666.140.962.038.257.9
432.849.343.966.641.362.738.658.735.454.032.850.1
531.046.538.759.036.355.433.551.130.146.127.742.4
629.143.733.951.831.548.228.743.925.338.923.135.6
727.340.829.545.127.141.624.437.521.232.719.229.7
825.437.825.439.023.235.720.731.817.827.516.124.9
923.534.921.833.519.830.417.526.914.923.013.420.8
1021.131.818.929.017.026.114.923.012.619.411.317.5
1118.528.316.525.314.822.712.919.810.816.69.6214.9
1216.224.714.522.312.919.911.217.39.3414.48.3012.8
1314.221.7
1412.519.1
1511.117.0
16 9.9615.2
Properties
Ag, in.
2
3.07 5.85 4.93 4.00 3.05 2.56
rz, in. 0.990 0.744 0.746 0.750 0.755 0.758
ASD LRFD
Ωc=1.67 φc=0.90
4–192 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 192

Shape
L5×3
1
/2× L5×3×
1
/4
c, f 1
/2
7 /16
3 /8
c 5
/16
c, f 1
/4
c, f
lb/ft 7.00 12.8 11.3 9.80 8.20 6.60
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
031.046.535.954.034.752.233.850.731.847.728.843.3
131.046.635.052.734.051.133.049.631.046.628.142.2
230.946.332.849.531.948.130.746.328.743.325.939.2
330.845.829.745.028.743.527.441.525.438.622.934.7
429.244.626.239.825.038.123.736.121.833.319.529.8
524.537.622.634.521.432.720.130.718.428.116.325.0
620.331.419.329.518.127.716.825.815.323.513.520.8
716.926.116.224.915.223.314.021.512.719.511.217.2
814.021.813.620.912.619.411.617.810.516.19.2214.3
911.718.211.517.710.716.49.7215.08.7413.57.6311.8
10 9.8515.39.9015.29.1214.08.2812.77.4011.46.439.93
11 8.3613.0
12 7.1811.1
Properties
Ag, in.
2
2.07 3.75 3.31 2.86 2.41 1.94
rz, in. 0.761 0.642 0.644 0.646 0.649 0.652
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–193
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L5
AISC_Part 4D:14th Ed. 2/23/11 10:44 AM Page 193

Shape
L4×4×
3
/4
5 /8
1 /2
7 /16
3 /8
5 /16
lb/ft 18.5 15.7 12.8 11.3 9.80 8.20
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 45.868.944.566.941.262.039.659.536.955.431.948.0
1 45.368.143.966.040.761.239.058.736.354.731.847.7
2 43.765.942.363.739.158.837.456.334.852.431.347.0
3 41.362.439.860.036.655.235.052.832.549.029.344.2
4 38.357.936.655.433.550.731.948.329.644.826.640.3
5 34.952.933.150.330.145.728.643.326.440.123.735.9
6 31.447.729.544.926.740.625.138.323.235.220.731.5
7 27.942.426.039.623.335.521.933.320.030.617.827.2
8 24.537.422.734.620.130.818.828.717.226.215.223.3
9 21.332.519.629.917.226.416.024.514.522.312.819.6
1018.628.416.925.814.822.613.720.912.418.910.916.6
1116.324.914.722.612.819.611.818.110.716.39.3314.3
1214.422.013.019.811.217.210.315.79.2614.28.0812.4
13 7.0610.8
Properties
Ag, in.
2
5.44 4.61 3.75 3.30 2.86 2.40
rz, in. 0.774 0.774 0.776 0.777 0.779 0.781
ASD LRFD
Ωc=1.67 φc=0.90
4–194 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
Note: Heavy line indicates KL/rzequal to or greater than 200.
L4
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 194

Shape
L4×4× L4×3
1
/2× L4×3×
1
/4
c, f 1
/2
3 /8
5 /16
1 /4
c, f 5
/8
lb/ft 6.60 11.9 9.10 7.70 6.20 13.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
022.533.850.475.747.871.935.753.624.536.839.158.8
122.333.649.774.848.072.135.653.524.436.738.658.1
222.033.047.772.048.172.935.453.023.635.437.256.2
321.231.844.667.843.366.134.351.022.333.434.452.2
419.729.640.762.337.757.935.151.021.131.529.545.0
518.227.335.053.732.249.729.746.120.429.825.038.2
616.825.028.744.325.839.923.937.221.132.921.032.2
715.222.723.636.520.732.219.029.616.626.017.526.9
813.019.919.430.016.826.115.323.813.320.814.622.4
911.016.916.124.813.721.312.419.310.816.812.318.9
10 9.2914.213.520.911.417.710.315.98.8613.810.516.1
11 7.9312.111.517.89.6815.08.6413.47.4411.6
12 6.8410.5 7.3811.46.339.86
13 5.969.10
Properties
Ag, in.
2
1.93 3.50 2.68 2.25 1.82 3.99
rz, in. 0.783 0.716 0.719 0.721 0.723 0.631
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–195
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
L4
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 195

Shape
L4×3× L3
1
/2×3
1
/2×
1
/2
3 /8
5 /16
1 /4
c, f 1
/2
7 /16
lb/ft 11.1 8.50 7.20 5.80 11.1 9.80
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
039.158.838.257.437.656.530.646.033.350.132.048.1
138.558.037.456.436.354.730.445.632.849.331.547.3
236.855.735.253.332.949.930.445.231.246.929.945.0
332.849.830.646.629.044.126.440.328.743.427.541.5
427.842.325.438.823.636.221.332.625.839.124.637.2
523.235.520.731.819.029.216.926.022.734.421.532.7
619.229.516.825.915.223.513.420.719.629.818.528.2
715.824.313.621.012.218.910.716.616.725.515.723.9
813.020.011.017.09.8315.28.5713.314.021.513.120.0
910.816.79.1314.18.0912.57.0010.911.918.211.016.9
10 9.2014.27.6811.86.7810.55.849.0410.215.59.4114.4
11 8.7813.48.1112.4
Properties
Ag, in.
2
3.25 2.49 2.09 1.69 3.25 2.89
rz, in. 0.633 0.636 0.638 0.639 0.679 0.681
ASD LRFD
Ωc=1.67 φc=0.90
4–196 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L4-L3
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 196

Shape
L3
1
/2×3
1
/2× L3
1
/2×3×
3
/8
5 /16
1 /4
c 1
/2
7 /16
3 /8
lb/ft 8.50 7.20 5.80 10.2 9.10 7.90
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
030.646.028.042.121.231.836.855.237.956.938.758.1
130.145.227.541.421.031.636.254.537.256.037.857.0
228.542.926.039.220.630.934.652.335.253.335.453.7
326.139.423.835.919.329.032.148.932.349.331.848.6
423.235.221.132.017.926.728.543.728.243.327.342.1
520.230.718.327.816.024.223.235.722.634.821.533.2
617.326.315.523.613.520.618.829.018.027.917.026.3
714.522.213.019.811.317.215.223.414.422.313.420.8
812.118.510.716.49.3014.212.319.011.618.010.816.7
910.115.58.9313.77.6911.810.215.89.5914.88.8113.6
10 8.5713.17.5411.56.469.888.6213.38.0412.47.3611.4
11 7.3611.36.459.865.508.41
Properties
Ag, in.
2
2.50 2.10 1.70 3.02 2.67 2.32
rz, in. 0.683 0.685 0.688 0.618 0.620 0.622
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–197
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 197

Shape
L3
1
/2×3× L3
1
/2×2
1
/2×
5
/16
1 /4
c 1
/2
3 /8
5 /16
1 /4
c
lb/ft 6.60 5.40 9.40 7.20 6.10 4.90
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
034.551.824.336.528.142.327.541.427.240.926.039.1
134.652.024.336.427.641.626.940.525.938.924.937.5
235.353.123.334.825.538.623.635.822.834.521.732.9
330.246.322.433.321.733.019.930.218.928.817.626.8
425.539.322.834.418.027.416.124.715.123.113.721.1
520.031.018.128.114.722.512.919.811.918.310.616.4
615.524.113.921.611.818.210.215.79.3014.38.2612.8
712.218.910.816.89.5514.78.1212.57.3311.36.449.96
8 9.6715.08.4913.27.8612.16.6110.25.939.145.177.98
9 7.8712.26.8710.7 4.246.54
10 6.5410.15.688.82
Properties
Ag, in.
2
1.95 1.58 2.77 2.12 1.79 1.45
rz, in. 0.624 0.628 0.532 0.535 0.538 0.541
ASD LRFD
Ωc=1.67 φc=0.90
4–198 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 198

Shape
L3×3×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c, f
lb/ft 9.40 8.30 7.20 6.10 4.90 3.71
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
025.338.124.336.523.234.921.732.619.429.212.719.1
124.837.323.835.722.734.121.231.919.128.712.618.9
223.235.022.233.521.131.819.729.717.726.712.218.3
321.031.719.930.218.928.517.526.515.723.711.216.7
418.327.817.326.316.324.715.022.813.420.310.015.0
515.723.814.722.413.720.912.519.111.116.98.9513.3
613.120.012.218.711.317.310.315.78.9713.77.2911.1
710.816.510.015.39.1914.18.2712.77.1711.05.838.92
8 8.9913.78.2712.67.5511.56.7510.35.808.884.687.16
9 7.5811.66.9310.66.309.645.608.574.797.323.845.86
Properties
Ag, in.
2
2.76 2.43 2.11 1.78 1.44 1.09
rz, in. 0.580 0.580 0.581 0.583 0.585 0.586
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–199
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 199

Shape
L3×2
1
/2×
1
/2
7 /16
3 /8
5 /16
1 /4
3 /16
c, f
lb/ft 8.50 7.60 6.60 5.60 4.50 3.39
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
024.837.325.538.426.139.326.740.224.236.414.722.2
124.436.725.037.625.538.425.939.024.536.714.521.7
223.235.123.535.623.735.923.635.922.033.513.720.4
321.332.521.332.520.931.920.130.818.127.913.319.5
417.426.616.925.916.325.015.423.814.021.711.918.6
513.821.213.220.412.519.311.718.010.416.18.7013.6
610.916.810.315.99.6514.98.8413.77.7712.16.4710.1
7 8.7013.48.1512.67.5611.76.8510.65.969.244.917.65
8 7.0910.96.6110.26.089.385.468.444.727.313.866.00
Properties
Ag, in.
2
2.50 2.22 1.93 1.63 1.32 1.00
rz, in. 0.516 0.516 0.517 0.518 0.520 0.521
ASD LRFD
Ωc=1.67 φc=0.90
4–200 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 200

Shape
L3×2× L2
1
/2×2
1
/2×
1
/2
3 /8
5 /16
1 /4
3 /16
c, f 1
/2
lb/ft 7.70 5.90 5.00 4.10 3.07 7.70
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
018.327.517.626.417.025.516.324.515.323.018.127.2
117.426.216.625.015.924.015.423.214.321.617.626.4
215.323.114.221.513.520.512.919.611.817.916.124.4
312.719.311.517.510.816.510.015.48.9513.714.121.4
410.215.59.0413.88.3512.87.5811.66.6110.211.918.1
5 7.9712.26.9310.66.329.725.648.694.877.539.7814.9
6 6.299.655.388.264.857.464.276.583.635.617.8512.0
7 5.087.794.286.583.845.903.355.152.814.346.389.76
8 5.288.07
Properties
Ag, in.
2
2.26 1.75 1.48 1.20 0.917 2.26
rz, in. 0.425 0.426 0.428 0.431 0.435 0.481
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–201
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L3-L2
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 201

Shape
L2
1
/2×2
1
/2× L2
1
/2×2×
3
/8
5 /16
1 /4
3 /16
c 3
/8
lb/ft 5.90 5.00 4.10 3.07 5.30
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 17.025.516.024.114.822.211.717.516.925.4
1 16.424.715.523.314.321.511.517.316.424.7
2 14.922.514.021.112.819.310.916.415.022.8
3 12.919.511.918.110.816.4 9.1613.911.918.1
4 10.616.2 9.7714.9 8.7713.4 7.3311.2 8.9413.7
5 8.5513.1 7.7611.9 6.8810.5 5.688.696.6510.2
6 6.7310.3 6.049.245.298.104.326.615.067.79
7 5.398.244.807.344.166.373.365.14
8 4.406.743.895.963.365.132.694.11
Properties
Ag, in.
2
1.73 1.46 1.19 0.901 1.55
rz, in. 0.481 0.481 0.482 0.482 0.419
ASD LRFD
Ωc=1.67 φc=0.90
4–202 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 202

Shape
L2
1
/2×2× L2
1
/2×1
1
/2×
5
/16
1 /4
3 /16
c 1
/4
3 /16
c
lb/ft 4.50 3.62 2.75 3.19 2.44
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 17.526.317.426.215.423.29.0613.68.6313.0
1 16.825.416.625.115.423.08.2712.57.8411.8
2 15.123.014.321.812.719.46.6110.16.049.21
3 11.517.710.716.4 9.5514.74.867.444.296.58
4 8.4613.0 7.6511.8 6.6310.33.435.272.954.54
5 6.189.535.498.494.677.252.503.842.113.25
6 4.647.154.076.293.415.29
7 3.144.842.614.03
Properties
Ag, in.
2
1.32 1.07 0.818 0.947 0.724
rz, in. 0.420 0.423 0.426 0.321 0.324
ASD LRFD
Ωc=1.67 φc=0.90
STEEL COMPRESSION—MEMBER SELECTION TABLES 4–203
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
1
/2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 203

Shape
L2×2×
3
/8
5 /16
1 /4
3 /16
1 /8
c, f
lb/ft 4.70 3.92 3.19 2.44 1.65
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASD LRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 11.617.511.216.810.515.89.4414.25.588.39
1 11.116.710.616.0 9.9515.08.9113.45.458.19
2 9.7014.7 9.2113.9 8.5212.97.5711.44.887.32
3 7.9312.0 7.4211.3 6.7610.35.908.984.126.16
4 6.189.425.698.695.097.784.376.673.364.95
5 4.677.144.246.483.745.713.144.812.393.64
6 3.625.543.254.972.834.332.353.591.762.67
Properties
Ag, in.
2
1.37 1.16 0.944 0.722 0.491
rz, in. 0.386 0.386 0.387 0.389 0.391
ASD LRFD
Ωc=1.67 φc=0.90
4–204 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-12 (continued)
Available Strength in
Axial Compression, kips
Eccentrically Loaded Single Angles
Fy= 36 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
z
c
Shape is slender for compression with Fy=36 ksi.
f
Shape exceeds compact limit for flexure with Fy=36 ksi.
Note: Heavy line indicates
KL/rzequal to or greater than 200.
L2
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 204

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–205
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-13
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
COMPOSITE
HSS20-HSS16
Shape
HSS20×12× HSS16×12×
5
/8
1 /2
3 /8
5 /8
1 /2
3 /8
tdesign, in. 0.581 0.465 0.349 0.581 0.465 0.349
Steel, lb/ft 127 103 78.5 110 89.7 68.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
011501730101015108651300970145084912707241090
61130170099314908501280954143083512507111070
71130169098714808451270948142083012407071060
81120168098014708391260941141082412407021050
91110166097214608321250934140081712306961040
101100165096414508251240925139081012106901030
111090163095514308171230916137080212006831020
121080162094514208081210906136079311906751010
131070160093414007981200896134078411806671000
14105015809221380788118088513307741160658987
15104015609101360777117087313107631150649974
16102015408971350766115086012907521130639959
17101015108831330754113084712707411110629944
18 99414908691300741111083312507281090619928
19 97714708551280728109081912307161070608911
20 96014408391260715107080412107031050596894
21 94214108241240701105078811806891030584877
22 92413908071210687103077311606751010572858
23 9051360791119067210107561130661992560840
24 886133077411606589867401110647970547821
25 866130075711306429647231080632948534802
26 846127073911106279407061060617925521782
27 826124072110806119176891030602902508762
28 806121070310505958936711010586879495742
29 78511806851030580869653980571856481722
30 76411506661000563845636953555832468701
32 7221080629944531797600899523785440661
34 6801020592888499748564845492737413620
36 638957555833467700528791460690386579
38 597895519778435652492738429643359539
40 556834483724404605457686398598333499
Properties
Mnx/ΩbφbMnxkip-ft 589885491738386581416626347521274412
Mny/ΩbφbMnykip-ft 401603331498260391335504279420219329
Pex(KxLx)
2
/10
4
kip-in.
2
72300 62800 52500 40300 35200 29300
Pey(KyLy)
2
/10
4
kip-in.
2
30500 26400 21900 24900 21600 18000
rmy, in. 4.93 4.99 5.04 4.80 4.86 4.91
rmx/rmy 1.54 1.54 1.55 1.27 1.28 1.28
ASD LRFD
Ωc=2.00φc=0.75
Effective length, (
KL
)
y
, with respect to weak axis (ft)
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 205

4–206 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×12× HSS16×8× HSS14×10×
5
/16
5 /8
1 /2
3 /8
5 /16
5 /8
tdesign, in. 0.291 0.581 0.465 0.349 0.291 0.581
Steel, lb/ft 57.4 93.3 76.1 58.1 48.9 93.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
066099076311406629925588375037547831180
664997373611006389575388074847267651150
764496772610906309455317964787177581140
864095971510706209315237844717067501130
963495170310506109155147714626947421110
1062894268910305988985047564536807321100
1162293367510105868794937404446667221080
126159226599895738594827234336507111070
136079116439645588384707054226346991050
145998986259385438154576864116166861030
155908866079115287924446663995986731010
16581872588883512768430645386579659988
17572858569854495743416624373560644966
18562843549824478717402602360540629943
19552828529793461691387580347520613920
20541812508763443664372558333500597896
21530796488731425638357535319479581871
22519779467700407611341512306459564846
23508761446669389584326489292438547821
24496744425638371557311467278417530795
25484726405607353530296444264397513769
26472708384577336504281422251376495743
27460689366550318478266400238356478717
28447671348523301452252378225337460691
29435652330497285427238357212318443664
30422633313471268402224336199299426638
32397595280421236355197296175263391587
34372558248373209314175262155233358537
36347520221333187280156234139208325488
38322483199299168252140210124187294440
40298447179269151227126189112168266399
Properties
Mnx/ΩbφbMnxkip-ft 235353322484270406215323185278300450
Mny/ΩbφbMnykip-ft 187281192288160241126190108162233351
Pex(KxLx)
2
/10
4
kip-in.
2
26200 29100 25700 21600 19200 24500
Pey(KyLy)
2
/10
4
kip-in.
2
16000 9060 7950 6630 5900 13900
rmy, in. 4.94 3.27 3.32 3.37 3.40 3.98
rmx/rmy 1.28 1.79 1.80 1.80 1.80 1.33
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS16-HSS14
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 206

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–207
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14×10× HSS12×10×
1
/2
3 /8
5 /16
1 /4
c, f 1
/2
3 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.465 0.349
Steel, lb/ft 76.1 58.1 48.9 39.4 69.3 53.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
06821020578867523784468701607911514772
6666998564846510765456684593889502752
7660990559839505758452677587881497746
8653980553830500750447670581872492738
9646969547820494741441662574862486729
10638957540810488732435653567851480720
11629943532798481721429643559838473709
12619929524786473709422633550825465698
13609913515773465697414621541811457686
14598897506758456684406610531796449673
15586880496744447670398597520781440660
16574862485728437656389584509764430645
17562843474712427641380570498747421631
18549823463695417626371556486729410616
19535803452677407610361542474711400600
20522782440660396593351527461692389584
21507761428641385577341511449673378567
22493740415623373560331496436653367551
23478718403604362542320480422633356534
24464695390585350525309464409613344516
25449673377565338507299448395593333499
26434650364546326490288432382573321482
27418628351527315472277416368552309464
28403605338507303454267400354532298447
29388582325488291436256384341511286429
30373560312468279419245368327491275412
32343515287430256384224337300451252378
34314471262393234350204306274412230345
36286429238357212318185277249374208313
38259388215322191286166249225337188281
40234350194291172258150224203304169254
Properties
Mnx/ΩbφbMnxkip-ft 251377199298171257141212198298157236
Mny/ΩbφbMnykip-ft 195293154231132198108163173260137206
Pex(KxLx)
2
/10
4
kip-in.
2
21600 18000 16000 14000 14500 12100
Pey(KyLy)
2
/10
4
kip-in.
2
12300 10200 9040 7860 10700 8900
rmy, in. 4.04 4.09 4.12 4.14 3.96 4.01
rmx/rmy 1.33 1.33 1.33 1.33 1.16 1.17
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
COMPOSITE
HSS14-HSS12
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 207

4–208 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×10× HSS12×8×
5
/16
1 /4
5 /8
1 /2
3 /8
1 /4
tdesign, in. 0.291 0.233 0.581 0.465 0.349 0.233
Steel, lb/ft 44.6 36.0 76.3 62.5 47.9 32.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0463695415622608913528793444666354531
6452678404606586878509763427641340510
7448671400600578866502753422632335503
8443664396594568853494741415622330495
9438656391586558837485728408611324486
10432648386578547821476714400599317476
11425638380570535803466698391586310465
12419628373560522783455682382572303454
13411617367550508763443664372558295442
14404605360539494741431646361542286429
15395593352528479718418627351526277416
16387580344516463695404607339509268402
17378567336504447671391586328492259388
18369553328492431647377565316474249374
19359539319479414622362544304456239359
20349524310465398596348522292438229344
21340509301452381571333500280420220329
22329494292438364545319478267401210314
23319479282424347520304456255383200299
24309463273409331497290434243364190285
25298447263395315474275413231346180270
26288432254381300451261391219328170255
27277416244366285429247370207310161241
28267400235352270406233350195293151227
29256384225338256385220329184276142214
30246368216324242363206310173259133200
32225338197296214321181272152228117176
34205308179269189285161241135202104156
3618627916224316925414321512018092.6139
3816725114521815222812919310816283.1125
4015122613119713720611617497.314675.0113
Properties
Mnx/ΩbφbMnxkip-ft 13520311216820230417125713620497.3146
Mny/ΩbφbMnykip-ft 11717697.014615022612619010015071.1107
Pex(KxLx)
2
/10
4
kip-in.
2
10800 9390 13600 12000 10100 7880
Pey(KyLy)
2
/10
4
kip-in.
2
7920 6890 6900 6100 5110 3940
rmy, in. 4.04 4.07 3.16 3.21 3.27 3.32
rmx/rmy 1.17 1.17 1.40 1.40 1.41 1.41
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS12
AISC_Part 4D:14th Ed. 2/23/11 10:45 AM Page 208

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–209
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×6× HSS10×8×
5
/8
1 /2
3 /8
1 /4
5 /8
1 /2
tdesign, in. 0.581 0.465 0.349 0.233 0.581 0.465
Steel, lb/ft 67.8 55.7 42.8 29.2 67.8 55.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0519778447670373560293440532799461691
6485728419628350525275412512767443665
7474712409614342513268402504756437655
8462695398597333499261391496744430645
9449675386579323484253380487730422633
10435653373559312468244367477715413620
11420631359539301451235353466699404606
12403606344517289433226339454681394591
13387581329494276414216324442663384576
14369555313470263394205308429643373559
15352529297446250375195292415623361542
16334502281422236354184276401602349524
17316474265397223334173260387580337506
18297447249374209314163244372558325487
19279420234352196294152228357537312468
20261393220330183274142213343516299449
21244366206309170255132197329495286429
22227341192288157236122183315474273410
23210316178268145218112168301453260390
24194291165248133200103154287432247371
2517826815222912318494.9142273411235352
2616524814121111417087.7132259390222333
2715323013019610515881.3122246370210315
2814221412118297.914775.6113233349198296
2913319911317091.213770.5106219330186279
3012418610615985.312865.998.8207311174262
3210916492.914074.911257.986.8182274154231
3496.414582.212466.499.651.376.9161242136205
3686.012973.411059.288.845.768.6144216121183
3877.211665.899.053.179.741.161.6129194109164
40 59.489.348.071.937.155.611617598.4148
Properties
Mnx/ΩbφbMnxkip-ft 16825314321511417182.2124152229129194
Mny/ΩbφbMnykip-ft 10115185.012867.810248.272.5129194109164
Pex(KxLx)
2
/10
4
kip-in.
2
10800 9520 8120 6330 8440 7480
Pey(KyLy)
2
/10
4
kip-in.
2
3380 2980 2520 1950 5820 5140
rmy, in. 2.39 2.44 2.49 2.54 3.09 3.14
rmx/rmy 1.79 1.79 1.80 1.80 1.20 1.21
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS12-HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 209

4–210 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×8× HSS10×6×
3
/8
5 /16
1 /4
3 /16
5 /8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.581 0.465
Steel, lb/ft 42.8 36.1 29.2 22.2 59.3 48.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0387580347520307460265397452679388583
6372558334500295442254381424637363545
7367550329493291436250376414623354531
8361542324486286429246369403606345517
9355532318477281421241362391588334501
10348521311467275412236354378569322483
11340510304457268403231346365548310464
12332497297445262393225337350526297445
13323484289434255382218328335504283425
14314470281421247371212318319480269404
15304456272408239359205307303456255382
16294441263395231347198297287432241362
17284426254381223335190286271407228342
18274410245367215322183274255383215323
19263394235353206309175263239359202303
20252378225338198296168252223335189284
21241362216324189283160240207311176265
22231346206309180270152229192288164246
23220330196294171257145217177266152228
24209313187280163244137206163245140210
25198297177265154231130195150225129194
26188282167251146219122184139208119179
27177266158237138206115173129193110166
28167251149224129194108162120180103154
2915723614021012218210115211116895.7144
3014822113119711417194.614210415789.4134
3213019511517399.915083.112591.513878.6118
3411517210215388.513373.711081.112269.6105
3610315491.213779.011865.798.572.310962.193.3
3892.013881.912370.910659.088.464.997.655.783.8
4083.012573.911164.095.953.279.8
Properties
Mnx/ΩbφbMnxkip-ft 10315488.513373.611157.586.4125187106159
Mny/ΩbφbMnykip-ft 86.913174.811262.193.348.272.485.612972.7109
Pex(KxLx)
2
/10
4
kip-in.
2
6340 5660 4910 4100 6600 5860
Pey(KyLy)
2
/10
4
kip-in.
2
4360 3880 3360 2800 2810 2500
rmy, in. 3.19 3.22 3.25 3.28 2.34 2.39
rmx/rmy 1.21 1.21 1.21 1.21 1.53 1.53
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 210

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–211
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×6× HSS10×5×
3
/8
5 /16
1 /4
3 /16
3 /8
5 /16
tdesign, in. 0.349 0.291 0.233 0.174 0.349 0.291
Steel, lb/ft 37.7 31.8 25.8 19.6 35.1 29.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0323484288432253379216324290435259388
6302453270405237355202303264397236354
7295443264395231347197295256384228342
8287431256385225337191287246369219329
9278418249373218327185278235353210315
10269403240360210315179268224336200300
11259388231347202303172257212318190284
12248372222333194291164246200300179268
13237355212318185278157235187281168252
14225338202303176264149223175262156235
15214321191287167250141211162243145218
16202303181271158236133199150224134201
17190285170255148222125187137206123185
18178268160240139208116175126190113169
19167250149224130195109163116174103154
2015523313920912118110115110615992.6139
2114421612919411216893.214096.214584.0126
2213320011917910315585.812987.613276.5115
2312218311016595.014278.611880.212170.0105
2411216910115187.213172.210873.611164.396.5
2510415593.013980.412166.599.867.910259.388.9
2695.714486.012974.311161.592.362.794.354.882.2
2788.813379.712068.910357.085.658.287.550.876.2
2882.512474.111164.196.153.079.654.181.347.270.9
2976.911669.110459.789.649.474.250.475.844.066.1
3071.910864.696.955.883.746.269.347.170.841.261.7
3263.294.956.785.149.173.640.660.941.462.336.254.3
3456.084.050.375.443.565.236.054.036.755.232.048.1
3649.975.044.867.338.858.132.148.1
3844.867.340.260.434.852.228.843.2
4040.460.736.354.531.447.126.039.0
Properties
Mnx/ΩbφbMnxkip-ft 85.212873.711161.692.648.372.676.211566.299.5
Mny/ΩbφbMnykip-ft 58.187.450.075.241.662.632.448.745.468.239.258.9
Pex(KxLx)
2
/10
4
kip-in.
2
5020 4530 3920 3270 4320 3930
Pey(KyLy)
2
/10
4
kip-in.
2
2130 1910 1650 1370 1350 1220
rmy, in. 2.44 2.47 2.49 2.52 2.05 2.07
rmx/rmy 1.54 1.54 1.54 1.54 1.79 1.79
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 211

4–212 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×5× HSS9×7×
1
/4
3 /16
5 /8
1 /2
3 /8
5 /16
tdesign, in. 0.233 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 24.1 18.4 59.3 48.9 37.7 31.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0226339192288454682393590328492293440
6206309174261431647374561312468279418
7199299168253423636367550306459274411
8192287162243414623359539300450268402
9183275155232405609351526293439262393
10175262147221395593341512285428255383
11165248139209384577331497277416248372
12156234131196372559320481268402240360
13146219123184360541309464259389232348
14136205114171347521297446250374223335
15127190106159334501285428240359214322
1611717597.4146320481273410230344205308
1710716189.2134306460260391219329196294
1898.214781.3122292439248372209313187280
1989.313473.6110278417235353198297177266
2080.612166.599.7263396222334188282168252
2173.111060.390.4249375210315177266159238
2266.699.954.982.4235353198298167251150224
2361.091.450.375.4221333187281157235140211
2456.084.046.269.2208312176264147220132197
2551.677.442.563.8194292165248137206123184
2647.771.639.359.0182273154232128192114172
2744.266.436.554.7169253144217118178106159
2841.161.733.950.915723613420111016598.7148
2938.357.531.647.414622012518810315492.0138
3035.853.729.544.313720511717595.914486.0129
3231.547.226.038.912018010315484.312675.5113
3427.941.823.034.510616090.813774.711266.9100
36 94.914381.012266.699.959.789.5
38 85.112872.710959.889.753.680.4
40 76.811565.698.754.080.948.472.5
Properties
Mnx/ΩbφbMnxkip-ft 55.383.143.665.511717699.715079.912069.1104
Mny/ΩbφbMnykip-ft 32.749.125.438.197.514782.812466.199.457.185.9
Pex(KxLx)
2
/10
4
kip-in.
2
3430 2860 5690 5080 4330 3880
Pey(KyLy)
2
/10
4
kip-in.
2
1060 873 3740 3320 2840 2540
rmy, in. 2.10 2.13 2.68 2.73 2.78 2.81
rmx/rmy 1.80 1.81 1.23 1.24 1.23 1.24
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10-HSS9
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 212

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–213
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×5×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0386580322483267400238357208311176264
6351527292439243364216325189284160240
7339510283425235352209314183274154231
8326490272409225338201302176264148222
9312468261392216323193289168252142212
10297446249374205308183275160240135202
11281422236355194291174260151227127191
12264397223335183274163245143214120180
13247372210315171257153230134201112168
14230346196294159239143214125187104156
1521432118227414822113219911617396.4145
1619729616925313620412218310716088.8133
1718027115523312518811216897.814781.3122
1816524714221411517310215489.313474.1111
1914922413019510615993.014081.112267.0100
2013520211717796.514583.912673.111060.590.7
2112218410716087.513176.111466.399.554.882.3
2211116797.114679.712069.410460.490.750.075.0
2310215388.813472.911063.595.255.382.945.768.6
2493.514181.612367.010158.387.450.876.242.063.0
2586.213075.211361.792.853.780.646.870.238.758.0
2679.712069.510457.185.849.774.543.364.935.853.7
2773.911164.596.952.979.546.169.140.160.233.249.8
2868.710359.990.149.274.042.864.237.356.030.846.3
2964.196.355.984.045.969.039.959.934.852.228.843.1
3059.990.052.278.542.964.437.356.032.548.826.940.3
3252.679.145.969.037.756.632.849.228.642.923.635.4
34 29.043.625.338.020.931.4
Properties
Mnx/ΩbφbMnxkip-ft 92.814079.411964.196.455.783.746.770.236.655.0
Mny/ΩbφbMnykip-ft 60.090.251.577.441.562.435.853.829.844.723.335.0
Pex(KxLx)
2
/10
4
kip-in.
2
4270 3840 3280 2960 2600 2160
Pey(KyLy)
2
/10
4
kip-in.
2
1600 1430 1220 1100 961 794
rmy, in. 1.92 1.97 2.03 2.05 2.08 2.10
rmx/rmy 1.63 1.64 1.64 1.64 1.64 1.65
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS9
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 213

4–214 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×6×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0386580327491272408243364213319181271
6360542305458254381227340199298169253
7352529298446248372221332194291164247
8342514289433241361215323188283160240
9331498280419233350208313182274155232
10320480269404225337201302176264149223
11307462259388216324193290169254143214
12294442247371207310185278162243137205
13281422236354197296177265155232130195
14267401225337187281168252147220124185
15253380213320177266159239139208117175
16238358202303167251150225131197110165
17224337190285157236141212123185103155
1821031517826814722113219811517396.4145
1919629416725113720612318510716189.7135
2018227315623412719111417299.815083.1125
2116825314421711817710615992.413976.8115
2215523313420110916397.814785.112870.6106
2314221412318510015089.613478.011764.696.9
2413119611317092.113882.312371.710759.389.0
2512018110415784.912875.911466.099.154.782.0
2611116796.414578.511870.110561.191.650.575.8
2710315589.413472.810965.097.656.684.946.970.3
2896.014483.112567.610260.590.752.679.043.665.4
2989.513577.511663.194.856.484.649.173.640.660.9
3083.712672.410958.988.652.779.045.968.838.056.9
3273.511163.695.751.877.846.369.540.360.533.450.1
3465.197.956.484.745.969.041.061.535.753.629.644.3
3658.187.350.375.640.961.536.654.931.847.826.439.5
38 45.167.836.755.232.849.328.642.923.735.5
40 29.644.525.838.721.432.0
Properties
Mnx/ΩbφbMnxkip-ft 87.013174.511260.090.252.078.143.465.334.251.4
Mny/ΩbφbMnykip-ft 70.510660.290.448.673.041.963.035.052.627.441.2
Pex(KxLx)
2
/10
4
kip-in.
2
3650 3270 2790 2520 2200 1830
Pey(KyLy)
2
/10
4
kip-in.
2
2260 2020 1730 1560 1360 1120
rmy, in. 2.27 2.32 2.38 2.40 2.43 2.46
rmx/rmy 1.27 1.27 1.27 1.27 1.27 1.28
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS8
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 214

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–215
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×4×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 42.3 35.2 27.5 23.3 19.0 14.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0322484268403215323191286166249139209
6277416232349185278165247143215120180
7262393221332176264157235136204114171
8246369208313165248147221128192107161
9228343194292154232138206120180100150
1021131718027114421612719111116692.7139
1119329016624913320011717510215385.2128
1217526315122712218310716093.013977.6116
1315723613720611116796.314484.112670.2105
1414021112318510015186.713075.511362.994.3
1512418611016590.113578.011767.210155.983.9
1610916396.614580.112069.610559.288.849.373.9
1796.414585.612971.010761.792.752.478.743.665.5
1885.912976.411563.395.155.082.746.870.238.958.4
1977.111668.510356.885.449.474.242.063.034.952.4
2069.610561.993.051.377.144.667.037.956.831.547.3
2163.194.956.184.346.569.940.460.834.451.528.642.9
2257.586.551.176.842.463.736.855.431.347.026.139.1
2352.679.146.870.338.858.333.750.728.643.023.835.8
2448.372.743.064.635.653.531.046.526.339.521.932.8
2544.667.039.659.532.849.328.542.924.236.420.230.3
26 36.655.030.345.626.439.622.433.618.728.0
27 24.536.820.831.217.325.9
28 16.124.1
Properties
Mnx/ΩbφbMnxkip-ft 65.598.456.885.446.369.640.260.533.950.926.740.1
Mny/ΩbφbMnykip-ft 39.158.733.951.027.641.524.036.120.130.215.723.6
Pex(KxLx)
2
/10
4
kip-in.
2
2570 2330 2010 1820 1610 1350
Pey(KyLy)
2
/10
4
kip-in.
2
800 727 628 568 498 414
rmy, in. 1.51 1.56 1.61 1.63 1.66 1.69
rmx/rmy 1.79 1.79 1.79 1.79 1.80 1.81
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS8
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 215

4–216 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×5×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c, f
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 35.2 27.5 23.3 19.0 14.5 9.86
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0268403220330196294171256144216117175
6244366200299178267155233131196105158
7236354193289172257150225126189102152
822634018527716524714421612118197.3146
921632517626415723613720611517392.7139
1020630916725114922413119611016487.7132
1119529215823714121212318510315582.6124
1218327514822213319911617497.114677.3116
1317125713820812418610816390.713672.0108
1415924012919311517310115184.212666.699.9
1514822211917910716093.314077.811761.391.9
1613620411016697.914785.912971.510756.184.1
1712518710115389.613478.611865.397.951.076.5
1811317193.014081.512271.510759.389.046.169.2
1910315484.812773.511064.697.053.580.241.462.1
2092.713976.811566.499.958.387.548.372.437.456.0
2184.112669.610560.390.652.979.443.865.733.950.8
2276.611563.495.454.982.548.272.339.959.830.946.3
2370.110558.087.250.275.544.166.236.554.728.342.4
2464.496.853.380.146.169.440.560.833.550.325.938.9
2559.389.249.173.842.563.937.356.030.946.323.935.9
2654.982.545.468.339.359.134.551.828.642.822.133.2
2750.976.542.163.336.554.832.048.026.539.720.530.8
2847.371.139.258.933.951.029.844.624.636.919.128.6
2944.166.336.554.931.647.527.741.623.034.417.826.7
3041.261.934.151.329.544.425.938.921.532.216.624.9
32 30.045.126.039.022.834.218.928.314.621.9
34 16.725.112.919.4
Properties
Mnx/ΩbφbMnxkip-ft 53.079.743.164.837.456.331.547.324.837.217.626.5
Mny/ΩbφbMnykip-ft 41.462.333.550.429.243.924.436.719.228.813.520.2
Pex(KxLx)
2
/10
4
kip-in.
2
1960 1690 1530 1350 1120 872
Pey(KyLy)
2
/10
4
kip-in.
2
1120 967 872 766 634 491
rmy, in. 1.91 1.97 1.99 2.02 2.05 2.07
rmx/rmy 1.32 1.32 1.32 1.33 1.33 1.33
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 216

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–217
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c, f
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
024336519329017225814922312518799.9150
620931416624914822212919310816185.7128
719829815723614021012218310215381.0122
818628014822213219811517295.914476.0114
917426113820812318410716189.413470.7106
1016024112919311417099.114982.712465.297.7
1114722111917810415690.913675.911459.689.4
1213420110816394.714282.812469.010454.081.0
1312118198.414885.712974.811262.393.548.572.8
1410816288.613377.511667.010055.883.643.264.9
1595.614479.211969.510459.589.349.574.238.157.2
1684.112670.010561.892.952.478.643.565.333.550.3
1774.511262.093.254.882.346.469.638.657.929.744.5
1866.499.955.383.248.973.441.462.134.451.626.539.7
1959.689.649.774.643.865.937.255.830.946.323.835.7
2053.880.944.867.439.659.533.550.327.941.821.532.2
2148.873.440.761.135.953.930.445.625.337.919.529.2
2244.566.837.055.732.749.227.741.623.034.517.726.6
2340.761.233.950.929.945.025.438.021.131.616.224.3
2437.456.231.146.827.541.323.334.919.429.014.922.3
2534.451.828.743.125.338.121.532.217.826.813.720.6
26 26.539.923.435.219.829.816.524.712.719.0
27 18.427.615.322.911.817.7
28 10.916.4
Properties
Mnx/ΩbφbMnxkip-ft 45.368.137.055.732.548.927.341.021.632.515.423.2
Mny/ΩbφbMnykip-ft 29.944.924.536.821.432.218.027.014.121.29.9314.9
Pex(KxLx)
2
/10
4
kip-in.
2
1620 1410 1280 1130 946 735
Pey(KyLy)
2
/10
4
kip-in.
2
637 553 501 440 366 282
rmy, in. 1.53 1.58 1.61 1.64 1.66 1.69
rmx/rmy 1.59 1.60 1.60 1.60 1.61 1.61
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7
AISC_Part 4D:14th Ed. 2/23/11 10:46 AM Page 217

4–218 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×5×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0243365197295175263152228128192103155
1242364196294175262152228128192103155
2240361195292173260151226127190102153
3237356192288171256149223125187101151
423234918828216725114621912318498.6148
522634018327516324514221312017996.1144
622033017826715823813820711617493.1140
721231817125715322913320011216889.6134
820330516424614722012819210716185.8129
919429115623514021012218310215381.7122
1018427614822213319911617497.014677.3116
1117426114021012518810916491.513772.7109
1216324513119611717610315485.812968.0102
1315222812218310916495.714480.112063.394.9
1414121211317010115288.913374.311158.587.7
1513019610515893.614082.012368.510353.880.6
1611917996.714585.812975.311362.994.349.173.7
1710916488.713378.311768.810357.386.044.667.0
1898.914980.912271.010762.593.852.078.040.360.5
1989.113473.311064.296.656.384.546.870.336.254.3
2080.412166.299.558.087.250.876.342.363.432.749.0
2172.911060.090.252.779.146.169.238.357.529.644.4
2266.499.954.782.248.072.142.063.034.952.427.040.5
2360.891.450.075.243.966.038.457.732.047.924.737.0
2455.883.946.069.140.360.635.353.029.444.022.734.0
2551.577.342.463.737.255.832.548.827.140.620.931.4
2647.671.539.258.934.351.630.145.125.037.519.329.0
2744.166.336.354.631.947.927.941.823.234.817.926.9
2841.061.633.850.829.644.525.938.921.632.316.725.0
2938.257.531.547.327.641.524.236.320.130.215.523.3
3035.753.729.444.225.838.822.633.918.828.214.521.8
Properties
Mnx/ΩbφbMnxkip-ft 41.462.233.850.829.544.324.837.319.629.513.921.0
Mny/ΩbφbMnykip-ft 36.454.729.644.525.838.721.732.617.125.712.118.2
Pex(KxLx)
2
/10
4
kip-in.
2
1310 1130 1030 905 755 584
Pey(KyLy)
2
/10
4
kip-in.
2
968 838 758 668 555 429
rmy, in. 1.87 1.92 1.95 1.98 2.01 2.03
rmx/rmy 1.16 1.16 1.17 1.16 1.17 1.17
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 218

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–219
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 28.4 22.4 19.1 15.6 12.0 8.16
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
021732617225815222913219811016688.2132
121632517125615222813219711016587.8132
221332116925315022513019510916386.7130
320931416524814722012719110616084.8127
420330516024014221412418510315582.3123
519529315423113720611917899.614979.2119
618627914722113119611417095.114375.5113
717626414021012418610816190.113571.4107
816524813219811617410115284.612766.9100
915323012318510816294.114178.811862.193.2
1014121211417199.715086.913072.810957.285.8
1112919410515791.213779.611966.710052.278.4
1211717695.314382.912572.310860.691.047.370.9
1310515886.112975.211365.197.754.682.042.463.7
1493.314077.211667.710258.287.248.873.237.856.6
1582.312468.710360.591.051.577.343.364.933.249.9
1672.310960.591.053.580.545.468.338.057.029.243.8
1764.096.253.680.647.471.340.360.533.750.525.938.8
1857.185.947.871.942.363.635.954.030.045.123.134.6
1951.377.142.964.538.057.132.248.427.040.420.731.1
2046.369.538.758.234.351.529.143.724.336.518.728.0
2142.063.135.152.831.146.726.439.722.133.117.025.4
2238.257.532.048.128.342.624.036.120.130.215.523.2
2335.052.629.344.025.938.922.033.118.427.614.121.2
2432.148.326.940.423.835.820.230.416.925.313.019.5
2529.644.524.837.321.933.018.628.015.623.412.017.9
26 20.330.517.225.914.421.611.116.6
27 13.420.010.315.4
Properties
Mnx/ΩbφbMnxkip-ft 35.052.629.043.625.438.221.432.116.925.512.118.2
Mny/ΩbφbMnykip-ft 26.139.221.532.318.828.215.823.812.518.88.8513.3
Pex(KxLx)
2
/10
4
kip-in.
2
1070 935 849 752 634 489
Pey(KyLy)
2
/10
4
kip-in.
2
546 475 433 380 320 246
rmy, in. 1.50 1.55 1.58 1.61 1.63 1.66
rmx/rmy 1.40 1.40 1.40 1.41 1.41 1.41
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 219

4–220 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815122713019511216892.813973.1110
119028615022512919311116792.213872.6109
218627914722112618910916390.213571.0107
317926814221312118210515787.113168.5103
416925413520311617499.815082.812465.197.6
515823712619010916393.514077.711761.091.5
614521811717610115186.312971.910856.384.4
713119710716092.213978.511865.598.351.276.8
811717696.014483.212570.410658.988.345.968.9
910215485.112874.111162.493.852.278.340.660.9
1088.413374.411265.097.855.282.945.668.435.453.0
1175.211364.196.456.384.748.172.339.358.930.445.5
1263.295.054.481.748.072.241.462.333.349.925.738.5
1353.880.946.369.640.961.535.353.128.442.521.932.8
1446.469.839.960.035.353.030.445.724.436.718.828.3
1540.460.834.852.330.746.226.539.921.331.916.424.6
1635.553.430.646.027.040.623.335.018.728.114.421.6
1731.547.327.140.723.936.020.631.016.624.912.819.2
1828.142.224.236.321.432.118.427.714.822.211.417.1
19 21.732.619.228.816.524.813.319.910.215.3
20 14.922.412.018.09.2313.9
21 8.3812.6
Properties
Mnx/ΩbφbMnxkip-ft 28.843.323.936.021.131.717.926.914.221.410.215.4
Mny/ΩbφbMnykip-ft 17.125.714.321.512.618.910.616.08.4512.76.009.01
Pex(KxLx)
2
/10
4
kip-in.
2
833 736 673 597 507 395
Pey(KyLy)
2
/10
4
kip-in.
2
260 230 210 186 157 121
rmy, in. 1.12 1.17 1.19 1.22 1.25 1.27
rmx/rmy 1.79 1.79 1.79 1.79 1.80 1.81
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 220

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–221
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815122713320011517396.214476.5115
119128615022613319911517295.814476.2114
218828314822313119611317094.614275.2113
318427614521812819211116792.613973.5110
417826814121212418610816289.913571.3107
517125713620411917910415586.513068.5103
616324413019511417098.814882.512465.397.9
715323012318510716193.414078.111761.792.5
814321511517310015087.613173.211057.786.6
913219910716293.114081.412268.110253.680.3
1012218399.314985.712975.011262.894.249.373.9
1111016690.913778.611868.510357.486.244.967.4
1299.515082.512471.610862.093.052.178.140.660.9
1388.813374.311264.697.255.683.446.870.236.354.5
1478.611866.499.757.987.049.574.241.762.632.348.4
1568.710358.788.351.477.343.765.736.855.228.342.5
1660.490.851.677.645.368.038.658.032.448.524.937.4
1753.580.445.768.740.160.334.251.428.743.022.133.1
1847.771.740.861.335.853.730.545.825.638.419.729.5
1942.864.436.655.032.148.227.441.122.934.417.726.5
2038.758.133.049.729.043.524.737.120.731.115.923.9
2135.152.730.045.026.339.522.433.718.828.214.521.7
2231.948.027.341.023.936.020.430.717.125.713.219.8
2329.243.925.037.521.932.918.728.115.723.512.118.1
2426.840.422.934.520.130.217.225.814.421.611.116.6
25 21.131.818.527.915.823.813.319.910.215.3
26 14.622.012.318.49.4314.1
27 8.7513.1
Properties
Mnx/ΩbφbMnxkip-ft 26.039.121.732.619.028.616.124.212.819.29.1713.8
Mny/ΩbφbMnykip-ft 22.233.318.427.716.224.313.720.510.816.37.7311.6
Pex(KxLx)
2
/10
4
kip-in.
2
658 579 527 468 397 306
Pey(KyLy)
2
/10
4
kip-in.
2
456 400 363 322 272 209
rmy, in. 1.46 1.52 1.54 1.57 1.60 1.62
rmx/rmy 1.20 1.20 1.20 1.21 1.21 1.21
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 221

4–222 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016624913219811317097.014580.312063.194.7
116424713119611216996.214479.712062.794.0
216024112819211016594.114178.011761.391.9
315423212318510615990.713675.211359.188.6
414621911717610115286.012971.410756.184.1
513520310916494.614280.412166.910052.578.7
612418610115187.513274.111161.792.648.472.6
711116791.413779.812067.310156.184.243.965.9
898.414881.712371.810860.190.250.375.439.359.0
985.712972.010863.795.753.380.244.466.634.752.0
1073.411062.593.955.783.746.870.438.758.030.145.2
1161.792.753.480.348.072.140.661.033.249.825.838.7
1251.877.945.067.740.761.134.652.028.042.021.832.7
1344.266.438.457.734.752.129.544.323.935.818.527.8
1438.157.233.149.729.944.925.438.220.630.916.024.0
1533.249.928.843.326.039.122.133.317.926.913.920.9
1629.243.825.338.122.934.419.529.215.823.612.218.4
1725.838.822.433.720.330.517.225.914.020.910.816.3
1823.034.620.030.118.127.215.423.112.518.79.6814.5
19 18.027.016.224.413.820.711.216.88.6813.0
20 10.115.17.8411.8
Properties
Mnx/ΩbφbMnxkip-ft 20.931.517.726.515.623.513.319.910.616.07.6511.5
Mny/ΩbφbMnykip-ft 14.321.512.118.210.716.19.1113.77.2610.95.197.80
Pex(KxLx)
2
/10
4
kip-in.
2
503 450 413 367 313 245
Pey(KyLy)
2
/10
4
kip-in.
2
214 192 176 157 132 103
rmy, in. 1.09 1.14 1.17 1.19 1.22 1.25
rmx/rmy 1.53 1.53 1.53 1.53 1.54 1.54
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 222

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–223
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×2
1
/2× HSS4×3×
1
/4
3 /16
1 /8
3 /8
5 /16
1 /4
tdesign, in. 0.233 0.174 0.116 0.349 0.291 0.233
Steel, lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
087.813272.410956.384.511316997.014682.1123
186.913071.710755.783.611216896.214581.4122
284.112669.510454.081.110916494.114179.5119
379.812066.098.951.377.010515890.613676.5115
474.011161.392.047.771.699.314985.912972.4109
567.810255.983.843.565.392.513980.212167.5101
661.091.749.974.838.958.384.912873.811161.993.0
753.880.843.665.434.051.076.611566.910056.384.7
846.569.837.356.029.143.768.110259.789.750.676.0
939.459.231.347.024.436.759.689.652.478.844.767.2
1032.749.226.239.320.130.151.377.145.468.239.058.6
1127.040.621.632.516.624.943.565.338.758.233.550.4
1222.734.118.227.313.920.936.554.932.649.028.442.7
1319.429.115.523.311.917.831.146.827.841.724.236.3
1416.725.113.420.110.215.426.840.323.936.020.931.3
1514.521.911.617.58.9113.423.435.120.931.318.227.3
1612.819.210.215.47.8411.820.530.918.327.516.024.0
17 9.0613.66.9410.418.227.416.224.414.121.3
18 16.224.414.521.812.619.0
19 11.317.0
Properties
Mnx/ΩbφbMnxkip-ft 11.917.89.5014.36.8910.412.218.410.916.39.3014.0
Mny/ΩbφbMnykip-ft 7.0610.65.658.504.066.109.9114.98.8213.37.5411.3
Pex(KxLx)
2
/10
4
kip-in.
2
317 271 214 248 229 205
Pey(KyLy)
2
/10
4
kip-in.
2
99.3 84.3 65.9 153 142 127
rmy, in. 0.999 1.02 1.05 1.11 1.13 1.16
rmx/rmy 1.79 1.79 1.80 1.27 1.27 1.27
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5-HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 223

4–224 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×3× HSS4×2
1
/2×
3
/16
1 /8
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.174 0.116 0.349 0.291 0.233 0.174
Steel, lb/ft 8.15 5.61 13.4 11.6 9.66 7.51
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
067.910253.179.7103155.089.013473.611160.791.0
167.410152.779.110215388.013272.810960.090.1
265.998.951.577.398.414885.212870.610658.187.2
363.595.249.674.493.014080.712167.110155.182.7
460.290.347.170.685.812974.811262.493.851.176.7
556.284.344.065.977.511667.910256.985.646.469.6
651.777.540.560.768.410360.390.650.976.541.361.9
746.870.336.755.058.988.652.478.844.567.035.953.9
841.862.732.749.149.774.744.667.038.257.430.645.9
936.755.128.843.240.961.537.155.732.148.325.938.9
1031.847.724.937.433.249.930.245.426.439.721.532.3
1127.140.721.331.927.441.225.037.621.832.817.726.7
1223.034.617.926.823.034.621.031.618.327.514.922.4
1319.629.415.222.919.629.517.926.915.623.512.719.1
1416.925.413.119.716.925.415.423.213.520.210.916.5
1514.722.111.417.214.722.213.420.211.717.69.5414.3
1612.919.410.115.1 10.315.58.3812.6
1711.517.28.9113.4
1810.215.47.9511.9
199.1713.87.1410.7
20 6.449.66
Properties
Mnx/ΩbφbMnxkip-ft 7.4711.25.428.1510.716.09.5414.38.2212.46.6210.0
Mny/ΩbφbMnykip-ft 6.049.084.356.547.5411.36.7610.25.828.754.697.05
Pex(KxLx)
2
/10
4
kip-in.
2
174 137 210 195 175 150
Pey(KyLy)
2
/10
4
kip-in.
2
108 84.6 95.5 88.8 80.0 68.3
rmy, in. 1.19 1.21 0.922 0.947 0.973 0.999
rmx/rmy 1.27 1.27 1.48 1.48 1.48 1.48
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 224

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–225
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×2
1
/2× HSS4×2×
1
/8
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.116 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 5.18 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
047.270.893.414081.012267.210153.780.541.261.8
146.770.091.713879.612066.199.452.879.240.660.8
245.267.886.813075.611463.094.850.275.438.658.0
342.964.379.211969.510458.287.546.369.435.753.5
439.859.769.710561.792.752.178.241.261.831.947.8
536.254.359.289.052.979.545.167.835.853.827.641.4
632.248.448.472.843.965.937.856.930.445.623.234.8
728.142.138.257.535.152.830.746.225.037.518.828.2
824.036.029.444.227.341.024.136.319.929.914.822.2
920.030.023.234.921.532.419.128.715.723.711.717.5
1016.424.618.828.317.426.215.523.212.819.29.4614.2
1113.520.315.523.414.421.712.819.210.515.87.8211.7
1211.417.113.119.612.118.210.716.18.8613.36.579.85
139.6914.5 7.5511.35.608.39
148.3612.5
157.2810.9
166.409.60
175.678.50
Properties
Mnx/ΩbφbMnxkip-ft 4.827.249.1013.78.2012.37.1110.75.778.674.236.35
Mny/ΩbφbMnykip-ft 3.385.085.408.124.897.364.256.383.435.162.503.75
Pex(KxLx)
2
/10
4
kip-in.
2
119 172 161 146 125 100
Pey(KyLy)
2
/10
4
kip-in.
2
53.8 53.3 50.2 45.6 39.1 31.1
rmy, in. 1.03 0.729 0.754 0.779 0.804 0.830
rmx/rmy 1.49 1.80 1.79 1.79 1.79 1.79
ASD LRFD
Ωc=2.00φc=0.75
Table 4-13 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 225

4–226 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS20×12× HSS16×12×
5
/8
1 /2
3 /8
5 /8
1 /2
3 /8
tdesign, in. 0.581 0.465 0.349 0.581 0.465 0.349
Steel, lb/ft 127 103 78.5 110 89.7 68.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0124018601100165095814401040156092013807971200
6122018301080162094014101020153090413607831170
7121018101070161093414001010152089813507771170
8120018001070160092713901010151089113407711160
911901790106015809191380998150088313307651150
1011801770105015709101370988148087513107571140
1111701750104015509001350978147086613007491120
1211601730102015408901330967145085612807401110
1311401710101015208791320955143084612707311100
141130169099915008671300943141083412507201080
151110167098514808541280929139082212307101060
161100164097014508411260915137081012106981050
171080162095414308261240901135079611906871030
181060159093814108121220885133078311706741010
19104015609211380797119086913007681150661992
20102015309041360781117085312807541130648972
21100015008861330765115083612507381110635952
22 98214708681300748112081812307231080621931
23 96114408491270731110080012007071060606910
24 94014108291240714107078211706901040592888
25 91813808101210696104076411506741010577865
26 8961340790118067810207451120657985562843
27 874131077011506609907261090640959547820
28 851128074911206429637061060622933531797
29 828124072910906249356871030605907516774
30 805121070810606059086671000587881500751
32 75911406661000568852628941552828469704
34 7121070625937531796588882517775438657
36 666999583875494741549824482723408612
38 621931543814458688511766448672378566
40 576864503754423635473709414621348522
Properties
Mnx/ΩbφbMnxkip-ft 599901500752394593423636353530279419
Mny/ΩbφbMnykip-ft 405609335503263395339509283425222334
Pex(KxLx)
2
/10
4
kip-in.
2
74500 64900 54700 41400 36300 30400
Pey(KyLy)
2
/10
4
kip-in.
2
31200 27100 22600 25500 22200 18600
rmy, in. 4.93 4.99 5.04 4.80 4.86 4.91
rmx/rmy 1.55 1.55 1.56 1.27 1.28 1.28
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
COMPOSITE
HSS20-HSS16
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 226

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–227
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×12× HSS16×8× HSS14×10×
5
/16
5 /8
1 /2
3 /8
5 /16
5 /8
tdesign, in. 0.291 0.581 0.465 0.349 0.291 0.581
Steel, lb/ft 57.4 93.3 76.1 58.1 48.9 93.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 7351100806121070710606059085518278321250
6 7211080776116068110205828735307958111220
7 7161070765115067110105748615227838031200
8 710107075311306619915658485147717951190
9 704106074011106499745558325047577851180
10697105072510906369545448164947417751160
11689103070910606229345327974837247631150
12681102069210406089115197784717067511130
13672101067410105928885057574586877381110
146629936559835758634907364456677241090
156529786369535588374757134316467091060
166419626159235408104606904166256941040
176309455948915227834446664026026781020
18618928573859503754428641387580661992
19606909551826484726411616371557644967
20594891528793464697394591356534627940
21581871506759445667377566340510609914
22568852484725425638360540324487591886
23554832461692406608343515309463572858
24541811439658386579326490293440554830
25527790417625367550310464278417535802
26513769395592348521293440263394516774
27498747373560329493277415248372497745
28484726352528310465261392234351478717
29469704332498292438246368220329459689
30455682313471275412230345205308440661
32426639280421241362202303181271403605
34397595248373214321179269160240368551
36368552221333191286160240143214333499
38340510199299171257143215128192299449
40313470179269154232129194116173270405
Properties
Mnx/ΩbφbMnxkip-ft 239359327492275413219329189284304457
Mny/ΩbφbMnykip-ft 190285193291162243127191109164236355
Pex(KxLx)
2
/10
4
kip-in.
2
27300 29700 26400 22300 20000 25000
Pey(KyLy)
2
/10
4
kip-in.
2
16600 9200 8110 6800 6070 14200
rmy, in. 4.94 3.27 3.32 3.37 3.40 3.98
rmx/rmy 1.28 1.80 1.80 1.81 1.82 1.33
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS16-HSS14
Fy= 46 ksi
f′
c= 5 ksi
AISC_Part 4D:14th Ed. 2/23/11 10:47 AM Page 227

4–228 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14×10× HSS12×10×
1
/2
3 /8
5 /16
1 /4
c, f 1
/2
3 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.465 0.349
Steel, lb/ft 76.1 58.1 48.9 39.4 69.3 53.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
07321100631946577865522784650975559838
67141070614922561842508762633950544817
77071060609913556834503755627941539809
87001050602903550825497746621931533800
96921040595892543814491736613920527790
106831020587880535803484726605907519779
116731010578867527790476714596894511767
12662993568852518777468701586879503754
13650975558837508763459688576863494740
14638957547821498748449674565847484726
15625938536804488732439659553829474711
16612918524786477715429643541811463694
17598897511767465698418627528792452678
18583875499748453680407610515772440661
19568852485728441661395593501752429643
20553829472708428642384576488731416625
21537806458687415623372558473710404606
22521782444666402603360539459689391587
23505757430645389583347521444667379568
24489733415623376563335503430645366549
25472708401601362543323484415622353529
26455683386580349523310465400600340510
27439658372558335503298447385577327490
28422633357536322483285428370555314471
29406608343514308463273410355533301452
30389584328493295443261391340511288432
32357535300450269404237356311467263395
34325488273409244366214321283425239358
36295442246370220329192288256384215323
38265397221332197296172258230345193290
40239359200299178267155233208311174261
Properties
Mnx/ΩbφbMnxkip-ft 255383202304174262144217201302160240
Mny/ΩbφbMnykip-ft 197297156234133200110165175264139209
Pex(KxLx)
2
/10
4
kip-in.
2
22200 18600 16700 14600 14800 12500
Pey(KyLy)
2
/10
4
kip-in.
2
12600 10500 9340 8160 10900 9160
rmy, in. 4.04 4.09 4.12 4.14 3.96 4.01
rmx/rmy 1.33 1.33 1.34 1.34 1.17 1.17
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
COMPOSITE
HSS14-HSS12
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 228

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–229
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×10× HSS12×8×
5
/16
1 /4
5 /8
1 /2
3 /8
1 /4
tdesign, in. 0.291 0.233 0.581 0.465 0.349 0.233
Steel, lb/ft 44.6 36.0 76.3 62.5 47.9 32.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0509763461692640960562842479718391586
6495743449673615922540810460690375562
7491736444666606909532799454680369554
8485728439658596894524786446669363544
9479718433650585878514771438657356534
10472708427640573860504755429643348522
11465697420630560840492738419629340509
12457685412619546819480720409613331496
13448673404607531797467701397596321482
14439659396594516773454680386579311467
15430645387581499749440659374561301452
16420630378567483724425637361542291436
17410615368553465698410615348522280420
18399599359538448672395592335503269403
19388582348522430645379569322483257386
20377566338507412618363545308462246369
21366548327491394590347521295442235352
22354531317475375563332497281421223335
23342513306458357536316474267401212318
24330496295442339509300450254381201301
25319478284425321482284427241361190284
26307460273409304456269404227341179268
27295442262392287430254381215322168252
28283424251376270406239359202303158237
29271406240360256385225337190284147221
30259389229344242363210316177266138207
32236354208312214321185277156234121182
34214321188281189285164246138207107161
3619228816825216925414621912318595.7144
3817325915122615222813119711116685.9129
4015623413620413720611817899.715077.5116
Properties
Mnx/ΩbφbMnxkip-ft 13720611417120530817326113820899.2149
Mny/ΩbφbMnykip-ft 11917998.414815122812819210115271.9108
Pex(KxLx)
2
/10
4
kip-in.
2
11200 9770 13900 12300 10500 8180
Pey(KyLy)
2
/10
4
kip-in.
2
8180 7150 7000 6220 5240 4070
rmy, in. 4.04 4.07 3.16 3.21 3.27 3.32
rmx/rmy 1.17 1.17 1.41 1.41 1.42 1.42
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS12
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 229

4–230 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS12×6× HSS10×8×
5
/8
1 /2
3 /8
1 /4
5 /8
1 /2
tdesign, in. 0.581 0.465 0.349 0.233 0.581 0.465
Steel, lb/ft 67.8 55.7 42.8 29.2 67.8 55.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0541811471706399598320480558837488732
6505757440660373559299448535803468703
7493739429644364545291437528791462693
8479718417626354530283425519778454681
9463695404606343514274411509763445668
10447670390585331496264396498747436654
11429644375563318477254380486729426639
12411616359539305457243364473710415623
13392587343514291436231347460690404605
14372558326489276414219329446669391587
15352529308463262393207311432648379568
16334502291437247371195293417625366549
17316474274410232348183275401602353529
18297447256384218326171257386578339509
19279420239358203305160239370555325488
20261393222333189283148222354530311467
21244366206309175262137205337506297446
22227341192288161242126189321482283425
23210316178268148222115173305458269404
24194291165248136204106159289434256383
2517826815222912518897.5146274411242363
2616524814121111617490.2135259390228343
2715323013019610716183.6125246370215323
2814221412118299.915077.7117233349202304
2913319911317093.114072.5109219330190285
3012418610615987.013067.7102207311177266
3210916492.914076.511559.589.3182274156234
3496.414582.212467.710252.779.1161242138207
3686.012973.411060.490.647.070.5144216123185
3877.211665.899.054.281.342.263.3129194111166
40 59.489.348.973.438.157.111617599.7150
Properties
Mnx/ΩbφbMnxkip-ft 17125614521811617584.0126154231131196
Mny/ΩbφbMnykip-ft 10115285.712968.410348.773.2130196110166
Pex(KxLx)
2
/10
4
kip-in.
2
10900 9730 8350 6560 8590 7640
Pey(KyLy)
2
/10
4
kip-in.
2
3410 3020 2570 2000 5900 5240
rmy, in. 2.39 2.44 2.49 2.54 3.09 3.14
rmx/rmy 1.79 1.79 1.80 1.81 1.21 1.21
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS12-HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 230

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–231
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×8× HSS10×6×
3
/8
5 /16
1 /4
3 /16
5 /8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.581 0.465
Steel, lb/ft 42.8 36.1 29.2 22.2 59.3 48.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0416623376565337506296444467701408612
6399599361542323485283425435653380570
7393590356534318478279418424636371556
8387580350525313469274411412618360540
9379569343515307460268402398597349523
10371557336504300450262393383575336504
11363544328492293439255383368552323484
12354530320479285427248372351527308463
13344516311466277415241361335504294441
14334500301452268402233349319480279418
15323484292437259389225337303456264395
16312468281422250375216324287432248372
17301451271407240361208312271407233349
18289434260391231346199298255383218326
19277416250375221331190285239359203304
20265398239358211317181272223335189284
21254380228342201302172258207311176265
22242362217326191287163245192288164246
23230345206310182272155232177266152228
24218327196293172258146219163245140210
25206310185278162243137206150225129194
26195292175262153229129194139208119179
27184275164247144215121181129193110166
28173259154232135202113169120180103154
2916224314521712618910515811116895.7144
3015122713520311717698.314710415789.4134
3213320011917810315586.413091.513878.6118
3411817710515891.413776.611581.112269.6105
3610515893.814181.612268.310272.310962.193.3
3894.314184.212673.211061.391.964.997.655.783.8
4085.112876.011466.199.155.383.0
Properties
Mnx/ΩbφbMnxkip-ft 10415789.913574.911358.587.9126190108162
Mny/ΩbφbMnykip-ft 88.013275.811462.994.648.873.486.213073.4110
Pex(KxLx)
2
/10
4
kip-in.
2
6520 5830 5080 4280 6700 5970
Pey(KyLy)
2
/10
4
kip-in.
2
4470 3990 3470 2910 2840 2540
rmy, in. 3.19 3.22 3.25 3.28 2.34 2.39
rmx/rmy 1.21 1.21 1.21 1.21 1.54 1.53
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 231

4–232 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×6× HSS10×5×
3
/8
5 /16
1 /4
3 /16
3 /8
5 /16
tdesign, in. 0.349 0.291 0.233 0.174 0.349 0.291
Steel, lb/ft 37.7 31.8 25.8 19.6 35.1 29.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0344516310465275413239359307461276414
6321481289434257385222334279418251376
7313470282423250375217325269404242363
8304456274411243364210315259388233349
9294442265398235352203304247370222333
10284426256384226340195293235352211317
11273409246369217326187280222333200299
12261392235353208312178268208313188282
13249373224336198297169254195292176263
14236354213319188281160241181272163245
15224335201302177266151227168251151227
16211316190285167250142213154231139208
17198297178267156235133199141212127191
18185278167250146219123185128192116174
19172259155233136204114172116174105157
2016024014421612618910615910615994.5142
2114822213320011617497.214696.214585.7129
2213620412318410716088.813387.613278.1117
2312518711216997.614681.312280.212171.4107
2411517210315589.613474.611273.611165.698.4
2510615895.214382.612468.810367.910260.590.7
2697.614688.013276.411563.695.462.794.355.983.9
2790.513681.612270.810659.088.458.287.551.877.8
2884.212675.911465.998.854.882.254.181.348.272.3
2978.511870.710661.492.151.176.750.475.844.967.4
3073.311066.199.157.486.147.871.647.170.842.063.0
3264.496.758.187.150.475.642.063.041.462.336.955.4
3457.185.651.577.244.767.037.255.836.755.232.749.0
3650.976.445.968.939.859.833.249.7
3845.768.641.261.835.853.629.844.6
4041.261.937.255.832.348.426.940.3
Properties
Mnx/ΩbφbMnxkip-ft 86.613075.011362.894.449.374.177.511667.4101
Mny/ΩbφbMnykip-ft 58.788.250.676.042.163.332.749.245.868.839.559.4
Pex(KxLx)
2
/10
4
kip-in.
2
5150 4670 4060 3410 4430 4040
Pey(KyLy)
2
/10
4
kip-in.
2
2170 1950 1700 1410 1370 1240
rmy, in. 2.44 2.47 2.49 2.52 2.05 2.07
rmx/rmy 1.54 1.55 1.55 1.56 1.80 1.81
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 232

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–233
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×5× HSS9×7×
1
/4
3 /16
5 /8
1 /2
3 /8
5 /16
tdesign, in. 0.233 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 24.1 18.4 59.3 48.9 37.7 31.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0244366211316474711414621350525316474
6222332190286449673393589332498300450
7214321184275440660385578326489294441
8205308176264430645377565319478288432
9196294168252419629367551311467281421
10186279159238408611357536303454273410
11176264150225395592346520294440265397
12165248140211381572335502284426256384
13154232131196367551323484274411247370
14144215121182353529310465263395237356
15133199112167338506297446252378228341
16122183102153322483284426241362217326
1711116793.2140307460270405230345207311
1810115284.4127292439257385218328197295
1991.513775.9114278417243364207310186280
2082.612468.5103263396229344196293176264
2174.911262.193.1249375216324184276166249
2268.310256.684.9235353203304173260156234
2362.593.751.877.7221333190284162243146219
2457.486.047.571.3208312177265151227136204
2552.979.343.865.7194292165248141211127190
2648.973.340.560.8182273154232131196117176
2745.368.037.656.3169253144217121182109163
2842.163.234.952.4157236134201113169101152
2939.358.932.648.814622012518810515794.4142
3036.755.130.445.613720511717598.114788.2132
3232.348.426.740.112018010315486.212977.5116
3428.642.923.735.510616090.813776.311568.7103
36 94.914381.012268.110261.291.9
38 85.112872.710961.191.755.082.5
40 76.811565.698.755.282.749.674.4
Properties
Mnx/ΩbφbMnxkip-ft 56.484.844.566.911917810115281.112270.2106
Mny/ΩbφbMnykip-ft 33.049.625.638.598.414883.712666.910157.886.9
Pex(KxLx)
2
/10
4
kip-in.
2
3550 2970 5780 5180 4440 4000
Pey(KyLy)
2
/10
4
kip-in.
2
1090 899 3790 3380 2900 2610
rmy, in. 2.10 2.13 2.68 2.73 2.78 2.81
rmx/rmy 1.80 1.82 1.23 1.24 1.24 1.24
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10-HSS9
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 233

4–234 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×5×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0386580336504282423253380224336193289
6351527304456256383230345203304174261
7339510293440247370222333196294168252
8326490281422237355213319188282161241
9312468268402226339203305179269153230
10297446254381215322193290170255145218
11281422240359203304182274161241137205
12264397225337190285171257151226128192
13247372210315178266160240141211119179
14230346196294165247149223131196111166
15214321182274152229138206121181102153
1619729616925314021012619011116693.2140
1718027115523312819211617310115284.8127
1816524714221411617410515892.113876.8115
1914922413019510615994.914283.012569.0104
2013520211717796.514585.612874.911262.393.4
2112218410716087.513177.611668.010256.584.7
2211116797.114679.712070.810661.992.951.577.2
2310215388.813472.911064.797.156.785.047.170.6
2493.514181.612367.010159.589.252.078.043.264.9
2586.213075.211361.792.854.882.247.971.939.959.8
2679.712069.510457.185.850.776.044.366.536.955.3
2773.911164.596.952.979.547.070.541.161.734.251.3
2868.710359.990.149.274.043.765.538.257.331.847.7
2964.196.355.984.045.969.040.761.135.653.529.644.4
3059.990.052.278.542.964.438.057.133.349.927.741.5
3252.679.145.969.037.756.633.450.229.343.924.336.5
34 29.644.425.938.921.532.3
Properties
Mnx/ΩbφbMnxkip-ft 93.814180.412165.197.956.685.147.671.537.456.2
Mny/ΩbφbMnykip-ft 60.490.851.978.041.962.936.154.330.145.223.535.4
Pex(KxLx)
2
/10
4
kip-in.
2
4330 3900 3350 3040 2680 2240
Pey(KyLy)
2
/10
4
kip-in.
2
1610 1450 1240 1120 984 818
rmy, in. 1.92 1.97 2.03 2.05 2.08 2.10
rmx/rmy 1.64 1.64 1.64 1.65 1.65 1.65
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS9
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 234

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–235
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×6×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 50.8 42.1 32.6 27.6 22.4 17.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0392588343514288433260390230346199299
6364545319478269403242363214322185277
7354531310466262393236354209313180270
8343515301452254381229344203304175262
9331498291437246369222332196294168253
10320480280420237355213320189283162243
11307462269403227341205307181272155233
12294442256385217325196294173259148222
13281422244366207310186280164247140211
14267401231346196294177265156234133199
15253380218327185277167250147221125188
16238358205307174261157236138207117176
17224337191287163244147221129194109164
18210315178268152228137206121181102153
1919629416725114121212819211216894.3141
2018227315623413119611817710415687.0130
2116825314421712118110916495.614379.9120
2215523313420111116610015087.613172.9109
2314221412318510115291.713880.212066.7100
2413119611317093.114084.212673.611061.391.9
2512018110415785.812977.611667.810256.584.7
2611116796.414579.311971.810862.794.152.278.3
2710315589.413473.511066.599.858.287.348.472.6
2896.014483.112568.410361.992.854.181.145.067.5
2989.513577.511663.795.657.786.550.475.642.063.0
3083.712672.410959.689.353.980.847.170.739.258.8
3273.511163.695.752.378.547.471.141.462.134.551.7
3465.197.956.484.746.469.642.062.936.755.030.545.8
3658.187.350.375.641.462.037.456.132.749.127.240.9
38 45.167.837.155.733.650.429.444.024.436.7
40 30.345.526.539.822.133.1
Properties
Mnx/ΩbφbMnxkip-ft 87.913275.411360.991.552.879.444.266.434.952.4
Mny/ΩbφbMnykip-ft 71.110760.791.349.173.842.463.835.453.227.841.7
Pex(KxLx)
2
/10
4
kip-in.
2
3700 3320 2860 2590 2270 1900
Pey(KyLy)
2
/10
4
kip-in.
2
2290 2050 1760 1590 1390 1160
rmy, in. 2.27 2.32 2.38 2.40 2.43 2.46
rmx/rmy 1.27 1.27 1.27 1.28 1.28 1.28
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS8
AISC_Part 4D:14th Ed. 2/23/11 10:48 AM Page 235

4–236 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×4×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 42.3 35.2 27.5 23.3 19.0 14.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0322484270405225338202302177265151226
6277416232349193290173260152228129194
7262393221332183274164246144216122183
8246369208313171257154231135203115172
9228343194292159239143215126189107160
1021131718027114722113219811617498.3147
1119329016624913420212118210616089.9135
1217526315122712218311016596.614581.4122
1315723613720611116799.014887.013173.2110
1414021112318510015188.313377.711765.297.8
1512418611016590.113578.111768.710357.586.2
1610916396.614580.112069.610560.490.650.575.8
1796.414585.612971.010761.792.753.580.344.867.1
1885.912976.411563.395.155.082.747.771.639.959.9
1977.111668.510356.885.449.474.242.864.235.853.8
2069.610561.993.051.377.144.667.038.758.032.348.5
2163.194.956.184.346.569.940.460.835.152.629.344.0
2257.586.551.176.842.463.736.855.431.947.926.740.1
2352.679.146.870.338.858.333.750.729.243.824.536.7
2448.372.743.064.635.653.531.046.526.840.322.533.7
2544.667.039.659.532.849.328.542.924.737.120.731.0
26 36.655.030.345.626.439.622.934.319.128.7
27 24.536.821.231.817.726.6
28 16.524.8
Properties
Mnx/ΩbφbMnxkip-ft 66.199.357.586.447.070.640.961.434.551.827.240.9
Mny/ΩbφbMnykip-ft 39.359.034.151.327.841.824.236.420.330.415.923.9
Pex(KxLx)
2
/10
4
kip-in.
2
2600 2360 2050 1860 1650 1390
Pey(KyLy)
2
/10
4
kip-in.
2
805 733 636 577 508 425
rmy, in. 1.51 1.56 1.61 1.63 1.66 1.69
rmx/rmy 1.80 1.79 1.80 1.80 1.80 1.81
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS8
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 236

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–237
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×5×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c, f
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 35.2 27.5 23.3 19.0 14.5 9.86
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0276414232348208312183275157236131196
6248373209314188282166249142212117175
7239359202302181272160240136205112168
8229343193290174260153230131196107161
9218327184276165248146219124186102153
1020630917426215723513820811817695.9144
1119529216424614822213019611116689.9135
1218327515423113920812218310415583.7126
1317125714321512919411417196.314477.5116
1415924013319912017910615889.013471.3107
1514822212218311016597.314681.812365.297.8
1613620411216810115289.213474.811259.288.8
1712518710215392.013881.312267.910253.580.2
1811317193.014083.412573.611061.492.147.971.8
1910315484.812775.011266.299.355.182.643.064.5
2092.713976.811567.710159.789.649.774.538.858.2
2184.112669.610561.492.054.281.345.167.635.252.8
2276.611563.495.455.983.949.474.141.161.632.148.1
2370.110558.087.251.276.745.267.837.656.429.344.0
2464.496.853.380.147.070.541.562.234.551.826.940.4
2559.389.249.173.843.364.938.257.431.847.724.837.2
2654.982.545.468.340.060.035.453.029.444.123.034.4
2750.976.542.163.337.155.732.849.227.340.921.331.9
2847.371.139.258.934.551.830.545.725.438.019.829.7
2944.166.336.554.932.248.328.442.623.635.518.527.7
3041.261.934.151.330.145.126.639.822.133.117.225.9
32 30.045.126.439.623.335.019.429.115.222.7
34 17.225.813.420.1
Properties
Mnx/ΩbφbMnxkip-ft 53.680.543.765.738.057.132.048.125.237.918.027.0
Mny/ΩbφbMnykip-ft 41.862.833.950.929.544.424.737.219.429.213.620.5
Pex(KxLx)
2
/10
4
kip-in.
2
1990 1720 1570 1390 1160 910
Pey(KyLy)
2
/10
4
kip-in.
2
1130 982 889 785 653 510
rmy, in. 1.91 1.97 1.99 2.02 2.05 2.07
rmx/rmy 1.33 1.32 1.33 1.33 1.33 1.34
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 237

4–238 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
c, f
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0243365202303181272159238135203111166
620931417325915523313620411617393.9141
719829816324514722012919310916488.5133
818628015323013820612118110215382.6124
917426114221312819211216995.114376.4115
1016024113119611817710415587.513170.0105
1114722111917910816294.814279.912063.695.4
1213420110816397.614685.912972.310857.285.9
1312118198.414887.613177.311664.997.451.076.6
1410816288.613378.111768.910357.786.645.167.7
1595.614479.211969.510460.891.250.876.239.459.1
1684.112670.010561.892.953.480.244.767.034.752.0
1774.511262.093.254.882.347.371.039.659.330.746.0
1866.499.955.383.248.973.442.263.335.352.927.441.1
1959.689.649.774.643.865.937.956.831.747.524.636.9
2053.880.944.867.439.659.534.251.328.642.922.233.3
2148.873.440.761.135.953.931.046.525.938.920.130.2
2244.566.837.055.732.749.228.342.423.635.418.327.5
2340.761.233.950.929.945.025.938.821.632.416.825.2
2437.456.231.146.827.541.323.735.619.829.815.423.1
2534.451.828.743.125.338.121.932.818.327.414.221.3
26 26.539.923.435.220.230.416.925.413.119.7
27 18.828.115.723.512.218.3
28 11.317.0
Properties
Mnx/ΩbφbMnxkip-ft 45.868.837.556.433.049.627.841.722.033.115.823.7
Mny/ΩbφbMnykip-ft 30.145.224.737.121.632.418.127.314.321.410.015.1
Pex(KxLx)
2
/10
4
kip-in.
2
1640 1430 1300 1160 977 766
Pey(KyLy)
2
/10
4
kip-in.
2
642 560 508 449 375 291
rmy, in. 1.53 1.58 1.61 1.64 1.66 1.69
rmx/rmy 1.60 1.60 1.60 1.61 1.61 1.62
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 238

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–239
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×5×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 31.8 24.9 21.2 17.3 13.3 9.01
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0246369206310185278163244139209115172
1245368206309185277162244139208115172
2243365204306183275161242138207114170
3239359201302180271159238136204112168
4234352197296177265156233133199109164
5228342192288172259152227129194106160
6221331186279167250147220125188103154
721231817926816124114221212118198.7148
820330517125715423113620311517394.2141
919429116324414722012919411016589.4134
1018427615423113920812218310415684.2126
1117426114521713119611517397.614678.9118
1216324513520312218310816291.213773.4110
1315222812518911417010015084.812767.9102
1414121211617510515892.813978.311762.593.7
1513019610716096.614585.412871.910857.185.6
1611917997.614688.413378.111765.798.551.877.7
1710916488.713380.312071.010759.689.446.870.1
1898.914980.912272.610964.296.353.780.641.862.8
1989.113473.311065.197.757.786.548.272.337.656.3
2080.412166.299.558.888.252.078.143.565.333.950.8
2172.911060.090.253.380.047.270.839.559.230.746.1
2266.499.954.782.248.672.943.064.536.053.928.042.0
2360.891.450.075.244.466.739.359.032.949.325.638.4
2455.883.946.069.140.861.236.154.230.245.323.535.3
2551.577.342.463.737.656.433.350.027.841.821.732.5
2647.671.539.258.934.852.230.846.225.738.620.130.1
2744.166.336.354.632.348.428.642.823.935.818.627.9
2841.061.633.850.830.045.026.539.822.233.317.325.9
2938.257.531.547.328.041.924.737.120.731.016.124.2
3035.753.729.444.226.139.223.134.719.329.015.122.6
Properties
Mnx/ΩbφbMnxkip-ft 41.862.834.251.429.944.925.237.919.930.014.221.3
Mny/ΩbφbMnykip-ft 36.755.129.945.026.139.222.033.017.326.012.218.4
Pex(KxLx)
2
/10
4
kip-in.
2
1330 1150 1050 928 779 608
Pey(KyLy)
2
/10
4
kip-in.
2
978 850 772 684 571 445
rmy, in. 1.87 1.92 1.95 1.98 2.01 2.03
rmx/rmy 1.17 1.16 1.17 1.16 1.17 1.17
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 239

4–240 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 28.4 22.4 19.1 15.6 12.0 8.16
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
021732617926916024014021111917997.4146
121632517826715923914021011917897.0145
221332117626415723613820711717695.7143
320931417225815423113520211517293.5140
420330516725014922413119611116790.5136
519529316024014421512618910716086.8130
618627915222913720512018010215382.5124
717626414421612919411317096.214477.7117
816524813420212118110615990.113572.5109
915323012418711216898.614883.612567.0100
1014121211417110315590.713676.911561.392.0
1112919410515794.114182.812470.110555.783.5
1211717695.314385.112874.911263.495.150.075.1
1310515886.112976.311467.110156.885.244.666.9
1493.314077.211667.710259.789.550.575.739.359.0
1582.312468.710360.591.052.578.744.466.534.351.5
1672.310960.591.053.580.546.169.239.058.530.245.3
1764.096.253.680.647.471.340.961.334.551.826.740.1
1857.185.947.871.942.363.636.454.730.846.223.935.8
1951.377.142.964.538.057.132.749.127.641.521.432.1
2046.369.538.758.234.351.529.544.325.037.419.329.0
2142.063.135.152.831.146.726.840.222.633.917.526.3
2238.257.532.048.128.342.624.436.620.630.916.024.0
2335.052.629.344.025.938.922.333.518.928.314.621.9
2432.148.326.940.423.835.820.530.817.326.013.420.1
2529.644.524.837.321.933.018.928.316.024.012.418.5
26 20.330.517.526.214.822.111.417.1
27 13.720.510.615.9
Properties
Mnx/ΩbφbMnxkip-ft 35.353.129.344.125.738.721.732.617.225.912.418.6
Mny/ΩbφbMnykip-ft 26.339.521.732.519.028.516.024.012.619.08.9513.5
Pex(KxLx)
2
/10
4
kip-in.
2
1080 950 865 770 654 509
Pey(KyLy)
2
/10
4
kip-in.
2
551 481 440 388 328 254
rmy, in. 1.50 1.55 1.58 1.61 1.63 1.66
rmx/rmy 1.40 1.41 1.40 1.41 1.41 1.42
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 240

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–241
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815222813520311817799.214979.9120
119028615122613420111717698.414879.3119
218627914722113119711517296.314477.5116
317926814221312618911016592.813974.5112
416925413520312018010515788.013270.6106
515823712619011216897.814782.312365.998.8
614521811717610315490.013575.911460.590.8
713119710716092.913981.612268.910354.782.1
811717696.014483.212572.910961.692.448.773.1
910215485.112874.111164.196.254.381.442.764.1
1088.413374.411265.097.855.683.447.170.736.955.4
1175.211364.196.456.384.748.172.340.360.431.447.1
1263.295.054.481.748.072.241.462.334.050.926.439.6
1353.880.946.369.640.961.535.353.128.943.422.533.7
1446.469.839.960.035.353.030.445.724.937.419.429.1
1540.460.834.852.330.746.226.539.921.732.616.925.3
1635.553.430.646.027.040.623.335.019.128.614.822.2
1731.547.327.140.723.936.020.631.016.925.413.119.7
1828.142.224.236.321.432.118.427.715.122.611.717.6
19 21.732.619.228.816.524.813.520.310.515.8
20 14.922.412.218.39.4914.2
21 8.6112.9
Properties
Mnx/ΩbφbMnxkip-ft 29.143.724.236.421.332.118.127.314.521.810.515.7
Mny/ΩbφbMnykip-ft 17.225.814.421.612.719.110.716.18.5212.86.059.10
Pex(KxLx)
2
/10
4
kip-in.
2
841 746 685 609 521 410
Pey(KyLy)
2
/10
4
kip-in.
2
261 232 213 189 161 125
rmy, in. 1.12 1.17 1.19 1.22 1.25 1.27
rmx/rmy 1.80 1.79 1.79 1.80 1.80 1.81
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 241

4–242 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815623414020912218310315584.2126
119128615523313920812218310315483.8126
218828315323013720612018010215282.6124
318427615022413420111717699.414980.7121
417826814521713019511417196.314478.1117
517125713920812418710916492.513974.8112
616324413219811817810415688.113271.1107
715323012418611216798.114783.112566.9100
814321511617410415691.713877.711762.393.5
913219910716296.414585.012772.010857.686.3
1012218399.314988.413378.011766.199.252.679.0
1111016690.913780.312071.010760.290.347.771.6
1299.515082.512472.310864.096.054.381.542.864.2
1388.813374.311264.697.257.285.848.672.938.157.1
1478.611866.499.757.987.050.776.043.164.633.650.3
1568.710358.788.351.477.344.466.637.756.629.343.9
1660.490.851.677.645.368.039.058.533.249.825.738.6
1753.580.445.768.740.160.334.651.929.444.122.834.2
1847.771.740.861.335.853.730.846.326.239.320.330.5
1942.864.436.655.032.148.227.741.523.535.318.227.4
2038.758.133.049.729.043.525.037.521.231.816.524.7
2135.152.730.045.026.339.522.734.019.328.914.922.4
2231.948.027.341.023.936.020.631.017.526.313.620.4
2329.243.925.037.521.932.918.928.316.124.112.418.7
2426.840.422.934.520.130.217.326.014.722.111.417.2
25 21.131.818.527.916.024.013.620.410.515.8
26 14.822.212.618.89.7414.6
27 9.0313.6
Properties
Mnx/ΩbφbMnxkip-ft 26.239.421.932.919.329.016.324.513.019.59.3314.0
Mny/ΩbφbMnykip-ft 22.333.518.627.916.324.513.820.811.016.57.8311.8
Pex(KxLx)
2
/10
4
kip-in.
2
664 587 536 478 409 317
Pey(KyLy)
2
/10
4
kip-in.
2
459 404 368 328 279 216
rmy, in. 1.46 1.52 1.54 1.57 1.60 1.62
rmx/rmy 1.20 1.21 1.21 1.21 1.21 1.21
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 242

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–243
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×3×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016624913219811717510215385.512868.7103
116424713119611617410115284.912768.2102
216024112819211317098.714882.912466.699.9
315423212318510916395.014279.812064.196.1
414621911717610315490.013575.711460.691.0
513520310916495.914483.912670.710656.584.8
612418610115187.913277.111665.097.551.877.8
711116791.413779.812069.710558.888.346.870.2
898.414881.712371.810862.193.152.578.741.662.5
985.712972.010863.795.754.481.746.169.136.554.7
1073.411062.593.955.783.747.070.539.959.831.447.1
1161.792.753.480.348.072.140.661.034.051.026.639.9
1251.877.945.067.740.761.134.652.028.642.922.433.6
1344.266.438.457.734.752.129.544.324.336.519.128.6
1438.157.233.149.729.944.925.438.221.031.516.424.7
1533249.928.843.326.039.122.133.318.327.414.321.5
1629.243.825.338.122.934.419.529.216.124.112.618.9
1725.838.822.433.720.330.517.225.914.221.411.116.7
1823.034.620.030.118.127.215.423.112.719.09.9414.9
19 18.027.016.224.413.820.711.417.18.9313.4
20 10.315.48.0612.1
Properties
Mnx/ΩbφbMnxkip-ft 21.131.717.826.815.823.713.520.210.816.27.8011.7
Mny/ΩbφbMnykip-ft 14.421.612.218.310.816.29.1913.87.3311.05.257.89
Pex(KxLx)
2
/10
4
kip-in.
2
507 455 420 374 321 253
Pey(KyLy)
2
/10
4
kip-in.
2
215 194 178 159 135 106
rmy, in. 1.09 1.14 1.17 1.19 1.22 1.25
rmx/rmy 1.54 1.53 1.54 1.53 1.54 1.54
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 243

4–244 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×2
1
/2× HSS4×3×
1
/4
3 /16
1 /8
3 /8
5 /16
1 /4
tdesign, in. 0.233 0.174 0.116 0.349 0.291 0.233
Steel, lb/ft 11.4 8.78 6.03 14.7 12.7 10.5
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
091.713876.611560.991.411316998.414885.9129
190.713675.811460.290.411216897.614685.2128
287.813273.411058.387.510916495.214383.1125
383.112569.610455.282.810515891.313779.8120
476.911564.596.851.276.899.314986.112975.5113
569.610458.587.846.469.692.513980.212170.2105
661.792.652.078.041.261.884.912873.811164.296.3
753.880.845.267.835.753.676.611566.910057.886.7
846.569.838.557.730.445.568.110259.789.751.276.9
939.459.232.048.025.237.959.689.652.478.844.767.2
1032.749.226.239.320.630.851.377.145.468.239.058.6
1127.040.621.632.517.025.543.565.338.758.233.550.4
1222.734.118.227.314.321.436.554.932.649.028.442.7
1319.429.115.523.312.218.231.146.827.841.724.236.3
1416.725.113.420.110.515.726.840.323.936.020.931.3
1514.521.911.617.59.1313.723.435.120.931.318.227.3
1612.819.210.215.48.0312.020.530.918.327.516.024.0
17 9.0613.67.1110.718.227.416.224.414.121.3
18 16.224.414.521.812.619.0
19 11.317.0
Properties
Mnx/ΩbφbMnxkip-ft 12.018.19.6614.57.0210.612.318.511.016.59.4214.2
Mny/ΩbφbMnykip-ft 7.1110.75.708.574.106.169.9815.08.8913.47.6111.4
Pex(KxLx)
2
/10
4
kip-in.
2
323 277 221 250 232 208
Pey(KyLy)
2
/10
4
kip-in.
2
100 85.7 67.5 155 143 128
rmy, in. 0.999 1.02 1.05 1.11 1.13 1.16
rmx/rmy 1.80 1.80 1.81 1.27 1.27 1.27
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5-HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 244

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–245
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×3× HSS4×2
1
/2×
3
/16
1 /8
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.174 0.116 0.349 0.291 0.233 0.174
Steel, lb/ft 8.15 5.61 13.4 11.6 9.66 7.51
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
072.010857.686.310315589.013476.611564.096.0
171.510757.185.710215388.013275.711463.395.0
269.810555.783.698.414885.212873.211061.291.9
367.110153.680.393.014080.712169.110457.986.9
463.595.250.776.085.812974.811263.895.753.680.4
559.188.747.170.777.511667.910257.686.348.572.7
654.281.343.264.868.410360.390.650.976.542.964.3
748.973.438.958.458.988.652.478.844.567.037.155.7
843.565.234.551.849.774.744.667.038.257.431.447.1
938.057.030.145.240.961.537.155.732.148.326.039.0
1032.849.125.938.933.249.930.245.426.439.721.532.3
1127.741.521.932.827.441.225.037.621.832.817.726.7
1223.334.918.427.623.034.621.031.618.327.514.922.4
1319.829.715.723.519.629.517.926.915.623.512.719.1
1417.125.613.520.316.925.415.423.213.520.210.916.5
1514.922.311.817.614.722.213.420.211.717.69.5414.3
1613.119.610.315.5 10.315.58.3812.6
1711.617.49.1613.7
1810.315.58.1712.3
199.2813.97.3311.0
20 6.629.92
Properties
Mnx/ΩbφbMnxkip-ft 7.5811.45.528.2910.716.29.6314.58.3212.56.7210.1
Mny/ΩbφbMnykip-ft 6.119.184.416.637.5811.46.8010.25.878.824.737.11
Pex(KxLx)
2
/10
4
kip-in.
2
178 141 212 197 178 153
Pey(KyLy)
2
/10
4
kip-in.
2
110 86.9 96.1 89.5 80.9 69.4
rmy, in. 1.19 1.21 0.922 0.947 0.973 0.999
rmx/rmy 1.27 1.27 1.49 1.48 1.48 1.48
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 245

4–246 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×2
1
/2× HSS4×2×
1
/8
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.116 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 5.18 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
050.876.293.414081.012267.510156.284.444.066.0
150.275.391.713879.612066.499.555.382.943.364.9
248.672.986.813075.611463.094.852.578.841.261.8
346.068.979.211969.510458.287.548.272.337.956.8
442.563.869.710561.792.752.178.242.864.133.750.5
538.557.759.289.052.979.545.167.836.755.029.043.4
634.051.148.472.843.965.937.856.930.445.624.136.1
729.544.238.257.535.152.830.746.225.037.519.429.1
824.937.429.444.227.341.024.136.319.929.915.122.6
920.631.023.234.921.532.419.128.715.723.711.917.9
1016.825.218.828.317.426.215.523.212.819.29.6514.5
1113.920.815.523.414.421.712.819.210.515.87.9812.0
1211.717.513.119.612.118.210.716.18.8613.36.7010.1
139.9314.9 7.5511.35.718.57
148.5612.8
157.4611.2
166.559.83
175.818.71
Properties
Mnx/ΩbφbMnxkip-ft 4.907.379.1613.88.2712.47.1910.85.858.794.306.47
Mny/ΩbφbMnykip-ft 3.425.135.428.154.927.394.276.423.465.202.523.79
Pex(KxLx)
2
/10
4
kip-in.
2
123 173 163 148 128 103
Pey(KyLy)
2
/10
4
kip-in.
2
55.1 53.5 50.5 46.0 39.6 31.7
rmy, in. 1.03 0.729 0.754 0.779 0.804 0.830
rmx/rmy 1.49 1.80 1.80 1.79 1.80 1.80
ASD LRFD
Ωc=2.00φc=0.75
Table 4-14 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Rectangular HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length, (
KL
)
y
, with respect to weak axis (ft)
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4D:14th Ed. 2/23/11 10:49 AM Page 246

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–247
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×16× HSS14×14×
1
/2
3 /8
5 /16
5 /8
1 /2
3 /8
tdesign, in. 0.465 0.349 0.291 0.581 0.465 0.349
Steel, lb/ft 103 78.5 65.9 110 89.7 68.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01040155089213408201230977146085612807311100
61030154088313208121220964145084512707211080
71020153088013208081210959144084112607171080
81020153087613108051210954143083612507131070
91010152087213108011200948142083112507091060
101010151086713007961190942141082512407041060
111000150086212907911190935140081912306981050
12 996149085612807861180927139081212206931040
13 989148085012707801170919138080512106861030
14 981147084312607741160910136079712006791020
15 973146083612507671150901135078911806721010
16 96514508281240760114089113407801170664996
17 95614308211230753113088013207711160656984
18 94614208121220745112086913007611140648971
19 93714108041210737110085712907511130639958
20 92613907951190728109084512707401110629944
21 91613707851180719108083312507291090620930
22 90513607751160710107082012307181080610915
23 89413407651150701105080712107061060600900
24 88213207551130691104079311906941040589884
25 87013007441120681102078011706821020579868
26 85712907331100671101076511506691000568852
27 845127072210806609907511130657985557835
28 832125071110706499747361100644965545818
29 819123069910506389587211080630946534801
30 805121068710306279417061060617926522784
32 77811706639946059076751010590885499748
34 7491120638957581872644966562843475712
36 7201080613919557836612918534802451676
38 6911040587880533800580870506760426640
40 661992561841509764549823478718402604
Properties
Mn/ΩbφbMnkip-ft 422634331498283425378569316475248373
Pe(KL)
2
/10
4
kip-in.
2
44500 37100 33200 32700 28400 23600
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS16-HSS14
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 247

4–248 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14×14× HSS12×12×
5
/16
5 /8
1 /2
3 /8
5 /16
1 /4
tdesign, in. 0.291 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 57.4 93.3 76.1 58.1 48.9 39.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0667100079011906891030585877530795474712
665898777611606771010575862520780466698
765598277111606721010571856517775462694
865197676611506671000567850513769459688
96479707591140662993562843508762455682
106429637521130656984556835503755450675
116379557441120649973551826498747445668
126319477361100642963544816492738440660
136259387271090634951537806486729434651
146199297171080626938530795479719428642
156129187071060617925523784472709422633
166059086961040607911515772465697415622
175978966851030598896506759457686408612
185908846731010587881497746449674400601
19581872661991577865488732441661393589
20573859648972566849479718432648385577
21564846635953555832469703423635377565
22555832622933543815459688414621368552
23545818608912531797449673405607360539
24536803594891519779438657395593351526
25526788580870507760428641385578342513
26516773565848494741417625375563333499
27505758551826482722406609365548324486
28495742536804469703395592355533315472
29484726521781456684384576345518305458
30473710506759443664373559335502296444
32451677476714417625350525314472277416
34429644446669390586328491294441259388
36407611416624365547305458274411240361
38385577386580339508284425254381223334
40363544358537314471262393234352205308
Properties
Mn/ΩbφbMnkip-ft 212319270406226339178268153230126190
Pe(KL)
2
/10
4
kip-in.
2
21100 19200 16900 14100 12500 10900
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS14-HSS12
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 248

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–249
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×10×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 76.3 62.5 47.9 40.4 32.6 24.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0615923535803451676406609361541314471
6599899522782439659396593351527305458
7594891517775435653392588348522302453
8587881511767430646388581344516299448
9580870505758425638383574340509295442
10572859498748420629378567335502291436
11564846491736413620372558330495286429
12554832483725407610366549324486281421
13545817474712399599359539318477276413
14534801465698392588352529312468270405
15523784456684384576345518305458264396
16511767446669376563337506298448258387
17499749436653367550330494291437251377
18487730425637358537321482284426245367
19474711414621348523313469276414238357
20461691403604339508304456268402231346
21447671391587329494295443260390224335
22434650379569319479286429252378216325
23420630367551309464277416244366209313
24406609355533299449268402236353202302
25392587343515289433259388227341194291
26377566331496279418249374219328187280
27363545319478268402240360210316179269
28349524306459258387230346202303172258
29335503294441248372221332194291164247
30321482282423238356212318185278157236
32294440258387217326194291169254143214
34267400235353198297176264153230129194
36242364213319179269159239138207116173
38219329191287161242143214124186104156
4019829717325914521812919311216893.7141
Properties
Mn/ΩbφbMnkip-ft 17927015122712018010315585.512966.399.7
Pe(KL)
2
/10
4
kip-in.
2
10300 9070 7640 6780 5880 4920
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS10
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 249

4–250 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×9×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 67.8 55.7 42.8 36.1 29.2 22.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0534801462693388583349523308463267400
6517776448672376565338506299448258387
7511766443664372558334501295443255382
8504756437655367551329494291437251377
9496745430646362543324487287430247371
10488732423635356534319479282423243364
11479718416623349524313470277415238357
12469704407611343514307460271406233350
13459688398598335503300450265397228342
14448671389583327491293440259388222333
15436654379569319479286429252378216324
16424636369553311466278417245367210315
17412617358538302453270405238357204305
18399598347521293439262393230346197296
19386579336505283425254380223334190286
20372559325487274411245367215323184275
21359538313470264396236354207311177265
22345518302453255382227341200299170255
23332497290435245367219328192287163244
24318478278417235352210315184276156234
25305459267400225338201301176264149223
26292439255382215323192288168252142213
27280420243365206308183275160240135203
28267401232348196294175262152229128192
29255383220331186280166249145217122182
30242364209314177266158236137206115173
32218328188281159238141212123184102154
3419529316725014121212618810916390.7136
3617426214922312618911216897.114680.9121
3815623513320011317010015187.213172.6109
4014121212018110215390.713678.711865.598.3
Properties
Mn/ΩbφbMnkip-ft 14221312018095.214381.912368.010253.179.8
Pe(KL)
2
/10
4
kip-in.
2
7140 6330 5360 4770 4130 3440
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS9
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 250

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–251
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×8×
5
/8
1 /2
3 /8
5 /16
1 /4
tdesign, in. 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 59.3 48.9 37.7 31.8 25.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0456 684395 593330 494295442260390
6438 656379 569317 475283425249374
7431 646374 561312 468279419246369
8424 635368 551307 461275412242363
9415 623361 541301 452270404237356
10406 609353 529295 443264396232348
11396 596345 517288 433258387227340
12386 581336 504281 422251377221331
13376 565326 490273 410245367215322
14365 549317 475265 398237356208312
15354 532306 460257 386230345202302
16342 514296 444248 373222333195292
17330 496285 428239 359214321188281
18318 478274 411230 346206309180271
19306 459263 394221 332198297173260
20293 440251 377212 318189284166248
21280 421240 360202 304181271158237
22267 402229 343193 290172259151226
23255 383217 326184 275164246143215
24242 364206 309174 262156234136204
25230 345195 293165 248148221129193
26217 326184 276156 234139209121182
27205 308173 260147 221131197114172
28193 290163 246139 208124186108161
29182 273154 231130 195116174101151
30170 256145 217122 182109163 94.2141
32149 225127 191107 160 95.4143 82.8124
34132 199113 16994.6142 84.5127 73.3110
36118 177100 15184.4127 75.4113 65.498.1
38106 15990.213675.8114 67.7101 58.788.0
40 95.614481.412268.4103 61.191.653.079.4
Properties
Mn/ΩbφbMnkip-ft 108 16391.913873.4110 63.595.452.779.3
Pe(KL)
2
/10
4
kip-in.
2
4730 4220 3590 3210 2780
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS8
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 251

4–252 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×8× HSS7×7×
3
/16
5 /8
1 /2
3 /8
5 /16
tdesign, in. 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 19.6 50.8 42.1 32.6 27.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0223335386580329494274410244367
6214321366550312468260390232348
7211316359540306459255382228342
8207311351528299449249374223334
9203304343515292437243365218326
10199298333501283425237355212317
11194291323486275412229344205308
12189283313470265398222333199298
13183275302453256383214321192287
14178266290436245368206309184276
15172258278418235352197296177265
16166248266399224337188283169253
17159239253381214320180269161242
18153230241362203305171256153230
19147220228343193290162243145218
20140210215324182274153229137206
21134200203305172259144216129194
22127191191287162244135203122182
23121181179268152229127190114171
24114171167251143214118177106160
25108162155233133200110165 99.2149
26102152144216124186102153 92.0138
27 95.6143133201115173 94.6142 85.3128
28 89.6134124186107161 88.0132 79.3119
29 83.7126116174 99.6150 82.0123 73.9111
30 78.2117108162 93.1140 76.6115 69.1104
32 68.8103 95.0143 81.8123 67.4101 60.791.1
34 60.991.484.1126 72.4109 59.789.553.880.7
36 54.381.575.1113 64.697.153.279.848.072.0
38 48.873.167.4101 58.087.247.871.643.164.6
40 44.066.060.891.452.378.743.164.738.958.3
Properties
Mn/ΩbφbMnkip-ft 41.3 62.079.5120 67.9102 54.782.247.471.2
Pe(KL)
2
/10
4
kip-in.
2
2310 2970 2650 2270 2040
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS8-HSS7
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 252

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–253
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×7× HSS6×6×
1
/4
3 /16
1 /8
c, f 5
/8
1 /2
tdesign, in. 0.233 0.174 0.116 0.581 0.465
Steel, lb/ft 22.4 17.1 11.6 42.3 35.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0214322183274151226322484268403
6203305173260142213299450250376
7200299170255139209291438244367
8195293166249136204283425237356
9191286162243132199273410229344
10185278157236129193262394221332
11180270152229124187251378212319
12174261147221120180240360203305
13168251142213115173228342193290
14161242136204110166215324183275
15155232131196106158203305173260
16148222125187100151190286163245
17141211119178 95.4143178267153230
18134201113169 90.2135165249143215
19127190107160 85.1128153231133200
20120180100151 80.0120142213123185
21113169 94.5142 75.0113130196114171
22106159 88.7133 70.1105119179104157
23 99.3149 82.9124 65.397.9109163 95.6144
24 92.7139 77.3116 60.690.999.8150 87.8132
25 86.3130 71.8108 56.084.092.0138 80.9122
26 80.0120 66.499.651.877.685.1128 74.8112
27 74.2111 61.692.448.072.078.9119 69.4104
28 69.0103 57.385.944.666.973.4110 64.596.9
29 64.396.553.480.141.662.468.4103 60.190.4
30 60.190.149.974.838.958.363.996.056.284.4
32 52.879.243.865.834.251.256.284.449.474.2
34 46.870.238.858.330.345.449.774.843.765.7
36 41.762.634.652.027.040.544.466.739.058.6
38 37.556.231.146.624.236.3
40 33.850.728.142.121.932.8
Properties
Mn/ΩbφbMnkip-ft 39.5 59.331.046.621.732.755.383.247.871.8
Pe(KL)
2
/10
4
kip-in.
2
1780 1470 1150 1720 1550
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7-HSS6
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 253

4–254 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×6×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 27.5 23.3 19.0 14.5 9.86
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0222333198297173259146219119178
6206310184276161241136204110165
7201302179269157235132198107161
8195293174261152228128192104156
9189283168253147221124186100150
10182272162243142213119179 96.2144
11174261156233136204114172 92.0138
12166249149223130195109164 87.7132
13158237141212124186104156 83.2125
14150225134201117176 98.5148 78.7118
15141212127190111166 93.0139 74.0111
16133199119179104156 87.4131 69.4104
17124186112167 97.7147 81.8123 64.797.1
18116174104156 91.3137 76.3114 60.190.2
19108161 96.7145 84.8127 70.8106 55.683.5
20 99.4149 89.5134 78.6118 65.598.251.376.9
21 91.8138 82.5124 72.5109 60.390.547.070.6
22 84.7127 75.7114 66.699.855.382.942.964.4
23 77.8117 69.2104 60.991.450.675.939.358.9
24 71.4107 63.695.455.983.946.469.736.054.1
25 65.898.958.687.951.577.342.864.233.249.8
26 60.891.454.281.347.771.539.659.430.746.1
27 56.484.850.275.444.266.336.755.028.542.7
28 52.578.846.770.141.161.634.151.226.539.7
29 48.973.543.665.338.357.531.847.724.737.0
30 45.768.740.761.035.853.729.744.623.134.6
32 40.260.435.853.731.547.226.139.220.330.4
34 35.653.531.747.527.941.823.134.718.026.9
36 31.747.728.342.424.937.320.631.016.024.0
38 28.542.825.438.122.333.518.527.814.421.6
Properties
Mn/ΩbφbMnkip-ft 38.7 58.233.750.728.242.422.233.415.723.6
Pe(KL)
2
/10
4
kip-in.
2
1330 1200 1060 879 682
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS6
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 254

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–255
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5
1
/2×5
1
/2× HSS5×5×
3
/8
5 /16
1 /4
3 /16
1 /8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.116 0.465
Steel, lb/ft 24.9 21.2 17.3 13.3 9.01 28.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0197296176263153229129193104156217326
1197295175263152229128192103155216325
2195293174261151227127191103154215322
3193290172258150224126189101152211318
419028516925314722112418699.7150207311
518627916524814421612118297.5146202303
618127116124214021111817794.9142195294
717526315623413620411517291.9138188283
816925415122613119711116688.6133180271
916224314521712618910615984.9127171257
1015523213820812118110215281.0122162244
1114722113219811517396.614576.9115152229
1213920912518710916491.513772.7109142214
1313119711817610315486.312968.3103132199
1412318411016596.514580.912163.995.9122184
1511517210315490.213575.611359.589.3112169
1610716195.614383.912670.210555.182.7103154
1799.214988.413377.611665.097.550.876.293.2140
1891.713881.312271.510759.889.746.669.984.1126
1984.512774.511265.698.454.882.242.563.875.5113
2077.411667.810259.989.850.074.938.557.868.1102
2170.510661.692.754.381.445.368.035.052.461.892.9
2264.296.556.284.449.574.241.361.931.947.856.384.6
2358.788.351.477.245.367.937.856.729.143.751.577.4
2453.981.147.270.941.662.334.752.026.840.147.371.1
2549.774.743.565.438.357.532.048.024.737.043.665.5
2646.069.140.260.435.453.129.644.322.834.240.360.6
2742.664.137.356.032.849.327.441.121.131.737.456.2
2839.659.634.752.130.545.825.538.219.729.534.852.2
2936.955.532.348.628.542.723.835.618.327.532.448.7
3034.551.930.245.426.639.922.233.317.125.730.345.5
Properties
Mn/ΩbφbMnkip-ft 31.948.027.941.923.335.118.427.613.019.631.347.0
Pe(KL)
2
/10
4
kip-in.
2
986 891 786 656 506 813
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS5
1
/2-HSS5
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:52 AM Page 255

4–256 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×5×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 22.4 19.1 15.6 12.0 8.16
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0173260154231134201112168 89.9135
1173259154230133200112168 89.7134
2171257152228132198111166 88.9133
3169253150225130196109164 87.6131
4165248147221128192107161 85.8129
5161242143215125187104157 83.5125
6156234139208121181101152 80.9121
7150225134200116175 97.6146 77.8117
8144215128192111167 93.5140 74.4112
9137205122183106159 89.1134 70.8106
10129194115173101151 84.5127 66.9100
11122183109163 94.8142 79.6119 62.994.4
12114172102152 88.8133 74.5112 58.888.2
13107160 94.4142 82.7124 69.4104 54.681.9
14 98.9149 87.3131 76.6115 64.396.550.475.6
15 91.3137 80.3120 70.5106 59.288.846.369.4
16 83.8126 73.4110 64.596.854.281.442.263.4
17 76.4115 66.7100 58.888.149.474.138.357.5
18 69.4104 60.791.353.279.844.767.134.551.8
19 62.593.954.982.547.871.740.260.331.046.5
20 56.484.849.674.543.164.736.354.428.041.9
21 51.276.944.967.639.158.732.949.325.438.0
22 46.670.041.061.535.653.530.045.023.134.7
23 42.664.137.556.332.648.927.441.121.131.7
24 39.258.934.451.729.944.925.237.819.429.1
25 36.154.231.747.727.641.423.234.817.926.8
26 33.450.229.344.125.538.321.532.216.524.8
27 30.946.527.240.923.735.519.929.815.323.0
28 28.843.225.338.022.033.018.527.814.321.4
29 26.840.323.635.420.530.817.225.913.319.9
30 25.137.722.033.119.228.816.124.212.418.6
Properties
Mn/ΩbφbMnkip-ft 25.7 38.622.533.718.928.414.922.510.616.0
Pe(KL)
2
/10
4
kip-in.
2
708 641 566 476 367
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS5
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 256

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–257
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4
1
/2×4
1
/2×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815122713420011617496.714576.9115
119128715022613320011517396.314476.7115
218928314922413219811417195.314375.8114
318527814622012919411216893.714074.5112
418027114321512618911016491.413772.6109
517426213820812218310615988.613370.3105
616725213320011717610215385.212867.6101
715924012719111216897.414681.512264.596.8
815122712118210615992.413977.311661.191.7
914121311417199.815087.013072.910957.586.2
1013219810716093.214081.312268.210253.780.5
1112218399.214986.413075.511363.495.049.874.7
1211216891.513879.612069.610458.587.745.868.7
1310215383.912673.211063.795.553.680.441.962.8
1492.013876.411566.810057.986.848.873.238.057.0
1582.612469.110460.691.152.278.344.166.134.251.3
1673.511062.093.254.782.146.870.239.659.330.645.9
1765.197.855.283.048.873.441.562.435.252.827.140.7
1858.087.249.274.043.665.537.055.631.447.124.236.3
1952.178.344.266.439.158.833.349.928.242.221.732.6
2047.070.739.959.935.353.030.045.125.438.119.629.4
2142.664.136.254.432.048.127.240.923.134.617.826.7
2238.958.433.049.529.243.824.837.321.031.516.224.3
2335.553.430.245.326.740.122.734.119.228.814.822.2
2432.649.127.741.624.536.820.831.317.726.513.620.4
2530.145.225.538.422.634.019.228.816.324.412.618.8
2627.841.823.635.520.931.417.826.715.022.611.617.4
27 21.932.919.429.116.524.713.920.910.816.1
28 18.027.115.323.013.019.510.015.0
29 12.118.19.3314.0
Properties
Mn/ΩbφbMnkip-ft 24.336.520.230.317.726.615.022.511.917.88.4912.8
Pe(KL)
2
/10
4
kip-in.
2
558 491 446 394 334 258
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
1
/2
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 257

4–258 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016624913219811417198.714882.012364.897.2
116524813119711417098.214781.612264.596.8
216324412919411216896.914580.512163.795.5
315923912619010916494.714278.811862.293.4
415323112318410615991.813876.411560.390.5
514722111817710215288.113273.411057.986.9
613920911216896.514583.812669.910555.182.7
713119610615991.213779.111966.099.052.078.0
812118298.814985.412873.911161.892.648.672.9
911216891.613879.311968.410357.385.945.067.5
1010215384.112673.011062.894.252.779.041.362.0
1192.013876.511566.610057.185.748.072.037.656.4
1282.212469.010460.390.651.577.243.465.033.950.8
1372.810961.792.854.081.246.068.938.858.230.345.4
1463.795.854.782.248.072.240.861.334.551.726.840.2
1555.583.547.972.042.263.536.154.330.245.423.535.2
1648.873.342.163.337.155.831.747.726.639.920.630.9
1743.265.037.356.132.949.428.142.323.535.318.327.4
1838.658.033.350.029.344.125.137.721.031.516.324.4
1934.652.029.944.926.339.622.533.818.828.314.621.9
2031.246.927.040.523.835.720.330.517.025.513.219.8
2128.342.624.436.721.532.418.427.715.423.112.018.0
2225.838.822.333.519.629.516.825.214.121.110.916.4
2323.635.520.430.618.027.015.423.112.919.39.9815.0
24 18.728.116.524.814.121.211.817.79.1713.8
25 13.019.510.916.38.4512.7
26 7.8111.7
Properties
Mn/ΩbφbMnkip-ft 18.227.415.323.013.520.311.517.39.1713.86.599.90
Pe(KL)
2
/10
4
kip-in.
2
362 325 296 263 223 173
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 258

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–259
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3
1
/2×3
1
/2×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 14.7 12.7 10.5 8.15 5.61
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0113169 97.014682.512468.410353.680.3
1112168 96.414582.012368.010253.279.9
2110165 94.714280.512166.810052.378.5
3107160 92.013878.211764.997.350.876.2
4102154 88.313374.911262.393.448.873.2
5 96.7145 83.812671.010759.188.646.369.4
6 90.4136 78.611866.599.755.483.143.465.1
7 83.5126 72.911061.592.251.477.040.360.4
8 76.2115 66.810056.284.447.170.636.955.3
9 68.7103 60.590.951.176.842.663.933.450.1
10 61.292.054.281.446.069.138.157.229.944.9
11 53.880.947.972.140.961.533.750.626.539.7
12 46.870.341.963.036.054.129.544.323.134.7
13 40.160.336.254.431.347.125.438.220.030.0
14 34.652.031.246.927.040.621.932.917.225.8
15 30.145.327.240.823.535.419.128.715.022.5
16 26.539.823.935.920.731.116.825.213.219.8
17 23.535.221.231.818.327.514.922.311.717.5
18 20.931.418.928.416.324.613.319.910.415.6
19 18.828.216.925.514.722.011.917.99.3514.0
20 16.925.515.323.013.219.910.816.18.4412.7
21 15.423.113.920.812.018.09.7514.67.6511.5
22 10.916.48.8913.36.9710.5
Properties
Mn/ΩbφbMnkip-ft 11.2 16.810.015.08.5112.86.8310.34.927.39
Pe(KL)
2
/10
4
kip-in.
2
201 185 166 141 111
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS3
1
/2
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 259

4–260 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3×3×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
093.414081.012267.2101 55.483.142.964.4
192.613980.312166.7100 54.982.442.663.9
290.213678.311865.197.953.680.441.662.4
386.413075.111362.694.151.577.340.060.0
481.312270.910759.389.148.773.037.856.8
575.311365.898.955.283.045.367.935.352.9
668.510360.190.350.676.141.562.232.348.5
761.292.053.981.045.768.737.456.029.243.8
853.880.847.671.540.661.133.149.726.038.9
946.469.841.362.135.653.428.943.322.734.1
1039.459.335.353.030.646.024.837.219.629.4
1132.949.429.644.525.939.021.131.816.624.9
1227.641.524.937.421.832.817.826.813.920.9
1323.535.421.231.818.627.915.222.811.917.8
1420.330.518.327.416.024.113.119.710.215.4
1517.726.615.923.913.921.011.417.18.9213.4
1615.523.314.021.012.318.410.015.17.8411.8
1713.820.712.418.610.916.38.8713.36.9410.4
18 11.016.69.6914.67.9111.96.199.29
19 7.1010.75.568.34
Properties
Mn/ΩbφbMnkip-ft 7.69 11.66.9210.45.988.994.837.263.535.30
Pe(KL)
2
/10
4
kip-in.
2
115 107 96.9 83.1 65.9
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS3
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 260

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–261
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/2×2
1
/2× HSS2
1
/4×2
1
/4×
5
/16
1 /4
3 /16
1 /8
1 /4
tdesign, in.
0.291 0.233 0.174 0.116 0.233
Steel, lb/ft 8.45 7.11 5.59 3.90 6.26
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
064.797.354.381.643.264.933.350.047.972.0
163.996.153.680.642.764.133.049.447.271.0
261.692.551.877.841.261.931.947.845.267.9
357.886.948.873.438.958.330.145.141.963.0
453.079.645.067.635.853.727.841.737.856.7
547.371.240.460.832.248.425.137.633.049.6
641.362.035.553.428.542.922.133.228.042.1
735.152.730.545.924.737.119.128.723.134.7
829.143.725.638.520.931.516.124.218.427.7
923.535.220.931.517.426.113.319.914.621.9
1019.028.617.025.514.121.210.816.211.817.7
1115.723.614.021.111.717.58.9013.39.7514.7
1213.219.811.817.79.8014.77.4811.28.1912.3
1311.216.910.015.18.3512.66.379.566.9810.5
14 9.6914.68.6513.07.2010.85.498.24
15 7.5311.36.279.434.797.18
16 4.216.31
Properties
Mn/ΩbφbMnkip-ft 4.45 6.693.905.853.204.812.363.543.044.57
Pe(KL)
2
/10
4
kip-in.
2
55.4 50.9 44.1 35.4 34.9
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS2
1
/2-HSS2
1
/4
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 261

4–262 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/4×2
1
/4× HSS2×2×
3
/16
1 /8
1 /4
3 /16
1 /8
tdesign, in. 0.174 0.116 0.233 0.174 0.116
Steel, lb/ft 4.96 3.48 5.41 4.32 3.05
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
037.756.728.943.341.662.532.849.324.636.9
137.255.928.542.740.861.332.248.424.236.3
235.753.627.341.038.557.830.545.822.934.3
333.350.025.438.234.952.427.941.920.931.4
430.245.423.034.630.445.724.636.918.427.6
526.740.120.330.425.538.320.931.415.723.5
622.934.417.426.020.630.917.125.712.819.3
719.128.714.521.715.924.013.520.410.215.3
815.523.311.717.512.218.310.415.77.9311.9
912.318.59.2613.99.6414.58.2412.46.279.42
10 9.9715.07.5011.37.8111.76.6710.05.087.63
11 8.2412.46.209.306.469.705.528.294.206.31
12 6.9210.45.217.81 4.636.973.535.30
13 5.908.874.446.66
14 3.835.74
Properties
Mn/ΩbφbMnkip-ft 2.51 3.771.862.802.283.431.912.871.432.15
Pe(KL)
2
/10
4
kip-in.
2
30.6 24.6 22.7 20.2 16.4
ASD LRFD
Ωc=2.00φc=0.75
Table 4-15 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS2
1
/4-HSS2
Fy= 46 ksi
f′
c= 4 ksi
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 262

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–263
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16×16× HSS14×14×
1
/2
3 /8
5 /16
5 /8
1 /2
3 /8
tdesign, in. 0.465 0.349 0.291 0.581 0.465 0.349
Steel, lb/ft 103 78.5 65.9 110 89.7 68.3
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
011301700992149092113801050157092813908061210
611201680981147091113701030155091613707941190
711201680977147090713601030154091113707901190
811101670972146090313501020153090613607861180
911101660967145089813501020152090013507801170
1011001650962144089213401010151089413407741160
1110901640955143088613301000150088613307681150
121090163094814208801320991149087913207611140
131080162094114108731310982147087013107541130
141070160093314008651300972146086112907461120
151060159092513908571290961144085212807371110
161050158091613708491270950143084212607281090
171040156090713608401260939141083112507181080
181030154089713508301250926139082012307091060
191020153088713308201230913137080912106981050
201010151087613108101220900135079711906871030
21 994149086513008001200886133078411806761010
22 98114708531280789118087213107711160665997
23 96814508421260777117085712907581140653980
24 95514308291240766115084212607451120641962
25 94114108171230754113082712407311100629943
26 92713908041210742111081112207171070616924
27 91213707911190729109079511907021050603905
28 89713507771170716107077911706881030590885
29 88213207641150703105076211406731010577866
30 8671300750112069010407461120658987564845
32 836125072210806639957121070627941537805
34 803121069310406369546771020596894509764
36 7711160663995608912642963565848482722
38 7371110633950580869607911534801454681
40 7041060603905551827573859503755427640
Properties
Mn/ΩbφbMnkip-ft 428644336506287431384577321482252379
Pe(KL)
2
/10
4
kip-in.
2
45900 38500 34600 33500 29200 24500
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS16-HSS14
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 263

4–264 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14×14× HSS12×12×
5
/16
5 /8
1 /2
3 /8
5 /16
1 /4
tdesign, in. 0.291 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 57.4 93.3 76.1 58.1 48.9 39.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0744112084012607411110639959585878531796
6733110082512407271090627941574861520780
7729109081912307221080623934570855517775
8724109081312207171080618927565848512768
9719108080612107101070612918560840507761
10714107079812007041060606909554831502753
11708106078911806961040599899548822496744
12701105078011706881030592888541812490734
13694104077011506791020584877534801483724
14686103075911406701000576864526789475713
1567810207481120660990567851518777468702
1667010007361100649974558837509764460689
176619917241090638958548822500750451677
186519777111070627941538807491736442664
196429626971050615923528792481721433650
206319476841030603904517775471706424636
216219316691000590886506759460691414621
22610915655982577866494742450675404606
23599898640959564846483724439658394591
24588881624936551826471706428642384576
25576864609913537806459688417625373560
26564846593889523785447670405608363544
27552828577865509764434651394591352528
28540810561841495742422632382573341512
29527791545817481721409614371556331496
30515772528792466699396595359538320480
32489734496743437656371557336503298447
34464695463694409613346519312468277415
36438657431646380571321482289434256384
38412618399599352529297446267401235353
40387580368552325488273410245368216323
Properties
Mn/ΩbφbMnkip-ft 216324274412229344181272155233128193
Pe(KL)
2
/10
4
kip-in.
2
21900 19600 17400 14500 13000 11400
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS14-HSS12
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 264

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–265
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10×10×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 76.3 62.5 47.9 40.4 32.6 24.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0648973570855487731444665399599353530
6631947555833474711432647388582343515
7625938550825470705427641384576339509
8618927544815464697422634379569335503
9610915537805459688417625374562330496
10602902529794452678411616369553325488
11592888521782445668404607363544320479
12582873512768438656397596356534314470
13571857503754429644390585349524307461
14560840493739421631382573342513300451
15548822482724412618374560334501293440
16535803472707402604365547326489286429
17522783460690393589356534318477278417
18509763448672382574346519309464270405
19495742436654372558337505300450262393
20481721424636361542327490291437254380
21466699411617350526317475282423245368
22451677398597339509306460272409237355
23436655385578328492296444263394228342
24421632372558317475286428253380219329
25406609359538305458275413244366210316
26391586345518294441265397234351202303
27376564332498282424254381225337193290
28361541319478271407244365215323185277
29346518306458260390233350206308176264
30331496293439249373223334196294168251
32301452267400227340203304178267151227
34273410242363205308183275160241135203
36245368218327185277164247143215121181
38220330195293166248148221129193108163
4019929817626514922413320011617497.8147
Properties
Mn/ΩbφbMnkip-ft 18227315323012218310515786.913167.4101
Pe(KL)
2
/10
4
kip-in.
2
10400 9270 7850 7000 6100 5140
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS10
AISC_Part 4E:14th Ed. 2/23/11 10:53 AM Page 265

4–266 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS9×9×
5
/8
1 /2
3 /8
5 /16
1 /4
3 /16
tdesign, in. 0.581 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 67.8 55.7 42.8 36.1 29.2 22.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0560840490735418626379568339509298448
6542812474711404606366549328492288432
7535803468703399599362543324486284426
8528792462693394591357535319479280420
9519779455682388582351527314471275413
10510765447671381572345517308463270405
11500751439658374561338507302453264396
12490735429644366549331497296444258387
13479718420630358537324485289433252378
14467700409614349524316473281422245368
15454681399598340510307461274410238357
16441662388581330496298448266398231346
17428642376564321481289434257386223335
18414621364546311466280420249373216323
19400600352528300450271406240360208312
20386579340510290435261392231347200300
21372557327491279419251377223334192288
22357536315472268402241362214320184275
23342514302453257386232347205307176263
24328492289434247370222332196293167251
25313470277415236354212318187280159239
26299448264396225338202303178267151227
27284426251377214322192288169253144215
28270405239359204306183274160240136204
29256384227340194290173260152228128193
30242364215323183275164246143215121181
32218328192288164246146219127191107160
3419529317025514521812919411316994.5142
3617426215222712919411517310115184.3126
3815623513620411617410415590.213575.6113
4014121212318410515793.414081.412268.3102
Properties
Mn/ΩbφbMnkip-ft 14321512118296.614583.212569.110453.981.0
Pe(KL)
2
/10
4
kip-in.
2
7260 6450 5510 4910 4280 3590
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS9
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 266

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–267
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×8×
5
/8
1 /2
3 /8
5 /16
1 /4
tdesign, in. 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 59.3 48.9 37.7 31.8 25.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0476 714416 624352 528318477284426
6456 684399 599338 507305458272408
7449 673393 590333 499301451268402
8441 661386 579327 491295443263394
9432 648379 568321 481290434258387
10422 633370 556314 471283425252378
11412 618361 542306 460276415246369
12401 601352 528298 448269404239359
13389 583342 513290 435261392232348
14377 565331 497281 421253380225337
15364 546320 480272 408245367217326
16350 526309 463262 393236354209314
17337 505297 445252 379227341201302
18323 485285 428242 364218327193289
19309 464273 409232 348209314185277
20295 443261 391222 333200300176264
21281 421249 373212 318191286168252
22267 402236 355202 302181272159239
23255 383224 336191 287172258151227
24242 364212 318181 272163244143214
25230 345200 301171 257154231135202
26217 326189 283161 242145217127190
27205 308178 266152 228136204119179
28193 290166 250143 214128192112167
29182 273155 233133 200119179104156
30170 256145 218124 187112167 97.2146
32149 225128 191109 164 98.1147 85.4128
34132 199113 17096.9145 86.9130 75.7114
36118 177101 15186.4130 77.5116 67.5101
38106 15990.513677.6116 69.5104 60.690.9
40 95.614481.712370.0105 62.894.154.782.0
Properties
Mn/ΩbφbMnkip-ft 109 16493.014074.4112 64.496.853.580.5
Pe(KL)
2
/10
4
kip-in.
2
4800 4290 3680 3300 2870
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS8
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 267

4–268 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8×8× HSS7×7×
3
/16
5 /8
1 /2
3 /8
5 /16
tdesign, in. 0.174 0.581 0.465 0.349 0.291
Steel, lb/ft 19.6 50.8 42.1 32.6 27.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0248372394591345517290436262393
6237356372558326489275413248372
7233350364547320479270405243365
8229343356534312468264395238357
9224336346520304456257385232348
10219328336504295443250375225338
11213320325488286429242363218327
12207311314470276414234350211316
13201301302453266398225337203305
14194291290436255382216324195292
15187281278418244365207310187280
16180270266399232348197296178267
17173260253381221331188281169254
18166248241362209314178267161241
19158237228343197296168252152228
20151226215324186279159238143215
21143215203305174262149223135202
22136204191287163245140209126189
23128193179268152229130196118177
24121182167251143214121182110165
25114171155233133200113169102153
26107160144216124186104156 94.3141
27100150133201115173 96.6145 87.4131
28 93.3140124186107161 89.8135 81.3122
29 87.0130116174 99.6150 83.7126 75.8114
30 81.3122108162 93.1140 78.3117 70.8106
32 71.4107 95.0143 81.8123 68.8103 62.393.4
34 63.394.984.1126 72.4109 60.991.455.182.7
36 56.484.675.1113 64.697.154.381.549.273.8
38 50.676.067.4101 58.087.248.873.244.166.2
40 45.768.660.891.452.378.744.066.039.859.8
Properties
Mn/ΩbφbMnkip-ft 41.9 63.080.3121 68.6103 55.483.348.072.2
Pe(KL)
2
/10
4
kip-in.
2
2400 3000 2690 2310 2090
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS8-HSS7
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 268

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–269
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7×7× HSS6×6×
1
/4
3 /16
1 /8
c, f 5
/8
1 /2
tdesign, in. 0.233 0.174 0.116 0.581 0.465
Steel, lb/ft 22.4 17.1 11.6 42.3 35.2
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0233349201302170255322484278417
6220330190285160240299450258386
7216324186279156235291438251376
8211316182273152229283425243364
9205308177266148222273410234351
10199299172258143215262394225337
11193290166249138207251378215322
12186280160240133199240360205307
13179269154231127191228342194291
14172258147221122182215324183275
15165247141211116174203305173260
16157236134201110165190286163245
17149224127191104156178267153230
18142212120180 97.8147165249143215
19134201113170 91.8138153231133200
20126189107160 85.9129142213123185
21118177 99.9150 80.1120130196114171
22111166 93.3140 74.4112119179104157
23103155 86.8130 68.9103109163 95.6144
24 96.2144 80.6121 63.595.299.8150 87.8132
25 89.1134 74.4112 58.587.892.0138 80.9122
26 82.4124 68.8103 54.181.185.1128 74.8112
27 76.4115 63.895.750.275.278.9119 69.4104
28 71.0107 59.389.046.670.073.4110 64.596.9
29 66.299.355.382.943.565.268.4103 60.190.4
30 61.992.851.777.540.660.963.996.056.284.4
32 54.481.645.468.135.753.656.284.449.474.2
34 48.272.240.260.331.647.449.774.843.765.7
36 43.064.435.953.828.242.344.466.739.058.6
38 38.657.832.248.325.338.0
40 34.852.229.143.622.934.3
Properties
Mn/ΩbφbMnkip-ft 40.1 60.231.547.322.133.255.883.848.272.5
Pe(KL)
2
/10
4
kip-in.
2
1830 1530 1200 1730 1570
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
c
Shape is noncompact for compression with Fy=46 ksi.
f
Shape is noncompact for flexure with Fy=46 ksi.
Note: Heavy line indicates KL/rmyequal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7-HSS6
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 269

4–270 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×6×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 27.5 23.3 19.0 14.5 9.86
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0234351210315185278159239133199
6217325195293172258148222122184
7211317190285168252144215119178
8205307184276163244139209115172
9198296178267157236134201110166
10190285171256151226129193106159
11182273164246145217123185101152
12173260156234138207117176 96.0144
13165247148222131196111167 90.7136
14156233140210124186105158 85.4128
15147220132198117175 98.9148 80.0120
16137206124186110164 92.7139 74.6112
17128192116174102153 86.4130 69.2104
18119179108162 95.2143 80.2120 64.095.9
19110166 99.9150 88.2132 74.2111 58.888.3
20102153 92.1138 81.4122 68.3102 53.980.8
21 93.5140 84.7127 74.8112 62.693.949.073.5
22 85.3128 77.3116 68.3103 57.185.644.767.0
23 78.1117 70.7106 62.593.852.278.340.961.3
24 71.7108 65.097.557.486.147.971.937.556.3
25 66.199.159.989.852.979.444.266.334.651.9
26 61.191.755.483.048.973.440.961.332.048.0
27 56.785.051.377.045.468.137.956.829.744.5
28 52.779.047.771.642.263.335.252.827.641.4
29 49.173.744.566.839.359.032.849.325.738.6
30 45.968.841.662.436.855.130.746.024.036.0
32 40.360.536.554.832.348.527.040.521.131.7
34 35.753.632.448.628.642.923.935.818.728.1
36 31.947.828.943.325.538.321.332.016.725.0
38 28.642.925.938.922.934.419.128.715.022.5
Properties
Mn/ΩbφbMnkip-ft 39.2 58.934.251.428.643.022.533.916.024.0
Pe(KL)
2
/10
4
kip-in.
2
1360 1230 1090 907 710
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS6
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 270

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–271
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5
1
/2×5
1
/2× HSS5×5×
3
/8
5 /16
1 /4
3 /16
1 /8
1 /2
tdesign, in. 0.349 0.291 0.233 0.174 0.116 0.465
Steel, lb/ft 24.9 21.2 17.3 13.3 9.01 28.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0207311186279163245140210116173217326
1207310185278163245139209115173216325
2205307184276162243138208114171215322
3202304182273160240137205113169211318
4199298179268157236134202111166207311
5195292175262154231131197108162202303
6189284170255150225128192105158195294
7183275165247145218124186101152188283
817726515923814021011917997.5146180271
916925415222813420111417193.2140171257
1016124214521812819210916388.7133162244
1115323013820712218210315583.9126152229
1214521713019511517297.714678.9118142214
1313620412318410816291.813873.9111132199
1412719111517210115285.812968.8103122184
1511817710716094.314179.812063.795.5112169
1610916498.914887.413173.911158.788.0103154
1710115191.213780.612168.010253.880.693.2140
1892.413983.612574.011162.493.549.073.584.1126
1984.512776.311567.610156.985.344.466.675.5113
2077.411669.210461.392.051.577.240.160.168.1102
2170.510662.894.155.683.546.770.036.354.561.892.9
2264.296.557.285.850.776.042.563.833.149.756.384.6
2358.788.352.378.546.469.638.958.430.345.451.577.4
2453.981.148.172.142.663.935.853.627.841.747.371.1
2549.774.744.366.439.358.932.949.425.638.543.665.5
2646.069.140.961.436.354.430.545.723.735.640.360.6
2742.664.138.057.033.750.528.242.422.033.037.456.2
2839.659.635.353.031.346.926.339.420.430.734.852.2
2936.955.532.949.429.243.824.536.719.128.632.448.7
3034.551.930.846.127.340.922.934.317.826.730.345.5
Properties
Mn/ΩbφbMnkip-ft 32.348.528.242.423.735.518.728.013.319.931.647.4
Pe(KL)
2
/10
4
kip-in.
2
1000 909 806 676 526 821
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS5
1
/2-HSS5
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 271

4–272 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5×5×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 22.4 19.1 15.6 12.0 8.16
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0181272162243142214121182 99.6149
1181271162243142213121182 99.3149
2179269160241141211120180 98.3147
3176265158237139208118177 96.8145
4173259155232136204116174 94.7142
5168252151226132198113169 92.0138
6162244146219128192109164 88.9133
7156234140210123185105157 85.3128
8149224134201118177100150 81.4122
9142213127191112168 95.3143 77.1116
10134201120180106159 90.0135 72.7109
11125188113169 99.5149 84.6127 68.0102
12117175105158 93.0139 79.0118 63.394.9
13108163 97.8147 86.3129 73.3110 58.587.7
14 99.9150 90.2135 79.7120 67.6101 53.780.5
15 91.4137 82.7124 73.1110 62.093.049.073.5
16 83.8126 75.4113 66.7100 56.584.844.466.7
17 76.4115 68.3102 60.590.751.276.840.160.1
18 69.4104 61.492.054.481.746.169.135.853.7
19 62.593.955.182.648.973.341.362.032.148.2
20 56.484.849.774.544.166.237.356.029.043.5
21 51.276.945.167.640.060.033.850.826.339.5
22 46.670.041.161.636.454.730.846.224.035.9
23 42.664.137.656.433.350.028.242.321.932.9
24 39.258.934.551.830.645.925.938.920.130.2
25 36.154.231.847.728.242.323.935.818.627.8
26 33.450.229.444.126.139.122.133.117.225.7
27 30.946.527.340.924.236.320.530.715.923.9
28 28.843.225.438.022.533.819.028.614.822.2
29 26.840.323.635.521.031.517.726.613.820.7
30 25.137.722.133.119.629.416.624.912.919.3
Properties
Mn/ΩbφbMnkip-ft 26.0 39.022.734.119.228.815.222.810.816.3
Pe(KL)
2
/10
4
kip-in.
2
719 653 579 490 381
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS5
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 272

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–273
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4
1
/2×4
1
/2×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 25.0 19.8 17.0 13.9 10.7 7.31
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
019128815723514021012318410415684.7127
119128715623414020912218410415584.4127
218928315423113820712118210215483.4125
318527815122713520311917810115181.8123
418027114722113219811617498.114779.6119
517426214221412819111216894.914277.0115
616725213720512318410816191.113773.8111
715924013019511717510315486.913070.2105
815122712318411016697.014682.312366.399.4
914121311517310415591.113777.311662.193.2
1013219810716196.614585.012772.110857.786.6
1112218399.214989.313478.711866.810053.379.9
1211216891.513882.012372.310861.492.148.873.2
1310215383.912674.711265.998.956.184.144.366.5
1492.013876.411567.510159.789.550.876.240.060.0
1582.612469.110460.691.153.680.545.768.535.853.7
1673.511062.093.254.782.147.871.840.861.231.747.6
1765.197.855.283.048.873.442.463.636.154.228.142.1
1858.087.249.274.043.665.537.856.732.248.325.137.6
1952.178.344.266.439.158.833.950.928.943.422.533.7
2047.070.739.959.935.353.030.645.926.139.120.330.4
2142.664.136.254.432.048.127.841.723.735.518.427.6
2238.958.433.049.529.243.825.338.021.632.416.825.2
2335.553.430.245.326.740.123.234.719.729.615.323.0
2432.649.127.741.624.536.821.331.918.127.214.121.1
2530.145.225.538.422.634.019.629.416.725.113.019.5
2627.841.823.635.520.931.418.127.215.423.212.018.0
27 21.932.919.429.116.825.214.321.511.116.7
28 18.027.115.623.413.320.010.415.5
29 12.418.69.6514.5
Properties
Mn/ΩbφbMnkip-ft 24.436.720.430.617.926.915.222.812.018.18.6213.0
Pe(KL)
2
/10
4
kip-in.
2
563 497 454 402 343 267
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
1
/2
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 273

4–274 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×4×
1
/2
3 /8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.465 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 21.6 17.3 14.8 12.2 9.42 6.46
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
016624913319911917810415687.613170.9106
116524813219811817810315587.213170.5106
216324413019511717510215386.012969.5104
315923912719111417199.714984.112667.9102
415323112318411016596.514581.412265.698.5
514722111817710615892.513978.111762.994.3
613920911216810015087.813274.211159.789.5
713119610615994.214182.712469.910556.184.1
812118298.814987.613177.111665.297.852.278.3
911216891.613880.812171.210760.390.448.172.2
1010215384.112673.811165.197.755.282.844.066.0
1192.013876.511566.810059.088.550.175.239.859.7
1282.212469.010460.390.653.079.545.167.635.653.5
1372.810961.792.854.081.247.170.740.260.331.647.5
1463.795.854.782.248.072.241.662.335.553.227.841.7
1555.583.547.972.042.263.536.354.431.046.524.236.3
1648.873.342.163.337.155.831.947.827.240.821.331.9
1743.265.037.356.132.949.428.242.324.136.218.928.3
1838.658.033.350.029.344.125.237.821.532.316.825.2
1934.652.029.944.926.339.622.633.919.329.015.122.6
2031.246.927.040.523.835.720.430.617.426.113.620.4
2128.342.624.436.721.532.418.527.715.823.712.418.5
2225.838.822.333.519.629.516.925.314.421.611.316.9
2323.635.520.430.618.027.015.423.113.219.810.315.5
24 18.728.116.524.814.221.212.118.19.4614.2
25 13.119.611.216.78.7213.1
26 8.0612.1
Properties
Mn/ΩbφbMnkip-ft 18.327.615.523.213.720.511.617.59.2914.06.6910.1
Pe(KL)
2
/10
4
kip-in.
2
365 328 300 268 229 179
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 274

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–275
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3
1
/2×3
1
/2×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 14.7 12.7 10.5 8.15 5.61
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0113169 98.914886.413072.610958.187.1
1112168 98.314785.912972.110857.786.6
2110165 96.414584.312670.810656.785.0
3107160 93.414081.712268.710355.082.5
4102154 89.313478.211765.998.852.779.0
5 96.7145 84.412774.011162.493.549.874.7
6 90.4136 78.711869.110458.387.546.669.9
7 83.5126 72.911063.895.753.980.943.064.5
8 76.2115 66.810058.287.249.273.839.258.8
9 68.7103 60.590.952.478.544.466.635.353.0
10 61.292.054.281.446.569.839.659.431.547.2
11 53.880.947.972.140.961.534.852.327.641.5
12 46.870.341.963.036.054.130.345.524.036.0
13 40.160.336.254.431.347.126.039.020.630.8
14 34.652.031.246.927.040.622.433.617.726.6
15 30.145.327.240.823.535.419.529.315.423.2
16 26.539.823.935.920.731.117.225.713.620.4
17 23.535.221.231.818.327.515.222.812.018.0
18 20.931.418.928.416.324.613.620.310.716.1
19 18.828.216.925.514.722.012.218.29.6314.4
20 16.925.515.323.013.219.911.016.58.6913.0
21 15.423.113.920.812.018.09.9614.97.8811.8
22 10.916.49.0713.67.1810.8
Properties
Mn/ΩbφbMnkip-ft 11.3 16.910.015.18.6012.96.9210.44.997.50
Pe(KL)
2
/10
4
kip-in.
2
203 188 168 144 114
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS3
1
/2
AISC_Part 4E:14th Ed. 2/23/11 10:54 AM Page 275

4–276 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS3×3×
3
/8
5 /16
1 /4
3 /16
1 /8
tdesign, in. 0.349 0.291 0.233 0.174 0.116
Steel, lb/ft 12.2 10.6 8.81 6.87 4.75
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
093.414081.012269.7104 58.487.546.269.2
192.613980.312169.1104 57.986.845.868.7
290.213678.311867.3101 56.484.744.767.0
386.413075.111364.596.754.181.242.964.3
481.312270.910760.791.151.176.640.560.7
575.311365.898.956.284.447.471.137.656.4
668.510360.190.351.276.843.364.934.351.5
761.292.053.981.045.868.738.858.230.846.3
853.880.847.671.540.661.134.351.427.340.9
946.469.841.362.135.653.429.744.623.735.6
1039.459.335.353.030.646.025.438.120.330.4
1132.949.429.644.525.939.021.331.917.025.5
1227.641.524.937.421.832.817.926.814.321.5
1323.535.421.231.818.627.915.222.912.218.3
1420.330.518.327.416.024.113.119.710.515.8
1517.726.615.923.913.921.011.417.29.1613.7
1615.523.314.021.012.318.410.115.18.0512.1
1713.820.712.418.610.916.38.9113.47.1310.7
18 11.016.69.6914.67.9511.96.369.54
19 7.1310.75.718.56
Properties
Mn/ΩbφbMnkip-ft 7.74 11.66.9710.56.049.074.897.353.585.37
Pe(KL)
2
/10
4
kip-in.
2
116 108 98.1 84.6 67.7
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS3
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 276

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–277
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/2×2
1
/2× HSS2
1
/4×2
1
/4×
5
/16
1 /4
3 /16
1 /8
1 /4
tdesign, in. 0.291 0.233 0.174 0.116 0.233
Steel, lb/ft 8.45 7.11 5.59 3.90 6.26
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
064.797.354.381.645.267.835.553.347.972.0
163.996.153.680.644.767.035.152.647.271.0
261.692.551.877.843.164.633.950.845.267.9
357.886.948.873.440.560.831.947.941.963.0
453.079.645.067.637.255.829.444.137.856.7
547.371.240.460.833.350.026.439.633.049.6
641.362.035.553.429.243.723.234.828.042.1
735.152.730.545.924.937.319.929.823.134.7
829.143.725.638.520.931.516.625.018.427.7
923.535.220.931.517.426.113.620.414.621.9
1019.028.617.025.514.121.211.016.511.817.7
1115.723.614.021.111.717.59.1013.79.7514.7
1213.219.811.817.79.8014.77.6511.58.1912.3
1311.216.910.015.18.3512.66.529.776.9810.5
14 9.6914.68.6513.07.2010.85.628.43
15 7.5311.36.279.434.897.34
16 4.306.45
Properties
Mn/ΩbφbMnkip-ft 4.48 6.733.935.903.244.862.393.593.074.61
Pe(KL)
2
/10
4
kip-in.
2
55.8 51.4 44.7 36.2 35.2
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS2
1
/2-HSS2
1
/4
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 277

4–278 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS2
1
/4×2
1
/4× HSS2×2×
3
/16
1 /8
1 /4
3 /16
1 /8
tdesign, in. 0.174 0.116 0.233 0.174 0.116
Steel, lb/ft 4.96 3.48 5.41 4.32 3.05
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
039.158.730.645.941.662.533.149.725.938.9
138.557.830.245.340.861.332.548.725.538.2
236.855.228.943.338.557.830.645.924.136.1
334.151.226.840.234.952.427.941.921.932.9
430.746.024.236.330.445.724.636.919.228.8
526.740.121.231.825.538.320.931.416.224.4
622.934.418.027.120.630.917.125.713.219.8
719.128.714.922.415.924.013.520.410.415.5
815.523.312.017.912.218.310.415.77.9511.9
912.318.59.4514.29.6414.58.2412.46.289.42
10 9.9715.07.6511.57.8111.76.6710.05.097.63
11 8.2412.46.339.496.469.705.528.294.206.31
12 6.9210.45.317.97 4.636.973.535.30
13 5.908.874.536.79
14 3.905.86
Properties
Mn/ΩbφbMnkip-ft 2.53 3.811.892.842.303.451.932.901.452.18
Pe(KL)
2
/10
4
kip-in.
2
31.0 25.1 22.9 20.4 16.7
ASD LRFD
Ωc=2.00φc=0.75
Table 4-16 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Square HSS
Fy= 46 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS2
1
/4-HSS2
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 278

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–279
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS18× HSS16×
0.500 0.375 0.625 0.500 0.438 0.375
tdesign, in. 0.465 0.349 0.581 0.465 0.407 0.349
Steel, lb/ft 93.5 70.7 103 82.9 72.9 62.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0972146085412809191380816122076211407111070
6962144084412709071360805121075211307011050
7958144084112609031350801120074811206971050
8954143083712608981350797120074411206931040
9949142083312508931340792119073911106891030
10944142082812408871330786118073411006841030
11938141082212308801320780117072810906781020
12932140081712208731310774116072210806721010
1392513908101220865130076711507151070666999
1491813808031210857129075911407081060659988
1591013607961190848127075111307011050651977
1690213507881180839126074311106921040644966
1789313407801170829124073411006841030636953
1888413307721160819123072410906751010627941
198741310763114080812107141070666999618927
208641300754113079712007041060656984609913
218541280744112078611806941040646969599899
228431260734110077411606831020636954590884
238321250724109076111406721010625938579869
24820123071410707491120660990614921569853
25809121070310507361100649973603905558838
26796119069210407231080637955592887547821
27784118068010207091060624936580870536805
28771116066910006961040612918568852525788
2975911406579856821020599899556834514771
3074611206459676671000586880544816502753
327191080620931639958560840519779479718
346911040595893609914534801494741455682
36663995570855580870507761469704431647
38635952544816550825480720444666407611
40606909518778521781454680419628383575
Properties
Mn/ΩbφbMnkip-ft 350525274412326490271407242364213320
Pe(KL)
2
/10
4
kip-in.
2
39700 33000 31200 26800 24500 22200
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS18-
HSS16
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 279

4–280 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16× HSS14×
0.312 0.250
f
0.625 0.500 0.375 0.312
tdesign, in. 0.291 0.233 0.581 0.465 0.349 0.291
Steel, lb/ft 52.3 42.1 89.4 72.2 54.6 45.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
065798660290376011406711010579868531797
66489715938897481120659989569853522782
76449665898847431120655983565848518777
86409615868797381110651976561842514771
96369545828727331100646968556835510765
106319475778657261090640960551827505757
116269395728587191080634950546818500749
126209305668507121070627940539809494741
136149215618417041060619929533799488731
146079115548316951040612917526789481721
156009015488216861030603905518778474711
165938905408116761010595892511766467700
17585878533800666999585878502753459688
18577866525788655983576864494741451676
19569853517776644966566849485727442664
20560840509763633949556834476713434651
21551826500750621931545818466699425637
22541812491737609913534801456685416623
23532797482723596894523785446670406609
24522783473709583875512767436654397595
25512767463695570856500750426639387580
26501752453680557836488732415623377566
27491736443665544816476714405607367551
28480720433650530795464696394591357535
29469704423635517775452677383574347520
30458687413619503754439659372558337505
32436654392588475712414622350525316474
34414620371556447670389584328492296443
36391587350524419629365547306459275413
38369553329493391587340510285427255383
40346519308462364547316474264396236354
Properties
Mn/ΩbφbMnkip-ft 182274149225244367203305160240137206
Pe(KL)
2
/10
4
kip-in.
2
19800 17300 19900 17200 14200 12600
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS16-
HSS14
f
Shape is noncompact for flexure with Fy=42 ksi.
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 280

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–281
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14× HSS12.750× HSS10.750×
0.250 0.500 0.375 0.250 0.500 0.375
tdesign, in. 0.233 0.465 0.349 0.233 0.465 0.349
Steel, lb/ft 36.8 65.5 49.6 33.4 54.8 41.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0485728584877502754418626459688390585
6476714573859492738408612446669379569
7473709569853488732405607442663375563
8469704564846484726401602437655371556
9465697559838479719397595431646366549
10460690553829474711392588425637360540
11455683546819468702387580418627354531
12450674539809462693381572410615348522
13444665532798455683376563402604341511
14437656524786448672369554394591334500
15431646515773441661363544385578326489
16424635507760433649356533376564318477
17416624497746425637348522367550310464
18408613488732416624341511357535301452
19401601478717407611333499347520292438
20392588467701398597325487336504283425
21384576457685389583317475326489274411
22375563446669379568308462315472265397
23366549435652369554300449304456256383
24357536424635359539291436293440246369
25348522412618349524282423282423237355
26339508401601339508273410271407227341
27329494389583329493264396260390218327
28320480377566318477255383249374208313
29310465365548308462246369239358199299
30301451353530297446237356228342190285
32281422330495277415220329207310172258
34262393306460256384202303187280155232
36243365283425236354185278167251138207
38225338261391217325169253150225124186
40207311239359198297153229135203112168
Properties
Mn/ΩbφbMnkip-ft 11317016624913019692.613911417290.2136
Pe(KL)
2
/10
4
kip-in.
2
11000 12600 10400 8020 7110 5880
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS14-
HSS10.750
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 281

4–282 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10.750× HSS10×
0.250 0.625 0.500 0.375 0.312 0.250
tdesign, in. 0.233 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 28.1 62.6 50.8 38.6 32.3 26.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0320479478717415622352528319478286429
6310465463694402602340510308462276414
7306460457686397595336504305457272409
8302454451676392587332497300450269403
9298447444666386579327490296443264396
10293440437655379569321481290436259389
11288432428643372558315472285427254381
12282424420629365547308462279418248373
13276415410615356535301452272408242364
14270405400601348522294441265398236354
15263395390585339509286429258387230344
16257385379569330495278417251376223334
17249374368552320480270405243365216323
18242363357535310465261392235353208313
19234352345518300450253379227341201302
20227340333500290435244366219329194290
21219328321482279419235352211316186279
22211316309463269403226338203304178267
23203304297445258387216325194291171256
24195292284427248371207311186279163245
25187280272408237355198297178266155233
26179268260390226340189284169254148222
27171256248372216324180270161242140211
28163245236354205308171257153230133200
29155233224336195293163244145218126189
30148221212319185278154231137206119178
32133199192289166249137206122183105158
3411817717326014722112218310816293.1140
3610615815523213119710916396.514583.1125
3894.714213920811817797.514686.613074.5112
4085.512812518810615988.013278.111767.3101
Properties
Mn/ΩbφbMnkip-ft 64.296.511717697.614777.111666.299.654.982.6
Pe(KL)
2
/10
4
kip-in.
2
4490 6400 5580 4620 4100 3530
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS10.750-
HSS10
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 282

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–283
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10× HSS9.625×
0.188 0.500 0.375 0.312 0.250 0.188
tdesign, in. 0.174 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 19.7 48.8 37.1 31.1 25.1 19.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0252378394591333500301452269404237355
6243364381571322482290436260389228342
7239359376564317476287430256384224337
8236354370556313469282424252378221331
9232347364547308461278416248371217325
10227341358537302453272408243364212318
11222333351526296444267400237356207311
12217325343514289434261391232348202303
13211317335502282423254381226339197295
14206308326489275412247371220329191286
15200299317475267401240360213320185277
16193290308461259389233349206309179268
17187280298447251376225338199299172258
18180270288432242364217326192288166248
19173260278417234351209314185277159238
20167250268401225337201302177266152228
21160239257386216324193290170255145218
22153229247370207311185278163244139208
23146219236354198297177265155233132198
24139208226338189284169253148222125188
25132198215323180271161241140210119178
26125188205307172257152229133200112168
27119178195292163244145217126189106159
2811216818427715423213720511917899.5149
2910615817526214621912919411216893.4140
3099.314916524713820712218310515887.3131
3287.313114621912218310716192.513976.8115
3477.411612919410816295.014282.012368.0102
3669.010311517396.214484.712773.111060.791.0
3861.992.910315586.313076.011465.698.454.481.7
4055.983.893.414077.911768.610359.288.849.173.7
Properties
Mn/ΩbφbMnkip-ft 42.864.489.813571.010761.091.750.676.039.559.3
Pe(KL)
2
/10
4
kip-in.
2
2940 4910 4090 3610 3110 2580
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS10-
HSS9.625
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 283

4–284 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8.625×
0.625 0.500 0.375 0.322 0.250 0.188
tdesign, in. 0.581 0.465 0.349 0.300 0.233 0.174
Steel, lb/ft 53.5 43.4 33.1 28.6 22.4 17.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0392588338507284426261391228342199299
6375562324486272408250374218327190285
7369554319478268402246369214322187280
8362544313470263395241362210316183274
9355532307460258387236354206309179268
10347520300450252378231346201301174261
11338507293439245368225337196293169254
12329493285427239358219328190285164246
13319478276414232347212318184276159238
14309463267401224336205308178267153230
15298447258387216325198297171257147221
16287430249373208313190286165247141212
17276413239359200300183274158237135203
18264396229344192288175263151226129193
19252379219329184275167251144216123184
20241361209314175263160239137206116174
21229344199299167250152228130195110165
22218328189284158237144216123185104156
2320831217926915022513620411617497.7147
2419729716925414121212919310916491.8138
2518728116024013320012118210315485.9129
2617726615022512518811417196.314480.2120
2716725114121111817610616090.013574.5112
2815723713219811016599.414983.712669.3104
2914822212318510215492.613978.111764.696.9
3013820811517395.714486.613072.910960.490.5
3212218310115284.112676.111464.196.253.179.6
3410816289.713574.511267.410156.885.247.070.5
3696.214580.012066.499.760.190.250.776.041.962.9
3886.313071.810859.689.554.080.945.568.237.656.4
4077.911764.897.553.880.748.773.041.061.534.050.9
Properties
Mn/ΩbφbMnkip-ft 84.412770.610655.984.049.374.139.960.031.246.9
Pe(KL)
2
/10
4
kip-in.
2
3880 3400 2830 2560 2160 1780
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS8.625
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 284

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–285
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7.625× HSS7.500×
0.375 0.328 0.500 0.375 0.312 0.250
tdesign, in. 0.349 0.305 0.465 0.349 0.291 0.233
Steel, lb/ft 29.1 25.6 37.4 28.6 24.0 19.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0239359221331281421234351210315186278
6226339209313265397221331198297175262
7222333205307259389216324194291171257
8217325200300253380211316189284167250
9211317195292247370205308184276162244
10205307189283239359199299179268157236
11198298183274231347193289173259152228
12191287177265223334186278167250146219
13184276170255214321178268160240140211
14177265163244205308171256153230134201
15169253156234196294163245146219128192
16161241148223186279155233139209122182
17153229141212177265147221132198115173
18145217134200167251139209125187109163
19137205126189157236131197118176102153
2012919311917814822212318511016695.9144
2112118111116713920811517310315589.6134
2211317010415613019510816296.514583.5125
2310615897.214612218310015189.813577.5116
2498.214790.413611417193.114083.312571.7108
2590.913683.612510616085.912976.811566.199.1
2684.012677.311698.614879.411971.010661.191.6
2777.911771.710891.413773.611065.898.756.684.9
2872.410966.710085.012868.510361.291.852.779.0
2967.510162.293.279.311963.895.757.185.649.173.6
3063.194.658.187.174.111159.689.553.380.045.968.8
3255.583.251.176.665.197.852.478.646.970.340.360.5
3449.173.745.267.857.786.746.469.741.562.335.753.6
3643.865.740.360.551.477.341.462.137.055.531.947.8
3839.359.036.254.346.269.437.255.833.249.928.642.9
4035.553.232.749.041.762.633.550.330.045.025.838.7
Properties
Mn/ΩbφbMnkip-ft 42.764.238.357.551.978.141.261.935.553.429.544.4
Pe(KL)
2
/10
4
kip-in.
2
1860 1720 2110 1760 1580 1360
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS7.625-
HSS7.500
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:55 AM Page 285

4–286 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7.500× HSS7×
0.188 0.500 0.375 0.312 0.250
tdesign, in. 0.174 0.465 0.349 0.291 0.233
Steel, lb/ft 14.7 34.7 26.6 22.3 18.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0160241256383212319190285168251
6151226239359199298178267157235
7147221233350194291174261153229
8144215227341189283169254149223
9139209220330183275164246144216
10135202213319177265158237139208
11130195204307170255152228134200
12125187196294163245146219128192
13120179187281156234139209122183
14114171178267148222133199116174
15109163169253141211126189110165
16103154159239133199119178104156
17 97.2146150225125188112168 97.5146
18 91.5137141212117176105157 91.3137
19 85.8129133199110164 98.0147 85.2128
20 80.2120124187102153 91.3137 79.2119
21 74.7112116175 94.6142 84.6127 73.3110
22 69.3104108163 87.5131 78.2117 67.6101
23 64.196.2101151 80.4121 71.9108 62.093.0
24 59.088.593.1140 73.8111 66.099.056.985.4
25 54.481.585.8129 68.0102 60.891.352.578.7
26 50.375.479.4119 62.994.456.284.448.572.8
27 46.669.973.6111 58.387.552.278.245.067.5
28 43.365.068.4103 54.281.448.572.741.862.8
29 40.460.663.895.950.675.845.267.839.058.5
30 37.756.659.689.647.270.942.263.436.454.7
32 33.249.852.478.841.562.337.155.732.048.1
34 29.444.146.469.836.855.232.949.328.442.6
36 26.239.341.462.232.849.229.344.025.338.0
38 23.535.337.255.829.444.226.339.522.734.1
40 21.231.9
Properties
Mn/ΩbφbMnkip-ft 23.1 34.744.667.035.453.330.645.925.438.2
Pe(KL)
2
/10
4
kip-in.
2
1120 1670 1400 1250 1080
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7.500-
HSS7
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 286

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–287
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7× HSS6.875×
0.188 0.125 0.500 0.375 0.312
tdesign, in. 0.174 0.116 0.465 0.349 0.291
Steel, lb/ft 13.7 9.19 34.1 26.1 21.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0144217121182249374207311186278
6134202112168233349194290173260
7131197109164227341189283169253
8127191106158221331184275164246
9123185102153214320178267159239
10119178 97.9147206309171257153230
11114171 93.6140198297165247147221
12109163 89.1134189284158237141212
13104155 84.5127181271150226134202
14 98.2147 79.8120171257143214128192
15 92.7139 75.0113162243135203121181
16 87.2131 70.2105153229127191114171
17 81.7123 65.598.2144215120180107161
18 76.3114 60.891.1135203112168100150
19 70.9106 56.284.2127190104157 93.3140
20 65.798.551.777.5118178 96.9145 86.6130
21 60.690.947.471.0110166 89.7135 80.1120
22 55.683.443.164.7103154 82.6124 73.8111
23 50.976.339.559.294.9143 75.7114 67.6101
24 46.770.136.354.487.4131 69.5104 62.193.2
25 43.164.633.450.180.6121 64.196.157.285.9
26 39.859.730.946.374.5112 59.288.952.979.4
27 36.955.428.643.069.1104 54.982.449.173.6
28 34.351.526.640.064.296.551.176.645.668.4
29 32.048.024.837.259.990.047.671.442.563.8
30 29.944.923.234.855.984.144.566.739.759.6
32 26.339.420.430.649.273.939.158.734.952.4
34 23.334.918.127.143.565.534.652.030.946.4
36 20.831.216.124.238.858.430.946.327.641.4
38 18.628.014.521.7 27.741.624.837.2
40 16.825.213.119.6
Properties
Mn/ΩbφbMnkip-ft 19.9 29.914.121.242.964.434.151.229.444.2
Pe(KL)
2
/10
4
kip-in.
2
884 686 1570 1320 1170
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7-
HSS6.875
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 287

4–288 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.875× HSS6.625×
0.250 0.188 0.500 0.432 0.375
tdesign, in. 0.233 0.174 0.465 0.402 0.349
Steel, lb/ft 17.7 13.4 32.7 28.6 25.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0163245140211237356216323197295
6152228131196220331200300183274
7149223127191215322195293178267
8144216123185208312189284173259
9140209119179201301183274167250
10135202115172193290176263160241
11129194110165185277168252154231
12123185105157176265161241147220
13118176 99.7150168251152229139209
14112167 94.4142158238144216132198
15105158 89.0133149224136204124186
16 99.3149 83.5125141211128191117175
17 93.1140 78.1117132199119179109164
18 87.0131 72.8109124186111166102152
19 81.0121 67.5101116174103154 94.1141
20 75.1113 62.493.6108162 95.2143 86.9130
21 69.3104 57.486.199.6150 88.3133 79.9120
22 63.895.652.578.792.0138 81.6123 73.0110
23 58.387.548.072.084.4127 75.1113 66.9101
24 53.680.344.166.277.5116 68.9104 61.492.4
25 49.474.040.761.071.4107 63.595.556.685.1
26 45.668.537.656.466.099.358.788.352.478.7
27 42.363.534.952.361.292.054.581.948.573.0
28 39.359.032.448.656.985.650.676.145.167.9
29 36.755.030.245.353.179.847.271.042.163.3
30 34.351.428.242.349.674.644.166.339.359.1
32 30.145.224.837.243.665.538.858.334.651.9
34 26.740.022.033.038.658.034.451.630.646.0
36 23.835.719.629.434.451.830.646.127.341.0
38 21.432.017.626.4
Properties
Mn/ΩbφbMnkip-ft 24.4 36.719.128.839.559.335.252.931.447.2
Pe(KL)
2
/10
4
kip-in.
2
1010 834 1390 1270 1160
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6.875-
HSS6.625
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 288

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–289
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.625×
0.312 0.280 0.250 0.188 0.125
tdesign, in. 0.291 0.260 0.233 0.174 0.116
Steel, lb/ft 21.1 19.0 17.0 12.9 8.69
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0176264165247155232133199111166
6164245153230144216123184102153
7159239149224140210120179 98.7148
8154232145217136203116174 95.3143
9149224140209131196111167 91.6137
10143215134201126189107160 87.6131
11137206129193120181102153 83.4125
12131197123184115172 97.2146 79.0119
13125187116175109163 92.1138 74.5112
14118177110165103154 86.9130 69.9105
15111167104156 96.9145 81.6122 65.398.0
16104156 97.4146 90.9136 76.2114 60.791.1
17 97.4146 91.0137 84.8127 71.0106 56.284.3
18 90.7136 84.7127 78.9118 65.898.751.877.7
19 84.0126 78.5118 73.0110 60.791.147.571.2
20 77.6116 72.5109 67.3101 55.883.743.365.0
21 71.3107 66.699.961.892.751.076.439.358.9
22 65.297.860.891.356.484.646.469.635.853.7
23 59.689.455.783.551.677.442.563.732.849.1
24 54.882.251.176.747.471.139.058.530.145.1
25 50.575.747.170.743.765.536.053.927.741.6
26 46.770.043.665.340.460.633.249.925.638.5
27 43.364.940.460.637.456.230.846.223.835.7
28 40.260.437.656.334.852.228.743.022.133.2
29 37.556.335.052.532.548.726.740.120.630.9
30 35.152.632.749.130.345.525.037.519.328.9
32 30.846.228.843.126.740.021.932.916.925.4
34 27.340.925.538.223.635.419.429.215.022.5
36 24.336.522.734.121.131.617.326.013.420.1
38 15.623.312.018.0
Properties
Mn/ΩbφbMnkip-ft 27.1 40.724.737.122.633.917.726.612.518.8
Pe(KL)
2
/10
4
kip-in.
2
1040 967 896 738 569
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
COMPOSITE
HSS6.625
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 289

4–290 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×
0.500 0.375 0.312 0.280 0.250 0.188
tdesign, in. 0.465 0.349 0.291 0.260 0.233 0.174
Steel, lb/ft 29.4 22.5 19.0 17.1 15.4 11.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0208312172258153230143215134201114172
1208312172258153230143214134201114171
2206309170256152228142213133199113170
3204305168252150225140210131197112168
4200300165248147221138207129194110165
5195293162243144216135202126189107161
6190285157236140210131196123184104156
7184276152228136204127190119178101151
817726614722013119612218311417296.9145
917025514121112518811717511016492.7139
1016224313420112017911216710515788.2132
1115423112719111317010615999.214983.5125
1214622012018010716199.915093.614078.6118
1313820711316910115193.814188.013273.6110
1413019510515894.114187.713282.212368.6103
1512118298.114787.513181.612276.411563.695.5
1611317090.813681.012175.511370.710658.788.0
1710515783.612574.611269.510465.197.753.880.8
1896.514576.611568.310263.795.559.789.549.273.7
1988.613370.210562.393.558.087.054.481.644.666.9
2081.012264.496.856.484.652.578.849.273.840.360.4
2173.611158.788.251.276.747.671.444.666.936.554.8
2267.010153.580.446.669.943.465.140.761.033.349.9
2361.392.248.973.542.664.039.759.637.255.830.445.7
2456.384.644.967.539.258.736.554.734.251.328.041.9
2551.978.041.462.336.154.133.650.431.547.225.838.6
2648.072.138.357.633.450.131.146.629.143.723.835.7
2841.462.233.049.628.843.226.840.225.137.720.530.8
3036.054.228.843.225.137.623.335.021.932.817.926.8
3231.747.625.338.022.033.020.530.819.228.815.723.6
34 17.025.513.920.9
Properties
Mn/ΩbφbMnkip-ft 31.747.625.338.021.832.819.929.918.227.314.321.4
Pe(KL)
2
/10
4
kip-in.
2
994 830 741 690 646 529
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 290

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–291
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6× HSS5.563×
0.125 0.500 0.375 0.258 0.188 0.134
tdesign, in. 0.116 0.465 0.349 0.240 0.174 0.124
Steel, lb/ft 7.85 27.1 20.8 14.6 10.8 7.78
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
094.614218828315523312318410315486.7130
194.314118828215523212218410215386.4130
293.514018627915423012118210115285.6128
392.213818427515122712017999.815084.2126
490.413618027014822311717697.714782.4124
588.213217526314521711417195.114380.1120
685.512817025614021011116692.013877.3116
782.412416424713520210616088.513374.2111
879.011915823712919410215384.612770.7106
975.411315122612318497.014580.412167.0101
1071.410714321511617491.713875.911463.194.6
1167.410113520310916486.312971.310759.088.5
1263.194.712719110215380.712166.599.854.982.3
1358.988.311917895.014375.011361.792.650.776.0
1454.681.911016687.813269.410456.985.446.569.8
1550.375.510215380.712163.795.652.278.342.463.6
1646.169.293.914174.211258.287.447.571.338.457.7
1742.063.185.912968.210252.979.443.164.634.651.9
1838.157.278.111762.393.647.871.638.758.030.946.4
1934.351.470.610656.685.142.964.334.752.127.741.6
2030.946.463.795.751.176.838.758.031.347.025.037.6
2128.142.157.886.846.369.635.152.628.442.622.734.1
2225.638.352.679.142.263.532.047.925.938.920.731.0
2323.435.148.272.438.658.129.243.923.735.518.928.4
2421.532.244.266.535.553.326.940.321.832.617.426.1
2519.829.740.861.332.749.124.837.120.130.116.024.0
2618.327.537.756.630.245.422.934.318.527.814.822.2
2815.823.732.548.826.139.219.729.616.024.012.819.2
3013.720.628.342.522.734.117.225.813.920.911.116.7
3212.118.1 9.7814.7
3410.716.1
Properties
Mn/ΩbφbMnkip-ft 10.115.226.740.221.432.215.823.812.118.29.1113.7
Pe(KL)
2
/10
4
kip-in.
2
406 769 643 508 412 329
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6-
HSS5.563
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 291

4–292 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5.500× HSS5×
0.500 0.375 0.258 0.500 0.375 0.312
tdesign, in. 0.465 0.349 0.240 0.465 0.349 0.291
Steel, lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0186279153230121181166250135202119179
1185278153229121181166249134201119179
2183275151227120179164247133199118177
3181271149224118177161243130196116173
4177266146219115173158237127191113169
5173260142213112168153230123185109164
6168252137206109163147221118177105157
7162243132198105157141212113169100150
815523312619099.915013420110716094.9142
914822212018095.014312619010115189.3134
1014021111417089.813511817893.914183.4125
1113319910716084.312611016687.113177.4116
1212418799.614978.711810215380.312171.3107
1311617492.513973.111093.514174.111165.297.7
1410816285.312867.410185.312867.910259.188.7
1599.515078.411861.892.777.311661.892.853.379.9
1691.313772.310956.484.569.510455.883.948.072.2
1783.412566.299.651.176.662.093.250.275.443.265.0
1875.711460.490.845.968.955.383.144.767.238.658.1
1968.210254.782.241.261.849.674.640.160.334.752.1
2061.592.549.474.237.255.844.867.336.254.531.347.0
2155.883.944.867.333.850.640.661.032.949.428.442.7
2250.976.440.861.330.846.137.055.629.945.025.938.9
2346.569.937.356.128.142.233.950.927.441.223.735.6
2442.764.234.351.525.838.831.146.725.237.821.732.7
2539.459.231.647.523.835.728.743.123.234.920.030.1
2636.454.729.243.922.033.026.539.821.432.218.527.8
2831.447.225.237.919.028.5
30 21.933.016.524.8
Properties
Mn/ΩbφbMnkip-ft 26.139.220.931.415.423.221.031.616.925.414.622.0
Pe(KL)
2
/10
4
kip-in.
2
739 619 489 534 450 401
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5.500-
HSS5
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 292

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–293
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5× HSS4.500×
0.258 0.250 0.188 0.125 0.375 0.337
tdesign, in. 0.240 0.233 0.174 0.116 0.349 0.313
Steel, lb/ft 13.1 12.7 9.67 6.51 16.5 15.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010615910415687.713271.3107117176109163
110515810415587.413171.0107117175108163
210415710215486.513070.2105115173107160
310315410115184.912768.8103112169105157
410015098.214782.712467.0100109163101152
596.814595.014380.112064.797.010515797.4146
693.014091.413776.911562.092.999.614992.7139
788.813387.213173.311058.988.394.014187.5131
884.112682.612469.410455.583.388.113281.8123
979.211977.711765.297.852.078.082.112375.8114
1073.911172.610960.891.348.372.476.011469.7105
1168.610367.310156.384.544.566.769.710563.695.5
1263.194.762.093.051.877.740.761.063.595.457.987.1
1357.786.656.785.047.370.936.955.357.386.152.478.7
1452.478.651.477.142.864.233.249.851.377.147.070.6
1547.270.846.369.538.557.829.644.545.668.541.862.8
1642.263.441.462.234.451.626.239.340.160.336.855.3
1737.556.236.855.130.445.723.234.835.553.432.649.0
1833.450.132.849.227.240.720.731.131.747.629.143.7
1930.045.029.444.124.436.618.627.928.442.726.139.2
2027.140.626.639.822.033.016.825.225.738.623.535.4
2124.536.824.136.120.029.915.222.823.335.021.432.1
2222.433.521.932.918.227.313.920.821.231.919.529.3
2320.530.720.130.116.624.912.719.019.429.217.826.8
2418.828.218.427.715.322.911.617.517.826.816.424.6
2517.326.017.025.514.121.110.716.1
2616.024.015.723.613.019.59.9214.9
2813.820.713.520.311.216.88.5612.8
Properties
Mn/ΩbφbMnkip-ft 12.518.812.218.49.6114.46.8410.313.420.112.318.5
Pe(KL)
2
/10
4
kip-in.
2
355 349 289 220 314 294
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5-
HSS4.500
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 293

4–294 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4.500× HSS4×
0.237 0.188 0.125 0.313 0.250
tdesign, in. 0.220 0.174 0.116 0.291 0.233
Steel, lb/ft 10.8 8.67 5.85 12.3 10.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
086.813075.311360.891.288.613376.6115
186.413075.011260.590.788.113276.2114
285.212874.011159.689.586.613074.9112
383.412572.310858.287.484.212672.8109
480.812170.110556.384.580.912170.0105
577.611667.410154.081.076.911566.599.8
673.911164.196.251.376.972.310862.693.8
769.810560.590.848.272.367.210158.287.2
865.398.056.684.944.967.461.792.653.580.2
960.690.852.578.741.462.256.584.948.672.9
1055.783.548.272.337.956.851.377.143.765.5
1150.776.143.965.934.351.446.169.338.858.2
1245.868.739.659.430.846.141.061.734.151.1
1341.061.535.553.227.341.036.254.329.844.8
1436.454.531.447.224.036.131.547.326.039.1
1531.947.927.641.321.031.427.441.222.634.0
1628.042.124.236.318.427.624.136.219.929.9
1724.837.321.532.216.324.521.332.117.626.5
1822.233.219.128.714.621.819.028.615.723.6
1919.929.817.225.813.119.617.125.714.121.2
2017.926.915.523.311.817.715.423.212.719.1
2116.324.414.121.110.716.014.021.011.617.4
2214.822.212.819.29.7414.612.719.110.515.8
2313.620.411.717.68.9213.4
2412.518.710.816.18.1912.3
2511.517.29.9214.97.5511.3
Properties
Mn/ΩbφbMnkip-ft 9.27 13.97.6511.55.458.198.9413.47.5011.3
Pe(KL)
2
/10
4
kip-in.
2
236 204 155 189 164
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4.500-
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 294

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–295
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×
0.237 0.226 0.220 0.188 0.125
tdesign, in. 0.220 0.210 0.205 0.174 0.116
Steel, lb/ft 9.53 9.12 8.89 7.66 5.18
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
073.711171.610770.510663.895.751.076.5
173.311071.210770.110563.495.250.776.0
272.110870.010568.910362.493.649.874.7
370.110568.110267.010160.691.048.472.6
467.410165.598.264.496.658.387.546.469.6
564.196.162.293.461.391.955.483.144.066.0
660.290.458.587.857.686.452.178.241.361.9
756.084.054.481.653.580.348.472.638.257.4
851.577.250.075.049.273.844.566.835.052.5
946.870.245.568.244.867.140.460.731.747.5
1042.163.140.961.340.260.336.354.528.342.5
1137.456.136.354.535.853.632.348.425.037.6
1232.949.331.947.931.447.228.442.621.932.8
1328.642.927.741.627.341.024.636.918.828.3
1425.037.523.935.923.535.321.231.916.224.4
1521.732.720.831.320.530.818.527.814.221.2
1619.128.718.327.518.027.016.324.412.418.7
1716.925.416.224.416.023.914.421.611.016.5
1815.122.714.521.714.221.412.819.39.8314.7
1913.620.413.019.512.819.211.517.38.8213.2
2012.218.411.717.611.517.310.415.67.9611.9
2111.116.710.616.010.515.79.4414.27.2210.8
2210.115.29.6814.69.5314.38.6012.96.589.87
Properties
Mn/ΩbφbMnkip-ft 7.16 10.86.9010.46.7610.25.928.894.236.35
Pe(KL)
2
/10
4
kip-in.
2
158 154 152 137 105
ASD LRFD
Ωc=2.00φc=0.75
Table 4-17 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 295

4–296 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS18× HSS16×
0.500 0.375 0.625 0.500 0.438 0.375
tdesign, in. 0.465 0.349 0.581 0.465 0.407 0.349
Steel, lb/ft 93.5 70.7 103 82.9 72.9 62.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010801620966145010001500900135084812707981200
61070160095414309871480888133083612507861180
71060160095014209831470883132083212507821170
81060159094514209771470878132082712407771170
91050158094014109711460872131082112307711160
101050157093314009641450866130081512207651150
111040156092713909561430859129080812107591140
121030155092013809481420851128080012007511130
131020154091213709391410843126079211907441120
141020152090413609301390834125078411807351100
151010151089513409201380824124077511607261090
16 997150088513309091360814122076511507171080
17 986148087613108981350804121075511307071060
18 976146086513008861330793119074411206971050
19 964145085412808741310781117073311006861030
20 952143084312608611290770115072210806751010
21 94014108321250848127075711407101070664996
22 92713908201230834125074511206981050652978
23 91413708071210820123073211006851030640960
24 90113507941190806121071810806721010627941
25 8871330781117079111907051060659989615922
26 8721310768115077611606911040646969602903
27 8581290754113076111406761010632948589883
28 843126074011107451120662993618928575863
29 828124072610907291090647971604907562843
30 813122071210707131070632949590885548822
32 781117068210206811020602904561842520781
34 7491120653979648972572858532798493739
36 7171070622933614922541812503755465697
38 6841030592888581872511766474711437655
40 651976561842548822481721445668409614
Properties
Mn/ΩbφbMnkip-ft 357536280421333500277416247372217327
Pe(KL)
2
/10
4
kip-in.
2
41100 34300 32000 27700 25400 23100
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS18-
HSS16
AISC_Part 4E:14th Ed. 2/23/11 10:56 AM Page 296

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–297
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS16× HSS14×
0.312 0.250
f
0.625 0.500 0.375 0.312
tdesign, in. 0.291 0.233 0.581 0.465 0.349 0.291
Steel, lb/ft 52.3 42.1 89.4 72.2 54.6 45.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
07461120692104082212307341100645967598898
67341100680102080812107211080633949587880
77301090676101080312007171070628943583874
87251090672101079712007111070624935578867
97201080666100079011907051060618927572859
10714107066199178311706991050612918566850
11707106065498177511606911040605907560840
12700105064797176611506831030598897553829
13693104064096075711406751010590885545818
1468510306329487471120666999581872537806
1567610106249367371110656984573859529793
1666710006159227261090646969563845520780
176579866069097141070636953554830510766
186489715968947021050625937543815501751
196379565868796901030613920533799491736
206269405768636771020601902522783480720
21615923565847664995589884511766470704
22604906554831650975576865499749459688
23592888542814636954564845488731447671
24580870531796622932551826476713436654
25568852519779607910537806463695424637
26555833507760592888524786451677413619
27543814495742577866510765439658401601
28530795482724562843496744426639389583
29517775470705547820482723413620377565
30504756457686531797468702401601365547
32477716432648500750440660375563341511
34451676407610469704412618350525317475
36424636381572438657384576325487293440
38397596356534408612357535300451270406
40371557332497378567330495277415248372
Properties
Mn/ΩbφbMnkip-ft 186280153229248373207311163245140210
Pe(KL)
2
/10
4
kip-in.
2
20600 18100 20400 17700 14700 13100
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS16-
HSS14
f
Shape is noncompact for flexure with Fy=42 ksi.
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 297

4–298 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS14× HSS12.750× HSS10.750×
0.250 0.500 0.375 0.250 0.500 0.375
tdesign, in. 0.233 0.465 0.349 0.233 0.465 0.349
Steel, lb/ft 36.8 65.5 49.6 33.4 54.8 41.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0554831637955557835474711495742428642
6542813623935544816462693481721415622
7538807618928540810458687475713410616
8533800613919535802454680470704405608
9528792607910529794448672463695399599
10522784600900523784443664456684393589
11516774593889516774436654448672386579
12509764585877509763429644440660378568
13502753576864501751422633431646370556
14494741567850492739414622421632362543
15486729557836484725406609412617353530
16477716547821474711398597401602344516
17468702536805465697389583391586334502
18459688525788455682380570380569325487
19449673514771444666370555368552315472
20439658502753434650360541357535304456
21428643490735423634350526345517294441
22418627478717411617340511333499283425
23407611465698400600330495321481273409
24396594453679388583320479309463262393
25385578440659377565309464297445251377
26374561427640365547298448284427240361
27362544413620353530288432272408230345
28351527400600341512277416260390219329
29340509387580329494267400248373209313
30328492374560317476256384237355199298
32305458347521294440235353214321179268
34283424321481270406215322192288159239
36261391295443248372195293171257142213
38239359271406226339176264153230128191
40218328247370204307159238139208115173
Properties
Mn/ΩbφbMnkip-ft 11617416925413320094.614211617592.0138
Pe(KL)
2
/10
4
kip-in.
2
11500 13000 10700 8350 7280 6050
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS14-
HSS10.750
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 298

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–299
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10.750× HSS10×
0.250 0.625 0.500 0.375 0.312 0.250
tdesign, in. 0.233 0.581 0.465 0.349 0.291 0.233
Steel, lb/ft 28.1 62.6 50.8 38.6 32.3 26.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0359538507760445668384576352528320480
6347521490735431646371556339509308462
7343515484726425638366549335503304455
8338507477716419629361541330495299448
9333499470705413619355532324487294440
10327491461692405608348522318478288432
11321481452679397596341512312468281422
12314471443664389583334501305457275412
13307460432649380570326489297446268401
14299449422632370556317476289434260390
15291437410615360541308463281421252378
16283425399598350525299449272408244366
17275412386580339509290435263395236354
18266399374561328492280420254382227341
19257385361542317476270405245368219328
20248371348522306458260390236354210315
21238358335502294441250375226339201302
22229344322483282424240359217325192288
23220330308463271406229344207311183275
24210315295443259388219329198296174262
25201301282423247371209313188282166248
26192288269403236354199298179268157236
27182274256383224336189283170254148223
28173260243364213319179268160241140210
29164247230345202303169254152227132198
30156234218327191286160240143214124186
32139208193290170254141212126189109163
3412318417326015022512518811216796.5145
3611016415523213420111216799.514986.1129
3898.314713920812018010015089.313477.3116
4088.713312518810916390.413680.612169.7105
Properties
Mn/ΩbφbMnkip-ft 65.698.611917899.314978.611867.610256.184.3
Pe(KL)
2
/10
4
kip-in.
2
4660 6510 5700 4750 4230 3660
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS10.750-
HSS10
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 299

4–300 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS10× HSS9.625×
0.188 0.500 0.375 0.312 0.250 0.188
tdesign, in. 0.174 0.465 0.349 0.291 0.233 0.174
Steel, lb/ft 19.7 48.8 37.1 31.1 25.1 19.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0287430422634363544332498301451269404
6275413407611349524319479289433258387
7271407402603345517315472285427254380
8267400396594339509310464280420249374
9262392389583333500304456275412244366
10256384382572327490298447269403239358
11250375373560320480291437262394233349
12244365365547312469284426256384226339
13237355356534304456277415249373220329
14230345346519296444269403241362212319
15222334336504287431260391233350205308
16215322326488278417252378225338198296
17207310315472269403243365217326190285
18199298304456259389234351209313182273
19191286293439249374225337200301174261
20183274281422239359216324192288166249
21174261270405229344206310183275158237
22166249258387219329197296174262150225
23158237247370209314188282166249142213
24150225235353199299179268157236134202
25142212224336189284169254149223127190
26134201212319180269160240141211119179
27126189201302170255151227132199112168
28118178190286161241143214124187105157
2911116618026915122713420111717597.4146
3010415616925414221312618910916491.1137
3291.113714922312518811116695.814480.0120
3480.712113219811116697.914784.912770.9106
3672.010811817798.814887.313175.711463.294.8
3864.696.910615888.713378.411868.010256.885.1
4058.387.595.314380.012070.710661.392.051.276.8
Properties
Mn/ΩbφbMnkip-ft 43.865.891.313772.310962.293.551.777.740.360.6
Pe(KL)
2
/10
4
kip-in.
2
3060 5010 4210 3720 3220 2690
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
HSS10-
HSS9.625
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 300

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–301
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS8.625×
0.625 0.500 0.375 0.322 0.250 0.188
tdesign, in. 0.581 0.465 0.349 0.300 0.233 0.174
Steel, lb/ft 53.5 43.4 33.1 28.6 22.4 17.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0413619360541308462285427253380225337
6394591344517294441272408241361213320
7388582339508289433267401237355209314
8380571333499284425262393232348205307
9372559326488277416256385227340200300
10364545318477271406250375221331194291
11354531310464264395243365214322188283
12344516301451256384236354208312182273
13333500291437248372229343201301176263
14322483282423239359221331194290169253
15310466272408231346212319186279162243
16298448261392222333204306178267155232
17286429251376213319195293170256147221
18274411240360203305187280162244140210
19261392229344194291178267154232133199
20249373218327184277169254146220125188
21236354207311175263160240138208118177
22224336196294166248151227130196111166
23211317185278156235143214123184104156
2419929917526214722113420111517296.9145
2518728116424713820712618910816190.2135
2617726615423113019411817710015083.6125
2716725114421612118211016593.014077.5116
2815723713420211316910215386.513072.1108
2914822212518810515795.314380.712167.2101
3013820811717698.114789.013475.411362.894.2
3212218310315486.212978.211766.299.455.282.8
3410816291.113776.411569.310458.788.048.973.3
3696.214581.312268.110261.892.752.378.543.665.4
3886.313072.910961.191.755.583.247.070.539.158.7
4077.911765.898.755.282.850.175.142.463.635.353.0
Properties
Mn/ΩbφbMnkip-ft 85.412871.710856.985.550.375.640.861.331.947.9
Pe(KL)
2
/10
4
kip-in.
2
3930 3460 2900 2630 2230 1860
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS8.625
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 301

4–302 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7.625× HSS7.500×
0.375 0.328 0.500 0.375 0.312 0.250
tdesign, in. 0.349 0.305 0.465 0.349 0.291 0.233
Steel, lb/ft 29.1 25.6 37.4 28.6 24.0 19.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0257386239359297445251376228341204306
6242364225338279419236354214321191287
7237356221331273410231347209314187281
8232348215323267400225338204306182273
9225338209314259389219329198298177265
10219328203304251377212318192288171257
11211317196294243364205307185278165247
12203305189283233350197296178267158237
13195293181272224336189283171256152227
14187280173260214321181271163245144217
15178267165248204306172258155233137206
16170254157236194291163245147221130195
17161241149223183275154232139209123184
18152228141211173259146218131197115173
19143214132199162244137205123185108162
20134201124186152229128192115173101151
2112618811617414221312017910816293.9141
2211717610816213219911116710015087.0131
2310916310115112318410315592.813980.4121
2410115193.114011417195.214385.512873.8111
2592.913985.812910616087.813278.811868.1102
2685.912979.311998.614881.112272.810962.994.4
2779.611973.511091.413775.211367.510158.387.5
2874.011168.410385.012870.010562.894.254.381.4
2969.010463.795.679.311965.297.858.687.850.675.9
3064.596.759.689.374.111160.991.454.782.147.370.9
3256.785.052.378.565.197.853.680.348.172.141.562.3
3450.275.346.469.657.786.747.471.242.663.936.855.2
3644.867.241.462.051.477.342.363.538.057.032.849.2
3840.260.337.155.746.269.438.057.034.151.229.544.2
4036.354.433.550.341.762.634.351.430.846.226.639.9
Properties
Mn/ΩbφbMnkip-ft 43.565.339.058.552.779.141.963.036.254.330.145.3
Pe(KL)
2
/10
4
kip-in.
2
1910 1760 2150 1800 1620 1400
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7.625-
HSS7.500
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 302

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–303
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7.500× HSS7×
0.188 0.500 0.375 0.312 0.250
tdesign, in. 0.174 0.465 0.349 0.291 0.233
Steel, lb/ft 14.7 34.7 26.6 22.3 18.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0179269269404227341206308184275
6168252251377212318192288171256
7164246245368207310187280166250
8159239238357201301182272162242
9154231231346194292176264156234
10149223222334187281169254150226
11143215214320180270163244144216
12137206204307172258156233138207
13131196195292164246148222131197
14124187185278156234141211124186
15118177175263147221133199117176
16111167165247139208125188110165
17105157155232130196117176103155
18 97.9147145217122183110165 96.1144
19 91.3137135202114170102153 89.3134
20 84.9127125188105158 94.7142 82.6124
21 78.7118116175 97.3146 87.5131 76.1114
22 72.6109108163 89.6134 80.5121 69.7105
23 66.699.9101151 82.0123 73.6110 63.895.7
24 61.191.793.1140 75.3113 67.6101 58.687.9
25 56.384.585.8129 69.4104 62.393.554.081.0
26 52.178.179.4119 64.296.357.686.449.974.9
27 48.372.573.6111 59.589.353.480.146.369.4
28 44.967.468.4103 55.383.049.774.543.164.6
29 41.962.863.895.951.677.446.369.540.160.2
30 39.158.759.689.648.272.343.364.937.556.3
32 34.451.652.478.842.463.638.057.133.049.4
34 30.545.746.469.837.556.333.750.529.243.8
36 27.240.841.462.233.550.230.145.126.039.1
38 24.436.637.255.830.045.127.040.523.435.1
40 22.033.0
Properties
Mn/ΩbφbMnkip-ft 23.6 35.545.267.936.054.131.146.725.939.0
Pe(KL)
2
/10
4
kip-in.
2
1160 1700 1420 1280 1110
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7.500-
HSS7
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 303

4–304 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS7× HSS6.875×
0.188 0.125 0.500 0.375 0.312
tdesign, in. 0.174 0.116 0.465 0.349 0.291
Steel, lb/ft 13.7 9.19 34.1 26.1 21.9
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0161241138207262394222332200300
6149224127191244367206309186279
7145218123185238357201301182272
8140211119179231347195293176264
9135203114172224335189283170255
10130195109164215323182272164246
11124187104156206310174261157236
12119178 98.8148197296166249150225
13112169 93.3140188282158237143214
14106159 87.6131178267150225135203
15 99.9150 81.9123168252142212128191
16 93.5140 76.2114158237133200120180
17 87.2131 70.6106148222125187112168
18 81.0121 65.097.6138207116174105157
19 74.9112 59.789.5128192108162 97.0146
20 68.9103 54.581.8119178 99.9150 89.7135
21 63.294.849.574.2110166 92.1138 82.7124
22 57.686.445.167.6103154 84.4127 75.7114
23 52.779.041.261.994.9143 77.2116 69.2104
24 48.472.637.956.887.4131 70.9106 63.695.4
25 44.666.934.952.480.6121 65.398.058.687.9
26 41.261.832.348.474.5112 60.490.654.281.3
27 38.257.329.944.969.1104 56.084.050.275.4
28 35.553.327.841.764.296.552.178.146.770.1
29 33.149.725.938.959.990.048.672.843.665.3
30 31.046.424.236.455.984.145.468.140.761.1
32 27.240.821.332.049.273.939.959.835.853.7
34 24.136.218.928.343.565.535.353.031.747.5
36 21.532.316.825.238.858.431.547.328.342.4
38 19.328.915.122.7 28.342.425.438.1
40 17.426.113.620.5
Properties
Mn/ΩbφbMnkip-ft 20.3 30.514.421.643.465.234.652.029.944.9
Pe(KL)
2
/10
4
kip-in.
2
915 716 1600 1340 1200
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS7-
HSS6.875
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 304

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–305
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.875× HSS6.625×
0.250 0.188 0.500 0.432 0.375
tdesign, in. 0.233 0.174 0.465 0.402 0.349
Steel, lb/ft 17.7 13.4 32.7 28.6 25.1
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0179268156234249374228342210315
6166249145217231347211317194292
7161242140211225337206308189284
8157235136204218326199299183275
9151227131196210315192288177265
10145218126189201302184277170254
11139209120180193289176264162243
12133199114171183275168252154231
13126189108162174261159239146219
14119179102153164246150225138207
15112168 95.7143154231141212130195
16105158 89.4134144217132198121182
17 98.3147 83.2125135202123185113170
18 91.5137 77.1116125187114171105157
19 84.7127 71.1107116174106158 97.0146
20 78.2117 65.397.9108162 97.2146 89.2134
21 71.8108 59.689.499.6150 89.0134 81.7123
22 65.698.354.381.592.0138 81.6123 74.4112
23 60.090.049.774.584.4127 75.1113 68.1102
24 55.182.645.668.577.5116 68.9104 62.693.8
25 50.876.242.163.171.4107 63.595.557.686.5
26 46.970.438.958.366.099.358.788.353.380.0
27 43.565.336.154.161.292.054.581.949.474.1
28 40.560.733.550.356.985.650.676.146.068.9
29 37.756.631.346.953.179.847.271.042.864.3
30 35.352.929.243.849.674.644.166.340.060.1
32 31.046.525.738.543.665.538.858.335.252.8
34 27.541.222.734.138.658.034.451.631.246.8
36 24.536.720.330.434.451.830.646.127.841.7
38 22.033.018.227.3
Properties
Mn/ΩbφbMnkip-ft 24.9 37.519.529.440.060.135.753.631.948.0
Pe(KL)
2
/10
4
kip-in.
2
1040 863 1410 1290 1180
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6.875-
HSS6.625
AISC_Part 4E:14th Ed. 2/23/11 10:57 AM Page 305

4–306 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6.625×
0.312 0.280 0.250 0.188 0.125
tdesign, in. 0.291 0.260 0.233 0.174 0.116
Steel, lb/ft 21.1 19.0 17.0 12.9 8.69
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0190285179268169254148221126189
6176263165248156234136204115172
7171256161241152228132198111167
8165248156233147220127191107160
9159239150225141212122183102154
10153229144216135203117175 97.6146
11146219137206129194111167 92.5139
12139209131196123184106158 87.2131
13132198124186116174 99.5149 81.8123
14124186117175110164 93.5140 76.3114
15117175110164103154 87.3131 70.9106
16109164103154 96.0144 81.3122 65.598.2
17102153 95.4143 89.2134 75.2113 60.290.2
18 94.3141 88.4133 82.6124 69.3104 55.082.5
19 87.1131 81.6122 76.1114 63.695.450.075.0
20 80.0120 75.0112 69.8105 58.187.145.267.8
21 73.2110 68.5103 63.695.452.779.041.061.5
22 66.7100 62.493.658.086.948.072.037.456.0
23 61.091.557.185.753.079.543.965.934.251.3
24 56.084.152.478.748.773.140.360.531.447.1
25 51.677.548.372.544.967.337.255.828.943.4
26 47.771.644.767.041.562.234.451.626.740.1
27 44.366.441.462.238.557.731.947.824.837.2
28 41.261.838.557.835.853.729.644.523.134.6
29 38.457.635.953.933.450.027.641.421.532.2
30 35.953.833.650.431.246.825.838.720.130.1
32 31.547.329.544.327.441.122.734.017.726.5
34 27.941.926.139.224.336.420.130.115.623.5
36 24.937.423.335.021.632.517.926.913.920.9
38 16.124.112.518.8
Properties
Mn/ΩbφbMnkip-ft 27.6 41.425.237.823.034.618.027.112.819.2
Pe(KL)
2
/10
4
kip-in.
2
1060 992 921 763 594
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
COMPOSITE
HSS6.625
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 306

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–307
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6×
0.500 0.375 0.312 0.280 0.250 0.188
tdesign, in. 0.465 0.349 0.291 0.260 0.233 0.174
Steel, lb/ft 29.4 22.6 19.0 17.1 15.4 11.7
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0218327183274164247155232146219126190
1217326182273164246154231145218126189
2216323181271163244153229144216125187
3213319178268161241151226142213123185
4209313175263158236148222140210121181
5204306171257154231145217136205118177
6198297166249150224141211132199114171
7192287161241145217136204128192110165
8184276155232139209130196123185106159
9176264148222133199125187118176101151
1016825214121112619011917811216895.6143
1115923813320012018011216810615990.1135
1215022412518811316910615999.514984.5127
1314021011817610615898.914893.114078.8118
1413119611016498.414892.113886.713073.1110
1512118210215291.213785.312880.312067.4101
1611317093.714184.112678.611874.011161.892.8
1710515786.012977.111672.110867.810256.484.6
1896.514578.511870.310665.798.661.892.751.176.7
1988.613371.310763.895.759.589.355.983.946.069.0
2081.012264.496.857.686.453.780.650.575.741.562.3
2173.611158.788.252.278.348.773.145.868.737.756.5
2267.010153.580.447.671.444.466.641.762.634.351.5
2361.392.248.973.543.565.340.661.038.257.331.447.1
2456.384.644.967.540.060.037.356.035.152.628.843.3
2551.978.041.462.336.955.334.451.632.348.526.639.9
2648.072.138.357.634.151.131.847.729.944.824.636.9
2841.462.233.049.629.444.127.441.125.838.621.231.8
3036.054.228.843.225.638.423.935.822.433.718.527.7
3231.747.625.338.022.533.721.031.519.729.616.224.3
34 17.526.214.421.6
Properties
Mn/ΩbφbMnkip-ft 32.048.125.638.522.233.320.330.418.527.814.621.9
Pe(KL)
2
/10
4
kip-in.
2
1010 844 756 706 663 546
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 307

4–308 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS6× HSS5.563×
0.125 0.500 0.375 0.258 0.188 0.134
tdesign, in. 0.116 0.465 0.349 0.240 0.174 0.124
Steel, lb/ft 7.85 27.1 20.8 14.6 10.8 7.78
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
010716119629516424613219911316997.2146
110716019629416424613219811216896.9145
210615919429116224313119611116795.9144
310415619128716024012919310916494.3141
410215318728115623512618910716192.0138
599.114918227315222812318410415689.2134
695.914417626414722111917810015185.9129
792.213816925414221211417196.314482.2123
888.013216224213520310916391.813878.0117
983.612515323012919310315586.913073.6110
1078.911814521712118297.414681.812369.0103
1174.011113620411417191.313776.511564.296.2
1269.010312719110615985.112871.010759.388.9
1363.995.911917898.414878.811865.698.454.481.6
1458.988.311016690.713672.610960.290.249.674.4
1553.980.810215383.112566.499.654.882.244.967.3
1649.073.593.914175.611360.490.549.674.540.460.5
1744.366.585.912968.410354.581.844.767.036.053.9
1839.759.678.111762.393.648.973.339.959.832.148.1
1935.753.570.610656.685.143.965.835.853.728.843.2
2032.248.363.795.751.176.839.659.432.348.426.039.0
2129.243.857.886.846.369.635.953.929.343.923.635.3
2226.639.952.679.142.263.532.749.126.740.021.532.2
2324.336.548.272.438.658.129.944.924.436.619.629.5
2422.433.544.266.535.553.327.541.222.433.618.027.1
2520.630.940.861.332.749.125.338.020.731.016.624.9
2619.128.637.756.630.245.423.435.119.128.715.423.1
2816.424.632.548.826.139.220.230.316.524.713.319.9
3014.321.528.342.522.734.117.626.414.421.511.517.3
3212.618.9 10.115.2
3411.116.7
Properties
Mn/ΩbφbMnkip-ft 10.315.627.040.621.732.616.124.212.418.69.3114.0
Pe(KL)
2
/10
4
kip-in.
2
423 777 653 520 424 341
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS6-
HSS5.563
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 308

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–309
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5.500× HSS5×
0.500 0.375 0.258 0.500 0.375 0.312
tdesign, in. 0.465 0.349 0.240 0.465 0.349 0.291
Steel, lb/ft 26.7 20.6 14.5 24.1 18.5 15.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0194290162242130196170255142212127190
1193289161242130195169254141212126189
2191287160239129193167251140209125187
3188282157236127190164246137205123184
4184276154231124186160240133200119179
5179268150224121181155232129193115173
6173259145217116175148222124186111166
7166249139208112168141212118177105158
815823813319910716013420111116799.7150
915022512618910115212619010515793.6140
1014221211917895.214311817897.414687.2131
1113319911116789.113411016690.013580.6121
1212418710315582.912410215382.612473.9111
1311617495.714476.711593.514175.211367.3101
1410816288.013270.410685.312868.010260.991.3
1599.515080.512164.396.477.311661.892.854.681.9
1691.313773.111058.387.569.510455.883.948.672.9
1783.412566.299.652.678.962.093.250.275.443.265.0
1875.711460.490.847.070.555.383.144.767.238.658.1
1968.210254.782.242.263.349.674.640.160.334.752.1
2061.592.549.474.238.157.144.867.336.254.531.347.0
2155.883.944.867.334.551.840.661.032.949.428.442.7
2250.976.440.861.331.547.237.055.629.945.025.938.9
2346.569.937.356.128.843.233.950.927.441.223.735.6
2442.764.234.351.526.439.731.146.725.237.821.732.7
2539.459.231.647.524.436.628.743.123.234.920.030.1
2636.454.729.243.922.533.826.539.821.432.218.527.8
2831.447.225.237.919.429.1
30 21.933.016.925.4
Properties
Mn/ΩbφbMnkip-ft 26.339.621.131.815.723.621.231.917.125.714.822.3
Pe(KL)
2
/10
4
kip-in.
2
747 629 500 539 456 408
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5.500-
HSS5
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 309

4–310 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS5× HSS4.500×
0.258 0.250 0.188 0.125 0.375 0.337
tdesign, in. 0.240 0.233 0.174 0.116 0.349 0.313
Steel, lb/ft 13.1 12.7 9.67 6.51 16.5 15.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
011317011216795.814479.8120123184115172
111317011116795.414379.4119122183114171
211216811016594.314178.5118120180112169
311016510816292.513976.8115117176110165
410716010515890.013574.6112114171106159
510315510215286.913071.8108109164102153
699.114997.414683.312568.610310415596.9145
794.414292.813979.211964.997.497.614691.3137
889.213487.713274.711260.991.491.013785.1128
983.612582.212369.910556.785.184.112678.7118
1077.911776.511564.997.452.478.577.011672.1108
1171.910870.710659.989.847.971.969.910565.498.1
1266.098.964.897.254.782.143.565.363.595.458.888.1
1360.090.059.088.549.774.539.258.757.386.152.478.7
1454.281.353.379.944.767.134.952.451.377.147.070.6
1548.672.947.771.640.059.930.946.445.668.541.862.8
1643.264.842.463.635.353.027.240.740.160.336.855.3
1738.257.437.656.331.347.024.136.135.553.432.649.0
1834.151.233.550.327.941.921.532.231.747.629.143.7
1930.645.930.145.125.137.619.328.928.442.726.139.2
2027.641.527.140.722.633.917.426.125.738.623.535.4
2125.137.624.636.920.530.815.823.723.335.021.432.1
2222.834.322.433.618.728.014.421.621.231.919.529.3
2320.931.320.530.817.125.713.119.719.429.217.826.8
2419.228.818.828.315.723.612.118.117.826.816.424.6
2517.726.517.426.014.521.711.116.7
2616.424.516.124.113.420.110.315.4
2814.121.113.820.811.517.38.8713.3
Properties
Mn/ΩbφbMnkip-ft 12.719.112.418.79.8014.76.9910.513.520.312.418.7
Pe(KL)
2
/10
4
kip-in.
2
363 356 297 228 318 298
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS5-
HSS4.500
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 310

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–311
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4.500× HSS4×
0.237 0.188 0.125 0.313 0.250
tdesign, in. 0.220 0.174 0.116 0.291 0.233
Steel, lb/ft 10.8 8.67 5.85 12.3 10.0
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
092.913981.712367.6101 93.013981.3122
192.513981.312267.2101 92.413980.8121
291.213780.212066.299.390.813679.4119
389.113478.311764.596.888.213277.1116
486.212975.811462.393.484.712774.0111
582.712472.610959.589.380.312070.2105
678.611869.010356.384.475.311365.898.7
774.011164.997.352.779.069.810561.091.4
869.010360.490.748.873.263.995.955.883.8
963.795.655.883.744.867.157.886.850.575.8
1058.387.551.076.540.661.051.777.645.267.8
1152.979.346.269.336.554.846.169.340.060.0
1247.571.341.562.232.548.741.061.734.952.4
1342.363.536.855.328.642.936.254.330.145.2
1437.356.032.448.724.937.331.547.326.039.1
1532.648.828.342.421.732.527.441.222.634.0
1628.642.924.937.319.128.624.136.219.929.9
1725.438.022.033.016.925.321.332.117.626.5
1822.633.919.629.515.122.619.028.615.723.6
1920.330.417.626.413.520.317.125.714.121.2
2018.327.515.923.912.218.315.423.212.719.1
2116.624.914.421.611.116.614.021.011.617.4
2215.122.713.119.710.115.112.719.110.515.8
2313.820.812.018.09.2213.8
2412.719.111.016.68.4712.7
2511.717.610.215.37.8111.7
Properties
Mn/ΩbφbMnkip-ft 9.42 14.27.7911.75.578.379.0413.67.6111.4
Pe(KL)
2
/10
4
kip-in.
2
241 209 160 191 167
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4.500-
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 311

4–312 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
HSS4×
0.237 0.226 0.220 0.188 0.125
tdesign, in. 0.220 0.210 0.205 0.174 0.116
Steel, lb/ft 9.53 9.12 8.89 7.66 5.18
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
078.511876.411575.311368.8103 56.384.4
178.011776.011474.811268.4103 55.983.9
276.611574.611273.511067.2101 54.982.3
374.411272.510971.410765.297.853.279.8
471.410769.510468.510362.593.850.976.4
567.810266.098.965.097.559.388.948.172.2
663.595.361.892.860.991.455.683.344.967.3
758.988.357.385.956.584.751.477.241.462.0
853.980.952.578.751.777.547.170.637.656.5
948.873.247.571.246.870.242.663.833.850.7
1043.665.542.563.741.862.838.057.030.045.0
1138.657.937.556.337.055.533.650.426.339.5
1233.750.632.849.232.348.529.343.922.834.1
1329.143.628.242.427.841.825.237.819.429.2
1425.137.624.436.524.036.021.732.616.825.1
1521.832.721.231.820.931.418.928.414.621.9
1619.228.818.628.018.427.616.625.012.819.3
1717.025.516.524.816.324.414.722.111.417.1
1815.222.714.722.114.521.813.119.710.115.2
1913.620.413.219.813.019.511.817.79.1013.7
2012.318.411.917.911.817.610.716.08.2212.3
2111.116.710.816.210.716.09.6614.57.4511.2
2210.115.29.8614.89.7214.68.8013.26.7910.2
Properties
Mn/ΩbφbMnkip-ft 7.27 10.97.0010.56.8710.36.029.054.316.48
Pe(KL)
2
/10
4
kip-in.
2
161 157 154 140 108
ASD LRFD
Ωc=2.00φc=0.75
Table 4-18 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Round HSS
Fy= 42 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
HSS4
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 312

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–313
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 12 Pipe 10 Pipe 8
XS Std XS Std XXS XS
tdesign, in. 0.465 0.349 0.465 0.340 0.816 0.465
Steel, lb/ft 65.5 49.6 54.8 40.5 72.5 43.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0517776458687410614353530423635297445
6508763450674400599344516407611286429
7505758446670396594341512402602282423
8501752443664392588337506395593277416
9497746439659387581333500388583273409
10493739435652382573329493381573267401
11487731430645377565324485373561261392
12482723425637371556318477365549255383
13476714419629364547312469357536248373
14470705413620358537306459348523241362
15463695407610351526300450338508234351
16456684400600343515293440328494227340
17449673393590335503286429318478219328
18441661386579327491279418308463211316
19433649379568319479272407297447203304
20425637371556311466264396286430195292
21416624363544302453256384275414187280
22407611355532293440248372264397178267
23399598346520284426240360253380170255
24389584338507275413232348242364162243
25380570329494266399224336231347154231
26371556321481257385216324220331146218
27361542312468247371208311209314138207
28351527303454238357199299198298130195
29342512294441229343191287188283122184
30332498285427220330183275178267115172
32312468267400202303167251158237101152
3429243924937318427615222814021089.7135
3627340923134616725113720612418780.0120
3825438021432015122612318411216871.8108
4023535219729513620411116610115264.897.5
Properties
Mn/ΩbφbMnkip-ft 14121311116897.614775.511392.013859.789.7
Pe(KL)
2
/10
4
kip-in.
2
12600 10400 7140 5830 4770 3400
ASD LRFD
Ωc=2.00φc=0.75
Table 4-19
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
COMPOSITE
PIPE 12-PIPE 8
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 313

4–314 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 8 Pipe 6 Pipe 5
Std XXS XS Std XXS
tdesign, in. 0.300 0.805 0.403 0.261 0.699
Steel, lb/ft 28.6 53.2 28.6 19.0 38.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0234350308463188282147220224337
6225337290436176264137206205309
7221332283426172258134201199299
8218327276415168251131196192288
9214321268403163244127190184277
10209314260391157236122183176264
11204307251377151227118177167251
12199299241362145218113169158237
13194291231347139208108162149223
14188282221332132199103154139209
15182274210316126189 97.4146130195
16176264199299119179 92.0138120181
17170255188283112168 86.6130111167
18164245177267105158 81.3122102153
19157236167250 98.7148 76.0114 93.1140
20150226156234 92.1138 70.8106 84.5127
21144216145218 85.6128 65.798.576.7115
22137206135203 79.3119 60.791.169.9105
23131196125188 73.3110 55.983.863.996.1
24124186115173 68.3103 51.377.058.788.2
25117176106160 63.395.147.370.954.181.3
26111167 98.2148 58.588.043.765.650.075.2
27105157 91.1137 54.381.640.560.846.469.7
28 98.6148 84.7127 50.575.837.756.543.164.8
29 92.6139 78.9119 47.070.735.152.740.260.4
30 86.6130 73.8111 44.066.132.849.3
32 76.1114 64.897.438.658.128.943.3
34 67.4101 57.486.334.251.425.638.3
36 60.290.2 30.545.922.834.2
38 54.081.0
40 48.773.1
Properties
Mn/ΩbφbMnkip-ft 41.8 62.849.874.829.844.721.031.530.145.2
Pe(KL)
2
/10
4
kip-in.
2
2560 1910 1270 970 967
ASD LRFD
Ωc=2.00φc=0.75
Table 4-19 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 8-PIPE 5
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 314

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–315
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 5 Pipe 4
XS Std XXS XS Std
tdesign, in. 0.349 0.241 0.628 0.315 0.221
Steel, lb/ft 20.8 14.6 27.6 15.0 10.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0136203109163161241 94.814276.4115
6124186 99.1149140210 82.512466.499.6
7120179 95.8144133200 78.411863.194.7
8115173 92.2138126189 74.011159.589.3
9110165 88.3132118177 69.310455.783.6
10105158 84.1126110165 64.496.651.877.6
11 99.7149 79.7120101152 59.389.047.771.5
12 94.0141 75.1113 92.7139 54.381.443.665.4
13 88.2132 70.4106 84.3127 49.373.939.659.3
14 82.4124 65.798.676.0114 44.967.435.653.4
15 76.5115 61.091.568.1102 40.761.231.847.7
16 70.7106 56.384.560.390.736.755.128.142.2
17 65.097.651.877.753.580.332.849.224.937.4
18 59.889.847.371.047.771.729.243.922.233.3
19 55.283.043.064.642.864.326.239.419.929.9
20 50.776.338.958.338.658.023.735.618.027.0
21 46.469.835.352.935.052.621.532.316.324.5
22 42.363.632.148.231.948.019.629.414.922.3
23 38.758.229.444.129.243.917.926.913.620.4
24 35.553.427.040.5 16.424.712.518.8
25 32.849.224.937.3 11.517.3
26 30.345.523.034.5
27 28.142.221.332.0
28 26.139.219.829.7
29 24.336.618.527.7
30 22.734.217.325.9
Properties
Mn/ΩbφbMnkip-ft 18.0 27.113.420.117.125.710.415.67.8511.8
Pe(KL)
2
/10
4
kip-in.
2
643 511 438 295 236
ASD LRFD
Ωc=2.00φc=0.75
Table 4-19 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 5-PIPE 4
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 315

4–316 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 3
1
/2 Pipe 3
XS Std XXS XS Std
tdesign, in. 0.296 0.211 0.559 0.280 0.201
Steel, lb/ft 12.5 9.12 18.6 10.3 7.58
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
077.411662.994.3108 16362.493.650.675.9
664.997.352.779.085.612949.674.340.260.3
760.991.349.474.178.611845.668.437.055.5
856.684.945.968.971.210741.462.133.650.4
952.178.142.263.463.795.737.556.330.245.3
1047.471.138.557.756.284.533.650.626.740.1
1142.864.334.752.149.073.629.944.923.435.1
1238.758.231.046.542.163.326.239.420.230.3
1334.852.327.441.135.953.922.734.117.526.2
1431.046.624.036.030.946.519.629.415.122.7
1527.341.020.931.326.940.517.125.613.119.8
1624.036.118.427.523.735.615.022.511.617.4
1721.332.016.324.421.031.513.320.010.215.4
1819.028.514.521.8 11.817.89.1313.7
1917.025.613.019.5 10.616.08.1912.3
2015.423.111.717.6
2113.920.910.716.0
22 9.7114.6
Properties
Mn/ΩbφbMnkip-ft 7.62 11.45.848.788.7413.15.428.144.196.29
Pe(KL)
2
/10
4
kip-in.
2
191 154 171 117 95.6
ASD LRFD
Ωc=2.00φc=0.75
Table 4-19 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 4 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 3
1
/2-PIPE 3
AISC_Part 4E:14th Ed. 2/23/11 10:58 AM Page 316

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–317
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 12 Pipe 10 Pipe 8
XS Std XS Std XXS XS
tdesign, in. 0.465 0.349 0.465 0.340 0.816 0.465
Steel, lb/ft 65.5 49.6 54.8 40.5 72.5 43.4
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0570855513769446669392587441662319478
6560839502754434651381571424636306460
7556834499748430645377565418627302453
8551827494742425638372558411617297446
9546820490734420630367551404605291437
10541811484726414622362543395593285428
11535802479718408612356534386579279418
12528793472708401602350524376565272408
13521782466698394591343514366549264396
14514771458688386579336503355533257385
15506759451676378567328492344516248373
16498747443664369554320480333499240360
17489734435652361541312468321481231347
18480721426639351527304455309463223334
19471707417626342513295442297447214320
20461692408612332498286429286430205307
21451677398598322484277415275414195293
22441662389583312469268402264397186279
23431646379568302453258388253380177266
24420630369553292438249374242364168252
25410614359538282422240360231347159239
26399598348522271407230345220331151226
27388581338507261391221331209314142213
28376565327491251376212317198298133200
29365548317475240360202303188283125188
30354531306459230345193290178267117176
32332497285428210315175263158237103154
3430946426539719128615823714021091.2137
3628743124436617225814121212418781.3122
3826539822433715423112719011216873.0109
4024436720530813920911417210115265.998.8
Properties
Mn/ΩbφbMnkip-ft 14421711417199.414977.011692.914060.791.2
Pe(KL)
2
/10
4
kip-in.
2
13000 10800 7310 6010 4820 3460
ASD LRFD
Ωc=2.00φc=0.75
Table 4-20
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
COMPOSITE
PIPE 12-PIPE 8
Note: Dashed line indicates the KLbeyond which bare steel strength controls.
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 317

4–318 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 8 Pipe 6 Pipe 5
Std XXS XS Std XXS
tdesign, in. 0.300 0.805 0.403 0.261 0.699
Steel, lb/ft 28.6 53.2 28.6 19.0 38.6
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0258386308463200301161241224337
6247370290436187281150225205309
7243365283426183274146219199299
8239358276415178267142213192288
9234351268403172258137206184277
10229343260391166249132198176264
11223335251377160240127190167251
12217326241362153230121182158237
13211317231347146219116173149223
14204307221332139208110165139209
15198296210316132197104156130195
16190286199299124186 97.6146120181
17183275188283117175 91.6137111167
18176264177267109164 85.5128102153
19168252167250102153 79.6119 93.1140
20161241156234 94.9142 73.8111 84.5127
21153230145218 87.9132 68.1102 76.7115
22146218135203 81.1122 62.794.069.9105
23138207125188 74.4112 57.386.063.996.1
24131196115173 68.3103 52.678.958.788.2
25123185106160 63.395.148.572.754.181.3
26116174 98.2148 58.588.044.867.350.075.2
27109164 91.1137 54.381.641.662.446.469.7
28102153 84.7127 50.575.838.758.043.164.8
29 95.3143 78.9119 47.070.736.054.140.260.4
30 89.1134 73.8111 44.066.133.750.5
32 78.3117 64.897.438.658.129.644.4
34 69.3104 57.486.334.251.426.239.3
36 61.892.8 30.545.923.435.1
38 55.583.3
40 50.175.1
Properties
Mn/ΩbφbMnkip-ft 42.6 64.150.275.430.245.421.432.230.345.5
Pe(KL)
2
/10
4
kip-in.
2
2630 1930 1290 995 973
ASD LRFD
Ωc=2.00φc=0.75
Table 4-20 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 8-PIPE 5
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 318

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–319
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 5 Pipe 4
XS Std XXS XS Std
tdesign, in. 0.349 0.241 0.628 0.315 0.221
Steel, lb/ft 20.8 14.6 27.6 15.0 10.8
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
014421611817716124110015182.5124
6131197107161140210 86.813071.2107
7127190104155133200 82.312467.4101
8122183 99.4149126189 77.511663.495.1
9116174 94.8142118177 72.310959.188.7
10111166 90.1135110165 67.010054.782.0
11105157 85.0128101152 61.592.350.175.2
12 98.4148 79.9120 92.7139 56.184.145.668.4
13 92.0138 74.6112 84.3127 50.776.041.161.7
14 85.6128 69.3104 76.0114 45.468.236.855.2
15 79.3119 64.096.068.1102 40.761.232.649.0
16 73.0109 58.888.260.390.736.755.128.743.1
17 66.8100 53.880.653.580.332.849.225.438.1
18 60.991.348.973.347.771.729.243.922.734.0
19 55.283.044.166.142.864.326.239.420.430.5
20 50.776.339.859.738.658.023.735.618.427.6
21 46.469.836.154.135.052.621.532.316.725.0
22 42.363.632.949.331.948.019.629.415.222.8
23 38.758.230.145.129.243.917.926.913.920.8
24 35.553.427.641.4 16.424.712.819.1
25 32.849.225.538.2 11.817.6
26 30.345.523.535.3
27 28.142.221.832.7
28 26.139.220.330.4
29 24.336.618.928.4
30 22.734.217.726.5
Properties
Mn/ΩbφbMnkip-ft 18.3 27.513.620.517.225.810.515.87.9912.0
Pe(KL)
2
/10
4
kip-in.
2
653 522 440 299 241
ASD LRFD
Ωc=2.00φc=0.75
Table 4-20 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 5-PIPE 4
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 319

4–320 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Pipe 3
1
/2 Pipe 3
XS Std XXS XS Std
tdesign, in. 0.296 0.211 0.559 0.280 0.201
Steel, lb/ft 12.5 9.12 18.6 10.3 7.58
Design
Pn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPnPn/ΩcφcPn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
081.712367.7101108 16365.798.554.281.2
668.010256.184.285.612951.677.542.563.8
763.695.552.578.778.611847.371.039.058.5
858.988.448.572.871.210742.864.335.252.9
954.081.144.566.763.795.738.257.431.447.2
1049.173.640.360.456.284.533.750.627.741.5
1144.166.136.154.249.073.629.944.924.036.1
1239.258.832.148.142.163.326.239.420.630.8
1334.852.328.242.235.953.922.734.117.526.3
1431.046.624.436.730.946.519.629.415.122.7
1527.341.021.331.926.940.517.125.613.219.8
1624.036.118.728.123.735.615.022.511.617.4
1721.332.016.624.921.031.513.320.010.215.4
1819.028.514.822.2 11.817.89.1413.7
1917.025.613.319.9 10.616.08.2012.3
2015.423.112.018.0
2113.920.910.916.3
22 9.8914.8
Properties
Mn/ΩbφbMnkip-ft 7.72 11.65.948.938.7913.25.488.244.256.39
Pe(KL)
2
/10
4
kip-in.
2
193 157 171 119 97.3
ASD LRFD
Ωc=2.00φc=0.75
Table 4-20 (continued)
Available Strength in
Axial Compression, kips
Concrete Filled Pipe
Fy= 35 ksi
f′
c= 5 ksi
Effective length,
KL
(ft)
Note: Heavy line indicates KL/requal to or greater than 200.
Dashed line indicates the KLbeyond which bare steel strength controls.
COMPOSITE
PIPE 3
1
/2-PIPE 3
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 320

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–321
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFD
Fy, ksi
35 36 42 46 50
ASD LRFDASD LRFDASD LRFDASD LRFDASD LRFD
45 – – – – – – – 0.0851– 0.360
44 – – – – – – – 0.166 – 0.422
43 – – – – – – – 0.244 – 0.482
42 – – – – – – – 0.318 – 0.538
41 – – – – – 0.0930– 0.388 – 0.590
40 – – – – – 0.181 – 0.454 – 0.640
39 – – – – – 0.265 – 0.516 – 0.686
38 – – – – – 0.345 – 0.575 – 0.730
37 – – – – – 0.420 – 0.629 – 0.770
36 – – – – – 0.490 – 0.681 – 0.806
35 – – – 0.108 – 0.556 – 0.728 – 0.840
34 – 0.111 – 0.210 – 0.617 – 0.771 – 0.870
33 – 0.216 – 0.306 – 0.673 – 0.811 – 0.898
32 – 0.313 – 0.395 – 0.726 – 0.847 – 0.922
31 – 0.405 – 0.478 – 0.773 – 0.8790.03170.942
30 – 0.490 – 0.556 – 0.816 – 0.9070.1540.960
29 – 0.568 – 0.627 – 0.855 – 0.9320.2670.974
28 – 0.640 – 0.691 – 0.8890.1020.9530.3730.986
27 – 0.705 – 0.750 – 0.9180.2290.9700.4700.994
26 – 0.764 – 0.8020.03770.9430.3460.9830.5590.998
25 – 0.816 – 0.8490.1810.9640.4540.9920.6401.00
24 – 0.862 – 0.8890.3130.9800.5520.9980.713
23 – 0.901 – 0.9230.4340.9910.6401.000.777
22 – 0.9340.08690.9510.5430.9980.719 0.834
21 0.1540.9600.2490.9720.6401.000.788 0.882
20 0.3130.9800.3950.9880.726 0.847 0.922
19 0.4570.9930.5250.9970.800 0.896 0.953
18 0.5830.9990.6401.000.862 0.936 0.977
17 0.6931.000.739 0.913 0.967 0.992
16 0.786 0.822 0.952 0.987 0.999
15 0.862 0.889 0.980 0.998 1.00
14 0.922 0.940 0.996 1.00
13 0.964 0.976 1.00
12 0.991 0.996
11 1.00 1.00
10
9
8
7
6
5
Table 4-21
Stiffness Reduction Factor
– Indicates the stiffness reduction parameter is not applicable because the required strength exceeds the available strength for
KL/r=0.
Ω
A
P
a
g
ΩΩ
A
P
u
g
Ω
τb
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 321

4–322 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-22
Available Critical Stress for
Compression Members
Fy=35 ksi Fy=36 ksi Fy=42 ksi Fy=46 ksi Fy=50 ksi
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
KL
r
KL
r
KL
r
KL
r
KL
r
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
1 21.0 31.51 21.6 32.41 25.1 37.81 27.5 41.41 29.9 45.0
2 21.0 31.52 21.6 32.42 25.1 37.82 27.5 41.42 29.9 45.0
3 20.9 31.53 21.5 32.43 25.1 37.83 27.5 41.43 29.9 45.0
4 20.9 31.54 21.5 32.44 25.1 37.84 27.5 41.44 29.9 44.9
5 20.9 31.55 21.5 32.45 25.1 37.75 27.5 41.35 29.9 44.9
6 20.9 31.46 21.5 32.36 25.1 37.76 27.5 41.36 29.9 44.9
7 20.9 31.47 21.5 32.37 25.1 37.77 27.5 41.37 29.8 44.8
8 20.9 31.48 21.5 32.38 25.1 37.78 27.4 41.28 29.8 44.8
9 20.9 31.49 21.5 32.39 25.0 37.69 27.4 41.29 29.8 44.7
10 20.931.310 21.432.210 25.037.610 27.441.110 29.744.7
11 20.831.311 21.432.211 25.037.511 27.341.111 29.744.6
12 20.831.312 21.432.212 24.937.512 27.341.012 29.644.5
13 20.831.213 21.432.113 24.937.413 27.240.913 29.644.4
14 20.731.214 21.332.114 24.837.314 27.240.914 29.544.4
15 20.731.115 21.332.015 24.837.315 27.140.815 29.544.3
16 20.731.116 21.332.016 24.837.216 27.140.716 29.444.2
17 20.731.017 21.231.917 24.737.117 27.040.617 29.344.1
18 20.631.018 21.231.918 24.737.118 27.040.518 29.243.9
19 20.630.919 21.231.819 24.637.019 26.940.419 29.243.8
20 20.530.920 21.131.720 24.536.920 26.840.320 29.143.7
21 20.530.821 21.131.721 24.536.821 26.740.221 29.043.6
22 20.430.722 21.031.622 24.436.722 26.740.122 28.943.4
23 20.430.723 21.031.523 24.336.623 26.640.023 28.843.3
24 20.330.624 20.931.424 24.336.524 26.539.824 28.743.1
25 20.330.525 20.931.425 24.236.425 26.439.725 28.643.0
26 20.230.426 20.831.326 24.136.326 26.339.626 28.542.8
27 20.230.327 20.731.227 24.036.127 26.239.427 28.442.7
28 20.130.328 20.731.128 24.036.028 26.139.328 28.342.5
29 20.130.229 20.631.029 23.935.929 26.039.129 28.242.3
30 20.030.130 20.630.930 23.835.830 25.939.030 28.042.1
31 20.030.031 20.530.831 23.735.631 25.838.831 27.941.9
32 19.929.932 20.430.732 23.635.532 25.738.632 27.841.8
33 19.829.833 20.430.633 23.535.433 25.638.533 27.741.6
34 19.829.734 20.330.534 23.435.234 25.538.334 27.541.4
35 19.729.635 20.230.435 23.335.135 25.438.135 27.441.2
36 19.629.536 20.130.336 23.234.936 25.237.936 27.240.9
37 19.529.437 20.130.137 23.134.837 25.137.837 27.140.7
38 19.529.338 20.030.038 23.034.638 25.037.638 26.940.5
39 19.429.139 19.929.939 22.934.439 24.937.439 26.840.3
40 19.329.040 19.829.840 22.834.340 24.737.240 26.640.0
ASD LRFD
Ωc=1.67φc=0.90
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 322

41 19.228.941 19.729.741 22.734.141 24.637.041 26.539.8
42 19.228.842 19.629.542 22.633.942 24.536.842 26.339.5
43 19.128.743 19.629.443 22.533.743 24.336.643 26.239.3
44 19.028.544 19.529.344 22.333.644 24.236.344 26.039.1
45 18.928.445 19.429.145 22.233.445 24.036.145 25.838.8
46 18.828.346 19.329.046 22.133.246 23.935.946 25.638.5
47 18.728.147 19.228.947 22.033.047 23.835.747 25.538.3
48 18.628.048 19.128.748 21.832.848 23.635.448 25.338.0
49 18.527.949 19.028.549 21.732.649 23.435.249 25.137.7
50 18.427.750 18.928.450 21.632.450 23.335.050 24.937.5
51 18.327.651 18.828.351 21.432.251 23.134.851 24.837.2
52 18.327.452 18.728.152 21.332.052 23.034.552 24.636.9
53 18.227.353 18.628.053 21.231.853 22.834.353 24.436.7
54 18.127.154 18.527.854 21.031.654 22.634.054 24.236.4
55 18.027.055 18.427.655 20.931.455 22.533.855 24.036.1
56 17.926.856 18.327.556 20.731.256 22.333.556 23.835.8
57 17.726.757 18.227.357 20.631.057 22.133.357 23.635.5
58 17.626.558 18.127.158 20.530.758 22.033.058 23.435.2
59 17.526.459 17.927.059 20.330.559 21.832.859 23.234.9
60 17.426.260 17.826.860 20.230.360 21.632.560 23.034.6
61 17.326.061 17.726.661 20.030.161 21.432.261 22.834.3
62 17.225.962 17.626.562 19.929.962 21.332.062 22.634.0
63 17.125.763 17.526.363 19.729.663 21.131.763 22.433.7
64 17.025.564 17.426.164 19.629.464 20.931.464 22.233.4
65 16.925.465 17.325.965 19.429.265 20.731.265 22.033.0
66 16.825.266 17.125.866 19.228.966 20.530.966 21.832.7
67 16.725.067 17.025.667 19.128.767 20.430.667 21.632.4
68 16.524.968 16.925.468 18.928.568 20.230.368 21.432.1
69 16.424.769 16.825.269 18.828.269 20.030.169 21.131.8
70 16.324.570 16.725.070 18.628.070 19.829.870 20.931.4
71 16.224.371 16.524.871 18.527.771 19.629.571 20.731.1
72 16.124.272 16.424.772 18.327.572 19.429.272 20.530.8
73 16.024.073 16.324.573 18.127.273 19.228.973 20.330.5
74 15.823.874 16.224.374 18.027.074 19.128.674 20.130.2
75 15.723.675 16.024.175 17.826.875 18.928.475 19.829.8
76 15.623.476 15.923.976 17.626.576 18.728.176 19.629.5
77 15.523.377 15.823.777 17.526.377 18.527.877 19.429.2
78 15.423.178 15.623.578 17.326.078 18.327.578 19.228.8
79 15.222.979 15.523.379 17.125.879 18.127.279 19.028.5
80 15.122.780 15.423.180 17.025.580 17.926.980 18.828.2
Table 4-22 (continued)
Available Critical Stress for
Compression Members
COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–323
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
ASD LRFD
Ωc=1.67φc=0.90
Fy=35 ksi Fy=36 ksi Fy=42 ksi Fy=46 ksi Fy=50 ksi
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
KL
r
KL
r
KL
r
KL
r
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 323

4–324 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-22 (continued)
Available Critical Stress for
Compression Members
Fy=35 ksi Fy=36 ksi Fy=42 ksi Fy=46 ksi Fy=50 ksi
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
81 15.022.581 15.322.981 16.825.381 17.726.681 18.527.9
82 14.922.382 15.122.782 16.625.082 17.526.382 18.327.5
83 14.722.183 15.022.583 16.524.883 17.326.083 18.127.2
84 14.622.084 14.922.384 16.324.584 17.125.884 17.926.9
85 14.521.885 14.722.185 16.124.385 16.925.585 17.726.5
86 14.421.686 14.622.086 16.024.086 16.725.286 17.426.2
87 14.221.487 14.521.887 15.823.787 16.624.987 17.225.9
88 14.121.288 14.321.688 15.623.588 16.424.688 17.025.5
89 14.021.089 14.221.489 15.523.289 16.224.389 16.825.2
90 13.820.890 14.121.290 15.323.090 16.024.090 16.624.9
91 13.720.691 13.921.091 15.122.791 15.823.791 16.324.6
92 13.620.492 13.820.892 15.022.592 15.623.492 16.124.2
93 13.520.293 13.720.593 14.822.293 15.423.193 15.923.9
94 13.320.094 13.520.394 14.622.094 15.222.894 15.723.6
95 13.219.995 13.420.195 14.421.795 15.022.695 15.523.3
96 13.119.796 13.319.996 14.321.596 14.822.396 15.322.9
97 13.019.597 13.119.797 14.121.297 14.622.097 15.022.6
98 12.819.398 13.019.598 13.921.098 14.421.798 14.822.3
99 12.719.199 12.919.399 13.820.799 14.221.499 14.622.0
100 12.618.9100 12.719.1100 13.620.5100 14.121.1100 14.421.7
101 12.418.7101 12.618.9101 13.420.2101 13.920.8101 14.221.3
102 12.318.5102 12.518.7102 13.320.0102 13.720.6102 14.021.0
103 12.218.3103 12.318.5103 13.119.7103 13.520.3103 13.820.7
104 12.118.1104 12.218.3104 12.919.5104 13.320.0104 13.620.4
105 11.917.9105 12.118.1105 12.819.2105 13.119.7105 13.420.1
106 11.817.7106 11.917.9106 12.619.0106 12.919.4106 13.219.8
107 11.717.5107 11.817.7107 12.418.7107 12.819.2107 13.019.5
108 11.517.3108 11.717.5108 12.318.5108 12.618.9108 12.819.2
109 11.417.2109 11.517.3109 12.118.2109 12.418.6109 12.618.9
110 11.317.0110 11.417.1110 12.018.0110 12.218.3110 12.418.6
111 11.216.8111 11.316.9111 11.817.7111 12.018.1111 12.218.3
112 11.016.6112 11.116.7112 11.617.5112 11.817.8112 12.018.0
113 10.916.4113 11.016.5113 11.517.3113 11.717.5113 11.817.7
114 10.816.2114 10.916.3114 11.317.0114 11.517.3114 11.617.4
115 10.716.0115 10.716.2115 11.216.8115 11.317.0115 11.417.1
116 10.515.8116 10.616.0116 11.016.5116 11.116.7116 11.216.8
117 10.415.6117 10.515.8117 10.816.3117 11.016.5117 11.016.5
118 10.315.5118 10.415.6118 10.716.1118 10.816.2118 10.816.2
119 10.215.3119 10.215.4119 10.515.8119 10.616.0119 10.616.0
120 10.015.1120 10.115.2120 10.415.6120 10.415.7120 10.415.7
ASD LRFD
Ωc=1.67φc=0.90
KL
r
KL
r
KL
r
KL
r
KL
r
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 324

COMPOSITE COMPRESSION—MEMBER SELECTION TABLES 4–325
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4-22 (continued)
Available Critical Stress for
Compression Members
Fy=35 ksi Fy=36 ksi Fy=42 ksi Fy=46 ksi Fy=50 ksi
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
121 9.9114.9121 10.015.0121 10.215.4121 10.315.4121 10.315.4
122 9.7914.7122 9.8514.8122 10.115.2122 10.115.2122 10.115.2
123 9.6714.5123 9.7214.6123 9.9314.9123 9.9414.9123 9.9414.9
124 9.5514.3124 9.5914.4124 9.7814.7124 9.7814.7124 9.7814.7
125 9.4314.2125 9.4714.2125 9.6214.5125 9.6214.5125 9.6214.5
126 9.3114.0126 9.3514.0126 9.4714.2126 9.4714.2126 9.4714.2
127 9.1913.8127 9.2213.9127 9.3214.0127 9.3214.0127 9.3214.0
128 9.0713.6128 9.1013.7128 9.1713.8128 9.1713.8128 9.1713.8
129 8.9513.4129 8.9813.5129 9.0313.6129 9.0313.6129 9.0313.6
130 8.8313.3130 8.8613.3130 8.8913.4130 8.8913.4130 8.8913.4
131 8.7113.1131 8.7313.1131 8.7613.2131 8.7613.2131 8.7613.2
132 8.6012.9132 8.6112.9132 8.6313.0132 8.6313.0132 8.6313.0
133 8.4812.7133 8.4912.8133 8.5012.8133 8.5012.8133 8.5012.8
134 8.3712.6134 8.3712.6134 8.3712.6134 8.3712.6134 8.3712.6
135 8.2512.4135 8.2512.4135 8.2512.4135 8.2512.4135 8.2512.4
136 8.1312.2136 8.1312.2136 8.1312.2136 8.1312.2136 8.1312.2
137 8.0112.0137 8.0112.0137 8.0112.0137 8.0112.0137 8.0112.0
138 7.8911.9138 7.8911.9138 7.8911.9138 7.8911.9138 7.8911.9
139 7.7811.7139 7.7811.7139 7.7811.7139 7.7811.7139 7.7811.7
140 7.6711.5140 7.6711.5140 7.6711.5140 7.6711.5140 7.6711.5
141 7.5611.4141 7.5611.4141 7.5611.4141 7.5611.4141 7.5611.4
142 7.4511.2142 7.4511.2142 7.4511.2142 7.4511.2142 7.4511.2
143 7.3511.0143 7.3511.0143 7.3511.0143 7.3511.0143 7.3511.0
144 7.2510.9144 7.2510.9144 7.2510.9144 7.2510.9144 7.2510.9
145 7.1510.7145 7.1510.7145 7.1510.7145 7.1510.7145 7.1510.7
146 7.0510.6146 7.0510.6146 7.0510.6146 7.0510.6146 7.0510.6
147 6.9610.5147 6.9610.5147 6.9610.5147 6.9610.5147 6.9610.5
148 6.8610.3148 6.8610.3148 6.8610.3148 6.8610.3148 6.8610.3
149 6.7710.2149 6.7710.2149 6.7710.2149 6.7710.2149 6.7710.2
150 6.6810.0150 6.6810.0150 6.6810.0150 6.6810.0150 6.6810.0
151 6.59 9.91151 6.59 9.91151 6.59 9.91151 6.59 9.91151 6.59 9.91
152 6.51 9.78152 6.51 9.78152 6.51 9.78152 6.51 9.78152 6.51 9.78
153 6.42 9.65153 6.42 9.65153 6.42 9.65153 6.42 9.65153 6.42 9.65
154 6.34 9.53154 6.34 9.53154 6.34 9.53154 6.34 9.53154 6.34 9.53
155 6.26 9.40155 6.26 9.40155 6.26 9.40155 6.26 9.40155 6.26 9.40
156 6.18 9.28156 6.18 9.28156 6.18 9.28156 6.18 9.28156 6.18 9.28
157 6.10 9.17157 6.10 9.17157 6.10 9.17157 6.10 9.17157 6.10 9.17
158 6.02 9.05158 6.02 9.05158 6.02 9.05158 6.02 9.05158 6.02 9.05
159 5.95 8.94159 5.95 8.94159 5.95 8.94159 5.95 8.94159 5.95 8.94
160 5.87 8.82160 5.87 8.82160 5.87 8.82160 5.87 8.82160 5.87 8.82
ASD LRFD
Ωc=1.67φc=0.90
KL
r
KL
r
KL
r
KL
r
KL
r
AISC_Part 4E:14th Ed. 2/23/11 10:59 AM Page 325

4–326 DESIGN OF COMPRESSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 4–22 (continued)
Available Critical Stress for
Compression Members
Fy=35 ksi Fy=36 ksi Fy=42 ksi Fy=46 ksi Fy=50 ksi
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
Fcr/Ωc
ksi
ASD
φ
cFcr
ksi
LRFD
161 5.80 8.72161 5.80 8.72161 5.80 8.72161 5.80 8.72161 5.80 8.72
162 5.73 8.61162 5.73 8.61162 5.73 8.61162 5.73 8.61162 5.73 8.61
163 5.66 8.50163 5.66 8.50163 5.66 8.50163 5.66 8.50163 5.66 8.50
164 5.59 8.40164 5.59 8.40164 5.59 8.40164 5.59 8.40164 5.59 8.40
165 5.52 8.30165 5.52 8.30165 5.52 8.30165 5.52 8.30165 5.52 8.30
166 5.45 8.20166 5.45 8.20166 5.45 8.20166 5.45 8.20166 5.45 8.20
167 5.39 8.10167 5.39 8.10167 5.39 8.10167 5.39 8.10167 5.39 8.10
168 5.33 8.00168 5.33 8.00168 5.33 8.00168 5.33 8.00168 5.33 8.00
169 5.25 7.89169 5.25 7.89169 5.25 7.89169 5.25 7.89169 5.25 7.89
170 5.20 7.82170 5.20 7.82170 5.20 7.82170 5.20 7.82170 5.20 7.82
171 5.14 7.73171 5.14 7.73171 5.14 7.73171 5.14 7.73171 5.14 7.73
172 5.08 7.64172 5.08 7.64172 5.08 7.64172 5.08 7.64172 5.08 7.64
173 5.02 7.55173 5.02 7.55173 5.02 7.55173 5.02 7.55173 5.02 7.55
174 4.96 7.46174 4.96 7.46174 4.96 7.46174 4.96 7.46174 4.96 7.46
175 4.91 7.38175 4.91 7.38175 4.91 7.38175 4.91 7.38175 4.91 7.38
176 4.85 7.29176 4.85 7.29176 4.85 7.29176 4.85 7.29176 4.85 7.29
177 4.80 7.21177 4.80 7.21177 4.80 7.21177 4.80 7.21177 4.80 7.21
178 4.74 7.13178 4.74 7.13178 4.74 7.13178 4.74 7.13178 4.74 7.13
179 4.69 7.05179 4.69 7.05179 4.69 7.05179 4.69 7.05179 4.69 7.05
180 4.64 6.97180 4.64 6.97180 4.64 6.97180 4.64 6.97180 4.64 6.97
181 4.59 6.90181 4.59 6.90181 4.59 6.90181 4.59 6.90181 4.59 6.90
182 4.54 6.82182 4.54 6.82182 4.54 6.82182 4.54 6.82182 4.54 6.82
183 4.49 6.75183 4.49 6.75183 4.49 6.75183 4.49 6.75183 4.49 6.75
184 4.44 6.67184 4.44 6.67184 4.44 6.67184 4.44 6.67184 4.44 6.67
185 4.39 6.60185 4.39 6.60185 4.39 6.60185 4.39 6.60185 4.39 6.60
186 4.34 6.53186 4.34 6.53186 4.34 6.53186 4.34 6.53186 4.34 6.53
187 4.30 6.46187 4.30 6.46187 4.30 6.46187 4.30 6.46187 4.30 6.46
188 4.25 6.39188 4.25 6.39188 4.25 6.39188 4.25 6.39188 4.25 6.39
189 4.21 6.32189 4.21 6.32189 4.21 6.32189 4.21 6.32189 4.21 6.32
190 4.16 6.26190 4.16 6.26190 4.16 6.26190 4.16 6.26190 4.16 6.26
191 4.12 6.19191 4.12 6.19191 4.12 6.19191 4.12 6.19191 4.12 6.19
192 4.08 6.13192 4.08 6.13192 4.08 6.13192 4.08 6.13192 4.08 6.13
193 4.04 6.06193 4.04 6.06193 4.04 6.06193 4.04 6.06193 4.04 6.06
194 3.99 6.00194 3.99 6.00194 3.99 6.00194 3.99 6.00194 3.99 6.00
195 3.95 5.94195 3.95 5.94195 3.95 5.94195 3.95 5.94195 3.95 5.94
196 3.91 5.88196 3.91 5.88196 3.91 5.88196 3.91 5.88196 3.91 5.88
197 3.87 5.82197 3.87 5.82197 3.87 5.82197 3.87 5.82197 3.87 5.82
198 3.83 5.76198 3.83 5.76198 3.83 5.76198 3.83 5.76198 3.83 5.76
199 3.80 5.70199 3.80 5.70199 3.80 5.70199 3.80 5.70199 3.80 5.70
200 3.76 5.65200 3.76 5.65200 3.76 5.65200 3.76 5.65200 3.76 5.65
ASD LRFD
Ωc=1.67φc=0.90
KL
r
KL
r
KL
r
KL
r
KL
r
AISC_Part 4E:14th Ed. 2/23/11 11:00 AM Page 326

SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
GROSS AREA, NET AREA AND EFFECTIVE NET AREA . . . . . . . . . . . . . . . . . . . . 5–2
Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
TENSILE STRENGTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
Yielding Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
Rupture Limit State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
Special Requirements for Heavy Shapes and Plates . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
Slenderness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3
STEEL TENSION MEMBER SELECTION TABLES . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
Table 5-1. W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–5
Table 5-2. Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–14
Table 5-3. WT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–18
Table 5-4. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–27
Table 5-5. Square HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–36
Table 5-6. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–39
Table 5-7. Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–44
Table 5-8. Double Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–46
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 5
DESIGN OF TENSION MEMBERS
DESIGN OF TENSION MEMBERS 5–1
AISC_PART 5:14th Ed. 4/1/11 8:50 AM Page 1

SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to static axial tension. For fatigue applications, see
AISC SpecificationAppendix 3. For the design of members subject to eccentric tension or
combined tension and flexure, see Part 6.
GROSS AREA, NET AREA AND EFFECTIVE NET AREA
In the determination of the available strength of a tension member, the gross area, A g, is
needed for the tensile yielding limit state and the effective net area, A
e, is needed for the ten-
sile rupture limit state, as stipulated in AISC SpecificationSection D2.
Gross Area
The gross area, A g, is determined as specified in AISC SpecificationSection B4.3a.
Effective Net Area
The effective net area, A e, is determined from AISC SpecificationSection D3 by multiplying
the net area, A
n, by the shear lag coefficient, U, where A nis determined for tension members
per AISC SpecificationSection B4.3b and Uis determined from AISC SpecificationTable
D3.1. Shear lag parameters are illustrated in AISC Specification Commentary Figures
C-D3.1, C-D3.2 and C-D3.4.
TENSILE STRENGTH
The limit-state of tensile yielding will control the available tensile strength over tensile rup-
ture when the following relationship is satisfied:
These expressions are both reduced to:
Otherwise, the limit state of tensile rupture will control over tensile yielding.
Yielding Limit State
The available tensile strength due to tensile yielding, which must equal or exceed the
required strength, P
uor Pa, is determined for tension members, per AISC Specification
Section D2(a), using Equation D2-1.
5–2 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
0.90F yAg≤0.75F uAe(5-1a)
FA FA
yg ue
167 200..

A
A
F
F
e
g
y
u
≥12.
(5-1b)
(5-2)
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 2

Rupture Limit State
The available tensile strength due to tensile rupture, which must equal or exceed the required
strength, P
u orPa, is determined for tension members, per AISC SpecificationSection D2(b)
using Equation D2-2.
OTHER SPECIFICATION REQUIREMENTS AND DESIGN
CONSIDERATIONS
Special Requirements for Heavy Shapes and Plates
For tension members with complete-joint-penetration groove welded joints and made from
heavy shapes with a flange thickness exceeding 2 in. or built-up sections consisting of plates
with a thickness exceeding 2 in., see AISC SpecificationSections A3.1c and Section A3.1d.
Slenderness
Tension member slenderness ratio, L/r, should preferably be limited to a maximum of 300
per the User Note in AISC SpecificationSection D1. The intent of this recommendation is
explained in the corresponding Commentary.
DESIGN TABLE DISCUSSION
Available tensile strengths for various types of tension members (see individual descriptions
below) are given in Tables 5-1 through 5-8 for the limit states of tensile yielding and tensile
rupture. In each case, the tabulated values for available tensile rupture strength are based
upon the assumption that A
e=0.75A g, which is arbitrarily selected as a value that is practi-
cal to achieve with typical end connections. Such consideration of the effective net area
during the design of the member will simplify the design of its end connections, which can
be difficult to configure and costly if tension members are selected based upon available
tensile yielding strength only, without considering the reduction in strength due to the
connection.
When A
e>0.75A g, either the tabulated values for available tensile rupture strength can
be used conservatively or the available tensile rupture strength can be calculated based
upon the actual value of A
e. When A e<0.75A g, the tabulated values of the available ten-
sile rupture strength cannot be used, but rather must be calculated based upon the actual
value of A
e.
Table 5-1. W-Shapes
Available strengths in axial tension are given for W-shapes with F y=50 ksi and F u=65 ksi
(ASTM A992). Note that tensile rupture will control over tensile yielding for W-shapes with
F
y=50 ksi and F u=65 ksi when A e/Ag<0.923. Otherwise, tensile yielding will control over
tensile rupture.
DESIGN TABLE DISCUSSION 5–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 3

Table 5-2. Angles
Available strengths in axial tension are given for single angles with F y=36 ksi and F u=58
ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for single angles
with F
y=36 ksi and F u=58 ksi when A e/Ag<0.745. Otherwise, tensile yielding will con-
trol over tensile rupture.
Table 5-3. WT-Shapes
Table 5-3 is similar to Table 5-1, except that it covers WT-shapes with F y=50 ksi and F u=
65 ksi (ASTM A992).
Table 5-4. Rectangular HSS
Available strengths in axial tension are given for rectangular HSS with F y=46 ksi and
F
u=58 ksi (ASTM A500 Grade B). Note that tensile rupture will control over tensile yield-
ing for rectangular HSS with F
y=46 ksi and F u=58 ksi when A e/Ag<0.952. Otherwise,
tensile yielding will control over tensile rupture.
Table 5-5. Square HSS
Table 5-5 is similar to Table 5-4, except that it covers square HSS with F y=46 ksi and F u=
58 ksi (ASTM A500 Grade B).
Table 5-6. Round HSS
Available strengths in axial tension are given for ASTM A500 round HSS with F y=42 ksi
and F
u=58 ksi (ASTM A500 Grade B). Note that tensile rupture will control over tensile
yielding for round HSS with F
y=42 ksi and F u=58 ksi when A e/Ag<0.869. Otherwise,
tensile yielding will control over tensile rupture.
Table 5-7. Pipe
Available strengths in axial tension are given for pipe with F y=35 ksi and F u=60 ksi
(ASTM A53 Grade B). Note that tensile rupture will control over tensile yielding for pipe
with F
y=35 ksi and F u=60 ksi when A e/Ag< 0.700. Otherwise, tensile yielding will con-
trol over tensile rupture.
Table 5-8. Double Angles
Available strengths in axial tension are given for double angles with F y=36 ksi and F u=58
ksi (ASTM A36). Note that tensile rupture will control over tensile yielding for double
angles with F
y=36 ksi and F u=58 ksi when A e/Ag<0.745. Otherwise, tensile yielding will
control over tensile rupture.
5–4 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 4

Table 5-1
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W44-W40
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W44×335 98.5 73.9 2950 4430 2400 3600
×290 85.4 64.1 2560 3840 2080 3120
×262 77.2 57.9 2310 3470 1880 2820
×230 67.8 50.9 2030 3050 1650 2480
W40×593
h
174 131 5210 7830 4260 6390
×503
h
148 111 4430 6660 3610 5410
×431
h
127 95.3 3800 5720 3100 4650
×397
h
117 87.8 3500 5270 2850 4280
×372
h
110 82.5 3290 4950 2680 4020
×362
h
106 79.5 3170 4770 2580 3880
×324 95.3 71.5 2850 4290 2320 3490
×297 87.3 65.5 2610 3930 2130 3190
×277 81.5 61.1 2440 3670 1990 2980
×249 73.5 55.1 2200 3310 1790 2690
×215 63.5 47.6 1900 2860 1550 2320
×199 58.8 44.1 1760 2650 1430 2150
W40×392
h
116 87.0 3470 5220 2830 4240
×331
h
97.7 73.3 2930 4400 2380 3570
×327
h
95.9 71.9 2870 4320 2340 3510
×294 86.2 64.7 2580 3880 2100 3150
×278 82.3 61.7 2460 3700 2010 3010
×264 77.4 58.1 2320 3480 1890 2830
×235 69.1 51.8 2070 3110 1680 2530
×211 62.1 46.6 1860 2790 1510 2270
×183 53.3 40.0 1600 2400 1300 1950
×167 49.3 37.0 1480 2220 1200 1800
×149 43.8 32.9 1310 1970 1070 1600
STEEL TENSION MEMBER SELECTION TABLES 5–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 5

5–6 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W36-W33
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W36×652
h
192 144 5750 8640 4680 7020
×529
h
156 117 4670 7020 3800 5700
×487
h
143 107 4280 6440 3480 5220
×441
h 130 97.5 3890 5850 3170 4750
×395
h
116 87.0 3470 5220 2830 4240
×361
h
106 79.5 3170 4770 2580 3880
×330 96.9 72.7 2900 4360 2360 3540
×302 89.0 66.8 2660 4010 2170 3260
×282 82.9 62.2 2480 3730 2020 3030
×262 77.2 57.9 2310 3470 1880 2820
×247 72.5 54.4 2170 3260 1770 2650
×231 68.2 51.2 2040 3070 1660 2500
W36×256 75.3 56.5 2250 3390 1840 2750
×232 68.0 51.0 2040 3060 1660 2490
×210 61.9 46.4 1850 2790 1510 2260
×194 57.0 42.8 1710 2570 1390 2090
×182 53.6 40.2 1600 2410 1310 1960
×170 50.0 37.5 1500 2250 1220 1830
×160 47.0 35.3 1410 2120 1150 1720
×150 44.3 33.2 1330 1990 1080 1620
×135 39.9 29.9 1190 1800 972 1460
W33×387
h 114 85.5 3410 5130 2780 4170
×354
h
104 78.0 3110 4680 2540 3800
×318 93.7 70.3 2810 4220 2280 3430
×291 85.6 64.2 2560 3850 2090 3130
×263 77.4 58.1 2320 3480 1890 2830
×241 71.1 53.3 2130 3200 1730 2600
×221 65.3 49.0 1960 2940 1590 2390
×201 59.1 44.3 1770 2660 1440 2160
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 6

STEEL TENSION MEMBER SELECTION TABLES 5–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W33-W27
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W33×169 49.5 37.1 1480 2230 1210 1810
×152 44.9 33.7 1340 2020 1100 1640
×141 41.5 31.1 1240 1870 1010 1520
×130 38.3 28.7 1150 1720 933 1400
×118 34.7 26.0 1040 1560 845 1270
W30×391
h
115 86.3 3440 5180 2800 4210
×357
h
105 78.8 3140 4730 2560 3840
×326
h
95.9 71.9 2870 4320 2340 3510
×292 86.0 64.5 2570 3870 2100 3140
×261 77.0 57.8 2310 3470 1880 2820
×235 69.3 52.0 2070 3120 1690 2540
×211 62.3 46.7 1870 2800 1520 2280
×191 56.1 42.1 1680 2520 1370 2050
×173 50.9 38.2 1520 2290 1240 1860
W30×148 43.6 32.7 1310 1960 1060 1590
×132 38.8 29.1 1160 1750 946 1420
×124 36.5 27.4 1090 1640 891 1340
×116 34.2 25.7 1020 1540 835 1250
×108 31.7 23.8 949 1430 774 1160
×99 29.0 21.8 868 1310 709 1060
×90 26.3 19.7 787 1180 640 960
W27×539
h
159 119 4760 7160 3870 5800
×368
h
109 81.8 3230 4910 2660 3990
×336
h
99.2 74.4 2970 4460 2420 3630
×307
h
90.2 67.7 2700 4060 2200 3300
×281 83.1 62.3 2490 3740 2020 3040
×258 76.1 57.1 2280 3420 1860 2780
×235 69.4 52.1 2080 3120 1690 2540
×217 63.9 47.9 1910 2880 1560 2340
×194 57.1 42.8 1710 2570 1390 2090
×178 52.5 39.4 1570 2360 1280 1920
×161 47.6 35.7 1430 2140 1160 1740
×146 43.2 32.4 1290 1940 1050 1580
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 7

5–8 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W27-W21
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W27×129 37.8 28.4 1130 1700 923 1380
×114 33.6 25.2 1010 1510 819 1230
×102 30.0 22.5 898 1350 731 1100
×94 27.6 20.7 826 1240 673 1010
×84 24.7 18.5 740 1110 601 902
W24×370
h
109 81.8 3260 4910 2660 3990
×335
h
98.3 73.7 2940 4420 2400 3590
×306
h
89.7 67.3 2690 4040 2190 3280
×279
h
81.9 61.4 2450 3690 2000 2990
×250 73.5 55.1 2200 3310 1790 2690
×229 67.2 50.4 2010 3020 1640 2460
×207 60.7 45.5 1820 2730 1480 2220
×192 56.5 42.4 1690 2540 1380 2070
×176 51.7 38.8 1550 2330 1260 1890
×162 47.8 35.9 1430 2150 1170 1750
×146 43.0 32.3 1290 1940 1050 1570
×131 38.6 29.0 1160 1740 943 1410
×117 34.4 25.8 1030 1550 839 1260
×104 30.7 23.0 919 1380 748 1120
W24×103 30.3 22.7 907 1360 738 1110
×94 27.7 20.8 829 1250 676 1010
×84 24.7 18.5 740 1110 601 902
×76 22.4 16.8 671 1010 546 819
×68 20.1 15.1 602 905 491 736
W24×62 18.2 13.7 545 819 445 668
×55 16.2 12.2 485 729 397 595
W21×201 59.3 44.5 1780 2670 1450 2170
×182 53.6 40.2 1600 2410 1310 1960
×166 48.8 36.6 1460 2200 1190 1780
×147 43.2 32.4 1290 1940 1050 1580
×132 38.8 29.1 1160 1750 946 1420
×122 35.9 26.9 1070 1620 874 1310
×111 32.6 24.5 976 1470 796 1190
×101 29.8 22.4 892 1340 728 1090
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 8

Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
STEEL TENSION MEMBER SELECTION TABLES 5–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W21-W18
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W21×93 27.3 20.5 817 1230 666 999
×83 24.4 18.3 731 1100 595 892
×73 21.5 16.1 644 968 523 785
×68 20.0 15.0 599 900 488 731
×62 18.3 13.7 548 824 445 668
×55 16.2 12.2 485 729 397 595
×48 14.1 10.6 422 635 345 517
W21×57 16.7 12.5 500 752 406 609
×50 14.7 11.0 440 662 358 536
×44 13.0 9.75 389 585 317 475
W18×311
h
91.6 68.7 2740 4120 2230 3350
×283
h
83.3 62.5 2490 3750 2030 3050
×258
h
76.0 57.0 2280 3420 1850 2780
×234
h 68.6 51.5 2050 3090 1670 2510
×211 62.3 46.7 1870 2800 1520 2280
×192 56.2 42.2 1680 2530 1370 2060
×175 51.4 38.6 1540 2310 1250 1880
×158 46.3 34.7 1390 2080 1130 1690
×143 42.0 31.5 1260 1890 1020 1540
×130 38.3 28.7 1150 1720 933 1400
×119 35.1 26.3 1050 1580 855 1280
×106 31.1 23.3 931 1400 757 1140
×97 28.5 21.4 853 1280 696 1040
×86 25.3 19.0 757 1140 618 926
×76 22.3 16.7 668 1000 543 814
W18×71 20.9 15.7 626 941 510 765
×65 19.1 14.3 572 860 465 697
×60 17.6 13.2 527 792 429 644
×55 16.2 12.2 485 729 397 595
×50 14.7 11.0 440 662 358 536
W18×46 13.5 10.1 404 608 328 492
×40 11.8 8.85 353 531 288 431
×35 10.3 7.73 308 464 251 377
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 9

5–10 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W16-W14
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
W16×100 29.4 22.1 880 1320 718 1080
×89 26.2 19.7 784 1180 640 960
×77 22.6 17.0 677 1020 553 829
×67 19.6 14.7 587 882 478 717
W16×57 16.8 12.6 503 756 410 614
×50 14.7 11.0 440 662 358 536
×45 13.3 9.98 398 599 324 487
×40 11.8 8.85 353 531 288 431
×36 10.6 7.95 317 477 258 388
W16×31 9.13 6.85 273 411 223 334
×26 7.68 5.76 230 346 187 281
W14×730
h
215 161 6440 9680 5230 7850
×665
h 196 147 5870 8820 4780 7170
×605
h
178 134 5330 8010 4360 6530
×550
h
162 122 4850 7290 3970 5950
×500
h
147 110 4400 6620 3580 5360
×455
h
134 101 4010 6030 3280 4920
×426
h
125 93.8 3740 5630 3050 4570
×398
h
117 87.8 3500 5270 2850 4280
×370
h
109 81.8 3260 4910 2660 3990
×342
h
101 75.8 3020 4550 2460 3700
×311
h
91.4 68.6 2740 4110 2230 3340
×283
h
83.3 62.5 2490 3750 2030 3050
×257 75.6 56.7 2260 3400 1840 2760
×233 68.5 51.4 2050 3080 1670 2510
×211 62.0 46.5 1860 2790 1510 2270
×193 56.8 42.6 1700 2560 1380 2080
×176 51.8 38.9 1550 2330 1260 1900
×159 46.7 35.0 1400 2100 1140 1710
×145 42.7 32.0 1280 1920 1040 1560
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 10

Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W14-W12
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
STEEL TENSION MEMBER SELECTION TABLES 5–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W14×132 38.8 29.1 1160 1750 946 1420
×120 35.3 26.5 1060 1590 861 1290
×109 32.0 24.0 958 1440 780 1170
×99 29.1 21.8 871 1310 709 1060
×90 26.5 19.9 793 1190 647 970
W14×82 24.0 18.0 719 1080 585 878
×74 21.8 16.4 653 981 533 800
×68 20.0 15.0 599 900 488 731
×61 17.9 13.4 536 806 436 653
W14×53 15.6 11.7 467 702 380 570
×48 14.1 10.6 422 635 345 517
×43 12.6 9.45 377 567 307 461
W14×38 11.2 8.40 335 504 273 410
×34 10.0 7.50 299 450 244 366
×30 8.85 6.64 265 398 216 324
W14×26 7.69 5.77 230 346 188 281
×22 6.49 4.87 194 292 158 237
W12×336
h
98.9 74.2 2960 4450 2410 3620
×305
h
89.5 67.1 2680 4030 2180 3270
×279
h
81.9 61.4 2450 3690 2000 2990
×252
h
74.1 55.6 2220 3330 1810 2710
×230
h
67.7 50.8 2030 3050 1650 2480
×210 61.8 46.4 1850 2780 1510 2260
×190 56.0 42.0 1680 2520 1370 2050
×170 50.0 37.5 1500 2250 1220 1830
×152 44.7 33.5 1340 2010 1090 1630
×136 39.9 29.9 1190 1800 972 1460
×120 35.2 26.4 1050 1580 858 1290
×106 31.2 23.4 934 1400 761 1140
×96 28.2 21.2 844 1270 689 1030
×87 25.6 19.2 766 1150 624 936
×79 23.2 17.4 695 1040 566 848
×72 21.1 15.8 632 950 514 770
×65 19.1 14.3 572 860 465 697
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 11

5–12 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
W12×58 17.0 12.8 509 765 416 624
×53 15.6 11.7 467 702 380 570
W12×50 14.6 11.0 437 657 358 536
×45 13.1 9.83 392 590 319 479
×40 11.7 8.78 350 527 285 428
W12×35 10.3 7.73 308 464 251 377
×30 8.79 6.59 263 396 214 321
×26 7.65 5.74 229 344 187 280
W12×22 6.48 4.86 194 292 158 237
×19 5.57 4.18 167 251 136 204
×16 4.71 3.53 141 212 115 172
×14 4.16 3.12 125 187 101 152
W10×112 32.9 24.7 985 1480 803 1200
×100 29.3 22.0 877 1320 715 1070
×88 26.0 19.5 778 1170 634 951
×77 22.7 17.0 680 1020 553 829
×68 19.9 14.9 596 896 484 726
×60 17.7 13.3 530 797 432 648
×54 15.8 11.9 473 711 387 580
×49 14.4 10.8 431 648 351 527
W10×45 13.3 9.98 398 599 324 487
×39 11.5 8.63 344 518 280 421
×33 9.71 7.28 291 437 237 355
W10×30 8.84 6.63 265 398 215 323
×26 7.61 5.71 228 342 186 278
×22 6.49 4.87 194 292 158 237
W10×19 5.62 4.22 168 253 137 206
×17 4.99 3.74 149 225 122 182
×15 4.41 3.31 132 198 108 161
×12 3.54 2.66 106 159 86.5 130
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W12-W10
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASDLRFDLimit State
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 12

STEEL TENSION MEMBER SELECTION TABLES 5–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-1 (continued)
Available Strength in
Axial Tension
W-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
W8
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASDLRFDLimit State
W8×67 19.7 14.8 590 887 481 722
×58 17.1 12.8 512 770 416 624
×48 14.1 10.6 422 635 345 517
×40 11.7 8.78 350 527 285 428
×35 10.3 7.73 308 464 251 377
×31 9.13 6.85 273 411 223 334
W8×28 8.25 6.19 247 371 201 302
×24 7.08 5.31 212 319 173 259
W8×21 6.16 4.62 184 277 150 225
×18 5.26 3.95 157 237 128 193
W8×15 4.44 3.33 133 200 108 162
×13 3.84 2.88 115 173 93.6 140
×10 2.96 2.22 88.6 133 72.2 108
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 13

Table 5-2
Available Strength in
Axial Tension
Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
L8-L6
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
L8×8×1
1
/8 16.8 12.6 362 544 365 548
×1 15.1 11.3 326 489 328 492
×
7
/8 13.3 9.98 287 431 289 434
×
3
/4 11.5 8.63 248 373 250 375
×
5
/8 9.69 7.27 209 314 211 316
×
9
/16 8.77 6.58 189 284 191 286
×
1
/2 7.84 5.88 169 254 171 256
L8×6×1 13.1 9.83 282 424 285 428
×
7
/8 11.5 8.63 248 373 250 375
×
3
/4 9.99 7.49 215 324 217 326
×
5
/8 8.41 6.31 181 272 183 274
×
9
/16 7.61 5.71 164 247 166 248
×
1
/2 6.80 5.10 147 220 148 222
×
7
/16 5.99 4.49 129 194 130 195
L8×4×1 11.1 8.33 239 360 242 362
×
7
/8 9.79 7.34 211 317 213 319
×
3
/4 8.49 6.37 183 275 185 277
×
5
/8 7.16 5.37 154 232 156 234
×
9
/16 6.49 4.87 140 210 141 212
×
1
/2 5.80 4.35 125 188 126 189
×
7
/16 5.11 3.83 110 166 111 167
L7×4×
3
/4 7.74 5.81 167 251 168 253
×
5
/8 6.50 4.88 140 211 142 212
×
1
/2 5.26 3.95 113 170 115 172
×
7
/16 4.63 3.47 99.8 150 101 151
×
3
/8 4.00 3.00 86.2 130 87.0 131
L6×6×1 11.0 8.25 237 356 239 359
×
7
/8 9.75 7.31 210 316 212 318
×
3
/4 8.46 6.35 182 274 184 276
×
5
/8 7.13 5.35 154 231 155 233
×
9
/16 6.45 4.84 139 209 140 211
×
1
/2 5.77 4.33 124 187 126 188
×
7
/16 5.08 3.81 110 165 110 166
×
3
/8 4.38 3.29 94.4 142 95.4 143
×
5
/16 3.67 2.75 79.1 119 79.8 120
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
5–14 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 14

Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
L6-L5
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
L6×4×
7
/8 8.00 6.00 172 259 174 261
×
3
/4 6.94 5.21 150 225 151 227
×
5
/8 5.86 4.40 126 190 128 191
×
9
/16 5.31 3.98 114 172 115 173
×
1
/2 4.75 3.56 102 154 103 155
×
7
/16 4.18 3.14 90.1 135 91.1 137
×
3
/8 3.61 2.71 77.8 117 78.6 118
×
5
/16 3.03 2.27 65.3 98.2 65.8 98.7
L6×3
1
/2×
1
/2 4.50 3.38 97.0 146 98.0 147
×
3
/8 3.44 2.58 74.2 111 74.8 112
×
5
/16 2.89 2.17 62.3 93.6 62.9 94.4
L5×5×
7
/8 8.00 6.00 172 259 174 261
×
3
/4 6.98 5.24 150 226 152 228
×
5
/8 5.90 4.43 127 191 128 193
×
1
/2 4.79 3.59 103 155 104 156
×
7
/16 4.22 3.17 91.0 137 91.9 138
×
3
/8 3.65 2.74 78.7 118 79.5 119
×
5
/16 3.07 2.30 66.2 99.5 66.7 100
L5×3
1
/2×
3
/4 5.85 4.39 126 190 127 191
×
5
/8 4.93 3.70 106 160 107 161
×
1
/2 4.00 3.00 86.2 130 87.0 131
×
3
/8 3.05 2.29 65.7 98.8 66.4 99.6
×
5
/16 2.56 1.92 55.2 82.9 55.7 83.5
×
1
/4 2.07 1.55 44.6 67.1 45.0 67.4
L5×3×
1
/2 3.75 2.81 80.8 122 81.5 122
×
7
/16 3.31 2.48 71.4 107 71.9 108
×
3
/8 2.86 2.15 61.7 92.7 62.4 93.5
×
5
/16 2.41 1.81 52.0 78.1 52.5 78.7
×
1
/4 1.94 1.46 41.8 62.9 42.3 63.5
STEEL TENSION MEMBER SELECTION TABLES 5–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 15

Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
L4-L3
1
/2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
L4×4×
3
/4 5.44 4.08 117 176 118 177
×
5
/8 4.61 3.46 99.4 149 100 151
×
1
/2 3.75 2.81 80.8 122 81.5 122
×
7
/16 3.30 2.48 71.1 107 71.9 108
×
3
/8 2.86 2.15 61.7 92.7 62.4 93.5
×
5
/16 2.40 1.80 51.7 77.8 52.2 78.3
×
1
/4 1.93 1.45 41.6 62.5 42.1 63.1
L4×3
1
/2×
1
/2 3.50 2.63 75.4 113 76.3 114
×
3
/8 2.68 2.01 57.8 86.8 58.3 87.4
×
5
/16 2.25 1.69 48.5 72.9 49.0 73.5
×
1
/4 1.82 1.37 39.2 59.0 39.7 59.6
L4×3×
5
/8 3.99 2.99 86.0 129 86.7 130
×
1
/2 3.25 2.44 70.1 105 70.8 106
×
3
/8 2.49 1.87 53.7 80.7 54.2 81.3
×
5
/16 2.09 1.57 45.1 67.7 45.5 68.3
×
1
/4 1.69 1.27 36.4 54.8 36.8 55.2
L3
1
/2×3
1
/2×
1
/2 3.25 2.44 70.1 105 70.8 106
×
7
/16 2.89 2.17 62.3 93.6 62.9 94.4
×
3
/8 2.50 1.88 53.9 81.0 54.5 81.8
×
5
/16 2.10 1.58 45.3 68.0 45.8 68.7
×
1
/4 1.70 1.28 36.6 55.1 37.1 55.7
L3
1
/2×3×
1
/2 3.02 2.27 65.1 97.8 65.8 98.7
×
7
/16 2.67 2.00 57.6 86.5 58.0 87.0
×
3
/8 2.32 1.74 50.0 75.2 50.5 75.7
×
5
/16 1.95 1.46 42.0 63.2 42.3 63.5
×
1
/4 1.58 1.19 34.1 51.2 34.5 51.8
L3
1
/2×2
1
/2×
1
/2 2.77 2.08 59.7 89.7 60.3 90.5
×
3
/8 2.12 1.59 45.7 68.7 46.1 69.2
×
5
/16 1.79 1.34 38.6 58.0 38.9 58.3
×
1
/4 1.45 1.09 31.3 47.0 31.6 47.4
5–16 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 16

Table 5-2 (continued)
Available Strength in
Axial Tension
Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
L3-L2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
L3×3×
1
/2 2.76 2.07 59.5 89.4 60.0 90.0
×
7
/16 2.43 1.82 52.4 78.7 52.8 79.2
×
3
/8 2.11 1.58 45.5 68.4 45.8 68.7
×
5
/16 1.78 1.34 38.4 57.7 38.9 58.3
×
1
/4 1.44 1.08 31.0 46.7 31.3 47.0
×
3
/16 1.09 0.818 23.5 35.3 23.7 35.6
L3×2
1
/2×
1
/2 2.50 1.88 53.9 81.0 54.5 81.8
×
7
/16 2.22 1.67 47.9 71.9 48.4 72.6
×
3
/8 1.93 1.45 41.6 62.5 42.1 63.1
×
5
/16 1.63 1.22 35.1 52.8 35.4 53.1
×
1
/4 1.32 0.990 28.5 42.8 28.7 43.1
×
3
/16 1.00 0.750 21.6 32.4 21.8 32.6
L3×2×
1
/2 2.26 1.70 48.7 73.2 49.3 74.0
×
3
/8 1.75 1.31 37.7 56.7 38.0 57.0
×
5
/16 1.48 1.11 31.9 48.0 32.2 48.3
×
1
/4 1.20 0.900 25.9 38.9 26.1 39.2
×
3
/16 0.917 0.688 19.8 29.7 20.0 29.9
L2
1
/2×2
1
/2×
1
/2 2.26 1.70 48.7 73.2 49.3 74.0
×
3
/8 1.73 1.30 37.3 56.1 37.7 56.6
×
5
/16 1.46 1.10 31.5 47.3 31.9 47.9
×
1
/4 1.19 0.893 25.7 38.6 25.9 38.8
×
3
/16 0.901 0.676 19.4 29.2 19.6 29.4
L2
1
/2×2×
3
/8 1.55 1.16 33.4 50.2 33.6 50.5
×
5
/16 1.32 0.990 28.5 42.8 28.7 43.1
×
1
/4 1.07 0.803 23.1 34.7 23.3 34.9
×
3
/16 0.818 0.614 17.6 26.5 17.8 26.7
L2
1
/2×1
1
/2×
1
/4 0.947 0.710 20.4 30.7 20.6 30.9
×
3
/16 0.724 0.543 15.6 23.5 15.7 23.6
L2×2×
3
/8 1.37 1.03 29.5 44.4 29.9 44.8
×
5
/16 1.16 0.870 25.0 37.6 25.2 37.8
×
1
/4 0.944 0.708 20.3 30.6 20.5 30.8
×
3
/16 0.722 0.542 15.6 23.4 15.5 23.6
×
1
/8 0.491 0.368 10.6 15.9 10.7 16.0
STEEL TENSION MEMBER SELECTION TABLES 5–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 17

Table 5-3
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT22–WT20
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
WT22×167.5 49.2 36.9 1470 2210 1200 1800
×145 42.6 32.0 1280 1920 1040 1560
×131 38.5 28.9 1150 1730 939 1410
×115 33.9 25.4 1010 1530 826 1240
WT20×296.5
h
87.2 65.4 2610 3920 2130 3190
×251.5
h
74.0 55.5 2220 3330 1800 2710
×215.5
h
63.3 47.5 1900 2850 1540 2320
×198.5
h
58.3 43.7 1750 2620 1420 2130
×186
h
54.7 41.0 1640 2460 1330 2000
×181
h
53.2 39.9 1590 2390 1300 1950
×162 47.7 35.8 1430 2150 1160 1750
×148.5 43.6 32.7 1310 1960 1060 1590
×138.5 40.7 30.5 1220 1830 991 1490
×124.5 36.7 27.5 1100 1650 894 1340
×107.5 31.8 23.9 952 1430 777 1170
×99.5 29.2 21.9 874 1310 712 1070
WT20×196
h
57.8 43.4 1730 2600 1410 2120
×165.5
h
48.8 36.6 1460 2200 1190 1780
×163.5
h
47.9 35.9 1430 2160 1170 1750
×147 43.1 32.3 1290 1940 1050 1570
×139 41.0 30.8 1230 1850 1000 1500
×132 38.7 29.0 1160 1740 943 1410
×117.5 34.6 26.0 1040 1560 845 1270
×105.5 31.1 23.3 931 1400 757 1140
×91.5 26.7 20.0 799 1200 650 975
×83.5 24.5 18.4 734 1100 598 897
×74.5 21.9 16.4 656 986 533 800
5–18 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 18

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,
A g
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT18-WT16.5
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
WT18×326
h
96.2 72.2 2880 4330 2350 3520
×264.5
h
77.8 58.4 2330 3500 1900 2850
×243.5
h
71.7 53.8 2150 3230 1750 2620
×220.5
h 64.9 48.7 1940 2920 1580 2370
×197.5
h
58.1 43.6 1740 2610 1420 2130
×180.5
h
53.0 39.8 1590 2390 1290 1940
×165 48.4 36.3 1450 2180 1180 1770
×151 44.5 33.4 1330 2000 1090 1630
×141 41.5 31.1 1240 1870 1010 1520
×131 38.5 28.9 1150 1730 939 1410
×123.5 36.3 27.2 1090 1630 884 1330
×115.5 34.1 25.6 1020 1530 832 1250
WT18×128 37.6 28.2 1130 1690 917 1370
×116 34.0 25.5 1020 1530 829 1240
×105 30.9 23.2 925 1390 754 1130
×97 28.5 21.4 853 1280 696 1040
×91 26.8 20.1 802 1210 653 980
×85 25.0 18.8 749 1130 611 917
×80 23.5 17.6 704 1060 572 858
×75 22.1 16.6 662 995 540 809
×67.5 19.9 14.9 596 896 484 726
WT16.5×193.5
h 57.0 42.8 1710 2570 1390 2090
×177
h
52.1 39.1 1560 2340 1270 1910
×159 46.8 35.1 1400 2110 1140 1710
×145.5 42.8 32.1 1280 1930 1040 1560
×131.5 38.7 29.0 1160 1740 943 1410
×120.5 35.6 26.7 1070 1600 868 1300
×110.5 32.6 24.5 976 1470 796 1190
×100.5 29.7 22.3 889 1340 725 1090
STEEL TENSION MEMBER SELECTION TABLES 5–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:40 AM Page 19

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT16.5-WT13.5
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
5–20 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
WT16.5×84.5 24.7 18.5 740 1110 601 902
×76 22.5 16.9 674 1010 549 824
×70.5 20.7 15.5 620 932 504 756
×65 19.1 14.3 572 860 465 697
×59 17.4 13.1 521 783 426 639
WT15×195.5
h
57.6 43.2 1720 2590 1400 2110
×178.5
h
52.5 39.4 1570 2360 1280 1920
×163
h
48.0 36.0 1440 2160 1170 1760
×146 43.0 32.3 1290 1940 1050 1570
×130.5 38.5 28.9 1150 1730 939 1410
×117.5 34.7 26.0 1040 1560 845 1270
×105.5 31.1 23.3 931 1400 757 1140
×95.5 28.0 21.0 838 1260 683 1020
×86.5 25.4 19.1 760 1140 621 931
WT15×74 21.8 16.4 653 981 533 800
×66 19.5 14.6 584 878 475 712
×62 18.2 13.7 545 819 445 668
×58 17.1 12.8 512 770 416 624
×54 15.9 11.9 476 716 387 580
×49.5 14.5 10.9 434 653 354 531
×45 13.2 9.90 395 594 322 483
WT13.5×269.5
h
79.3 59.5 2370 3570 1930 2900
×184
h
54.2 40.7 1620 2440 1320 1980
×168
h
49.5 37.1 1480 2230 1210 1810
×153.5
h
45.2 33.9 1350 2030 1100 1650
×140.5 41.5 31.1 1240 1870 1010 1520
×129 38.1 28.6 1140 1710 930 1390
×117.5 34.7 26.0 1040 1560 845 1270
×108.5 32.0 24.0 958 1440 780 1170
×97 28.6 21.5 856 1290 699 1050
×89 26.3 19.7 787 1180 640 960
×80.5 23.8 17.9 713 1070 582 873
×73 21.6 16.2 647 972 527 790
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 20

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT13.5-WT10.5
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
WT13.5×64.5 18.9 14.2 566 851 462 692
×57 16.8 12.6 503 756 410 614
×51 15.0 11.3 449 675 367 551
×47 13.8 10.4 413 621 338 507
×42 12.4 9.30 371 558 302 453
WT12×185
h
54.5 40.9 1630 2450 1330 1990
×167.5
h
49.1 36.8 1470 2210 1200 1790
×153
h
44.9 33.7 1340 2020 1100 1640
×139.5
h
41.0 30.8 1230 1850 1000 1500
×125 36.8 27.6 1100 1660 897 1350
×114.5 33.6 25.2 1010 1510 819 1230
×103.5 30.3 22.7 907 1360 738 1110
×96 28.2 21.2 844 1270 689 1030
×88 25.8 19.4 772 1160 631 946
×81 23.9 17.9 716 1080 582 873
×73 21.5 16.1 644 968 523 785
×65.5 19.3 14.5 578 869 471 707
×58.5 17.2 12.9 515 774 419 629
×52 15.3 11.5 458 689 374 561
WT12×51.5 15.1 11.3 452 680 367 551
×47 13.8 10.4 413 621 338 507
×42 12.4 9.30 371 558 302 453
×38 11.2 8.40 335 504 273 410
×34 10.0 7.50 299 450 244 366
WT12×31 9.11 6.83 273 410 222 333
×27.5 8.10 6.08 243 365 198 296
WT10.5×100.5 29.6 22.2 886 1330 722 1080
×91 26.8 20.1 802 1210 653 980
×83 24.4 18.3 731 1100 595 892
×73.5 21.6 16.2 647 972 527 790
×66 19.4 14.6 581 873 475 712
×61 17.9 13.4 536 806 436 653
×55.5 16.3 12.2 488 734 397 595
×50.5 14.9 11.2 446 671 364 546
STEEL TENSION MEMBER SELECTION TABLES 5–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 21

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT10.5-WT9
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
WT10.5×46.5 13.7 10.3 410 617 335 502
×41.5 12.2 9.15 365 549 297 446
×36.5 10.7 8.03 320 482 261 391
×34 10.0 7.50 299 450 244 366
×31 9.13 6.85 273 411 223 334
×27.5 8.10 6.08 243 365 198 296
×24 7.07 5.30 212 318 172 258
WT10.5×28.5 8.37 6.28 251 377 204 306
×25 7.36 5.52 220 331 179 269
×22 6.49 4.87 194 292 158 237
WT9×155.5
h
45.8 34.4 1370 2060 1120 1680
×141.5
h
41.7 31.3 1250 1880 1020 1530
×129
h
38.0 28.5 1140 1710 926 1390
×117
h 34.3 25.7 1030 1540 835 1250
×105.5 31.2 23.4 934 1400 761 1140
×96 28.1 21.1 841 1260 686 1030
×87.5 25.7 19.3 769 1160 627 941
×79 23.2 17.4 695 1040 566 848
×71.5 21.0 15.8 629 945 514 770
×65 19.2 14.4 575 864 468 702
×59.5 17.6 13.2 527 792 429 644
×53 15.6 11.7 467 702 380 570
×48.5 14.2 10.7 425 639 348 522
×43 12.7 9.53 380 572 310 465
×38 11.1 8.33 332 500 271 406
WT9×35.5 10.4 7.80 311 468 254 380
×32.5 9.55 7.16 286 430 233 349
×30 8.82 6.62 264 397 215 323
×27.5 8.10 6.08 243 365 198 296
×25 7.34 5.51 220 330 179 269
WT9×23 6.77 5.08 203 305 165 248
×20 5.88 4.41 176 265 143 215
×17.5 5.15 3.86 154 232 125 188
5–22 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 22

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT8-WT7
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
STEEL TENSION MEMBER SELECTION TABLES 5–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT8×50 14.7 11.0 440 662 358 536
×44.5 13.1 9.83 392 590 319 479
×38.5 11.3 8.48 338 509 276 413
×33.5 9.81 7.36 294 441 239 359
WT8×28.5 8.39 6.29 251 378 204 307
×25 7.37 5.53 221 332 180 270
×22.5 6.63 4.97 199 298 162 242
×20 5.89 4.42 176 265 144 215
×18 5.29 3.97 158 238 129 194
WT8×15.5 4.56 3.42 137 205 111 167
×13 3.84 2.88 115 173 93.6 140
WT7×365
h 107 80.3 3200 4820 2610 3910
×332.5
h
97.8 73.4 2930 4400 2390 3580
×302.5
h
89.0 66.8 2660 4010 2170 3260
×275
h
80.9 60.7 2420 3640 1970 2960
×250
h
73.5 55.1 2200 3310 1790 2690
×227.5
h
66.9 50.2 2000 3010 1630 2450
×213
h
62.7 47.0 1880 2820 1530 2290
×199
h
58.4 43.8 1750 2630 1420 2140
×185
h
54.4 40.8 1630 2450 1330 1990
×171
h
50.3 37.7 1510 2260 1230 1840
×155.5
h
45.7 34.3 1370 2060 1110 1670
×141.5
h
41.6 31.2 1250 1870 1010 1520
×128.5 37.8 28.4 1130 1700 923 1380
×116.5 34.2 25.7 1020 1540 835 1250
×105.5 31.0 23.3 928 1400 757 1140
×96.5 28.4 21.3 850 1280 692 1040
×88 25.9 19.4 775 1170 631 946
×79.5 23.4 17.6 701 1050 572 858
×72.5 21.3 16.0 638 959 520 780
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 23

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
5–24 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT7-WT6
h
Flange thickness is greater than 2 in. Special requirements may apply per AISC
SpecificationSection A3.1c.
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASD
LRFDLimit State
WT7×66 19.4 14.6 581 873 475 712
×60 17.7 13.3 530 797 432 648
×54.5 16.0 12.0 479 720 390 585
×49.5 14.6 11.0 437 657 358 536
×45 13.2 9.90 395 594 322 483
WT7×41 12.0 9.00 359 540 293 439
×37 10.9 8.18 326 491 266 399
×34 10.0 7.50 299 450 244 366
×30.5 8.96 6.72 268 403 218 328
WT7×26.5 7.80 5.85 234 351 190 285
×24 7.07 5.30 212 318 172 258
×21.5 6.31 4.73 189 284 154 231
WT7×19 5.58 4.19 167 251 136 204
×17 5.00 3.75 150 225 122 183
×15 4.42 3.32 132 199 108 162
WT7×13 3.85 2.89 115 173 93.9 141
×11 3.25 2.44 97.3 146 79.3 119
WT6×168
h
49.5 37.1 1480 2230 1210 1810
×152.5
h
44.7 33.5 1340 2010 1090 1630
×139.5
h
41.0 30.8 1230 1850 1000 1500
×126
h
37.1 27.8 1110 1670 904 1360
×115
h
33.8 25.4 1010 1520 826 1240
×105 30.9 23.2 925 1390 754 1130
×95 28.0 21.0 838 1260 683 1020
×85 25.0 18.8 749 1130 611 917
×76 22.4 16.8 671 1010 546 819
×68 20.0 15.0 599 900 488 731
×60 17.6 13.2 527 792 429 644
×53 15.6 11.7 467 702 380 570
×48 14.1 10.6 422 635 345 517
×43.5 12.8 9.60 383 576 312 468
×39.5 11.6 8.70 347 522 283 424
×36 10.6 7.95 317 477 258 388
×32.5 9.54 7.16 286 429 233 349
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 24

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT6-WT5
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASDLRFDLimit State
STEEL TENSION MEMBER SELECTION TABLES 5–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT6×29 8.52 6.39 255 383 208 312
×26.5 7.78 5.84 233 350 190 285
WT6×25 7.30 5.48 219 329 178 267
×22.5 6.56 4.92 196 295 160 240
×20 5.84 4.38 175 263 142 214
WT6×17.5 5.17 3.88 155 233 126 189
×15 4.40 3.30 132 198 107 161
×13 3.82 2.87 114 172 93.3 140
WT6×11 3.24 2.43 97.0 146 79.0 118
×9.5 2.79 2.09 83.5 126 67.9 102
×8 2.36 1.77 70.7 106 57.5 86.3
×7 2.08 1.56 62.3 93.6 50.7 76.1
WT5×56 16.5 12.4 494 743 403 605
×50 14.7 11.0 440 662 358 536
×44 13.0 9.75 389 585 317 475
×38.5 11.3 8.48 338 509 276 413
×34 10.0 7.50 299 450 244 366
×30 8.84 6.63 265 398 215 323
×27 7.90 5.93 237 356 193 289
×24.5 7.21 5.41 216 324 176 264
WT5×22.5 6.63 4.97 199 298 162 242
×19.5 5.73 4.30 172 258 140 210
×16.5 4.85 3.64 145 218 118 177
WT5×15 4.42 3.32 132 199 108 162
×13 3.81 2.86 114 171 93.0 139
×11 3.24 2.43 97.0 146 79.0 118
WT5×9.5 2.81 2.11 84.1 126 68.6 103
×8.5 2.50 1.88 74.9 113 61.1 91.7
×7.5 2.21 1.66 66.2 99.5 54.0 80.9
×6 1.77 1.33 53.0 79.7 43.2 64.8
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 25

Table 5-3 (continued)
Available Strength in
Axial Tension
WT-Shapes
Fy= 50 ksi
F
u= 65 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
WT4
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.923Ag.
ASDLRFDLimit State
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
5–26 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
WT4×33.5 9.84 7.38 295 443 240 360
×29 8.54 6.41 256 384 208 312
×24 7.05 5.29 211 317 172 258
×20 5.87 4.40 176 264 143 215
×17.5 5.14 3.86 154 231 125 188
×15.5 4.56 3.42 137 205 111 167
WT4×14 4.12 3.09 123 185 100 151
×12 3.54 2.66 106 159 86.5 130
WT4×10.5 3.08 2.31 92.2 139 75.1 113
×9 2.63 1.97 78.7 118 64.0 96.0
WT4×7.5 2.22 1.67 66.5 99.9 54.3 81.4
×6.5 1.92 1.44 57.5 86.4 46.8 70.2
×5 1.48 1.11 44.3 66.6 36.1 54.1
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 26

Table 5-4
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS20-HSS16
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS20×12×
5
/8 35.0 26.3 964 1450 763 1140
×
1
/2 28.3 21.2 780 1170 615 922
×
3
/8 21.5 16.1 592 890 467 700
×
5
/16 18.1 13.6 499 749 394 592
HSS20×8×
5
/8 30.3 22.7 835 1250 658 987
×
1
/2 24.6 18.5 678 1020 537 805
×
3
/8 18.7 14.0 515 774 406 609
×
5
/16 15.7 11.8 432 650 342 513
HSS20×4×
1
/2 20.9 15.7 576 865 455 683
×
3
/8 16.0 12.0 441 662 348 522
×
5
/16 13.4 10.1 369 555 293 439
×
1
/4 10.8 8.10 297 447 235 352
HSS18×6×
5
/8 25.7 19.3 708 1060 560 840
×
1
/2 20.9 15.7 576 865 455 683
×
3
/8 16.0 12.0 441 662 348 522
×
5
/16 13.4 10.1 369 555 293 439
×
1
/4 10.8 8.10 297 447 235 352
HSS16×12×
5
/8 30.3 22.7 835 1250 658 987
×
1
/2 24.6 18.5 678 1020 537 805
×
3
/8 18.7 14.0 515 774 406 609
×
5
/16 15.7 11.8 432 650 342 513
HSS16×8×
5
/8 25.7 19.3 708 1060 560 840
×
1
/2 20.9 15.7 576 865 455 683
×
3
/8 16.0 12.0 441 662 348 522
×
1
/4 10.8 8.10 297 447 235 352
HSS16×4×
5
/8 21.0 15.8 578 869 458 687
×
1
/2 17.2 12.9 474 712 374 561
×
3
/8 13.2 9.90 364 546 287 431
×
5
/16 11.1 8.32 306 460 241 362
×
1
/4 8.96 6.72 247 371 195 292
×
3
/16 6.76 5.07 186 280 147 221
STEEL TENSION MEMBER SELECTION TABLES 5–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 27

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS14-HSS12
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS14×10×
5
/8 25.7 19.3 708 1060 560 840
×
1
/2 20.9 15.7 576 865 455 683
×
3
/8 16.0 12.0 441 662 348 522
×
5
/16 13.4 10.1 369 555 293 439
×
1
/4 10.8 8.10 297 447 235 352
HSS14×6×
5
/8 21.0 15.8 578 869 458 687
×
1
/2 17.2 12.9 474 712 374 561
×
3
/8 13.2 9.90 364 546 287 431
×
5
/16 11.1 8.32 306 460 241 362
×
1
/4 8.96 6.72 247 371 195 292
×
3
/16 6.76 5.07 186 280 147 221
HSS14×4×
5
/8 18.7 14.0 515 774 406 609
×
1
/2 15.3 11.5 421 633 334 500
×
3
/8 11.8 8.85 325 489 257 385
×
5
/16 9.92 7.44 273 411 216 324
×
1
/4 8.03 6.02 221 332 175 262
×
3
/16 6.06 4.55 167 251 132 198
HSS12×10×
1
/2 19.0 14.3 523 787 415 622
×
3
/8 14.6 10.9 402 604 316 474
×
5
/16 12.2 9.15 336 505 265 398
×
1
/4 9.90 7.43 273 410 215 323
HSS12×8×
5
/8 21.0 15.8 578 869 458 687
×
1
/2 17.2 12.9 474 712 374 561
×
3
/8 13.2 9.90 364 546 287 431
×
5
/16 11.1 8.32 306 460 241 362
×
1
/4 8.96 6.72 247 371 195 292
×
3
/16 6.76 5.07 186 280 147 221
HSS12×6×
5
/8 18.7 14.0 515 774 406 609
×
1
/2 15.3 11.5 421 633 334 500
×
3
/8 11.8 8.85 325 489 257 385
×
5
/16 9.92 7.44 273 411 216 324
×
1
/4 8.03 6.02 221 332 175 262
×
3
/16 6.06 4.55 167 251 132 198
5–28 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 28

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS12-HSS10
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS12×4×
5
/8 16.4 12.3 452 679 357 535
×
1
/2 13.5 10.1 372 559 293 439
×
3
/8 10.4 7.80 286 431 226 339
×
5
/16 8.76 6.57 241 363 191 286
×
1
/4 7.10 5.33 196 294 155 232
×
3
/16 5.37 4.03 148 222 117 175
HSS12×3
1
/2×
3
/8 10.0 7.50 275 414 218 326
×
5
/16 8.46 6.34 233 350 184 276
HSS12×3×
5
/16 8.17 6.13 225 338 178 267
×
1
/4 6.63 4.97 183 274 144 216
×
3
/16 5.02 3.76 138 208 109 164
HSS12×2×
5
/16 7.59 5.69 209 314 165 248
×
1
/4 6.17 4.63 170 255 134 201
×
3
/16 4.67 3.50 129 193 102 152
HSS10×8×
5
/8 18.7 14.0 515 774 406 609
×
1
/2 15.3 11.5 421 633 334 500
×
3
/8 11.8 8.85 325 489 257 385
×
5
/16 9.92 7.44 273 411 216 324
×
1
/4 8.03 6.02 221 332 175 262
×
3
/16 6.06 4.55 167 251 132 198
HSS10×6×
5
/8 16.4 12.3 452 679 357 535
×
1
/2 13.5 10.1 372 559 293 439
×
3
/8 10.4 7.80 286 431 226 339
×
5
/16 8.76 6.57 241 363 191 286
×
1
/4 7.10 5.33 196 294 155 232
×
3
/16 5.37 4.03 148 222 117 175
HSS10×5×
3
/8 9.67 7.25 266 400 210 315
×
5
/16 8.17 6.13 225 338 178 267
×
1
/4 6.63 4.97 183 274 144 216
×
3
/16 5.02 3.76 138 208 109 164
STEEL TENSION MEMBER SELECTION TABLES 5–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION, INC.
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 29

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS10-HSS9
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS10×4×
5
/8 14.0 10.5 386 580 305 457
×
1
/2 11.6 8.70 320 480 252 378
×
3
/8 8.97 6.73 247 371 195 293
×
5
/16 7.59 5.69 209 314 165 248
×
1
/4 6.17 4.63 170 255 134 201
×
3
/16 4.67 3.50 129 193 102 152
×
1
/8 3.16 2.37 87.0 131 68.7 103
HSS10×3
1
/2×
1
/2 11.1 8.32 306 460 241 362
×
3
/8 8.62 6.47 237 357 188 281
×
5
/16 7.30 5.48 201 302 159 238
×
1
/4 5.93 4.45 163 246 129 194
×
3
/16 4.50 3.38 124 186 98.0 147
×
1
/8 3.04 2.28 83.7 126 66.1 99.2
HSS10×3×
3
/8 8.27 6.20 228 342 180 270
×
5
/16 7.01 5.26 193 290 153 229
×
1
/4 5.70 4.27 157 236 124 186
×
3
/16 4.32 3.24 119 179 94.0 141
×
1
/8 2.93 2.20 80.7 121 63.8 95.7
HSS10×2×
3
/8 7.58 5.69 209 314 165 248
×
5
/16 6.43 4.82 177 266 140 210
×
1
/4 5.24 3.93 144 217 114 171
×
3
/16 3.98 2.99 110 165 86.7 130
×
1
/8 2.70 2.03 74.4 112 58.9 88.3
HSS9×7×
5
/8 16.4 12.3 452 679 357 535
×
1
/2 13.5 10.1 372 559 293 439
×
3
/8 10.4 7.80 286 431 226 339
×
5
/16 8.76 6.57 241 363 191 286
×
1
/4 7.10 5.33 196 294 155 232
×
3
/16 5.37 4.03 148 222 117 175
5–30 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 30

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS9-HSS8
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
STEEL TENSION MEMBER SELECTION TABLES 5–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS9×5×
5
/8 14.0 10.5 386 580 305 457
×
1
/2 11.6 8.70 320 480 252 378
×
3
/8 8.97 6.73 247 371 195 293
×
5
/16 7.59 5.69 209 314 165 248
×
1
/4 6.17 4.63 170 255 134 201
×
3
/16 4.67 3.50 129 193 102 152
HSS9×3×
1
/2 9.74 7.30 268 403 212 318
×
3
/8 7.58 5.69 209 314 165 248
×
5
/16 6.43 4.82 177 266 140 210
×
1
/4 5.24 3.93 144 217 114 171
×
3
/16 3.98 2.99 110 165 86.7 130
HSS8×6×
5
/8 14.0 10.5 386 580 305 457
×
1
/2 11.6 8.70 320 480 252 378
×
3
/8 8.97 6.73 247 371 195 293
×
5
/16 7.59 5.69 209 314 165 248
×
1
/4 6.17 4.63 170 255 134 201
×
3
/16 4.67 3.50 129 193 102 152
HSS8×4×
5
/8 11.7 8.78 322 484 255 382
×
1
/2 9.74 7.30 268 403 212 318
×
3
/8 7.58 5.69 209 314 165 248
×
5
/16 6.43 4.82 177 266 140 210
×
1
/4 5.24 3.93 144 217 114 171
×
3
/16 3.98 2.99 110 165 86.7 130
×
1
/8 2.70 2.03 74.4 112 58.9 88.3
HSS8×3×
1
/2 8.81 6.61 243 365 192 288
×
3
/8 6.88 5.16 190 285 150 224
×
5
/16 5.85 4.39 161 242 127 191
×
1
/4 4.77 3.58 131 197 104 156
×
3
/16 3.63 2.72 100 150 78.9 118
×
1
/8 2.46 1.85 67.8 102 53.7 80.5
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 31

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Shape
Fy= 46 ksi
F
u= 58 ksi
kips
Rupture
HSS8×2×
3
/8 6.18 4.63 170
256 134 201
×
5
/16 5.26 3.94 145 218 114 171
×
1
/4 4.30 3.22 118 178 93.4 140
×
3
/16 3.28 2.46 90.3 136 71.3 107
×
1
/8 2.23 1.67 61.4 92.3 48.4 72.6
HSS7×5×
1
/2 9.74 7.30 268 403 212 318
×
3
/8 7.58 5.69 209 314 165 248
×
5
/16 6.43 4.82 177 266 140 210
×
1
/4 5.24 3.93 144 217 114 171
×
3
/16 3.98 2.99 110 165 86.7 130
×
1
/8 2.70 2.03 74.4 112 58.9 88.3
HSS7×4×
1
/2 8.81 6.61 243 365 192 288
×
3
/8 6.88 5.16 190 285 150 224
×
5
/16 5.85 4.39 161 242 127 191
×
1
/4 4.77 3.58 131 197 104 156
×
3
/16 3.63 2.72 100 150 78.9 118
×
1
/8 2.46 1.85 67.8 102 53.7 80.5
HSS7×3×
1
/2 7.88 5.91 217 326 171 257
×
3
/8 6.18 4.63 170 256 134 201
×
5
/16 5.26 3.94 145 218 114 171
×
1
/4 4.30 3.22 118 178 93.4 140
×
3
/16 3.28 2.46 90.3 136 71.3 107
×
1
/8 2.23 1.67 61.4 92.3 48.4 72.6
HSS7×2×
1
/4 3.84 2.88 106 159 83.5 125
×
3
/16 2.93 2.20 80.7 121 63.8 95.7
×
1
/8 2.00 1.50 55.1 82.8 43.5 65.3
HSS6×5×
1
/2 8.81 6.61 243 365 192 288
×
3
/8 6.88 5.16 190 285 150 224
×
5
/16 5.85 4.39 161 242 127 191
×
1
/4 4.77 3.58 131 197 104 156
×
3
/16 3.63 2.72 100 150 78.9 118
×
1
/8 2.46 1.85 67.8 102 53.7 80.5
Gross Area,
Ag
Ae=
0.75
Ag
kips
Yielding
in.
2
in.
2
HSS8-HSS6
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
5–32 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 32

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips
kipsYielding
Rupture
in.
2
in.
2
HSS6-HSS5
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS6×4×
1
/2 7.88 5.91 217 326 171 257
×
3
/8 6.18 4.63 170 256 134 201
×
5
/16 5.26 3.94 145 218 114 171
×
1
/4 4.30 3.22 118 178 93.4 140
×
3
/16 3.28 2.46 90.3 136 71.3 107
×
1
/8 2.23 1.67 61.4 92.3 48.4 72.6
HSS6×3×
1
/2 6.95 5.21 191 288 151 227
×
3
/8 5.48 4.11 151 227 119 179
×
5
/16 4.68 3.51 129 194 102 153
×
1
/4 3.84 2.88 106 159 83.5 125
×
3
/16 2.93 2.20 80.7 121 63.8 95.7
×
1
/8 2.00 1.50 55.1 82.8 43.5 65.3
HSS6×2×
3
/8 4.78 3.58 132 198 104 156
×
5
/16 4.10 3.08 113 170 89.3 134
×
1
/4 3.37 2.53 92.8 140 73.4 110
×
3
/16 2.58 1.94 71.1 107 56.3 84.4
×
1
/8 1.77 1.33 48.8 73.3 38.6 57.9
HSS5×4×
1
/2 6.95 5.21 191 288 151 227
×
3
/8 5.48 4.11 151 227 119 179
×
5
/16 4.68 3.51 129 194 102 153
×
1
/4 3.84 2.88 106 159 83.5 125
×
3
/16 2.93 2.20 80.7 121 63.8 95.7
×
1
/8 2.00 1.50 55.1 82.8 43.5 65.3
HSS5×3×
1
/2 6.02 4.51 166 249 131 196
×
3
/8 4.78 3.58 132 198 104 156
×
5
/16 4.10 3.08 113 170 89.3 134
×
1
/4 3.37 2.53 92.8 140 73.4 110
×
3
/16 2.58 1.94 71.1 107 56.3 84.4
×
1
/8 1.77 1.33 48.8 73.3 38.6 57.9
HSS5×2
1
/2×
1
/4 3.14 2.36 86.5 130 68.4 103
×
3
/16 2.41 1.81 66.4 99.8 52.5 78.7
×
1
/8 1.65 1.24 45.4 68.3 36.0 53.9
STEEL TENSION MEMBER SELECTION TABLES 5–33
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
AMERICANINSTITUTE OFSTEELCONSTRUCTION, INC.
φ
tPnPn/Ωt Pn/Ωt φtPn
ASD
LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 33

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
5–34 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION, INC.
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
HSS5×2×
3
/8 4.09 3.07 113 169 89.0 134
×
5
/16 3.52 2.64 97.0 146 76.6 115
×
1
/4 2.91 2.18 80.2 120 63.2 94.8
×
3
/16 2.24 1.68 61.7 92.7 48.7 73.1
×
1
/8 1.54 1.16 42.4 63.8 33.6 50.5
HSS4×3×
3
/8 4.09 3.07 113 169 89.0 134
×
5
/16 3.52 2.64 97.0 146 76.6 115
×
1
/4 2.91 2.18 80.2 120 63.2 94.8
×
3
/16 2.24 1.68 61.7 92.7 48.7 73.1
×
1
/8 1.54 1.16 42.4 63.8 33.6 50.5
HSS4×2
1
/2×
3
/8 3.74 2.81 103 155 81.5 122
×
5
/16 3.23 2.42 89.0 134 70.2 105
×
1
/4 2.67 2.00 73.5 111 58.0 87.0
×
3
/16 2.06 1.55 56.7 85.3 45.0 67.4
×
1
/8 1.42 1.07 39.1 58.8 31.0 46.5
HSS4×2×
3
/8 3.39 2.54 93.4 140 73.7 110
×
5
/16 2.94 2.21 81.0 122 64.1 96.1
×
1
/4 2.44 1.83 67.2 101 53.1 79.6
×
3
/16 1.89 1.42 52.1 78.2 41.2 61.8
×
1
/8 1.30 0.975 35.8 53.8 28.3 42.4
HSS3
1
/2×2
1
/2×
3
/8 3.39 2.54 93.4 140 73.7 110
×
5
/16 2.94 2.21 81.0 122 64.1 96.1
×
1
/4 2.44 1.83 67.2 101 53.1 79.6
×
3
/16 1.89 1.42 52.1 78.2 41.2 61.8
×
1
/8 1.30 0.975 35.8 53.8 28.3 42.4
HSS3
1
/2×2×
1
/4 2.21 1.66 60.9 91.5 48.1 72.2
×
3
/16 1.71 1.28 47.1 70.8 37.1 55.7
×
1
/8 1.19 0.892 32.8 49.3 25.9 38.8
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
HSS5-HSS3
1
/2
AISC_PART 5:14th Ed. 1/20/11 7:41 AM Page 34

Table 5-4 (continued)
Available Strength in
Axial Tension
Rectangular HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS3-HSS2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS3×2
1
/2×
5
/16 2.64 1.98 72.7 109 57.4 86.1
×
1
/4 2.21 1.66 60.9 91.5 48.1 72.2
×
3
/16 1.71 1.28 47.1 70.8 37.1 55.7
×
1
/8 1.19 0.892 32.8 49.3 25.9 38.8
HSS3×2×
5
/16 2.35 1.76 64.7 97.3 51.0 76.6
×
1
/4 1.97 1.48 54.3 81.6 42.9 64.4
×
3
/16 1.54 1.16 42.4 63.8 33.6 50.5
×
1
/8 1.07 0.803 29.5 44.3 23.3 34.9
HSS3×1
1
/2×
1
/4 1.74 1.30 47.9 72.0 37.7 56.6
×
3
/16 1.37 1.03 37.7 56.7 29.9 44.8
×
1
/8 0.956 0.717 26.3 39.6 20.8 31.2
HSS3×1×
3
/16 1.19 0.892 32.8 49.3 25.9 38.8
×
1
/8 0.840 0.630 23.1 34.8 18.3 27.4
HSS2
1
/2×2×
1
/4 1.74 1.30 47.9 72.0 37.7 56.6
×
3
/16 1.37 1.03 37.7 56.7 29.9 44.8
×
1
/8 0.956 0.717 26.3 39.6 20.8 31.2
HSS2
1
/2×1
1
/2×
1
/4 1.51 1.13 41.6 62.5 32.8 49.2
×
3
/16 1.19 0.892 32.8 49.3 25.9 38.8
×
1
/8 0.840 0.630 23.1 34.8 18.3 27.4
HSS2
1
/2×1×
3
/16 1.02 0.765 28.1 42.2 22.2 33.3
×
1
/8 0.724 0.543 19.9 30.0 15.7 23.6
HSS2
1
/4×2×
3
/16 1.28 0.960 35.3 53.0 27.8 41.8
×
1
/8 0.898 0.674 24.7 37.2 19.5 29.3
HSS2×1
1
/2×
3
/16 1.02 0.765 28.1 42.2 22.2 33.3
×
1
/8 0.724 0.543 19.9 30.0 15.7 23.6
HSS2×1×
3
/16 0.845 0.634 23.3 35.0 18.4 27.6
×
1
/8 0.608 0.456 16.7 25.2 13.2 19.8
STEEL TENSION MEMBER SELECTION TABLES 5–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 35

Table 5-5
Available Strength in
Axial Tension
Square HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS16-HSS8
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS16×16×
5
/8 35.0 26.3 964 1450 763 1140
×
1
/2 28.3 21.2 780 1170 615 922
×
3
/8 21.5 16.1 592 890 467 700
×
5
/16 18.1 13.6 499 749 394 592
HSS14×14×
5
/8 30.3 22.7 835 1250 658 987
×
1
/2 24.6 18.5 678 1020 537 805
×
3
/8 18.7 14.0 515 774 406 609
×
5
/16 15.7 11.8 432 650 342 513
HSS12×12×
5
/8 25.7 19.3 708 1060 560 840
×
1
/2 20.9 15.7 576 865 455 683
×
3
/8 16.0 12.0 441 662 348 522
×
5
/16 13.4 10.1 369 555 293 439
×
1
/4 10.8 8.10 297 447 235 352
×
3
/16 8.15 6.11 224 337 177 266
HSS10×10×
5
/8 21.0 15.8 578 869 458 687
×
1
/2 17.2 12.9 474 712 374 561
×
3
/8 13.2 9.90 364 546 287 431
×
5
/16 11.1 8.32 306 460 241 362
×
1
/4 8.96 6.72 247 371 195 292
×
3
/16 6.76 5.07 186 280 147 221
HSS9×9×
5
/8 18.7 14.0 515 774 406 609
×
1
/2 15.3 11.5 421 633 334 500
×
3
/8 11.8 8.85 325 489 257 385
×
5
/16 9.92 7.44 273 411 216 324
×
1
/4 8.03 6.02 221 332 175 262
×
3
/16 6.06 4.55 167 251 132 198
×
1
/8 4.09 3.07 113 169 89.0 134
HSS8×8×
5
/8 16.4 12.3 452 679 357 535
×
1
/2 13.5 10.1 372 559 293 439
×
3
/8 10.4 7.80 286 431 226 339
×
5
/16 8.76 6.57 241 363 191 286
×
1
/4 7.10 5.33 196 294 155 232
×
3
/16 5.37 4.03 148 222 117 175
×
1
/8 3.62 2.71 99.7 150 78.6 118
5–36 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 36

Table 5-5 (continued)
Available Strength in
Axial Tension
Square HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS7-HSS4
1
/2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
HSS7×7×
5
/8 14.0 10.5 386 580 305 457
×
1
/2 11.6 8.70 320 480 252 378
×
3
/8 8.97 6.73 247 371 195 293
×
5
/16 7.59 5.69 209 314 165 248
×
1
/4 6.17 4.63 170 255 134 201
×
3
/16 4.67 3.50 129 193 102 152
×
1
/8 3.16 2.37 87.0 131 68.7 103
HSS6×6×
5
/8 11.7 8.78 322 484 255 382
×
1
/2 9.74 7.30 268 403 212 318
×
3
/8 7.58 5.69 209 314 165 248
×
5
/16 6.43 4.82 177 266 140 210
×
1
/4 5.24 3.93 144 217 114 171
×
3
/16 3.98 2.99 110 165 86.7 130
×
1
/8 2.70 2.03 74.4 112 58.9 88.3
HSS5
1
/2×5
1
/2×
3
/8 6.88 5.16 190 285 150 224
×
5
/16 5.85 4.39 161 242 127 191
×
1
/4 4.77 3.58 131 197 104 156
×
3
/16 3.63 2.72 100 150 78.9 118
×
1
/8 2.46 1.85 67.8 102 53.7 80.5
HSS5×5×
1
/2 7.88 5.91 217 326 171 257
×
3
/8 6.18 4.63 170 256 134 201
×
5
/16 5.26 3.94 145 218 114 171
×
1
/4 4.30 3.22 118 178 93.4 140
×
3
/16 3.28 2.46 90.3 136 71.3 107
×
1
/8 2.23 1.67 61.4 92.3 48.4 72.6
HSS4
1
/2×4
1
/2×
1
/2 6.95 5.21 191 288 151 227
×
3
/8 5.48 4.11 151 227 119 179
×
5
/16 4.68 3.51 129 194 102 153
×
1
/4 3.84 2.88 106 159 83.5 125
×
3
/16 2.93 2.20 80.7 121 63.8 95.7
×
1
/8 2.00 1.50 55.1 82.8 43.5 65.3
STEEL TENSION MEMBER SELECTION TABLES 5–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 37

Table 5-5 (continued)
Available Strength in
Axial Tension
Square HSS
Fy= 46 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS4-HSS2
HSS4×4×
1
/2 6.02 4.51 166 249 131 196
×
3
/8 4.78 3.58 132 198 104 156
×
5
/16 4.10 3.08 113 170 89.3 134
×
1
/4 3.37 2.53 92.8 140 73.4 110
×
3
/16 2.58 1.94 71.1 107 56.3 84.4
×
1
/8 1.77 1.33 48.8 73.3 38.6 57.9
HSS3
1
/2×3
1
/2×
3
/8 4.09 3.07 113 169 89.0 134
×
5
/16 3.52 2.64 97.0 146 76.6 115
×
1
/4 2.91 2.18 80.2 120 63.2 94.8
×
3
/16 2.24 1.68 61.7 92.7 48.7 73.1
×
1
/8 1.54 1.16 42.4 63.8 33.6 50.5
HSS3×3×
3
/8 3.39 2.54 93.4 140 73.7 110
×
5
/16 2.94 2.21 81.0 122 64.1 96.1
×
1
/4 2.44 1.83 67.2 101 53.1 79.6
×
3
/16 1.89 1.42 52.1 78.2 41.2 61.8
×
1
/8 1.30 0.975 35.8 53.8 28.3 42.4
HSS2
1
/2×2
1
/2×
5
/16 2.35 1.76 64.7 97.3 51.0 76.6
×
1
/4 1.97 1.48 54.3 81.6 42.9 64.4
×
3
/16 1.54 1.16 42.4 63.8 33.6 50.5
×
1
/8 1.07 0.803 29.5 44.3 23.3 34.9
HSS2
1
/4×2
1
/4×
1
/4 1.74 1.30 47.9 72.0 37.7 56.6
×
3
/16 1.37 1.03 37.7 56.7 29.9 44.8
×
1
/8 0.956 0.717 26.3 39.6 20.8 31.2
HSS2×2×
1
/4 1.51 1.13 41.6 62.5 32.8 49.2
×
3
/16 1.19 0.892 32.8 49.3 25.9 38.8
×
1
/8 0.840 0.630 23.1 34.8 18.3 27.4
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.952Ag.
ASDLRFDLimit State
5–38 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 38

STEEL TENSION MEMBER SELECTION TABLES 5–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-6
Available Strength in
Axial Tension
Round HSS
Fy= 42 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS20-HSS10
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.869Ag.
ASDLRFDLimit State
HSS20×0.375 21.5 16.1 541 813 467 700
HSS18×0.500 25.6 19.2 644 968 557 835
×0.375 19.4 14.6 488 733 423 635
HSS16×0.625 28.1 21.1 707 1060 612 918
×0.500 22.7 17.0 571 858 493 740
×0.438 19.9 14.9 500 752 432 648
×0.375 17.2 12.9 433 650 374 561
×0.312 14.4 10.8 362 544 313 470
×0.250 11.5 8.63 289 435 250 375
HSS14×0.625 24.5 18.4 616 926 534 800
×0.500 19.8 14.9 498 748 432 648
×0.375 15.0 11.3 377 567 328 492
×0.312 12.5 9.38 314 473 272 408
×0.250 10.1 7.58 254 382 220 330
HSS12.750×0.500 17.9 13.4 450 677 389 583
×0.375 13.6 10.2 342 514 296 444
×0.250 9.16 6.87 230 346 199 299
HSS10.750×0.500 15.0 11.3 377 567 328 492
×0.375 11.4 8.55 287 431 248 372
×0.250 7.70 5.78 194 291 168 251
HSS10×0.625 17.2 12.9 433 650 374 561
×0.500 13.9 10.4 350 525 302 452
×0.375 10.6 7.95 267 401 231 346
×0.312 8.88 6.66 223 336 193 290
×0.250 7.15 5.36 180 270 155 233
×0.188 5.37 4.03 135 203 117 175
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 39

5–40 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-6 (continued)
Available Strength in
Axial Tension
Round HSS
Fy= 42 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS9.625-
HSS6.875
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.869Ag.
ASDLRFDLimit State
HSS9.625×0.500 13.4 10.1 337 507 293 439
×0.375 10.2 7.65 257 386 222 333
×0.312 8.53 6.40 215 322 186 278
×0.250 6.87 5.15 173 260 149 224
×0.188 5.17 3.88 130 195 113 169
HSS8.625×0.625 14.7 11.0 370 556 319 479
×0.500 11.9 8.92 299 450 259 388
×0.375 9.07 6.80 228 343 197 296
×0.322 7.85 5.89 197 297 171 256
×0.250 6.14 4.60 154 232 133 200
×0.188 4.62 3.47 116 175 101 151
HSS7.625×0.375 7.98 5.99 201 302 174 261
×0.328 7.01 5.26 176 265 153 229
HSS7.500×0.500 10.3 7.73 259 389 224 336
×0.375 7.84 5.88 197 296 171 256
×0.312 6.59 4.94 166 249 143 215
×0.250 5.32 3.99 134 201 116 174
×0.188 4.00 3.00 101 151 87.0 131
HSS7×0.500 9.55 7.16 240 361 208 311
×0.375 7.29 5.47 183 276 159 238
×0.312 6.13 4.60 154 232 133 200
×0.250 4.95 3.71 124 187 108 161
×0.188 3.73 2.80 93.8 141 81.2 122
×0.125 2.51 1.88 63.1 94.9 54.5 81.8
HSS6.875×0.500 9.36 7.02 235 354 204 305
×0.375 7.16 5.37 180 271 156 234
×0.312 6.02 4.51 151 228 131 196
×0.250 4.86 3.64 122 184 106 158
×0.188 3.66 2.75 92.0 138 79.8 120
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 40

STEEL TENSION MEMBER SELECTION TABLES 5–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-6 (continued)
Available Strength in
Axial Tension
Round HSS
Fy= 42 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS6.625-
HSS5
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.869Ag.
ASDLRFDLimit State
HSS6.625×0.500 9.00 6.75 226 340 196 294
×0.432 7.86 5.90 198 297 171 257
×0.375 6.88 5.16 173 260 150 224
×0.312 5.79 4.34 146 219 126 189
×0.280 5.20 3.90 131 197 113 170
×0.250 4.68 3.51 118 177 102 153
×0.188 3.53 2.65 88.8 133 76.9 115
×0.125 2.37 1.78 59.6 89.6 51.6 77.4
HSS6.000×0.500 8.09 6.07 203 306 176 264
×0.375 6.20 4.65 156 234 135 202
×0.312 5.22 3.92 131 197 114 171
×0.280 4.69 3.52 118 177 102 153
×0.250 4.22 3.17 106 160 91.9 138
×0.188 3.18 2.39 80.0 120 69.3 104
×0.125 2.14 1.61 53.8 80.9 46.7 70.0
HSS5.563×0.500 7.45 5.59 187 282 162 243
×0.375 5.72 4.29 144 216 124 187
×0.258 4.01 3.01 101 152 87.3 131
×0.188 2.95 2.21 74.2 112 64.1 96.1
×0.134 2.12 1.59 53.3 80.1 46.1 69.2
HSS5.500×0.500 7.36 5.52 185 278 160 240
×0.375 5.65 4.24 142 214 123 184
×0.258 3.97 2.98 99.8 150 86.4 130
HSS5×0.500 6.62 4.97 166 250 144 216
×0.375 5.10 3.82 128 193 111 166
×0.312 4.30 3.22 108 163 93.4 140
×0.258 3.59 2.69 90.3 136 78.0 117
×0.250 3.49 2.62 87.8 132 76.0 114
×0.188 2.64 1.98 66.4 99.8 57.4 86.1
×0.125 1.78 1.34 44.8 67.3 38.9 58.3
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 41

5–42 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-6 (continued)
Available Strength in
Axial Tension
Round HSS
Fy= 42 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS4.500-
HSS2.500
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥ 0.869Ag.
ASD LRFDLimit State
HSS4.500×0.375 4.55 3.41 114 172 98.9 148
×0.337 4.12 3.09 104 156 89.6 134
×0.237 2.96 2.22 74.4 112 64.4 96.6
×0.188 2.36 1.77 59.4 89.2 51.3 77.0
×0.125 1.60 1.20 40.2 60.5 34.8 52.2
HSS4×0.313 3.39 2.54 85.3 128 73.7 110
×0.250 2.76 2.07 69.4 104 60.0 90.0
×0.237 2.61 1.96 65.6 98.7 56.8 85.3
×0.226 2.50 1.88 62.9 94.5 54.5 81.8
×0.220 2.44 1.83 61.4 92.2 53.1 79.6
×0.188 2.09 1.57 52.6 79.0 45.5 68.3
×0.125 1.42 1.07 35.7 53.7 31.0 46.5
HSS3.500×0.313 2.93 2.20 73.7 111 63.8 95.7
×0.300 2.82 2.11 70.9 107 61.2 91.8
×0.250 2.39 1.79 60.1 90.3 51.9 77.9
×0.216 2.08 1.56 52.3 78.6 45.2 67.9
×0.203 1.97 1.48 49.5 74.5 42.9 64.4
×0.188 1.82 1.36 45.8 68.8 39.4 59.2
×0.125 1.23 0.923 30.9 46.5 26.8 40.2
HSS3×0.250 2.03 1.52 51.1 76.7 44.1 66.1
×0.216 1.77 1.33 44.5 66.9 38.6 57.9
×0.203 1.67 1.25 42.0 63.1 36.3 54.4
×0.188 1.54 1.16 38.7 58.2 33.6 50.5
×0.152 1.27 0.953 31.9 48.0 27.6 41.5
×0.134 1.12 0.840 28.2 42.3 24.4 36.5
×0.125 1.05 0.788 26.4 39.7 22.9 34.3
HSS2.875×0.250 1.93 1.45 48.5 73.0 42.1 63.1
×0.203 1.59 1.19 40.0 60.1 34.5 51.8
×0.188 1.48 1.11 37.2 55.9 32.2 48.3
×0.125 1.01 0.758 25.4 38.2 22.0 33.0
HSS2.500×0.250 1.66 1.25 41.7 62.7 36.3 54.4
×0.188 1.27 0.953 31.9 48.0 27.6 41.5
×0.125 0.869 0.652 21.9 32.8 18.9 28.4
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 42

STEEL TENSION MEMBER SELECTION TABLES 5–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-6 (continued)
Available Strength in
Axial Tension
Round HSS
Fy= 42 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
HSS2.375-
HSS1.660
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.869Ag.
ASDLRFDLimit State
HSS2.375×0.250 1.57 1.18 39.5 59.3 34.2 51.3
×0.218 1.39 1.04 35.0 52.5 30.2 45.2
×0.188 1.20 0.900 30.2 45.4 26.1 39.1
×0.154 1.00 0.750 25.1 37.8 21.8 32.6
×0.125 0.823 0.617 20.7 31.1 17.9 26.8
HSS1.900×0.188 0.943 0.707 23.7 35.6 20.5 30.8
×0.145 0.749 0.562 18.8 28.3 16.3 24.4
×0.120 0.624 0.468 15.7 23.6 13.6 20.4
HSS1.660×0.140 0.625 0.469 15.7 23.6 13.6 20.4
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 43

5–44 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-7
Available Strength in
Axial Tension
Pipe
Fy= 35 ksi
F
u= 60 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
PIPE12-
PIPE1
1
/2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.700Ag.
ASDLRFDLimit State
Pipe 12 X-Strong 17.5 13.1 367 551 393 590
Std 13.7 10.3 287 432 309 464
Pipe 10 X-Strong 15.1 11.3 316 476 339 509
Std 11.5 8.63 241 362 259 388
Pipe 8 XX-Strong 20.0 15.0 419 630 450 675
X-Strong 11.9 8.93 249 375 268 402
Std 7.85 5.89 165 247 177 265
Pipe 6 XX-Strong 14.7 11.0 308 463 330 495
X-Strong 7.83 5.87 164 247 176 264
Std 5.20 3.90 109 164 117 176
Pipe 5 XX-Strong 10.7 8.03 224 337 241 361
X-Strong 5.73 4.30 120 180 129 194
Std 4.01 3.01 84.0 126 90.3 135
Pipe 4 XX-Strong 7.66 5.75 161 241 173 259
X-Strong 4.14 3.11 86.8 130 93.3 140
Std 2.96 2.22 62.0 93.2 66.6 99.9
Pipe 3
1
/2X-Strong 3.43 2.57 71.9 108 77.1 116
Std 2.50 1.88 52.4 78.8 56.4 84.6
Pipe 3 XX-Strong 5.17 3.88 108 163 116 175
X-Strong 2.83 2.12 59.3 89.1 63.6 95.4
Std 2.07 1.55 43.4 65.2 46.5 69.8
Pipe 2
1
/2XX-Strong 3.83 2.87 80.3 121 86.1 129
X-Strong 2.10 1.58 44.0 66.2 47.4 71.1
Std 1.61 1.21 33.7 50.7 36.3 54.5
Pipe 2 XX-Strong 2.51 1.88 52.6 79.1 56.4 84.6
X-Strong 1.40 1.05 29.3 44.1 31.5 47.3
Std 1.02 0.765 21.4 32.1 23.0 34.4
Pipe 1
1
/2X-Strong 1.00 0.750 21.0 31.5 22.5 33.8
Std 0.749 0.562 15.7 23.6 16.9 25.3
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 44

STEEL TENSION MEMBER SELECTION TABLES 5–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 5-7 (continued)
Available Strength in
Axial Tension
Pipe
Fy= 35 ksi
F
u= 60 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
PIPE1
1
/4-
PIPE
1
/2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.700Ag.
ASDLRFDLimit State
Pipe 1
1
/4X-Strong 0.837 0.628 17.5 26.4 18.8 28.3
Std 0.625 0.469 13.1 19.7 14.1 21.1
Pipe 1 X-Strong 0.602 0.452 12.6 19.0 13.6 20.3
Std 0.469 0.352 9.83 14.8 10.6 15.8
Pipe
3
/4X-Strong 0.407 0.305 8.53 12.8 9.15 13.7
Std 0.312 0.234 6.54 9.83 7.02 10.5
Pipe
1
/2X-Strong 0.303 0.227 6.35 9.54 6.81 10.2
Std 0.234 0.176 4.90 7.37 5.28 7.92
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 45

Table 5-8
Available Strength in
Axial Tension
Double Angles
Shape
Gross Area,Ag
in.
2
2L8-2L6
2L8×8×1
1
/8 33.6 25.2 724 1090 731 1100
×1 30.2 22.7 651 978 658 987
×
7
/8 26.6 20.0 573 862 580 870
×
3
/4 23.0 17.3 496 745 502 753
×
5
/8 19.4 14.6 418 629 423 635
×
9
/16 17.5 13.1 377 567 380 570
×
1
/2 15.7 11.8 338 509 342 513
2L8×6×1 26.2 19.7 565 849 571 857
×
7
/8 23.0 17.3 496 745 502 753
×
3
/4 20.0 15.0 431 648 435 653
×
5
/8 16.8 12.6 362 544 365 548
×
9
/16 15.2 11.4 328 492 331 496
×
1
/2 13.6 10.2 293 441 296 444
×
7
/16 12.0 9.00 259 389 261 392
2L8×4×1 22.2 16.7 479 719 484 726
×
7
/8 19.6 14.7 423 635 426 639
×
3
/4 17.0 12.8 366 551 371 557
×
5
/8 14.3 10.7 308 463 310 465
×
9
/16 13.0 9.75 280 421 283 424
×
1
/2 11.6 8.70 250 376 252 378
×
7
/16 10.2 7.65 220 330 222 333
2L7×4×
3
/4 15.5 11.6 334 502 336 505
×
5
/8 13.0 9.75 280 421 283 424
×
1
/2 10.5 7.88 226 340 229 343
×
7
/16 9.26 6.95 200 300 202 302
×
3
/8 8.00 6.00 172 259 174 261
2L6×6×1 22.0 16.5 474 713 479 718
×
7
/8 19.5 14.6 420 632 423 635
×
3
/4 16.9 12.7 364 548 368 552
×
5
/8 14.3 10.7 308 463 310 465
×
9
/16 12.9 9.68 278 418 281 421
×
1
/2 11.5 8.63 248 373 250 375
×
7
/16 10.2 7.65 220 330 222 333
×
3
/8 8.76 6.57 189 284 191 286
×
5
/16 7.34 5.51 158 238 160 240
Ae=
0.75
Ag
in.
2
Fy= 36 ksi
F
u= 58 ksi
kips kips
Yielding Rupture
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
5–46 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 46

Table 5-8 (continued)
Available Strength in
Axial Tension
Double Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
2L6-2L5
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
2L6×4×
7
/8 16.0 12.0 345 518 348 522
×
3
/4 13.9 10.4 300 450 302 452
×
5
/8 11.7 8.78 252 379 255 382
×
9
/16 10.6 7.95 229 343 231 346
×
1
/2 9.50 7.13 205 308 207 310
×
7
/16 8.36 6.27 180 271 182 273
×
3
/8 7.22 5.42 156 234 157 236
×
5
/16 6.06 4.55 131 196 132 198
2L6×3
1
/2×
1
/2 9.00 6.75 194 292 196 294
×
3
/8 6.88 5.16 148 223 150 224
×
5
/16 5.78 4.34 125 187 126 189
2L5×5×
7
/8 16.0 12.0 345 518 348 522
×
3
/4 14.0 10.5 302 454 305 457
×
5
/8 11.8 8.85 254 382 257 385
×
1
/2 9.58 7.19 207 310 209 313
×
7
/16 8.44 6.33 182 273 184 275
×
3
/8 7.30 5.48 157 237 159 238
×
5
/16 6.14 4.61 132 199 134 201
2L5×3
1
/2×
3
/4 11.7 8.78 252 379 255 382
×
5
/8 9.86 7.40 213 319 215 322
×
1
/2 8.00 6.00 172 259 174 261
×
3
/8 6.10 4.58 131 198 133 199
×
5
/16 5.12 3.84 110 166 111 167
×
1
/4 4.14 3.11 89.2 134 90.2 135
2L5×3×
1
/2 7.50 5.63 162 243 163 245
×
7
/16 6.62 4.97 143 214 144 216
×
3
/8 5.72 4.29 123 185 124 187
×
5
/16 4.82 3.62 104 156 105 157
×
1
/4 3.88 2.91 83.6 126 84.4 127
STEEL TENSION MEMBER SELECTION TABLES 5–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 47

Table 5-8 (continued)
Available Strength in
Axial Tension
Double Angles
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
Fy= 36 ksi
F
u= 58 ksi
kips
Rupture
Gross Area,
Ag
Ae=
0.75
Ag
kips
Yielding
2L4-2L3
1
/2
5–48 DESIGN OF TENSION MEMBERS
Shape
in.
2
in.
2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2L4×4×
3
/4 10.9 8.18 235 353 237 356
×
5
/8 9.22 6.92 199 299 201 301
×
1
/2 7.50 5.63 162 243 163 245
×
7
/16 6.60 4.95 142 214 144 215
×
3
/8 5.72 4.29 123 185 124 187
×
5
/16 4.80 3.60 103 156 104 157
×
1
/4 3.86 2.90 83.2 125 84.1 126
2L4×3
1
/2×
1
/2 7.00 5.25 151 227 152 228
×
3
/8 5.36 4.02 116 174 117 175
×
5
/16 4.50 3.38 97.0 146 98.0 147
×
1
/4 3.64 2.73 78.5 118 79.2 119
2L4×3×
5
/8 7.98 5.99 172 259 174 261
×
1
/2 6.50 4.88 140 211 142 212
×
3
/8 4.98 3.74 107 161 108 163
×
5
/16 4.18 3.14 90.1 135 91.1 137
×
1
/4 3.38 2.54 72.9 110 73.7 110
2L3
1
/2×3
1
/2×
1
/2 6.50 4.88 140 211 142 212
×
7
/16 5.78 4.34 125 187 126 189
×
3
/8 5.00 3.75 108 162 109 163
×
5
/16 4.20 3.15 90.5 136 91.4 137
×
1
/4 3.40 2.55 73.3 110 74.0 111
2L3
1
/2×3×
1
/2 6.04 4.53 130 196 131 197
×
7
/16 5.34 4.01 115 173 116 174
×
3
/8 4.64 3.48 100 150 101 151
×
5
/16 3.90 2.93 84.1 126 85.0 127
×
1
/4 3.16 2.37 68.1 102 68.7 103
2L3
1
/2×2
1
/2×
1
/2 5.54 4.16 119 179 121 181
×
3
/8 4.24 3.18 91.4 137 92.2 138
×
5
/16 3.58 2.69 77.2 116 78.0 117
×
1
/4 2.90 2.18 62.5 94.0 63.2 94.8
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 48

Table 5-8 (continued)
Available Strength in
Axial Tension
Double Angles
Fy= 36 ksi
F
u= 58 ksi
Shape
Gross Area,Ag
Ae=
0.75
Ag
kips kips
Yielding Rupture
in.
2
in.
2
2L3-2L2
Note: Tensile rupture on the effective net area will control over tensile yielding on the
gross area unless the tension member is selected so that an end connection can be
configured with
Ae≥0.745Ag.
ASDLRFDLimit State
2L3×3×
1
/2 5.52 4.14 119 179 120 180
×
7
/16 4.86 3.65 105 157 106 159
×
3
/8 4.22 3.17 91.0 137 91.9 138
×
5
/16 3.56 2.67 76.7 115 77.4 116
×
1
/4 2.88 2.16 62.1 93.3 62.6 94.0
×
3
/16 2.18 1.64 47.0 70.6 47.6 71.3
2L3×2
1
/2×
1
/2 5.00 3.75 108 162 109 163
×
7
/16 4.44 3.33 95.7 144 96.6 145
×
3
/8 3.86 2.90 83.2 125 84.1 126
×
5
/16 3.26 2.45 70.3 106 71.1 107
×
1
/4 2.64 1.98 56.9 85.5 57.4 86.1
×
3
/16 2.00 1.50 43.1 64.8 43.5 65.3
2L3×2×
1
/2 4.52 3.39 97.4 146 98.3 147
×
3
/8 3.50 2.63 75.4 113 76.3 114
×
5
/16 2.96 2.22 63.8 95.9 64.4 96.6
×
1
/4 2.40 1.80 51.7 77.8 52.2 78.3
×
3
/16 1.83 1.37 39.4 59.3 39.7 59.6
2L2
1
/2×2
1
/2×
1
/2 4.52 3.39 97.4 146 98.3 147
×
3
/8 3.46 2.60 74.6 112 75.4 113
×
5
/16 2.92 2.19 62.9 94.6 63.5 95.3
×
1
/4 2.38 1.79 51.3 77.1 51.9 77.9
×
3
/16 1.80 1.35 38.8 58.3 39.2 58.7
2L2
1
/2×2×
3
/8 3.10 2.33 66.8 100 67.6 101
×
5
/16 2.64 1.98 56.9 85.5 57.4 86.1
×
1
/4 2.14 1.61 46.1 69.3 46.7 70.0
×
3
/16 1.64 1.23 35.4 53.1 35.7 53.5
2L2
1
/2×1
1
/2×
1
/4 1.89 1.42 40.7 61.2 41.2 61.8
×
3
/16 1.45 1.09 31.3 47.0 31.6 47.4
2L2×2×
3
/8 2.74 2.06 59.1 88.8 59.7 89.6
×
5
/16 2.32 1.74 50.0 75.2 50.5 75.7
×
1
/4 1.89 1.42 40.7 61.2 41.2 61.8
×
3
/16 1.44 1.08 31.0 46.7 31.3 47.0
×
1
/8 0.982 0.737 21.2 31.8 21.4 32.1
STEEL TENSION MEMBER SELECTION TABLES 5–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt=1.67
Ω
t=2.00
φt=0.90
φ
t=0.75
Yielding
Rupture
φtPnPn/Ωt Pn/Ωt φtPn
ASD LRFD ASD LRFD
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 49

5–50 DESIGN OF TENSION MEMBERS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 5:14th Ed. 1/20/11 7:42 AM Page 50

6–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 6
DESIGN OF MEMBERS SUBJECT
TO COMBINED FORCES
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 –2
COMPACT, NONCOMPACT AND SLENDER-ELEMENT SECTIONS . . . . . . . . . . . 6–2
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXIAL COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
MEMBERS SUBJECT TO COMBINED FLEXURE AND AXIAL TENSION . . . . . . 6–2
MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/OR AXIAL FORCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
MEMBERS WITH HOLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
COMPOSITE MEMBERS SUBJECT TO COMBINED
FLEXURE AND AXIAL COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
PART 6 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–6
STEEL BEAM-COLUMN SELECTION TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–7
Table 6-1. Combined Flexure and Axial Force, W-Shapes . . . . . . . . . . . . . . . . . . . . 6–7
AISC_Part 06A:14th Ed. 4/1/11 8:51 AM Page 1

6–2 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of members subject to combined forces. For the design of members sub-
ject to axial tension only, see Part 5. For the design of members subject to axial compression
only, see Part 4. For the design of members subject to uniaxial flexure only, see Part 3.
COMPACT, NONCOMPACT AND SLENDER-ELEMENT
SECTIONS
Based upon the types of load transmitted by the member, the discussions of width-to-thick-
ness ratios in Part 4 for compression members and Part 3 for flexural members apply to the
design of members subject to combined forces. The values given in this Part already account
for limitations due to width-to-thickness ratios.
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXIAL COMPRESSION
The interaction of the combined effects of the required strengths (axial compression and
bending moment) must satisfy the unity check as follows:
1. For doubly and singly symmetric members, per AISC SpecificationSection H1.1
2 For unsymmetric and other members, per AISC SpecificationSection H2
MEMBERS SUBJECT TO COMBINED FLEXURE AND
AXIAL TENSION
The interaction of the combined effects of the required strengths (axial tension and bending
moment) must satisfy the unity check as follows:
1. For doubly and singly symmetric members, per AISC SpecificationSection H1.2
2. For unsymmetric and other members, per AISC SpecificationSection H2
MEMBERS SUBJECT TO TORSION AND
COMBINED TORSION, FLEXURE, SHEAR AND/OR
AXIAL FORCE
The interaction of the combined effects of the required strengths (torsion, bending moment,
shear force and/or axial force) must satisfy the requirements of AISC SpecificationSection
H3.
See also AISC Design Guide 9, Torsional Analysis of Structural Steel Members.
MEMBERS WITH HOLES
AISC SpecificationSection F13 provides provisions for potential impact of holes in shapes
proportioned on the basis of flexural strength of the gross section. Additionally, AISC
SpecificationSection H4 provides provisions applicable to rupture of flanges with holes
subject to tension under combined axial force and major axis flexure.
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 2

DESIGN TABLE DISCUSSION 6–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMPOSITE MEMBERS SUBJECT TO COMBINED FLEXURE
AND AXIAL COMPRESSION
For the design of composite members subject to combined flexure and axial compression,
see AISC SpecificationSection I5.
DESIGN TABLE DISCUSSION
Table 6-1. W-Shapes in Combined Flexure and
Axial Force
Steel W-shapes with F y=50 ksi (ASTM A992) and subject to combined axial force (tension
or compression) and flexure may be checked for compliance with the provisions of Section
H1.1 and H1.2 of the AISC Specificationusing values listed in Table 6-1 and the appropri-
ate interaction equations provided in the following sections.
Valuesp, b
x, by, tyandtrpresented in Table 6-1 are defined as follows.
LRFD ASD
Axial Compression
Strong Axis Bending
Weak Axis Bending
Tension Yielding
Tension Rupture
Combined Flexure and Compression
Equations H1-1a and H1-1b of the AISC Specificationmay be written as follows using the
coefficients listed in Table 6-1 and defined above.
When pP
r≥ 0.2:
pP
r+ bxMrx+ byMry≤1.0 (6-1)
When pP
r< 0.2:
1
/2pPr+
9
/8(bxMrx+byMry) ≤1.0 (6-2)
The designer may check acceptability of a given shape using the appropriate interaction
equation from above. See Aminmansour (2000) for more information on this method, includ-
ing an alternative approach for selection of a trial shape.
8Ωb
by=
,
(kip-ft)
–1
9Mny
8Ωb
bx=
,
(kip-ft)
–1
9Mnx
8
b
x=
,
(kip-ft)
–1
9φbMnx
Ωt
ty=
,
(kips)
–1
FyAg
Ωt
tr=
,
(kips)
–1
Fu(0.75A g)
1
t
r=
,
(kips)
–1
φtFu(0.75A g)
1
t
y=
,
(kips)
–1
φtFyAg
8
b
y=
,
(kip-ft)
–1
9φbMny
Ωc
p=
,
(kips)
–1
Pn
1
p=
,
(kips)
–1
φcPn
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 3

6–4 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Combined Flexure and Tension
Equations H1-1a and H1-1b of the AISC Specificationmay be written as follows using the
coefficients listed in Table 6-1 and defined above.
When pP
r≥ 0.2:
(t
yor tr) Pr+ bxMrx+ byMry ≤ 1.0 (6-3)
When pP
r< 0.2:
1
/2(ty or tr) Pr+
9
/8(bxMrx+ byMry) ≤ 1.0 (6-4)
The larger value of t
yand trshould be used in the above equations.
The designer may check acceptability of a given shape using the appropriate interaction
equation from above along with variables t
r, ty, bxand b y. See Aminmansour (2006) for more
information on this method.
It is noted that the values for t
rlisted in Table 6-1 are based on the assumption that
A
e= 0.75A g. See Part 5 for more information on this assumption. When A e> 0.75A g, the
tabulated values for t
rare conservative. When A e< 0.75A g, trmust be calculated based upon
the actual value of A
e.
General Considerations for Use of Values Listed
in Table 6-1
The following remarks are offered for consideration in use of the values listed in Table 6-1.
1. Values of p, b
xand b yalready account for section compactness and can be used
directly.
2. Tabulated values of b
xassume that C b= 1.0. A procedure for determiningb xwhen
C
b> 1.0 follows.
3. Given that the limit state of lateral-torsional buckling does not apply to W-shapes bent
about their weak axis, values of b
yare independent of unbraced length and C b.
4. Values of b
xequally apply to combined flexure and compression as well as combined
flexure and tension.
5. Smaller values of variable pfor a given KLand smaller values of b
xfor a given L bindi-
cate higher strength for the type of load in question. For example, a section with a
smaller pat a certain KLis more effective in carrying axial compression than another
section with a larger value of pat the same KL. Similarly, a section with a smaller b
x
is more effective for flexure at a given L bthan another section with a larger b xfor the
same L
b. This information may be used to select more efficient shapes when relatively
large amounts of axial load or bending are present.
Determination of b xwhen C b> 1.0
The tabulated values of b xassume that C b= 1.0. These values may be modified in accor-
dance with AISC SpecificationSections F1 and H1.2. The following procedure may be used
to account for C
b>1.0.
b
x(Cb=1.0)
bx(C
b>1.0)=≥ b xmin
Cb
(6-5)
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 4

DESIGN TABLE DISCUSSION 6–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Values of b xminare listed in Table 6-1 at L b=0 ft. See Aminmansour (2009) for more
information on this method. Values for p,b
x, by, tyand t rpresented in Table 6-1 have been
multiplied by 10
3
. Thus, when used in the appropriate interaction equation they must be
multiplied by 10
–3
(0.001).
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 5

6–6 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 6 REFERENCES
Aminmansour, A. (2000), “A New Approach for Design of Steel Beam-Columns,”
Engineering Journal, Vol. 37, No. 2, 2nd Quarter, pp. 41–72, AISC, Chicago, IL.
Aminmansour, A. (2006), “New Method of Design for Combined Tension and Bending,”
Engineering Journal, Vol. 43, No. 4, 4th Quarter, pp. 247–256, AISC, Chicago, IL.
Aminmansour, A. (2009), “Optimum Flexural Design of Steel Members Utilizing Moment
Gradient andC
b,” Engineering Journal, Vol. 46, No. 1, 1st Quarter, pp. 47–55, AISC,
Chicago, IL.
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 6

Shape
W44×
335
c
290
c
262
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3460.2300.2200.1460.4170.2780.2530.1680.4740.3160.2810.187
110.3780.2510.2200.1460.4540.3020.2530.1680.5160.3430.2810.187
120.3840.2560.2200.1460.4620.3070.2530.1680.5240.3490.2810.187
130.3920.2610.2220.1480.4700.3130.2550.1700.5330.3550.2840.189
140.4020.2670.2250.1500.4800.3190.2590.1730.5440.3620.2890.192
150.4120.2740.2290.1520.4900.3260.2640.1750.5550.3690.2940.196
160.4230.2810.2320.1550.5010.3330.2680.1780.5680.3780.2990.199
170.4350.2900.2360.1570.5140.3420.2730.1810.5820.3870.3040.203
180.4490.2990.2400.1600.5270.3510.2770.1840.5970.3970.3100.206
190.4630.3080.2440.1620.5420.3610.2820.1880.6130.4080.3160.210
200.4790.3190.2480.1650.5590.3720.2870.1910.6320.4200.3220.214
220.5150.3430.2560.1710.5970.3970.2980.1980.6740.4480.3350.223
240.5580.3710.2660.1770.6430.4280.3090.2060.7240.4820.3480.232
260.6080.4050.2750.1830.7020.4670.3210.2140.7850.5220.3630.242
280.6680.4440.2860.1900.770.5120.3350.2230.8590.5710.3790.252
300.7380.4910.2970.1980.8510.5670.3490.2320.9500.6320.3970.264
320.8220.5470.3100.2060.9480.6310.3650.2431.060.7050.4170.277
340.9230.6140.3230.2151.060.7080.3820.2541.190.7930.4380.292
361.030.6890.3380.2251.190.7940.4010.2671.340.8890.4650.310
381.150.7670.3540.2351.330.8850.4290.2861.490.9900.5070.337
401.280.8500.3770.2511.470.9800.4640.3091.651.100.5490.365
421.410.9370.4040.2691.621.080.4990.3321.821.210.5920.394
441.551.030.4310.2871.781.190.5340.3552.001.330.6350.423
461.691.120.4590.3051.951.300.5700.3792.181.450.6790.452
481.841.220.4860.3232.121.410.6050.4032.371.580.7220.481
502.001.330.5140.3422.301.530.6410.4262.581.710.7660.510
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.51 1.00 1.74 1.16 1.96 1.30
ty×10
3
, (kips)
–1
0.339 0.226 0.391 0.260 0.433 0.288
tr×10
3
, (kips)
–1
0.417 0.278 0.480 0.320 0.531 0.354
rx/ry 5.10 5.10 5.10
ry, in. 3.49 3.49 3.47
STEEL BEAM-COLUMN SELECTION TABLES 6–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W44
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 7

Shape
W44× W40×
230
c, v
593
h
503
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5570.3700.3240.2150.1920.1280.1290.08590.2260.1500.1540.102
110.6040.4020.3240.2150.2100.1390.1290.08590.2470.1650.1540.102
120.6140.4090.3240.2150.2130.1420.1290.08590.2520.1680.1540.102
130.6250.4160.3290.2190.2170.1440.1290.08590.2570.1710.1540.102
140.6370.4240.3350.2230.2210.1470.1300.08630.2620.1740.1550.103
150.6500.4330.3410.2270.2260.1500.1310.08700.2680.1780.1560.104
160.6650.4420.3470.2310.2310.1540.1320.08770.2740.1820.1580.105
170.6810.4530.3540.2350.2370.1580.1330.08840.2810.1870.1590.106
180.6980.4650.3600.2400.2430.1620.1340.08920.2890.1920.1610.107
190.7180.4780.3670.2440.2500.1660.1350.08990.2970.1980.1630.108
200.7390.4920.3750.2490.2570.1710.1360.09070.3060.2040.1640.109
220.7870.5240.3900.2600.2730.1820.1390.09230.3260.2170.1680.112
240.8460.5630.4070.2710.2920.1940.1410.09390.3500.2330.1710.114
260.9160.6090.4250.2830.3140.2090.1440.09560.3770.2510.1750.117
281.000.6660.4460.2960.3400.2260.1460.09730.4100.2730.1790.119
301.100.7350.4680.3110.3700.2460.1490.09910.4480.2980.1830.122
321.230.8200.4920.3270.4050.2690.1520.1010.4920.3270.1870.125
341.390.9240.5190.3460.4460.2970.1550.1030.5440.3620.1920.128
361.561.040.5680.3780.4940.3290.1580.1050.6060.4030.1970.131
381.731.150.6210.4130.5510.3660.1610.1070.6750.4490.2010.134
401.921.280.6740.4490.6100.4060.1640.1090.7480.4980.2070.138
422.121.410.7290.4850.6730.4480.1680.1120.8250.5490.2120.141
442.331.550.7840.5220.7380.4910.1710.1140.9060.6030.2180.145
462.541.690.8400.5590.8070.5370.1750.1160.9900.6590.2240.149
482.771.840.8970.5970.8790.5850.1790.1191.080.7170.2300.153
503.002.000.9540.6340.9530.6340.1830.1221.170.7780.2370.158
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.27 1.51 0.741 0.493 0.904 0.602
ty×10
3
, (kips)
–1
0.493 0.328 0.192 0.128 0.226 0.150
tr×10
3
, (kips)
–1
0.605 0.403 0.236 0.157 0.277 0.185
rx/ry 5.10 4.47 4.52
ry, in. 3.43 3.80 3.72
6–8 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W44-W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
AISC_Part 06A:14th Ed. 2/4/11 8:45 AM Page 8

Shape
W40×
431
h
397
h
392
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.2630.1750.1820.1210.2850.1900.1980.1320.2880.1920.2080.139
110.2890.1930.1820.1210.3140.2090.1980.1320.3460.2300.2130.142
120.2950.1960.1820.1210.3200.2130.1980.1320.3580.2380.2170.144
130.3010.2000.1820.1210.3270.2170.1980.1320.3720.2470.2200.146
140.3070.2040.1840.1220.3340.2220.2010.1330.3870.2580.2230.148
150.3140.2090.1860.1240.3410.2270.2030.1350.4040.2690.2270.151
160.3220.2140.1880.1250.3500.2330.2050.1370.4240.2820.2300.153
170.3300.2200.1900.1270.3590.2390.2080.1380.4460.2960.2340.156
180.3400.2260.1930.1280.3690.2460.2110.1400.4700.3130.2380.158
190.3500.2330.1950.1300.3800.2530.2130.1420.4970.3310.2410.161
200.3610.2400.1970.1310.3920.2610.2160.1440.5270.3510.2450.163
220.3860.2570.2020.1340.4190.2790.2210.1470.5980.3980.2540.169
240.4150.2760.2070.1380.4510.3000.2270.1510.6870.4570.2630.175
260.4490.2990.2120.1410.4880.3250.2340.1550.8010.5330.2730.181
280.4890.3250.2180.1450.5320.3540.2400.1600.9290.6180.2830.188
300.5360.3560.2240.1490.5840.3880.2470.1641.070.7100.2950.196
320.5910.3930.2300.1530.6440.4290.2550.1691.210.8070.3070.204
340.6560.4360.2360.1570.7150.4760.2620.1751.370.9110.3200.213
360.7340.4880.2430.1620.8010.5330.2710.1801.541.020.3350.223
380.8180.5440.2510.1670.8920.5940.2800.1861.711.140.3510.233
400.9060.6030.2590.1720.9890.6580.2890.1921.901.260.3720.248
420.9990.6650.2670.1781.090.7250.2990.1992.091.390.3940.262
441.100.7290.2760.1841.200.7960.3100.2062.291.530.4150.276
461.200.7970.2850.1901.310.8700.3220.214
481.300.8680.2950.1971.420.9470.3380.225
501.420.9420.3080.2051.551.030.3560.237
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.09 0.723 1.19 0.790 1.71 1.14
ty×10
3
, (kips)
–1
0.263 0.175 0.285 0.190 0.288 0.192
tr×10
3
, (kips)
–1
0.323 0.215 0.351 0.234 0.354 0.236
rx/ry 4.55 4.56 6.10
ry, in. 3.65 3.64 2.64
STEEL BEAM-COLUMN SELECTION TABLES 6–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 9

Shape
W40×
372
h
362
h
331
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3040.2020.2120.1410.3150.2100.2170.1450.3420.2270.2490.166
110.3350.2230.2120.1410.3480.2310.2170.1450.4150.2760.2570.171
120.3410.2270.2120.1410.3540.2360.2170.1450.4300.2860.2620.174
130.3480.2320.2130.1420.3610.2400.2180.1450.4480.2980.2660.177
140.3560.2370.2150.1430.3690.2460.2210.1470.4670.3110.2710.180
150.3650.2430.2180.1450.3780.2520.2240.1490.4890.3260.2760.184
160.3740.2490.2210.1470.3880.2580.2270.1510.5140.3420.2810.187
170.3840.2550.2240.1490.3980.2650.2300.1530.5420.3610.2870.191
180.3950.2630.2270.1510.4100.2730.2330.1550.5730.3810.2920.194
190.4070.2710.2300.1530.4220.2810.2360.1570.6080.4040.2980.198
200.4200.2800.2330.1550.4360.2900.2390.1590.6470.4300.3040.202
220.4500.2990.2400.1590.4670.3110.2460.1640.7390.4920.3170.211
240.4850.3230.2460.1640.5030.3350.2530.1680.8560.5700.3310.220
260.5260.3500.2540.1690.5460.3630.2610.1741.000.6680.3460.230
280.5740.3820.2610.1740.5960.3960.2690.1791.160.7740.3620.241
300.6310.4200.2700.1790.6550.4360.2780.1851.340.8890.3810.253
320.6980.4640.2780.1850.7240.4820.2870.1911.521.010.4010.267
340.7770.5170.2880.1910.8060.5360.2970.1971.721.140.4250.283
360.8710.5790.2980.1980.9040.6010.3070.2041.921.280.4560.304
380.9700.6460.3080.2051.010.6700.3190.2122.141.430.4880.324
401.080.7150.3200.2131.120.7420.3310.2202.381.580.5190.345
421.190.7890.3320.2211.230.8180.3440.2292.621.740.5500.366
441.300.8660.3450.2301.350.8980.3580.238
461.420.9460.3650.2431.480.9820.3800.253
481.551.030.3850.2561.611.070.4010.267
501.681.120.4050.2701.741.160.4220.281
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.29 0.856 1.32 0.878 2.10 1.40
ty×10
3
, (kips)
–1
0.304 0.202 0.315 0.210 0.342 0.227
tr×10
3
, (kips)
–1
0.373 0.249 0.387 0.258 0.420 0.280
rx/ry 4.58 4.58 6.19
ry, in. 3.60 3.60 2.57
6–10 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 10

Shape
W40×
327
h
324 297
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3480.2320.2530.1680.3500.2330.2440.1620.3860.2570.2680.178
110.4220.2810.2610.1740.3870.2580.2440.1620.4240.2820.2680.178
120.4370.2910.2650.1770.3940.2620.2440.1620.4320.2870.2680.178
130.4550.3030.2700.1800.4030.2680.2450.1630.4410.2930.2700.179
140.4750.3160.2750.1830.4120.2740.2490.1650.4510.3000.2740.182
150.4970.3310.2800.1860.4220.2810.2520.1680.4620.3080.2780.185
160.5220.3470.2850.1900.4330.2880.2560.1700.4740.3160.2820.188
170.5500.3660.2900.1930.4440.2960.2590.1730.4880.3250.2860.190
180.5810.3870.2960.1970.4570.3040.2630.1750.5020.3340.2910.193
190.6160.4100.3020.2010.4710.3140.2670.1780.5180.3450.2950.197
200.6560.4360.3080.2050.4870.3240.2710.1800.5350.3560.3000.200
220.7490.4980.3210.2130.5220.3470.2790.1860.5750.3820.3100.206
240.8660.5760.3350.2230.5630.3740.2880.1920.6210.4130.3210.213
261.010.6750.3500.2330.6110.4060.2980.1980.6750.4490.3320.221
281.180.7830.3670.2440.6670.4440.3080.2050.7390.4920.3440.229
301.350.8990.3850.2560.7340.4880.3190.2120.8150.5420.3570.238
321.541.020.4060.2700.8130.5410.3300.2200.9040.6020.3720.247
341.731.150.4300.2860.9070.6030.3430.2281.010.6740.3870.257
361.951.290.4620.3071.020.6760.3570.2371.130.7550.4040.269
382.171.440.4940.3291.130.7540.3710.2471.260.8410.4220.281
402.401.600.5260.3501.250.8350.3870.2581.400.9320.4460.297
422.651.760.5570.3711.380.9210.4080.2721.541.030.4780.318
44 1.521.010.4350.2891.701.130.5090.339
46 1.661.100.4610.3071.851.230.5410.360
48 1.811.200.4880.3242.021.340.5730.381
50 1.961.300.5140.3422.191.460.6050.403
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.12 1.41 1.49 0.992 1.66 1.10
ty×10
3
, (kips)
–1
0.348 0.232 0.350 0.233 0.383 0.255
tr×10
3
, (kips)
–1
0.428 0.285 0.430 0.287 0.470 0.313
rx/ry 6.20 4.58 4.60
ry, in. 2.58 3.58 3.54
STEEL BEAM-COLUMN SELECTION TABLES 6–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 11

Shape
W40×
294 278 277
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3870.2580.2810.1870.4060.2700.2990.1990.4250.2830.2850.190
110.4710.3140.2910.1940.4960.3300.3120.2070.4620.3080.2850.190
120.4890.3250.2960.1970.5150.3430.3180.2110.4700.3130.2850.190
130.5090.3390.3020.2010.5370.3570.3240.2160.4790.3180.2870.191
140.5320.3540.3080.2050.5620.3740.3310.2200.4880.3250.2910.193
150.5580.3710.3140.2090.5890.3920.3380.2250.4980.3320.2950.196
160.5860.3900.3210.2140.6200.4130.3450.2290.5100.3390.3000.199
170.6190.4120.3280.2180.6550.4360.3520.2340.5220.3470.3040.203
180.6550.4360.3350.2230.6940.4620.3600.2400.5360.3570.3090.206
190.6950.4630.3420.2280.7380.4910.3690.2450.5510.3670.3140.209
200.7400.4930.3500.2330.7880.5240.3770.2510.5690.3790.3200.213
220.8480.5640.3660.2440.9050.6020.3960.2630.6100.4060.3300.220
240.9850.6550.3840.2561.060.7020.4160.2770.6580.4380.3420.228
261.160.7690.4040.2691.240.8240.4390.2920.7140.4750.3550.236
281.340.8920.4260.2841.440.9560.4640.3090.7800.5190.3680.245
301.541.020.4510.3001.651.100.4930.3280.8580.5710.3820.254
321.751.160.4820.3201.881.250.5350.3560.9500.6320.3980.265
341.981.310.5210.3472.121.410.5800.3861.060.7050.4150.276
362.221.470.5610.3732.381.580.6240.4151.190.7910.4340.289
382.471.640.6010.4002.651.760.6690.4451.320.8810.4540.302
402.731.820.6400.4262.931.950.7140.4751.470.9760.4840.322
423.022.010.6790.4523.232.150.7580.5041.621.080.5190.345
44 1.781.180.5550.369
46 1.941.290.5900.393
48 2.111.410.6250.416
50 2.291.530.6610.440
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.38 1.58 2.56 1.70 1.75 1.16
ty×10
3
, (kips)
–1
0.387 0.258 0.406 0.270 0.410 0.273
tr×10
3
, (kips)
–1
0.476 0.317 0.498 0.332 0.503 0.336
rx/ry 6.24 6.27 4.58
ry, in. 2.55 2.52 3.58
6–12 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 12

Shape
W40×
264 249
c
235
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4320.2870.3150.2100.4830.3210.3180.2120.5040.3350.3530.235
110.5270.3510.3290.2190.5250.3490.3180.2120.5950.3960.3680.245
120.5480.3650.3350.2230.5340.3550.3180.2120.6150.4090.3760.250
130.5710.3800.3420.2280.5430.3610.3200.2130.6380.4240.3840.255
140.5970.3970.3490.2330.5540.3680.3250.2170.6660.4430.3930.261
150.6270.4170.3570.2380.5650.3760.3310.2200.6980.4640.4020.267
160.6600.4390.3650.2430.5780.3850.3360.2240.7340.4880.4110.274
170.6970.4640.3730.2480.5920.3940.3420.2270.7750.5150.4210.280
180.7380.4910.3820.2540.6080.4040.3470.2310.8200.5460.4310.287
190.7850.5220.3910.2600.6250.4160.3530.2350.8710.5800.4420.294
200.8380.5570.4010.2670.6430.4280.3590.2390.9280.6180.4540.302
220.9630.6410.4210.2800.6850.4560.3720.2481.060.7090.4790.319
241.120.7470.4440.2950.7360.4900.3860.2571.240.8230.5070.337
261.320.8770.4690.3120.7990.5320.4010.2671.450.9670.5380.358
281.531.020.4980.3310.8750.5820.4170.2781.681.120.5730.381
301.751.170.5330.3540.9640.6410.4350.2891.931.290.6290.419
322.001.330.5820.3871.070.7110.4540.3022.201.460.6900.459
342.251.500.6320.4201.200.7950.4750.3162.481.650.7500.499
362.531.680.6810.4531.340.8920.4980.3312.791.850.8110.540
382.811.870.7300.4861.490.9940.5300.3533.102.060.8720.580
403.122.070.7800.5191.651.100.5730.3813.442.290.9320.620
423.442.290.8290.5521.821.210.6160.4103.792.520.9930.661
44 2.001.330.6590.438
46 2.191.460.7020.467
48 2.381.590.7460.496
50 2.591.720.7900.525
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.70 1.80 1.96 1.30 3.02 2.01
ty×10
3
, (kips)
–1
0.432 0.287 0.454 0.302 0.483 0.322
tr×10
3
, (kips)
–1
0.530 0.353 0.558 0.372 0.594 0.396
rx/ry 6.27 4.59 6.26
ry, in. 2.52 3.55 2.54
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
STEEL BEAM-COLUMN SELECTION TABLES 6–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 13

Shape
W40×
215
c
211
c
199
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5780.3850.3700.2460.5780.3850.3930.2620.6290.4190.4100.273
110.6270.4170.3700.2460.6810.4530.4120.2740.6850.4560.4100.273
120.6370.4240.3700.2460.7040.4680.4220.2810.6960.4630.4100.273
130.6480.4310.3730.2480.7290.4850.4320.2870.7080.4710.4160.277
140.6610.4400.3790.2520.7590.5050.4420.2940.7220.4810.4230.282
150.6740.4480.3850.2560.7920.5270.4530.3010.7380.4910.4310.287
160.6890.4580.3920.2610.8300.5520.4640.3090.7540.5020.4390.292
170.7050.4690.3990.2650.8730.5810.4760.3170.7730.5140.4470.297
180.7230.4810.4060.2700.9240.6150.4890.3250.7930.5280.4550.303
190.7420.4940.4130.2750.9830.6540.5030.3340.8150.5430.4640.309
200.7640.5080.4210.2801.050.6980.5170.3440.8400.5590.4730.315
220.8120.5400.4370.2911.210.8030.5480.3640.8960.5960.4930.328
240.8700.5790.4550.3031.410.9380.5820.3880.9630.6400.5140.342
260.9390.6250.4740.3151.661.100.6220.4141.040.6940.5370.357
281.020.6800.4950.3291.921.280.6790.4521.140.7590.5620.374
301.120.7460.5170.3442.201.470.7530.5011.260.8380.5900.393
321.240.8270.5420.3612.511.670.8270.5501.410.9350.6210.413
341.390.9260.5690.3792.831.880.9020.6001.581.050.6550.436
361.561.040.6050.4033.172.110.9780.6501.771.180.7160.476
381.741.160.6600.4393.542.351.050.7011.981.320.7820.520
401.931.280.7150.4763.922.611.130.7512.191.460.8490.565
422.121.410.7710.513 2.411.610.9180.610
442.331.550.8280.551 2.651.760.9870.657
462.551.690.8850.589 2.901.931.060.703
482.771.850.9420.627 3.152.101.130.750
503.012.001.000.665 3.422.281.200.797
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.28 1.52 3.39 2.26 2.60 1.73
ty×10
3
, (kips)
–1
0.526 0.350 0.538 0.358 0.568 0.378
tr×10
3
, (kips)
–1
0.646 0.431 0.661 0.440 0.698 0.465
rx/ry 4.58 6.29 4.64
ry, in. 3.54 2.51 3.45
6–14 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 14

Shape
W40×
183
c
167
c
149
c, v
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.7020.4670.4600.3060.7670.5100.5140.3420.8830.5870.5960.396
110.8230.5480.4850.3230.9070.6030.5470.3641.050.7010.6440.429
120.8500.5650.4970.3300.9370.6240.5620.3741.090.7270.6630.441
130.8800.5850.5090.3390.9730.6470.5770.3841.140.7560.6820.454
140.9140.6080.5220.3481.010.6740.5930.3951.190.7900.7030.468
150.9530.6340.5360.3571.060.7050.6100.4061.250.8280.7250.483
160.9970.6630.5510.3671.110.7390.6280.4181.310.8730.7490.498
171.050.6960.5670.3771.170.7790.6470.4311.390.9250.7740.515
181.100.7340.5830.3881.240.8250.6680.4441.480.9840.8010.533
191.170.7770.6000.3991.320.8780.6890.4591.581.050.8300.552
201.240.8260.6190.4121.410.9380.7120.4741.701.130.8610.573
221.430.9480.6590.4391.641.090.7630.5082.021.340.9300.619
241.671.110.7050.4691.941.290.8220.5472.401.601.030.683
261.961.300.7630.5072.281.520.9190.6112.821.881.180.783
282.271.510.8590.5712.651.761.040.6903.272.181.330.887
302.611.740.9570.6363.042.021.160.7713.752.501.490.993
322.971.981.060.7023.452.301.280.8534.272.841.661.10
343.352.231.160.7693.902.591.410.9374.823.211.821.21
363.762.501.260.8374.372.911.531.025.413.601.991.33
384.192.791.360.9054.873.241.661.116.024.012.161.44
404.643.091.460.9735.403.591.791.19
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.03 2.68 4.69 3.12 5.74 3.82
ty×10
3
, (kips)
–1
0.627 0.417 0.677 0.451 0.763 0.507
tr×10
3
, (kips)
–1
0.770 0.513 0.832 0.555 0.937 0.624
rx/ry 6.31 6.38 6.55
ry, in. 2.49 2.40 2.29
STEEL BEAM-COLUMN SELECTION TABLES 6–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W40
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 15

Shape
W36×
652
h
529
h
487
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.1740.1160.1220.08150.2140.1420.1530.1020.2340.1550.1670.111
110.1880.1250.1220.08150.2320.1540.1530.1020.2530.1690.1670.111
120.1900.1270.1220.08150.2350.1570.1530.1020.2570.1710.1670.111
130.1930.1290.1220.08150.2390.1590.1530.1020.2620.1740.1670.111
140.1970.1310.1220.08150.2440.1620.1530.1020.2660.1770.1670.111
150.2000.1330.1230.08170.2480.1650.1540.1020.2720.1810.1690.112
160.2040.1360.1240.08230.2530.1690.1550.1030.2770.1850.1700.113
170.2080.1390.1240.08280.2590.1720.1570.1040.2840.1890.1720.114
180.2130.1420.1250.08330.2650.1760.1580.1050.2900.1930.1730.115
190.2180.1450.1260.08390.2720.1810.1590.1060.2980.1980.1750.116
200.2230.1490.1270.08450.2790.1850.1600.1070.3060.2030.1760.117
220.2360.1570.1290.08560.2940.1960.1630.1090.3230.2150.1800.120
240.2500.1660.1300.08680.3130.2080.1660.1100.3440.2290.1830.122
260.2660.1770.1320.08800.3340.2220.1690.1120.3680.2450.1870.124
280.2840.1890.1340.08920.3590.2390.1720.1140.3950.2630.1900.127
300.3060.2030.1360.09050.3870.2580.1750.1170.4270.2840.1940.129
320.3300.2200.1380.09180.4200.2790.1780.1190.4650.3090.1980.132
340.3590.2390.1400.09320.4580.3050.1820.1210.5080.3380.2020.135
360.3920.2610.1420.09460.5020.3340.1850.1230.5580.3710.2070.138
380.4300.2860.1440.09600.5540.3690.1890.1260.6170.4100.2110.141
400.4750.3160.1470.09750.6140.4090.1930.1280.6840.4550.2160.144
420.5240.3480.1490.09900.6770.4500.1970.1310.7540.5010.2210.147
440.5750.3820.1510.1010.7430.4940.2010.1340.8270.5500.2260.150
460.6280.4180.1540.1020.8120.5400.2050.1370.9040.6010.2320.154
480.6840.4550.1560.1040.8840.5880.2100.1400.9840.6550.2370.158
500.7420.4940.1590.1060.9600.6380.2150.1431.070.7110.2430.162
Other Constants and Properties
by×10
3
, (kip-ft)
–1
0.613 0.408 0.785 0.522 0.865 0.575
ty×10
3
, (kips)
–1
0.174 0.116 0.214 0.142 0.234 0.155
tr×10
3
, (kips)
–1
0.214 0.142 0.263 0.175 0.287 0.191
rx/ry 3.95 4.00 3.99
ry, in. 4.10 4.00 3.96
6–16 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 16

Shape
W36×
441
h
395
h
361
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.2570.1710.1870.1240.2880.1920.2080.1390.3150.2100.2300.153
110.2790.1860.1870.1240.3130.2080.2080.1390.3430.2280.2300.153
120.2840.1890.1870.1240.3180.2120.2080.1390.3490.2320.2300.153
130.2880.1920.1870.1240.3240.2160.2080.1390.3550.2360.2300.153
140.2940.1960.1870.1240.3300.2200.2090.1390.3620.2410.2310.154
150.3000.1990.1890.1250.3370.2240.2110.1410.3700.2460.2340.155
160.3060.2040.1900.1270.3440.2290.2130.1420.3780.2510.2360.157
170.3130.2080.1920.1280.3520.2340.2160.1440.3870.2570.2390.159
180.3210.2130.1940.1290.3610.2400.2180.1450.3970.2640.2420.161
190.3290.2190.1960.1300.3710.2470.2210.1470.4070.2710.2450.163
200.3380.2250.1980.1320.3810.2530.2230.1480.4190.2790.2480.165
220.3580.2380.2020.1350.4040.2690.2280.1520.4440.2960.2540.169
240.3810.2540.2060.1370.4310.2870.2340.1550.4740.3160.2600.173
260.4080.2720.2110.1400.4620.3070.2390.1590.5090.3390.2670.178
280.4400.2930.2150.1430.4980.3310.2450.1630.5500.3660.2740.183
300.4760.3170.2200.1470.5400.3590.2510.1670.5970.3970.2820.188
320.5180.3450.2250.1500.5890.3920.2580.1720.6520.4340.2900.193
340.5670.3770.2310.1530.6460.4300.2650.1760.7160.4770.2990.199
360.6240.4150.2360.1570.7130.4740.2720.1810.7910.5260.3080.205
380.6930.4610.2420.1610.7920.5270.2800.1860.8800.5860.3170.211
400.7670.5110.2480.1650.8780.5840.2880.1910.9760.6490.3270.218
420.8460.5630.2550.1690.9680.6440.2960.1971.080.7160.3380.225
440.9280.6180.2610.1741.060.7070.3050.2031.180.7850.3500.233
461.010.6750.2690.1791.160.7720.3150.2101.290.8580.3620.241
481.100.7350.2760.1841.260.8410.3250.2161.400.9350.3760.250
501.200.7980.2840.1891.370.9130.3360.2241.521.010.3950.263
Other Constants and Properties
by×10
3
, (kip-ft)
–1
0.968 0.644 1.10 0.729 1.22 0.809
ty×10
3
, (kips)
–1
0.257 0.171 0.288 0.192 0.315 0.210
tr×10
3
, (kips)
–1
0.316 0.210 0.354 0.236 0.387 0.258
rx/ry 4.01 4.05 4.05
ry, in. 3.92 3.88 3.85
STEEL BEAM-COLUMN SELECTION TABLES 6–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 17

Shape
W36×
330 302 282
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3450.2290.2530.1680.3750.2500.2780.1850.4040.2690.2990.199
110.3760.2500.2530.1680.4100.2720.2780.1850.4400.2930.2990.199
120.3820.2540.2530.1680.4160.2770.2780.1850.4470.2980.2990.199
130.3890.2590.2530.1680.4240.2820.2780.1850.4560.3030.2990.199
140.3970.2640.2540.1690.4320.2880.2800.1860.4650.3090.3020.201
150.4050.2700.2570.1710.4410.2940.2840.1890.4750.3160.3060.203
160.4140.2760.2600.1730.4510.3000.2870.1910.4860.3230.3100.206
170.4240.2820.2640.1750.4620.3080.2910.1940.4970.3310.3140.209
180.4350.2890.2670.1780.4740.3150.2950.1960.5100.3390.3190.212
190.4470.2970.2700.1800.4870.3240.2990.1990.5240.3490.3230.215
200.4590.3060.2740.1820.5010.3330.3030.2020.5390.3590.3280.218
220.4880.3250.2810.1870.5320.3540.3120.2080.5730.3820.3380.225
240.5210.3470.2890.1920.5690.3780.3210.2140.6130.4080.3480.232
260.5600.3730.2970.1980.6110.4070.3310.2200.6600.4390.3590.239
280.6050.4030.3060.2040.6610.4400.3410.2270.7140.4750.3710.247
300.6580.4380.3150.2100.7180.4780.3520.2340.7770.5170.3840.255
320.7190.4780.3250.2160.7860.5230.3640.2420.8500.5660.3970.264
340.7900.5260.3350.2230.8640.5750.3760.2500.9360.6230.4120.274
360.8740.5810.3460.2300.9560.6360.3890.2591.040.6900.4280.284
380.9730.6480.3580.2381.070.7090.4040.2691.160.7690.4440.296
401.080.7170.3710.2471.180.7850.4190.2791.280.8520.4630.308
421.190.7910.3840.2561.300.8660.4360.2901.410.9390.4820.321
441.300.8680.3990.2651.430.9500.4560.3031.551.030.5140.342
461.430.9490.4170.2771.561.040.4840.3221.691.130.5470.364
481.551.030.4410.2931.701.130.5130.3411.841.230.5800.386
501.691.120.4650.3091.841.230.5410.3602.001.330.6120.407
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.34 0.894 1.48 0.984 1.60 1.06
ty×10
3
, (kips)
–1
0.345 0.229 0.375 0.250 0.403 0.268
tr×10
3
, (kips)
–1
0.423 0.282 0.461 0.307 0.495 0.330
rx/ry 4.05 4.03 4.05
ry, in. 3.83 3.82 3.80
6–18 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
AISC_Part 06A:14th Ed. 2/4/11 8:46 AM Page 18

Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Shape
W36×
262
c
256 247
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4400.2930.3240.2150.4440.2950.3430.2280.4750.3160.3460.230
110.4760.3170.3240.2150.5320.3540.3530.2350.5130.3410.3460.230
120.4830.3220.3240.2150.5500.3660.3600.2390.5210.3470.3460.230
130.4910.3270.3240.2150.5710.3800.3670.2440.5300.3520.3460.230
140.5010.3330.3270.2180.5950.3960.3740.2490.5390.3590.3500.233
150.5120.3400.3320.2210.6220.4140.3810.2540.5500.3660.3550.236
160.5240.3480.3370.2240.6510.4330.3890.2590.5610.3730.3600.240
170.5370.3570.3420.2270.6840.4550.3970.2640.5740.3820.3660.243
180.5510.3660.3470.2310.7210.4800.4060.2700.5880.3910.3720.247
190.5660.3770.3520.2340.7620.5070.4140.2760.6050.4020.3780.251
200.5830.3880.3570.2380.8080.5380.4240.2820.6230.4140.3840.255
220.6200.4130.3690.2450.9160.6100.4430.2950.6630.4410.3960.264
240.6640.4420.3810.2531.050.7000.4650.3090.7110.4730.4100.273
260.7160.4760.3940.2621.220.8150.4890.3250.7660.5100.4240.282
280.7760.5160.4080.2711.420.9450.5150.3430.8310.5530.4400.293
300.8460.5630.4230.2811.631.080.5450.3620.9070.6030.4570.304
320.9280.6170.4390.2921.861.230.5820.3870.9960.6630.4750.316
341.020.6810.4560.3032.091.390.6320.4201.100.7320.4950.329
361.140.7570.4740.3162.351.560.6810.4531.220.8150.5160.343
381.270.8430.4950.3292.621.740.7300.4861.360.9080.5390.359
401.400.9340.5170.3442.901.930.7790.5191.511.010.5700.379
421.551.030.5510.3673.202.130.8280.5511.671.110.6130.408
441.701.130.5890.3923.512.330.8770.5841.831.220.6570.437
461.861.240.6280.418 2.001.330.7000.466
482.021.350.6660.443 2.181.450.7440.495
502.191.460.7050.469 2.361.570.7880.524
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.75 1.16 2.60 1.73 1.88 1.25
ty×10
3
, (kips)
–1
0.433 0.288 0.444 0.295 0.461 0.307
tr×10
3
, (kips)
–1
0.531 0.354 0.545 0.363 0.566 0.377
rx/ry 4.07 5.62 4.06
ry, in. 3.76 2.65 3.74
STEEL BEAM-COLUMN SELECTION TABLES 6–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 19

Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Shape
W36×
232
c
231
c
210
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4980.3310.3810.2530.5110.3400.3700.2460.5550.3690.4280.285
110.5910.3930.3940.2620.5530.3680.3700.2460.6530.4350.4450.296
120.6130.4080.4020.2670.5610.3730.3700.2460.6780.4510.4540.302
130.6370.4240.4100.2730.5700.3790.3700.2460.7050.4690.4650.309
140.6630.4410.4190.2780.5810.3860.3750.2490.7360.4890.4750.316
150.6940.4610.4270.2840.5920.3940.3810.2530.7700.5120.4860.323
160.7270.4840.4370.2910.6040.4020.3870.2570.8090.5380.4980.331
170.7650.5090.4470.2970.6180.4110.3930.2610.8520.5670.5100.339
180.8070.5370.4570.3040.6330.4210.3990.2660.9010.5990.5230.348
190.8550.5690.4680.3110.6490.4320.4060.2700.9550.6350.5360.357
200.9070.6040.4790.3190.6670.4440.4120.2741.020.6760.5500.366
221.030.6870.5030.3350.7090.4720.4260.2841.160.7720.5800.386
241.190.7910.5300.3520.7610.5060.4420.2941.340.8930.6140.409
261.390.9230.5590.3720.8210.5460.4580.3051.571.050.6530.434
281.611.070.5920.3940.8920.5940.4760.3161.821.210.6960.463
301.851.230.6310.4200.9750.6490.4940.3292.091.390.7650.509
322.101.400.6910.4601.070.7130.5150.3432.381.580.8410.559
342.371.580.7510.5001.190.7890.5370.3572.691.790.9170.610
362.661.770.8120.5401.320.8800.5620.3743.012.000.9930.661
382.961.970.8720.5801.470.9810.5880.3913.362.231.070.712
403.282.180.9320.6201.631.090.6310.4203.722.481.150.763
423.622.410.9920.6601.801.200.6800.4524.102.731.2200.814
44 1.981.310.7290.485
46 2.161.440.7780.518
48 2.351.560.8280.551
50 2.551.700.8780.584
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.92 1.94 2.02 1.35 3.33 2.22
ty×10
3
, (kips)
–1
0.491 0.327 0.490 0.326 0.540 0.359
tr×10
3
, (kips)
–1
0.603 0.402 0.602 0.401 0.663 0.442
rx/ry 5.65 4.07 5.66
ry, in. 2.62 3.71 2.58
6–20 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 20

Shape
W36×
194
c
182
c
170
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.6180.4110.4640.3090.6690.4450.4960.3300.7320.4870.5330.355
110.7250.4830.4850.3220.7830.5210.5190.3450.8560.5690.5590.372
120.7490.4980.4960.3300.8080.5380.5310.3530.8830.5870.5730.381
130.7750.5160.5070.3370.8370.5570.5440.3620.9130.6080.5870.390
140.8060.5360.5190.3450.8690.5780.5570.3710.9480.6310.6020.400
150.8410.5600.5320.3540.9050.6020.5710.3800.9880.6570.6170.411
160.8840.5880.5450.3630.9470.6300.5860.3901.030.6870.6340.422
170.9320.6200.5590.3720.9950.6620.6010.4001.080.7210.6510.433
180.9860.6560.5740.3821.050.7010.6180.4111.140.7600.6700.445
191.050.6960.5890.3921.120.7440.6350.4221.210.8050.6890.458
201.110.7410.6060.4031.190.7920.6530.4351.290.8580.7100.472
221.280.8480.6410.4271.360.9080.6930.4611.480.9850.7550.502
241.480.9840.6810.4531.581.050.7380.4911.721.150.8060.536
261.731.150.7260.4831.861.240.7890.5252.021.350.8640.575
282.011.340.7860.5232.161.430.8680.5772.351.560.9660.643
302.311.540.8730.5812.471.650.9660.6422.691.791.080.717
322.631.750.9610.6392.811.871.070.7093.072.041.190.792
342.961.971.050.6993.182.111.170.7753.462.301.310.869
363.322.211.140.7583.562.371.270.8433.882.581.420.946
383.702.461.230.8183.972.641.370.9114.322.881.541.02
404.102.731.320.8784.402.931.470.9794.793.191.661.10
424.523.011.410.9384.853.231.571.055.283.511.771.18
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.65 2.43 3.93 2.61 4.25 2.83
ty×10
3
, (kips)
–1
0.586 0.390 0.623 0.415 0.668 0.444
tr×10
3
, (kips)
–1
0.720 0.480 0.765 0.510 0.821 0.547
rx/ry 5.70 5.69 5.73
ry, in. 2.56 2.55 2.53
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
STEEL BEAM-COLUMN SELECTION TABLES 6–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 21

Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Shape
W36×
160
c
150
c
135
c, v
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.7910.5260.5710.3800.8510.5660.6130.4080.9670.6430.7000.466
110.9250.6160.6010.4000.9970.6630.6480.4311.140.7580.7480.498
120.9550.6350.6160.4101.030.6840.6650.4421.180.7830.7690.512
130.9880.6570.6320.4201.060.7090.6820.4541.220.8120.7910.526
141.030.6830.6480.4311.110.7360.7010.4661.270.8450.8140.541
151.070.7110.6660.4431.150.7670.7210.4791.330.8830.8380.558
161.120.7440.6840.4551.210.8030.7410.4931.390.9270.8640.575
171.170.7810.7030.4681.270.8440.7630.5081.470.9770.8920.593
181.240.8240.7240.4821.340.8900.7860.5231.551.030.9210.613
191.310.8720.7460.4961.420.9430.8110.5401.651.100.9520.634
201.390.9280.7690.5111.511.000.8370.5571.771.180.9860.656
221.611.070.8200.5451.741.160.8950.5962.061.371.060.706
241.881.250.8780.5842.041.360.9620.6402.441.621.150.763
262.201.470.9500.6322.401.591.060.7062.871.911.310.871
282.561.701.070.7142.781.851.200.7993.322.211.490.989
302.941.951.200.7973.192.121.340.8943.822.541.671.11
323.342.221.330.8833.632.421.490.9914.342.891.851.23
343.772.511.460.9694.102.731.641.094.903.262.051.36
364.232.811.591.064.593.061.791.195.493.662.241.49
384.713.131.721.155.123.411.941.296.124.072.441.62
405.223.471.861.235.673.772.101.40
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.61 3.07 5.02 3.34 5.97 3.97
ty×10
3
, (kips)
–1
0.711 0.473 0.754 0.502 0.837 0.557
tr×10
3
, (kips)
–1
0.873 0.582 0.926 0.617 1.030 0.685
rx/ry 5.76 5.79 5.88
ry, in. 2.50 2.47 2.38
6–22 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
W36
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 22

Shape
W33×
387
h
354
h
318
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.2930.1950.2280.1520.3210.2140.2510.1670.3560.2370.2810.187
110.3200.2130.2280.1520.3520.2340.2510.1670.3910.2600.2810.187
120.3260.2170.2280.1520.3580.2380.2510.1670.3980.2650.2810.187
130.3320.2210.2280.1520.3650.2430.2510.1670.4060.2700.2810.187
140.3390.2250.2300.1530.3720.2480.2530.1680.4140.2760.2830.189
150.3460.2300.2320.1550.3800.2530.2560.1700.4230.2820.2870.191
160.3540.2360.2350.1560.3890.2590.2590.1720.4340.2880.2900.193
170.3630.2410.2370.1580.3990.2660.2610.1740.4450.2960.2940.195
180.3720.2480.2390.1590.4100.2730.2640.1760.4570.3040.2970.198
190.3830.2550.2420.1610.4210.2800.2670.1780.4700.3130.3010.200
200.3940.2620.2440.1630.4340.2890.2700.1800.4840.3220.3050.203
220.4190.2790.2500.1660.4620.3080.2770.1840.5160.3430.3130.208
240.4490.2990.2550.1700.4950.3300.2830.1890.5540.3680.3210.214
260.4830.3220.2610.1740.5340.3550.2900.1930.5980.3980.3300.220
280.5240.3480.2670.1780.5790.3860.2980.1980.6490.4320.3390.226
300.5710.3800.2730.1820.6320.4210.3050.2030.7100.4720.3490.232
320.6260.4160.2800.1860.6940.4620.3130.2080.7800.5190.3590.239
340.6900.4590.2870.1910.7670.5100.3220.2140.8630.5740.3700.246
360.7660.5100.2940.1960.8540.5680.3310.2200.9630.6410.3820.254
380.8540.5680.3020.2010.9510.6330.3400.2271.070.7140.3950.263
400.9460.6290.3100.2061.050.7010.3510.2331.190.7910.4080.271
421.040.6940.3180.2121.160.7730.3610.2401.310.8720.4220.281
441.140.7620.3270.2181.280.8480.3730.2481.440.9570.4380.291
461.250.8320.3370.2241.390.9270.3850.2561.571.050.4540.302
481.360.9060.3470.2311.521.010.3980.2651.711.140.4770.318
501.480.9840.3580.2381.651.100.4120.2741.861.240.5020.334
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.14 0.760 1.26 0.841 1.43 0.948
ty×10
3
, (kips)
–1
0.293 0.195 0.321 0.214 0.356 0.237
tr×10
3
, (kips)
–1
0.360 0.240 0.394 0.263 0.438 0.292
rx/ry 3.87 3.88 3.91
ry, in. 3.77 3.74 3.71
STEEL BEAM-COLUMN SELECTION TABLES 6–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W33
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 23

Shape
W33×
291 263 241
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3900.2600.3070.2040.4320.2870.3430.2280.4710.3130.3790.252
110.4290.2850.3070.2040.4750.3160.3430.2280.5180.3440.3790.252
120.4360.2900.3070.2040.4830.3220.3430.2280.5270.3510.3790.252
130.4450.2960.3070.2040.4930.3280.3430.2280.5380.3580.3800.253
140.4540.3020.3110.2070.5030.3350.3480.2310.5500.3660.3860.257
150.4650.3090.3150.2100.5150.3430.3520.2340.5630.3740.3910.260
160.4760.3170.3190.2120.5280.3510.3570.2380.5770.3840.3970.264
170.4880.3250.3230.2150.5420.3600.3620.2410.5930.3940.4030.268
180.5020.3340.3280.2180.5570.3700.3670.2440.6090.4050.4090.272
190.5170.3440.3320.2210.5730.3810.3730.2480.6280.4180.4160.276
200.5330.3540.3370.2240.5910.3930.3780.2520.6480.4310.4220.281
220.5680.3780.3460.2300.6310.4200.3900.2590.6930.4610.4360.290
240.6110.4060.3560.2370.6790.4520.4020.2670.7460.4960.4500.300
260.6600.4390.3670.2440.7340.4880.4150.2760.8090.5380.4660.310
280.7180.4780.3780.2510.7990.5320.4280.2850.8820.5870.4830.321
300.7860.5230.3900.2590.8750.5820.4430.2950.9680.6440.5010.333
320.8650.5760.4030.2680.9650.6420.4590.3051.070.7120.5200.346
340.9590.6380.4160.2771.070.7120.4760.3171.190.7910.5410.360
361.070.7130.4310.2871.200.7970.4940.3291.330.8870.5640.375
381.190.7940.4470.2971.330.8880.5140.3421.480.9880.5890.392
401.320.8800.4630.3081.480.9840.5350.3561.651.090.6190.412
421.460.9700.4820.3201.631.080.5620.3741.811.210.6630.441
441.601.060.5030.3351.791.190.5980.3981.991.320.7080.471
461.751.160.5330.3541.961.300.6350.4222.181.450.7530.501
481.901.270.5630.3742.131.420.6720.4472.371.580.7970.530
502.071.370.5920.3942.311.540.7080.4712.571.710.8420.560
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.58 1.05 1.76 1.17 1.96 1.30
ty×10
3
, (kips)
–1
0.390 0.260 0.432 0.287 0.470 0.313
tr×10
3
, (kips)
–1
0.479 0.320 0.530 0.353 0.577 0.385
rx/ry 3.91 3.91 3.90
ry, in. 3.68 3.66 3.62
6–24 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W33
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 24

Shape
W33×
221
c
201
c
169
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5220.3470.4160.2770.5880.3910.4610.3070.7200.4790.5660.377
110.5680.3780.4160.2770.6400.4260.4610.3070.8510.5660.5950.396
120.5780.3840.4160.2770.6510.4330.4610.3070.8800.5860.6080.405
130.5880.3910.4180.2780.6630.4410.4640.3090.9130.6070.6230.415
140.6000.3990.4240.2820.6760.4500.4710.3140.9500.6320.6380.425
150.6150.4090.4310.2860.6900.4590.4790.3190.9920.6600.6540.435
160.6300.4190.4370.2910.7060.4700.4870.3241.040.6920.6710.447
170.6480.4310.4440.2960.7240.4820.4950.3291.100.7310.6890.458
180.6660.4430.4510.3000.7430.4940.5040.3351.160.7750.7080.471
190.6870.4570.4590.3050.7640.5080.5120.3411.240.8250.7280.484
200.7090.4720.4670.3100.7880.5240.5220.3471.320.8810.7490.498
220.7600.5050.4830.3210.8450.5620.5410.3601.521.010.7940.528
240.8190.5450.5000.3330.9120.6070.5610.3741.781.190.8460.563
260.8890.5910.5190.3450.9910.6590.5840.3882.091.390.9050.602
280.9700.6460.5390.3581.080.7210.6080.4042.431.620.9990.664
301.070.7100.5600.3731.190.7940.6340.4222.791.851.110.737
321.180.7860.5840.3881.320.8800.6630.4413.172.111.210.810
341.320.8760.6090.4051.480.9840.6940.4623.582.381.330.883
361.480.9820.6370.4241.661.100.7280.4844.012.671.440.957
381.641.090.6670.4441.851.230.7820.5204.472.981.551.03
401.821.210.7190.4782.051.360.8460.5634.953.301.661.10
422.011.340.7720.5142.261.500.9100.606
442.201.470.8250.5492.481.650.9750.649
462.411.600.8790.5852.711.801.040.692
482.621.750.9320.6202.951.961.110.736
502.851.890.9860.6563.202.131.170.780
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.17 1.45 2.42 1.61 4.22 2.81
ty×10
3
, (kips)
–1
0.511 0.340 0.565 0.376 0.675 0.449
tr×10
3
, (kips)
–1
0.628 0.419 0.694 0.463 0.829 0.553
rx/ry 3.93 3.93 5.48
ry, in. 3.59 3.56 2.50
STEEL BEAM-COLUMN SELECTION TABLES 6–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W33
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 25

Shape
W33×
152
c
141
c
130
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.8090.5380.6370.4240.8910.5930.6930.4610.9820.6540.7630.508
110.9560.6360.6730.4471.050.7020.7350.4891.160.7750.8140.542
120.9880.6580.6890.4591.090.7260.7540.5021.200.8010.8370.557
131.030.6820.7070.4701.130.7530.7740.5151.250.8320.8600.572
141.070.7100.7250.4831.180.7840.7960.5291.300.8670.8850.589
151.110.7420.7450.4961.230.8200.8180.5441.360.9070.9110.606
161.170.7780.7650.5091.290.8600.8410.5601.430.9520.9390.624
171.230.8190.7870.5241.360.9070.8660.5761.511.000.9680.644
181.300.8660.8100.5391.440.9600.8930.5941.601.060.9990.665
191.390.9230.8340.5551.531.020.9210.6131.701.131.030.687
201.480.9870.8600.5721.641.090.9510.6331.821.211.070.711
221.711.140.9170.6101.911.271.020.6772.131.421.150.764
242.011.340.9820.6532.251.501.090.7282.521.681.240.826
262.361.571.070.7092.641.761.210.8082.961.971.410.939
282.741.821.200.7983.072.041.370.9113.432.281.601.06
303.152.091.330.8883.522.341.531.023.942.621.781.19
323.582.381.470.9794.002.661.691.124.482.981.981.32
344.042.691.611.074.523.011.851.235.063.372.171.45
364.533.021.751.165.073.372.021.345.683.782.371.58
385.053.361.891.265.653.762.181.456.324.212.571.71
405.603.722.031.356.264.162.351.56
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.82 3.21 5.33 3.54 5.99 3.98
ty×10
3
, (kips)
–1
0.744 0.495 0.805 0.535 0.872 0.580
tr×10
3
, (kips)
–1
0.914 0.609 0.989 0.659 1.07 0.714
rx/ry 5.47 5.51 5.52
ry, in. 2.47 2.43 2.39
6–26 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W33
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 26

Shape
W33× W30×
118
c, v
391
h
357
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.110.7380.8580.5710.2900.1930.2460.1630.3180.2120.2700.180
111.320.8790.9260.6160.3190.2120.2460.1630.3500.2330.2700.180
121.370.9100.9520.6340.3250.2160.2460.1630.3570.2370.2700.180
131.420.9460.9800.6520.3310.2210.2460.1640.3640.2420.2700.180
141.480.9881.010.6720.3390.2250.2480.1650.3720.2470.2730.182
151.561.031.040.6930.3460.2300.2500.1660.3800.2530.2760.183
161.641.091.080.7160.3550.2360.2520.1680.3900.2590.2780.185
171.731.151.110.7400.3640.2420.2550.1690.4000.2660.2810.187
181.841.221.150.7650.3740.2490.2570.1710.4120.2740.2840.189
191.961.311.190.7930.3850.2560.2590.1720.4240.2820.2870.191
202.111.401.240.8220.3970.2640.2620.1740.4370.2910.2900.193
222.481.651.340.8880.4240.2820.2670.1770.4670.3110.2960.197
242.951.971.480.9840.4560.3030.2720.1810.5030.3340.3020.201
263.472.311.701.130.4930.3280.2770.1840.5440.3620.3080.205
284.022.681.921.280.5360.3570.2820.1880.5930.3950.3150.210
304.623.072.161.440.5870.3910.2880.1920.6500.4330.3220.215
325.253.492.401.590.6470.4300.2940.1960.7180.4780.3300.220
345.933.952.641.760.7170.4770.3000.2000.7970.5300.3380.225
366.654.422.891.920.8020.5330.3070.2040.8920.5940.3460.230
387.414.933.142.090.8930.5940.3140.2090.9940.6620.3550.236
40 0.9900.6580.3210.2131.100.7330.3640.242
42 1.090.7260.3280.2181.210.8080.3730.248
44 1.200.7970.3360.2241.330.8870.3830.255
46 1.310.8710.3440.2291.460.9690.3940.262
48 1.430.9480.3530.2351.591.060.4050.270
50 1.551.030.3620.2411.721.150.4170.278
Other Constants and Properties
by×10
3
, (kip-ft)
–1
6.94 4.62 1.15 0.765 1.28 0.850
ty×10
3
, (kips)
–1
0.963 0.640 0.290 0.193 0.318 0.212
tr×10
3
, (kips)
–1
1.18 0.788 0.357 0.238 0.391 0.260
rx/ry 5.60 3.65 3.65
ry, in. 3.32 3.67 3.64
STEEL BEAM-COLUMN SELECTION TABLES 6–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W33-W30
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and Ω v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 27

Shape
W30×
326
h
292 261
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3480.2320.2990.1990.3880.2580.3360.2240.4340.2890.3780.251
110.3840.2560.2990.1990.4290.2850.3360.2240.4800.3200.3780.251
120.3920.2600.2990.1990.4370.2910.3360.2240.4900.3260.3780.251
130.4000.2660.3000.2000.4460.2970.3370.2250.5000.3330.3800.253
140.4080.2720.3030.2020.4560.3040.3410.2270.5120.3410.3850.256
150.4180.2780.3070.2040.4670.3110.3450.2300.5250.3490.3900.260
160.4290.2850.3100.2060.4790.3190.3490.2320.5390.3580.3950.263
170.4400.2930.3130.2080.4920.3280.3530.2350.5540.3680.4000.266
180.4530.3010.3170.2110.5070.3370.3580.2380.5700.3790.4060.270
190.4670.3110.3200.2130.5220.3480.3620.2410.5880.3920.4110.274
200.4820.3210.3240.2150.5390.3590.3660.2440.6080.4050.4170.277
220.5160.3430.3310.2200.5780.3850.3760.2500.6530.4340.4290.285
240.5560.3700.3390.2250.6230.4150.3850.2560.7060.4700.4410.294
260.6030.4010.3470.2310.6770.4500.3960.2630.7680.5110.4540.302
280.6580.4380.3550.2360.7400.4920.4060.2700.8410.5600.4680.312
300.7240.4810.3640.2420.8130.5410.4180.2780.9280.6170.4830.322
320.8000.5320.3730.2480.9010.5990.4300.2861.030.6860.4990.332
340.8910.5930.3830.2551.000.6690.4430.2951.150.7680.5160.343
360.9990.6650.3930.2621.130.7490.4560.3041.290.8610.5340.356
381.110.7410.4040.2691.260.8350.4710.3131.440.9590.5540.368
401.230.8210.4160.2771.390.9250.4860.3231.601.060.5750.382
421.360.9050.4280.2851.531.020.5020.3341.761.170.5970.398
441.490.9930.4410.2931.681.120.5200.3461.931.290.6260.416
461.631.090.4540.3021.841.220.5390.3582.111.410.6620.440
481.781.180.4690.3122.001.330.5640.3752.301.530.6980.464
501.931.280.4850.3222.171.450.5920.3942.501.660.7340.488
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.41 0.941 1.60 1.06 1.82 1.21
ty×10
3
, (kips)
–1
0.348 0.232 0.388 0.258 0.434 0.289
tr×10
3
, (kips)
–1
0.428 0.285 0.477 0.318 0.533 0.355
rx/ry 3.67 3.69 3.71
ry, in. 3.60 3.58 3.53
6–28 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W30
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 28

Shape
W30×
235 211 191
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4820.3210.4210.2800.5360.3570.4740.3160.6040.4020.5280.351
110.5340.3560.4210.2800.5950.3960.4740.3160.6630.4410.5280.351
120.5450.3630.4210.2800.6070.4040.4740.3160.6760.4500.5280.351
130.5570.3700.4240.2820.6200.4130.4790.3190.6910.4600.5340.355
140.5700.3790.4300.2860.6350.4230.4860.3230.7070.4710.5430.361
150.5840.3890.4360.2900.6510.4330.4930.3280.7260.4830.5510.367
160.6000.3990.4420.2940.6690.4450.5010.3330.7460.4960.5600.373
170.6170.4110.4480.2980.6880.4580.5090.3380.7680.5110.5700.379
180.6360.4230.4550.3020.7090.4720.5170.3440.7920.5270.5790.385
190.6560.4370.4610.3070.7320.4870.5250.3490.8180.5440.5890.392
200.6780.4510.4680.3110.7580.5040.5330.3550.8460.5630.5990.399
220.7290.4850.4830.3210.8150.5420.5510.3670.9110.6060.6210.413
240.7880.5250.4980.3310.8820.5870.5700.3790.9880.6570.6440.429
260.8590.5710.5140.3420.9620.6400.5910.3931.080.7180.6690.445
280.9420.6270.5310.3541.060.7020.6130.4081.190.7890.6960.463
301.040.6920.5500.3661.170.7770.6360.4231.310.8740.7260.483
321.160.7690.5700.3791.300.8640.6620.4401.470.9750.7580.504
341.300.8630.5910.3931.460.9710.6900.4591.651.100.7930.527
361.450.9680.6140.4091.641.090.7200.4791.851.230.8310.553
381.621.080.6390.4251.831.210.7530.5012.061.370.8890.591
401.801.190.6660.4432.021.340.8020.5332.281.520.9570.637
421.981.320.7040.4682.231.480.8580.5712.521.671.030.683
442.171.450.7480.4982.441.630.9140.6082.761.841.100.729
462.371.580.7920.5272.671.780.9700.6453.022.011.160.775
482.591.720.8370.5572.911.941.030.6833.292.191.230.821
502.811.870.8810.5863.162.101.080.7203.572.371.300.867
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.04 1.35 2.30 1.53 2.58 1.72
ty×10
3
, (kips)
–1
0.482 0.321 0.536 0.357 0.595 0.396
tr×10
3
, (kips)
–1
0.592 0.395 0.659 0.439 0.731 0.488
rx/ry 3.70 3.70 3.70
ry, in. 3.51 3.49 3.46
STEEL BEAM-COLUMN SELECTION TABLES 6–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W30
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
AISC_Part 06A:14th Ed. 2/4/11 8:47 AM Page 29

Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Shape
W30×
173
c
148
c
132
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.6780.4510.5870.3910.8010.5330.7130.4740.9170.6100.8150.542
110.7450.4950.5870.3910.9860.6560.7650.5091.130.7510.8820.587
120.7580.5050.5870.3911.030.6840.7840.5221.180.7830.9060.603
130.7730.5150.5960.3961.080.7180.8040.5351.230.8190.9310.620
140.7900.5260.6060.4031.140.7580.8260.5501.300.8620.9580.638
150.8090.5380.6160.4101.210.8040.8490.5651.370.9150.9870.657
160.8290.5520.6260.4171.290.8560.8730.5811.470.9751.020.677
170.8520.5670.6370.4241.380.9150.8980.5981.571.041.050.699
180.8780.5840.6490.4321.480.9820.9250.6161.691.121.080.721
190.9080.6040.6600.4391.591.060.9540.6351.821.211.120.746
200.9410.6260.6730.4471.721.150.9840.6551.981.321.160.772
221.010.6750.6980.4652.051.361.050.7002.361.571.250.831
241.100.7330.7260.4832.431.621.130.7512.811.871.360.904
261.210.8020.7560.5032.861.901.250.8283.302.191.541.02
281.330.8840.7890.5253.312.201.390.9233.822.541.721.15
301.480.9820.8250.5493.802.531.531.024.392.921.911.27
321.651.100.8640.5754.332.881.671.114.993.322.091.39
341.861.240.9060.6034.893.251.821.215.643.752.281.52
362.091.390.9640.6415.483.641.961.306.324.212.471.64
382.321.551.050.696
402.571.711.130.751
422.841.891.210.807
443.122.071.300.863
463.412.271.380.919
483.712.471.470.976
504.022.681.551.03
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.90 1.93 5.24 3.49 6.10 4.06
ty×10
3
, (kips)
–1
0.656 0.437 0.766 0.510 0.861 0.573
tr×10
3
, (kips)
–1
0.806 0.537 0.941 0.627 1.06 0.705
rx/ry 3.71 5.44 5.42
ry, in. 3.42 2.28 2.25
6–30 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
W30
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 30

Shape
W30×
124
c
116
c
108
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.9910.6590.8730.5811.070.7130.9430.6271.170.7821.030.685
111.220.8110.9490.6311.320.8801.030.6861.450.9681.140.755
121.270.8450.9760.6491.380.9181.060.7061.521.011.170.779
131.330.8851.000.6681.450.9621.090.7281.591.061.210.804
141.400.9311.030.6881.521.011.130.7501.681.121.250.830
151.480.9841.070.7101.611.071.160.7751.781.181.290.859
161.571.051.100.7321.721.141.200.8011.901.261.340.889
171.691.121.140.7571.841.231.240.8282.041.351.390.922
181.821.211.180.7821.991.321.290.8582.201.471.440.957
191.971.311.220.8102.161.441.340.8902.401.601.500.995
202.131.421.260.8402.351.561.390.9242.621.741.561.04
222.551.701.360.9072.831.881.511.003.162.111.701.13
243.042.021.511.013.362.241.701.133.772.511.961.31
263.572.371.721.143.952.631.941.294.422.942.241.49
284.142.751.921.284.583.052.181.455.133.412.521.68
304.753.162.131.425.263.502.421.615.883.912.811.87
325.403.602.351.565.983.982.671.786.694.453.102.06
346.104.062.561.706.754.492.921.947.565.033.402.26
366.844.552.781.857.575.043.172.11
Other Constants and Properties
by×10
3
, (kip-ft)
–1
6.60 4.39 7.24 4.82 8.12 5.40
ty×10
3
, (kips)
–1
0.915 0.609 0.977 0.650 1.05 0.701
tr×10
3
, (kips)
–1
1.12 0.749 1.20 0.800 1.29 0.863
rx/ry 5.43 5.48 5.53
ry, in. 2.23 2.19 2.15
STEEL BEAM-COLUMN SELECTION TABLES 6–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W30
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 31

Shape
W30× W27×
99
c
90
c, v
539
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.310.8721.140.7601.490.9941.260.8380.2100.1400.1890.125
111.631.081.270.8461.851.231.410.9360.2310.1540.1890.125
121.701.131.310.8741.931.281.450.9680.2350.1570.1890.125
131.791.191.360.9032.021.351.511.000.2400.1600.1890.125
141.891.261.410.9352.131.421.561.040.2450.1630.1900.126
152.011.331.460.9692.261.501.621.080.2510.1670.1910.127
162.141.431.511.012.411.601.681.120.2570.1710.1920.128
172.301.531.571.042.591.721.751.160.2640.1760.1930.128
182.501.661.631.092.791.861.821.210.2710.1810.1940.129
192.731.811.701.133.042.021.901.270.2790.1860.1950.130
203.001.991.781.183.342.221.991.320.2880.1920.1960.131
223.632.412.001.334.042.692.281.520.3080.2050.1990.132
244.312.872.321.544.803.202.651.760.3310.2200.2010.134
265.063.372.651.765.643.753.042.020.3580.2380.2030.135
285.873.912.991.996.544.353.442.290.3900.2600.2060.137
306.744.493.342.227.514.993.852.560.4280.2850.2080.139
327.675.103.692.468.545.684.272.840.4720.3140.2110.140
348.665.764.062.709.646.414.703.130.5240.3480.2130.142
36 0.5860.3900.2160.144
38 0.6530.4350.2190.146
40 0.7240.4810.2220.148
42 0.7980.5310.2250.149
44 0.8760.5830.2280.151
46 0.9570.6370.2310.154
48 1.040.6930.2340.156
50 1.130.7520.2370.158
Other Constants and Properties
by×10
3
, (kip-ft)
–1
9.23 6.14 10.3 6.83 0.815 0.542
ty×10
3
, (kips)
–1
1.15 0.766 1.27 0.845 0.210 0.140
tr×10
3
, (kips)
–1
1.41 0.943 1.56 1.04 0.258 0.172
rx/ry 5.57 5.60 3.48
ry, in. 2.10 2.09 3.65
6–32 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W30-W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and Ω v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 32

Shape
W27×
368
h
336
h
307
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3060.2040.2870.1910.3370.2240.3150.2100.3700.2460.3460.230
110.3400.2260.2870.1910.3750.2490.3150.2100.4130.2750.3460.230
120.3470.2310.2870.1910.3820.2540.3150.2100.4220.2810.3460.230
130.3550.2360.2890.1920.3910.2600.3180.2110.4320.2870.3490.232
140.3630.2420.2910.1940.4000.2660.3200.2130.4420.2940.3530.235
150.3730.2480.2940.1950.4110.2730.3230.2150.4540.3020.3560.237
160.3830.2550.2960.1970.4220.2810.3260.2170.4670.3110.3600.239
170.3940.2620.2990.1990.4350.2890.3290.2190.4810.3200.3640.242
180.4060.2700.3010.2000.4480.2980.3320.2210.4970.3300.3670.244
190.4190.2790.3040.2020.4630.3080.3360.2230.5130.3420.3710.247
200.4340.2890.3060.2040.4800.3190.3390.2250.5320.3540.3750.250
220.4670.3110.3120.2070.5170.3440.3450.2300.5740.3820.3830.255
240.5060.3360.3170.2110.5600.3730.3520.2340.6240.4150.3920.261
260.5520.3670.3230.2150.6120.4070.3590.2390.6830.4540.4010.267
280.6060.4030.3290.2190.6740.4480.3670.2440.7530.5010.4100.273
300.6700.4460.3350.2230.7460.4970.3750.2490.8360.5570.4200.279
320.7460.4970.3420.2270.8330.5540.3830.2550.9360.6230.4300.286
340.8390.5580.3480.2320.9380.6240.3910.2601.060.7030.4410.293
360.9410.6260.3550.2361.050.7000.4000.2661.180.7880.4520.301
381.050.6970.3630.2411.170.7800.4090.2721.320.8780.4640.309
401.160.7730.3700.2461.300.8640.4190.2791.460.9720.4760.317
421.280.8520.3780.2521.430.9520.4290.2851.611.070.4900.326
441.410.9350.3860.2571.571.050.4390.2921.771.180.5040.335
461.541.020.3950.2631.721.140.4510.3001.931.290.5180.345
481.671.110.4040.2691.871.240.4620.3082.101.400.5340.355
501.811.210.4130.2752.031.350.4750.3162.281.520.5510.367
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.28 0.850 1.41 0.941 1.57 1.04
ty×10
3
, (kips)
–1
0.306 0.204 0.337 0.224 0.370 0.246
tr×10
3
, (kips)
–1
0.376 0.251 0.414 0.276 0.455 0.303
rx/ry 3.51 3.51 3.52
ry, in. 3.48 3.45 3.41
STEEL BEAM-COLUMN SELECTION TABLES 6–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 33

Shape
W27×
281 258 235
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4020.2670.3810.2530.4390.2920.4180.2780.4810.3200.4610.307
110.4490.2990.3810.2530.4910.3270.4180.2780.5400.3590.4610.307
120.4590.3050.3810.2530.5020.3340.4190.2790.5520.3670.4630.308
130.4690.3120.3850.2560.5140.3420.4240.2820.5650.3760.4690.312
140.4810.3200.3890.2590.5270.3510.4290.2850.5800.3860.4750.316
150.4940.3290.3930.2620.5410.3600.4340.2890.5960.3960.4810.320
160.5080.3380.3970.2640.5570.3710.4390.2920.6140.4080.4870.324
170.5240.3480.4020.2670.5750.3820.4440.2960.6330.4210.4940.328
180.5410.3600.4060.2700.5940.3950.4500.2990.6550.4360.5000.333
190.5590.3720.4110.2730.6150.4090.4550.3030.6780.4510.5070.337
200.5800.3860.4160.2770.6370.4240.4610.3070.7040.4680.5140.342
220.6260.4170.4260.2830.6890.4590.4730.3150.7620.5070.5290.352
240.6810.4530.4360.2900.7510.5000.4850.3230.8320.5530.5440.362
260.7470.4970.4470.2970.8240.5490.4980.3320.9140.6080.5600.373
280.8240.5480.4580.3050.9120.6070.5120.3411.010.6740.5780.384
300.9170.6100.4700.3131.020.6760.5270.3511.130.7530.5960.397
321.030.6830.4820.3211.140.7600.5430.3611.270.8480.6160.410
341.160.7720.4960.3301.290.8580.5590.3721.440.9570.6370.424
361.300.8650.5100.3391.450.9620.5770.3841.611.070.6600.439
381.450.9640.5240.3491.611.070.5960.3961.801.200.6840.455
401.611.070.5400.3591.781.190.6160.4101.991.330.7100.472
421.771.180.5570.3701.971.310.6370.4242.201.460.7380.491
441.941.290.5740.3822.161.440.6600.4392.411.600.7760.516
462.121.410.5930.3952.361.570.6850.4562.631.750.8180.544
482.311.540.6140.4082.571.710.7210.4792.871.910.8610.573
502.511.670.6390.4252.791.850.7560.5033.112.070.9040.601
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.73 1.15 1.91 1.27 2.12 1.41
ty×10
3
, (kips)
–1
0.402 0.267 0.439 0.292 0.481 0.320
tr×10
3
, (kips)
–1
0.494 0.329 0.539 0.359 0.591 0.394
rx/ry 3.54 3.54 3.54
ry, in. 3.39 3.36 3.33
6–34 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 34

Shape
W27×
217 194 178
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5230.3480.5010.3330.5850.3890.5650.3760.6360.4230.6250.416
110.5870.3900.5010.3330.6580.4380.5650.3760.7180.4780.6250.416
120.6000.3990.5030.3350.6730.4480.5680.3780.7340.4890.6300.419
130.6140.4090.5100.3390.6890.4590.5760.3830.7530.5010.6400.426
140.6300.4190.5170.3440.7080.4710.5840.3890.7730.5150.6500.432
150.6480.4310.5240.3480.7280.4840.5930.3950.7960.5300.6610.439
160.6670.4440.5310.3530.7500.4990.6020.4010.8210.5460.6710.447
170.6890.4580.5380.3580.7750.5160.6120.4070.8490.5650.6830.454
180.7120.4740.5460.3630.8020.5330.6210.4130.8790.5850.6940.462
190.7380.4910.5540.3690.8310.5530.6310.4200.9120.6070.7060.470
200.7660.5100.5620.3740.8630.5740.6410.4270.9480.6310.7180.478
220.8300.5520.5790.3850.9370.6230.6630.4411.030.6860.7450.495
240.9060.6030.5970.3981.020.6820.6860.4561.130.7520.7730.514
260.9970.6630.6170.4101.130.7510.7110.4731.250.8300.8030.534
281.110.7350.6370.4241.250.8340.7370.4901.390.9250.8360.556
301.230.8220.6600.4391.400.9340.7660.5091.561.040.8710.580
321.390.9270.6830.4551.591.060.7970.5301.771.180.9100.606
341.571.050.7090.4711.791.190.8300.5522.001.330.9520.634
361.761.170.7360.4902.011.340.8670.5772.241.491.000.665
381.961.310.7660.5092.241.490.9060.6032.491.661.070.713
402.181.450.7980.5312.481.650.9680.6442.761.841.150.765
422.401.600.8420.5602.731.821.030.6873.052.031.230.817
442.631.750.8920.5933.002.001.100.7293.342.231.310.869
462.881.910.9420.6273.282.181.160.7713.662.431.380.920
483.132.090.9920.6603.572.381.220.8133.982.651.460.972
503.402.261.040.6933.882.581.290.8554.322.871.541.02
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.31 1.54 2.62 1.74 2.92 1.94
ty×10
3
, (kips)
–1
0.523 0.348 0.585 0.389 0.636 0.423
tr×10
3
, (kips)
–1
0.642 0.428 0.718 0.479 0.781 0.521
rx/ry 3.55 3.56 3.57
ry, in. 3.32 3.29 3.25
STEEL BEAM-COLUMN SELECTION TABLES 6–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 35

Shape
W27×
161
c
146
c
129
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.7040.4680.6920.4600.7920.5270.7680.5110.9100.6060.9020.600
110.7930.5270.6920.4600.8830.5870.7680.5111.150.7630.9760.649
120.8110.5400.6980.4650.9010.6000.7770.5171.210.8021.000.666
130.8320.5540.7100.4720.9220.6140.7910.5261.270.8461.030.684
140.8550.5690.7220.4800.9460.6290.8050.5351.350.8971.060.703
150.8810.5860.7350.4890.9740.6480.8190.5451.440.9551.090.723
160.9090.6040.7470.4971.010.6690.8350.5551.531.021.120.744
170.9390.6250.7610.5061.040.6920.8500.5661.651.101.150.767
180.9730.6470.7750.5151.080.7180.8670.5771.781.181.190.791
191.010.6720.7890.5251.120.7460.8840.5881.921.281.230.816
201.050.6990.8040.5351.170.7760.9010.6002.091.391.270.843
221.140.7610.8350.5561.270.8460.9390.6252.511.671.360.903
241.250.8350.8690.5781.400.9300.9800.6522.991.991.460.973
261.390.9240.9060.6031.551.031.020.6813.512.331.641.09
281.551.030.9460.6301.731.151.070.7144.072.711.821.21
301.741.160.9900.6591.951.301.130.7504.673.112.001.33
321.981.311.040.6912.221.481.190.7895.313.542.181.45
342.231.481.090.7262.501.671.270.8436.003.992.361.57
362.501.661.170.7812.811.871.380.9196.734.472.541.69
382.791.851.270.8443.132.081.500.995
403.092.051.360.9073.472.311.611.07
423.402.261.460.9703.822.541.731.15
443.732.481.551.034.192.791.841.23
464.082.721.651.104.583.051.961.30
484.442.961.741.164.993.322.071.38
504.823.211.841.225.413.602.191.46
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.27 2.17 3.65 2.43 6.19 4.12
ty×10
3
, (kips)
–1
0.702 0.467 0.773 0.514 0.884 0.588
tr×10
3
, (kips)
–1
0.862 0.575 0.950 0.633 1.09 0.724
rx/ry 3.56 3.59 5.07
ry, in. 3.23 3.20 2.21
6–36 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 36

Shape
W27×
114
c
102
c
94
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.050.6961.040.6911.210.8041.170.7771.340.8901.280.853
111.310.8731.130.7541.511.011.280.8541.671.111.420.944
121.370.9131.170.7751.581.051.320.8801.751.171.460.974
131.450.9621.200.7981.661.111.360.9071.841.231.511.01
141.531.021.240.8221.761.171.410.9351.951.301.561.04
151.641.091.270.8471.861.241.450.9662.071.381.621.07
161.751.171.310.8741.991.331.501.002.211.471.671.11
171.891.251.360.9032.151.431.551.032.381.581.741.15
182.041.361.400.9342.331.551.611.072.591.721.801.20
192.211.471.450.9672.531.691.671.112.821.881.881.25
202.411.601.511.002.771.841.741.163.092.061.951.30
222.901.931.631.083.342.221.891.253.742.492.161.44
243.462.301.801.203.982.652.151.434.452.962.501.66
264.062.702.041.364.673.112.441.635.223.472.841.89
284.703.132.271.515.423.602.741.826.064.033.192.12
305.403.592.511.676.224.143.032.026.954.623.542.36
326.144.092.751.837.074.713.332.227.915.263.902.59
346.944.612.991.997.995.313.632.428.935.944.262.83
367.785.173.232.15
Other Constants and Properties
by×10
3
, (kip-ft)
–1
7.23 4.81 8.21 5.46 9.18 6.11
ty×10
3
, (kips)
–1
0.994 0.661 1.11 0.741 1.21 0.805
tr×10
3
, (kips)
–1
1.22 0.814 1.37 0.912 1.49 0.991
rx/ry 5.05 5.12 5.14
ry, in. 2.18 2.15 2.12
STEEL BEAM-COLUMN SELECTION TABLES 6–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 37

Shape
W27× W24×
84
c
370
h
335
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.531.021.460.9710.3060.2040.3150.2100.3400.2260.3490.232
11 1.921.281.631.090.3450.2300.3150.2100.3840.2550.3490.232
12 2.021.341.691.120.3530.2350.3160.2100.3930.2610.3510.233
13 2.121.411.751.160.3620.2410.3190.2120.4030.2680.3540.235
14 2.251.491.811.200.3720.2470.3210.2130.4140.2760.3570.237
15 2.391.591.881.250.3820.2540.3230.2150.4260.2840.3590.239
16 2.561.701.951.300.3940.2620.3260.2170.4400.2930.3620.241
17 2.761.842.031.350.4070.2710.3280.2180.4550.3030.3650.243
18 3.001.992.111.410.4220.2800.3300.2200.4710.3140.3680.245
19 3.282.182.211.470.4370.2910.3330.2210.4890.3250.3710.247
20 3.622.412.311.530.4540.3020.3350.2230.5090.3380.3750.249
22 4.382.912.641.760.4940.3280.3400.2260.5540.3680.3810.254
24 5.213.473.062.040.5400.3590.3460.2300.6080.4040.3880.258
26 6.124.073.492.320.5960.3970.3510.2340.6720.4470.3950.263
28 7.104.723.932.620.6630.4410.3570.2370.7500.4990.4020.267
30 8.155.424.382.920.7430.4950.3630.2410.8430.5610.4090.272
32 9.276.174.843.220.8420.5600.3690.2450.9570.6360.4170.277
3410.56.965.313.530.9500.6320.3750.2491.080.7180.4250.283
36 1.070.7090.3810.2541.210.8060.4330.288
38 1.190.7900.3880.2581.350.8970.4420.294
40 1.320.8750.3950.2631.490.9940.4510.300
42 1.450.9650.4020.2671.651.100.4600.306
44 1.591.060.4090.2721.811.200.4700.313
46 1.741.160.4170.2771.981.320.4800.319
48 1.891.260.4250.2832.151.430.4910.326
50 2.051.370.4330.2882.341.550.5020.334
Other Constants and Properties
by×10
3
, (kip-ft)
–1
10.7 7.14 1.33 0.888 1.50 1.00
ty×10
3
, (kips)
–1
1.35 0.900 0.306 0.204 0.340 0.226
tr×10
3
, (kips)
–1
1.66 1.11 0.376 0.251 0.417 0.278
rx/ry 5.17 3.39 3.41
ry, in. 2.07 3.27 3.23
6–38 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W27-W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 38

Shape
W24×
306
h
279
h
250
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3720.2480.3860.2570.4080.2710.4270.2840.4540.3020.4790.319
110.4220.2810.3860.2570.4630.3080.4270.2840.5170.3440.4790.319
120.4320.2870.3890.2590.4740.3160.4300.2860.5300.3530.4830.322
130.4430.2950.3920.2610.4870.3240.4340.2890.5440.3620.4890.325
140.4550.3030.3960.2630.5010.3330.4380.2920.5600.3730.4940.329
150.4690.3120.3990.2660.5160.3430.4430.2940.5780.3840.4990.332
160.4840.3220.4030.2680.5330.3550.4470.2970.5970.3970.5050.336
170.5010.3330.4060.2700.5520.3670.4510.3000.6190.4120.5100.340
180.5200.3460.4100.2730.5730.3810.4560.3030.6420.4270.5160.343
190.5400.3590.4140.2750.5950.3960.4610.3060.6680.4450.5220.347
200.5620.3740.4180.2780.6200.4130.4650.3100.6970.4630.5280.351
220.6120.4070.4260.2830.6770.4510.4750.3160.7620.5070.5410.360
240.6730.4480.4340.2890.7460.4960.4850.3230.8410.5590.5540.368
260.7460.4960.4420.2940.8280.5510.4960.3300.9350.6220.5670.378
280.8340.5550.4510.3000.9270.6170.5070.3371.050.6980.5820.387
300.9390.6250.4610.3061.050.6970.5190.3451.190.7920.5970.397
321.070.7110.4700.3131.190.7930.5310.3531.350.9010.6130.408
341.210.8020.4800.3201.350.8950.5440.3621.531.020.6300.419
361.350.8990.4910.3271.511.000.5570.3711.711.140.6480.431
381.511.000.5020.3341.681.120.5710.3801.911.270.6670.444
401.671.110.5130.3411.861.240.5860.3902.121.410.6870.457
421.841.220.5250.3492.051.370.6010.4002.331.550.7080.471
442.021.340.5380.3582.251.500.6180.4112.561.700.7310.486
462.211.470.5510.3672.461.640.6350.4232.801.860.7550.502
482.401.600.5650.3762.681.780.6530.4353.052.030.7810.519
502.611.730.5790.3862.911.940.6730.4483.312.200.8140.541
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.66 1.11 1.85 1.23 2.08 1.39
ty×10
3
, (kips)
–1
0.372 0.248 0.408 0.271 0.454 0.302
tr×10
3
, (kips)
–1
0.457 0.305 0.501 0.334 0.558 0.372
rx/ry 3.41 3.41 3.41
ry, in. 3.20 3.17 3.14
STEEL BEAM-COLUMN SELECTION TABLES 6–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
AISC_Part 06A:14th Ed. 2/4/11 8:48 AM Page 39

Shape
W24×
229 207 192
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4970.3310.5280.3510.5500.3660.5880.3910.5910.3930.6370.424
110.5670.3770.5280.3510.6290.4190.5890.3920.6770.4500.6390.425
120.5810.3870.5340.3550.6460.4300.5960.3970.6940.4620.6470.431
130.5970.3970.5400.3590.6640.4420.6040.4020.7140.4750.6560.437
140.6150.4090.5470.3640.6840.4550.6120.4070.7360.4900.6650.443
150.6350.4220.5530.3680.7060.4700.6200.4120.7600.5060.6750.449
160.6570.4370.5600.3720.7310.4860.6280.4180.7870.5240.6840.455
170.6810.4530.5670.3770.7580.5050.6370.4240.8160.5430.6940.462
180.7070.4710.5740.3820.7880.5250.6460.4290.8490.5650.7050.469
190.7360.4900.5810.3870.8210.5470.6550.4350.8850.5890.7150.476
200.7680.5110.5880.3910.8580.5710.6640.4420.9240.6150.7260.483
220.8420.5600.6040.4020.9420.6260.6830.4541.020.6750.7490.498
240.9300.6190.6200.4121.040.6940.7040.4681.130.7490.7730.514
261.040.6900.6370.4241.170.7750.7250.4831.260.8370.7990.532
281.170.7760.6550.4361.310.8740.7490.4981.420.9440.8270.550
301.330.8830.6740.4481.500.9960.7730.5141.621.080.8570.570
321.511.000.6940.4621.701.130.8000.5321.841.230.8880.591
341.701.130.7160.4761.921.280.8280.5512.081.380.9230.614
361.911.270.7390.4912.161.430.8580.5712.331.550.9600.639
382.131.420.7630.5082.401.600.8910.5932.601.731.000.666
402.361.570.7890.5252.661.770.9260.6162.881.921.050.697
422.601.730.8170.5442.931.950.9670.6433.172.111.110.740
442.851.900.8470.5633.222.141.020.6793.482.321.170.782
463.122.080.8840.5883.522.341.070.7153.812.531.240.824
483.402.260.9280.6173.832.551.130.7514.152.761.300.866
503.682.450.9710.6464.162.771.180.7874.502.991.360.908
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.31 1.54 2.60 1.73 2.83 1.88
ty×10
3
, (kips)
–1
0.497 0.331 0.550 0.366 0.591 0.393
tr×10
3
, (kips)
–1
0.611 0.407 0.676 0.451 0.726 0.484
rx/ry 3.44 3.44 3.42
ry, in. 3.11 3.08 3.07
6–40 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 40

Shape
W24×
176 162 146
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.6460.4300.6970.4640.6990.4650.7610.5060.7770.5170.8520.567
110.7420.4930.7000.4660.8010.5330.7640.5080.8940.5950.8570.571
120.7610.5060.7100.4720.8220.5470.7760.5160.9180.6110.8720.580
130.7830.5210.7210.4790.8460.5630.7880.5240.9450.6290.8870.590
140.8080.5370.7310.4870.8720.5800.8010.5330.9750.6490.9020.600
150.8350.5550.7430.4940.9010.6000.8140.5411.010.6710.9180.611
160.8650.5750.7540.5020.9340.6210.8270.5501.050.6960.9350.622
170.8980.5970.7660.5100.9690.6450.8410.5601.090.7230.9520.633
180.9340.6220.7780.5181.010.6710.8550.5691.130.7530.9700.645
190.9750.6490.7910.5261.050.7000.8700.5791.180.7860.9880.657
201.020.6780.8040.5351.100.7310.8860.5891.240.8231.010.670
221.120.7460.8320.5531.210.8040.9180.6111.360.9071.050.697
241.250.8290.8610.5731.340.8920.9530.6341.521.011.090.727
261.400.9280.8930.5941.500.9990.9910.6601.701.131.140.759
281.581.050.9270.6171.701.131.030.6871.931.291.190.794
301.801.200.9640.6411.941.291.080.7162.211.471.250.832
322.051.371.000.6682.211.471.130.7492.521.681.310.874
342.321.541.050.6972.491.661.180.7842.841.891.390.926
362.601.731.090.7282.791.861.240.8263.192.121.501.00
382.901.931.150.7673.112.071.330.8863.552.361.621.08
403.212.131.230.8183.452.291.420.9473.932.621.731.15
423.542.351.310.8693.802.531.511.014.342.891.851.23
443.882.581.380.9204.172.781.601.074.763.171.961.30
464.242.821.460.9704.563.031.691.135.203.462.071.38
484.623.071.531.024.963.301.781.195.673.772.191.45
505.013.341.611.075.393.581.871.256.154.092.301.53
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.10 2.06 3.39 2.26 3.82 2.54
ty×10
3
, (kips)
–1
0.646 0.430 0.699 0.465 0.777 0.517
tr×10
3
, (kips)
–1
0.794 0.529 0.858 0.572 0.954 0.636
rx/ry 3.45 3.41 3.42
ry, in. 3.04 3.05 3.01
STEEL BEAM-COLUMN SELECTION TABLES 6–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 41

Shape
W24×
131 117
c
104
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.8650.5760.9630.6410.9940.6611.090.7251.140.7591.230.820
111.000.6650.9720.6461.130.7521.100.7331.300.8621.250.832
121.030.6840.9890.6581.160.7711.120.7481.330.8841.280.849
131.060.7041.010.6701.190.7941.150.7621.370.9081.300.867
141.090.7271.030.6831.230.8201.170.7781.410.9361.330.886
151.130.7531.050.6961.280.8501.190.7941.450.9661.360.905
161.170.7811.070.7101.330.8821.220.8101.501.001.390.925
171.220.8131.090.7241.380.9191.240.8281.561.041.420.946
181.270.8481.110.7391.440.9591.270.8461.631.081.460.969
191.330.8861.130.7541.511.001.300.8651.701.131.490.992
201.390.9281.160.7701.581.051.330.8851.791.191.531.02
221.541.031.210.8041.751.161.390.9271.991.321.611.07
241.721.141.260.8411.961.301.460.9742.231.481.691.13
261.941.291.330.8822.211.471.541.032.521.681.791.19
282.211.471.390.9282.531.681.631.082.891.921.901.27
302.531.681.470.9772.901.931.731.153.322.212.061.37
322.881.921.561.043.302.201.891.263.772.512.291.52
343.252.161.701.133.722.482.071.384.262.832.511.67
363.652.431.841.234.182.782.251.504.783.182.741.82
384.062.701.991.324.653.102.431.625.323.542.971.98
404.503.002.131.425.163.432.621.745.903.923.202.13
424.963.302.281.525.683.782.801.866.504.333.442.29
445.453.622.421.616.244.152.981.997.134.753.672.44
465.953.962.571.716.824.543.172.117.805.193.912.60
486.484.312.711.807.424.943.352.238.495.654.142.76
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.37 2.91 4.99 3.32 5.71 3.80
ty×10
3
, (kips)
–1
0.865 0.576 0.971 0.646 1.09 0.724
tr×10
3
, (kips)
–1
1.06 0.709 1.19 0.795 1.34 0.891
rx/ry 3.43 3.44 3.47
ry, in. 2.97 2.94 2.91
6–42 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 42

STEEL BEAM-COLUMN SELECTION TABLES 6–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
W24×
103
c
94
c
84
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.130.7531.270.8471.260.8401.400.9331.460.9681.591.06
111.521.011.420.9441.671.111.571.051.921.281.801.20
121.621.081.460.9721.781.181.621.082.031.351.871.24
131.731.151.511.001.901.261.681.122.171.441.931.28
141.861.231.551.032.041.361.731.152.331.552.001.33
152.001.331.611.072.211.471.791.192.521.682.081.38
162.181.451.661.102.401.601.861.242.751.832.161.44
172.381.581.721.142.621.741.931.283.012.002.251.49
182.611.741.781.192.881.922.011.333.322.212.341.56
192.881.921.851.233.182.122.091.393.682.452.451.63
203.192.121.921.283.532.352.171.454.082.712.561.70
223.862.572.091.394.272.842.431.614.943.282.951.96
244.603.062.371.585.083.382.761.845.883.913.372.24
265.403.592.651.775.963.973.102.066.904.593.802.53
286.264.162.941.956.924.603.442.298.005.324.242.82
307.194.783.222.147.945.283.792.529.186.114.673.11
328.185.443.502.339.036.014.132.7510.46.955.113.40
Other Constants and Properties
by×10
3
, (kip-ft)
–1
8.58 5.71 9.50 6.32 10.9 7.27
ty×10
3
, (kips)
–1
1.10 0.733 1.21 0.802 1.35 0.900
tr×10
3
, (kips)
–1
1.35 0.903 1.48 0.987 1.66 1.11
rx/ry 5.03 4.98 5.02
ry, in. 1.99 1.98 1.95
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/17/12 10:01 AM Page 43

Shape
W24×
76 68
c
62
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.641.091.781.191.871.242.011.342.081.382.331.55
6 1.781.181.781.192.031.352.011.342.401.602.441.63
7 1.831.221.791.192.091.392.041.362.541.692.561.70
8 1.891.261.851.232.171.442.111.402.721.812.681.78
9 1.971.311.911.272.261.502.181.452.941.962.821.87
10 2.061.371.971.312.361.572.261.503.222.142.971.97
11 2.171.442.041.362.491.662.341.563.592.393.132.08
12 2.301.532.111.412.641.762.431.624.072.713.322.21
13 2.451.632.191.462.821.882.531.684.673.113.532.35
14 2.621.752.281.523.032.022.631.755.423.603.772.51
15 2.841.892.371.583.292.192.751.836.224.144.152.76
16 3.102.062.471.643.592.392.871.917.084.714.623.08
17 3.402.262.581.713.972.643.012.007.995.315.113.40
18 3.762.502.691.794.422.943.162.108.965.965.603.72
19 4.192.792.821.884.923.273.352.239.986.646.104.06
20 4.643.093.022.015.453.633.662.4311.17.366.614.40
22 5.623.743.532.356.604.394.292.8513.48.907.645.08
24 6.684.454.052.697.855.224.943.29
26 7.845.224.583.059.216.135.613.74
28 9.106.055.123.4110.77.116.304.19
3010.46.955.663.7712.38.166.994.65
3211.97.906.214.13
Other Constants and Properties
by×10
3
, (kip-ft)
–1
12.5 8.29 14.5 9.67 22.7 15.1
ty×10
3
, (kips)
–1
1.49 0.992 1.66 1.11 1.84 1.22
tr×10
3
, (kips)
–1
1.83 1.22 2.04 1.36 2.25 1.50
rx/ry 5.05 5.11 6.69
ry, in. 1.92 1.87 1.38
6–44 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 44

Shape
W24× W21×
55
c, v
201 182
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.421.612.661.770.5630.3750.6720.4470.6230.4150.7480.498
6 2.801.872.821.870.5870.3910.6720.4470.6500.4320.7480.498
7 2.971.982.951.960.5960.3970.6720.4470.6600.4390.7480.498
8 3.182.113.102.070.6060.4030.6720.4470.6720.4470.7480.498
9 3.452.293.272.180.6180.4110.6720.4470.6850.4560.7480.498
10 3.792.523.462.300.6320.4210.6720.4470.7000.4660.7480.498
11 4.232.813.672.440.6480.4310.6750.4490.7180.4780.7520.500
12 4.803.193.912.600.6650.4430.6820.4540.7370.4910.7610.507
13 5.573.704.182.780.6850.4550.6900.4590.7590.5050.7710.513
14 6.464.294.513.000.7060.4700.6980.4640.7840.5210.7800.519
15 7.414.935.083.380.7300.4860.7060.4700.8110.5390.7900.526
16 8.435.615.683.780.7570.5040.7140.4750.8410.5590.8010.533
17 9.526.336.294.180.7860.5230.7230.4810.8740.5810.8110.540
1810.77.106.914.600.8190.5450.7310.4870.9100.6060.8220.547
1911.97.917.555.020.8540.5680.7400.4920.9510.6320.8330.554
2013.28.778.205.460.8940.5950.7490.4980.9950.6620.8440.562
2215.910.69.526.340.9850.6550.7680.5111.100.7300.8680.577
24 1.100.7290.7880.5241.220.8130.8930.594
26 1.230.8180.8090.5381.370.9140.9190.612
28 1.390.9260.8310.5531.561.040.9470.630
30 1.591.060.8540.5681.791.190.9770.650
32 1.811.210.8780.5842.031.351.010.671
34 2.051.360.9040.6022.301.531.040.694
36 2.301.530.9320.6202.571.711.080.718
38 2.561.700.9610.6402.871.911.120.744
40 2.831.890.9930.6603.182.111.160.772
Other Constants and Properties
by×10
3
, (kip-ft)
–1
26.8 17.8 2.68 1.78 2.99 1.99
ty×10
3
, (kips)
–1
2.06 1.37 0.563 0.375 0.623 0.415
tr×10
3
, (kips)
–1
2.53 1.69 0.692 0.461 0.765 0.510
rx/ry 6.80 3.14 3.13
ry, in. 1.34 3.02 3.00
STEEL BEAM-COLUMN SELECTION TABLES 6–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W24-W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 45

Shape
W21×
166 147 132
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.6840.4550.8250.5490.7730.5140.9550.6350.8610.5731.070.712
60.7140.4750.8250.5490.8080.5370.9550.6350.9000.5991.070.712
70.7250.4820.8250.5490.8200.5460.9550.6350.9140.6081.070.712
80.7380.4910.8250.5490.8350.5560.9550.6350.9310.6201.070.712
90.7530.5010.8250.5490.8530.5670.9550.6350.9510.6331.070.712
100.7700.5120.8250.5490.8730.5810.9550.6350.9730.6471.070.712
110.7890.5250.8290.5520.8950.5960.9630.6410.9990.6641.080.719
120.8110.5400.8410.5590.9200.6120.9780.6511.030.6831.100.731
130.8350.5560.8520.5670.9490.6310.9930.6611.060.7051.120.743
140.8620.5740.8640.5750.9800.6521.010.6711.090.7281.140.756
150.8920.5940.8760.5831.020.6751.020.6821.130.7551.160.769
160.9250.6160.8880.5911.050.7011.040.6931.180.7841.180.782
170.9620.6400.9010.5991.100.7301.060.7041.230.8161.200.796
181.000.6670.9140.6081.140.7611.080.7161.280.8521.220.811
191.050.6970.9270.6171.200.7961.090.7281.340.8921.240.826
201.100.7290.9410.6261.250.8351.110.7401.410.9351.260.841
221.210.8050.9700.6451.390.9241.150.7671.561.041.310.874
241.350.8971.000.6661.551.031.190.7951.741.161.370.910
261.521.011.030.6881.751.171.240.8251.971.311.430.948
281.721.151.070.7112.001.331.290.8582.251.501.490.990
301.981.311.110.7362.291.531.340.8942.591.721.561.04
32 2.251.501.150.7632.611.741.400.9332.951.961.631.09
34 2.541.691.190.7922.951.961.470.9753.322.211.721.14
36 2.851.891.240.8233.302.201.541.023.732.481.851.23
38 3.172.111.290.8573.682.451.641.094.152.761.981.32
40 3.512.341.340.8954.082.711.751.164.603.062.121.41
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.30 2.19 3.85 2.56 4.33 2.88
ty×10
3
, (kips)
–1
0.684 0.455 0.773 0.514 0.861 0.573
tr×10
3
, (kips)
–1
0.841 0.560 0.950 0.633 1.06 0.705
rx/ry 3.13 3.11 3.11
ry, in. 2.99 2.95 2.93
6–46 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 46

Shape
W21×
122 111 101
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.9300.6191.160.7721.020.6821.280.8501.130.7541.410.937
60.9730.6471.160.7721.070.7131.280.8501.180.7851.410.937
70.9880.6581.160.7721.090.7251.280.8501.200.7971.410.937
81.010.6701.160.7721.110.7391.280.8501.220.8101.410.937
91.030.6841.160.7721.130.7541.280.8501.240.8261.410.937
101.050.7001.160.7721.160.7731.280.8501.270.8461.410.937
111.080.7191.170.7811.190.7931.290.8611.310.8691.430.951
121.110.7391.190.7951.230.8161.320.8771.340.8941.460.969
131.150.7631.220.8091.270.8421.340.8941.390.9231.490.989
141.190.7891.240.8231.310.8711.370.9111.430.9551.521.01
151.230.8171.260.8381.360.9031.400.9291.490.9901.551.03
161.280.8491.280.8541.410.9391.420.9471.551.031.581.05
171.330.8841.310.8701.470.9791.450.9661.611.071.611.07
181.390.9241.330.8871.541.021.480.9861.691.121.651.10
191.450.9671.360.9051.611.071.511.011.771.181.691.12
201.521.011.390.9231.691.121.551.031.861.231.721.15
221.691.131.450.9611.881.251.621.082.061.371.811.20
241.891.261.511.002.111.401.691.132.321.541.901.26
262.141.431.581.052.391.591.781.182.631.752.001.33
282.451.631.651.102.741.821.871.243.022.012.111.41
302.821.871.741.163.142.091.971.313.462.302.241.49
323.202.131.831.223.582.382.121.413.942.622.461.64
343.622.411.971.314.042.692.311.534.452.962.691.79
364.062.702.121.414.533.012.501.664.993.322.921.94
384.523.012.281.525.053.362.691.795.563.703.142.09
405.013.332.441.625.593.722.881.916.164.103.372.24
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.71 3.14 5.22 3.48 5.77 3.84
ty×10
3
, (kips)
–1
0.930 0.619 1.02 0.682 1.12 0.746
tr×10
3
, (kips)
–1
1.14 0.762 1.26 0.839 1.38 0.918
rx/ry 3.11 3.12 3.12
ry, in. 2.92 2.90 2.89
STEEL BEAM-COLUMN SELECTION TABLES 6–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 47

Shape
W21×
93 83
c
73
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.220.8141.611.071.380.9161.821.211.621.082.071.38
61.370.9101.611.071.531.021.821.211.781.192.071.38
71.420.9481.631.091.601.061.851.231.851.232.111.40
81.490.9931.681.121.671.111.901.261.931.282.181.45
91.571.051.731.151.771.171.961.302.021.352.251.49
101.671.111.781.181.871.252.021.342.141.432.321.55
111.781.191.831.222.001.332.091.392.291.522.401.60
121.911.271.891.252.151.432.161.432.471.642.491.66
132.071.381.951.292.331.552.231.482.671.782.581.72
142.251.502.011.342.531.692.311.542.921.942.681.79
152.461.642.081.382.781.852.401.603.202.132.791.86
162.711.802.151.433.062.042.491.663.542.352.911.94
173.012.002.231.483.402.262.591.723.932.623.042.02
183.362.232.321.543.802.532.701.804.412.933.182.11
193.742.492.411.604.232.822.821.884.913.273.332.22
204.152.762.511.674.693.122.951.965.443.623.582.38
225.023.342.771.845.673.783.372.246.584.384.132.75
245.973.973.122.076.754.493.812.537.835.214.683.12
267.014.663.462.307.935.274.252.839.196.125.243.49
288.135.413.812.549.196.124.693.1210.77.095.813.86
309.336.214.162.7710.67.025.133.4112.28.146.374.24
Other Constants and Properties
by×10
3
, (kip-ft)
–1
10.3 6.83 11.7 7.77 13.4 8.91
ty×10
3
, (kips)
–1
1.22 0.814 1.37 0.911 1.55 1.03
tr×10
3
, (kips)
–1
1.50 1.00 1.68 1.12 1.91 1.27
rx/ry 4.73 4.74 4.77
ry, in. 1.84 1.83 1.81
6–48 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed. 2/4/11 8:49 AM Page 48

Shape
W21×
68
c
62
c
57
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.771.182.231.481.981.312.471.652.181.452.761.84
6 1.951.302.231.482.181.452.471.652.561.712.911.94
7 2.021.342.271.512.261.502.541.692.731.823.042.03
8 2.101.402.351.562.351.562.621.742.941.963.192.12
9 2.211.472.431.622.471.642.711.813.212.143.352.23
10 2.331.552.511.672.611.742.811.873.562.373.532.35
11 2.481.652.611.732.781.852.921.944.022.683.732.48
12 2.671.772.701.802.981.983.042.024.603.063.952.63
13 2.891.922.811.873.222.143.162.105.323.544.202.79
14 3.162.102.931.953.532.353.302.196.174.104.482.98
15 3.472.313.052.033.892.593.442.297.084.714.943.29
16 3.842.553.192.124.312.873.612.408.065.365.473.64
17 4.272.843.342.224.833.213.782.529.106.056.014.00
18 4.793.193.502.335.413.603.982.6510.26.796.554.36
19 5.343.553.722.486.034.014.332.8811.47.567.104.72
20 5.913.934.032.686.684.454.703.1312.68.387.655.09
22 7.164.764.663.108.095.385.463.6315.210.18.765.83
24 8.525.675.313.539.636.406.244.15
26 9.996.655.953.9611.37.527.024.67
2811.67.716.604.3913.18.727.815.20
3013.38.857.264.83
Other Constants and Properties
by×10
3
, (kip-ft)
–1
14.6 9.71 16.4 10.9 24.1 16.0
ty×10
3
, (kips)
–1
1.67 1.11 1.83 1.21 2.00 1.33
tr×10
3
, (kips)
–1
2.05 1.37 2.24 1.49 2.46 1.64
rx/ry 4.78 4.82 6.19
ry, in. 1.80 1.77 1.35
STEEL BEAM-COLUMN SELECTION TABLES 6–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06A:14th Ed._ 2/17/12 10:14 AM Page 49

Shape
W21×
55
c
50
c
48
c, f
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.291.522.831.882.541.693.242.152.711.803.362.23
6 2.521.682.831.883.012.003.452.303.001.993.362.23
7 2.611.742.921.943.222.143.632.413.112.073.472.31
8 2.731.813.022.013.482.313.812.543.252.163.612.40
9 2.861.913.142.093.812.544.022.683.422.283.762.50
10 3.032.023.272.174.252.824.262.833.632.423.922.61
11 3.232.153.402.264.833.214.523.013.882.584.102.73
12 3.472.313.552.365.573.714.823.214.192.794.302.86
13 3.762.503.712.476.524.345.163.434.563.044.513.00
14 4.112.733.892.597.565.035.673.775.023.344.743.16
15 4.553.034.082.718.685.776.364.235.603.725.013.33
16 5.073.384.292.869.876.577.064.706.314.205.303.52
17 5.713.804.533.0111.17.427.785.177.134.745.753.82
18 6.404.264.923.2712.58.318.515.667.995.326.354.22
19 7.134.755.383.5813.99.269.246.158.905.926.974.63
20 7.905.265.863.9015.410.39.996.659.866.567.605.06
21 8.715.806.344.2217.011.310.77.1510.97.238.255.49
22 9.566.366.844.55 11.97.948.915.93
2310.56.957.344.88 13.08.689.586.37
2411.47.577.845.22 14.29.4510.36.82
2512.38.228.355.56 15.410.310.97.28
2613.48.898.875.90 16.711.111.67.75
2714.49.589.386.24 18.012.012.38.22
2815.510.39.906.59
Other Constants and Properties
by×10
3
, (kip-ft)
–1
19.4 12.9 29.2 19.4 24.2 16.1
ty×10
3
, (kips)
–1
2.06 1.37 2.27 1.51 2.37 1.58
tr×10
3
, (kips)
–1
2.53 1.69 2.79 1.86 2.91 1.94
rx/ry 4.86 6.29 4.96
ry, in. 1.73 1.30 1.66
6–50 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Fy= 50 ksi
W21
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
fShape does not meet compact limit for flexure with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06B:14th Ed. 2/4/11 8:51 AM Page 50

Shape
W21× W18×
44
c
311
h
283
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.971.983.732.480.3650.2430.4730.3140.4010.2670.5270.351
6 3.532.354.032.680.3810.2530.4730.3140.4190.2790.5270.351
7 3.782.514.242.820.3870.2570.4730.3140.4260.2840.5270.351
8 4.092.724.482.980.3940.2620.4730.3140.4340.2890.5270.351
9 4.503.004.753.160.4020.2680.4730.3140.4430.2950.5270.351
10 5.033.355.053.360.4120.2740.4730.3140.4540.3020.5270.351
11 5.743.825.393.590.4220.2810.4740.3150.4660.3100.5300.352
12 6.684.455.793.850.4340.2890.4770.3170.4800.3190.5330.355
13 7.845.226.254.160.4470.2980.4800.3190.4950.3290.5370.357
14 9.106.057.114.730.4620.3080.4830.3210.5120.3400.5400.359
1510.46.957.995.320.4790.3190.4860.3230.5300.3530.5440.362
1611.97.918.905.920.4970.3310.4890.3250.5510.3670.5480.364
1713.48.939.836.540.5170.3440.4920.3270.5740.3820.5510.367
1815.010.010.87.180.5400.3590.4950.3290.6000.3990.5550.369
1916.811.111.87.820.5640.3750.4980.3310.6280.4180.5590.372
2018.612.412.78.470.5920.3940.5010.3330.6590.4390.5630.374
22 0.6550.4360.5070.3380.7320.4870.5710.380
24 0.7320.4870.5140.3420.8210.5460.5790.385
26 0.8260.5500.5210.3470.9290.6180.5880.391
28 0.9420.6270.5280.3511.060.7080.5960.397
30 1.080.7200.5350.3561.220.8130.6050.403
32 1.230.8190.5420.3611.390.9250.6140.409
34 1.390.9240.5500.3661.571.040.6240.415
36 1.561.040.5570.3711.761.170.6340.422
38 1.741.150.5650.3761.961.300.6440.428
40 1.921.280.5730.3822.171.450.6540.435
Other Constants and Properties
by×10
3
, (kip-ft)
–1
35.0 23.3 1.72 1.15 1.93 1.28
ty×10
3
, (kips)
–1
2.57 1.71 0.365 0.243 0.401 0.267
tr×10
3
, (kips)
–1
3.16 2.10 0.448 0.299 0.493 0.328
rx/ry 6.40 2.96 2.96
ry, in. 1.26 2.95 2.91
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W21-W18
STEEL BEAM-COLUMN SELECTION TABLES 6–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy= 50 ksi
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
hFlange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
AISC_Part 06B:14th Ed. 2/17/12 10:30 AM Page 51

Shape
W18×
258
h
234
h
211
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4390.2920.5830.3880.4870.3240.6490.4320.5360.3570.7270.484
60.4600.3060.5830.3880.5100.3390.6490.4320.5620.3740.7270.484
70.4680.3110.5830.3880.5190.3450.6490.4320.5720.3810.7270.484
80.4770.3170.5830.3880.5290.3520.6490.4320.5840.3880.7270.484
90.4870.3240.5830.3880.5410.3600.6490.4320.5970.3970.7270.484
100.4990.3320.5830.3880.5540.3690.6490.4320.6120.4070.7270.484
110.5120.3410.5870.3900.5700.3790.6540.4350.6290.4190.7340.488
120.5280.3510.5910.3930.5870.3900.6590.4380.6490.4320.7400.493
130.5450.3620.5950.3960.6060.4030.6640.4420.6710.4460.7470.497
140.5640.3750.6000.3990.6280.4180.6700.4460.6950.4620.7540.502
150.5850.3890.6040.4020.6520.4340.6750.4490.7220.4800.7610.506
160.6080.4050.6090.4050.6780.4510.6810.4530.7520.5010.7680.511
170.6340.4220.6130.4080.7080.4710.6870.4570.7860.5230.7750.516
180.6630.4410.6180.4110.7410.4930.6920.4610.8230.5480.7820.520
190.6950.4620.6230.4140.7770.5170.6980.4650.8650.5750.7900.525
200.7300.4860.6270.4170.8180.5440.7040.4690.9100.6060.7970.531
220.8120.5410.6370.4240.9120.6070.7170.4771.020.6770.8130.541
240.9130.6070.6480.4311.030.6830.7290.4851.150.7650.8290.552
261.040.6900.6580.4381.170.7780.7420.4941.310.8730.8460.563
281.190.7930.6690.4451.350.8970.7560.5031.521.010.8640.575
301.370.9100.6800.4531.551.030.7700.5131.741.160.8820.587
321.561.040.6920.4601.761.170.7850.5221.981.320.9020.600
341.761.170.7040.4681.991.320.8000.5332.241.490.9220.613
361.971.310.7160.4772.231.480.8160.5432.511.670.9430.627
382.191.460.7290.4852.481.650.8330.5542.791.860.9650.642
402.431.620.7430.4942.751.830.8500.5663.092.060.9880.657
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.15 1.43 2.39 1.59 2.70 1.80
ty×10
3
, (kips)
–1
0.439 0.292 0.487 0.324 0.536 0.357
tr×10
3
, (kips)
–1
0.540 0.360 0.598 0.399 0.659 0.439
rx/ry 2.96 2.96 2.96
ry, in. 2.88 2.85 2.82
6–52 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 52

Shape
W18×
192 175 158
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5940.3950.8060.5360.6500.4320.8950.5960.7210.4801.000.666
60.6240.4150.8060.5360.6830.4540.8950.5960.7590.5051.000.666
70.6350.4230.8060.5360.6950.4630.8950.5960.7730.5141.000.666
80.6480.4310.8060.5360.7100.4720.8950.5960.7890.5251.000.666
90.6630.4410.8060.5360.7270.4840.8950.5960.8080.5381.000.666
100.6800.4530.8070.5370.7460.4960.8980.5970.8300.5521.000.668
110.7000.4660.8150.5420.7680.5110.9070.6040.8550.5691.020.676
120.7220.4800.8230.5480.7930.5280.9170.6100.8830.5871.030.685
130.7470.4970.8310.5530.8210.5460.9270.6170.9140.6081.040.693
140.7750.5150.8400.5590.8520.5670.9380.6240.9500.6321.050.702
150.8060.5360.8480.5640.8870.5900.9480.6310.9890.6581.070.710
160.8400.5590.8570.5700.9260.6160.9590.6381.030.6871.080.719
170.8790.5850.8660.5760.9690.6450.9700.6451.080.7201.100.729
180.9210.6130.8750.5821.020.6770.9810.6531.140.7561.110.738
190.9680.6440.8840.5881.070.7120.9930.6611.200.7961.120.748
201.020.6790.8940.5951.130.7521.000.6691.260.8411.140.758
221.140.7610.9130.6081.270.8441.030.6851.420.9461.170.779
241.300.8620.9340.6211.440.9581.060.7021.621.081.200.801
261.480.9870.9550.6361.651.101.080.7201.861.241.240.824
281.721.140.9780.6511.921.281.110.7392.161.441.280.849
301.971.311.000.6662.201.471.140.7592.481.651.320.875
322.241.491.030.6832.511.671.170.7802.821.881.360.903
342.531.681.050.7002.831.881.210.8033.192.121.400.933
362.841.891.080.7183.172.111.240.8273.572.381.450.965
383.162.101.110.7373.532.351.280.8523.982.651.500.999
403.502.331.140.7573.912.601.320.8784.412.931.561.04
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.99 1.99 3.36 2.24 3.76 2.50
ty×10
3
, (kips)
–1
0.594 0.395 0.650 0.432 0.721 0.480
tr×10
3
, (kips)
–1
0.730 0.487 0.798 0.532 0.886 0.591
rx/ry 2.97 2.97 2.96
ry, in. 2.79 2.76 2.74
STEEL BEAM-COLUMN SELECTION TABLES 6–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 53

Shape
W18×
143 130 119
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.7950.5291.110.7360.8720.5801.230.8170.9520.6331.360.905
60.8370.5571.110.7360.9190.6111.230.8171.000.6671.360.905
70.8530.5671.110.7360.9360.6231.230.8171.020.6801.360.905
80.8710.5801.110.7360.9570.6361.230.8171.040.6951.360.905
90.8920.5941.110.7360.9800.6521.230.8171.070.7121.360.905
100.9170.6101.110.7401.010.6701.240.8231.100.7321.370.912
110.9450.6291.130.7501.040.6911.250.8351.130.7551.390.926
120.9760.6491.140.7601.070.7141.270.8471.170.7811.410.941
131.010.6731.160.7701.110.7411.290.8591.220.8101.440.956
141.050.6991.170.7801.160.7701.310.8721.270.8421.460.972
151.100.7291.190.7911.210.8031.330.8861.320.8781.490.989
161.140.7621.210.8021.260.8401.350.8991.380.9191.511.01
171.200.7981.220.8141.320.8811.370.9131.450.9641.541.02
181.260.8391.240.8251.390.9261.390.9281.521.011.571.04
191.330.8841.260.8381.470.9771.420.9431.611.071.591.06
201.410.9351.280.8501.551.031.440.9591.701.131.621.08
221.581.051.320.8761.751.171.490.9921.921.281.691.12
241.811.201.360.9042.001.331.541.032.201.461.751.17
262.081.391.400.9332.321.541.601.062.551.701.831.21
282.421.611.450.9652.691.791.661.102.961.971.901.27
302.771.851.500.9993.092.051.731.153.392.261.991.32
323.162.101.561.033.512.341.801.203.862.572.081.39
343.562.371.611.073.972.641.871.254.362.902.191.46
364.002.661.681.124.452.961.961.304.893.252.341.56
384.452.961.741.164.953.302.081.385.453.622.501.66
404.933.281.821.215.493.652.201.476.044.022.651.77
Other Constants and Properties
by×10
3
, (kip-ft)
–1
4.17 2.78 4.64 3.09 5.16 3.43
ty×10
3
, (kips)
–1
0.795 0.529 0.872 0.580 0.952 0.633
tr×10
3
, (kips)
–1
0.977 0.651 1.07 0.714 1.17 0.779
rx/ry 2.97 2.97 2.94
ry, in. 2.72 2.70 2.69
6–54 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 54

Shape
W18×
106 97 86
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.070.7151.551.031.170.7801.691.121.320.8781.921.27
61.130.7541.551.031.240.8231.691.121.390.9281.921.27
71.160.7691.551.031.260.8391.691.121.420.9461.921.27
81.180.7861.551.031.290.8581.691.121.460.9681.921.27
91.210.8061.551.031.320.8801.691.121.490.9941.921.27
101.250.8291.561.041.360.9061.711.141.541.021.941.29
111.290.8561.591.061.410.9351.741.161.591.061.981.32
121.330.8851.621.081.450.9681.771.181.641.092.021.35
131.380.9191.651.101.511.001.811.201.711.142.061.37
141.440.9571.681.121.571.051.841.231.781.182.111.40
151.500.9991.711.141.641.091.881.251.861.242.151.43
161.571.051.741.161.721.141.921.281.951.302.201.47
171.651.101.781.181.811.201.961.302.051.362.251.50
181.741.161.811.211.901.272.001.332.161.442.311.53
191.841.221.851.232.011.342.041.362.291.522.361.57
201.951.301.891.262.131.422.091.392.431.612.421.61
222.211.471.971.312.421.612.181.452.761.832.541.69
242.531.682.061.372.781.852.291.523.172.112.681.79
262.941.962.151.433.242.152.411.603.702.462.841.89
283.412.272.261.503.752.502.541.694.292.863.012.00
303.922.612.381.584.312.872.681.784.933.283.292.19
324.462.972.511.674.903.262.911.935.613.733.592.39
345.033.352.721.815.533.683.152.096.334.213.902.60
365.643.752.921.946.204.133.382.257.104.724.212.80
386.294.183.122.086.914.603.622.417.915.264.513.00
406.974.633.322.217.665.103.862.578.765.834.823.21
Other Constants and Properties
by×10
3
, (kip-ft)
–1
5.89 3.92 6.44 4.29 7.36 4.90
ty×10
3
, (kips)
–1
1.07 0.715 1.17 0.780 1.32 0.878
tr×10
3
, (kips)
–1
1.32 0.879 1.44 0.960 1.62 1.08
rx/ry 2.95 2.95 2.95
ry, in. 2.66 2.65 2.63
STEEL BEAM-COLUMN SELECTION TABLES 6–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 55

Shape
W18×
76
c
71 65
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.521.012.191.451.601.062.441.621.751.162.681.78
6 1.591.062.191.451.821.212.441.622.001.332.681.78
7 1.621.082.191.451.911.272.511.672.091.392.761.84
8 1.661.102.191.452.021.342.591.722.211.472.851.90
9 1.701.132.191.452.151.432.671.782.361.572.951.96
10 1.751.162.221.482.301.532.761.832.531.683.052.03
11 1.811.202.271.512.481.652.851.902.731.823.152.10
12 1.871.242.321.542.701.802.951.962.971.983.272.18
13 1.941.292.371.582.961.973.052.033.262.173.392.26
14 2.031.352.431.623.262.173.172.113.602.403.532.35
15 2.121.412.491.653.632.413.292.194.012.673.672.44
16 2.221.482.551.694.062.703.422.284.502.993.832.55
17 2.341.562.611.744.583.053.572.375.083.384.002.66
18 2.471.642.681.785.143.423.722.485.693.794.192.79
19 2.621.742.751.835.733.813.892.596.344.224.432.95
20 2.781.852.821.886.344.224.122.747.024.674.763.17
22 3.162.112.981.987.685.114.693.128.505.665.443.62
24 3.652.433.162.109.146.085.253.5010.16.736.114.07
26 4.262.843.362.2410.77.135.823.8711.97.906.794.51
28 4.943.293.672.4412.48.276.384.2513.89.167.464.96
30 5.683.784.062.70
32 6.464.304.452.96
34 7.294.854.853.22
36 8.175.445.243.49
38 9.116.065.643.75
4010.16.716.044.02
Other Constants and Properties
by×10
3
, (kip-ft)
–1
8.44 5.62 14.4 9.60 15.8 10.5
ty×10
3
, (kips)
–1
1.50 0.997 1.60 1.06 1.75 1.16
tr×10
3
, (kips)
–1
1.84 1.23 1.96 1.31 2.15 1.43
rx/ry 2.96 4.41 4.43
ry, in. 2.61 1.70 1.69
6–56 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 56

Shape
W18×
60
c
55
c
50
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.941.292.901.932.141.433.182.122.421.613.532.35
6 2.181.452.901.932.401.603.192.122.721.813.552.36
7 2.281.523.001.992.511.673.302.202.841.893.682.45
8 2.411.603.102.062.641.753.422.272.981.983.812.54
9 2.571.713.202.132.801.863.542.363.162.103.962.64
10 2.761.833.322.213.012.003.682.453.372.244.122.74
11 2.981.983.442.293.262.173.832.553.632.424.292.86
12 3.252.163.582.383.552.363.992.653.972.644.482.98
13 3.562.373.722.483.902.604.162.774.372.914.693.12
14 3.942.623.882.584.322.874.352.894.853.234.913.27
15 4.392.924.052.694.823.214.553.035.423.615.163.43
16 4.943.284.232.825.433.614.783.186.134.085.443.62
17 5.573.714.442.956.134.085.033.356.924.605.763.83
18 6.254.164.663.106.874.575.393.597.765.166.314.20
19 6.964.635.023.347.655.095.853.898.645.756.864.57
20 7.715.135.413.608.485.646.324.209.586.377.434.94
22 9.336.216.194.1210.36.837.264.8311.67.718.565.70
2411.17.396.984.6412.28.138.205.4613.89.179.726.47
2613.08.677.765.1614.39.549.166.0916.210.810.97.24
2815.110.18.555.69
Other Constants and Properties
by×10
3
, (kip-ft)
–1
17.3 11.5 19.3 12.8 21.5 14.3
ty×10
3
, (kips)
–1
1.90 1.26 2.06 1.37 2.27 1.51
tr×10
3
, (kips)
–1
2.33 1.55 2.53 1.69 2.79 1.86
rx/ry 4.45 4.44 4.47
ry, in. 1.68 1.67 1.65
STEEL BEAM-COLUMN SELECTION TABLES 6–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 57

Shape
W18×
46
c
40
c
35
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.651.763.932.613.152.104.543.023.712.475.363.56
6 3.192.124.192.793.792.524.883.254.492.995.843.89
7 3.422.284.392.924.062.705.133.414.833.216.174.11
8 3.722.484.613.074.412.945.403.595.273.516.544.35
9 4.132.754.853.234.873.245.713.805.853.896.964.63
10 4.663.105.123.415.453.636.054.036.614.407.434.94
11 5.323.545.433.616.244.156.444.287.635.087.975.30
12 6.154.095.773.847.254.826.884.589.005.998.605.72
13 7.214.806.164.108.515.667.384.9110.67.039.676.43
14 8.365.566.694.459.876.568.305.5212.28.1511.07.29
15 9.606.387.454.9511.37.549.276.1714.19.3612.38.17
1610.97.268.215.4612.98.5710.36.8316.010.613.69.07
1712.38.208.985.9714.59.6811.37.5018.112.015.010.0
1813.89.199.756.4916.310.912.38.1720.213.516.410.9
1915.410.210.57.0118.212.113.38.8522.615.017.911.9
2017.111.311.37.5320.113.414.49.5425.016.619.312.8
2118.812.512.18.0522.214.815.410.2
Other Constants and Properties
by×10
3
, (kip-ft)
–1
30.5 20.3 35.6 23.7 44.2 29.4
ty×10
3
, (kips)
–1
2.47 1.65 2.83 1.88 3.24 2.16
tr×10
3
, (kips)
–1
3.04 2.03 3.48 2.32 3.98 2.66
rx/ry 5.62 5.68 5.77
ry, in. 1.29 1.27 1.22
6–58 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W18
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
Kl/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B_14th Ed._ 20/02/12 3:21 PM Page 58

Shape
W16×
100 89 77
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.140.7561.801.201.270.8482.041.351.480.9832.381.58
61.210.8031.801.201.360.9022.041.351.571.052.381.58
71.230.8201.801.201.390.9222.041.351.611.072.381.58
81.260.8411.801.201.420.9462.041.351.651.102.381.58
91.300.8651.801.201.460.9732.041.361.701.132.391.59
101.340.8931.831.221.511.012.081.381.761.172.441.62
111.390.9251.861.241.571.042.121.411.821.212.491.65
121.450.9621.891.261.631.082.161.441.891.262.541.69
131.511.001.931.281.701.132.201.461.981.322.591.72
141.581.051.961.301.781.182.241.492.071.382.651.76
151.651.101.991.331.871.242.291.522.181.452.711.80
161.741.162.031.351.971.312.341.552.301.532.771.84
171.841.232.071.382.081.392.381.592.431.622.831.89
181.951.302.111.402.211.472.431.622.591.722.901.93
192.081.382.151.432.351.572.491.652.761.832.971.98
202.221.472.191.462.511.672.541.692.951.963.052.03
222.551.702.281.512.901.932.661.773.412.273.212.14
242.981.982.371.583.402.262.791.864.002.663.392.26
263.502.332.481.653.992.652.931.954.703.133.592.39
284.062.702.591.724.623.083.092.065.453.623.832.55
304.663.102.721.815.313.533.272.176.254.164.202.80
325.303.522.851.906.044.023.542.367.124.734.573.04
345.983.983.042.036.824.543.822.548.035.344.943.29
366.704.463.262.177.645.094.092.729.015.995.313.53
387.474.973.472.318.525.674.362.9010.06.685.683.78
408.285.513.682.459.446.284.633.0811.17.406.044.02
Other Constants and Properties
by×10
3
, (kip-ft)
–1
6.49 4.32 7.41 4.93 8.67 5.77
ty×10
3
, (kips)
–1
1.14 0.756 1.27 0.848 1.48 0.983
tr×10
3
, (kips)
–1
1.40 0.930 1.57 1.04 1.82 1.21
rx/ry 2.83 2.83 2.83
ry, in. 2.51 2.49 2.47
STEEL BEAM-COLUMN SELECTION TABLES 6–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
W16
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 59

Shape
W16×
67
c
57 50
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.711.142.741.821.991.323.392.262.301.533.872.58
6 1.811.212.741.822.311.533.432.282.641.763.922.61
7 1.861.232.741.822.431.623.542.352.791.854.062.70
8 1.901.272.741.822.591.723.652.432.971.974.212.80
9 1.961.312.761.842.771.853.782.513.182.124.362.90
10 2.031.352.821.883.002.003.912.603.452.294.533.02
11 2.101.402.881.923.272.184.052.703.762.504.723.14
12 2.191.462.951.963.592.394.202.804.142.754.913.27
13 2.291.523.022.013.982.654.372.914.593.065.133.41
14 2.401.593.092.064.452.964.553.035.143.425.373.57
15 2.521.683.172.115.023.344.743.155.803.865.633.74
16 2.661.773.252.165.703.794.953.296.604.395.913.93
17 2.821.873.332.226.444.285.183.457.454.966.234.14
18 2.991.993.422.277.224.805.433.618.355.566.744.48
19 3.192.123.512.348.045.355.813.869.316.197.284.85
20 3.422.273.612.408.915.936.234.1410.36.867.835.21
22 3.962.633.832.5510.87.177.074.7012.58.308.935.94
24 4.653.104.072.7112.88.547.905.2614.89.8810.06.67
26 5.463.634.342.8915.110.08.745.8217.411.611.17.40
28 6.334.214.823.21
30 7.274.845.313.53
32 8.275.505.803.86
34 9.346.216.294.18
3610.56.966.774.51
3811.77.767.264.83
4012.98.607.755.15
Other Constants and Properties
by×10
3
, (kip-ft)
–1
10.0 6.68 18.9 12.5 21.9 14.5
ty×10
3
, (kips)
–1
1.70 1.13 1.99 1.32 2.27 1.51
tr×10
3
, (kips)
–1
2.09 1.40 2.44 1.63 2.79 1.86
rx/ry 2.83 4.20 4.20
ry, in. 2.46 1.60 1.59
6–60 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W16
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 60

Shape
W16×
45
c
40
c
36
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.611.734.332.883.032.024.883.253.422.285.573.70
6 2.971.984.402.933.442.294.963.303.912.605.713.80
7 3.122.084.563.033.612.405.163.434.102.735.943.95
8 3.312.204.743.153.812.545.363.574.352.896.204.12
9 3.552.364.923.284.062.705.593.724.653.106.484.31
10 3.852.565.133.414.372.915.833.885.033.346.784.51
11 4.212.805.353.564.753.166.104.065.493.657.124.74
12 4.653.095.593.725.243.486.394.256.074.047.494.98
13 5.173.445.863.905.833.886.724.476.814.537.905.26
14 5.803.866.154.096.544.357.074.717.705.128.365.56
15 6.584.376.474.307.414.937.474.978.805.868.885.91
16 7.484.986.824.548.435.617.965.3010.06.669.796.51
17 8.455.627.364.909.526.338.765.8311.37.5210.87.19
18 9.476.308.035.3410.77.109.586.3812.78.4311.97.89
1910.57.028.705.7911.97.9110.46.9314.19.4012.98.59
2011.77.789.376.2313.28.7711.27.4815.610.414.09.31
2112.98.5710.06.6814.59.6612.18.0417.311.515.110.0
2214.19.4110.77.1415.910.612.98.6118.912.616.210.8
2315.510.311.47.5917.411.613.89.1720.713.817.311.5
2416.811.212.18.0419.012.614.69.7422.515.018.412.2
2518.312.212.88.5020.613.715.510.324.416.319.513.0
2619.813.113.58.9522.314.816.410.9
Other Constants and Properties
by×10
3
, (kip-ft)
–1
24.6 16.3 28.1 18.7 33.0 21.9
ty×10
3
, (kips)
–1
2.51 1.67 2.83 1.88 3.15 2.10
tr×10
3
, (kips)
–1
3.08 2.06 3.48 2.32 3.87 2.58
rx/ry 4.24 4.22 4.28
ry, in. 1.57 1.57 1.52
STEEL BEAM-COLUMN SELECTION TABLES 6–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W16
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 61

Shape
W16×
31
c
26
c, v
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 4.09 2.72 6.60 4.39 5.06 3.37 8.06 5.36
6 5.08 3.38 7.28 4.85 6.33 4.21 9.07 6.03
7 5.52 3.67 7.71 5.13 6.91 4.60 9.66 6.43
8 6.10 4.06 8.19 5.45 7.68 5.11 10.3 6.87
9 6.87 4.57 8.74 5.82 8.70 5.79 11.1 7.39
10 7.89 5.25 9.37 6.2310.1 6.72 12.0 7.99
11 9.28 6.1710.1 6.7112.0 8.01 13.1 8.69
12 11.0 7.3411.1 7.3514.3 9.53 15.0 10.0
13 13.0 8.6212.6 8.3916.8 11.2 17.2 11.5
14 15.0 10.0 14.2 9.4519.5 13.0 19.5 13.0
15 17.2 11.5 15.8 10.5 22.4 14.9 21.9 14.6
16 19.6 13.1 17.5 11.6 25.5 16.9 24.3 16.2
17 22.2 14.7 19.2 12.8 28.7 19.1 26.7 17.8
18 24.8 16.5 20.9 13.9 32.2 21.4 29.2 19.4
19 27.7 18.4 22.6 15.0
Other Constants and Properties
by×10
3
, (kip-ft)
–1
50.7 33.7 65.0 43.3
ty×10
3
, (kips)
–1
3.66 2.43 4.35 2.89
tr×10
3
, (kips)
–1
4.49 3.00 5.34 3.56
rx/ry 5.48 5.59
ry, in. 1.17 1.12
6–62 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W16
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 62

Shape
W14×
730
h
665
h
605
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.1550.1030.2150.1430.1700.1130.2410.1600.1880.1250.2700.180
110.1650.1100.2150.1430.1810.1200.2410.1600.2000.1330.2700.180
120.1660.1110.2150.1430.1830.1220.2410.1600.2020.1340.2700.180
130.1680.1120.2150.1430.1850.1230.2410.1600.2040.1360.2700.180
140.1710.1140.2150.1430.1880.1250.2410.1600.2070.1380.2700.180
150.1730.1150.2150.1430.1900.1270.2410.1600.2100.1400.2700.180
160.1760.1170.2150.1430.1930.1290.2410.1600.2140.1420.2700.180
170.1780.1190.2150.1430.1970.1310.2410.1600.2170.1450.2700.180
180.1810.1210.2150.1430.2000.1330.2420.1610.2210.1470.2710.180
190.1850.1230.2160.1430.2040.1350.2420.1610.2250.1500.2720.181
200.1880.1250.2160.1440.2080.1380.2420.1610.2300.1530.2720.181
220.1960.1300.2170.1440.2160.1440.2430.1620.2400.1600.2730.182
240.2050.1360.2170.1450.2260.1510.2440.1630.2520.1670.2740.183
260.2150.1430.2180.1450.2380.1580.2450.1630.2650.1760.2760.183
280.2260.1500.2190.1460.2510.1670.2460.1640.2800.1860.2770.184
300.2390.1590.2200.1460.2660.1770.2470.1640.2970.1970.2780.185
320.2540.1690.2210.1470.2820.1880.2480.1650.3160.2100.2790.186
340.2700.1800.2210.1470.3010.2010.2490.1660.3380.2250.2800.187
360.2890.1920.2220.1480.3230.2150.2500.1660.3630.2410.2820.187
380.3100.2060.2230.1480.3470.2310.2510.1670.3910.2600.2830.188
400.3340.2220.2240.1490.3750.2500.2520.1680.4230.2820.2840.189
420.3610.2400.2250.1500.4070.2710.2530.1680.4600.3060.2850.190
440.3920.2610.2260.1500.4430.2950.2540.1690.5030.3350.2870.191
460.4290.2850.2260.1510.4850.3220.2550.1700.5500.3660.2880.191
480.4670.3110.2270.1510.5280.3510.2560.1710.5990.3990.2890.192
500.5060.3370.2280.1520.5730.3810.2570.1710.6500.4320.2900.193
Other Constants and Properties
by×10
3
, (kip-ft)
–1
0.437 0.290 0.488 0.325 0.546 0.364
ty×10
3
, (kips)
–1
0.155 0.103 0.170 0.113 0.188 0.125
tr×10
3
, (kips)
–1
0.191 0.127 0.209 0.140 0.230 0.154
rx/ry 1.74 1.73 1.71
ry, in. 4.69 4.62 4.55
STEEL BEAM-COLUMN SELECTION TABLES 6–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:52 AM Page 63

Shape
W14×
550
h
500
h
455
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.2060.1370.3020.2010.2270.1510.3390.2260.2490.1660.3810.253
110.2200.1460.3020.2010.2420.1610.3390.2260.2660.1770.3810.253
120.2220.1480.3020.2010.2450.1630.3390.2260.2700.1790.3810.253
130.2250.1500.3020.2010.2490.1660.3390.2260.2730.1820.3810.253
140.2280.1520.3020.2010.2520.1680.3390.2260.2780.1850.3810.253
150.2320.1540.3020.2010.2560.1710.3390.2260.2820.1880.3810.253
160.2360.1570.3020.2010.2610.1730.3400.2260.2870.1910.3810.254
170.2400.1600.3030.2010.2650.1770.3400.2270.2920.1940.3820.254
180.2440.1620.3030.2020.2700.1800.3410.2270.2980.1980.3830.255
190.2490.1660.3040.2020.2760.1830.3420.2280.3040.2020.3840.256
200.2540.1690.3050.2030.2820.1870.3430.2280.3100.2070.3850.256
220.2650.1770.3060.2040.2950.1960.3450.2290.3250.2160.3870.258
240.2790.1850.3080.2050.3090.2060.3460.2300.3420.2270.3890.259
260.2930.1950.3090.2060.3270.2170.3480.2320.3610.2400.3920.261
280.3100.2070.3100.2070.3460.2300.3500.2330.3830.2550.3940.262
300.3300.2190.3120.2080.3680.2450.3520.2340.4080.2720.3960.263
320.3520.2340.3130.2090.3940.2620.3530.2350.4370.2910.3980.265
340.3770.2510.3150.2090.4220.2810.3550.2360.4700.3130.4000.266
360.4060.2700.3160.2100.4550.3030.3570.2380.5080.3380.4030.268
380.4380.2920.3180.2110.4930.3280.3590.2390.5510.3660.4050.269
400.4750.3160.3190.2130.5360.3570.3610.2400.6000.3990.4070.271
420.5180.3450.3210.2140.5860.3900.3630.2410.6570.4370.4090.272
440.5680.3780.3220.2150.6430.4280.3650.2430.7210.4800.4120.274
460.6210.4130.3240.2160.7030.4680.3670.2440.7890.5250.4140.276
480.6760.4500.3260.2170.7650.5090.3690.2450.8590.5710.4170.277
500.7330.4880.3270.2180.8300.5520.3710.2470.9320.6200.4190.279
Other Constants and Properties
by×10
3
, (kip-ft)
–1
0.611 0.407 0.683 0.454 0.761 0.506
ty×10
3
, (kips)
–1
0.206 0.137 0.227 0.151 0.249 0.166
tr×10
3
, (kips)
–1
0.253 0.169 0.279 0.186 0.306 0.204
rx/ry 1.70 1.69 1.67
ry, in. 4.49 4.43 4.38
6–64 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 64

Shape
W14×
426
h
398
h
370
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.2670.1780.4100.2730.2850.1900.4450.2960.3060.2040.4840.322
110.2860.1900.4100.2730.3060.2030.4450.2960.3290.2190.4840.322
120.2900.1930.4100.2730.3100.2060.4450.2960.3330.2220.4840.322
130.2940.1950.4100.2730.3140.2090.4450.2960.3380.2250.4840.322
140.2980.1980.4100.2730.3190.2120.4450.2960.3430.2280.4840.322
150.3030.2020.4100.2730.3240.2160.4450.2960.3490.2320.4840.322
160.3080.2050.4110.2730.3300.2200.4460.2970.3550.2360.4850.323
170.3140.2090.4120.2740.3360.2240.4470.2980.3620.2410.4870.324
180.3200.2130.4130.2750.3430.2280.4490.2980.3690.2460.4890.325
190.3270.2180.4140.2760.3500.2330.4500.2990.3770.2510.4900.326
200.3340.2220.4150.2760.3580.2380.4510.3000.3860.2570.4920.327
220.3500.2330.4180.2780.3760.2500.4540.3020.4050.2700.4950.329
240.3690.2450.4200.2800.3960.2630.4570.3040.4270.2840.4980.331
260.3900.2590.4230.2810.4190.2790.4600.3060.4530.3010.5010.334
280.4140.2760.4250.2830.4450.2960.4620.3080.4820.3210.5050.336
300.4420.2940.4280.2850.4750.3160.4650.3100.5150.3430.5080.338
320.4740.3150.4300.2860.5100.3390.4680.3120.5540.3680.5120.340
340.5100.3390.4330.2880.5500.3660.4710.3140.5970.3970.5150.343
360.5510.3670.4350.2900.5950.3960.4740.3160.6480.4310.5190.345
380.5990.3990.4380.2910.6470.4310.4770.3180.7050.4690.5220.347
400.6540.4350.4410.2930.7070.4700.4800.3200.7720.5140.5260.350
420.7180.4780.4430.2950.7780.5170.4840.3220.8500.5660.5290.352
440.7880.5240.4460.2970.8530.5680.4870.3240.9330.6210.5330.355
460.8610.5730.4490.2990.9330.6210.4900.3261.020.6790.5370.357
480.9380.6240.4520.3001.020.6760.4930.3281.110.7390.5410.360
501.020.6770.4540.3021.100.7330.4960.3301.210.8020.5450.362
Other Constants and Properties
by×10
3
, (kip-ft)
–1
0.821 0.546 0.886 0.590 0.963 0.641
ty×10
3
, (kips)
–1
0.267 0.178 0.285 0.190 0.306 0.204
tr×10
3
, (kips)
–1
0.328 0.219 0.351 0.234 0.376 0.251
rx/ry 1.67 1.66 1.66
ry, in. 4.34 4.31 4.27
STEEL BEAM-COLUMN SELECTION TABLES 6–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 65

Shape
W14×
342
h
311
h
283
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3310.2200.5300.3530.3650.2430.5910.3930.4010.2670.6570.437
110.3550.2360.5300.3530.3930.2610.5910.3930.4310.2870.6570.437
120.3600.2390.5300.3530.3980.2650.5910.3930.4370.2910.6570.437
130.3650.2430.5300.3530.4040.2690.5910.3930.4440.2960.6570.437
140.3710.2470.5300.3530.4110.2730.5910.3930.4510.3000.6570.437
150.3770.2510.5300.3530.4180.2780.5910.3930.4590.3060.6580.438
160.3840.2560.5320.3540.4260.2830.5930.3950.4680.3120.6610.440
170.3920.2610.5340.3550.4340.2890.5960.3960.4780.3180.6630.441
180.4000.2660.5360.3560.4430.2950.5980.3980.4880.3250.6660.443
190.4090.2720.5380.3580.4530.3020.6000.3990.4990.3320.6690.445
200.4180.2780.5390.3590.4640.3090.6020.4010.5110.3400.6720.447
220.4390.2920.5430.3610.4880.3250.6070.4040.5370.3580.6770.451
240.4630.3080.5470.3640.5150.3430.6120.4070.5680.3780.6830.455
260.4910.3270.5510.3670.5470.3640.6170.4100.6040.4020.6890.458
280.5230.3480.5550.3690.5830.3880.6210.4130.6450.4290.6950.462
300.5600.3730.5590.3720.6250.4160.6260.4170.6910.4600.7010.466
320.6020.4010.5630.3740.6730.4480.6310.4200.7450.4960.7070.471
340.6510.4330.5670.3770.7290.4850.6360.4230.8070.5370.7130.475
360.7060.4700.5710.3800.7920.5270.6410.4270.8790.5850.7200.479
380.7700.5130.5750.3830.8650.5760.6470.4300.9610.6400.7260.483
400.8440.5620.5800.3860.9510.6330.6520.4341.060.7040.7330.488
420.9310.6190.5840.3891.050.6970.6570.4371.170.7760.7400.492
441.020.6800.5880.3911.150.7650.6630.4411.280.8520.7470.497
461.120.7430.5930.3941.260.8370.6690.4451.400.9310.7540.501
481.220.8090.5970.3971.370.9110.6740.4491.521.010.7610.506
501.320.8780.6020.4011.490.9880.6800.4521.651.100.7680.511
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.05 0.701 1.17 0.780 1.30 0.865
ty×10
3
, (kips)
–1
0.331 0.220 0.365 0.243 0.401 0.267
tr×10
3
, (kips)
–1
0.406 0.271 0.449 0.299 0.493 0.328
rx/ry 1.65 1.64 1.63
ry, in. 4.24 4.20 4.17
6–66 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 66

Shape
W14×
257 233 211
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4420.2940.7320.4870.4880.3240.8170.5440.5390.3580.9140.608
110.4760.3170.7320.4870.5260.3500.8170.5440.5820.3870.9140.608
120.4830.3210.7320.4870.5340.3550.8170.5440.5900.3930.9140.608
130.4900.3260.7320.4870.5420.3610.8170.5440.6000.3990.9140.608
140.4990.3320.7320.4870.5510.3670.8170.5440.6100.4060.9140.608
150.5080.3380.7330.4880.5610.3740.8190.5450.6220.4140.9170.610
160.5170.3440.7360.4900.5720.3810.8230.5480.6340.4220.9220.613
170.5280.3510.7400.4920.5840.3890.8270.5510.6470.4310.9270.617
180.5400.3590.7430.4940.5970.3970.8320.5530.6620.4400.9320.620
190.5520.3670.7460.4970.6110.4070.8360.5560.6780.4510.9370.623
200.5660.3760.7500.4990.6260.4170.8400.5590.6950.4620.9420.627
220.5960.3960.7570.5030.6600.4390.8490.5650.7330.4880.9530.634
240.6300.4190.7640.5080.6990.4650.8570.5710.7770.5170.9640.641
260.6710.4460.7710.5130.7450.4950.8660.5760.8280.5510.9750.649
280.7170.4770.7780.5180.7970.5300.8760.5830.8870.5900.9870.656
300.7700.5120.7860.5230.8570.5700.8850.5890.9550.6350.9980.664
320.8310.5530.7940.5280.9260.6160.8950.5951.030.6871.010.672
340.9020.6000.8010.5331.010.6690.9040.6021.120.7471.020.680
360.9830.6540.8090.5391.100.7310.9140.6081.230.8171.040.689
381.080.7170.8180.5441.200.8010.9250.6151.350.8971.050.697
401.190.7910.8260.5491.330.8860.9350.6221.490.9931.060.706
421.310.8720.8340.5551.470.9760.9460.6291.651.091.080.715
441.440.9570.8430.5611.611.070.9570.6371.811.201.090.725
461.571.050.8520.5671.761.170.9680.6441.971.311.100.734
481.711.140.8610.5731.921.280.9790.6522.151.431.120.744
501.861.240.8700.5792.081.380.9910.6592.331.551.130.754
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.45 0.964 1.61 1.07 1.80 1.20
ty×10
3
, (kips)
–1
0.442 0.294 0.488 0.324 0.539 0.358
tr×10
3
, (kips)
–1
0.543 0.362 0.599 0.399 0.662 0.441
rx/ry 1.62 1.62 1.61
ry, in. 4.13 4.10 4.07
STEEL BEAM-COLUMN SELECTION TABLES 6–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 67

Shape
W14×
193 176 159
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5880.3911.000.6680.6450.4291.110.7410.7150.4761.240.826
110.6360.4231.000.6680.6980.4641.110.7410.7740.5151.240.826
120.6450.4291.000.6680.7080.4711.110.7410.7860.5231.240.826
130.6550.4361.000.6680.7200.4791.110.7410.7990.5321.240.826
140.6670.4441.000.6680.7330.4871.110.7410.8140.5411.240.826
150.6790.4521.010.6700.7470.4971.120.7450.8290.5521.250.831
160.6930.4611.010.6750.7620.5071.130.7500.8460.5631.260.837
170.7080.4711.020.6790.7780.5181.130.7550.8650.5761.270.843
180.7240.4821.030.6830.7960.5301.140.7600.8850.5891.280.850
190.7410.4931.030.6870.8160.5431.150.7650.9070.6031.290.856
200.7600.5061.040.6910.8370.5571.160.7700.9310.6191.300.863
220.8020.5341.050.7000.8840.5881.170.7810.9830.6541.320.876
240.8510.5661.070.7090.9380.6241.190.7911.040.6951.340.889
260.9080.6041.080.7181.000.6661.210.8031.120.7421.360.904
280.9730.6471.090.7271.070.7151.220.8141.200.7971.380.918
301.050.6971.110.7371.160.7711.240.8261.290.8601.400.933
321.130.7551.120.7471.260.8361.260.8381.400.9341.430.949
341.230.8221.140.7571.370.9111.280.8511.531.021.450.965
361.350.8991.150.7671.500.9981.300.8641.681.121.470.981
381.490.9891.170.7781.651.101.320.8771.851.231.500.998
401.651.091.190.7891.831.221.340.8912.051.361.531.02
421.811.211.200.8002.021.341.360.9052.261.501.561.03
441.991.321.220.8122.221.471.380.9202.481.651.581.05
462.181.451.240.8242.421.611.410.9352.711.811.611.07
482.371.581.260.8362.641.751.430.9512.951.971.641.09
502.571.711.280.8482.861.901.450.9673.212.131.681.12
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.98 1.32 2.19 1.45 2.44 1.62
ty×10
3
, (kips)
–1
0.588 0.391 0.645 0.429 0.715 0.476
tr×10
3
, (kips)
–1
0.722 0.482 0.792 0.528 0.878 0.586
rx/ry 1.60 1.60 1.60
ry, in. 4.05 4.02 4.00
6–68 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 68

Shape
W14×
145 132 120
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.7820.5201.370.9120.8610.5731.521.010.9460.6301.681.12
110.8480.5641.370.9120.9420.6271.521.011.040.6901.681.12
120.8610.5731.370.9120.9580.6381.521.011.050.7021.681.12
130.8750.5821.370.9120.9760.6501.521.011.070.7151.681.12
140.8910.5931.370.9120.9960.6631.531.021.100.7301.691.13
150.9080.6041.380.9191.020.6771.551.031.120.7461.711.14
160.9270.6171.390.9261.040.6931.561.041.150.7631.731.15
170.9480.6311.400.9331.070.7101.571.051.180.7831.741.16
180.9700.6451.410.9411.100.7291.591.061.210.8031.761.17
190.9940.6621.430.9491.130.7491.601.071.240.8261.781.18
201.020.6791.440.9561.160.7711.621.081.280.8511.801.20
221.080.7181.460.9731.230.8211.651.101.360.9061.841.22
241.150.7631.490.9891.320.8801.681.121.460.9711.881.25
261.230.8161.511.011.420.9481.711.141.571.051.921.28
281.320.8761.541.021.541.031.751.161.711.141.961.30
301.420.9471.571.041.681.121.791.191.861.242.001.33
321.541.031.601.061.851.231.821.212.051.362.051.37
341.691.121.631.082.041.351.861.242.261.502.101.40
361.851.231.661.102.261.511.901.272.511.672.151.43
382.051.361.691.122.521.681.951.292.801.862.211.47
402.271.511.721.152.791.861.991.323.102.072.271.51
422.501.661.761.173.082.052.041.363.422.282.331.55
442.741.821.791.193.382.252.091.393.762.502.391.59
463.001.991.831.223.702.462.141.424.112.732.461.63
483.262.171.871.244.022.682.191.464.472.972.531.68
503.542.361.911.274.372.912.251.504.853.232.601.73
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.68 1.78 3.15 2.10 3.49 2.32
ty×10
3
, (kips)
–1
0.782 0.520 0.861 0.573 0.946 0.630
tr×10
3
, (kips)
–1
0.961 0.641 1.06 0.705 1.16 0.775
rx/ry 1.59 1.67 1.67
ry, in. 3.98 3.76 3.74
STEEL BEAM-COLUMN SELECTION TABLES 6–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 69

Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
6–70 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W14
Fy= 50 ksi
Shape
W14×
109 99
f
90
f
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.040.6941.861.231.150.7642.071.381.260.8392.331.55
111.140.7611.861.231.260.8382.071.381.380.9202.331.55
121.160.7741.861.231.280.8532.071.381.410.9372.331.55
131.190.7891.861.231.310.8692.071.381.440.9552.331.55
141.210.8051.871.251.330.8872.081.381.470.9752.331.55
151.240.8231.891.261.360.9072.101.401.500.9972.331.55
161.270.8431.911.271.400.9292.131.421.531.022.351.57
171.300.8641.931.291.430.9532.151.431.571.052.381.59
181.330.8871.951.301.470.9782.181.451.621.082.421.61
191.370.9131.981.311.511.012.211.471.661.112.451.63
201.410.9402.001.331.561.042.231.491.711.142.481.65
221.511.002.041.361.661.112.291.521.831.222.551.70
241.611.072.091.391.781.192.351.561.961.312.621.74
261.741.162.141.431.921.282.411.602.121.412.701.80
281.891.262.201.462.091.392.481.652.301.532.781.85
302.061.372.251.502.281.522.551.692.521.682.871.91
322.271.512.311.542.511.672.621.742.771.842.961.97
342.501.672.371.582.781.852.701.803.072.043.062.03
362.791.862.441.623.102.062.781.853.422.283.162.10
383.112.072.511.673.452.302.871.913.812.543.272.18
403.442.292.581.723.832.552.961.974.232.813.392.26
423.802.532.661.774.222.813.062.044.663.103.522.34
444.172.772.741.824.633.083.172.115.113.403.722.48
464.553.032.821.885.063.373.312.205.593.723.942.62
484.963.302.921.945.513.673.482.326.084.054.152.76
505.383.583.052.035.983.983.662.436.604.394.362.90
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.84 2.56 4.29 2.85 4.90 3.26
ty×10
3
, (kips)
–1
1.04 0.694 1.15 0.764 1.26 0.839
tr×10
3
, (kips)
–1
1.28 0.855 1.41 0.940 1.55 1.03
rx/ry 1.67 1.66 1.66
ry, in. 3.73 3.71 3.70
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 70

Shape
W14×
82 74 68
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.390.9262.561.711.531.022.831.881.671.113.102.06
6 1.480.9852.561.711.631.082.831.881.781.183.102.06
7 1.511.012.561.711.671.112.831.881.821.213.102.06
8 1.551.032.561.711.711.142.831.881.871.243.102.06
9 1.601.062.571.711.761.172.841.891.921.283.122.07
10 1.651.102.611.741.821.212.891.921.991.323.172.11
11 1.711.142.661.771.881.252.941.962.061.373.232.15
12 1.781.182.701.801.961.302.991.992.151.433.302.19
13 1.861.242.741.832.051.363.052.032.241.493.362.24
14 1.951.302.791.862.141.433.102.062.351.563.432.28
15 2.051.362.841.892.251.503.162.102.471.643.502.33
16 2.161.442.891.922.371.583.222.142.611.733.572.38
17 2.281.522.941.962.511.673.292.192.761.843.652.43
18 2.421.612.991.992.671.783.352.232.931.953.732.48
19 2.581.723.052.032.841.893.422.283.132.083.812.53
20 2.761.843.112.073.042.023.492.323.352.233.902.59
22 3.192.123.232.153.512.333.652.433.882.584.082.72
24 3.742.493.362.244.122.743.812.544.563.034.292.85
26 4.392.923.512.334.833.213.992.665.353.564.513.00
28 5.093.393.662.445.603.734.202.796.214.134.773.17
30 5.843.893.832.556.434.284.422.947.124.745.103.39
32 6.654.424.022.677.324.874.723.148.115.395.533.68
34 7.504.994.262.848.265.505.073.389.156.095.963.96
36 8.415.604.563.039.266.165.433.6110.36.836.384.25
38 9.376.244.853.2210.36.865.783.8511.47.606.814.53
4010.46.915.143.4211.47.616.144.0812.78.437.234.81
Other Constants and Properties
by×10
3
, (kip-ft)
–1
7.95 5.29 8.80 5.85 9.65 6.42
ty×10
3
, (kips)
–1
1.39 0.926 1.53 1.02 1.67 1.11
tr×10
3
, (kips)
–1
1.71 1.14 1.88 1.25 2.05 1.37
rx/ry 2.44 2.44 2.44
ry, in. 2.48 2.48 2.46
STEEL BEAM-COLUMN SELECTION TABLES 6–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 71

Shape
W14×
61 53 48
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.871.243.492.322.141.424.092.722.371.584.543.02
6 1.991.323.492.322.371.584.092.722.631.754.543.02
7 2.031.353.492.322.461.644.112.742.731.824.573.04
8 2.091.393.492.322.571.714.212.802.851.904.703.13
9 2.151.433.522.342.701.804.322.882.991.994.833.21
10 2.221.483.592.392.851.904.442.953.162.104.963.30
11 2.311.543.662.443.022.014.563.033.362.235.113.40
12 2.401.603.742.493.232.154.683.113.592.395.263.50
13 2.511.673.822.543.472.314.813.203.862.575.433.61
14 2.631.753.902.593.752.494.963.304.172.775.603.73
15 2.771.843.992.654.072.715.113.404.533.025.793.85
16 2.921.954.082.714.452.965.263.504.963.305.983.98
17 3.102.064.172.784.893.255.433.625.453.636.204.12
18 3.292.194.272.845.403.595.613.746.034.016.424.27
19 3.512.344.382.916.014.005.813.866.724.476.674.44
20 3.762.504.492.986.664.436.014.007.454.966.944.61
22 4.362.904.723.148.065.366.474.319.016.007.695.12
24 5.143.424.993.329.606.387.224.8010.77.148.645.75
26 6.034.015.283.5111.37.497.995.3212.68.389.596.38
28 6.994.655.663.7713.18.698.765.8314.69.7210.57.01
30 8.025.346.204.1315.09.989.536.3416.811.211.57.65
32 9.136.076.744.4817.111.310.36.85
3410.36.867.274.84
3611.67.697.815.20
3812.98.578.345.55
4014.39.498.875.90
Other Constants and Properties
by×10
3
, (kip-ft)
–1
10.9 7.23 16.2 10.8 18.2 12.1
ty×10
3
, (kips)
–1
1.87 1.24 2.14 1.42 2.37 1.58
tr×10
3
, (kips)
–1
2.29 1.53 2.63 1.75 2.91 1.94
rx/ry 2.44 3.07 3.06
ry, in. 2.45 1.92 1.91
6–72 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 72

Shape
W14×
43
c
38
c
34
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.681.785.123.413.062.045.793.853.502.336.534.34
6 2.951.965.123.413.512.345.903.934.022.676.674.44
7 3.062.045.173.443.702.466.124.074.232.816.944.61
8 3.202.135.313.543.952.636.364.234.492.997.224.80
9 3.372.245.473.644.252.836.614.404.813.207.535.01
10 3.562.375.643.754.623.086.894.585.243.487.875.23
11 3.792.525.823.875.073.377.194.785.763.838.245.48
12 4.052.706.014.005.613.737.525.006.384.258.645.75
13 4.362.906.214.136.254.167.885.247.144.759.096.05
14 4.723.146.424.277.044.688.275.508.075.379.586.37
15 5.153.426.664.438.015.338.715.809.216.1310.16.74
16 5.643.756.904.599.116.069.206.1210.56.9711.07.29
17 6.214.137.174.7710.36.859.996.6511.87.8712.08.01
18 6.904.597.464.9711.57.6810.97.2313.38.8213.18.73
19 7.685.117.785.1712.98.5511.87.8214.89.8314.29.47
20 8.515.668.125.4014.29.4812.68.4116.410.915.310.2
21 9.396.258.715.8015.710.413.59.0018.012.016.511.0
2210.36.859.316.1917.211.514.49.6019.813.217.611.7
2311.37.499.906.5918.812.515.310.221.614.418.712.4
2412.38.1610.56.9920.513.616.210.823.615.719.813.2
2513.38.8511.17.3922.314.817.111.425.617.021.013.9
2614.49.5711.77.78
2715.510.312.38.18
2816.711.112.98.58
2917.911.913.58.98
3019.212.714.19.37
Other Constants and Properties
by×10
3
, (kip-ft)
–1
20.6 13.7 29.4 19.6 33.6 22.4
ty×10
3
, (kips)
–1
2.65 1.76 2.98 1.98 3.34 2.22
tr×10
3
, (kips)
–1
3.26 2.17 3.66 2.44 4.10 2.74
rx/ry 3.08 3.79 3.81
ry, in. 1.89 1.55 1.53
STEEL BEAM-COLUMN SELECTION TABLES 6–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:53 AM Page 73

6–74 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
W14×
30
c
26
c
22
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 4.022.687.535.014.733.158.865.905.823.8710.77.14
6 4.633.087.765.166.184.1110.06.677.655.0912.48.24
7 4.893.258.095.386.854.5610.77.108.525.6713.38.83
8 5.203.468.445.627.755.1611.47.599.706.4514.39.51
9 5.593.728.835.889.026.0012.38.1511.37.5415.510.3
10 6.074.049.266.1610.77.1313.28.8013.69.0816.911.2
11 6.704.469.746.4812.98.6014.49.5616.511.019.212.8
12 7.474.9710.36.8315.410.216.511.019.713.122.314.8
13 8.415.6010.87.2118.112.018.712.423.115.325.416.9
14 9.566.3611.57.6520.913.920.913.926.817.828.519.0
1511.07.3012.38.2024.016.023.215.430.720.431.821.2
1612.58.3113.79.1227.318.225.517.034.923.235.123.3
1714.19.3815.110.030.920.527.818.539.426.238.425.6
1815.810.516.511.034.623.030.120.0
1917.611.718.012.0
2019.513.019.412.9
2121.514.320.913.9
2223.615.722.414.9
2325.817.223.915.9
2428.118.725.416.9
Other Constants and Properties
by×10
3
, (kip-ft)
–1
39.6 26.4 64.3 42.8 81.2 54.0
ty×10
3
, (kips)
–1
3.77 2.51 4.34 2.89 5.15 3.42
tr×10
3
, (kips)
–1
4.64 3.09 5.33 3.56 6.32 4.21
rx/ry 3.85 5.23 5.33
ry, in. 1.49 1.08 1.04
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W14
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 74

Shape
W12×
336
h
305
h
279
h
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.3380.2250.5910.3930.3730.2480.6630.4410.4080.2710.7410.493
60.3490.2320.5910.3930.3850.2560.6630.4410.4220.2800.7410.493
70.3520.2350.5910.3930.3900.2590.6630.4410.4270.2840.7410.493
80.3570.2380.5910.3930.3950.2630.6630.4410.4330.2880.7410.493
90.3630.2410.5910.3930.4010.2670.6630.4410.4390.2920.7410.493
100.3690.2450.5910.3930.4080.2720.6630.4410.4470.2980.7410.493
110.3750.2500.5910.3930.4160.2770.6630.4410.4560.3030.7410.493
120.3830.2550.5910.3930.4250.2830.6630.4410.4660.3100.7410.493
130.3910.2600.5920.3940.4350.2890.6660.4430.4770.3170.7440.495
140.4010.2670.5940.3950.4450.2960.6680.4440.4890.3250.7460.497
150.4110.2740.5960.3970.4570.3040.6700.4460.5020.3340.7490.499
160.4220.2810.5980.3980.4700.3130.6730.4480.5160.3440.7520.500
170.4350.2890.6000.3990.4840.3220.6750.4490.5320.3540.7550.502
180.4480.2980.6020.4000.5000.3320.6770.4510.5500.3660.7580.504
190.4630.3080.6040.4020.5160.3440.6800.4520.5690.3780.7610.506
200.4790.3190.6060.4030.5350.3560.6820.4540.5900.3920.7640.508
220.5160.3430.6100.4060.5770.3840.6870.4570.6370.4240.7700.512
240.5590.3720.6140.4080.6270.4170.6920.4610.6930.4610.7760.516
260.6100.4060.6180.4110.6860.4560.6970.4640.7600.5060.7820.520
280.6700.4460.6220.4140.7560.5030.7020.4670.8400.5590.7880.524
300.7420.4940.6260.4170.8390.5580.7080.4710.9350.6220.7950.529
320.8270.5500.6300.4190.9380.6240.7130.4741.050.6980.8010.533
340.9300.6190.6350.4221.060.7040.7180.4781.180.7880.8080.537
361.040.6940.6390.4251.190.7890.7240.4811.330.8830.8140.542
381.160.7730.6440.4281.320.8790.7290.4851.480.9840.8210.546
401.290.8560.6480.4311.460.9740.7350.4891.641.090.8280.551
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.30 0.865 1.46 0.971 1.62 1.08
ty×10
3
, (kips)
–1
0.338 0.225 0.373 0.248 0.408 0.271
tr×10
3
, (kips)
–1
0.415 0.277 0.458 0.306 0.501 0.334
rx/ry 1.85 1.84 1.82
ry, in. 3.47 3.42 3.38
STEEL BEAM-COLUMN SELECTION TABLES 6–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 75

Shape
W12×
252
h
230
h
210
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.4510.3000.8320.5540.4930.3280.9230.6140.5400.3601.020.681
60.4660.3100.8320.5540.5110.3400.9230.6140.5600.3721.020.681
70.4720.3140.8320.5540.5170.3440.9230.6140.5670.3771.020.681
80.4790.3190.8320.5540.5250.3490.9230.6140.5750.3831.020.681
90.4870.3240.8320.5540.5330.3550.9230.6140.5850.3891.020.681
100.4950.3300.8320.5540.5430.3610.9230.6140.5960.3971.020.681
110.5050.3360.8320.5540.5540.3690.9230.6140.6080.4051.020.681
120.5160.3440.8330.5540.5670.3770.9240.6150.6220.4141.030.683
130.5290.3520.8370.5570.5800.3860.9280.6180.6380.4241.030.686
140.5420.3610.8400.5590.5960.3960.9330.6210.6550.4361.040.689
150.5570.3710.8440.5610.6120.4070.9370.6230.6740.4481.040.693
160.5740.3820.8470.5640.6310.4200.9410.6260.6940.4621.050.696
170.5920.3940.8510.5660.6510.4330.9460.6290.7170.4771.050.700
180.6120.4070.8540.5680.6740.4480.9500.6320.7420.4941.060.703
190.6340.4220.8580.5710.6980.4640.9540.6350.7690.5121.060.707
200.6570.4370.8620.5730.7250.4820.9590.6380.7990.5321.070.710
220.7120.4740.8690.5780.7860.5230.9680.6440.8680.5771.080.718
240.7760.5160.8770.5830.8580.5710.9770.6500.9500.6321.090.725
260.8530.5680.8840.5880.9450.6290.9860.6561.050.6971.100.733
280.9450.6290.8920.5941.050.6970.9960.6631.160.7751.110.741
301.050.7010.9000.5991.170.7801.010.6691.300.8681.130.749
321.190.7900.9080.6041.320.8801.020.6761.480.9821.140.757
341.340.8910.9160.6101.490.9931.030.6821.671.111.150.765
361.500.9990.9250.6151.671.111.040.6891.871.241.160.774
381.671.110.9330.6211.871.241.050.6962.081.381.180.782
401.851.230.9420.6272.071.371.060.7042.311.531.190.791
Other Constants and Properties
by×10
3
, (kip-ft)
–1
1.82 1.21 2.01 1.34 2.24 1.49
ty×10
3
, (kips)
–1
0.451 0.300 0.493 0.328 0.540 0.360
tr×10
3
, (kips)
–1
0.554 0.369 0.606 0.404 0.664 0.443
rx/ry 1.81 1.80 1.80
ry, in. 3.34 3.31 3.28
6–76 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
h
Flange thickness greater than 2 in. Special requirements may apply per AISC SpecificationSection A3.1c.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 76

Shape
W12×
190 170 152
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.5960.3971.150.7620.6680.4441.300.8620.7470.4971.470.975
60.6180.4111.150.7620.6930.4611.300.8620.7760.5161.470.975
70.6260.4171.150.7620.7020.4671.300.8620.7860.5231.470.975
80.6360.4231.150.7620.7130.4741.300.8620.7980.5311.470.975
90.6470.4301.150.7620.7250.4831.300.8620.8130.5411.470.975
100.6590.4381.150.7620.7390.4921.300.8620.8290.5511.470.975
110.6730.4481.150.7620.7550.5031.300.8620.8470.5631.470.975
120.6880.4581.150.7640.7730.5141.300.8650.8670.5771.470.980
130.7060.4701.160.7680.7930.5281.310.8700.8900.5921.480.987
140.7250.4821.160.7730.8150.5421.320.8760.9150.6091.490.994
150.7460.4971.170.7770.8390.5591.320.8810.9430.6271.501.00
160.7700.5121.170.7810.8660.5761.330.8870.9740.6481.511.01
170.7960.5291.180.7860.8960.5961.340.8921.010.6701.521.01
180.8240.5481.190.7900.9280.6181.350.8981.040.6951.541.02
190.8550.5691.190.7940.9640.6411.360.9031.090.7221.551.03
200.8890.5911.200.7991.000.6671.370.9091.130.7521.561.04
220.9660.6431.210.8081.090.7271.380.9211.230.8201.581.05
241.060.7051.230.8171.200.7981.400.9321.360.9021.601.07
261.170.7781.240.8271.330.8831.420.9451.501.001.631.08
281.300.8671.260.8371.480.9851.440.9571.681.121.651.10
301.460.9731.270.8471.671.111.460.9701.901.261.681.12
321.661.101.290.8571.891.261.480.9832.161.431.701.13
341.871.251.300.8672.141.421.500.9972.431.621.731.15
362.101.401.320.8782.391.591.521.012.731.821.761.17
382.341.561.340.8892.671.781.541.033.042.021.791.19
402.591.721.350.9002.961.971.561.043.372.241.821.21
Other Constants and Properties
by×10
3
, (kip-ft)
–1
2.49 1.66 2.83 1.88 3.21 2.14
ty×10
3
, (kips)
–1
0.596 0.397 0.668 0.444 0.747 0.497
tr×10
3
, (kips)
–1
0.733 0.488 0.821 0.547 0.918 0.612
rx/ry 1.79 1.78 1.77
ry, in. 3.25 3.22 3.19
STEEL BEAM-COLUMN SELECTION TABLES 6–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 77

Shape
W12×
136 120 106
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
00.8370.5571.661.110.9490.6311.921.271.070.7122.171.45
60.8690.5781.661.110.9860.6561.921.271.110.7412.171.45
70.8810.5861.661.111.000.6651.921.271.130.7512.171.45
80.8960.5961.661.111.020.6761.921.271.150.7642.171.45
90.9120.6071.661.111.040.6891.921.271.170.7782.171.45
100.9300.6191.661.111.060.7031.921.271.190.7942.171.45
110.9510.6331.661.111.080.7191.921.271.220.8132.171.45
120.9740.6481.681.111.110.7371.931.281.250.8332.191.46
131.000.6661.691.121.140.7571.951.301.290.8562.221.47
141.030.6851.701.131.170.7791.961.311.330.8822.241.49
151.060.7061.711.141.210.8041.981.321.370.9102.261.50
161.100.7301.731.151.250.8312.001.331.410.9412.281.52
171.140.7551.741.161.290.8612.021.341.470.9762.311.53
181.180.7841.761.171.340.8942.041.351.521.012.331.55
191.220.8151.771.181.400.9312.051.371.591.062.351.57
201.280.8491.781.191.460.9702.071.381.651.102.381.58
221.390.9281.811.211.601.062.111.411.811.212.431.62
241.541.021.841.231.761.172.151.432.001.332.481.65
261.711.141.871.251.961.312.191.462.231.492.541.69
281.911.271.911.272.201.472.241.492.511.672.601.73
302.161.441.941.292.501.662.281.522.861.902.661.77
322.461.641.971.312.841.892.331.553.252.162.721.81
342.781.852.011.343.212.142.381.583.672.442.791.86
363.122.072.051.363.602.402.431.624.112.742.861.90
383.472.312.091.394.012.672.481.654.583.052.931.95
403.852.562.131.414.442.962.541.695.083.383.012.00
Other Constants and Properties
by×10
3
, (kip-ft)
–1
3.64 2.42 4.17 2.78 4.74 3.16
ty×10
3
, (kips)
–1
0.837 0.557 0.949 0.631 1.07 0.712
tr×10
3
, (kips)
–1
1.03 0.685 1.17 0.777 1.31 0.877
rx/ry 1.77 1.76 1.76
ry, in. 3.16 3.13 3.11
6–78 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 78

Shape
W12×
96 87 79
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.180.7882.421.611.300.8682.701.801.440.9582.991.99
61.230.8202.421.611.360.9042.701.801.500.9982.991.99
71.250.8322.421.611.380.9172.701.801.521.012.991.99
81.270.8462.421.611.400.9322.701.801.551.032.991.99
91.300.8622.421.611.430.9502.701.801.581.052.991.99
101.320.8802.421.611.460.9712.701.801.611.072.991.99
111.350.9012.431.611.490.9942.701.801.651.103.002.00
121.390.9242.451.631.531.022.741.821.691.133.042.02
131.430.9492.481.651.581.052.771.841.741.163.082.05
141.470.9782.501.671.621.082.801.861.801.203.122.08
151.521.012.531.681.681.122.841.891.861.243.162.11
161.571.052.561.701.741.162.871.911.921.283.212.13
171.631.082.591.721.801.202.911.932.001.333.252.16
181.691.132.621.741.871.252.941.962.081.383.302.19
191.761.172.651.761.951.302.981.982.171.443.342.22
201.841.222.681.782.041.363.022.012.261.513.392.26
222.021.342.741.832.241.493.102.062.491.663.492.32
242.241.492.811.872.481.653.192.122.761.843.602.40
262.501.662.881.922.781.853.282.183.092.063.712.47
282.811.872.951.973.132.083.372.243.502.333.842.55
303.202.133.032.023.572.383.472.314.002.663.962.64
323.642.423.112.074.072.713.582.384.553.024.102.73
344.112.743.202.134.593.053.692.465.133.414.252.83
364.613.073.292.195.153.423.812.545.753.834.412.93
385.143.423.392.265.733.813.942.626.414.264.583.05
405.693.793.492.326.354.234.082.727.104.734.783.18
Other Constants and Properties
by×10
3
, (kip-ft)
–1
5.28 3.51 5.90 3.92 6.56 4.37
ty×10
3
, (kips)
–1
1.18 0.788 1.30 0.868 1.44 0.958
tr×10
3
, (kips)
–1
1.45 0.970 1.60 1.07 1.77 1.18
rx/ry 1.76 1.75 1.75
ry, in. 3.09 3.07 3.05
STEEL BEAM-COLUMN SELECTION TABLES 6–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 79

Shape
W12×
72 65
f
58
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.581.053.302.191.751.163.752.501.961.314.122.74
61.651.103.302.191.821.213.752.502.091.394.122.74
71.671.113.302.191.851.233.752.502.131.424.122.74
81.701.133.302.191.881.253.752.502.191.454.122.74
91.741.163.302.191.921.283.752.502.251.504.132.75
101.771.183.302.191.961.313.752.502.321.544.212.80
111.821.213.312.202.011.343.752.502.411.604.282.85
121.871.243.362.232.061.373.752.502.501.664.362.90
131.921.283.402.272.131.413.812.542.611.734.452.96
141.981.323.452.302.191.463.872.582.731.814.533.02
152.051.363.502.332.271.513.932.622.861.904.623.07
162.121.413.562.372.351.564.002.663.012.014.713.14
172.201.463.612.402.441.624.062.703.182.124.813.20
182.291.523.672.442.541.694.132.753.382.254.913.27
192.391.593.722.482.651.774.202.803.592.395.013.34
202.501.663.782.522.771.854.272.843.832.555.123.41
222.751.833.912.603.062.034.432.954.412.945.363.56
243.052.034.042.693.402.264.593.065.153.435.613.74
263.422.284.182.783.822.544.773.176.054.025.903.92
283.872.574.332.884.322.884.963.307.014.676.214.13
304.422.944.492.994.953.295.173.448.055.366.574.37
325.033.354.673.105.633.755.393.599.166.097.124.74
345.683.784.863.236.364.235.643.7510.36.887.665.10
366.374.245.063.377.134.745.973.9811.67.718.215.46
387.094.725.323.547.945.286.394.2512.98.598.755.82
407.865.235.663.768.805.856.814.5314.39.529.296.18
Other Constants and Properties
by×10
3
, (kip-ft)
–1
7.24 4.82 8.31 5.53 11.0 7.29
ty×10
3
, (kips)
–1
1.58 1.05 1.75 1.16 1.96 1.31
tr×10
3
, (kips)
–1
1.94 1.30 2.15 1.43 2.41 1.61
rx/ry 1.75 1.75 2.10
ry, in. 3.04 3.02 2.51
6–80 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 80

Shape
W12×
53 50 45
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.141.424.573.042.291.524.963.302.551.705.553.69
6 2.281.524.573.042.521.684.963.302.821.875.553.69
7 2.331.554.573.042.621.744.963.302.921.945.563.70
8 2.391.594.573.042.731.815.083.383.042.035.703.79
9 2.461.644.593.062.861.905.193.463.192.125.843.89
10 2.541.694.683.123.012.005.323.543.362.246.003.99
11 2.631.754.773.183.192.125.453.623.562.376.154.09
12 2.741.824.873.243.392.265.583.723.802.536.324.21
13 2.861.904.973.313.642.425.733.814.072.716.504.32
14 2.991.995.073.383.912.605.883.914.392.926.694.45
15 3.152.095.183.454.242.826.044.024.753.166.884.58
16 3.322.215.293.524.613.076.204.135.183.457.094.72
17 3.512.345.413.605.053.366.384.255.683.787.324.87
18 3.732.485.533.685.563.706.574.376.254.167.565.03
19 3.972.645.663.776.174.106.774.506.944.627.815.20
20 4.252.835.803.866.834.556.984.647.695.128.085.38
22 4.903.266.094.058.275.507.454.959.316.198.695.78
24 5.753.836.414.269.846.558.015.3311.17.379.666.43
26 6.754.496.774.5011.57.688.845.8813.08.6510.77.11
28 7.835.217.164.7713.48.919.676.4415.110.011.77.80
30 8.995.987.815.2015.410.210.56.9917.311.512.88.48
3210.26.808.485.6417.511.611.37.5319.713.113.89.16
3411.57.689.156.09
3612.98.619.816.53
3814.49.5910.56.97
4016.010.611.17.41
Other Constants and Properties
by×10
3
, (kip-ft)
–1
12.2 8.15 16.7 11.1 18.8 12.5
ty×10
3
, (kips)
–1
2.14 1.42 2.29 1.52 2.55 1.70
tr×10
3
, (kips)
–1
2.63 1.75 2.81 1.87 3.13 2.09
rx/ry 2.11 2.64 2.64
ry, in. 2.48 1.96 1.95
STEEL BEAM-COLUMN SELECTION TABLES 6–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 81

Shape
W12×
40 35
c
30
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.851.906.254.163.252.176.964.633.942.628.275.50
6 3.162.106.254.163.802.537.094.724.543.028.465.63
7 3.272.186.274.174.032.687.344.894.793.198.795.85
8 3.412.276.444.294.312.877.615.075.103.399.146.08
9 3.582.386.624.404.653.097.905.265.503.669.536.34
10 3.782.516.804.535.053.368.225.475.993.999.946.62
11 4.002.667.004.665.553.698.565.696.604.3910.46.92
12 4.272.847.214.796.154.098.935.947.324.8710.97.25
13 4.583.057.434.946.874.579.336.218.215.4611.57.62
14 4.943.297.665.107.745.159.776.509.286.1812.18.02
15 5.363.567.915.268.825.8710.36.8210.67.0612.78.48
16 5.843.898.185.4410.06.6810.87.1812.18.0413.79.13
17 6.414.268.465.6311.37.5411.57.6613.69.0715.010.0
18 7.074.708.775.8312.78.4512.58.3015.310.216.410.9
19 7.855.239.106.0514.29.4213.48.9417.011.317.711.8
20 8.705.799.456.2915.710.414.49.5918.912.619.012.7
2210.57.0110.56.9619.012.616.310.922.815.221.714.5
2412.58.3411.87.8322.615.018.312.227.218.124.416.3
2614.79.7913.18.69
2817.111.314.49.56
3019.613.015.710.4
3222.314.816.911.3
Other Constants and Properties
by×10
3
, (kip-ft)
–1
21.2 14.1 31.0 20.6 37.3 24.8
ty×10
3
, (kips)
–1
2.85 1.90 3.24 2.16 3.80 2.53
tr×10
3
, (kips)
–1
3.51 2.34 3.98 2.66 4.67 3.11
rx/ry 2.64 3.41 3.43
ry, in. 1.94 1.54 1.52
6–82 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 82

Shape
W12×
26
c
22
c
19
c
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 4.663.109.586.375.423.6012.28.096.524.3414.49.60
1 4.673.119.586.375.483.6512.28.096.604.3914.49.60
2 4.733.149.586.375.683.7812.28.096.844.5514.49.60
3 4.823.219.586.376.034.0112.28.097.284.8414.59.66
4 4.953.299.586.376.584.3813.08.657.955.2915.610.4
5 5.133.419.586.377.434.9514.09.288.975.9716.911.2
6 5.363.569.836.548.735.8115.110.010.56.9918.412.2
7 5.643.7510.26.8110.67.0316.410.912.98.5620.213.4
8 6.003.9910.77.1113.28.7517.911.916.310.822.314.9
9 6.434.2811.27.4316.711.119.813.120.613.725.717.1
10 6.974.6411.77.7920.613.723.015.325.516.930.420.2
11 7.645.0812.38.1724.916.526.517.630.820.535.223.4
12 8.495.6512.98.6029.619.730.020.036.724.440.126.7
13 9.536.3413.69.0834.723.133.522.343.028.645.130.0
1410.87.1814.49.6140.326.837.124.7
1512.48.2215.410.3
1614.19.3617.111.4
1715.910.618.812.5
1817.811.820.613.7
1919.813.222.314.9
2022.014.624.116.0
2124.216.125.917.2
2226.617.727.718.4
2329.119.329.519.6
2431.621.031.320.8
2534.322.833.122.0
Other Constants and Properties
by×10
3
, (kip-ft)
–1
43.6 29.0 97.3 64.8 120 79.5
ty×10
3
, (kips)
–1
4.37 2.90 5.15 3.43 6.00 3.99
tr×10
3
, (kips)
–1
5.36 3.58 6.33 4.22 7.37 4.91
rx/ry 3.42 5.79 5.86
ry, in. 1.51 0.848 0.822
STEEL BEAM-COLUMN SELECTION TABLES 6–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W12
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 83

Shape
W12×
16
c
14
c, v
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 7.98 5.3117.7 11.8 9.39 6.24 20.5 13.6
1 8.08 5.3817.7 11.8 9.50 6.32 20.5 13.6
2 8.39 5.5917.7 11.8 9.88 6.57 20.5 13.6
3 8.97 5.9618.1 12.0 10.5 7.02 21.0 14.0
4 9.87 6.5719.6 13.1 11.6 7.73 22.9 15.2
5 11.3 7.4921.4 14.3 13.3 8.83 25.1 16.7
6 13.4 8.9123.6 15.7 15.8 10.5 27.8 18.5
7 16.8 11.2 26.3 17.5 19.9 13.3 31.2 20.7
8 21.8 14.5 29.6 19.7 26.0 17.3 36.4 24.2
9 27.6 18.3 36.1 24.0 32.9 21.9 44.6 29.7
10 34.0 22.6 42.9 28.5 40.6 27.0 53.3 35.5
11 41.2 27.4 50.0 33.3 49.1 32.7 62.4 41.5
12 49.0 32.6 57.2 38.1 58.5 38.9 71.8 47.8
Other Constants and Properties
by×10
3
, (kip-ft)
–1
158 105 188 125
ty×10
3
, (kips)
–1
7.09 4.72 8.03 5.34
tr×10
3
, (kips)
–1
8.71 5.81 9.86 6.57
rx/ry 6.04 6.14
ry, in. 0.773 0.753
6–84 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
v
Shape does not meet the h/twlimit for shear in AISC SpecificationSection G2.1(a) with Fy=50 ksi; therefore, φ v=0.90 and
Ω
v=1.67.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W12
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:54 AM Page 84

Shape
W10×
112 100 88
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.020.6752.421.611.140.7582.741.821.280.8553.152.10
61.070.7122.421.611.200.8002.741.821.360.9033.152.10
71.090.7262.421.611.230.8162.741.821.380.9213.152.10
81.120.7422.421.611.250.8352.741.821.420.9423.152.10
91.140.7612.421.611.290.8562.741.821.450.9673.152.10
101.180.7822.431.621.320.8812.751.831.500.9953.172.11
111.210.8072.451.631.370.9092.781.851.541.033.202.13
121.250.8342.471.641.410.9412.801.861.601.063.232.15
131.300.8652.491.661.470.9772.821.881.661.113.272.17
141.350.9002.511.671.531.022.851.901.731.153.302.19
151.410.9392.531.681.601.062.871.911.811.203.332.22
161.480.9832.551.691.671.112.901.931.901.263.362.24
171.551.032.561.711.761.172.921.941.991.333.402.26
181.631.092.591.721.851.232.951.962.101.403.432.28
191.721.152.611.731.961.302.981.982.231.483.472.31
201.821.212.631.752.081.383.002.002.361.573.502.33
222.061.372.671.782.361.573.062.032.681.793.582.38
242.361.572.711.802.701.803.112.073.092.053.652.43
262.741.822.761.833.152.093.172.113.602.403.732.48
283.182.112.801.873.652.433.232.154.182.783.822.54
303.652.432.851.904.192.793.302.194.793.193.902.60
324.152.762.901.934.773.173.362.245.463.634.002.66
344.693.122.951.975.383.583.432.286.164.104.092.72
365.253.503.012.006.034.013.502.336.904.594.192.79
385.853.903.062.046.724.473.582.387.695.124.302.86
406.494.323.122.087.454.963.662.438.525.674.412.94
Other Constants and Properties
by×10
3
, (kip-ft)
–1
5.15 3.43 5.84 3.89 6.71 4.46
ty×10
3
, (kips)
–1
1.02 0.675 1.14 0.758 1.28 0.855
tr×10
3
, (kips)
–1
1.25 0.831 1.40 0.933 1.58 1.05
rx/ry 1.74 1.74 1.73
ry, in. 2.68 2.65 2.63
STEEL BEAM-COLUMN SELECTION TABLES 6–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 85

Shape
W10×
77 68 60
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
01.470.9793.652.431.681.124.182.781.891.264.783.18
61.561.043.652.431.781.184.182.782.001.334.783.18
71.591.063.652.431.811.214.182.782.041.364.783.18
81.631.083.652.431.861.234.182.782.091.394.783.18
91.671.113.652.431.911.274.182.782.151.434.783.18
101.721.143.682.451.961.314.222.812.211.474.843.22
111.781.183.722.482.031.354.272.842.291.524.903.26
121.841.233.762.502.101.404.322.882.371.584.973.31
131.911.273.802.532.191.464.382.912.471.645.043.36
142.001.333.852.562.281.524.442.952.581.725.123.41
152.091.393.892.592.391.594.492.992.701.805.193.46
162.191.463.942.622.511.674.553.032.841.895.273.51
172.311.543.982.652.641.764.613.072.991.995.353.56
182.441.624.032.682.791.864.673.113.162.105.433.62
192.581.724.082.712.961.974.743.153.362.235.523.67
202.741.834.132.743.142.094.803.203.572.385.613.73
223.132.084.232.813.592.394.943.294.082.725.793.85
243.612.404.332.884.152.765.083.384.733.145.993.99
264.222.814.452.964.853.235.243.495.543.696.204.13
284.893.264.563.045.633.745.403.596.424.276.434.28
305.623.744.693.126.464.305.573.717.384.916.674.44
326.394.254.823.217.354.895.763.838.395.586.944.61
347.224.804.963.308.305.525.963.969.476.307.224.80
368.095.385.113.409.306.196.174.1010.67.077.535.01
389.026.005.263.5010.46.906.404.2611.87.877.965.30
409.996.655.433.6111.57.646.644.4213.18.728.435.61
Other Constants and Properties
by×10
3
, (kip-ft)
–1
7.76 5.16 8.88 5.91 10.2 6.77
ty×10
3
, (kips)
–1
1.47 0.979 1.68 1.12 1.89 1.26
tr×10
3
, (kips)
–1
1.81 1.20 2.06 1.37 2.32 1.55
rx/ry 1.73 1.71 1.71
ry, in. 2.60 2.59 2.57
6–86 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 86

Shape
W10×
54 49 45
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.111.415.353.562.321.545.903.922.511.676.494.32
6 2.241.495.353.562.461.645.903.922.761.846.494.32
7 2.291.525.353.562.511.675.903.922.851.906.494.32
8 2.341.565.353.562.571.715.903.922.971.976.604.39
9 2.411.605.353.562.651.765.903.933.102.066.734.48
10 2.481.655.433.612.731.826.003.993.262.176.874.57
11 2.571.715.513.672.831.886.104.063.442.297.004.66
12 2.661.775.603.722.931.956.204.133.652.437.154.76
13 2.771.855.693.783.062.036.314.203.902.607.304.86
14 2.901.935.783.853.192.126.424.274.192.787.464.96
15 3.032.025.883.913.352.236.544.354.513.007.635.07
16 3.192.125.973.973.522.346.664.434.893.267.805.19
17 3.362.246.084.043.722.476.784.515.333.557.985.31
18 3.562.376.184.113.942.626.914.605.843.898.175.44
19 3.782.516.294.194.182.787.044.696.444.288.375.57
20 4.022.676.404.264.462.967.184.787.134.758.585.71
22 4.603.066.644.425.113.407.484.988.635.749.036.01
24 5.333.556.904.595.943.957.805.1910.36.839.536.34
26 6.254.167.184.786.974.648.155.4212.18.0210.16.71
28 7.254.837.484.988.085.388.535.6814.09.3010.97.22
30 8.335.547.815.209.286.178.955.9616.010.711.77.82
32 9.476.308.175.4310.67.039.476.3018.312.112.68.41
3410.77.128.605.7211.97.9310.26.77
3612.07.989.196.1113.48.8910.97.24
3813.48.899.776.5014.99.9111.67.71
4014.89.8510.46.8916.511.012.38.18
Other Constants and Properties
by×10
3
, (kip-ft)
–1
11.4 7.57 12.6 8.38 17.6 11.7
ty×10
3
, (kips)
–1
2.11 1.41 2.32 1.54 2.51 1.67
tr×10
3
, (kips)
–1
2.60 1.73 2.85 1.90 3.08 2.06
rx/ry 1.71 1.71 2.15
ry, in. 2.56 2.54 2.01
STEEL BEAM-COLUMN SELECTION TABLES 6–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 87

Shape
W10×
39 33 30
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 2.901.937.615.063.442.299.186.113.782.519.736.48
6 3.202.137.615.063.802.539.186.114.623.0810.16.74
7 3.312.207.615.073.952.629.226.134.973.3110.56.99
8 3.452.297.785.184.112.749.456.295.413.6010.97.25
9 3.612.407.965.294.312.879.706.455.953.9611.37.53
10 3.802.538.145.414.553.039.966.626.624.4111.87.84
11 4.022.678.335.544.833.2110.26.817.454.9612.38.17
12 4.282.848.535.675.153.4210.57.008.475.6412.88.54
13 4.573.048.745.815.523.6710.87.209.766.4913.48.93
14 4.923.278.965.965.953.9611.27.4211.37.5314.19.37
15 5.313.549.196.126.454.2911.57.6513.08.6414.89.85
16 5.783.849.446.287.044.6811.97.8914.89.8315.610.4
17 6.314.209.706.457.725.1412.38.1516.711.116.811.2
18 6.934.619.976.638.515.6712.78.4318.712.418.112.1
19 7.675.1010.36.829.466.3013.18.7320.813.919.412.9
20 8.505.6610.67.0310.56.9813.69.0523.115.420.713.8
2210.36.8411.27.4712.78.4414.89.8227.918.623.215.4
2412.28.1412.07.9815.110.016.511.0
2614.49.5613.28.7717.711.818.312.2
2816.711.114.49.5820.613.720.113.4
3019.112.715.610.423.615.721.914.5
3221.814.516.811.226.817.923.615.7
Other Constants and Properties
by×10
3
, (kip-ft)
–1
20.7 13.8 25.4 16.9 40.3 26.8
ty×10
3
, (kips)
–1
2.90 1.93 3.44 2.29 3.78 2.51
tr×10
3
, (kips)
–1
3.57 2.38 4.23 2.82 4.64 3.09
rx/ry 2.16 2.16 3.20
ry, in. 1.98 1.94 1.37
6–88 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 88

Shape
W10×
26 22
c
19
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 4.392.9211.47.575.193.4513.79.125.943.9516.511.0
1 4.412.9411.47.575.223.4713.79.126.034.0116.511.0
2 4.492.9911.47.575.303.5313.79.126.284.1816.511.0
3 4.623.0711.47.575.443.6213.79.126.734.4816.511.0
4 4.813.2011.47.575.663.7713.79.127.414.9317.411.6
5 5.063.3711.57.635.973.9713.99.238.395.5818.612.4
6 5.393.5811.97.936.384.2414.59.649.766.4919.913.2
7 5.803.8612.48.256.894.5815.110.111.77.7721.414.3
8 6.324.2012.98.597.535.0115.910.614.49.5523.215.4
9 6.964.6313.58.978.335.5516.711.118.112.025.316.8
10 7.765.1614.19.389.336.2117.611.722.314.828.218.8
11 8.745.8114.89.8410.67.0418.512.327.018.032.321.5
12 9.966.6315.510.312.18.0719.613.132.121.436.424.2
1311.57.6516.410.914.19.3820.913.937.725.140.526.9
1413.38.8817.311.516.410.922.515.043.729.144.629.7
1515.310.218.412.218.812.525.016.6
1617.411.620.113.421.414.227.418.2
1719.713.121.814.524.116.029.919.9
1822.114.723.615.727.018.032.421.6
1924.616.325.316.830.120.034.923.2
2027.218.127.018.033.422.237.424.9
2130.020.028.719.136.824.539.926.5
2232.921.930.520.340.426.942.428.2
Other Constants and Properties
by×10
3
, (kip-ft)
–1
47.5 31.6 58.4 38.9 106 70.8
ty×10
3
, (kips)
–1
4.39 2.92 5.15 3.42 5.94 3.95
tr×10
3
, (kips)
–1
5.39 3.59 6.32 4.21 7.30 4.87
rx/ry 3.20 3.21 4.74
ry, in. 1.36 1.33 0.874
STEEL BEAM-COLUMN SELECTION TABLES 6–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 89

Shape
W10×
17
c
15
c
12
c, f
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 6.774.5019.112.77.775.1722.314.810.36.8728.519.0
1 6.854.5619.112.77.875.2422.314.810.56.9628.519.0
2 7.114.7319.112.78.195.4522.314.810.97.2428.519.0
3 7.645.0919.112.78.765.8322.515.011.67.7428.819.1
4 8.475.6420.413.69.796.5124.216.112.88.5231.120.7
5 9.686.4421.914.511.37.5326.117.414.69.7333.922.6
611.47.5723.615.713.58.9828.418.917.511.637.324.8
713.89.1725.617.016.611.131.220.721.814.541.327.5
817.211.428.018.621.214.134.522.928.118.746.430.9
921.814.530.920.626.817.839.626.435.623.756.537.6
1026.917.936.023.933.122.046.831.143.929.267.244.7
1132.521.641.427.540.126.754.035.953.135.478.352.1
1238.725.846.831.247.731.761.440.963.242.189.659.6
1345.430.252.334.856.037.268.845.874.249.410167.3
1452.735.157.838.5
Other Constants and Properties
by×10
3
, (kip-ft)
–1
127 84.7 155 103 207 138
ty×10
3
, (kips)
–1
6.69 4.45 7.57 5.04 9.44 6.28
tr×10
3
, (kips)
–1
8.22 5.48 9.30 6.20 11.6 7.73
rx/ry 4.79 4.88 4.97
ry, in. 0.845 0.810 0.785
6–90 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W10
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
fShape does not meet compact limit for flexure with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 90

Shape
W8×
67 58 48
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 1.701.135.083.381.951.305.963.962.371.587.274.84
6 1.841.235.083.382.131.425.963.962.591.727.274.84
7 1.901.275.083.382.201.465.963.962.671.787.274.84
8 1.971.315.113.402.281.516.003.992.771.847.344.88
9 2.051.365.163.432.371.586.074.042.881.927.444.95
10 2.141.435.213.472.481.656.144.083.022.017.555.02
11 2.251.505.273.502.611.736.214.133.182.127.655.09
12 2.381.585.323.542.751.836.294.183.362.247.775.17
13 2.521.685.383.582.921.956.364.233.572.387.885.24
14 2.681.795.433.613.122.086.444.293.822.548.005.32
15 2.871.915.493.653.342.226.524.344.102.738.125.41
16 3.092.055.553.693.602.396.614.404.422.948.255.49
17 3.342.225.613.733.892.596.694.454.793.188.385.58
18 3.622.415.673.774.232.826.784.515.213.478.525.67
19 3.952.635.743.824.623.086.874.575.703.798.665.76
20 4.332.885.803.865.083.386.964.636.284.188.805.85
22 5.243.485.933.956.154.097.154.767.605.069.106.06
24 6.234.156.074.047.324.877.354.899.056.029.436.27
26 7.314.876.224.148.595.717.575.0310.67.069.776.50
28 8.485.646.384.249.966.637.795.1912.38.1910.16.75
30 9.746.486.544.3511.47.618.035.3514.19.4010.67.02
3211.17.376.714.4613.08.668.295.5216.110.711.07.31
3412.58.326.894.5814.79.778.565.7018.212.111.57.63
Other Constants and Properties
by×10
3
, (kip-ft)
–1
10.9 7.25 12.8 8.50 15.6 10.4
ty×10
3
, (kips)
–1
1.70 1.13 1.95 1.30 2.37 1.58
tr×10
3
, (kips)
–1
2.08 1.39 2.40 1.60 2.91 1.94
rx/ry 1.75 1.74 1.74
ry, in. 2.12 2.10 2.08
STEEL BEAM-COLUMN SELECTION TABLES 6–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W8
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 91

Shape
W8×
40 35
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 2.85 1.90 8.95 5.96 3.24 2.16 10.3 6.83
6 3.13 2.08 8.95 5.96 3.56 2.37 10.3 6.83
7 3.23 2.15 8.95 5.96 3.68 2.45 10.3 6.83
8 3.36 2.23 9.07 6.03 3.82 2.54 10.4 6.94
9 3.50 2.33 9.22 6.14 3.99 2.65 10.6 7.07
10 3.68 2.45 9.38 6.24 4.19 2.79 10.8 7.21
11 3.88 2.58 9.55 6.35 4.42 2.94 11.1 7.36
12 4.11 2.73 9.72 6.47 4.68 3.12 11.3 7.51
13 4.38 2.91 9.90 6.59 4.99 3.32 11.5 7.67
14 4.69 3.1210.1 6.71 5.35 3.56 11.8 7.83
15 5.04 3.3610.3 6.84 5.76 3.83 12.0 8.00
16 5.46 3.6310.5 6.97 6.24 4.15 12.3 8.18
17 5.93 3.9510.7 7.11 6.79 4.51 12.6 8.37
18 6.48 4.3110.9 7.25 7.42 4.94 12.9 8.56
19 7.12 4.7311.1 7.40 8.16 5.43 13.2 8.77
20 7.87 5.2411.4 7.55 9.03 6.01 13.5 8.99
22 9.52 6.3411.8 7.8810.9 7.27 14.2 9.45
24 11.3 7.5412.4 8.2413.0 8.65 15.0 9.97
26 13.3 8.8513.0 8.6415.3 10.2 15.8 10.5
28 15.4 10.3 13.6 9.0717.7 11.8 17.0 11.3
30 17.7 11.8 14.4 9.5720.3 13.5 18.4 12.3
32 20.1 13.4 15.4 10.3 23.1 15.4 19.8 13.2
34 22.7 15.1 16.5 11.0
Other Constants and Properties
by×10
3
, (kip-ft)
–1
19.3 12.8 22.1 14.7
ty×10
3
, (kips)
–1
2.85 1.90 3.24 2.16
tr×10
3
, (kips)
–1
3.51 2.34 3.98 2.66
rx/ry 1.73 1.73
ry, in. 2.04 2.03
6–92 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
W8
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 92

Shape
W8×
31
f
28
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
0 3.66 2.4311.7 7.80 4.05 2.69 13.1 8.71
6 4.01 2.6711.7 7.80 4.68 3.11 13.2 8.77
7 4.15 2.7611.7 7.80 4.93 3.28 13.5 9.00
8 4.32 2.8711.9 7.94 5.23 3.48 13.9 9.23
9 4.51 3.0012.2 8.11 5.60 3.73 14.2 9.48
10 4.74 3.1512.5 8.29 6.05 4.02 14.6 9.74
11 5.00 3.3312.7 8.48 6.58 4.38 15.0 10.0
12 5.30 3.5313.0 8.67 7.21 4.80 15.5 10.3
13 5.66 3.7613.3 8.88 7.98 5.31 15.9 10.6
14 6.07 4.0413.7 9.09 8.89 5.91 16.4 10.9
15 6.54 4.3514.0 9.32 9.98 6.64 17.0 11.3
16 7.08 4.7114.4 9.5611.3 7.54 17.5 11.7
17 7.71 5.1314.7 9.8112.8 8.51 18.1 12.0
18 8.44 5.6215.1 10.1 14.3 9.54 18.7 12.5
19 9.29 6.1815.6 10.3 16.0 10.6 19.4 12.9
20 10.3 6.8416.0 10.6 17.7 11.8 20.2 13.4
22 12.4 8.2817.0 11.3 21.4 14.2 22.1 14.7
24 14.8 9.8618.0 12.0 25.5 17.0 24.5 16.3
26 17.4 11.6 19.6 13.1 29.9 19.9 26.9 17.9
28 20.2 13.4 21.4 14.3
30 23.1 15.4 23.3 15.5
32 26.3 17.5 25.1 16.7
Other Constants and Properties
by×10
3
, (kip-ft)
–1
25.3 16.8 35.3 23.5
ty×10
3
, (kips)
–1
3.66 2.43 4.05 2.69
tr×10
3
, (kips)
–1
4.49 3.00 4.97 3.32
rx/ry 1.72 2.13
ry, in. 2.02 1.62
STEEL BEAM-COLUMN SELECTION TABLES 6–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
f
Shape does not meet compact limit for flexure with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
W8
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 93

Shape
W8×
24 21 18
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 4.723.1415.410.35.423.6117.511.66.354.2221.013.9
1 4.743.1515.410.35.463.6317.511.66.394.2521.013.9
2 4.793.1915.410.35.573.7017.511.66.534.3421.013.9
3 4.893.2615.410.35.763.8317.511.66.764.5021.013.9
4 5.033.3515.410.36.034.0117.511.67.104.7221.013.9
5 5.223.4715.410.36.404.2617.811.97.565.0321.514.3
6 5.463.6315.610.46.884.5818.512.38.165.4322.515.0
7 5.763.8316.010.67.504.9919.212.88.935.9423.515.6
8 6.124.0716.511.08.295.5120.013.39.916.6024.616.4
9 6.564.3617.011.39.286.1720.913.911.27.4225.917.2
10 7.084.7117.511.710.57.0021.914.512.78.4727.318.1
11 7.715.1318.112.012.18.0522.915.214.79.8128.819.2
12 8.475.6318.712.414.19.3924.116.017.311.530.520.3
13 9.376.2419.312.916.611.025.316.820.313.532.521.6
1410.56.9620.013.319.212.826.717.823.615.735.323.5
1511.87.8320.813.822.014.728.518.927.118.038.825.8
1613.48.8921.614.425.116.730.920.630.820.542.428.2
1715.110.022.514.928.318.833.422.234.823.145.930.5
1816.911.323.415.631.721.135.923.939.026.049.432.9
1918.812.524.516.335.423.538.325.543.528.952.935.2
2020.913.926.117.439.226.140.727.148.232.056.437.5
2123.015.327.818.543.228.743.228.7
2225.316.829.419.6
2327.618.431.020.6
2430.120.032.621.7
2532.621.734.222.8
Other Constants and Properties
by×10
3
, (kip-ft)
–1
41.6 27.7 62.6 41.7 76.5 50.9
ty×10
3
, (kips)
–1
4.72 3.14 5.42 3.61 6.35 4.22
tr×10
3
, (kips)
–1
5.79 3.86 6.66 4.44 7.80 5.20
rx/ry 2.12 2.77 2.79
ry, in. 1.61 1.26 1.23
6–94 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W8
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
Note: Heavy line indicates KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 94

Shape
W8×
15 13 10
c, f
p×10
3
bx×10
3
p×10
3
bx×10
3
p×10
3
bx×10
3
Design (kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
(kips)
–1
(kip-ft)
–1
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
0 7.525.0126.217.48.705.7931.320.811.77.7840.627.0
1 7.635.0726.217.48.835.8731.320.811.87.8840.627.0
2 7.955.2926.217.49.236.1431.320.812.38.1840.627.0
3 8.515.6626.217.49.946.6131.320.813.18.7140.627.0
4 9.376.2327.618.411.07.3433.422.214.39.5543.228.8
510.67.0529.419.512.68.3835.723.816.410.946.731.1
612.38.2031.320.814.89.8638.525.619.312.850.833.8
714.79.8033.622.418.012.041.727.723.415.655.737.0
818.112.036.224.122.514.945.430.229.319.561.641.0
922.815.239.326.128.418.950.033.237.124.771.347.4
1028.118.742.928.635.123.457.438.245.830.484.356.1
1134.022.648.932.542.528.365.843.855.436.897.664.9
1240.526.954.936.550.633.674.349.465.943.811173.9
1347.531.660.940.559.339.582.755.077.351.512583.0
1455.136.766.944.568.845.891.260.789.759.713992.2
Other Constants and Properties
by×10
3
, (kip-ft)
–1
133 88.8 166 110 218 145
ty×10
3
, (kips)
–1
7.52 5.01 8.70 5.79 11.3 7.51
tr×10
3
, (kips)
–1
9.24 6.16 10.7 7.12 13.9 9.24
rx/ry 3.76 3.81 3.83
ry, in. 0.876 0.843 0.841
STEEL BEAM-COLUMN SELECTION TABLES 6–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 6-1 (continued)
Combined Flexure
and Axial Force
W-Shapes
W8
Effective length,
KL
(ft), with respect to least radius of gyration,
r
y
,
or Unbraced Length,
L
b
(ft), for X-X axis bending
c
Shape is slender for compression with Fy=50 ksi.
fShape does not meet compact limit for flexure with Fy=50 ksi.
Note: Heavy line indicates
KL/ryequal to or greater than 200.
Fy= 50 ksi
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 95

6–96 DESIGN OF MEMBERS SUBJECT TO COMBINED FORCES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 06B:14th Ed. 2/4/11 8:55 AM Page 96

7–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 7
DESIGN CONSIDERATIONS FOR BOLTS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
GENERAL REQUIREMENTS FOR BOLTED JOINTS . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Fastener Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Proper Selection of Bolt Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Washer Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
Nut Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
Bolted Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
PROPER SPECIFICATION OF JOINT TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
Snug-Tightened Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
Pretensioned Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5
Slip-Critical Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5
DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5
Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5
Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Combined Shear and Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Slip Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
ECCENTRICALLY LOADED BOLT GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Eccentricity in the Plane of the Faying Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Instantaneous Center of Rotation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
Elastic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8
Eccentricity Normal to the Plane of the Faying Surface . . . . . . . . . . . . . . . . . . . . . 7–10
Case I—Neutral Axis Not at Center of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 7–10
Case II—Neutral Axis at Center of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–12
SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS . . . . . 7–13
Through-Bolting to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
Blind Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
Flow-Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
Threaded Studs to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–14
Nailing to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–15
AISC_Part 7A:14th Ed. 4/1/11 8:53 AM Page 1

7–2 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Screwing to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–15
Connection Shear per Screw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–15
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Placement of Bolt Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Bolts in Combination with Welds or Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Galvanizing High-Strength Bolts and Nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Reuse of Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Fatigue Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Entering and Tightening Clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
Fully Threaded ASTM A325 Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
ASTM A307 Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
ASTM A449 Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
PART 7 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–21
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–22
Table 7-1. Available Shear Strength of Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–22
Table 7-2. Available Tensile Strength of Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–23
Table 7-3. Slip-Critical Connections, Available Shear Strength . . . . . . . . . . . . . . . . 7–24
Tables 7-4 and 7-5. Available Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . 7–26
Tables 7-6 through 7-13. Coefficients Cfor Eccentrically Loaded Bolt Groups . . . 7–30
Table 7-14. Dimensions of High-Strength Fasteners . . . . . . . . . . . . . . . . . . . . . . . . 7–78
Tables 7-15 and 7-16. Entering and Tightening Clearance . . . . . . . . . . . . . . . . . . . 7–79
Table 7-17. Threading Dimensions for High-Strength and
Non-High-Strength Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–81
Table 7-18. Weights of High-Strength Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–82
Table 7-19. Dimensions of Non-High-Strength Fasteners . . . . . . . . . . . . . . . . . . . . 7–83
Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength Fasteners . . . . . . . . . . 7–85
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 2

GENERAL REQUIREMENTS FOR BOLTED JOINTS 7–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of bolts in steel-to-steel structural connections. Additional guidance on bolt design
is available in AISC Design Guide 17, High Strength Bolts—A Primer for Structural Engineers,
(Kulak, 2002). For the design of steel-to-concrete anchorage, see Part 14. For the design of
connection elements, see Part 9. For the design of simple shear, moment, bracing and other
connections, see Parts 10 through 15.
GENERAL REQUIREMENTS FOR BOLTED JOINTS
Fastener Components
The applicable material specifications for fastener components are as given in Part 2. For
convenience in referencing and consistent with AISC SpecificationSection J3.1, ASTM
A325 and F1852 bolts have been labelled Group A bolts, and ASTM A490 and F2280 bolts
have been labelled Group B bolts.
Material and storage requirements for fastener components are as given in AISC
SpecificationSection A3.3 and RCSC SpecificationSection 2. The compatibility of ASTM
A563 nuts and F436 washers with ASTM A325, F1852, A490 and F2280 bolts is as given
in RCSC SpecificationTable 2.1. These products are given identifying marks, as illustrated
in RCSC SpecificationFigure C-2.1. Alternative-design fasteners and alternative washer-
type indicating devices are permitted, subject to the requirements in RCSC Specification
Sections 2.8 and 2.6.2, respectively.
Mixing grades of fasteners raises inventory and quality control issues associated with the
use of multiple fastener grades. When both Group A and Group B bolts are used on a proj-
ect, different diameters can be specified for each to help ensure that the Group B bolts are
installed in the proper location.
Regardless of the bolt type selected, the typical sizes of
3
/4-in.,
7
/8-in., 1-in. and 1
1
/8-in.
diameter are usually preferred. Diameters above 1 in. require special consideration for avail-
ability as well as installation, when pretensioned installation is required. Special equipment
may be required to pretension large-diameter Group B bolts.
Proper Selection of Bolt Length
Per RCSC SpecificationSection 2.3.2, adequate thread engagement is developed when the
end of the bolt is at least flush with or projects beyond the face of the nut. To provide for
this, the ordered length of Group A and Group B bolts should be calculated as the grip (see
Figure 7-1) plus the nominal thickness of washers and/or direct-tension indicators, if used,
plus the allowance from Table 7-14, with the total rounded to the next higher increment of
1
/4in. up to a 5-in. length and the next higher
1
/2in. over a 5-in. length. Note that bolts longer
than 5 in. are generally available only in
1
/2-in. increments, except by special arrangement
with the manufacturer or vendor. While longer lengths may be ordered, an 8-in. length is
generally the maximum stock length available. Requirements for a minimum stick-through
greater than zero are discouraged because of the risk of jamming the nut on the thread
runout, particularly in the bolt length range available only in
1
/2-in. increments. See Carter
(1996) for further information.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 3

7–4 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Washer Requirements
Requirements for the use of ASTM F436 washers and/or plate washers are given in RCSC
SpecificationSection 6.
Nut Requirements
The compatibility of ASTM A563 nuts with Group A and Group B bolts is as given in RCSC
SpecificationTable 2.1.
Bolted Parts
The requirements for connected plies, faying surfaces, bolt holes and burrs are given in
AISC SpecificationSections J3.2 and M2.5, and RCSC SpecificationSection 3. Spacing and
edge distance requirements are given in AISC SpecificationSections J3.3, J3.4 and J3.5.
PROPER SPECIFICATION OF JOINT TYPE
When Group A or Group B high-strength bolts are to be used, the joint type must bespecified
as snug-tightened, pretensioned or slip-critical, per AISC SpecificationSection J3.1.
Snug-Tightened Joints
Snug-tightened joints simplify design, installation and inspection and should be specified
whenever pretensioned joints and slip-critical joints are not required. The applicability is
summarized and design requirements, installation requirements and inspection requirements
are stipulated for snug-tightened joints per RCSC SpecificationSection 4.1. Faying surfaces
in snug-tightened joints must meet the requirements in RCSC SpecificationSections 3.2 and
3.2.1, but not those for slip-critical joints in RCSC SpecificationSection 3.2.2. Note that
there is generally no need to limit the actual level of pretension provided in snug-tightened
joints, per RCSC SpecificationSection 9.1.
Specification
Fig. 7-1. Grip and other parameters for bolt length selection.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 4

DESIGN REQUIREMENTS 7–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pretensioned Joints
When pretension is required but slip-resistance is not of concern, a pretensioned joint
should be specified. The applicability is summarized and design requirements, installation
requirements and inspection requirements are stipulated for pretensioned joints per RCSC
SpecificationSection 4.2. Additionally, pretensioned joints are required by default in some
cases per AISC SpecificationSection J1.10. Faying surfaces in pretensioned joints must
meet the requirements in RCSC SpecificationSections 3.2 and 3.2.1, but not those for slip-
critical joints in RCSC SpecificationSection 3.2.2.
Slip-Critical Joints
The applicability of slip critical joints is summarized and design requirements, installation
requirements, and inspection requirements are stipulated in RCSC SpecificationSection 4.3,
except as modified by AISC SpecificationSections J3.8 and J3.9. Faying surfaces in slip-
critical joints must meet the requirements in RCSC SpecificationSections 3.2 and 3.2.2.
RCSC defines a faying surface as “the plane of contact between two plies of a joint.” Note
that the surfaces under the bolt head, washer and/or nut are not faying surfaces.
Subject to the requirements in RCSC SpecificationSection 4.3, slip-critical joints are
rarely required in building design. Slip-critical joints are appreciably more expensive
because of the associated costs of faying surface preparation and installation and inspection
requirements.
When slip-resistance is required and the steel is painted, the fabricator should be con-
sulted to determine the most economical approach to providing the necessary slip resistance.
Special paint systems that are rated for slip resistance can be specified. Alternatively, a paint
system that is not rated for slip resistance can be used with the faying surfaces masked.
DESIGN REQUIREMENTS
Design requirements are found in the AISC Specificationas follows. In each case, the avail-
able strength determined in accordance with these provisions must equal or exceed the
required strength. These requirements are derived from those in the RCSC Specification.
Shear
Available shear strength is determined as given in RCSC SpecificationSection 5.1 and AISC
SpecificationSection J3.6, with consideration of the presence of fillers or shims, per RCSC
Specification Section 5.1 and AISC SpecificationSection J5. The nominal shear strengths
given in Table J3.2 have been reduced by approximately 10% from statistical results of tests
to account for uneven force distributions associated with end loading and other effects nor-
mally neglected in the design process.
When the length of a bolted joint measured parallel to the line of force exceeds 38 in., a
16.7% strength reduction may be applicable, per AISC SpecificationTable J3.2 footnote a.
The force that can be resisted by a snug-tightened or pretensioned high-strength bolt
may also be limited by the bearing strength at the bolt hole per AISC Specification Section
J3.10. The effective strength of an individual bolt may be taken as the lesser of the shear
strength per Section J3.6 or the bearing strength at the bolt hole per Section J3.10. The
strength of the bolt group may be taken as the sum of the effective strengths of the indi-
vidual fasteners.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 5

7–6 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tension
Available tensile strength is determined as given in RCSC SpecificationSection 5.1 and
AISC SpecificationSection J3.6, with consideration of the effects of prying action, if any.
Prying action is a phenomenon (in bolted construction only) whereby the deformation of a
fitting under a tensile force increases the tensile force in the bolt. While the effect of prying
action is relevant to the design of the bolts, it is primarily a function of the strength and stiff-
ness of the connection elements. Prying action is addressed in Part 9.
Combined Shear and Tension
Available strength for combined shear and tension in bearing-type connections is deter-
mined as given in RCSC SpecificationSection 5.2 and AISC SpecificationSection J3.7.
Bearing Strength at Bolt Holes
Available bearing strength at bolt holes is determined as given in RCSC Specification
Section 5.3 and AISC SpecificationSection J3.10.
Slip Resistance
The available strength of slip-critical connections is determined in accordance with AISC
SpecificationSection J3.8. The available strength, φR
nor Rn/Ω, is determined by applying
the resistance factor or safety factor appropriate for the hole type used.
ECCENTRICALLY LOADED BOLT GROUPS
Eccentricity in the Plane of the Faying Surface
When eccentricity occurs in the plane of the faying surface, the bolts must be designed to
resist the combined effect of the direct shear, P
uorPa, and the additional shear from the
induced moment, P
ueor P ae.Two analysis methods for this type of eccentricity are the
instantaneous center of rotation method and the elastic method.
The instantaneous center of rotation method is more accurate, but generally requires the
use of tabulated values or an iterative solution. The elastic method is simplified, but may be
excessively conservative because it neglects the ductility of the bolt group and the potential
for load redistribution.
Instantaneous Center of Rotation Method
Eccentricity produces both a rotation and a translation of one connection element with
respect to the other. The combined effect of this rotation and translation is equivalent to a
rotation about a point defined as the instantaneous center of rotation (IC), as illustrated in
Figure 7-2(a). The location of the IC depends upon the geometry of the bolt group as well
as the direction and point of application of the load.
The load-deformation relationship for one bolt is illustrated in Figure 7-3, where
R =R
ult(1 φe
φ10Δ
)
0.55
(7-1)
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 6

ECCENTRICALLY LOADED BOLT GROUPS 7–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 7-2. Illustration for instantaneous center of rotation method.
(a) Instantaneous center of rotation (IC)
(b) Forces on bolts in group for case ofθ=0° for simplicity
where
R=nominal shear strength of one bolt at a deformation Δ, kips
R
ult=ultimate shear strength of one bolt, kips
Δ=total deformation, including shear, bearing and bending deformation in the bolt and
bearing deformation of the connection elements, in.
e=2.718…, base of the natural logarithm
The nominal shear strength of the bolt most remote from the IC can be determined by
applying a maximum deformation, Δ
max, to that bolt. The load-deformation relationship is
based upon data obtained experimentally for
3
/4-in.-diameter ASTM A325 bolts, where
R
ult =74 kips, and Δ max=0.34 in.
The nominal shear strengths of the other bolts in the joint can be determined by applying
a deformation Δthat varies linearly with distance from the IC. The nominal shear strength
of the bolt group is, then, the sum of the individual strengths of all bolts.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 7

7–8 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 7-3. Load-deformation relationship for one
3
/4-in.-diameter
ASTM A325 bolt in single shear.
The individual resistance of each bolt is assumed to act on a line perpendicular to a ray
passing through the IC and the centroid of that bolt, as illustrated in Figure 7-2(b). If the cor-
rect location of the IC has been selected, the three equations of in-plane static equilibrium
(ΣF
x=0, ΣF y=0, and ΣM =0) will be satisfied.
For further information, see Crawford and Kulak (1968).
Elastic Method
For a force applied as illustrated in Figure 7-4, the eccentric force, P uor Pa, is resolved into
a direct shear,P
uor Pa, acting through the center of gravity (CG) of the bolt group and a
moment, P
ueor P ae, where e is the eccentricity. Each bolt is then assumed to resist an equal
share of the direct shear and a share of the eccentric moment proportional to its distance
from the CG. The resultant vectorial sum of these forces is the required strength for the
bolt, r
uor ra.
Fig. 7-4. Illustration for elastic method.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 8

ECCENTRICALLY LOADED BOLT GROUPS 7–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The shear per bolt due to the concentric force, P uorPa, is rpuorrpa, where
and nis the number of bolts. To determine the resultant forces on each bolt when P
uor Pais
applied at an angle θwith respect to the vertical, r
puor rpamust be resolved into horizontal
component, r
pxuor rpxa, and vertical component, r pyuor rpya, where
r
pxu=rpusinθ(LRFD) (7-3a)
r
pxa=rpasinθ(ASD) (7-3b)
r
pyu=rpucosθ(LRFD) (7-4a)
r
pya=rpacosθ(ASD) (7-4b)
The shear on the bolt most remote from the CG due to the moment, P
ueor P ae,is r muor rma,
where
where
c=radial distance from CG to center of bolt most remote from CG, in.
I
p=Ix+Iy=polar moment of inertia of the bolt group, in.
4
per in.
2
To determine the resultant force on the most highly stressed bolt, r muor rmamust be resolved
into horizontal component r
mxuor rmxaand vertical component r myuor rmya, where
In the above equations, c
xand c yare the horizontal and vertical components of the diagonal
distance c. Thus, the required strength per bolt is r
uor ra, where
For further information, see Higgins (1971).
LRFD ASD
r
P
npa
a=r
P
npu
u= (7-2a) (7-2b)
LRFD ASD
r
Pec
Ima
a
p=
r
Pec
Imu
u
p=
(7-5a) (7-5b)
LRFD ASD
rrr rra pxa mxa pya mya=+( )++( )
22
rrr rru pxu mxu pyu myu=+( )++( )
22
(7-8a) (7-8b)
LRFD ASD
r
Pec
I
r
Pec
Imxa
ay
p
mya
ax
p=
=
r
Pec
I
r
Pec
Imxu
uy
p
myu
ux
p=
=
(7-6a)
(7-7a)
(7-6b)
(7-7b)
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 9

Eccentricity Normal to the Plane of the Faying Surface
Eccentricity normal to the plane of the faying surface produces tension above and compres-
sion below the neutral axis for a bracket connection as shown in Figure 7-5. The eccentric
force, P
uorPa, is resolved into a direct shear,P uorPa, acting at the faying surface of the
joint and a moment normal to the plane of the faying surface, P
ue or P ae, where e is the
eccentricity. Each bolt is then assumed to resist an equal share of the concentric force, P
uor
P
a, and the moment is resisted by tension in the bolts above the neutral axis and compres-
sion below the neutral axis.
Two design approaches for this type of eccentricity are available: Case I, in which the
neutral axis is not taken at the center of gravity (CG), and Case II, in which the neutral axis
is taken at the CG.
Case I—Neutral Axis Not at Center of Gravity
The shear per bolt due to the concentric force, r uvor rav, is determined as
where n is the number of bolts in the connection.
A trial position for the neutral axis can be selected at one-sixth of the total bracket depth,
measured upward from the bottom (line X-X in Figure 7-6(a)). To provide for reasonable
proportions and to account for the bending stiffness of the connection elements, the effec-
tive width of the compression block, b
eff,should be taken as
b
eff= 8tf≤bf (7-10)
7–10 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
r
P
nav
a=r
P
nuv
u= (7-9a) (7-9b)
Fig. 7-5. Tee bracket subject to eccentric loading normal to the plane
of the faying surface.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 10

where
t
f=lesser connection element thickness, in.
b
f=connection element width, in.
This effective width is valid for bracket flanges made from W-shapes, S-shapes, welded
plates and angles. Where the bracket flange thickness is not constant, the average flange
thickness should be used.
The assumed location of the neutral axis can be evaluated by checking static equilibrium
assuming an elastic stress distribution. Equating the moment of the bolt area above the neu-
tral axis with the moment of the compression block area below the neutral axis,
(ΣA
b)y=b effd (d/2) (7-11)
where
ΣA
b=sum of the areas of all bolts above the neutral axis, in.
2
y=distance from line X-X to the CG of the bolt group above the neutral axis, in.
d=depth of compression block, in.
The value of d may then be adjusted until a reasonable equality exists.
Once the neutral axis has been located, the tensile force per bolt, r
utorrat, as illustrated
in Figure 7-6(b), may be determined as
where
c=distance from neutral axis to the most remote bolt in the group, in.
I
x=combined moment of inertia of the bolt group and compression block
about the neutral axis, in.
4
ECCENTRICALLY LOADED BOLT GROUPS 7–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
r
Pec
I
Aat
a
x
b=






r
Pec
I
Aut
u
x
b=






(7-12a) (7-12b)
Fig. 7-6. Location of neutral axis (NA) for out-of-plane eccentric loading using Case I.
(a) Initial approximation
of location of NA
(b) Force diagram with final
location of NA
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 11

Bolts above the neutral axis are subjected to the shear force, the tensile force, and the
effect of prying action (see Part 9); bolts below the neutral axis are subjected to the shear
force, r
uvor rav, only.
Case II—Neutral Axis at Center of Gravity
This method provides a more direct, but also a more conservative result. As for Case I, the
shear force per bolt, r
uvor rav, due to the concentric force, P uor Pa, is determined as
where n is the number of bolts in the connection.
The neutral axis is assumed to be located at the CG of the bolt group as illustrated in
Figure 7-7. The bolts above the neutral axis are in tension and the bolts below the neutral
axis are said to be in “compression.” To obtain a more accurate result, a plastic stress dis-
tribution is assumed; this assumption is justified because this method is still more
conservative than Case I. Accordingly, the tensile force in each bolt above the neutral axis,
r
utor rat, due to the moment, P ue or P ae, is determined as
7–12 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
r
P
n
av
a
=r
P
n
uv
u
= (7-13a) (7-13b)
LRFD ASD
r
Pe
nd
at
a
m
=

r
Pe
nd
ut
u
m
=

(7-14a) (7-14b)
Fig. 7-7. Location of neutral axis (NA) for out-of-plane eccentric loading using Case II.
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 12

SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
n′=number of bolts above the neutral axis
d
m=moment arm between resultant tensile force and resultant compressive force, in.
Bolts above the neutral axis are subjected to the shear force, the tensile force, and the
effect of prying action (see Part 9); bolts below the neutral axis are subjected to the shear
force, r
uvorrav, only.
SPECIAL CONSIDERATIONS FOR HOLLOW
STRUCTURAL SECTIONS
Through-Bolting to HSS
Long bolts that extend through the entire HSS are satisfactory for shear connections that do
not require a pretensioned installation. The flexibility of the walls of the HSS precludes
installation of pretensioned bolts. Standard structural bolts may be used, although ASTM
A449 bolts may be required for longer lengths. The bolts are designed for static shear and
the only limit-state involving the HSS is bolt bearing. The available bearing strength is
determined as φR
nor Rn/Ω, where
R
n=1.8nF ydtdesign (7-15)
φ=0.75 Ω=2.00
where
n =number of fasteners
d =fastener diameter, in.
F
y=specified minimum yield strength of HSS, ksi
t
design=design wall thickness of HSS, in.
Blind Bolts
Special fasteners are available that eliminate the need for access to install a nut (Korol et al,
1993; Henderson, 1996). The shank of the fastener is inserted through holes in the parts to
be connected until the head bears on the outer ply (see Figure 7-8). In some cases, a special
wrench is used on the open side to keep the outer part of the shank from rotating and simul-
taneously turn the threaded part of the shank. A wedge or other mechanism on the blind side
causes the fixed part of the shank to expand and form a contact with the inside of the HSS.
Some fasteners contain a break-off mechanism when the fastener is pretensioned. Recent
versions of these fasteners meet the requirements for a pretensioned ASTM A325 bolt
(Henderson, 1996) and could be used in slip-critical or tension conditions. HSS limit states
are bolt bearing in shear, tear-out of the bolt in tension, and wall distortion. Manufacturers’
literature must be consulted to determine the available strength of blind bolts.
Flow-Drilling
Flow-drilling is a process that can be used to produce a threaded hole in an HSS to permit
blind bolting when the inside of the HSS is inaccessible (Sherman, 1995; Henderson, 1996).
The process is to force a hole through the HSS with a carbide conical tool rotating at sufficient
speed to produce high rapid heating, which softens the material in a local area. The material
AISC_Part 7A:14th Ed. 2/24/11 8:32 AM Page 13

that is displaced as the tool is forced through the plate forms a truncated hollow cone (bush-
ing) on the inner surface and a small upset on the outer surface. Tools can be obtained with
a milling collar so that the material on the outer surface is removed, producing a flat surface
allowing parts to be brought in close contact. A cold-formed tap is then used to roll a thread
into the hole without any chips or removal of material. The resulting threaded hole has the
approximate dimensions and hardness of a heavy hex nut. Shear and tension strengths of
ASTM A325 bolts can be developed for certain combinations of bolt size and HSS thick-
ness (see Figure 7-9).
Drilling equipment with suitable rotational speed, torque and thrust is required, but with
small sizes and thicknesses, field installation with conventional tools is possible. The bolts
are designed with the normal criteria and the HSS limit states are bolt bearing in shear and
distortion of the HSS wall in tension. HSS strength is not affected by the process except for
the reduction in area due to the holes.
Threaded Studs to HSS
Threaded studs are available in
3
/8-in. to
7
/8-in. diameters and can be shop- or field-welded
to an HSS with a stud-welding gun. The connection is similar to a bolted connection with an
7–14 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 7-8. Two types of blind bolts.
HSS Thickness
BOLT DIAMETER (in.)
(in.) 1
/2
5 /8
3 /4
7 /8 1
3
/16 XX
1
/4 XXX
5
/16 XXX
3
/8 XXX
1
/2 X
Fig. 7-9. HSS thickness and bolt diameter combinations.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 14

external nut. The strength of the stud in tension or shear is based on manufacturer’s recom-
mendations and tests. The HSS limit state is distortion of the wall. When using threaded studs,
countersunk holes must be used in the attached element to clear the weld fillet at the base of
the stud.
Nailing to HSS
Power-driven nails that are installed with a power-actuated gun are satisfactory for pure shear
connections where the combined thickness of the attachment and the HSS does not exceed
1
/2
in. This system was tested as splices between telescoping round HSS loaded with an axial
force (Packer, 1996). The shear resistance of the fasteners is taken as the number of nails times
the shear strength of a single nail and ignores any secondary contribution from a dimpling
effect between the materials. The limit state for the HSS is shear-bearing. See Packer (1996).
Screwing to HSS
Self-tapping screws with or without self-drilling points are available for connecting materi-
als with combined thicknesses up to
1
/2in. The screws have diameters from 0.08 in. to 0.25
in. The limit-states for connections in the AISI North American Specification for the Design
of Cold-Formed Steel Structural Members (AISI, 2007) are associated with bearing failure
of the material or pull-out of the screw either in direct tension or after tilting occurs in a
shear load. Failure of the screws themselves is prevented by requiring that the product be
25% stronger than the available shear or tension strength of the material. Edge distances and
spacing of screws should not be less than 3 times the screw diameter, d. For attaching mate-
rial with thickness t
1and ultimate strength F u1to an HSS with thickness tand strength F u,
the available strength, φP
nor Pn/Ω, is determined as follows, with φ=0.50 and Ω=3.00.
Connection Shear per Screw
For t/t1≤1, P nis the smallest of
(7-16)
For t/t
1≥2.5, P nis the smaller of
(7-17)
For 1 <t/t
1<2.5, P nis determined by linear interpolation between the above two cases.
Connection tension per screw, P
n, is the smaller of
(7-18)
SPECIAL CONSIDERATIONS FOR HOLLOW STRUCTURAL SECTIONS 7–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
42
27
27
3
1
2
11
.
.
.
td F
tdF
tdF u
u
u()














27
2711.
.
tdF
tdFu
u⎧





0.85
1.5
1
tdF
td Fcu
wu1⎧





AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 15

where
t
c=lesser of the depth of penetration and the HSS thickness, in.
d
w=larger of the screw head or washer diameter, and shall not be taken larger than
1
/2in.,
in.
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of bolts:
Placement of Bolt Groups
For the required placement of bolt groups at the ends of axially loaded members, see AISC
SpecificationSection J1.7.
Bolts in Combination with Welds or Rivets
For bolts used in combination with welds or rivets, see AISC SpecificationSection J1.8 or
J1.9, respectively.
Galvanizing High-Strength Bolts and Nuts
Galvanizing of high-strength bolts is permitted as follows:
1. By the hot-dip or mechanical process for ASTM A325 Type 1 high-strength bolts, per
ASTM A325 Section 4.3
2. By the mechanical process only for ASTM F1852 twist-off-type tension-control bolt
assemblies, per ASTM F1852 Section 6.3
3. By the hot-dip or mechanical process for ASTM A449 bolts, per ASTM A449 Section 5.1
Nuts for ASTM A325 and F1852 bolts must be galvanized by the same process as the bolt
with which they are used. See RCSC SpecificationTable 2.1 for compatible nut grade and
finish requirements for ASTM A325 and F1852 bolts, and ASTM A563 for compatible nut
grade and finish requirements for ASTM A449 bolts.
Group B bolts are not permitted to be galvanized, per ASTM A490 Section 5.4 and ASTM
F2280 Section 6.6. See also RCSC SpecificationCommentary Section 2.3 where it discusses
that ASTM A490 bolts and F2280 twist-off-type tension-control bolt assemblies are permit-
ted to be coated using a method compliant with ASTM F1136.
Reuse of Bolts
The reuse of high-strength bolts is limited, per RCSC SpecificationSection 2.3.3. See also
Bowman and Betancourt (1991) and AISC Design Guide 17, Section 8.6 (Kulak, 2002).
Fatigue Applications
For applications involving fatigue, see RCSC SpecificationSections 4.2, 4.3 and 5.5, and
AISC SpecificationAppendix 3.
7–16 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 16

DESIGN TABLE DISCUSSION 7–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Entering and Tightening Clearances
Clearances must be provided for the entering and tightening of the bolts with an impact
wrench. The clearance requirements for conventional high-strength bolts (ASTM A325 and
A490) are as given in Table 7-15. When high-strength tension-control bolts (ASTM F1852
and F2280) are specified, the clearance requirements are as given in Table 7-16.
Fully Threaded ASTM A325 Bolts
ASTM A325 bolts with length equal to or less than four times the nominal bolt diameter
may be ordered as fully threaded with the designation ASTM A325T. Fully threaded ASTM
A325T bolts are not for use in bearing-type X connections since it would be impossible to
exclude the threads from the shear plane. While this supplementary provision exists for
ASTM A325 bolts, there is no similar supplementary provision made in ASTM A490 for
full-length threading.
ASTM A307 Bolts
Limitations are provided on the use of ASTM A307 bolts, per AISC SpecificationSections
J1.8 and J1.10. ASTM A307 bolts are available with both hex and square heads in diame-
ters from
1
/4in. to 4 in. in Grade A for general applications and Grade B for cast-iron-flanged
piping joints. ASTM A563 Grade A nuts are recommended for use with ASTM A307 bolts.
Other suitable grades are listed in ASTM A563 Table X1.1.
ASTM A449 Bolts
Limitations are provided on the use of ASTM A449 bolts, per AISC SpecificationSections
A3.3 and J3.1.
DESIGN TABLE DISCUSSION
Table 7-1. Available Shear Strength of Bolts
The available bolt shear strengths of various grades and sizes of bolts are summarized in
Table 7-1.
Table 7-2. Available Tensile Strength of Bolts
The available bolt tensile strengths of various grades and sizes of bolts are summarized in
Table 7-2.
Table 7-3. Available Resistance to Slip
The available slip resistances of various grades and sizes of bolts are summarized in
Table 7-3.
Tables 7-4 and 7-5. Available Bearing Strength at Bolt Holes
The available bearing strength at bolt holes is tabulated for various spacings and edge dis-
tances in Tables 7-4 and 7-5, respectively. Note that these tables may be applied to bolts with
countersunk heads, by subtracting one-half the depth of the countersink from the material
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 17

thickness, t. As illustrated in Figure 7-10, this is equivalent to subtracting d b/4 from the
material thickness, t.
Tables 7-6 through 7-13. Coefficients Cfor Eccentrically
Loaded Bolt Groups
Tables 7-6 through 7-13 employ the instantaneous center of rotation method for the bolt pat-
terns and eccentric conditions indicated, and inclined loads at 0°, 15°, 30°, 45°, 60° and 75°.
The tabulated non-dimensional coefficient, C, represents the number of bolts that are effec-
tive in resisting the eccentric shear force. In the following discussion, r
nis the least nominal
strength of one bolt determined from the limit states of bolt shear strength, bearing strength
at bolt holes, and slip resistance (if the connection is to be slip-critical).
When Analyzing a Known Bolt Group Geometry
For any of the bolt group geometries shown, the available strength of the eccentrically
loaded bolt group, φR
nor Rn/Ω, is determined as
R
n=C×r n (7-19)
φ=0.75 Ω=2.00
When Selecting a Bolt Group
The available strength must be greater than or equal to the required strength, P uor Pa. Thus,
by dividing the required strength, P
uorPa, by φr nor rn/Ω, the minimum coefficient, C, is
obtained. The bolt group can then be selected from the table corresponding to the appropri-
ate load angle, at the appropriate eccentricity, e
x, for which the coefficient is of that
magnitude or greater.
These tables may be used with any bolt diameter and are conservative when used with
Group B bolts (see Kulak, 1975). Linear interpolation within a given table between adja-
cent values of e
xis permitted. Although this procedure is based on bearing connections,
7–18 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 7-10. Effective bearing-thickness for bolts with countersunk heads.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 18

DESIGN TABLE DISCUSSION 7–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
both load tests and analytical studies indicate that it may be conservatively extended to
slip-critical connections (Kulak, 1975).
A convergence criterion of 1% was employed for the tabulated iterative solutions.
Straight-line interpolation between values for loads at different angles may be significantly
unconservative. Either a direct analysis should be performed or the values for the next lower
angle increment in the tables should be used for design. For bolt group patterns not treated
in these tables, a direct analysis is required if the instantaneous center of rotation method is
to be used.
In some cases, it is necessary to calculate the pure moment strength of a bolt group for
purposes of linear interpolation. For these cases, the value of CΩhas been provided for a load
angle of 0°. This moment strength of the bolt group is based on the instantaneous center of
rotation method and, since a moment-only condition is assumed, the instantaneous center of
rotation coincides with the center of gravity of the bolt group. In this case, the strength is:
M
max= C′r n (7-20)
where
C′ (7-21)
l
i=distance from the center of gravity of the bolt group to the ith bolt, in.
Δ
max=maximum deformation on the bolt farthest from the center of gravity =0.34 in.
l
max=distance from the center of gravity of the bolt group to the center of the farthest
bolt, in.
Table 7-14. Dimensions of High-Strength Fasteners
Dimensions of ASTM A325 and A490 bolts, A563 nuts, and F436 washers are given and
illustrated in Table 7-14.
Table 7-15 and 16. Entering and Tightening Clearances
Clearance is required for entering and tightening bolts with an impact wrench. The required
clearances are given for conventional high-strength bolts and twist-off-type tension-control
bolt assemblies in Tables 7-15 and 7-16, respectively.
Table 7-17. Threading Dimensions for High-Strength and
Non-High-Strength Bolts
Data regarding the characteristics of the threading dimensions of high-strength and non-
high-strength bolts is provided in Table 7-17.
Table 7-18. Weights of High-Strength Fasteners
Weights of conventional ASTM A325 and A490 bolts, A563 nuts, and F436 washers are
given in Table 7-18. For dimensions and weights of tension-control ASTM F1852 and
F2280 bolts, refer to manufacturers’ literature or the Industrial Fasteners Institute (IFI). For
dimensions of ASTM A449 bolts, refer to Table 7-19.
le
i
l
l
imax
ma x
=−



















1
10
055
Δ
.
⎥⎥

∑ , in.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 19

Table 7-19. Dimensions of Non-High-Strength Fasteners
Typical non-high-strength bolt head and nut dimensions are given in Table 7-19. Thread
lengths listed in this table may be calculated for non-high-strength bolts as 2d+
1
/4in. for
bolts up to 6 in. long and 2d+
1
/2in. for bolts over 6 in. long, where d is the bolt diameter.
Note that these thread lengths are longer than those given previously for high-strength bolts
in Table 7-14. Threading dimensions are given in Table 7-17.
Tables 7-20, 7-21 and 7-22. Weights of Non-High-Strength
Fasteners
Weights of non-high-strength bolts are given in Tables 7-20, 7-21 and 7-22.
7–20 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 20

PART 7 REFERENCES 7–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 7 REFERENCES
American Iron and Steel Institute (2007), North American Specification for the Design of
Cold-Formed Steel Structural Members, AISI, Washington, DC.
Bowman, M.D. and Betancourt, M. (1991), “Reuse of A325 and A490 High-Strength Bolts,”
Engineering Journal, Vol. 28, No. 3, 3rd Quarter, pp. 110–118, AISC, Chicago, IL.
Carter, C.J. (1996), “Specifying Bolt Length for High-Strength Bolts,” Engineering Journal,
Vol. 33, No. 2, 2nd Quarter, pp. 43–53, AISC, Chicago, IL.
Crawford, S.F and Kulak, G.L. (1968), “Behavior of Eccentrically Loaded Bolted
Connections,” Studies in Structural Engineering, No. 4, Department of Civil
Engineering, Nova Scotia Technical College, Halifax, Nova Scotia.
Henderson, J.E. (1996), “Bending, Bolting and Nailing of Hollow Structural Sections,”
Proceedings International Conference on Tubular Structures, pp. 150–161, American
Welding Society.
Higgins, T.R. (1971), “Treatment of Eccentrically Loaded Connections in the AISC
Manual,” Engineering Journal, Vol. 8, No. 2, April, pp. 52–54, AISC, Chicago, IL.
Korol, R.M., Ghobarah, A. and Mourad, S. (1993), “Blind Bolting W-Shape Beams to HSS
Columns,” Journal of Structural Engineering, ASCE, Vol.119, No.12, pp. 3,463–3,481.
Kulak, G.L. (1975), Eccentrically Loaded Slip-Resistant Connections,” Engineering
Journal, Vol. 12, No. 2, 2nd Quarter, pp. 52–55, AISC, Chicago, IL.
Kulak, G.L. (2002), High-Strength Bolts—A Primer for Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Packer, J.A. (1996), “Nailed Tubular Connections under Axial Loading,” Journal of
Structural Engineering, ASCE, Vol. 122, No. 8, pp. 867–872.
Sherman, D.R. (1995), “Simple Framing Connections to HSS Columns,” Proceedings
National Steel Construction Conference, AISC, pp. 30-1 to 30-16.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 21

7–22 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
Nominal Bolt Area, in.
2
0.307 0.442 0.601 0.785
ASTM Thread
Fnv/ΩφFnv
Load-
Desig. Cond.
(ksi) (ksi)
ing
rn/Ωφrnrn/Ωφrnrn/Ωφrnrn/Ωφrn
ASDLRFD ASDLRFDASDLRFDASDLRFDASDLRFD
N 27.0 40.5
S 8.29 12.411.917.916.224.321.231.8
Group D 16.6 24.923.935.832.548.742.463.6
A
X 34.0 51.0
S 10.4 15.715.022.520.430.726.740.0
D 20.9 31.330.145.140.961.353.480.1
N 34.0 51.0
S 10.4 15.715.022.520.430.726.740.0
Group D 20.9 31.330.145.140.961.353.480.1
B
X 42.0 63.0
S 12.9 19.318.627.825.237.933.049.5
D 25.8 38.737.155.750.575.765.998.9
A307 – 13.5 20.3
S 4.14 6.235.978.978.1112.210.615.9
D 8.29 12.511.917.916.224.421.231.9
Nominal Bolt Diameter, d, in. 1
1
/8 1
1
/4 1
3
/8 1
1
/2
Nominal Bolt Area, in.
2
0.994 1.23 1.48 1.77
ASTM Thread
Fnv/ΩφFnv
Load-
Desig. Cond.
(ksi) (ksi)
ing
rn/Ωφrnrn/Ωφrnrn/Ωφrnrn/Ωφrn
ASDLRFD ASDLRFDASDLRFDASDLRFDASDLRFD
N 27.0 40.5
S 26.8 40.333.249.840.059.947.871.7
Group D 53.7 80.566.499.679.9120 95.6143
A
X 34.0 51.0
S 33.8 50.741.862.750.375.560.290.3
D 67.6 101 83.6125101151120181
N 34.0 51.0
S 33.8 50.741.862.750.375.560.290.3
Group D 67.6 101 83.6125101151120181
B
X 42.0 63.0
S 41.7 62.651.777.562.293.274.3112
D 83.5 125103155124186149223
A307 – 13.5 20.3
S 13.4 20.216.625.020.030.023.935.9
D 26.8 40.433.249.940.060.147.871.9
ASD LRFD
Ω=2.00φ=0.75
Table 7-1
Available Shear
Strength of Bolts, kips
For end loaded connections greater than 38 in., see AISC SpecificationTable J3.2 footnote b.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 22

DESIGN TABLES 7–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-2
Available Tensile
Strength of Bolts, kips
Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
Nominal Bolt Area, in.
2
0.307 0.442 0.601 0.785
Fnt/ΩφFnt
ASTM Desig.
(ksi) (ksi)
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Group A 45.0 67.513.820.719.929.827.140.635.353.0
Group B 56.5 84.817.326.025.037.434.051.044.466.6
A307 22.5 33.8 6.9010.4 9.9414.913.520.317.726.5
Nominal Bolt Diameter, d, in. 1
1
/8 1
1
/4 1
3
/8 1
1
/2
Nominal Bolt Area, in.
2
0.994 1.23 1.48 1.77
Fnt/ΩφFnt
ASTM Desig.
(ksi) (ksi)
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Group A 45.0 67.544.767.155.282.866.8100 79.5119
Group B 56.5 84.856.284.269.3104 83.9126 99.8150
A307 22.5 33.822.433.527.641.433.450.139.859.6
ASD LRFD
Ω=2.00φ=0.75
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 23

Group A Bolts
Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
Minimum Group A Bolt Pretension, kips
Hole Type Loading
19 28 39 51
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD/SSLT
S 4.296.446.339.498.8113.211.517.3
D 8.5912.912.719.017.626.423.134.6
OVS/SSLP
S 3.665.475.398.077.5111.2 9.8214.7
D 7.3210.910.816.115.022.519.629.4
LSL
S 3.014.514.446.646.189.258.0812.1
D 6.029.028.8713.312.418.516.224.2
Nominal Bolt Diameter, d, in.
1
1
/8 1
1
/4 1
3
/8 1
1
/2
Hole Type Loading
Minimum Group A Bolt Pretension, kips
56 71 85 103
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD/SSLT
S 12.719.016.024.119.228.823.334.9
D 25.338.032.148.138.457.646.669.8
OVS/SSLP
S 10.816.113.720.516.424.519.829.7
D 21.632.327.440.932.749.039.759.4
LSL
S 8.8713.311.216.813.520.216.324.4
D 17.726.622.533.726.940.332.648.9
STD=standard hole S =single shear
OVS=oversized hole D =double shear
SSLT=short-slotted hole transverse to the line of force
SSLP=short-slotted hole parallel to the line of force
LSL=long-slotted hole transverse or parallel to the line of force
Hole Type ASD LRFD
STD and SSLTΩ=1.50φ=1.00
OVS and SSLPΩ=1.76φ=0.85
LSL Ω=2.14φ=0.70
7–24 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-3
Slip-Critical Connections
Available Shear Strength, kips
(Class A Faying Surface, μ= 0.30)
Note: Slip-critical bolt values assume no more than one filler has been provided
or bolts have been added to distribute loads in the fillers.
See AISC
SpecificationSections J3.8 and J5 for provisions when fillers
are present.
For Class B faying surfaces, multiply the tabulated available strength by 1.67.
Group A
Bolts
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 24

Group B Bolts
Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
Minimum Group B Bolt Pretension, kips
Hole Type Loading
24 35 49 64
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD/SSLT
S 5.428.147.9111.911.116.614.521.7
D 10.816.315.823.722.133.228.943.4
OVS/SSLP
S 4.626.926.7410.1 9.4414.112.318.4
D 9.2513.813.520.218.928.224.736.9
LSL
S 3.805.705.548.317.7611.610.115.2
D 7.6011.411.116.615.523.320.330.4
Nominal Bolt Diameter, d, in.
1
1
/8 1
1
/4 1
3
/8 1
1
/2
Hole Type Loading
Minimum Group B Bolt Pretension, kips
80 102 121 148
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFD ASD LRFD ASD LRFD ASD LRFD
STD/SSLT
S 18.127.123.134.627.341.033.450.2
D 36.254.246.169.254.782.066.9100
OVS/SSLP
S 15.423.119.629.423.334.928.542.6
D 30.846.139.358.846.669.757.085.3
LSL
S 12.719.016.224.219.228.723.435.1
D 25.338.032.348.438.357.446.970.2
STD=standard hole S =single shear
OVS=oversized hole D =double shear
SSLT=short-slotted hole transverse to the line of force
SSLP=short-slotted hole parallel to the line of force
LSL=long-slotted hole transverse or parallel to the line of force
Hole Type ASD LRFD
STD and SSLTΩ=1.50φ=1.00
OVS and SSLPΩ=1.76φ=0.85
LSL Ω=2.14φ=0.70
DESIGN TABLES 7–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-3 (continued)
Slip-Critical Connections
Available Shear Strength, kips
(Class A Faying Surface, μ= 0.30)
Note: Slip-critical bolt values assume no more than one filler has been provided
or bolts have been added to distribute loads in the fillers.
See AISC
SpecificationSections J3.8 and J5 for provisions when fillers
are present.
For Class B faying surfaces, multiply the tabulated available strength by 1.67.
Group B
Bolts
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 25

Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFDASD LRFDASD LRFDASD LRFD
2
2
/3db
58 34.151.141.362.048.672.955.883.7
STD 65 38.257.346.369.554.481.762.693.8
SSLT
3 in.
58 43.565.352.278.360.991.467.4101
65 48.873.158.587.868.3102 75.6113
2
2
/3db
58 27.641.334.852.242.163.147.170.7
SSLP
65 30.946.339.058.547.170.752.879.2
3 in.
58 43.565.352.278.360.991.458.788.1
65 48.873.158.587.868.3102 65.898.7
2
2
/3db
58 29.744.637.055.544.266.349.374.0
OVS
65 33.350.041.462.249.674.355.382.9
3 in.
58 43.565.352.278.360.991.460.991.4
65 48.873.158.587.868.3102 68.3102
2
2
/3db
58 3.625.444.356.535.087.615.808.70
LSLP
65 4.066.094.887.315.698.536.509.75
3 in.
58 43.565.339.258.728.342.417.426.1
65 48.873.143.965.831.747.519.529.3
2
2
/3db
58 28.442.634.451.740.560.746.569.8
LSLT
65 31.847.738.657.945.468.052.178.2
3 in.
58 36.354.443.565.350.876.156.284.3
65 40.660.948.873.156.985.363.094.5
STD, SSLT,
58 43.565.352.278.360.991.469.6104
SSLP, OVS, s≥sfull
LSLP
65 48.873.158.587.868.3102 78.0117
LSLTs≥sfull
58 36.354.443.565.350.876.158.087.0
65 40.660.948.873.156.985.365.097.5
STD,
SSLT, 1
15
/16 2
5
/16 2
11
/16 3
1
/16LSLT
OVS 2
1
/16 2
7
/16 2
13
/16 3
1
/4
SSLP 2
1
/8 2
1
/2 2
7
/8 3
5
/16
LSLP 2
13
/16 3
3
/8 3
15
/16 4
1
/2
Minimum Spacing
a
=2
2
/3d, in. 1
11
/16 22
5
/16 2
11
/16
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
ASD LRFD
Ω=2.00φ=0.75
7–26 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-4
Available Bearing Strength at Bolt Holes
Based on Bolt Spacing
kips/in. thickness
Hole Type Fu, ksi
Bolt
Spacing,
s, in.
Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or
slot in the line of force. Hole deformation is considered. When hole deformation is not considered,
see AISC
SpecificationSection J3.10.
aDecimal value has been rounded to the nearest sixteenth of an inch.
Spacing for full
bearing strength
sfull
a
, in.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 26

Nominal Bolt Diameter, d, in.
1
1
/8 1
1
/4 1
3
/8 1
1
/2
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFDASD LRFDASD LRFDASD LRFD
2
2
/3db
58 63.194.670.3105 77.6116 84.8127
STD 65 70.7106 78.8118 86.9130 95.1143
SSLT
3 in.
58 63.194.6 — — — — — —
65 70.7106 — — — — — —
2
2
/3db
58 52.278.359.589.266.7100 74.0111
SSLP
65 58.587.866.699.974.8112 82.9124
3 in.
58 52.278.3 — — — — — —
65 58.587.8 — — — — — —
2
2
/3db
58 54.481.661.692.468.9103 76.1114
OVS
65 60.991.469.1104 77.2116 85.3128
3 in.
58 54.481.6 — — — — — —
65 60.991.4 — — — — — —
2
2
/3db
58 6.539.797.2510.9 7.9812.0 8.7013.1
LSLP
65 7.3111.0 8.1312.2 8.9413.4 9.7514.6
3 in.
58 6.539.79— — — — — —
65 7.3111.0 — — — — — —
2
2
/3db
58 52.678.858.687.964.697.070.7106
LSLT
65 58.988.465.798.572.4109 79.2119
3 in.
58 52.678.8 — — — — — —
65 58.988.4 — — — — — —
STD, SSLT,
58 78.3117 87.0131 95.7144 104 157
SSLP, OVS, s≥sfull
LSLP
65 87.8132 97.5146 107 161 117 176
LSLTs≥sfull
58 65.397.972.5109 79.8120 87.0131
65 73.1110 81.3122 89.4134 97.5146
STD,
SSLT, 3
7
/16 3
13
/16 4
3
/16 4
9
/16LSLT
OVS 3
11
/16 4
1
/16 4
7
/16 4
13
/16
SSLP 3
3
/4 4
1
/8 4
1
/2 4
7
/8
LSLP 5
1
/16 5
5
/8 6
3
/16 6
3
/4
Minimum Spacing
a
=2
2
/3d, in. 33
5
/16 3
11
/16 4
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
ASD LRFD
Ω=2.00φ=0.75
— indicates spacing less than minimum spacing required per AISC SpecificationSection J3.3.
Note: Spacing indicated is from the center of the hole or slot to the center of the adjacent hole or
slot in the line of force. Hole deformation is considered. When hole deformation is not considered,
see AISC
SpecificationSection J3.10.
a
Decimal value has been rounded to the nearest sixteenth of an inch.
DESIGN TABLES 7–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-4 (continued)
Available Bearing Strength at Bolt Holes
Based on Bolt Spacing
kips/in. thickness
Hole Type Fu, ksi
Bolt
Spacing,
s, in.
Spacing for full
bearing strength
sfull
a
, in.
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 27

Nominal Bolt Diameter, d, in.
5
/8
3 /4
7 /8 1
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFDASD LRFDASD LRFDASD LRFD
1
1
/4
58 31.547.329.444.027.240.825.037.5
STD 65 35.353.032.949.430.545.728.042.0
SSLT
2
58 43.565.352.278.353.379.951.176.7
65 48.873.158.587.859.789.657.385.9
1
1
/4
58 28.342.426.139.223.935.920.731.0
SSLP
65 31.747.529.343.926.840.223.234.7
2
58 43.565.352.278.350.075.046.870.1
65 48.873.158.587.856.184.152.478.6
1
1
/4
58 29.444.027.240.825.037.521.832.6
OVS
65 32.949.430.545.728.042.024.436.6
2
58 43.565.352.278.351.176.747.971.8
65 48.873.158.587.857.385.953.680.4
1
1
/4
58 16.324.510.916.3 5.448.16— —
LSLP
65 18.327.412.218.3 6.099.14— —
2
58 42.463.637.055.531.547.326.139.2
65 47.571.341.462.235.353.029.343.9
1
1
/4
58 26.339.424.536.722.734.020.831.3
LSLT
65 29.544.227.441.125.438.123.435.0
2
58 36.354.443.565.344.466.642.663.9
65 40.660.948.873.149.874.647.771.6
STD, SSLT,
58 43.565.352.278.360.991.469.6104
SSLP, OVS, Le≥Le full
LSLP
65 48.873.158.587.868.3102 78.0117
LSLTLe≥Le full
58 36.354.443.565.350.876.158.087.0
65 40.660.948.873.156.985.365.097.5
STD,
SSLT, 1
5
/8 1
15
/16 2
1
/4 2
9
/16LSLT
OVS 1
11
/16 22
5
/16 2
5
/8
SSLP 1
11
/16 22
5
/16 2
11
/16
LSLP 2
1
/16 2
7
/16 2
7
/8 3
1
/4
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
ASD LRFD
Ω=2.00φ=0.75
7–28 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-5
Available Bearing Strength at Bolt Holes
Based on Edge Distance
kips/in. thickness
Hole Type Fu, ksi
Edge
Distance
Le, in.
— indicates spacing less than minimum spacing required per AISC SpecificationSection J3.3.
Note: Edge distance indicated is from the center of the hole or slot to the edge of the element in the
line of force. Hole deformation is considered. When hole deformation is not considered, see AISC
SpecificationSection J3.10.
a
Decimal value has been rounded to the nearest sixteenth of an inch.
Edge distance
for full bearing
strength
Le≥Le full
a
, in.
AISC_Part 7A_14th Ed._February 12, 2013 12/02/13 9:05 AM Page 28

DESIGN TABLES 7–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-5 (continued)
Available Bearing Strength at Bolt Holes
Based on Edge Distance
kips/in. thickness
Nominal Bolt Diameter, d, in.
1
1
/8 1
1
/4 1
3
/8 1
1
/2
rn/Ωφ rnrn/Ωφ rnrn/Ωφ rnrn/Ωφ rn
ASD LRFDASD LRFDASD LRFDASD LRFD
1
1
/4
58 22.834.320.731.018.527.716.324.5
STD 65 25.638.423.234.720.731.118.327.4
SSLT
2
58 48.973.446.870.144.666.942.463.6
65 54.882.352.478.650.075.047.571.3
1
1
/4
58 17.426.115.222.813.119.610.916.3
SSLP
65 19.529.317.125.614.621.912.218.3
2
58 43.565.341.362.039.258.737.055.5
65 48.873.146.369.543.965.841.462.2
1
1
/4
58 18.527.716.324.514.121.212.017.9
OVS
65 20.731.118.327.415.823.813.420.1
2
58 44.666.942.463.640.260.438.157.1
65 50.075.047.571.345.167.642.764.0
1
1
/4
58 — — — — — — — —
LSLP
65 — — — — — — — —
2
58 20.731.015.222.8 9.7914.7 4.356.53
65 23.234.717.125.611.016.5 4.887.31
1
1
/4
58 19.028.517.225.815.423.113.620.4
LSLT
65 21.332.019.328.917.325.915.222.9
2
58 40.861.239.058.537.255.735.353.0
65 45.768.643.765.541.662.539.659.4
STD, SSLT,
58 78.3117 87.0131 95.7144 104 157
SSLP, OVS, Le≥Le full
LSLP
65 87.8132 97.5146 107 161 117 176
LSLTLe≥Le full
58 65.397.972.5109 79.8120 87.0131
65 73.1110 81.3122 89.4134 97.5146
STD,
SSLT, 2
7
/8 3
3
/16 3
1
/2 3
13
/16LSLT
OVS 33
5
/16 3
5
/8 3
15
/16
SSLP 33
5
/16 3
5
/8 3
15
/16
LSLP 3
11
/16 4
1
/16 4
1
/2 4
7
/8
STD = standard hole
SSLT = short-slotted hole oriented transverse to the line of force
SSLP = short-slotted hole oriented parallel to the line of force
OVS = oversized hole
LSLP = long-slotted hole oriented parallel to the line of force
LSLT = long-slotted hole oriented transverse to the line of force
ASD LRFD
Ω=2.00φ=0.75
Hole Type Fu, ksi
Edge
Distance
Le, in.
— indicates spacing less than minimum spacing required per AISC SpecificationSection J3.3.
Note: Edge distance indicated is from the center of the hole or slot to the edge of the element in the
line of force. Hole deformation is considered. When hole deformation is not considered, see AISC
SpecificationSection J3.10.
aDecimal value has been rounded to the nearest sixteenth of an inch.
Edge distance
for full bearing
strength
Le≥Le full
a
, in.
AISC_Part 7A_14th Ed._February 12, 2013 12/02/13 9:07 AM Page 29

7–30 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.18 2.23 3.32 4.39 5.45 6.48 7.51 8.52 9.53 10.5 11.5
3 0.88 1.75 2.81 3.90 4.98 6.06 7.12 8.17 9.21 10.2 11.3
4 0.69 1.40 2.36 3.40 4.47 5.56 6.64 7.72 8.78 9.84 10.9
5 0.56 1.15 2.01 2.96 3.98 5.05 6.13 7.22 8.30 9.38 10.4
6 0.48 0.97 1.73 2.59 3.55 4.57 5.63 6.70 7.79 8.87 9.96
7 0.41 0.83 1.51 2.28 3.17 4.13 5.15 6.20 7.28 8.36 9.44
8 0.36 0.73 1.34 2.04 2.85 3.75 4.72 5.73 6.78 7.85 8.93
9 0.32 0.65 1.21 1.83 2.59 3.42 4.34 5.31 6.32 7.36 8.42
10 0.29 0.59 1.09 1.66 2.36 3.14 4.00 4.92 5.89 6.90 7.94
12 0.24 0.49 0.92 1.40 2.00 2.68 3.44 4.27 5.15 6.09 7.06
14 0.21 0.42 0.79 1.21 1.74 2.33 3.01 3.75 4.55 5.41 6.31
16 0.18 0.37 0.70 1.06 1.53 2.06 2.67 3.33 4.06 4.85 5.68
18 0.16 0.33 0.62 0.95 1.37 1.84 2.39 3.00 3.66 4.38 5.15
20 0.15 0.29 0.56 0.85 1.24 1.67 2.16 2.72 3.33 3.99 4.70
24 0.12 0.25 0.47 0.71 1.03 1.40 1.82 2.29 2.81 3.37 3.99
28 0.11 0.21 0.40 0.61 0.89 1.20 1.57 1.97 2.42 2.92 3.45
32 0.09 0.18 0.35 0.54 0.78 1.05 1.37 1.73 2.13 2.57 3.04
36 0.08 0.16 0.31 0.48 0.69 0.94 1.22 1.54 1.90 2.29 2.72
CΩ, in. 2.94 5.89 11.3 17.1 25.1 33.8 44.4 55.9 69.2 83.5 100
2 1.63 2.71 3.75 4.77 5.77 6.77 7.76 8.75 9.74 10.7 11.7
3 1.39 2.48 3.56 4.60 5.63 6.65 7.65 8.66 9.66 10.7 11.6
4 1.18 2.23 3.32 4.39 5.45 6.48 7.51 8.52 9.53 10.5 11.5
5 1.01 1.98 3.07 4.15 5.23 6.28 7.33 8.36 9.38 10.4 11.4
6 0.88 1.75 2.81 3.90 4.98 6.06 7.12 8.17 9.21 10.2 11.3
7 0.77 1.56 2.58 3.64 4.73 5.81 6.89 7.95 9.00 10.1 11.1
8 0.69 1.40 2.36 3.40 4.47 5.56 6.64 7.72 8.78 9.84 10.9
9 0.62 1.26 2.17 3.17 4.22 5.30 6.39 7.47 8.55 9.61 10.7
10 0.56 1.15 2.01 2.96 3.98 5.05 6.13 7.22 8.30 9.38 10.4
12 0.48 0.97 1.73 2.59 3.55 4.57 5.63 6.70 7.79 8.87 9.96
14 0.41 0.83 1.51 2.28 3.17 4.13 5.15 6.20 7.28 8.36 9.44
16 0.36 0.73 1.34 2.04 2.85 3.75 4.72 5.73 6.78 7.85 8.93
18 0.32 0.65 1.21 1.83 2.59 3.42 4.34 5.31 6.32 7.36 8.42
20 0.29 0.59 1.09 1.66 2.36 3.14 4.00 4.92 5.89 6.90 7.94
24 0.24 0.49 0.92 1.40 2.00 2.68 3.44 4.27 5.15 6.09 7.06
28 0.21 0.42 0.79 1.21 1.74 2.33 3.01 3.75 4.55 5.41 6.31
32 0.18 0.37 0.70 1.06 1.53 2.06 2.67 3.33 4.06 4.85 5.68
36 0.16 0.33 0.62 0.95 1.37 1.84 2.39 3.00 3.66 4.38 5.15
CΩ, in. 5.89 11.8 22.5 34.3 50.2 67.6 88.8 112 138 167 199
Table 7-6
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 30

DESIGN TABLES 7–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.15 2.20 3.28 4.34 5.39 6.42 7.45 8.46 9.47 10.5 11.5
3 0.86 1.76 2.78 3.85 4.92 5.98 7.03 8.08 9.11 10.1 11.2
4 0.67 1.42 2.35 3.36 4.41 5.48 6.55 7.61 8.67 9.72 10.8
5 0.55 1.17 2.00 2.94 3.94 4.98 6.04 7.11 8.18 9.24 10.3
6 0.47 0.99 1.73 2.58 3.52 4.52 5.55 6.61 7.67 8.74 9.81
7 0.41 0.86 1.52 2.30 3.16 4.11 5.10 6.13 7.18 8.24 9.30
8 0.36 0.75 1.35 2.06 2.86 3.74 4.69 5.68 6.70 7.74 8.80
9 0.32 0.67 1.22 1.86 2.60 3.43 4.32 5.27 6.26 7.28 8.31
10 0.29 0.61 1.10 1.69 2.38 3.16 4.00 4.90 5.85 6.84 7.85
12 0.24 0.51 0.93 1.43 2.03 2.71 3.46 4.28 5.15 6.06 7.01
14 0.21 0.43 0.81 1.24 1.76 2.37 3.04 3.78 4.57 5.41 6.30
16 0.19 0.38 0.71 1.09 1.56 2.10 2.70 3.37 4.09 4.87 5.69
18 0.17 0.34 0.63 0.97 1.39 1.88 2.43 3.04 3.70 4.42 5.18
20 0.15 0.30 0.57 0.88 1.26 1.70 2.20 2.76 3.37 4.03 4.74
24 0.12 0.25 0.48 0.73 1.06 1.43 1.86 2.33 2.86 3.43 4.04
28 0.11 0.22 0.41 0.63 0.91 1.23 1.60 2.02 2.47 2.97 3.51
32 0.09 0.19 0.36 0.55 0.80 1.08 1.41 1.77 2.18 2.62 3.10
36 0.08 0.17 0.32 0.49 0.71 0.96 1.26 1.58 1.95 2.34 2.78
2 1.61 2.69 3.72 4.74 5.74 6.74 7.73 8.73 9.71 10.7 11.7
3 1.36 2.45 3.52 4.56 5.59 6.60 7.61 8.61 9.61 10.6 11.6
4 1.15 2.20 3.28 4.34 5.39 6.42 7.45 8.46 9.47 10.5 11.5
5 0.98 1.96 3.03 4.10 5.16 6.21 7.25 8.28 9.30 10.3 11.3
6 0.86 1.76 2.78 3.85 4.92 5.98 7.03 8.08 9.11 10.1 11.2
7 0.75 1.57 2.55 3.60 4.66 5.73 6.80 7.85 8.90 9.94 11.0
8 0.67 1.42 2.35 3.36 4.41 5.48 6.55 7.61 8.67 9.72 10.8
9 0.61 1.29 2.16 3.14 4.17 5.23 6.30 7.36 8.43 9.49 10.5
10 0.55 1.17 2.00 2.94 3.94 4.98 6.04 7.11 8.18 9.24 10.3
12 0.47 0.99 1.73 2.58 3.52 4.52 5.55 6.61 7.67 8.74 9.81
14 0.41 0.86 1.52 2.30 3.16 4.11 5.10 6.13 7.18 8.24 9.30
16 0.36 0.75 1.35 2.06 2.86 3.74 4.69 5.68 6.70 7.74 8.80
18 0.32 0.67 1.22 1.86 2.60 3.43 4.32 5.27 6.26 7.28 8.31
20 0.29 0.61 1.10 1.69 2.38 3.16 4.00 4.90 5.85 6.84 7.85
24 0.24 0.51 0.93 1.43 2.03 2.71 3.46 4.28 5.15 6.06 7.01
28 0.21 0.43 0.81 1.24 1.76 2.37 3.04 3.78 4.57 5.41 6.30
32 0.19 0.38 0.71 1.09 1.56 2.10 2.70 3.37 4.09 4.87 5.69
36 0.17 0.34 0.63 0.97 1.39 1.88 2.43 3.04 3.70 4.42 5.18
Table 7-6 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 31

7–32 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.14 2.20 3.25 4.30 5.33 6.36 7.38 8.39 9.40 10.4 11.4
3 0.86 1.80 2.79 3.83 4.87 5.92 6.96 7.99 9.02 10.0 11.1
4 0.69 1.50 2.40 3.39 4.41 5.45 6.49 7.53 8.57 9.61 10.6
5 0.57 1.27 2.08 3.00 3.98 4.99 6.02 7.06 8.11 9.15 10.2
6 0.49 1.09 1.82 2.68 3.60 4.57 5.58 6.60 7.64 8.68 9.72
7 0.43 0.95 1.61 2.40 3.27 4.20 5.17 6.17 7.18 8.21 9.25
8 0.38 0.83 1.44 2.17 2.98 3.86 4.79 5.76 6.75 7.77 8.79
9 0.34 0.75 1.30 1.98 2.74 3.57 4.46 5.39 6.35 7.34 8.35
10 0.31 0.67 1.19 1.82 2.52 3.31 4.15 5.05 5.98 6.95 7.93
12 0.26 0.56 1.01 1.55 2.17 2.87 3.64 4.46 5.33 6.24 7.17
14 0.23 0.48 0.87 1.35 1.90 2.53 3.23 3.98 4.78 5.63 6.51
16 0.20 0.42 0.77 1.20 1.69 2.26 2.89 3.58 4.33 5.11 5.94
18 0.18 0.38 0.69 1.07 1.52 2.04 2.62 3.25 3.94 4.67 5.45
20 0.16 0.34 0.62 0.97 1.37 1.85 2.38 2.97 3.61 4.30 5.02
24 0.14 0.28 0.52 0.81 1.16 1.57 2.02 2.53 3.09 3.69 4.33
28 0.12 0.24 0.45 0.70 1.00 1.36 1.75 2.20 2.69 3.22 3.79
32 0.10 0.21 0.40 0.61 0.88 1.19 1.54 1.94 2.38 2.85 3.37
36 0.09 0.19 0.35 0.55 0.78 1.07 1.38 1.74 2.13 2.56 3.03
2 1.59 2.66 3.69 4.70 5.71 6.70 7.70 8.69 9.68 10.7 11.7
3 1.34 2.43 3.48 4.52 5.54 6.55 7.55 8.56 9.55 10.6 11.5
4 1.14 2.20 3.25 4.30 5.33 6.36 7.38 8.39 9.40 10.4 11.4
5 0.98 1.99 3.02 4.06 5.11 6.14 7.17 8.20 9.22 10.2 11.2
6 0.86 1.80 2.79 3.83 4.87 5.92 6.96 7.99 9.02 10.0 11.1
7 0.77 1.64 2.59 3.60 4.64 5.68 6.73 7.77 8.80 9.83 10.9
8 0.69 1.50 2.40 3.39 4.41 5.45 6.49 7.53 8.57 9.61 10.6
9 0.63 1.37 2.23 3.19 4.19 5.22 6.26 7.30 8.34 9.38 10.4
10 0.57 1.27 2.08 3.00 3.98 4.99 6.02 7.06 8.11 9.15 10.2
12 0.49 1.09 1.82 2.68 3.60 4.57 5.58 6.60 7.64 8.68 9.72
14 0.43 0.95 1.61 2.40 3.27 4.20 5.17 6.17 7.18 8.21 9.25
16 0.38 0.83 1.44 2.17 2.98 3.86 4.79 5.76 6.75 7.77 8.79
18 0.34 0.75 1.30 1.98 2.74 3.57 4.46 5.39 6.35 7.34 8.35
20 0.31 0.67 1.19 1.82 2.52 3.31 4.15 5.05 5.98 6.95 7.93
24 0.26 0.56 1.01 1.55 2.17 2.87 3.64 4.46 5.33 6.24 7.17
28 0.23 0.48 0.87 1.35 1.90 2.53 3.23 3.98 4.78 5.63 6.51
32 0.20 0.42 0.77 1.20 1.69 2.26 2.89 3.58 4.33 5.11 5.94
36 0.18 0.38 0.69 1.07 1.52 2.04 2.62 3.25 3.94 4.67 5.45
Table 7-6 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 32

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.17 2.23 3.26 4.28 5.29 6.30 7.31 8.32 9.32 10.3 11.3
3 0.92 1.89 2.87 3.87 4.88 5.90 6.91 7.93 8.94 9.95 11.0
4 0.75 1.63 2.54 3.50 4.49 5.49 6.51 7.52 8.53 9.55 10.6
5 0.64 1.42 2.25 3.17 4.13 5.11 6.11 7.11 8.12 9.14 10.2
6 0.55 1.25 2.01 2.88 3.80 4.76 5.73 6.73 7.73 8.73 9.74
7 0.49 1.11 1.81 2.63 3.51 4.43 5.38 6.36 7.34 8.34 9.34
8 0.44 0.99 1.64 2.41 3.25 4.14 5.06 6.01 6.98 7.96 8.96
9 0.40 0.90 1.49 2.22 3.02 3.87 4.77 5.69 6.64 7.61 8.58
10 0.36 0.81 1.37 2.06 2.82 3.63 4.50 5.39 6.32 7.27 8.23
12 0.31 0.68 1.17 1.79 2.47 3.22 4.02 4.87 5.74 6.65 7.58
14 0.27 0.59 1.03 1.58 2.20 2.88 3.62 4.41 5.24 6.11 6.99
16 0.24 0.52 0.91 1.41 1.97 2.60 3.29 4.03 4.81 5.63 6.48
18 0.21 0.46 0.82 1.27 1.78 2.36 3.00 3.70 4.43 5.21 6.02
20 0.19 0.41 0.74 1.16 1.62 2.16 2.76 3.41 4.10 4.84 5.61
24 0.16 0.35 0.63 0.98 1.38 1.85 2.37 2.94 3.56 4.22 4.92
28 0.14 0.30 0.54 0.85 1.19 1.61 2.08 2.58 3.14 3.73 4.37
32 0.12 0.26 0.48 0.75 1.05 1.43 1.84 2.30 2.80 3.34 3.92
36 0.11 0.23 0.43 0.67 0.94 1.28 1.65 2.07 2.53 3.02 3.55
2 1.57 2.64 3.66 4.67 5.67 6.66 7.66 8.65 9.64 10.6 11.6
3 1.35 2.43 3.46 4.48 5.49 6.49 7.50 8.49 9.49 10.5 11.5
4 1.17 2.23 3.26 4.28 5.29 6.30 7.31 8.32 9.32 10.3 11.3
5 1.03 2.05 3.06 4.07 5.09 6.10 7.12 8.13 9.13 10.1 11.1
6 0.92 1.89 2.87 3.87 4.88 5.90 6.91 7.93 8.94 9.95 11.0
7 0.83 1.75 2.70 3.68 4.68 5.69 6.71 7.72 8.74 9.75 10.8
8 0.75 1.63 2.54 3.50 4.49 5.49 6.51 7.52 8.53 9.55 10.6
9 0.69 1.52 2.39 3.33 4.30 5.30 6.30 7.31 8.33 9.34 10.4
10 0.64 1.42 2.25 3.17 4.13 5.11 6.11 7.11 8.12 9.14 10.2
12 0.55 1.25 2.01 2.88 3.80 4.76 5.73 6.73 7.73 8.73 9.74
14 0.49 1.11 1.81 2.63 3.51 4.43 5.38 6.36 7.34 8.34 9.34
16 0.44 0.99 1.64 2.41 3.25 4.14 5.06 6.01 6.98 7.96 8.96
18 0.40 0.90 1.49 2.22 3.02 3.87 4.77 5.69 6.64 7.61 8.58
20 0.36 0.81 1.37 2.06 2.82 3.63 4.50 5.39 6.32 7.27 8.23
24 0.31 0.68 1.17 1.79 2.47 3.22 4.02 4.87 5.74 6.65 7.58
28 0.27 0.59 1.03 1.58 2.20 2.88 3.62 4.41 5.24 6.11 6.99
32 0.24 0.52 0.91 1.41 1.97 2.60 3.29 4.03 4.81 5.63 6.48
36 0.21 0.46 0.82 1.27 1.78 2.36 3.00 3.70 4.43 5.21 6.02
DESIGN TABLES 7–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 7-6 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
3
6
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 33

7–34 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.27 2.32 3.32 4.31 5.30 6.30 7.29 8.27 9.27 10.3 11.3
3 1.05 2.05 3.02 4.00 4.98 5.97 6.96 7.94 8.94 9.93 10.9
4 0.89 1.83 2.77 3.72 4.69 5.66 6.64 7.62 8.61 9.60 10.6
5 0.77 1.65 2.54 3.47 4.41 5.37 6.34 7.32 8.29 9.28 10.3
6 0.68 1.49 2.34 3.24 4.16 5.10 6.06 7.02 7.99 8.97 9.95
7 0.61 1.37 2.17 3.03 3.93 4.85 5.79 6.74 7.71 8.67 9.64
8 0.56 1.26 2.01 2.83 3.71 4.61 5.54 6.48 7.43 8.39 9.35
9 0.51 1.16 1.87 2.66 3.51 4.39 5.30 6.23 7.17 8.12 9.07
10 0.47 1.07 1.74 2.50 3.32 4.19 5.08 5.99 6.92 7.86 8.81
12 0.40 0.93 1.52 2.22 3.00 3.82 4.67 5.55 6.45 7.37 8.30
14 0.35 0.81 1.35 2.00 2.73 3.50 4.32 5.16 6.03 6.92 7.83
16 0.32 0.72 1.21 1.81 2.49 3.23 4.00 4.81 5.65 6.51 7.40
18 0.29 0.65 1.09 1.66 2.30 2.98 3.72 4.50 5.31 6.14 7.00
20 0.26 0.58 1.00 1.53 2.12 2.77 3.47 4.21 4.99 5.80 6.63
24 0.22 0.49 0.85 1.32 1.84 2.41 3.05 3.73 4.45 5.21 5.99
28 0.19 0.42 0.74 1.15 1.61 2.13 2.71 3.34 4.00 4.70 5.44
32 0.17 0.37 0.65 1.02 1.43 1.91 2.44 3.02 3.63 4.28 4.97
36 0.15 0.33 0.59 0.92 1.29 1.72 2.21 2.74 3.31 3.92 4.57
2 1.60 2.65 3.65 4.64 5.64 6.63 7.62 8.61 9.60 10.6 11.6
3 1.42 2.48 3.48 4.48 5.47 6.46 7.45 8.44 9.44 10.4 11.4
4 1.27 2.32 3.32 4.31 5.30 6.30 7.29 8.27 9.27 10.3 11.3
5 1.15 2.18 3.17 4.15 5.14 6.13 7.12 8.11 9.10 10.1 11.1
6 1.05 2.05 3.02 4.00 4.98 5.97 6.96 7.94 8.94 9.93 10.9
7 0.96 1.93 2.89 3.86 4.83 5.81 6.80 7.78 8.77 9.76 10.8
8 0.89 1.83 2.77 3.72 4.69 5.66 6.64 7.62 8.61 9.60 10.6
9 0.83 1.73 2.65 3.59 4.55 5.51 6.49 7.47 8.45 9.43 10.4
10 0.77 1.65 2.54 3.47 4.41 5.37 6.34 7.32 8.29 9.28 10.3
12 0.68 1.49 2.34 3.24 4.16 5.10 6.06 7.02 7.99 8.97 9.95
14 0.61 1.37 2.17 3.03 3.93 4.85 5.79 6.74 7.71 8.67 9.64
16 0.56 1.26 2.01 2.83 3.71 4.61 5.54 6.48 7.43 8.39 9.35
18 0.51 1.16 1.87 2.66 3.51 4.39 5.30 6.23 7.17 8.12 9.07
20 0.47 1.07 1.74 2.50 3.32 4.19 5.08 5.99 6.92 7.86 8.81
24 0.40 0.93 1.52 2.22 3.00 3.82 4.67 5.55 6.45 7.37 8.30
28 0.35 0.81 1.35 2.00 2.73 3.50 4.32 5.16 6.03 6.92 7.83
32 0.32 0.72 1.21 1.81 2.49 3.23 4.00 4.81 5.65 6.51 7.40
36 0.29 0.65 1.09 1.66 2.30 2.98 3.72 4.50 5.31 6.14 7.00
Table 7-6 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 34

DESIGN TABLES 7–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
23456789101112
2 1.49 2.51 3.49 4.46 5.44 6.42 7.40 8.38 9.36 10.3 11.3
3 1.32 2.33 3.30 4.27 5.24 6.21 7.18 8.15 9.13 10.1 11.1
4 1.18 2.18 3.14 4.09 5.05 6.01 6.98 7.95 8.92 9.89 10.9
5 1.07 2.04 2.99 3.93 4.88 5.84 6.79 7.75 8.72 9.68 10.7
6 0.98 1.92 2.85 3.79 4.73 5.67 6.62 7.57 8.53 9.49 10.5
7 0.90 1.82 2.73 3.65 4.58 5.52 6.46 7.40 8.36 9.31 10.3
8 0.84 1.72 2.62 3.52 4.44 5.37 6.30 7.24 8.19 9.14 10.1
9 0.78 1.63 2.51 3.40 4.31 5.23 6.16 7.09 8.03 8.97 9.92
10 0.73 1.55 2.41 3.29 4.19 5.10 6.02 6.94 7.88 8.81 9.76
12 0.65 1.41 2.23 3.08 3.95 4.84 5.75 6.66 7.59 8.51 9.45
14 0.58 1.30 2.06 2.88 3.73 4.60 5.50 6.40 7.31 8.23 9.16
16 0.53 1.20 1.92 2.70 3.52 4.38 5.26 6.15 7.05 7.96 8.88
18 0.48 1.11 1.78 2.53 3.33 4.17 5.03 5.91 6.80 7.70 8.61
20 0.44 1.03 1.66 2.38 3.16 3.97 4.82 5.69 6.56 7.45 8.35
24 0.38 0.89 1.46 2.12 2.85 3.63 4.44 5.27 6.13 6.99 7.87
28 0.34 0.79 1.29 1.90 2.59 3.33 4.11 4.91 5.73 6.57 7.43
32 0.30 0.70 1.16 1.73 2.38 3.08 3.81 4.58 5.37 6.19 7.02
36 0.27 0.62 1.05 1.58 2.19 2.85 3.55 4.28 5.05 5.84 6.65
2 1.71 2.72 3.70 4.69 5.67 6.66 7.64 8.79 9.78 10.8 11.7
3 1.60 2.61 3.59 4.57 5.55 6.53 7.52 8.50 9.48 10.5 11.5
4 1.49 2.51 3.49 4.46 5.44 6.42 7.40 8.38 9.36 10.3 11.3
5 1.40 2.42 3.39 4.37 5.34 6.31 7.29 8.26 9.24 10.2 11.2
6 1.32 2.33 3.30 4.27 5.24 6.21 7.18 8.15 9.13 10.1 11.1
7 1.25 2.25 3.22 4.18 5.14 6.11 7.07 8.05 9.01 10.0 11.0
8 1.18 2.18 3.14 4.09 5.05 6.01 6.98 7.95 8.92 9.89 10.9
9 1.13 2.11 3.06 4.01 4.97 5.92 6.88 7.85 8.81 9.78 10.8
10 1.07 2.04 2.99 3.93 4.88 5.84 6.79 7.75 8.72 9.68 10.7
12 0.98 1.92 2.85 3.79 4.73 5.67 6.62 7.57 8.53 9.49 10.5
14 0.90 1.82 2.73 3.65 4.58 5.52 6.46 7.40 8.36 9.31 10.3
16 0.84 1.72 2.62 3.52 4.44 5.37 6.30 7.24 8.19 9.14 10.1
18 0.78 1.63 2.51 3.40 4.31 5.23 6.16 7.09 8.03 8.97 9.92
20 0.73 1.55 2.41 3.29 4.19 5.10 6.02 6.94 7.88 8.81 9.76
24 0.65 1.41 2.23 3.08 3.95 4.84 5.75 6.66 7.59 8.51 9.45
28 0.58 1.30 2.06 2.88 3.73 4.60 5.50 6.40 7.31 8.23 9.16
32 0.53 1.20 1.92 2.70 3.52 4.38 5.26 6.15 7.05 7.96 8.88
36 0.48 1.11 1.78 2.53 3.33 4.17 5.03 5.91 6.80 7.70 8.61
Table 7-6 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 35

7–36 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 0.84 2.54 4.48 6.59 8.72 10.8 12.9 15.0 17.0 19.0 21.0 23.0
3 0.65 2.03 3.68 5.67 7.77 9.91 12.1 14.2 16.3 18.3 20.4 22.5
4 0.54 1.67 3.06 4.86 6.84 8.93 11.1 13.2 15.4 17.5 19.6 21.7
5 0.45 1.42 2.59 4.21 6.01 8.00 10.1 12.2 14.4 16.5 18.7 20.8
6 0.39 1.22 2.25 3.69 5.32 7.17 9.16 11.2 13.4 15.5 17.7 19.8
7 0.35 1.08 1.99 3.27 4.74 6.46 8.33 10.3 12.4 14.5 16.7 18.8
8 0.31 0.96 1.78 2.93 4.27 5.86 7.60 9.50 11.5 13.6 15.7 17.8
9 0.28 0.86 1.60 2.65 3.87 5.34 6.97 8.75 10.7 12.7 14.7 16.8
10 0.26 0.78 1.46 2.42 3.53 4.90 6.42 8.10 9.91 11.8 13.8 15.9
12 0.22 0.66 1.24 2.06 3.01 4.19 5.51 7.01 8.63 10.4 12.2 14.2
14 0.19 0.57 1.08 1.78 2.62 3.66 4.82 6.15 7.61 9.19 10.9 12.7
16 0.17 0.51 0.95 1.57 2.32 3.24 4.27 5.47 6.79 8.23 9.78 11.4
18 0.15 0.45 0.85 1.41 2.07 2.90 3.83 4.92 6.11 7.43 8.85 10.4
20 0.14 0.41 0.77 1.27 1.88 2.63 3.48 4.47 5.55 6.76 8.07 9.48
24 0.12 0.34 0.65 1.07 1.58 2.21 2.93 3.77 4.69 5.72 6.85 8.06
28 0.10 0.29 0.56 0.92 1.36 1.90 2.53 3.25 4.05 4.95 5.93 7.00
32 0.09 0.26 0.49 0.80 1.19 1.67 2.22 2.86 3.57 4.36 5.23 6.18
36 0.08 0.23 0.43 0.72 1.06 1.49 1.98 2.55 3.18 3.90 4.67 5.52
CΩ, in. 2.94 8.33 15.8 26.0 38.7 54.2 72.2 93.1 117 143 172 204
2 0.84 3.24 5.39 7.47 9.51 11.5 13.5 15.5 17.5 19.5 21.5 23.4
3 0.65 2.79 4.93 7.08 9.17 11.2 13.3 15.3 17.3 19.3 21.3 23.3
4 0.54 2.41 4.44 6.60 8.75 10.9 12.9 15.0 17.0 19.1 21.1 23.1
5 0.45 2.10 3.97 6.11 8.27 10.4 12.5 14.6 16.7 18.7 20.8 22.8
6 0.39 1.85 3.55 5.62 7.77 9.93 12.1 14.2 16.3 18.4 20.4 22.5
7 0.35 1.64 3.18 5.17 7.27 9.43 11.6 13.7 15.9 18.0 20.1 22.1
8 0.31 1.47 2.87 4.75 6.79 8.92 11.1 13.3 15.4 17.5 19.6 21.7
9 0.28 1.34 2.61 4.39 6.34 8.43 10.6 12.7 14.9 17.1 19.2 21.3
10 0.26 1.22 2.39 4.06 5.92 7.96 10.1 12.2 14.4 16.6 18.7 20.9
12 0.22 1.04 2.04 3.52 5.20 7.10 9.12 11.2 13.4 15.5 17.7 19.9
14 0.19 0.90 1.77 3.09 4.61 6.36 8.27 10.3 12.4 14.5 16.7 18.9
16 0.17 0.80 1.57 2.75 4.12 5.74 7.52 9.44 11.5 13.5 15.7 17.8
18 0.15 0.71 1.41 2.48 3.72 5.21 6.87 8.68 10.6 12.6 14.7 16.8
20 0.14 0.64 1.28 2.25 3.38 4.77 6.31 8.02 9.85 11.8 13.8 15.9
24 0.12 0.54 1.07 1.90 2.86 4.06 5.40 6.91 8.55 10.3 12.2 14.1
28 0.10 0.46 0.93 1.64 2.47 3.52 4.70 6.05 7.52 9.12 10.8 12.6
32 0.09 0.41 0.81 1.44 2.18 3.11 4.16 5.37 6.69 8.15 9.71 11.4
36 0.08 0.36 0.73 1.29 1.94 2.78 3.72 4.81 6.02 7.34 8.78 10.3
CΩ, in. 2.94 13.2 26.5 47.0 71.4 103 138 180 226 279 337 400
Table 7-7
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 36

DESIGN TABLES 7–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 0.87 2.54 4.47 6.54 8.63 10.7 12.8 14.8 16.9 18.9 20.9 22.9
3 0.68 2.04 3.71 5.63 7.69 9.80 11.9 14.0 16.1 18.2 20.2 22.3
4 0.55 1.69 3.11 4.85 6.79 8.84 10.9 13.1 15.2 17.3 19.4 21.5
5 0.47 1.44 2.66 4.21 6.00 7.94 9.98 12.1 14.2 16.3 18.4 20.5
6 0.41 1.25 2.31 3.70 5.34 7.15 9.09 11.1 13.2 15.3 17.4 19.6
7 0.36 1.10 2.04 3.29 4.79 6.46 8.30 10.2 12.3 14.3 16.4 18.6
8 0.32 0.98 1.83 2.96 4.32 5.87 7.60 9.45 11.4 13.4 15.5 17.6
9 0.29 0.88 1.65 2.68 3.94 5.37 6.99 8.74 10.6 12.6 14.6 16.6
10 0.27 0.81 1.51 2.45 3.61 4.93 6.45 8.11 9.88 11.8 13.7 15.7
12 0.23 0.68 1.28 2.09 3.08 4.24 5.58 7.05 8.66 10.4 12.2 14.1
14 0.20 0.59 1.11 1.82 2.69 3.71 4.90 6.21 7.67 9.23 10.9 12.7
16 0.17 0.52 0.98 1.61 2.38 3.29 4.36 5.54 6.86 8.29 9.83 11.5
18 0.16 0.47 0.88 1.44 2.13 2.96 3.92 4.99 6.20 7.51 8.93 10.4
20 0.14 0.42 0.79 1.31 1.93 2.68 3.56 4.54 5.65 6.85 8.17 9.57
24 0.12 0.35 0.67 1.10 1.62 2.26 3.00 3.84 4.79 5.82 6.96 8.17
28 0.10 0.30 0.57 0.94 1.40 1.95 2.60 3.32 4.15 5.05 6.05 7.12
32 0.09 0.27 0.50 0.83 1.23 1.72 2.28 2.93 3.66 4.46 5.34 6.29
36 0.08 0.24 0.45 0.74 1.10 1.53 2.04 2.61 3.27 3.98 4.78 5.64
2 0.87 3.21 5.35 7.42 9.45 11.5 13.5 15.5 17.4 19.4 21.4 23.4
3 0.68 2.76 4.88 7.00 9.09 11.1 13.2 15.2 17.2 19.2 21.2 23.2
4 0.55 2.38 4.40 6.53 8.65 10.7 12.8 14.9 16.9 18.9 20.9 22.9
5 0.47 2.07 3.96 6.04 8.17 10.3 12.4 14.5 16.5 18.6 20.6 22.6
6 0.41 1.83 3.56 5.56 7.67 9.80 11.9 14.0 16.1 18.2 20.3 22.3
7 0.36 1.63 3.22 5.12 7.19 9.30 11.4 13.6 15.7 17.8 19.9 21.9
8 0.32 1.47 2.92 4.73 6.72 8.81 10.9 13.1 15.2 17.3 19.4 21.5
9 0.29 1.34 2.66 4.37 6.29 8.33 10.4 12.6 14.7 16.8 18.9 21.0
10 0.27 1.23 2.45 4.05 5.90 7.88 9.95 12.1 14.2 16.3 18.5 20.6
12 0.23 1.05 2.09 3.53 5.21 7.06 9.04 11.1 13.2 15.3 17.5 19.6
14 0.20 0.91 1.83 3.11 4.64 6.35 8.22 10.2 12.2 14.3 16.5 18.6
16 0.17 0.81 1.62 2.78 4.17 5.75 7.51 9.38 11.4 13.4 15.5 17.6
18 0.16 0.72 1.45 2.50 3.77 5.24 6.88 8.66 10.5 12.5 14.5 16.6
20 0.14 0.66 1.32 2.28 3.45 4.80 6.34 8.02 9.82 11.7 13.7 15.7
24 0.12 0.55 1.11 1.93 2.93 4.10 5.46 6.95 8.57 10.3 12.1 14.0
28 0.10 0.48 0.96 1.67 2.54 3.57 4.78 6.11 7.58 9.15 10.8 12.6
32 0.09 0.42 0.84 1.47 2.24 3.16 4.24 5.44 6.77 8.21 9.75 11.4
36 0.08 0.37 0.75 1.32 2.00 2.83 3.80 4.89 6.10 7.42 8.85 10.4
Table 7-7 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 37

7–38 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 0.97 2.60 4.52 6.54 8.59 10.6 12.7 14.7 16.7 18.8 20.8 22.8
3 0.75 2.12 3.83 5.71 7.71 9.75 11.8 13.9 15.9 18.0 20.0 22.1
4 0.62 1.78 3.29 4.99 6.88 8.87 10.9 13.0 15.1 17.1 19.2 21.3
5 0.52 1.53 2.85 4.39 6.16 8.06 10.0 12.1 14.1 16.2 18.3 20.4
6 0.45 1.34 2.51 3.89 5.54 7.33 9.23 11.2 13.2 15.3 17.3 19.4
7 0.40 1.19 2.23 3.48 5.01 6.70 8.51 10.4 12.4 14.4 16.4 18.5
8 0.36 1.07 2.00 3.15 4.57 6.14 7.86 9.68 11.6 13.6 15.6 17.6
9 0.32 0.97 1.81 2.87 4.19 5.66 7.28 9.02 10.9 12.8 14.7 16.7
10 0.30 0.88 1.66 2.64 3.87 5.24 6.77 8.43 10.2 12.0 13.9 15.9
12 0.25 0.75 1.41 2.27 3.34 4.54 5.92 7.43 9.04 10.8 12.5 14.4
14 0.22 0.65 1.23 1.98 2.93 3.99 5.24 6.61 8.09 9.67 11.4 13.1
16 0.19 0.58 1.08 1.76 2.60 3.56 4.69 5.94 7.30 8.77 10.3 12.0
18 0.17 0.52 0.97 1.58 2.34 3.21 4.24 5.38 6.64 8.0 9.45 11.0
20 0.16 0.47 0.88 1.43 2.12 2.92 3.87 4.92 6.08 7.3 8.70 10.1
24 0.13 0.39 0.74 1.21 1.79 2.48 3.29 4.18 5.19 6.3 7.48 8.75
28 0.12 0.34 0.64 1.04 1.55 2.14 2.85 3.63 4.52 5.5 6.54 7.68
32 0.10 0.30 0.56 0.92 1.36 1.89 2.51 3.21 4.00 4.9 5.81 6.83
36 0.09 0.26 0.50 0.82 1.21 1.69 2.25 2.87 3.59 4.4 5.22 6.15
2 0.97 3.20 5.31 7.37 9.39 11.4 13.4 15.4 17.4 19.4 21.3 23.3
3 0.75 2.75 4.86 6.95 9.01 11.1 13.1 15.1 17.1 19.1 21.1 23.1
4 0.62 2.39 4.42 6.49 8.57 10.6 12.7 14.7 16.8 18.8 20.8 22.8
5 0.52 2.10 4.02 6.04 8.11 10.2 12.3 14.3 16.4 18.4 20.4 22.5
6 0.45 1.87 3.67 5.61 7.66 9.73 11.8 13.9 16.0 18.0 20.1 22.1
7 0.40 1.69 3.36 5.21 7.21 9.27 11.4 13.4 15.5 17.6 19.6 21.7
8 0.36 1.53 3.08 4.84 6.79 8.82 10.9 13.0 15.1 17.1 19.2 21.3
9 0.32 1.40 2.84 4.51 6.40 8.39 10.4 12.5 14.6 16.7 18.7 20.8
10 0.30 1.29 2.63 4.21 6.04 7.98 9.99 12.0 14.1 16.2 18.3 20.4
12 0.25 1.12 2.28 3.70 5.39 7.23 9.16 11.2 13.2 15.3 17.3 19.4
14 0.22 0.98 2.00 3.29 4.86 6.57 8.41 10.3 12.3 14.4 16.4 18.5
16 0.19 0.87 1.78 2.95 4.40 6.01 7.75 9.6 11.5 13.5 15.5 17.6
18 0.17 0.79 1.60 2.68 4.02 5.52 7.17 8.9 10.8 12.7 14.7 16.7
20 0.16 0.71 1.45 2.45 3.70 5.09 6.65 8.3 10.1 12.0 13.9 15.9
24 0.13 0.60 1.23 2.08 3.17 4.39 5.79 7.3 8.95 10.7 12.5 14.4
28 0.12 0.52 1.06 1.82 2.77 3.85 5.11 6.5 7.99 9.59 11.3 13.0
32 0.10 0.46 0.93 1.61 2.45 3.42 4.56 5.8 7.20 8.68 10.3 11.9
36 0.09 0.41 0.83 1.44 2.20 3.08 4.12 5.3 6.53 7.91 9.37 10.9
Table 7-7 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 38

DESIGN TABLES 7–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.17 2.79 4.67 6.62 8.61 10.6 12.6 14.6 16.6 18.6 20.6 22.6
3 0.92 2.32 4.06 5.92 7.86 9.83 11.8 13.9 15.9 17.9 19.9 21.9
4 0.75 1.99 3.57 5.31 7.16 9.09 11.1 13.1 15.1 17.1 19.1 21.1
5 0.64 1.74 3.17 4.78 6.53 8.39 10.3 12.3 14.3 16.3 18.3 20.3
6 0.55 1.54 2.84 4.33 5.98 7.76 9.63 11.6 13.5 15.5 17.5 19.5
7 0.49 1.38 2.57 3.93 5.49 7.20 9.00 10.9 12.8 14.8 16.7 18.7
8 0.44 1.25 2.33 3.60 5.06 6.70 8.43 10.3 12.1 14.0 16.0 18.0
9 0.40 1.14 2.13 3.31 4.69 6.25 7.91 9.67 11.5 13.4 15.3 17.2
10 0.36 1.05 1.96 3.06 4.36 5.85 7.44 9.14 10.9 12.7 14.6 16.5
12 0.31 0.90 1.68 2.65 3.83 5.17 6.63 8.20 9.86 11.6 13.4 15.2
14 0.27 0.78 1.47 2.33 3.40 4.61 5.95 7.41 8.97 10.6 12.3 14.1
16 0.24 0.69 1.31 2.08 3.05 4.16 5.38 6.74 8.20 9.75 11.4 13.1
18 0.21 0.62 1.17 1.88 2.76 3.77 4.91 6.18 7.55 9.00 10.5 12.1
20 0.19 0.56 1.06 1.71 2.52 3.45 4.51 5.69 6.97 8.34 9.80 11.3
24 0.16 0.48 0.90 1.45 2.14 2.94 3.87 4.91 6.04 7.26 8.57 9.95
28 0.14 0.41 0.77 1.26 1.86 2.56 3.38 4.30 5.30 6.41 7.59 8.85
32 0.12 0.36 0.68 1.11 1.64 2.27 3.00 3.82 4.73 5.73 6.80 7.94
36 0.11 0.32 0.61 0.99 1.47 2.03 2.70 3.44 4.26 5.17 6.15 7.20
2 1.17 3.24 5.30 7.32 9.33 11.3 13.3 15.3 17.3 19.3 21.3 23.2
3 0.92 2.84 4.90 6.93 8.96 11.0 13.0 15.0 17.0 19.0 21.0 23.0
4 0.75 2.51 4.52 6.53 8.56 10.6 12.6 14.6 16.6 18.6 20.6 22.6
5 0.64 2.24 4.17 6.15 8.15 10.2 12.2 14.2 16.2 18.3 20.3 22.3
6 0.55 2.03 3.86 5.78 7.76 9.77 11.8 13.8 15.8 17.9 19.9 21.9
7 0.49 1.85 3.59 5.45 7.39 9.38 11.4 13.4 15.4 17.5 19.5 21.5
8 0.44 1.70 3.35 5.13 7.03 9.00 11.0 13.0 15.0 17.1 19.1 21.1
9 0.40 1.57 3.13 4.85 6.70 8.63 10.6 12.6 14.6 16.7 18.7 20.7
10 0.36 1.46 2.94 4.58 6.38 8.28 10.2 12.2 14.2 16.3 18.3 20.3
12 0.31 1.28 2.60 4.11 5.81 7.64 9.54 11.5 13.5 15.5 17.5 19.5
14 0.27 1.13 2.32 3.71 5.31 7.06 8.89 10.8 12.7 14.7 16.7 18.7
16 0.24 1.01 2.09 3.36 4.88 6.55 8.31 10.2 12.0 14.0 15.9 17.9
18 0.21 0.92 1.90 3.07 4.50 6.09 7.78 9.56 11.4 13.3 15.2 17.2
20 0.19 0.84 1.73 2.83 4.18 5.69 7.31 9.02 10.8 12.7 14.6 16.5
24 0.16 0.72 1.47 2.43 3.64 5.00 6.48 8.08 9.76 11.5 13.3 15.2
28 0.14 0.62 1.28 2.13 3.22 4.45 5.80 7.28 8.86 10.5 12.2 14.0
32 0.12 0.55 1.13 1.90 2.88 3.99 5.24 6.62 8.09 9.65 11.3 13.0
36 0.11 0.49 1.01 1.71 2.61 3.62 4.77 6.05 7.43 8.90 10.4 12.1
Table 7-7 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 39

7–40 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.51 3.17 4.97 6.85 8.77 10.7 12.7 14.6 16.6 18.6 20.6 22.5
3 1.24 2.76 4.47 6.30 8.19 10.1 12.0 14.0 16.0 17.9 19.9 21.9
4 1.04 2.43 4.04 5.81 7.65 9.53 11.5 13.4 15.3 17.3 19.3 21.2
5 0.89 2.16 3.70 5.39 7.17 9.01 10.9 12.8 14.7 16.7 18.6 20.6
6 0.77 1.95 3.40 5.01 6.73 8.52 10.4 12.3 14.2 16.1 18.0 20.0
7 0.68 1.77 3.13 4.67 6.33 8.07 9.88 11.7 13.6 15.5 17.4 19.4
8 0.61 1.62 2.90 4.37 5.96 7.65 9.42 11.2 13.1 15.0 16.9 18.8
9 0.56 1.49 2.70 4.09 5.62 7.26 8.98 10.8 12.6 14.5 16.3 18.2
10 0.51 1.38 2.52 3.84 5.31 6.89 8.58 10.3 12.1 14.0 15.8 17.7
12 0.43 1.20 2.21 3.40 4.76 6.25 7.85 9.53 11.3 13.0 14.9 16.7
14 0.38 1.06 1.96 3.05 4.30 5.71 7.23 8.83 10.5 12.2 14.0 15.8
16 0.34 0.95 1.76 2.75 3.92 5.24 6.68 8.20 9.79 11.5 13.2 14.9
18 0.30 0.85 1.60 2.51 3.59 4.84 6.19 7.64 9.16 10.8 12.4 14.1
20 0.27 0.78 1.46 2.30 3.32 4.48 5.76 7.14 8.60 10.1 11.7 13.4
24 0.23 0.66 1.24 1.97 2.87 3.90 5.04 6.29 7.64 9.06 10.6 12.1
28 0.20 0.57 1.07 1.72 2.52 3.44 4.47 5.61 6.85 8.17 9.55 11.0
32 0.18 0.50 0.95 1.52 2.24 3.07 4.01 5.06 6.20 7.41 8.70 10.1
36 0.16 0.45 0.85 1.37 2.02 2.77 3.63 4.59 5.65 6.77 7.98 9.26
2 1.51 3.39 5.36 7.33 9.31 11.3 13.3 15.2 17.2 19.2 21.2 23.2
3 1.24 3.08 5.04 7.01 8.98 11.0 12.9 14.9 16.9 18.9 20.9 22.8
4 1.04 2.80 4.73 6.69 8.66 10.6 12.6 14.6 16.6 18.6 20.5 22.5
5 0.89 2.57 4.45 6.39 8.35 10.3 12.3 14.3 16.2 18.2 20.2 22.2
6 0.77 2.37 4.20 6.11 8.05 10.0 12.0 13.9 15.9 17.9 19.9 21.8
7 0.68 2.19 3.98 5.85 7.76 9.70 11.7 13.6 15.6 17.6 19.5 21.5
8 0.61 2.04 3.77 5.61 7.49 9.41 11.4 13.3 15.3 17.2 19.2 21.2
9 0.56 1.91 3.59 5.38 7.24 9.13 11.1 13.0 15.0 16.9 18.9 20.9
10 0.51 1.80 3.42 5.17 7.00 8.87 10.8 12.7 14.7 16.6 18.6 20.5
12 0.43 1.60 3.11 4.78 6.54 8.37 10.2 12.1 14.1 16.0 18.0 19.9
14 0.38 1.44 2.85 4.43 6.13 7.91 9.74 11.6 13.5 15.4 17.4 19.3
16 0.34 1.31 2.63 4.12 5.74 7.48 9.27 11.1 13.0 14.9 16.8 18.7
18 0.30 1.20 2.43 3.84 5.40 7.08 8.84 10.7 12.5 14.4 16.3 18.2
20 0.27 1.10 2.26 3.58 5.08 6.71 8.43 10.2 12.0 13.9 15.7 17.6
24 0.23 0.95 1.97 3.15 4.53 6.06 7.69 9.39 11.2 12.9 14.8 16.6
28 0.20 0.84 1.73 2.80 4.08 5.52 7.06 8.68 10.4 12.1 13.9 15.7
32 0.18 0.74 1.54 2.52 3.71 5.05 6.51 8.05 9.66 11.3 13.1 14.8
36 0.16 0.67 1.39 2.28 3.39 4.65 6.02 7.49 9.03 10.7 12.3 14.0
Table 7-7 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 40

DESIGN TABLES 7–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.84 3.63 5.44 7.29 9.17 11.1 13.0 14.9 16.9 18.8 20.8 22.7
3 1.71 3.41 5.17 6.97 8.82 10.7 12.6 14.5 16.4 18.4 20.3 22.3
4 1.57 3.19 4.90 6.67 8.50 10.4 12.2 14.1 16.0 18.0 19.9 21.8
5 1.44 2.98 4.65 6.39 8.19 10.0 11.9 13.8 15.7 17.6 19.5 21.4
6 1.31 2.79 4.41 6.12 7.90 9.71 11.6 13.4 15.3 17.2 19.1 21.0
7 1.20 2.61 4.19 5.88 7.62 9.42 11.3 13.1 15.0 16.9 18.8 20.7
8 1.10 2.45 3.99 5.65 7.37 9.14 11.0 12.8 14.7 16.5 18.4 20.3
9 1.01 2.31 3.81 5.43 7.14 8.89 10.7 12.5 14.3 16.2 18.1 20.0
10 0.93 2.18 3.63 5.23 6.91 8.65 10.4 12.2 14.1 15.9 17.8 19.6
12 0.81 1.95 3.33 4.86 6.49 8.19 9.94 11.7 13.5 15.3 17.2 19.0
14 0.71 1.77 3.06 4.53 6.11 7.76 9.47 11.2 13.0 14.8 16.6 18.4
16 0.63 1.61 2.83 4.23 5.75 7.36 9.03 10.8 12.5 14.3 16.1 17.9
18 0.57 1.48 2.63 3.96 5.42 6.98 8.61 10.3 12.0 13.8 15.6 17.4
20 0.52 1.36 2.45 3.72 5.12 6.63 8.23 9.88 11.6 13.3 15.1 16.9
24 0.44 1.18 2.15 3.30 4.60 6.02 7.53 9.12 10.8 12.4 14.2 15.9
28 0.38 1.04 1.91 2.95 4.16 5.49 6.93 8.45 10.0 11.7 13.3 15.0
32 0.34 0.92 1.71 2.67 3.78 5.04 6.41 7.86 9.37 10.9 12.6 14.2
36 0.30 0.83 1.55 2.43 3.47 4.65 5.94 7.32 8.78 10.3 11.9 13.5
2 1.84 3.66 5.55 7.48 9.42 11.4 13.3 15.3 17.6 19.6 21.5 23.5
3 1.71 3.49 5.36 7.27 9.20 11.2 13.1 15.1 17.0 19.0 21.0 22.9
4 1.57 3.32 5.18 7.08 9.00 10.9 12.9 14.8 16.8 18.7 20.7 22.7
5 1.44 3.16 5.01 6.89 8.81 10.7 12.7 14.6 16.6 18.5 20.5 22.4
6 1.31 3.02 4.84 6.72 8.62 10.5 12.5 14.4 16.3 18.3 20.2 22.2
7 1.20 2.88 4.69 6.55 8.44 10.4 12.3 14.2 16.1 18.1 20.0 22.0
8 1.10 2.75 4.54 6.39 8.27 10.2 12.1 14.0 15.9 17.9 19.8 21.8
9 1.01 2.63 4.40 6.24 8.11 10.0 11.9 13.8 15.7 17.7 19.6 21.5
10 0.93 2.52 4.27 6.09 7.95 9.83 11.7 13.6 15.6 17.5 19.4 21.3
12 0.81 2.32 4.03 5.82 7.66 9.52 11.4 13.3 15.2 17.1 19.0 20.9
14 0.71 2.15 3.82 5.57 7.38 9.22 11.1 13.0 14.9 16.7 18.7 20.6
16 0.63 2.00 3.62 5.35 7.13 8.95 10.8 12.7 14.5 16.4 18.3 20.2
18 0.57 1.87 3.44 5.14 6.90 8.69 10.5 12.4 14.2 16.1 18.0 19.9
20 0.52 1.75 3.28 4.94 6.67 8.45 10.3 12.1 13.9 15.8 17.7 19.5
24 0.44 1.55 2.98 4.57 6.24 7.98 9.75 11.6 13.4 15.2 17.1 18.9
28 0.38 1.40 2.74 4.24 5.85 7.54 9.28 11.1 12.9 14.7 16.5 18.3
32 0.34 1.27 2.52 3.95 5.49 7.13 8.83 10.6 12.4 14.1 16.0 17.8
36 0.30 1.16 2.33 3.68 5.16 6.75 8.41 10.1 11.9 13.7 15.4 17.3
Table 7-7 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 41

7–42 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.14 2.75 4.59 6.61 8.69 10.8 12.9 14.9 17.0 19.0 21.0 23.0
3 0.94 2.32 3.92 5.80 7.82 9.90 12.0 14.1 16.2 18.3 20.4 22.4
4 0.80 1.99 3.39 5.10 6.98 9.00 11.1 13.2 15.3 17.4 19.6 21.7
5 0.70 1.74 2.96 4.51 6.24 8.15 10.2 12.3 14.4 16.5 18.6 20.8
6 0.62 1.54 2.62 4.03 5.60 7.39 9.30 11.3 13.4 15.5 17.7 19.8
7 0.55 1.38 2.36 3.63 5.07 6.72 8.53 10.5 12.5 14.6 16.7 18.8
8 0.50 1.25 2.14 3.30 4.61 6.15 7.84 9.67 11.6 13.6 15.7 17.8
9 0.46 1.14 1.96 3.01 4.22 5.66 7.23 8.97 10.8 12.8 14.8 16.9
10 0.42 1.04 1.80 2.78 3.89 5.23 6.70 8.34 10.1 12.0 13.9 15.9
12 0.37 0.90 1.55 2.39 3.36 4.53 5.82 7.28 8.87 10.6 12.4 14.3
14 0.32 0.79 1.36 2.10 2.96 3.99 5.13 6.44 7.87 9.42 11.1 12.8
16 0.29 0.70 1.21 1.87 2.64 3.55 4.58 5.76 7.05 8.47 9.99 11.6
18 0.26 0.63 1.09 1.68 2.37 3.20 4.14 5.21 6.38 7.68 9.08 10.6
20 0.24 0.57 0.99 1.53 2.16 2.91 3.77 4.75 5.82 7.02 8.30 9.69
24 0.20 0.48 0.84 1.29 1.83 2.46 3.19 4.03 4.94 5.97 7.07 8.28
28 0.18 0.42 0.73 1.11 1.58 2.13 2.77 3.49 4.29 5.19 6.15 7.21
32 0.16 0.37 0.64 0.98 1.39 1.88 2.44 3.08 3.79 4.58 5.44 6.38
36 0.14 0.33 0.57 0.88 1.24 1.68 2.18 2.75 3.39 4.10 4.87 5.72
CΩ, in. 5.40 12.3 21.2 32.3 45.8 61.8 80.3 102 125 152 181 213
2 1.14 3.25 5.37 7.45 9.49 11.5 13.5 15.5 17.5 19.5 21.4 23.4
3 0.94 2.86 4.93 7.05 9.14 11.2 13.2 15.3 17.3 19.3 21.3 23.3
4 0.80 2.52 4.47 6.59 8.72 10.8 12.9 15.0 17.0 19.0 21.0 23.1
5 0.70 2.24 4.04 6.12 8.25 10.4 12.5 14.6 16.7 18.7 20.8 22.8
6 0.62 2.00 3.65 5.66 7.77 9.91 12.1 14.2 16.3 18.4 20.4 22.5
7 0.55 1.80 3.31 5.23 7.29 9.42 11.6 13.7 15.8 17.9 20.0 22.1
8 0.50 1.64 3.02 4.84 6.83 8.93 11.1 13.2 15.4 17.5 19.6 21.7
9 0.46 1.50 2.77 4.49 6.39 8.45 10.6 12.7 14.9 17.0 19.2 21.3
10 0.42 1.38 2.56 4.18 5.99 7.99 10.1 12.2 14.4 16.5 18.7 20.8
12 0.37 1.19 2.21 3.65 5.29 7.16 9.15 11.2 13.4 15.5 17.7 19.8
14 0.32 1.04 1.95 3.24 4.72 6.44 8.32 10.3 12.4 14.5 16.7 18.8
16 0.29 0.93 1.74 2.90 4.24 5.83 7.59 9.48 11.5 13.6 15.7 17.8
18 0.26 0.84 1.57 2.62 3.84 5.31 6.95 8.74 10.7 12.6 14.7 16.8
20 0.24 0.76 1.43 2.39 3.50 4.87 6.39 8.08 9.89 11.8 13.8 15.9
24 0.20 0.64 1.21 2.02 2.98 4.16 5.49 6.99 8.61 10.4 12.2 14.1
28 0.18 0.55 1.05 1.76 2.59 3.63 4.80 6.13 7.59 9.18 10.9 12.7
32 0.16 0.49 0.93 1.55 2.29 3.21 4.25 5.45 6.77 8.21 9.76 11.4
36 0.14 0.43 0.83 1.38 2.05 2.88 3.81 4.90 6.09 7.41 8.83 10.4
CΩ, in. 5.40 16.0 30.6 51.0 76.2 107 143 185 232 284 342 406
Table 7-8
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 42

DESIGN TABLES 7–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.18 2.78 4.61 6.59 8.64 10.7 12.8 14.8 16.8 18.9 20.9 22.9
3 0.97 2.34 3.97 5.80 7.78 9.83 11.9 14.0 16.1 18.1 20.2 22.2
4 0.83 2.02 3.45 5.11 6.97 8.94 11.0 13.1 15.2 17.3 19.3 21.4
5 0.72 1.77 3.03 4.54 6.26 8.12 10.1 12.1 14.2 16.3 18.4 20.5
6 0.64 1.57 2.70 4.06 5.65 7.39 9.27 11.2 13.3 15.4 17.5 19.6
7 0.57 1.41 2.43 3.66 5.13 6.74 8.52 10.4 12.4 14.4 16.5 18.6
8 0.52 1.28 2.20 3.34 4.68 6.18 7.86 9.65 11.6 13.5 15.6 17.6
9 0.48 1.17 2.01 3.06 4.30 5.70 7.27 8.97 10.8 12.7 14.7 16.7
10 0.44 1.07 1.85 2.82 3.98 5.27 6.76 8.36 10.1 11.9 13.8 15.8
12 0.38 0.93 1.60 2.44 3.44 4.58 5.90 7.34 8.91 10.6 12.4 14.2
14 0.33 0.81 1.40 2.15 3.03 4.05 5.22 6.51 7.94 9.47 11.1 12.8
16 0.30 0.72 1.25 1.91 2.70 3.62 4.68 5.84 7.14 8.54 10.1 11.7
18 0.27 0.65 1.13 1.72 2.44 3.27 4.23 5.28 6.48 7.77 9.16 10.7
20 0.25 0.59 1.02 1.57 2.22 2.98 3.86 4.83 5.93 7.11 8.40 9.78
24 0.21 0.50 0.87 1.33 1.88 2.53 3.27 4.11 5.05 6.07 7.19 8.39
28 0.18 0.43 0.75 1.15 1.63 2.19 2.84 3.57 4.39 5.29 6.28 7.33
32 0.16 0.38 0.66 1.01 1.43 1.93 2.50 3.15 3.88 4.68 5.56 6.50
36 0.14 0.34 0.59 0.90 1.28 1.73 2.24 2.82 3.48 4.19 4.99 5.84
2 1.18 3.24 5.34 7.40 9.43 11.5 13.5 15.4 17.4 19.4 21.4 23.4
3 0.97 2.85 4.90 6.99 9.07 11.1 13.2 15.2 17.2 19.2 21.2 23.2
4 0.83 2.51 4.45 6.53 8.63 10.7 12.8 14.8 16.9 18.9 20.9 22.9
5 0.72 2.23 4.05 6.07 8.16 10.3 12.4 14.5 16.5 18.6 20.6 22.6
6 0.64 2.00 3.68 5.62 7.69 9.80 11.9 14.0 16.1 18.2 20.2 22.3
7 0.57 1.81 3.36 5.20 7.22 9.31 11.4 13.5 15.7 17.7 19.8 21.9
8 0.52 1.65 3.08 4.82 6.78 8.83 10.9 13.1 15.2 17.3 19.4 21.5
9 0.48 1.52 2.83 4.48 6.36 8.37 10.5 12.6 14.7 16.8 18.9 21.0
10 0.44 1.40 2.62 4.18 5.98 7.93 9.97 12.1 14.2 16.3 18.4 20.6
12 0.38 1.21 2.27 3.66 5.31 7.13 9.08 11.1 13.2 15.3 17.4 19.6
14 0.33 1.07 2.00 3.25 4.76 6.44 8.28 10.2 12.3 14.3 16.4 18.6
16 0.30 0.95 1.79 2.92 4.29 5.85 7.58 9.43 11.4 13.4 15.5 17.6
18 0.27 0.86 1.62 2.65 3.90 5.34 6.97 8.72 10.6 12.5 14.6 16.6
20 0.25 0.78 1.47 2.42 3.58 4.91 6.43 8.09 9.87 11.7 13.7 15.7
24 0.21 0.66 1.25 2.06 3.05 4.21 5.55 7.03 8.64 10.4 12.2 14.1
28 0.18 0.57 1.08 1.79 2.66 3.68 4.87 6.19 7.65 9.22 10.9 12.6
32 0.16 0.50 0.95 1.58 2.35 3.26 4.33 5.52 6.84 8.27 9.81 11.4
36 0.14 0.45 0.85 1.42 2.11 2.93 3.90 4.97 6.18 7.49 8.91 10.4
Table 7-8 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 43

7–44 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.30 2.90 4.72 6.66 8.65 10.7 12.7 14.7 16.7 18.7 20.8 22.8
3 1.08 2.47 4.13 5.94 7.86 9.85 11.9 13.9 16.0 18.0 20.0 22.1
4 0.92 2.14 3.64 5.30 7.12 9.04 11.0 13.0 15.1 17.1 19.2 21.2
5 0.80 1.89 3.24 4.76 6.46 8.29 10.2 12.2 14.2 16.3 18.3 20.4
6 0.71 1.69 2.91 4.29 5.88 7.61 9.45 11.4 13.4 15.4 17.4 19.5
7 0.64 1.53 2.63 3.90 5.38 7.01 8.76 10.6 12.5 14.5 16.5 18.6
8 0.58 1.39 2.40 3.57 4.95 6.49 8.14 9.92 11.8 13.7 15.7 17.7
9 0.53 1.28 2.20 3.29 4.58 6.02 7.59 9.29 11.1 12.9 14.9 16.8
10 0.49 1.18 2.03 3.04 4.26 5.61 7.09 8.72 10.4 12.2 14.1 16.0
12 0.42 1.02 1.76 2.65 3.72 4.92 6.25 7.73 9.31 11.0 12.8 14.6
14 0.37 0.90 1.55 2.34 3.29 4.37 5.58 6.93 8.38 9.93 11.6 13.3
16 0.33 0.80 1.38 2.09 2.95 3.92 5.03 6.26 7.59 9.03 10.6 12.2
18 0.30 0.72 1.25 1.89 2.67 3.55 4.57 5.70 6.93 8.27 9.70 11.2
20 0.27 0.66 1.13 1.73 2.43 3.25 4.19 5.23 6.36 7.62 8.95 10.4
24 0.23 0.56 0.96 1.46 2.07 2.77 3.57 4.47 5.47 6.56 7.73 8.99
28 0.20 0.48 0.83 1.27 1.79 2.41 3.11 3.90 4.78 5.75 6.78 7.91
32 0.18 0.43 0.73 1.12 1.58 2.13 2.76 3.46 4.25 5.11 6.04 7.06
36 0.16 0.38 0.66 1.00 1.42 1.91 2.47 3.10 3.81 4.59 5.44 6.36
2 1.30 3.27 5.33 7.36 9.38 11.4 13.4 15.4 17.4 19.3 21.3 23.3
3 1.08 2.89 4.91 6.96 9.01 11.0 13.1 15.1 17.1 19.1 21.1 23.1
4 0.92 2.56 4.50 6.53 8.58 10.6 12.7 14.7 16.8 18.8 20.8 22.8
5 0.80 2.29 4.13 6.10 8.14 10.2 12.3 14.3 16.4 18.4 20.4 22.5
6 0.71 2.08 3.80 5.69 7.70 9.75 11.8 13.9 15.9 18.0 20.0 22.1
7 0.64 1.89 3.51 5.31 7.27 9.30 11.4 13.4 15.5 17.6 19.6 21.7
8 0.58 1.74 3.25 4.96 6.86 8.86 10.9 13.0 15.0 17.1 19.2 21.3
9 0.53 1.61 3.02 4.64 6.49 8.44 10.5 12.5 14.6 16.7 18.7 20.8
10 0.49 1.49 2.81 4.35 6.13 8.04 10.0 12.1 14.1 16.2 18.3 20.4
12 0.42 1.30 2.47 3.85 5.51 7.31 9.22 11.2 13.2 15.3 17.3 19.4
14 0.37 1.15 2.19 3.44 4.98 6.67 8.49 10.4 12.4 14.4 16.4 18.5
16 0.33 1.03 1.96 3.11 4.54 6.12 7.83 9.66 11.6 13.5 15.6 17.6
18 0.30 0.93 1.78 2.83 4.16 5.63 7.26 9.00 10.8 12.8 14.7 16.7
20 0.27 0.85 1.62 2.60 3.83 5.21 6.74 8.41 10.2 12.0 13.9 15.9
24 0.23 0.72 1.38 2.23 3.30 4.51 5.89 7.40 9.02 10.7 12.5 14.4
28 0.20 0.63 1.20 1.95 2.89 3.96 5.21 6.59 8.07 9.66 11.3 13.1
32 0.18 0.55 1.06 1.73 2.57 3.53 4.67 5.92 7.28 8.75 10.3 12.0
36 0.16 0.50 0.95 1.55 2.31 3.18 4.22 5.36 6.61 7.98 9.43 11.0
Table 7-8 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 44

DESIGN TABLES 7–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.53 3.18 4.96 6.84 8.77 10.7 12.7 14.7 16.7 18.7 20.7 22.6
3 1.30 2.76 4.42 6.22 8.09 10.0 12.0 14.0 15.9 17.9 19.9 21.9
4 1.11 2.43 3.97 5.67 7.46 9.32 11.2 13.2 15.2 17.2 19.2 21.2
5 0.98 2.17 3.60 5.19 6.89 8.68 10.6 12.5 14.4 16.4 18.4 20.4
6 0.87 1.95 3.28 4.77 6.37 8.09 9.90 11.8 13.7 15.6 17.6 19.6
7 0.78 1.78 3.01 4.40 5.91 7.56 9.31 11.1 13.0 14.9 16.9 18.8
8 0.71 1.63 2.77 4.07 5.50 7.07 8.76 10.5 12.4 14.2 16.2 18.1
9 0.65 1.50 2.57 3.78 5.13 6.64 8.26 9.97 11.8 13.6 15.5 17.4
10 0.60 1.39 2.39 3.52 4.81 6.25 7.81 9.45 11.2 13.0 14.8 16.7
12 0.52 1.22 2.08 3.09 4.26 5.58 7.01 8.54 10.2 11.9 13.6 15.4
14 0.45 1.08 1.85 2.75 3.82 5.02 6.34 7.76 9.28 10.9 12.6 14.3
16 0.41 0.96 1.65 2.48 3.45 4.55 5.77 7.09 8.53 10.1 11.6 13.3
18 0.37 0.87 1.50 2.25 3.14 4.16 5.29 6.53 7.87 9.30 10.8 12.4
20 0.33 0.79 1.37 2.06 2.88 3.82 4.87 6.04 7.30 8.65 10.1 11.6
24 0.28 0.68 1.16 1.76 2.47 3.28 4.21 5.23 6.35 7.55 8.85 10.2
28 0.25 0.59 1.01 1.53 2.15 2.87 3.69 4.61 5.61 6.69 7.87 9.11
32 0.22 0.52 0.89 1.35 1.91 2.55 3.29 4.11 5.01 6.00 7.07 8.20
36 0.20 0.46 0.80 1.21 1.71 2.29 2.96 3.70 4.53 5.43 6.40 7.44
2 1.53 3.39 5.36 7.35 9.35 11.3 13.3 15.3 17.3 19.3 21.3 23.2
3 1.30 3.04 4.99 6.98 8.98 11.0 13.0 15.0 17.0 19.0 21.0 22.9
4 1.11 2.74 4.64 6.60 8.60 10.6 12.6 14.6 16.6 18.6 20.6 22.6
5 0.98 2.49 4.31 6.24 8.21 10.2 12.2 14.2 16.3 18.3 20.3 22.3
6 0.87 2.28 4.02 5.89 7.84 9.82 11.8 13.8 15.9 17.9 19.9 21.9
7 0.78 2.10 3.76 5.57 7.48 9.44 11.4 13.4 15.5 17.5 19.5 21.5
8 0.71 1.94 3.53 5.28 7.13 9.07 11.0 13.0 15.1 17.1 19.1 21.1
9 0.65 1.81 3.32 5.00 6.81 8.71 10.7 12.7 14.7 16.7 18.7 20.7
10 0.60 1.69 3.13 4.74 6.50 8.37 10.3 12.3 14.3 16.3 18.3 20.3
12 0.52 1.50 2.80 4.29 5.94 7.74 9.61 11.5 13.5 15.5 17.5 19.5
14 0.45 1.34 2.52 3.89 5.45 7.17 8.98 10.9 12.8 14.7 16.7 18.7
16 0.41 1.21 2.29 3.55 5.02 6.67 8.41 10.2 12.1 14.0 16.0 17.9
18 0.37 1.10 2.09 3.26 4.65 6.22 7.89 9.65 11.5 13.4 15.3 17.2
20 0.33 1.01 1.92 3.01 4.33 5.82 7.42 9.11 10.9 12.7 14.6 16.5
24 0.28 0.86 1.64 2.61 3.79 5.13 6.60 8.17 9.84 11.6 13.4 15.2
28 0.25 0.75 1.44 2.30 3.36 4.58 5.92 7.38 8.95 10.6 12.3 14.1
32 0.22 0.67 1.27 2.05 3.02 4.12 5.35 6.72 8.18 9.73 11.4 13.0
36 0.20 0.60 1.14 1.85 2.73 3.74 4.88 6.15 7.52 8.98 10.5 12.1
Table 7-8 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 45

7–46 DESIGN CONSIDERATIONS FOR BOLTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.78 3.55 5.34 7.17 9.04 10.9 12.9 14.8 16.7 18.7 20.6 22.6
3 1.62 3.26 4.95 6.71 8.53 10.4 12.3 14.2 16.1 18.1 20.0 22.0
4 1.45 2.97 4.57 6.27 8.04 9.86 11.7 13.6 15.5 17.5 19.4 21.4
5 1.31 2.71 4.23 5.86 7.58 9.36 11.2 13.1 15.0 16.9 18.8 20.7
6 1.18 2.48 3.93 5.50 7.16 8.90 10.7 12.5 14.4 16.3 18.2 20.1
7 1.07 2.28 3.66 5.18 6.79 8.48 10.2 12.0 13.9 15.7 17.6 19.5
8 0.98 2.11 3.43 4.88 6.45 8.09 9.80 11.6 13.4 15.2 17.1 19.0
9 0.90 1.97 3.22 4.61 6.12 7.72 9.39 11.1 12.9 14.7 16.6 18.4
10 0.83 1.84 3.03 4.37 5.82 7.37 9.00 10.7 12.5 14.2 16.1 17.9
12 0.72 1.62 2.70 3.93 5.28 6.73 8.28 9.91 11.6 13.4 15.1 16.9
14 0.64 1.45 2.43 3.56 4.81 6.19 7.66 9.22 10.9 12.5 14.3 16.0
16 0.57 1.31 2.21 3.24 4.42 5.71 7.11 8.60 10.2 11.8 13.5 15.2
18 0.52 1.19 2.02 2.98 4.07 5.29 6.63 8.05 9.55 11.1 12.7 14.4
20 0.47 1.09 1.85 2.75 3.77 4.93 6.19 7.55 8.98 10.5 12.1 13.7
24 0.40 0.93 1.59 2.37 3.28 4.32 5.46 6.69 8.01 9.41 10.9 12.4
28 0.35 0.82 1.39 2.08 2.90 3.83 4.86 5.99 7.21 8.51 9.88 11.3
32 0.31 0.72 1.24 1.86 2.59 3.43 4.37 5.41 6.54 7.75 9.02 10.4
36 0.28 0.65 1.11 1.67 2.34 3.11 3.97 4.93 5.98 7.10 8.29 9.55
2 1.78 3.59 5.48 7.41 9.36 11.3 13.3 15.3 17.2 19.2 21.2 23.2
3 1.62 3.35 5.20 7.12 9.06 11.0 13.0 15.0 16.9 18.9 20.9 22.9
4 1.45 3.11 4.93 6.82 8.75 10.7 12.7 14.6 16.6 18.6 20.6 22.5
5 1.31 2.89 4.66 6.53 8.45 10.4 12.3 14.3 16.3 18.2 20.2 22.2
6 1.18 2.70 4.42 6.26 8.16 10.1 12.0 14.0 15.9 17.9 19.9 21.9
7 1.07 2.52 4.19 6.01 7.88 9.79 11.7 13.7 15.6 17.6 19.6 21.5
8 0.98 2.36 3.99 5.77 7.62 9.51 11.4 13.4 15.3 17.3 19.2 21.2
9 0.90 2.23 3.81 5.55 7.37 9.24 11.1 13.1 15.0 17.0 18.9 20.9
10 0.83 2.10 3.64 5.35 7.13 8.98 10.9 12.8 14.7 16.7 18.6 20.6
12 0.72 1.89 3.34 4.97 6.70 8.49 10.3 12.2 14.1 16.1 18.0 19.9
14 0.64 1.71 3.08 4.63 6.29 8.04 9.85 11.7 13.6 15.5 17.4 19.3
16 0.57 1.57 2.85 4.32 5.92 7.62 9.39 11.2 13.1 15.0 16.9 18.8
18 0.52 1.44 2.65 4.04 5.58 7.22 8.95 10.7 12.6 14.4 16.3 18.2
20 0.47 1.33 2.47 3.79 5.26 6.86 8.55 10.3 12.1 13.9 15.8 17.7
24 0.40 1.16 2.17 3.36 4.71 6.21 7.82 9.50 11.2 13.0 14.8 16.7
28 0.35 1.02 1.92 3.00 4.26 5.67 7.19 8.80 10.5 12.2 14.0 15.8
32 0.31 0.91 1.72 2.71 3.88 5.20 6.64 8.17 9.77 11.4 13.1 14.9
36 0.28 0.82 1.56 2.46 3.55 4.80 6.16 7.61 9.14 10.7 12.4 14.1
Table 7-8 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 46

DESIGN TABLES 7–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.92 3.82 5.70 7.57 9.45 11.3 13.2 15.2 17.1 19.0 20.9 22.9
3 1.87 3.72 5.54 7.36 9.19 11.1 12.9 14.8 16.7 18.6 20.5 22.5
4 1.82 3.60 5.37 7.14 8.94 10.8 12.6 14.5 16.3 18.2 20.1 22.1
5 1.75 3.47 5.18 6.92 8.68 10.5 12.3 14.1 16.0 17.9 19.8 21.7
6 1.68 3.33 5.00 6.69 8.42 10.2 12.0 13.8 15.7 17.5 19.4 21.3
7 1.60 3.19 4.81 6.47 8.17 9.92 11.7 13.5 15.3 17.2 19.1 20.9
8 1.52 3.06 4.63 6.26 7.93 9.66 11.4 13.2 15.0 16.9 18.7 20.6
9 1.45 2.93 4.46 6.05 7.70 9.41 11.2 12.9 14.7 16.5 18.4 20.3
10 1.38 2.80 4.29 5.85 7.48 9.16 10.9 12.6 14.4 16.2 18.1 19.9
12 1.25 2.57 3.98 5.48 7.07 8.71 10.4 12.1 13.9 15.7 17.5 19.3
14 1.13 2.36 3.70 5.15 6.69 8.29 9.96 11.7 13.4 15.2 16.9 18.7
16 1.03 2.18 3.45 4.85 6.34 7.90 9.53 11.2 12.9 14.7 16.4 18.2
18 0.95 2.02 3.23 4.57 6.01 7.54 9.13 10.8 12.5 14.2 15.9 17.7
20 0.87 1.88 3.03 4.32 5.71 7.19 8.75 10.4 12.0 13.7 15.4 17.2
24 0.75 1.65 2.69 3.87 5.17 6.57 8.05 9.60 11.2 12.9 14.5 16.2
28 0.66 1.46 2.42 3.50 4.71 6.03 7.44 8.93 10.5 12.1 13.7 15.4
32 0.59 1.31 2.18 3.19 4.32 5.56 6.90 8.32 9.81 11.4 12.9 14.6
36 0.53 1.19 1.99 2.92 3.98 5.15 6.42 7.78 9.21 10.7 12.2 13.8
2 1.92 3.80 5.69 7.59 9.51 11.5 13.4 15.4 17.6 19.6 21.5 23.5
3 1.87 3.70 5.55 7.42 9.32 11.2 13.2 15.1 17.1 19.0 21.0 23.0
4 1.82 3.59 5.40 7.25 9.14 11.1 13.0 14.9 16.9 18.8 20.8 22.7
5 1.75 3.48 5.26 7.09 8.96 10.9 12.8 14.7 16.6 18.6 20.5 22.5
6 1.68 3.36 5.11 6.93 8.78 10.7 12.6 14.5 16.4 18.4 20.3 22.2
7 1.60 3.24 4.97 6.77 8.62 10.5 12.4 14.3 16.2 18.1 20.1 22.0
8 1.52 3.13 4.84 6.62 8.45 10.3 12.2 14.1 16.0 17.9 19.9 21.8
9 1.45 3.02 4.71 6.47 8.29 10.2 12.0 13.9 15.8 17.7 19.7 21.6
10 1.38 2.91 4.58 6.33 8.14 9.98 11.9 13.7 15.6 17.6 19.5 21.4
12 1.25 2.72 4.34 6.07 7.85 9.67 11.5 13.4 15.3 17.2 19.1 21.0
14 1.13 2.54 4.13 5.82 7.57 9.38 11.2 13.1 15.0 16.8 18.7 20.6
16 1.03 2.38 3.92 5.59 7.32 9.10 10.9 12.8 14.6 16.5 18.4 20.3
18 0.95 2.24 3.74 5.38 7.09 8.85 10.7 12.5 14.3 16.2 18.1 19.9
20 0.87 2.11 3.57 5.17 6.87 8.61 10.4 12.2 14.0 15.9 17.7 19.6
24 0.75 1.88 3.27 4.80 6.44 8.15 9.90 11.7 13.5 15.3 17.1 19.0
28 0.66 1.70 3.00 4.47 6.06 7.72 9.43 11.2 13.0 14.8 16.6 18.4
32 0.59 1.55 2.77 4.17 5.70 7.31 8.99 10.7 12.5 14.3 16.1 17.9
36 0.53 1.42 2.57 3.90 5.37 6.93 8.57 10.3 12.0 13.8 15.5 17.3
Table 7-8 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7A:14th Ed. 2/24/11 8:33 AM Page 47

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–48 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.31 2.91 4.71 6.66 8.69 10.8 12.8 14.9 16.9 18.9 21.0 23.0
3 1.12 2.54 4.14 5.95 7.90 9.93 12.0 14.1 16.2 18.2 20.3 22.4
4 0.98 2.24 3.66 5.33 7.15 9.10 11.1 13.2 15.3 17.4 19.5 21.6
5 0.87 1.99 3.27 4.80 6.48 8.33 10.3 12.3 14.4 16.5 18.6 20.7
6 0.79 1.80 2.95 4.35 5.90 7.63 9.49 11.5 13.5 15.6 17.7 19.8
7 0.71 1.63 2.68 3.97 5.40 7.02 8.77 10.7 12.6 14.6 16.7 18.8
8 0.65 1.49 2.46 3.65 4.97 6.48 8.13 9.91 11.8 13.8 15.8 17.9
9 0.60 1.38 2.27 3.37 4.59 6.01 7.55 9.24 11.1 13.0 14.9 17.0
10 0.56 1.28 2.11 3.13 4.27 5.59 7.04 8.64 10.4 12.2 14.1 16.1
12 0.49 1.11 1.84 2.73 3.73 4.90 6.19 7.63 9.18 10.9 12.6 14.5
14 0.44 0.99 1.64 2.42 3.31 4.36 5.50 6.80 8.20 9.73 11.4 13.1
16 0.39 0.89 1.47 2.17 2.98 3.91 4.95 6.13 7.40 8.80 10.3 11.9
18 0.36 0.80 1.33 1.97 2.70 3.55 4.50 5.57 6.73 8.02 9.39 10.9
20 0.33 0.73 1.22 1.80 2.47 3.25 4.12 5.10 6.17 7.35 8.62 9.99
24 0.28 0.63 1.04 1.53 2.10 2.77 3.51 4.35 5.28 6.30 7.39 8.59
28 0.25 0.55 0.91 1.33 1.83 2.41 3.06 3.79 4.60 5.50 6.46 7.51
32 0.22 0.48 0.80 1.18 1.62 2.13 2.71 3.36 4.08 4.87 5.73 6.67
36 0.20 0.43 0.72 1.06 1.45 1.91 2.43 3.01 3.66 4.37 5.15 5.99
Cφ, in. 7.85 16.8 27.3 39.9 54.6 71.5 90.9 113 137 164 194 226
2 1.31 3.28 5.35 7.42 9.47 11.5 13.5 15.5 17.5 19.5 21.4 23.4
3 1.12 2.93 4.94 7.03 9.12 11.2 13.2 15.3 17.3 19.3 21.3 23.3
4 0.98 2.63 4.52 6.59 8.70 10.8 12.9 14.9 17.0 19.0 21.0 23.0
5 0.87 2.37 4.13 6.15 8.25 10.4 12.5 14.6 16.6 18.7 20.7 22.8
6 0.79 2.15 3.78 5.72 7.78 9.90 12.0 14.1 16.2 18.3 20.4 22.4
7 0.71 1.97 3.47 5.32 7.33 9.43 11.6 13.7 15.8 17.9 20.0 22.1
8 0.65 1.81 3.19 4.95 6.89 8.95 11.1 13.2 15.4 17.5 19.6 21.7
9 0.60 1.67 2.95 4.62 6.48 8.49 10.6 12.7 14.9 17.0 19.1 21.3
10 0.56 1.55 2.75 4.33 6.10 8.05 10.1 12.2 14.4 16.5 18.7 20.8
12 0.49 1.35 2.40 3.82 5.43 7.25 9.21 11.3 13.4 15.5 17.7 19.8
14 0.44 1.20 2.14 3.41 4.86 6.56 8.40 10.4 12.4 14.5 16.7 18.8
16 0.39 1.08 1.92 3.07 4.40 5.96 7.69 9.56 11.5 13.6 15.7 17.8
18 0.36 0.97 1.75 2.79 4.00 5.46 7.06 8.83 10.7 12.7 14.7 16.8
20 0.33 0.89 1.60 2.56 3.67 5.02 6.52 8.18 9.97 11.9 13.9 15.9
24 0.28 0.76 1.37 2.18 3.14 4.32 5.62 7.11 8.71 10.4 12.3 14.2
28 0.25 0.66 1.19 1.90 2.75 3.78 4.93 6.26 7.70 9.27 11.0 12.7
32 0.22 0.58 1.05 1.68 2.44 3.35 4.38 5.58 6.88 8.31 9.85 11.5
36 0.20 0.52 0.95 1.51 2.19 3.01 3.94 5.02 6.21 7.52 8.93 10.4
Cφ, in. 7.85 19.6 35.6 56.6 82.5 114 150 192 239 292 350 414
Table 7-9
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 48

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.35 2.96 4.75 6.67 8.67 10.7 12.7 14.8 16.8 18.8 20.9 22.9
3 1.16 2.58 4.20 5.98 7.90 9.89 11.9 14.0 16.0 18.1 20.2 22.2
4 1.02 2.28 3.73 5.37 7.17 9.08 11.1 13.1 15.2 17.3 19.3 21.4
5 0.90 2.03 3.35 4.85 6.53 8.34 10.3 12.2 14.3 16.3 18.4 20.5
6 0.81 1.84 3.03 4.40 5.96 7.66 9.48 11.4 13.4 15.4 17.5 19.6
7 0.74 1.67 2.76 4.02 5.48 7.06 8.79 10.6 12.6 14.5 16.6 18.6
8 0.68 1.53 2.53 3.70 5.05 6.53 8.17 9.91 11.8 13.7 15.7 17.7
9 0.63 1.42 2.34 3.43 4.68 6.07 7.61 9.27 11.0 12.9 14.8 16.8
10 0.58 1.31 2.17 3.19 4.36 5.66 7.12 8.69 10.4 12.2 14.0 16.0
12 0.51 1.15 1.90 2.79 3.82 4.97 6.28 7.69 9.23 10.9 12.6 14.4
14 0.45 1.02 1.69 2.48 3.40 4.43 5.61 6.88 8.29 9.79 11.4 13.1
16 0.41 0.91 1.51 2.23 3.05 3.99 5.05 6.21 7.50 8.88 10.4 11.9
18 0.37 0.83 1.37 2.02 2.77 3.63 4.60 5.66 6.84 8.11 9.48 11.0
20 0.34 0.76 1.26 1.85 2.54 3.32 4.21 5.19 6.28 7.45 8.73 10.1
24 0.29 0.65 1.07 1.58 2.16 2.84 3.60 4.45 5.39 6.40 7.52 8.71
28 0.25 0.56 0.93 1.37 1.89 2.47 3.14 3.88 4.71 5.61 6.59 7.64
32 0.23 0.50 0.83 1.22 1.67 2.19 2.78 3.44 4.18 4.98 5.86 6.80
36 0.20 0.45 0.74 1.09 1.50 1.96 2.49 3.09 3.75 4.47 5.27 6.12
2 1.35 3.29 5.33 7.39 9.42 11.4 13.4 15.4 17.4 19.4 21.4 23.4
3 1.16 2.94 4.93 6.99 9.05 11.1 13.1 15.2 17.2 19.2 21.2 23.2
4 1.02 2.64 4.52 6.55 8.63 10.7 12.8 14.8 16.9 18.9 20.9 22.9
5 0.90 2.38 4.15 6.12 8.18 10.3 12.4 14.4 16.5 18.5 20.6 22.6
6 0.81 2.17 3.82 5.70 7.72 9.80 11.9 14.0 16.1 18.2 20.2 22.3
7 0.74 1.99 3.52 5.31 7.28 9.33 11.4 13.5 15.6 17.7 19.8 21.9
8 0.68 1.83 3.25 4.95 6.86 8.87 11.0 13.1 15.2 17.3 19.4 21.5
9 0.63 1.69 3.02 4.63 6.46 8.43 10.5 12.6 14.7 16.8 18.9 21.0
10 0.58 1.58 2.81 4.34 6.10 8.00 10.0 12.1 14.2 16.3 18.4 20.5
12 0.51 1.38 2.47 3.84 5.45 7.23 9.15 11.2 13.2 15.3 17.4 19.6
14 0.45 1.23 2.20 3.44 4.91 6.56 8.38 10.3 12.3 14.4 16.5 18.6
16 0.41 1.10 1.98 3.11 4.46 5.99 7.69 9.52 11.5 13.5 15.5 17.6
18 0.37 1.00 1.80 2.83 4.08 5.49 7.09 8.82 10.7 12.6 14.6 16.6
20 0.34 0.92 1.65 2.60 3.75 5.06 6.56 8.20 9.96 11.8 13.8 15.7
24 0.29 0.78 1.41 2.23 3.22 4.36 5.70 7.15 8.74 10.4 12.2 14.1
28 0.25 0.68 1.23 1.95 2.82 3.83 5.02 6.32 7.76 9.31 11.0 12.7
32 0.23 0.60 1.09 1.73 2.50 3.41 4.47 5.64 6.96 8.38 9.90 11.5
36 0.20 0.54 0.97 1.55 2.25 3.07 4.03 5.09 6.30 7.60 9.01 10.5
Table 7-9 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–49
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 49

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–50 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.49 3.12 4.91 6.80 8.75 10.7 12.7 14.7 16.7 18.7 20.8 22.7
3 1.29 2.74 4.39 6.16 8.04 9.98 12.0 14.0 16.0 18.0 20.0 22.1
4 1.13 2.43 3.95 5.60 7.37 9.24 11.2 13.2 15.2 17.2 19.2 21.3
5 1.00 2.18 3.58 5.10 6.77 8.55 10.4 12.4 14.3 16.3 18.4 20.4
6 0.90 1.98 3.26 4.67 6.23 7.93 9.72 11.6 13.5 15.5 17.5 19.5
7 0.82 1.81 2.99 4.30 5.76 7.37 9.08 10.9 12.8 14.7 16.7 18.7
8 0.75 1.67 2.76 3.97 5.35 6.87 8.49 10.2 12.0 13.9 15.9 17.8
9 0.70 1.55 2.56 3.69 4.98 6.42 7.96 9.62 11.4 13.2 15.1 17.0
10 0.65 1.44 2.38 3.44 4.66 6.02 7.49 9.07 10.8 12.5 14.4 16.2
12 0.57 1.26 2.09 3.03 4.13 5.34 6.66 8.12 9.67 11.3 13.0 14.8
14 0.50 1.12 1.86 2.71 3.69 4.78 5.99 7.33 8.75 10.3 11.9 13.6
16 0.45 1.01 1.67 2.44 3.33 4.33 5.44 6.66 7.98 9.39 10.9 12.5
18 0.41 0.92 1.52 2.22 3.03 3.95 4.97 6.10 7.32 8.64 10.1 11.5
20 0.38 0.84 1.39 2.03 2.78 3.62 4.57 5.62 6.75 7.98 9.30 10.7
24 0.32 0.72 1.19 1.74 2.38 3.11 3.93 4.84 5.83 6.92 8.08 9.32
28 0.28 0.63 1.04 1.52 2.08 2.72 3.44 4.24 5.13 6.09 7.12 8.24
32 0.25 0.56 0.92 1.35 1.84 2.41 3.06 3.77 4.57 5.43 6.36 7.37
36 0.23 0.50 0.83 1.21 1.66 2.17 2.75 3.40 4.11 4.89 5.74 6.66
2 1.49 3.36 5.36 7.37 9.38 11.4 13.4 15.4 17.4 19.3 21.3 23.3
3 1.29 3.02 4.97 6.99 9.01 11.0 13.1 15.1 17.1 19.1 21.1 23.1
4 1.13 2.73 4.60 6.58 8.61 10.7 12.7 14.7 16.7 18.8 20.8 22.8
5 1.00 2.48 4.26 6.18 8.18 10.2 12.3 14.3 16.4 18.4 20.4 22.4
6 0.90 2.27 3.96 5.80 7.76 9.79 11.8 13.9 15.9 18.0 20.0 22.1
7 0.82 2.09 3.68 5.44 7.36 9.35 11.4 13.5 15.5 17.6 19.6 21.7
8 0.75 1.93 3.43 5.11 6.97 8.93 11.0 13.0 15.1 17.1 19.2 21.2
9 0.70 1.80 3.21 4.81 6.61 8.53 10.5 12.6 14.6 16.7 18.7 20.8
10 0.65 1.68 3.01 4.53 6.27 8.14 10.1 12.1 14.2 16.2 18.3 20.4
12 0.57 1.49 2.67 4.05 5.67 7.43 9.31 11.3 13.3 15.3 17.4 19.4
14 0.50 1.33 2.39 3.65 5.15 6.81 8.60 10.5 12.4 14.4 16.5 18.5
16 0.45 1.20 2.16 3.31 4.71 6.27 7.96 9.76 11.7 13.6 15.6 17.6
18 0.41 1.09 1.97 3.03 4.34 5.79 7.39 9.12 10.9 12.8 14.8 16.8
20 0.38 1.00 1.81 2.80 4.01 5.37 6.89 8.53 10.3 12.1 14.0 15.9
24 0.32 0.86 1.55 2.41 3.48 4.68 6.04 7.53 9.14 10.8 12.6 14.5
28 0.28 0.75 1.35 2.12 3.06 4.13 5.36 6.72 8.19 9.76 11.4 13.2
32 0.25 0.67 1.20 1.89 2.73 3.69 4.81 6.05 7.40 8.86 10.4 12.0
36 0.23 0.60 1.08 1.70 2.46 3.34 4.36 5.50 6.74 8.09 9.53 11.1
Table 7-9 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 50

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.70 3.43 5.22 7.06 8.95 10.9 12.8 14.8 16.8 18.7 20.7 22.7
3 1.51 3.09 4.76 6.52 8.35 10.2 12.2 14.1 16.1 18.0 20.0 22.0
4 1.35 2.78 4.34 6.01 7.78 9.60 11.5 13.4 15.3 17.3 19.3 21.3
5 1.21 2.52 3.97 5.57 7.25 9.01 10.8 12.7 14.6 16.6 18.5 20.5
6 1.10 2.30 3.67 5.17 6.78 8.47 10.2 12.1 13.9 15.9 17.8 19.8
7 1.00 2.12 3.40 4.82 6.35 7.97 9.67 11.5 13.3 15.2 17.1 19.0
8 0.92 1.96 3.17 4.51 5.96 7.51 9.15 10.9 12.7 14.5 16.4 18.3
9 0.85 1.82 2.96 4.23 5.60 7.08 8.68 10.4 12.1 13.9 15.7 17.6
10 0.79 1.70 2.78 3.97 5.28 6.70 8.24 9.86 11.5 13.3 15.1 17.0
12 0.69 1.50 2.46 3.54 4.73 6.04 7.46 8.97 10.6 12.2 14.0 15.7
14 0.61 1.34 2.21 3.18 4.27 5.48 6.80 8.21 9.70 11.3 12.9 14.6
16 0.55 1.21 2.00 2.88 3.89 5.01 6.23 7.54 8.95 10.4 12.0 13.6
18 0.50 1.11 1.82 2.64 3.56 4.60 5.74 6.97 8.30 9.71 11.2 12.7
20 0.46 1.02 1.67 2.42 3.29 4.25 5.31 6.47 7.73 9.06 10.5 11.9
24 0.40 0.87 1.43 2.09 2.84 3.68 4.62 5.65 6.77 7.96 9.23 10.6
28 0.35 0.76 1.26 1.83 2.49 3.24 4.07 5.00 6.00 7.08 8.24 9.47
32 0.31 0.68 1.12 1.63 2.22 2.89 3.64 4.47 5.38 6.37 7.43 8.56
36 0.28 0.61 1.00 1.46 2.00 2.60 3.29 4.04 4.87 5.78 6.75 7.79
2 1.70 3.52 5.44 7.40 9.37 11.4 13.3 15.3 17.3 19.3 21.3 23.2
3 1.51 3.23 5.11 7.06 9.03 11.0 13.0 15.0 17.0 19.0 21.0 22.9
4 1.35 2.96 4.79 6.70 8.67 10.7 12.7 14.6 16.6 18.6 20.6 22.6
5 1.21 2.72 4.48 6.36 8.30 10.3 12.3 14.3 16.3 18.3 20.3 22.3
6 1.10 2.51 4.20 6.03 7.94 9.90 11.9 13.9 15.9 17.9 19.9 21.9
7 1.00 2.33 3.96 5.73 7.60 9.53 11.5 13.5 15.5 17.5 19.5 21.5
8 0.92 2.18 3.73 5.45 7.27 9.17 11.1 13.1 15.1 17.1 19.1 21.1
9 0.85 2.04 3.53 5.19 6.96 8.83 10.8 12.7 14.7 16.7 18.7 20.7
10 0.79 1.92 3.35 4.94 6.67 8.50 10.4 12.4 14.3 16.3 18.3 20.3
12 0.69 1.71 3.02 4.50 6.13 7.88 9.73 11.6 13.6 15.5 17.5 19.5
14 0.61 1.55 2.75 4.12 5.65 7.33 9.11 11.0 12.9 14.8 16.8 18.8
16 0.55 1.41 2.51 3.78 5.22 6.83 8.55 10.3 12.2 14.1 16.0 18.0
18 0.50 1.29 2.31 3.49 4.85 6.39 8.04 9.77 11.6 13.4 15.3 17.3
20 0.46 1.19 2.13 3.24 4.53 6.00 7.57 9.25 11.0 12.8 14.7 16.6
24 0.40 1.03 1.84 2.82 3.99 5.32 6.76 8.32 9.97 11.7 13.5 15.3
28 0.35 0.90 1.62 2.50 3.56 4.76 6.09 7.53 9.08 10.7 12.4 14.2
32 0.31 0.80 1.44 2.24 3.20 4.30 5.52 6.86 8.32 9.85 11.5 13.1
36 0.28 0.72 1.30 2.02 2.90 3.92 5.04 6.30 7.66 9.10 10.6 12.2
Table 7-9 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–51
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 51

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–52 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.86 3.71 5.56 7.41 9.28 11.2 13.1 15.0 16.9 18.8 20.8 22.7
3 1.77 3.52 5.29 7.07 8.88 10.7 12.6 14.5 16.4 18.3 20.2 22.1
4 1.66 3.31 4.99 6.70 8.45 10.3 12.1 13.9 15.8 17.7 19.6 21.6
5 1.54 3.10 4.70 6.34 8.04 9.79 11.6 13.4 15.3 17.1 19.0 21.0
6 1.43 2.90 4.41 6.00 7.64 9.35 11.1 12.9 14.7 16.6 18.5 20.4
7 1.33 2.71 4.15 5.68 7.27 8.94 10.7 12.4 14.2 16.1 17.9 19.8
8 1.24 2.54 3.92 5.39 6.94 8.56 10.3 12.0 13.8 15.6 17.4 19.3
9 1.16 2.38 3.70 5.12 6.63 8.22 9.86 11.6 13.3 15.1 16.9 18.7
10 1.08 2.24 3.51 4.88 6.34 7.89 9.49 11.2 12.9 14.6 16.4 18.2
12 0.96 2.00 3.17 4.44 5.82 7.28 8.81 10.4 12.1 13.8 15.5 17.3
14 0.86 1.81 2.88 4.07 5.36 6.73 8.19 9.72 11.3 13.0 14.7 16.4
16 0.77 1.64 2.64 3.74 4.95 6.25 7.64 9.11 10.7 12.2 13.9 15.6
18 0.70 1.51 2.43 3.46 4.59 5.83 7.15 8.56 10.0 11.6 13.2 14.8
20 0.65 1.39 2.25 3.21 4.28 5.45 6.71 8.06 9.48 11.0 12.5 14.1
24 0.56 1.20 1.95 2.80 3.76 4.81 5.96 7.19 8.50 9.88 11.3 12.8
28 0.49 1.06 1.72 2.48 3.34 4.29 5.34 6.47 7.68 8.97 10.3 11.7
32 0.43 0.94 1.54 2.22 3.00 3.87 4.83 5.87 6.99 8.19 9.46 10.8
36 0.39 0.85 1.39 2.01 2.72 3.52 4.40 5.36 6.41 7.53 8.71 9.96
2 1.86 3.72 5.59 7.50 9.43 11.4 13.3 15.3 17.3 19.2 21.2 23.2
3 1.77 3.55 5.37 7.25 9.16 11.1 13.0 15.0 17.0 18.9 20.9 22.9
4 1.66 3.36 5.14 6.98 8.88 10.8 12.7 14.7 16.7 18.6 20.6 22.6
5 1.54 3.17 4.90 6.72 8.59 10.5 12.4 14.4 16.3 18.3 20.3 22.2
6 1.43 2.99 4.67 6.46 8.31 10.2 12.1 14.1 16.0 18.0 19.9 21.9
7 1.33 2.82 4.46 6.21 8.05 9.92 11.8 13.8 15.7 17.7 19.6 21.6
8 1.24 2.67 4.26 5.98 7.79 9.65 11.5 13.5 15.4 17.3 19.3 21.3
9 1.16 2.52 4.08 5.76 7.55 9.39 11.3 13.2 15.1 17.0 19.0 20.9
10 1.08 2.40 3.91 5.56 7.32 9.14 11.0 12.9 14.8 16.7 18.7 20.6
12 0.96 2.17 3.61 5.20 6.90 8.66 10.5 12.4 14.2 16.1 18.1 20.0
14 0.86 1.98 3.35 4.87 6.51 8.23 10.0 11.8 13.7 15.6 17.5 19.4
16 0.77 1.82 3.11 4.57 6.15 7.81 9.56 11.4 13.2 15.1 16.9 18.9
18 0.70 1.69 2.91 4.30 5.81 7.43 9.13 10.9 12.7 14.5 16.4 18.3
20 0.65 1.57 2.72 4.05 5.50 7.07 8.73 10.5 12.2 14.1 15.9 17.8
24 0.56 1.37 2.41 3.61 4.96 6.43 8.00 9.67 11.4 13.2 15.0 16.8
28 0.49 1.22 2.15 3.25 4.49 5.88 7.38 8.97 10.6 12.3 14.1 15.9
32 0.43 1.09 1.94 2.94 4.10 5.41 6.83 8.34 9.92 11.6 13.3 15.0
36 0.39 0.99 1.76 2.69 3.77 5.00 6.35 7.78 9.30 10.9 12.5 14.2
Table 7-9 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 52

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.94 3.87 5.79 7.70 9.61 11.5 13.4 15.3 17.3 19.2 21.1 23.0
3 1.92 3.82 5.70 7.58 9.45 11.3 13.2 15.1 17.0 18.9 20.8 22.7
4 1.89 3.75 5.60 7.43 9.26 11.1 12.9 14.8 16.7 18.5 20.4 22.3
5 1.85 3.67 5.48 7.28 9.07 10.9 12.7 14.5 16.4 18.2 20.1 22.0
6 1.81 3.59 5.35 7.11 8.87 10.6 12.4 14.2 16.1 17.9 19.8 21.6
7 1.76 3.50 5.22 6.94 8.67 10.4 12.2 14.0 15.8 17.6 19.4 21.3
8 1.71 3.40 5.08 6.76 8.46 10.2 11.9 13.7 15.5 17.3 19.1 21.0
9 1.66 3.30 4.94 6.59 8.26 9.96 11.7 13.4 15.2 17.0 18.8 20.6
10 1.61 3.20 4.80 6.42 8.06 9.73 11.4 13.2 14.9 16.7 18.5 20.3
12 1.51 3.01 4.53 6.08 7.67 9.30 11.0 12.7 14.4 16.2 17.9 19.7
14 1.41 2.82 4.27 5.76 7.31 8.90 10.5 12.2 13.9 15.6 17.4 19.2
16 1.31 2.65 4.03 5.47 6.96 8.52 10.1 11.8 13.4 15.2 16.9 18.6
18 1.23 2.48 3.80 5.19 6.64 8.16 9.73 11.3 13.0 14.7 16.4 18.1
20 1.15 2.34 3.60 4.93 6.34 7.82 9.36 10.9 12.6 14.2 15.9 17.7
24 1.01 2.08 3.23 4.48 5.80 7.20 8.67 10.2 11.8 13.4 15.0 16.7
28 0.90 1.87 2.93 4.08 5.33 6.65 8.06 9.52 11.0 12.6 14.2 15.9
32 0.81 1.69 2.67 3.75 4.91 6.17 7.51 8.91 10.4 11.9 13.5 15.1
36 0.73 1.54 2.45 3.45 4.55 5.74 7.01 8.36 9.77 11.2 12.8 14.3
2 1.94 3.86 5.77 7.68 9.60 11.5 13.5 15.4 17.6 19.6 21.5 23.5
3 1.92 3.80 5.68 7.55 9.45 11.4 13.3 15.2 17.2 19.1 21.1 23.0
4 1.89 3.74 5.57 7.42 9.29 11.2 13.1 15.0 16.9 18.9 20.8 22.8
5 1.85 3.66 5.46 7.29 9.14 11.0 12.9 14.8 16.7 18.7 20.6 22.6
6 1.81 3.58 5.35 7.15 8.98 10.8 12.7 14.6 16.5 18.5 20.4 22.3
7 1.76 3.49 5.23 7.01 8.83 10.7 12.5 14.4 16.3 18.3 20.2 22.1
8 1.71 3.40 5.12 6.88 8.68 10.5 12.4 14.3 16.2 18.1 20.0 21.9
9 1.66 3.31 5.00 6.74 8.53 10.4 12.2 14.1 16.0 17.9 19.8 21.7
10 1.61 3.22 4.89 6.61 8.38 10.2 12.0 13.9 15.8 17.7 19.6 21.5
12 1.51 3.05 4.67 6.36 8.10 9.89 11.7 13.6 15.4 17.3 19.2 21.1
14 1.41 2.88 4.46 6.12 7.84 9.61 11.4 13.3 15.1 17.0 18.9 20.8
16 1.31 2.73 4.26 5.89 7.59 9.33 11.1 12.9 14.8 16.6 18.5 20.4
18 1.23 2.58 4.08 5.68 7.35 9.08 10.8 12.7 14.5 16.3 18.2 20.1
20 1.15 2.45 3.90 5.47 7.13 8.84 10.6 12.4 14.2 16.0 17.9 19.7
24 1.01 2.21 3.59 5.10 6.71 8.38 10.1 11.9 13.6 15.5 17.3 19.1
28 0.90 2.01 3.32 4.77 6.32 7.96 9.65 11.4 13.1 14.9 16.7 18.5
32 0.81 1.84 3.08 4.47 5.97 7.56 9.21 10.9 12.7 14.4 16.2 18.0
36 0.73 1.70 2.87 4.19 5.64 7.19 8.80 10.5 12.2 13.9 15.7 17.5
Table 7-9 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–53
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 53

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–54 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.71 4.07 6.81 9.86 13.0 16.1 19.3 22.3 25.4 28.5 31.5 34.5
3 1.42 3.40 5.79 8.61 11.7 14.8 18.0 21.1 24.3 27.4 30.5 33.6
4 1.21 2.90 4.97 7.53 10.4 13.4 16.6 19.8 23.0 26.1 29.3 32.5
5 1.05 2.51 4.34 6.64 9.24 12.1 15.2 18.3 21.5 24.7 27.9 31.1
6 0.92 2.21 3.85 5.91 8.27 11.0 13.9 16.9 20.0 23.2 26.4 29.7
7 0.81 1.96 3.44 5.31 7.46 9.95 12.7 15.6 18.6 21.8 25.0 28.2
8 0.72 1.76 3.11 4.80 6.78 9.09 11.6 14.4 17.3 20.4 23.5 26.7
9 0.64 1.60 2.83 4.38 6.20 8.34 10.7 13.3 16.1 19.1 22.1 25.2
10 0.58 1.46 2.59 4.02 5.71 7.70 9.91 12.4 15.0 17.9 20.8 23.8
12 0.49 1.24 2.21 3.44 4.91 6.65 8.59 10.8 13.2 15.7 18.5 21.3
14 0.42 1.08 1.92 3.00 4.30 5.83 7.57 9.53 11.7 14.0 16.5 19.2
16 0.37 0.95 1.70 2.66 3.82 5.19 6.75 8.51 10.5 12.6 14.9 17.3
18 0.33 0.85 1.52 2.39 3.43 4.67 6.08 7.68 9.45 11.4 13.5 15.8
20 0.29 0.77 1.37 2.16 3.11 4.24 5.53 6.99 8.61 10.4 12.3 14.4
24 0.24 0.64 1.15 1.82 2.62 3.57 4.67 5.92 7.30 8.84 10.5 12.3
28 0.21 0.55 0.99 1.57 2.26 3.08 4.04 5.12 6.33 7.67 9.13 10.7
32 0.18 0.49 0.87 1.38 1.98 2.71 3.55 4.51 5.58 6.77 8.06 9.47
36 0.16 0.43 0.77 1.23 1.77 2.42 3.17 4.03 4.99 6.05 7.21 8.48
Cφ, in. 5.89 15.8 28.0 44.7 64.3 88.5 116 148 183 223 267 315
2 1.71 4.85 8.04 11.2 14.2 17.3 20.3 23.2 26.2 29.2 32.2 35.1
3 1.42 4.24 7.36 10.6 13.7 16.8 19.9 22.9 25.9 28.9 31.9 34.9
4 1.21 3.72 6.66 9.86 13.1 16.2 19.4 22.4 25.5 28.5 31.6 34.6
5 1.05 3.29 6.00 9.14 12.4 15.6 18.7 21.9 25.0 28.1 31.1 34.2
6 0.92 2.93 5.41 8.44 11.6 14.9 18.1 21.2 24.4 27.5 30.6 33.7
7 0.81 2.63 4.90 7.79 10.9 14.1 17.3 20.6 23.7 26.9 30.0 33.2
8 0.72 2.38 4.46 7.20 10.2 13.4 16.6 19.8 23.0 26.2 29.4 32.6
9 0.64 2.17 4.09 6.67 9.54 12.6 15.8 19.1 22.3 25.5 28.7 31.9
10 0.58 2.00 3.78 6.20 8.94 12.0 15.1 18.3 21.6 24.8 28.0 31.2
12 0.49 1.71 3.27 5.41 7.88 10.7 13.7 16.8 20.0 23.3 26.5 29.8
14 0.42 1.49 2.87 4.78 7.01 9.61 12.4 15.4 18.6 21.8 25.0 28.2
16 0.37 1.32 2.55 4.28 6.29 8.69 11.3 14.2 17.2 20.3 23.5 26.7
18 0.33 1.19 2.30 3.86 5.70 7.91 10.4 13.1 15.9 18.9 22.0 25.2
20 0.29 1.08 2.09 3.51 5.20 7.25 9.54 12.1 14.8 17.7 20.7 23.8
24 0.24 0.91 1.76 2.97 4.42 6.19 8.19 10.4 12.9 15.5 18.3 21.2
28 0.21 0.78 1.52 2.57 3.84 5.39 7.14 9.15 11.4 13.7 16.3 19.0
32 0.18 0.69 1.33 2.27 3.39 4.77 6.33 8.13 10.1 12.3 14.6 17.1
36 0.16 0.61 1.19 2.03 3.03 4.27 5.67 7.30 9.10 11.1 13.2 15.5
Cφ, in. 5.89 22.4 43.3 74.4 112 158 212 275 345 424 510 606
Table 7-10
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 54

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.77 4.10 6.84 9.82 12.9 16.0 19.1 22.2 25.2 28.3 31.3 34.3
3 1.47 3.45 5.86 8.61 11.6 14.7 17.8 20.9 24.1 27.2 30.3 33.3
4 1.25 2.95 5.07 7.55 10.4 13.3 16.4 19.5 22.7 25.8 29.0 32.1
5 1.08 2.57 4.44 6.67 9.26 12.1 15.1 18.1 21.3 24.4 27.6 30.7
6 0.94 2.26 3.93 5.96 8.33 11.0 13.8 16.8 19.8 23.0 26.1 29.3
7 0.83 2.01 3.52 5.37 7.55 9.97 12.7 15.5 18.5 21.5 24.7 27.8
8 0.74 1.81 3.18 4.87 6.88 9.13 11.7 14.4 17.2 20.2 23.2 26.4
9 0.66 1.64 2.90 4.45 6.31 8.40 10.8 13.3 16.1 18.9 21.9 25.0
10 0.60 1.50 2.65 4.10 5.81 7.77 9.99 12.4 15.0 17.8 20.7 23.6
12 0.50 1.28 2.27 3.52 5.01 6.74 8.71 10.9 13.2 15.8 18.4 21.2
14 0.43 1.11 1.98 3.08 4.40 5.93 7.69 9.62 11.8 14.1 16.5 19.1
16 0.38 0.98 1.75 2.73 3.91 5.29 6.87 8.62 10.6 12.7 15.0 17.4
18 0.34 0.88 1.57 2.45 3.52 4.77 6.20 7.80 9.59 11.5 13.6 15.9
20 0.30 0.79 1.42 2.22 3.19 4.33 5.65 7.12 8.76 10.5 12.5 14.6
24 0.25 0.67 1.19 1.87 2.69 3.66 4.78 6.04 7.45 8.99 10.7 12.5
28 0.22 0.57 1.02 1.61 2.32 3.17 4.14 5.24 6.47 7.82 9.31 10.9
32 0.19 0.50 0.90 1.42 2.04 2.79 3.65 4.62 5.72 6.92 8.24 9.66
36 0.17 0.45 0.80 1.26 1.82 2.49 3.26 4.13 5.11 6.20 7.38 8.66
2 1.77 4.83 7.98 11.1 14.1 17.2 20.2 23.2 26.1 29.1 32.1 35.0
3 1.47 4.22 7.31 10.5 13.6 16.7 19.7 22.8 25.8 28.8 31.8 34.8
4 1.25 3.71 6.64 9.77 12.9 16.1 19.2 22.3 25.3 28.3 31.4 34.4
5 1.08 3.28 6.01 9.06 12.2 15.4 18.5 21.7 24.8 27.8 30.9 33.9
6 0.94 2.94 5.45 8.38 11.5 14.7 17.8 21.0 24.1 27.2 30.3 33.4
7 0.83 2.65 4.97 7.75 10.8 13.9 17.1 20.3 23.5 26.6 29.7 32.8
8 0.74 2.40 4.55 7.17 10.1 13.2 16.4 19.6 22.7 25.9 29.1 32.2
9 0.66 2.20 4.18 6.66 9.49 12.5 15.6 18.8 22.0 25.2 28.4 31.5
10 0.60 2.02 3.86 6.20 8.92 11.9 14.9 18.1 21.3 24.5 27.6 30.8
12 0.50 1.74 3.34 5.43 7.91 10.6 13.6 16.6 19.8 23.0 26.1 29.3
14 0.43 1.52 2.94 4.82 7.07 9.60 12.4 15.3 18.4 21.5 24.6 27.8
16 0.38 1.35 2.62 4.32 6.38 8.71 11.3 14.1 17.0 20.1 23.2 26.3
18 0.34 1.22 2.36 3.91 5.79 7.95 10.4 13.0 15.8 18.8 21.8 24.9
20 0.30 1.10 2.14 3.57 5.30 7.31 9.60 12.1 14.8 17.6 20.5 23.5
24 0.25 0.93 1.81 3.03 4.52 6.26 8.28 10.5 12.9 15.5 18.2 21.1
28 0.22 0.80 1.56 2.63 3.93 5.47 7.26 9.24 11.4 13.8 16.3 18.9
32 0.19 0.71 1.37 2.32 3.47 4.85 6.45 8.23 10.2 12.4 14.7 17.1
36 0.17 0.63 1.23 2.08 3.11 4.35 5.80 7.41 9.23 11.2 13.3 15.6
Table 7-10 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–55
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:35 AM Page 55

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–56 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 1.94 4.26 6.99 9.90 12.9 16.0 19.0 22.0 25.1 28.1 31.1 34.1
3 1.61 3.63 6.09 8.80 11.7 14.7 17.7 20.8 23.9 27.0 30.0 33.1
4 1.37 3.15 5.35 7.83 10.6 13.5 16.5 19.5 22.6 25.7 28.7 31.8
5 1.19 2.77 4.74 7.00 9.54 12.3 15.2 18.2 21.2 24.3 27.4 30.5
6 1.04 2.45 4.23 6.30 8.67 11.3 14.1 17.0 19.9 23.0 26.0 29.1
7 0.92 2.19 3.81 5.71 7.92 10.4 13.0 15.8 18.7 21.7 24.7 27.8
8 0.82 1.98 3.45 5.22 7.27 9.58 12.1 14.8 17.6 20.5 23.4 26.4
9 0.74 1.80 3.16 4.79 6.71 8.88 11.2 13.8 16.5 19.3 22.2 25.2
10 0.67 1.65 2.90 4.42 6.22 8.26 10.5 12.9 15.5 18.2 21.1 24.0
12 0.56 1.41 2.49 3.82 5.41 7.22 9.23 11.5 13.8 16.4 19.0 21.8
14 0.48 1.23 2.18 3.36 4.78 6.40 8.22 10.3 12.4 14.8 17.2 19.8
16 0.42 1.08 1.93 2.99 4.26 5.73 7.40 9.25 11.3 13.4 15.7 18.2
18 0.38 0.97 1.73 2.69 3.85 5.18 6.71 8.41 10.3 12.3 14.4 16.7
20 0.34 0.88 1.57 2.44 3.50 4.73 6.14 7.70 9.42 11.3 13.3 15.4
24 0.28 0.74 1.32 2.06 2.96 4.01 5.22 6.58 8.08 9.72 11.5 13.4
28 0.24 0.64 1.14 1.78 2.56 3.48 4.54 5.73 7.05 8.51 10.1 11.8
32 0.21 0.56 1.00 1.57 2.26 3.07 4.01 5.07 6.25 7.55 8.96 10.5
36 0.19 0.50 0.89 1.40 2.02 2.75 3.59 4.54 5.61 6.78 8.06 9.44
2 1.94 4.86 7.96 11.0 14.1 17.1 20.1 23.1 26.0 29.0 32.0 35.0
3 1.61 4.27 7.32 10.4 13.5 16.6 19.6 22.6 25.6 28.6 31.6 34.6
4 1.37 3.78 6.70 9.75 12.9 15.9 19.0 22.1 25.1 28.1 31.1 34.2
5 1.19 3.39 6.14 9.10 12.2 15.3 18.4 21.5 24.5 27.6 30.6 33.7
6 1.04 3.06 5.64 8.48 11.5 14.6 17.7 20.8 23.9 27.0 30.1 33.1
7 0.92 2.78 5.19 7.91 10.9 13.9 17.0 20.1 23.2 26.3 29.4 32.5
8 0.82 2.54 4.80 7.38 10.3 13.3 16.3 19.4 22.6 25.7 28.8 31.9
9 0.74 2.34 4.45 6.90 9.67 12.6 15.7 18.7 21.9 25.0 28.1 31.2
10 0.67 2.16 4.14 6.46 9.14 12.0 15.0 18.1 21.2 24.3 27.4 30.5
12 0.56 1.87 3.61 5.71 8.20 10.9 13.8 16.8 19.8 22.9 26.0 29.1
14 0.48 1.65 3.20 5.10 7.41 9.95 12.7 15.6 18.5 21.5 24.6 27.7
16 0.42 1.47 2.86 4.60 6.74 9.12 11.7 14.5 17.3 20.3 23.3 26.4
18 0.38 1.33 2.58 4.19 6.17 8.39 10.8 13.5 16.2 19.1 22.0 25.0
20 0.34 1.21 2.35 3.84 5.68 7.75 10.1 12.6 15.2 18.0 20.9 23.8
24 0.28 1.02 2.00 3.29 4.89 6.71 8.78 11.1 13.5 16.1 18.8 21.6
28 0.24 0.88 1.73 2.86 4.28 5.90 7.77 9.83 12.1 14.5 17.0 19.6
32 0.21 0.78 1.52 2.54 3.80 5.25 6.95 8.83 10.9 13.1 15.4 17.9
36 0.19 0.70 1.36 2.27 3.41 4.73 6.28 8.00 9.88 11.9 14.1 16.4
Table 7-10 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 56

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.23 4.67 7.33 10.2 13.1 16.0 19.0 22.0 25.0 28.0 31.0 33.9
3 1.89 4.06 6.50 9.19 12.0 14.9 17.9 20.9 23.9 26.9 29.9 32.9
4 1.63 3.57 5.84 8.36 11.1 13.9 16.8 19.7 22.7 25.7 28.7 31.7
5 1.42 3.17 5.27 7.63 10.2 12.9 15.7 18.6 21.5 24.5 27.5 30.5
6 1.25 2.84 4.78 6.99 9.40 12.0 14.7 17.6 20.4 23.4 26.3 29.3
7 1.11 2.57 4.36 6.42 8.70 11.2 13.8 16.6 19.4 22.3 25.2 28.2
8 0.99 2.33 3.99 5.92 8.09 10.5 13.0 15.7 18.4 21.2 24.1 27.0
9 0.90 2.13 3.68 5.49 7.54 9.80 12.2 14.8 17.5 20.3 23.1 26.0
10 0.81 1.96 3.40 5.10 7.05 9.21 11.6 14.0 16.6 19.3 22.1 24.9
12 0.68 1.68 2.95 4.46 6.22 8.19 10.4 12.7 15.1 17.7 20.3 23.0
14 0.59 1.47 2.59 3.95 5.55 7.35 9.34 11.5 13.8 16.2 18.7 21.3
16 0.52 1.31 2.31 3.54 4.99 6.65 8.49 10.5 12.7 14.9 17.3 19.8
18 0.46 1.17 2.08 3.20 4.54 6.06 7.77 9.64 11.7 13.8 16.1 18.5
20 0.41 1.06 1.89 2.92 4.15 5.56 7.15 8.90 10.8 12.8 15.0 17.2
24 0.35 0.90 1.60 2.48 3.54 4.76 6.15 7.70 9.39 11.2 13.1 15.2
28 0.30 0.77 1.38 2.15 3.08 4.16 5.39 6.77 8.28 9.91 11.7 13.5
32 0.26 0.68 1.22 1.90 2.72 3.68 4.79 6.03 7.39 8.87 10.5 12.2
36 0.23 0.61 1.08 1.69 2.44 3.30 4.30 5.42 6.66 8.02 9.49 11.1
2 2.23 5.02 8.01 11.0 14.0 17.0 20.0 23.0 25.9 28.9 31.9 34.8
3 1.89 4.50 7.44 10.4 13.5 16.5 19.5 22.5 25.5 28.4 31.4 34.4
4 1.63 4.05 6.89 9.86 12.9 15.9 18.9 21.9 24.9 27.9 30.9 33.9
5 1.42 3.68 6.40 9.30 12.3 15.3 18.3 21.3 24.4 27.4 30.4 33.4
6 1.25 3.36 5.96 8.78 11.7 14.7 17.7 20.7 23.8 26.8 29.8 32.8
7 1.11 3.09 5.57 8.29 11.2 14.1 17.1 20.1 23.2 26.2 29.2 32.3
8 0.99 2.86 5.22 7.84 10.6 13.6 16.5 19.5 22.6 25.6 28.6 31.7
9 0.90 2.65 4.90 7.43 10.2 13.0 16.0 19.0 22.0 25.0 28.0 31.1
10 0.81 2.47 4.61 7.04 9.69 12.5 15.4 18.4 21.4 24.4 27.4 30.4
12 0.68 2.16 4.11 6.35 8.85 11.6 14.4 17.3 20.2 23.2 26.2 29.2
14 0.59 1.92 3.69 5.76 8.11 10.7 13.4 16.2 19.1 22.1 25.0 28.0
16 0.52 1.72 3.34 5.25 7.47 9.94 12.6 15.3 18.1 21.0 23.9 26.9
18 0.46 1.56 3.04 4.82 6.91 9.26 11.8 14.4 17.2 20.0 22.9 25.8
20 0.41 1.43 2.79 4.44 6.43 8.66 11.1 13.6 16.3 19.0 21.9 24.7
24 0.35 1.22 2.38 3.84 5.62 7.64 9.84 12.2 14.7 17.3 20.0 22.8
28 0.30 1.06 2.08 3.37 4.98 6.81 8.82 11.0 13.4 15.8 18.4 21.1
32 0.26 0.94 1.84 3.00 4.46 6.12 7.97 10.0 12.2 14.6 17.0 19.5
36 0.23 0.84 1.65 2.71 4.04 5.56 7.27 9.18 11.2 13.4 15.7 18.1
Table 7-10 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–57
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 57

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–58 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.59 5.21 7.88 10.6 13.4 16.3 19.2 22.1 25.0 28.0 30.9 33.9
3 2.32 4.73 7.27 9.91 12.7 15.5 18.3 21.2 24.1 27.0 30.0 32.9
4 2.07 4.29 6.69 9.23 11.9 14.6 17.5 20.3 23.2 26.1 29.0 32.0
5 1.84 3.90 6.18 8.63 11.2 13.9 16.6 19.5 22.3 25.2 28.1 31.0
6 1.65 3.56 5.73 8.08 10.6 13.2 15.9 18.7 21.5 24.3 27.2 30.1
7 1.49 3.27 5.32 7.59 10.0 12.6 15.2 17.9 20.7 23.5 26.3 29.2
8 1.35 3.01 4.95 7.13 9.48 12.0 14.5 17.2 19.9 22.7 25.5 28.4
9 1.23 2.78 4.63 6.71 8.98 11.4 13.9 16.5 19.2 22.0 24.7 27.6
10 1.12 2.58 4.34 6.33 8.52 10.9 13.3 15.9 18.5 21.2 24.0 26.8
12 0.95 2.25 3.84 5.67 7.70 9.91 12.3 14.7 17.3 19.9 22.6 25.3
14 0.83 1.98 3.43 5.11 7.00 9.08 11.3 13.7 16.1 18.7 21.3 23.9
16 0.73 1.77 3.09 4.64 6.40 8.36 10.5 12.7 15.1 17.5 20.1 22.6
18 0.65 1.60 2.81 4.24 5.89 7.73 9.74 11.9 14.2 16.5 19.0 21.5
20 0.59 1.46 2.57 3.90 5.44 7.19 9.09 11.1 13.3 15.6 17.9 20.4
24 0.49 1.24 2.20 3.35 4.72 6.27 7.99 9.85 11.9 14.0 16.2 18.5
28 0.42 1.07 1.91 2.93 4.15 5.55 7.10 8.81 10.7 12.6 14.7 16.8
32 0.37 0.95 1.69 2.60 3.70 4.97 6.38 7.95 9.65 11.5 13.4 15.4
36 0.33 0.85 1.51 2.34 3.34 4.49 5.79 7.23 8.81 10.5 12.3 14.2
2 2.59 5.32 8.17 11.1 14.0 17.0 19.9 22.9 25.8 28.8 31.8 34.7
3 2.32 4.94 7.73 10.6 13.5 16.5 19.4 22.4 25.4 28.3 31.3 34.3
4 2.07 4.57 7.31 10.2 13.1 16.0 19.0 21.9 24.9 27.8 30.8 33.8
5 1.84 4.25 6.91 9.73 12.6 15.5 18.5 21.4 24.4 27.4 30.3 33.3
6 1.65 3.95 6.55 9.32 12.2 15.1 18.0 20.9 23.9 26.9 29.8 32.8
7 1.49 3.69 6.22 8.94 11.8 14.6 17.5 20.5 23.4 26.4 29.3 32.3
8 1.35 3.46 5.92 8.58 11.4 14.2 17.1 20.0 22.9 25.9 28.8 31.8
9 1.23 3.25 5.64 8.25 11.0 13.8 16.7 19.6 22.5 25.4 28.4 31.3
10 1.12 3.06 5.39 7.94 10.6 13.4 16.3 19.1 22.0 24.9 27.9 30.8
12 0.95 2.73 4.92 7.37 9.97 12.7 15.5 18.3 21.2 24.1 27.0 29.9
14 0.83 2.46 4.52 6.85 9.36 12.0 14.7 17.5 20.3 23.2 26.1 29.0
16 0.73 2.23 4.18 6.39 8.80 11.4 14.0 16.8 19.6 22.4 25.3 28.1
18 0.65 2.04 3.87 5.97 8.28 10.8 13.4 16.1 18.8 21.6 24.4 27.3
20 0.59 1.88 3.60 5.59 7.81 10.2 12.8 15.4 18.1 20.9 23.7 26.5
24 0.49 1.63 3.15 4.94 6.99 9.25 11.7 14.2 16.8 19.5 22.2 25.0
28 0.42 1.43 2.79 4.41 6.31 8.44 10.7 13.1 15.7 18.2 20.9 23.6
32 0.37 1.27 2.49 3.97 5.74 7.74 9.90 12.2 14.6 17.1 19.7 22.3
36 0.33 1.15 2.25 3.61 5.26 7.13 9.17 11.4 13.7 16.1 18.6 21.1
Table 7-10 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 58

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.86 5.68 8.47 11.3 14.1 16.9 19.8 22.6 25.5 28.4 31.3 34.2
3 2.77 5.49 8.19 10.9 13.7 16.4 19.2 22.1 24.9 27.8 30.7 33.6
4 2.66 5.27 7.89 10.5 13.2 16.0 18.8 21.6 24.4 27.2 30.1 33.0
5 2.53 5.04 7.58 10.2 12.8 15.5 18.3 21.0 23.9 26.7 29.5 32.4
6 2.40 4.81 7.27 9.81 12.4 15.1 17.8 20.6 23.3 26.2 29.0 31.8
7 2.26 4.57 6.97 9.47 12.0 14.7 17.4 20.1 22.9 25.6 28.4 31.3
8 2.13 4.35 6.69 9.13 11.7 14.3 16.9 19.6 22.4 25.1 27.9 30.7
9 2.00 4.13 6.41 8.82 11.3 13.9 16.5 19.2 21.9 24.7 27.4 30.2
10 1.89 3.93 6.15 8.51 11.0 13.5 16.1 18.8 21.5 24.2 27.0 29.8
12 1.67 3.57 5.67 7.95 10.4 12.9 15.4 18.0 20.7 23.4 26.1 28.8
14 1.49 3.25 5.25 7.44 9.77 12.2 14.7 17.3 19.9 22.6 25.3 28.0
16 1.34 2.97 4.87 6.98 9.23 11.6 14.1 16.6 19.2 21.8 24.5 27.2
18 1.21 2.73 4.54 6.56 8.74 11.1 13.5 16.0 18.5 21.1 23.7 26.4
20 1.10 2.53 4.24 6.18 8.28 10.5 12.9 15.3 17.8 20.4 23.0 25.6
24 0.93 2.19 3.75 5.52 7.48 9.59 11.8 14.2 16.6 19.1 21.6 24.2
28 0.80 1.93 3.34 4.97 6.79 8.78 10.9 13.2 15.5 17.9 20.4 22.9
32 0.71 1.72 3.01 4.51 6.20 8.08 10.1 12.3 14.5 16.8 19.2 21.7
36 0.63 1.55 2.74 4.12 5.70 7.47 9.40 11.5 13.6 15.9 18.2 20.6
2 2.86 5.66 8.48 11.3 14.2 17.1 20.1 23.0 26.4 29.3 32.3 35.2
3 2.77 5.49 8.25 11.1 13.9 16.8 19.7 22.7 25.6 28.5 31.5 34.4
4 2.66 5.30 8.02 10.8 13.6 16.5 19.4 22.3 25.2 28.2 31.1 34.0
5 2.53 5.10 7.79 10.6 13.4 16.2 19.1 22.0 24.9 27.8 30.8 33.7
6 2.40 4.91 7.56 10.3 13.1 15.9 18.8 21.7 24.6 27.5 30.4 33.3
7 2.26 4.72 7.34 10.1 12.9 15.7 18.5 21.4 24.3 27.2 30.1 33.0
8 2.13 4.54 7.14 9.83 12.6 15.4 18.3 21.1 24.0 26.9 29.8 32.7
9 2.00 4.37 6.94 9.61 12.4 15.2 18.0 20.8 23.7 26.6 29.5 32.4
10 1.89 4.21 6.75 9.40 12.1 14.9 17.7 20.6 23.4 26.3 29.2 32.1
12 1.67 3.90 6.39 9.00 11.7 14.4 17.2 20.0 22.9 25.7 28.6 31.5
14 1.49 3.63 6.06 8.63 11.3 14.0 16.8 19.6 22.4 25.2 28.1 30.9
16 1.34 3.39 5.75 8.29 10.9 13.6 16.3 19.1 21.9 24.7 27.5 30.4
18 1.21 3.17 5.47 7.96 10.6 13.2 15.9 18.7 21.4 24.2 27.0 29.9
20 1.10 2.98 5.22 7.66 10.2 12.9 15.5 18.2 21.0 23.8 26.6 29.4
24 0.93 2.65 4.76 7.10 9.57 12.2 14.8 17.5 20.2 22.9 25.7 28.5
28 0.80 2.38 4.37 6.60 8.99 11.5 14.1 16.7 19.4 22.1 24.8 27.6
32 0.71 2.16 4.03 6.15 8.45 10.9 13.4 16.0 18.7 21.3 24.0 26.8
36 0.63 1.97 3.73 5.75 7.96 10.3 12.8 15.3 17.9 20.6 23.3 26.0
Table 7-10 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–59
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 59

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–60 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.15 4.55 7.17 10.0 13.0 16.0 19.1 22.2 25.3 28.3 31.4 34.4
3 1.91 4.06 6.43 9.06 11.9 14.9 17.9 21.0 24.1 27.2 30.3 33.4
4 1.71 3.65 5.80 8.23 10.9 13.7 16.7 19.8 22.9 26.0 29.1 32.3
5 1.55 3.31 5.27 7.51 9.97 12.7 15.5 18.5 21.5 24.7 27.8 31.0
6 1.42 3.02 4.82 6.88 9.16 11.7 14.4 17.3 20.3 23.3 26.4 29.6
7 1.31 2.77 4.44 6.34 8.46 10.8 13.4 16.1 19.0 22.0 25.1 28.2
8 1.21 2.56 4.10 5.87 7.85 10.1 12.5 15.1 17.9 20.7 23.7 26.8
9 1.12 2.38 3.81 5.46 7.31 9.39 11.7 14.1 16.8 19.6 22.5 25.5
10 1.05 2.21 3.55 5.09 6.84 8.79 10.9 13.3 15.8 18.5 21.3 24.2
12 0.92 1.94 3.12 4.48 6.03 7.78 9.70 11.8 14.1 16.6 19.1 21.9
14 0.81 1.72 2.77 3.99 5.38 6.95 8.69 10.6 12.7 14.9 17.3 19.9
16 0.72 1.53 2.48 3.58 4.84 6.27 7.85 9.60 11.5 13.6 15.8 18.1
18 0.64 1.38 2.25 3.25 4.40 5.70 7.15 8.75 10.5 12.4 14.4 16.6
20 0.58 1.26 2.05 2.96 4.02 5.21 6.55 8.03 9.65 11.4 13.3 15.3
24 0.49 1.06 1.73 2.52 3.42 4.45 5.60 6.88 8.29 9.82 11.5 13.2
28 0.42 0.92 1.50 2.19 2.97 3.87 4.88 6.00 7.24 8.59 10.1 11.6
32 0.37 0.81 1.32 1.93 2.63 3.42 4.32 5.32 6.42 7.62 8.93 10.3
36 0.33 0.72 1.18 1.72 2.35 3.06 3.87 4.77 5.76 6.84 8.02 9.29
Cφ, in. 11.8 26.5 43.3 63.7 86.8 114 144 178 216 257 302 352
2 2.15 4.94 7.98 11.1 14.2 17.2 20.2 23.2 26.2 29.2 32.1 35.1
3 1.91 4.48 7.39 10.5 13.6 16.7 19.8 22.8 25.8 28.9 31.9 34.8
4 1.71 4.07 6.81 9.86 13.0 16.1 19.3 22.3 25.4 28.5 31.5 34.5
5 1.55 3.71 6.27 9.22 12.3 15.5 18.6 21.8 24.9 28.0 31.0 34.1
6 1.42 3.40 5.79 8.61 11.7 14.8 18.0 21.1 24.3 27.4 30.5 33.6
7 1.31 3.13 5.35 8.05 11.0 14.1 17.3 20.5 23.6 26.8 29.9 33.1
8 1.21 2.90 4.97 7.53 10.4 13.4 16.6 19.8 23.0 26.1 29.3 32.5
9 1.12 2.69 4.64 7.07 9.78 12.8 15.9 19.0 22.2 25.4 28.6 31.8
10 1.05 2.51 4.34 6.64 9.24 12.1 15.2 18.3 21.5 24.7 27.9 31.1
12 0.92 2.21 3.85 5.91 8.27 11.0 13.9 16.9 20.0 23.2 26.4 29.7
14 0.81 1.96 3.44 5.31 7.46 9.95 12.7 15.6 18.6 21.8 25.0 28.2
16 0.72 1.76 3.11 4.80 6.78 9.09 11.6 14.4 17.3 20.4 23.5 26.7
18 0.64 1.60 2.83 4.38 6.20 8.34 10.7 13.3 16.1 19.1 22.1 25.2
20 0.58 1.46 2.59 4.02 5.71 7.70 9.91 12.4 15.0 17.9 20.8 23.8
24 0.49 1.24 2.21 3.44 4.91 6.65 8.59 10.8 13.2 15.7 18.5 21.3
28 0.42 1.08 1.92 3.00 4.30 5.83 7.57 9.53 11.7 14.0 16.5 19.2
32 0.37 0.95 1.70 2.66 3.82 5.19 6.75 8.51 10.5 12.6 14.9 17.3
36 0.33 0.85 1.52 2.39 3.43 4.67 6.08 7.68 9.45 11.4 13.5 15.8
Cφ, in. 11.8 31.6 56.1 89.4 129 177 232 296 366 446 533 629
Table 7-11
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 60

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.22 4.62 7.25 10.1 13.0 16.0 19.0 22.1 25.1 28.2 31.2 34.2
3 1.97 4.13 6.53 9.13 11.9 14.9 17.9 20.9 24.0 27.1 30.1 33.2
4 1.77 3.72 5.91 8.31 10.9 13.7 16.7 19.7 22.7 25.8 28.9 32.0
5 1.61 3.38 5.39 7.60 10.1 12.7 15.5 18.4 21.4 24.5 27.6 30.7
6 1.47 3.10 4.93 6.98 9.28 11.8 14.4 17.2 20.2 23.2 26.2 29.3
7 1.35 2.85 4.54 6.45 8.59 10.9 13.5 16.1 19.0 21.9 24.9 27.9
8 1.25 2.63 4.21 5.98 7.98 10.2 12.6 15.1 17.8 20.7 23.6 26.6
9 1.16 2.44 3.91 5.57 7.45 9.51 11.8 14.2 16.8 19.5 22.4 25.3
10 1.08 2.28 3.65 5.21 6.97 8.92 11.1 13.4 15.9 18.5 21.2 24.1
12 0.94 2.00 3.20 4.59 6.16 7.91 9.84 11.9 14.2 16.6 19.2 21.9
14 0.83 1.77 2.85 4.09 5.50 7.08 8.84 10.8 12.8 15.0 17.4 19.9
16 0.74 1.58 2.56 3.68 4.96 6.40 8.00 9.75 11.7 13.7 15.9 18.2
18 0.66 1.43 2.31 3.34 4.51 5.83 7.30 8.91 10.7 12.6 14.6 16.8
20 0.60 1.30 2.11 3.05 4.13 5.34 6.70 8.19 9.82 11.6 13.5 15.5
24 0.50 1.10 1.79 2.59 3.52 4.56 5.74 7.03 8.45 10.0 11.7 13.4
28 0.43 0.95 1.55 2.25 3.06 3.98 5.01 6.15 7.40 8.77 10.2 11.8
32 0.38 0.84 1.37 1.99 2.70 3.52 4.43 5.45 6.57 7.79 9.12 10.5
36 0.34 0.75 1.22 1.78 2.42 3.15 3.98 4.89 5.90 7.01 8.20 9.49
2 2.22 4.97 7.97 11.0 14.1 17.1 20.1 23.1 26.1 29.1 32.1 35.0
3 1.97 4.50 7.40 10.5 13.5 16.6 19.7 22.7 25.7 28.7 31.7 34.7
4 1.77 4.10 6.84 9.82 12.9 16.0 19.1 22.2 25.2 28.3 31.3 34.3
5 1.61 3.75 6.32 9.20 12.3 15.4 18.5 21.6 24.7 27.8 30.8 33.9
6 1.47 3.45 5.86 8.61 11.6 14.7 17.8 20.9 24.1 27.2 30.3 33.3
7 1.35 3.18 5.44 8.06 11.0 14.0 17.1 20.3 23.4 26.5 29.6 32.7
8 1.25 2.95 5.07 7.55 10.4 13.3 16.4 19.5 22.7 25.8 29.0 32.1
9 1.16 2.75 4.73 7.09 9.78 12.7 15.7 18.8 22.0 25.1 28.3 31.4
10 1.08 2.57 4.44 6.67 9.26 12.1 15.1 18.1 21.3 24.4 27.6 30.7
12 0.94 2.26 3.93 5.96 8.33 11.0 13.8 16.8 19.8 23.0 26.1 29.3
14 0.83 2.01 3.52 5.37 7.55 9.97 12.7 15.5 18.5 21.5 24.7 27.8
16 0.74 1.81 3.18 4.87 6.88 9.13 11.7 14.4 17.2 20.2 23.2 26.4
18 0.66 1.64 2.90 4.45 6.31 8.40 10.8 13.3 16.1 18.9 21.9 25.0
20 0.60 1.50 2.65 4.10 5.81 7.77 9.99 12.4 15.0 17.8 20.7 23.6
24 0.50 1.28 2.27 3.52 5.01 6.74 8.71 10.9 13.2 15.8 18.4 21.2
28 0.43 1.11 1.98 3.08 4.40 5.93 7.69 9.62 11.8 14.1 16.5 19.1
32 0.38 0.98 1.75 2.73 3.91 5.29 6.87 8.62 10.6 12.7 15.0 17.4
36 0.34 0.88 1.57 2.45 3.52 4.77 6.20 7.80 9.59 11.5 13.6 15.9
Table 7-11 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–61
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 61

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–62 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.40 4.89 7.53 10.3 13.2 16.1 19.1 22.1 25.1 28.1 31.1 34.1
3 2.15 4.40 6.84 9.45 12.2 15.1 18.0 21.0 24.0 27.0 30.0 33.0
4 1.94 3.99 6.24 8.69 11.3 14.0 16.9 19.8 22.8 25.8 28.8 31.9
5 1.76 3.65 5.74 8.02 10.5 13.1 15.8 18.7 21.6 24.6 27.6 30.6
6 1.61 3.35 5.29 7.42 9.72 12.2 14.8 17.6 20.4 23.4 26.3 29.3
7 1.49 3.10 4.90 6.89 9.06 11.4 13.9 16.6 19.3 22.2 25.1 28.1
8 1.37 2.87 4.55 6.42 8.47 10.7 13.1 15.6 18.3 21.1 23.9 26.9
9 1.28 2.67 4.24 6.00 7.94 10.1 12.4 14.8 17.4 20.0 22.8 25.7
10 1.19 2.49 3.97 5.63 7.47 9.49 11.7 14.0 16.5 19.1 21.8 24.6
12 1.04 2.19 3.50 4.98 6.64 8.48 10.5 12.6 14.9 17.3 19.9 22.5
14 0.92 1.95 3.12 4.46 5.97 7.64 9.46 11.4 13.6 15.8 18.2 20.7
16 0.82 1.75 2.81 4.03 5.40 6.93 8.61 10.4 12.4 14.5 16.7 19.1
18 0.74 1.58 2.55 3.66 4.92 6.33 7.89 9.59 11.4 13.4 15.5 17.7
20 0.67 1.44 2.33 3.35 4.52 5.82 7.27 8.85 10.6 12.4 14.4 16.4
24 0.56 1.22 1.98 2.86 3.87 5.00 6.26 7.65 9.16 10.8 12.5 14.4
28 0.48 1.06 1.72 2.49 3.37 4.37 5.48 6.71 8.06 9.51 11.1 12.8
32 0.42 0.93 1.52 2.20 2.99 3.88 4.87 5.97 7.18 8.49 9.91 11.4
36 0.38 0.83 1.36 1.97 2.68 3.48 4.38 5.38 6.47 7.66 8.95 10.3
2 2.40 5.11 8.05 11.1 14.1 17.1 20.1 23.0 26.0 29.0 32.0 34.9
3 2.15 4.66 7.51 10.5 13.5 16.5 19.6 22.6 25.6 28.6 31.6 34.6
4 1.94 4.26 6.99 9.90 12.9 16.0 19.0 22.0 25.1 28.1 31.1 34.1
5 1.76 3.92 6.52 9.34 12.3 15.3 18.4 21.5 24.5 27.6 30.6 33.6
6 1.61 3.63 6.09 8.80 11.7 14.7 17.7 20.8 23.9 27.0 30.0 33.1
7 1.49 3.38 5.70 8.30 11.1 14.1 17.1 20.2 23.2 26.3 29.4 32.5
8 1.37 3.15 5.35 7.83 10.6 13.5 16.5 19.5 22.6 25.7 28.7 31.8
9 1.28 2.95 5.03 7.40 10.0 12.9 15.8 18.8 21.9 25.0 28.1 31.2
10 1.19 2.77 4.74 7.00 9.54 12.3 15.2 18.2 21.2 24.3 27.4 30.5
12 1.04 2.45 4.23 6.30 8.67 11.3 14.1 17.0 19.9 23.0 26.0 29.1
14 0.92 2.19 3.81 5.71 7.92 10.4 13.0 15.8 18.7 21.7 24.7 27.8
16 0.82 1.98 3.45 5.22 7.27 9.58 12.1 14.8 17.6 20.5 23.4 26.4
18 0.74 1.80 3.16 4.79 6.71 8.88 11.2 13.8 16.5 19.3 22.2 25.2
20 0.67 1.65 2.90 4.42 6.22 8.26 10.5 12.9 15.5 18.2 21.1 24.0
24 0.56 1.41 2.49 3.82 5.41 7.22 9.23 11.5 13.8 16.4 19.0 21.8
28 0.48 1.23 2.18 3.36 4.78 6.40 8.22 10.3 12.4 14.8 17.2 19.8
32 0.42 1.08 1.93 2.99 4.26 5.73 7.40 9.25 11.3 13.4 15.7 18.2
36 0.38 0.97 1.73 2.69 3.85 5.18 6.71 8.41 10.3 12.3 14.4 16.7
Table 7-11 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 62

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.64 5.30 8.01 10.8 13.6 16.4 19.3 22.3 25.2 28.1 31.1 34.0
3 2.43 4.90 7.44 10.1 12.8 15.6 18.4 21.3 24.2 27.1 30.1 33.1
4 2.23 4.52 6.89 9.38 12.0 14.7 17.5 20.3 23.2 26.1 29.0 32.0
5 2.05 4.17 6.40 8.75 11.2 13.9 16.6 19.3 22.2 25.0 27.9 30.9
6 1.89 3.86 5.96 8.20 10.6 13.1 15.7 18.4 21.2 24.0 26.9 29.8
7 1.75 3.59 5.57 7.70 9.99 12.4 14.9 17.5 20.2 23.0 25.8 28.7
8 1.63 3.35 5.22 7.25 9.43 11.7 14.2 16.7 19.3 22.1 24.8 27.7
9 1.52 3.13 4.90 6.83 8.91 11.1 13.5 15.9 18.5 21.2 23.9 26.7
10 1.42 2.94 4.61 6.45 8.44 10.6 12.8 15.2 17.7 20.3 23.0 25.7
12 1.25 2.60 4.11 5.78 7.60 9.58 11.7 14.0 16.3 18.8 21.3 23.9
14 1.11 2.32 3.69 5.21 6.90 8.73 10.7 12.8 15.0 17.4 19.8 22.3
16 0.99 2.09 3.34 4.74 6.29 8.00 9.85 11.8 13.9 16.1 18.5 20.9
18 0.90 1.90 3.04 4.33 5.77 7.36 9.10 11.0 12.9 15.0 17.3 19.5
20 0.81 1.73 2.79 3.98 5.33 6.81 8.44 10.2 12.1 14.1 16.2 18.4
24 0.68 1.47 2.38 3.42 4.60 5.91 7.35 8.91 10.6 12.4 14.3 16.3
28 0.59 1.28 2.08 2.99 4.03 5.20 6.49 7.90 9.42 11.1 12.8 14.6
32 0.52 1.13 1.84 2.65 3.59 4.63 5.80 7.07 8.46 9.95 11.6 13.3
36 0.46 1.01 1.65 2.38 3.23 4.17 5.23 6.40 7.67 9.04 10.5 12.1
2 2.64 5.38 8.22 11.1 14.1 17.0 20.0 23.0 25.9 28.9 31.9 34.8
3 2.43 5.02 7.78 10.7 13.6 16.6 19.5 22.5 25.5 28.5 31.4 34.4
4 2.23 4.67 7.33 10.2 13.1 16.0 19.0 22.0 25.0 28.0 31.0 33.9
5 2.05 4.34 6.90 9.66 12.5 15.5 18.4 21.4 24.4 27.4 30.4 33.4
6 1.89 4.06 6.50 9.19 12.0 14.9 17.9 20.9 23.9 26.9 29.9 32.9
7 1.75 3.80 6.16 8.76 11.5 14.4 17.3 20.3 23.3 26.3 29.3 32.3
8 1.63 3.57 5.84 8.36 11.1 13.9 16.8 19.7 22.7 25.7 28.7 31.7
9 1.52 3.36 5.54 7.99 10.6 13.4 16.2 19.2 22.1 25.1 28.1 31.1
10 1.42 3.17 5.27 7.63 10.2 12.9 15.7 18.6 21.5 24.5 27.5 30.5
12 1.25 2.84 4.78 6.99 9.40 12.0 14.7 17.6 20.4 23.4 26.3 29.3
14 1.11 2.57 4.36 6.42 8.70 11.2 13.8 16.6 19.4 22.3 25.2 28.2
16 0.99 2.33 3.99 5.92 8.09 10.5 13.0 15.7 18.4 21.2 24.1 27.0
18 0.90 2.13 3.68 5.49 7.54 9.80 12.2 14.8 17.5 20.3 23.1 26.0
20 0.81 1.96 3.40 5.10 7.05 9.21 11.6 14.0 16.6 19.3 22.1 24.9
24 0.68 1.68 2.95 4.46 6.22 8.19 10.4 12.7 15.1 17.7 20.3 23.0
28 0.59 1.47 2.59 3.95 5.55 7.35 9.34 11.5 13.8 16.2 18.7 21.3
32 0.52 1.31 2.31 3.54 4.99 6.65 8.49 10.5 12.7 14.9 17.3 19.8
36 0.46 1.17 2.08 3.20 4.54 6.06 7.77 9.64 11.7 13.8 16.1 18.5
Table 7-11 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–63
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 63

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–64 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.83 5.64 8.45 11.3 14.1 16.9 19.8 22.6 25.5 28.4 31.3 34.2
3 2.72 5.43 8.13 10.8 13.6 16.3 19.1 21.9 24.8 27.6 30.5 33.4
4 2.59 5.18 7.77 10.4 13.0 15.7 18.5 21.2 24.0 26.8 29.7 32.5
5 2.46 4.92 7.40 9.92 12.5 15.1 17.8 20.5 23.2 26.0 28.9 31.7
6 2.32 4.66 7.03 9.46 12.0 14.5 17.1 19.8 22.5 25.2 28.0 30.8
7 2.19 4.41 6.68 9.02 11.4 13.9 16.5 19.1 21.8 24.5 27.2 30.0
8 2.07 4.17 6.35 8.61 11.0 13.4 15.9 18.4 21.1 23.7 26.5 29.2
9 1.95 3.95 6.04 8.22 10.5 12.9 15.3 17.8 20.4 23.0 25.7 28.5
10 1.84 3.74 5.75 7.86 10.1 12.4 14.8 17.3 19.8 22.4 25.0 27.7
12 1.65 3.38 5.22 7.19 9.28 11.5 13.8 16.2 18.6 21.1 23.7 26.3
14 1.49 3.06 4.76 6.61 8.58 10.7 12.9 15.2 17.5 20.0 22.5 25.0
16 1.35 2.79 4.37 6.09 7.95 9.93 12.0 14.2 16.5 18.9 21.3 23.8
18 1.23 2.55 4.02 5.64 7.39 9.28 11.3 13.4 15.6 17.9 20.3 22.7
20 1.12 2.35 3.72 5.24 6.90 8.69 10.6 12.6 14.8 17.0 19.3 21.7
24 0.95 2.02 3.22 4.57 6.06 7.68 9.43 11.3 13.3 15.4 17.5 19.8
28 0.83 1.76 2.84 4.04 5.39 6.86 8.47 10.2 12.0 14.0 16.0 18.1
32 0.73 1.56 2.53 3.61 4.84 6.19 7.66 9.26 11.0 12.8 14.7 16.7
36 0.65 1.40 2.27 3.26 4.38 5.62 6.98 8.46 10.1 11.7 13.5 15.4
2 2.83 5.64 8.47 11.3 14.2 17.1 20.0 23.0 25.9 28.9 31.8 34.8
3 2.72 5.44 8.19 11.0 13.8 16.7 19.6 22.6 25.5 28.4 31.4 34.3
4 2.59 5.21 7.88 10.6 13.4 16.3 19.2 22.1 25.0 28.0 30.9 33.9
5 2.46 4.97 7.57 10.3 13.1 15.9 18.8 21.7 24.6 27.5 30.4 33.4
6 2.32 4.73 7.27 9.91 12.7 15.5 18.3 21.2 24.1 27.0 30.0 32.9
7 2.19 4.51 6.97 9.56 12.3 15.0 17.9 20.8 23.7 26.6 29.5 32.4
8 2.07 4.29 6.69 9.23 11.9 14.6 17.5 20.3 23.2 26.1 29.0 32.0
9 1.95 4.09 6.43 8.92 11.5 14.3 17.0 19.9 22.8 25.6 28.6 31.5
10 1.84 3.90 6.18 8.63 11.2 13.9 16.6 19.5 22.3 25.2 28.1 31.0
12 1.65 3.56 5.73 8.08 10.6 13.2 15.9 18.7 21.5 24.3 27.2 30.1
14 1.49 3.27 5.32 7.59 10.0 12.6 15.2 17.9 20.7 23.5 26.3 29.2
16 1.35 3.01 4.95 7.13 9.48 12.0 14.5 17.2 19.9 22.7 25.5 28.4
18 1.23 2.78 4.63 6.71 8.98 11.4 13.9 16.5 19.2 22.0 24.7 27.6
20 1.12 2.58 4.34 6.33 8.52 10.9 13.3 15.9 18.5 21.2 24.0 26.8
24 0.95 2.25 3.84 5.67 7.70 9.91 12.3 14.7 17.3 19.9 22.6 25.3
28 0.83 1.98 3.43 5.11 7.00 9.08 11.3 13.7 16.1 18.7 21.3 23.9
32 0.73 1.77 3.09 4.64 6.40 8.36 10.5 12.7 15.1 17.5 20.1 22.6
36 0.65 1.60 2.81 4.24 5.89 7.73 9.74 11.9 14.2 16.5 19.0 21.5
Table 7-11 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 64

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.92 5.83 8.73 11.6 14.5 17.4 20.3 23.1 26.0 28.9 31.8 34.7
3 2.89 5.77 8.63 11.5 14.3 17.2 20.0 22.8 25.7 28.5 31.4 34.2
4 2.86 5.70 8.51 11.3 14.1 16.9 19.7 22.5 25.3 28.1 30.9 33.7
5 2.82 5.61 8.38 11.1 13.9 16.6 19.4 22.1 24.9 27.7 30.5 33.3
6 2.77 5.51 8.23 10.9 13.6 16.3 19.0 21.8 24.5 27.2 30.0 32.8
7 2.72 5.40 8.06 10.7 13.4 16.0 18.7 21.4 24.1 26.8 29.6 32.3
8 2.66 5.29 7.89 10.5 13.1 15.7 18.3 21.0 23.7 26.4 29.1 31.9
9 2.60 5.16 7.71 10.3 12.8 15.4 18.0 20.6 23.3 26.0 28.7 31.4
10 2.53 5.04 7.53 10.0 12.6 15.1 17.7 20.3 22.9 25.6 28.3 31.0
12 2.40 4.78 7.16 9.57 12.0 14.5 17.0 19.6 22.1 24.8 27.4 30.1
14 2.26 4.52 6.80 9.12 11.5 13.9 16.4 18.9 21.4 24.0 26.6 29.3
16 2.13 4.27 6.45 8.68 11.0 13.3 15.8 18.2 20.7 23.3 25.9 28.5
18 2.00 4.03 6.12 8.27 10.5 12.8 15.2 17.6 20.1 22.6 25.1 27.7
20 1.89 3.81 5.80 7.88 10.1 12.3 14.6 17.0 19.4 21.9 24.4 27.0
24 1.67 3.41 5.24 7.18 9.22 11.4 13.6 15.9 18.2 20.7 23.1 25.6
28 1.49 3.06 4.75 6.56 8.49 10.5 12.6 14.9 17.1 19.5 21.9 24.3
32 1.34 2.77 4.33 6.02 7.84 9.77 11.8 13.9 16.1 18.4 20.7 23.1
36 1.21 2.52 3.97 5.56 7.27 9.10 11.1 13.1 15.2 17.4 19.7 22.0
2 2.92 5.82 8.71 11.6 14.5 17.4 20.3 23.5 26.4 29.3 32.3 35.2
3 2.89 5.76 8.60 11.4 14.3 17.1 20.0 22.9 25.8 28.7 31.7 34.6
4 2.86 5.68 8.47 11.3 14.1 16.9 19.8 22.6 25.5 28.4 31.3 34.2
5 2.82 5.59 8.34 11.1 13.9 16.7 19.5 22.4 25.2 28.1 31.0 33.9
6 2.77 5.49 8.19 10.9 13.7 16.4 19.2 22.1 24.9 27.8 30.7 33.6
7 2.72 5.39 8.04 10.7 13.4 16.2 19.0 21.8 24.6 27.5 30.4 33.3
8 2.66 5.27 7.89 10.5 13.2 16.0 18.8 21.6 24.4 27.2 30.1 33.0
9 2.60 5.16 7.74 10.4 13.0 15.8 18.5 21.3 24.1 27.0 29.8 32.7
10 2.53 5.04 7.58 10.2 12.8 15.5 18.3 21.0 23.9 26.7 29.5 32.4
12 2.40 4.81 7.27 9.81 12.4 15.1 17.8 20.6 23.3 26.2 29.0 31.8
14 2.26 4.57 6.97 9.47 12.0 14.7 17.4 20.1 22.9 25.6 28.4 31.3
16 2.13 4.35 6.69 9.13 11.7 14.3 16.9 19.6 22.4 25.1 27.9 30.7
18 2.00 4.13 6.41 8.82 11.3 13.9 16.5 19.2 21.9 24.7 27.4 30.2
20 1.89 3.93 6.15 8.51 11.0 13.5 16.1 18.8 21.5 24.2 27.0 29.8
24 1.67 3.57 5.67 7.95 10.4 12.9 15.4 18.0 20.7 23.4 26.1 28.8
28 1.49 3.25 5.25 7.44 9.77 12.2 14.7 17.3 19.9 22.6 25.3 28.0
32 1.34 2.97 4.87 6.98 9.23 11.6 14.1 16.6 19.2 21.8 24.5 27.2
36 1.21 2.73 4.54 6.56 8.74 11.1 13.5 16.0 18.5 21.1 23.7 26.4
Table 7-11 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–65
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 65

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–66 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.60 5.70 9.24 13.2 17.3 21.4 25.6 29.7 33.8 37.8 41.9 45.9
3 2.23 4.92 8.05 11.7 15.6 19.7 23.9 28.1 32.3 36.4 40.6 44.7
4 1.94 4.30 7.09 10.4 14.0 18.0 22.1 26.3 30.5 34.7 38.9 43.1
5 1.69 3.79 6.30 9.29 12.6 16.4 20.3 24.4 28.6 32.9 37.1 41.4
6 1.49 3.37 5.65 8.37 11.5 14.9 18.7 22.6 26.7 30.9 35.2 39.4
7 1.32 3.03 5.10 7.59 10.4 13.7 17.2 21.0 24.9 29.0 33.2 37.5
8 1.18 2.74 4.63 6.92 9.56 12.6 15.9 19.5 23.3 27.3 31.4 35.5
9 1.07 2.50 4.24 6.35 8.81 11.6 14.7 18.1 21.7 25.6 29.6 33.7
10 0.98 2.29 3.89 5.86 8.15 10.8 13.7 16.9 20.3 24.0 27.9 31.9
12 0.83 1.96 3.34 5.06 7.06 9.37 12.0 14.8 17.9 21.3 24.9 28.6
14 0.73 1.72 2.92 4.44 6.21 8.27 10.6 13.2 16.0 19.1 22.3 25.8
16 0.65 1.52 2.59 3.95 5.54 7.39 9.48 11.8 14.4 17.2 20.2 23.4
18 0.58 1.37 2.33 3.55 4.99 6.67 8.57 10.7 13.1 15.6 18.4 21.4
20 0.53 1.24 2.11 3.23 4.53 6.07 7.81 9.77 11.9 14.3 16.9 19.6
24 0.44 1.04 1.78 2.72 3.83 5.14 6.62 8.30 10.2 12.2 14.4 16.8
28 0.38 0.90 1.54 2.35 3.31 4.45 5.73 7.20 8.82 10.6 12.6 14.7
32 0.34 0.79 1.36 2.07 2.91 3.92 5.05 6.35 7.79 9.38 11.1 13.0
36 0.30 0.71 1.21 1.85 2.60 3.50 4.51 5.68 6.96 8.39 9.95 11.6
Cφ, in. 11.3 26.0 44.7 68.1 96.0 129 167 210 258 312 371 435
2 2.60 6.48 10.7 14.8 18.9 23.0 27.0 31.0 34.9 38.9 42.9 46.8
3 2.23 5.75 9.79 14.0 18.2 22.3 26.4 30.5 34.5 38.5 42.5 46.5
4 1.94 5.12 8.91 13.1 17.4 21.6 25.7 29.9 33.9 38.0 42.0 46.1
5 1.69 4.58 8.10 12.2 16.4 20.7 24.9 29.1 33.2 37.4 41.4 45.5
6 1.49 4.13 7.37 11.3 15.5 19.7 24.0 28.3 32.5 36.6 40.8 44.9
7 1.32 3.74 6.74 10.5 14.5 18.8 23.1 27.3 31.6 35.8 40.0 44.1
8 1.18 3.41 6.20 9.73 13.6 17.8 22.1 26.4 30.6 34.9 39.1 43.3
9 1.07 3.13 5.73 9.05 12.8 16.9 21.1 25.4 29.7 34.0 38.2 42.5
10 0.98 2.89 5.31 8.45 12.0 16.0 20.1 24.4 28.7 33.0 37.3 41.5
12 0.83 2.50 4.63 7.43 10.7 14.3 18.3 22.4 26.7 31.0 35.3 39.6
14 0.73 2.19 4.09 6.60 9.53 12.9 16.7 20.6 24.7 29.0 33.3 37.6
16 0.65 1.95 3.65 5.93 8.59 11.7 15.2 19.0 22.9 27.1 31.3 35.5
18 0.58 1.76 3.29 5.37 7.81 10.7 14.0 17.5 21.3 25.3 29.4 33.6
20 0.53 1.60 2.99 4.90 7.15 9.85 12.9 16.2 19.8 23.6 27.6 31.7
24 0.44 1.35 2.53 4.16 6.10 8.44 11.1 14.0 17.3 20.8 24.4 28.3
28 0.38 1.17 2.19 3.61 5.31 7.37 9.69 12.3 15.2 18.4 21.8 25.3
32 0.34 1.03 1.93 3.19 4.69 6.53 8.61 11.0 13.6 16.5 19.6 22.9
36 0.30 0.92 1.72 2.85 4.20 5.85 7.73 9.89 12.3 14.9 17.7 20.8
Cφ, in. 11.3 33.7 63.7 106 156 219 291 375 469 574 690 817
Table 7-12
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 66

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.68 5.77 9.31 13.2 17.2 21.3 25.4 29.5 33.6 37.6 41.7 45.7
3 2.30 5.00 8.17 11.7 15.6 19.6 23.7 27.8 32.0 36.1 40.2 44.3
4 1.99 4.38 7.22 10.4 14.1 17.9 21.9 26.0 30.2 34.4 38.5 42.7
5 1.74 3.88 6.43 9.37 12.7 16.4 20.2 24.2 28.3 32.5 36.7 40.9
6 1.53 3.45 5.77 8.47 11.6 15.0 18.6 22.5 26.5 30.6 34.8 39.0
7 1.36 3.10 5.21 7.71 10.6 13.7 17.2 20.9 24.8 28.8 32.9 37.1
8 1.22 2.81 4.74 7.05 9.70 12.7 15.9 19.5 23.2 27.1 31.1 35.2
9 1.11 2.57 4.34 6.48 8.95 11.7 14.8 18.1 21.7 25.5 29.4 33.4
10 1.01 2.36 4.00 5.98 8.29 10.9 13.8 17.0 20.4 24.0 27.7 31.6
12 0.86 2.02 3.44 5.18 7.21 9.52 12.1 15.0 18.1 21.4 24.9 28.5
14 0.75 1.77 3.01 4.55 6.36 8.43 10.8 13.3 16.1 19.2 22.4 25.8
16 0.67 1.57 2.68 4.05 5.67 7.54 9.66 12.0 14.6 17.3 20.3 23.5
18 0.60 1.41 2.40 3.65 5.12 6.81 8.74 10.9 13.3 15.8 18.6 21.5
20 0.54 1.28 2.18 3.32 4.66 6.21 7.98 9.95 12.1 14.5 17.1 19.8
24 0.46 1.08 1.84 2.80 3.94 5.26 6.78 8.47 10.4 12.4 14.6 17.0
28 0.40 0.93 1.59 2.43 3.41 4.56 5.89 7.37 9.02 10.8 12.8 14.9
32 0.35 0.82 1.40 2.14 3.00 4.03 5.19 6.51 7.98 9.59 11.3 13.2
36 0.31 0.73 1.25 1.91 2.68 3.60 4.65 5.83 7.15 8.59 10.2 11.9
2 2.68 6.48 10.6 14.7 18.8 22.9 26.9 30.9 34.8 38.8 42.8 46.7
3 2.30 5.75 9.75 13.9 18.1 22.2 26.3 30.3 34.3 38.3 42.3 46.3
4 1.99 5.13 8.91 13.0 17.2 21.4 25.5 29.6 33.7 37.7 41.8 45.8
5 1.74 4.61 8.14 12.1 16.3 20.5 24.7 28.8 33.0 37.1 41.1 45.2
6 1.53 4.17 7.45 11.2 15.3 19.5 23.7 27.9 32.1 36.3 40.4 44.5
7 1.36 3.79 6.84 10.4 14.4 18.6 22.8 27.0 31.2 35.4 39.6 43.7
8 1.22 3.46 6.30 9.71 13.6 17.6 21.8 26.0 30.3 34.5 38.7 42.9
9 1.11 3.19 5.83 9.05 12.8 16.7 20.9 25.1 29.3 33.5 37.8 42.0
10 1.01 2.94 5.42 8.47 12.0 15.9 19.9 24.1 28.3 32.6 36.8 41.0
12 0.86 2.55 4.73 7.47 10.7 14.3 18.2 22.2 26.4 30.6 34.8 39.1
14 0.75 2.24 4.18 6.66 9.62 12.9 16.6 20.5 24.5 28.6 32.8 37.1
16 0.67 2.00 3.74 6.00 8.71 11.8 15.2 18.9 22.8 26.8 30.9 35.1
18 0.60 1.80 3.38 5.45 7.94 10.8 14.0 17.5 21.2 25.1 29.1 33.2
20 0.54 1.64 3.08 4.98 7.28 9.92 13.0 16.2 19.8 23.5 27.4 31.4
24 0.46 1.39 2.60 4.25 6.23 8.54 11.2 14.1 17.3 20.8 24.4 28.1
28 0.40 1.20 2.26 3.69 5.43 7.48 9.85 12.5 15.4 18.5 21.8 25.3
32 0.35 1.06 1.99 3.26 4.81 6.65 8.77 11.1 13.8 16.6 19.7 22.9
36 0.31 0.94 1.78 2.92 4.31 5.97 7.89 10.0 12.5 15.1 17.9 20.9
Table 7-12 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–67
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 67

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–68 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.90 6.06 9.59 13.4 17.3 21.3 25.3 29.4 33.4 37.4 41.4 45.4
3 2.50 5.31 8.52 12.1 15.8 19.7 23.7 27.8 31.8 35.9 40.0 44.0
4 2.18 4.70 7.62 10.9 14.4 18.2 22.1 26.1 30.1 34.2 38.3 42.4
5 1.91 4.18 6.85 9.86 13.2 16.8 20.5 24.4 28.4 32.5 36.6 40.7
6 1.69 3.75 6.19 8.98 12.1 15.5 19.1 22.9 26.8 30.7 34.8 38.9
7 1.51 3.38 5.63 8.21 11.1 14.3 17.8 21.4 25.2 29.1 33.1 37.1
8 1.36 3.07 5.14 7.55 10.3 13.3 16.6 20.0 23.7 27.5 31.4 35.4
9 1.23 2.81 4.73 6.97 9.54 12.4 15.5 18.8 22.3 26.0 29.8 33.7
10 1.13 2.59 4.37 6.46 8.88 11.6 14.5 17.7 21.1 24.7 28.3 32.2
12 0.96 2.23 3.78 5.62 7.78 10.2 12.9 15.8 18.9 22.2 25.7 29.3
14 0.84 1.95 3.32 4.96 6.90 9.08 11.5 14.2 17.1 20.1 23.4 26.8
16 0.74 1.73 2.96 4.43 6.19 8.17 10.4 12.9 15.5 18.4 21.4 24.6
18 0.67 1.56 2.66 4.00 5.60 7.41 9.46 11.7 14.2 16.8 19.7 22.7
20 0.61 1.42 2.42 3.65 5.11 6.77 8.67 10.8 13.1 15.5 18.2 21.0
24 0.51 1.20 2.04 3.09 4.34 5.77 7.41 9.22 11.2 13.4 15.7 18.2
28 0.44 1.03 1.77 2.68 3.77 5.01 6.46 8.05 9.83 11.8 13.9 16.1
32 0.39 0.91 1.56 2.36 3.32 4.43 5.71 7.14 8.72 10.5 12.3 14.4
36 0.35 0.81 1.39 2.11 2.97 3.97 5.12 6.40 7.84 9.41 11.1 13.0
2 2.90 6.59 10.6 14.7 18.7 22.7 26.7 30.7 34.7 38.7 42.6 46.6
3 2.50 5.88 9.83 13.9 18.0 22.0 26.1 30.1 34.1 38.1 42.1 46.1
4 2.18 5.30 9.05 13.0 17.1 21.2 25.3 29.4 33.5 37.5 41.5 45.5
5 1.91 4.81 8.35 12.2 16.3 20.4 24.5 28.6 32.7 36.8 40.8 44.9
6 1.69 4.38 7.72 11.4 15.4 19.5 23.6 27.7 31.8 35.9 40.0 44.1
7 1.51 4.01 7.15 10.7 14.6 18.6 22.7 26.8 31.0 35.1 39.2 43.3
8 1.36 3.69 6.64 10.0 13.8 17.7 21.8 25.9 30.0 34.2 38.3 42.4
9 1.23 3.41 6.19 9.41 13.0 16.9 20.9 25.0 29.1 33.3 37.4 41.6
10 1.13 3.16 5.79 8.85 12.4 16.1 20.1 24.1 28.2 32.4 36.5 40.6
12 0.96 2.76 5.09 7.88 11.1 14.7 18.5 22.4 26.4 30.5 34.6 38.8
14 0.84 2.44 4.54 7.08 10.1 13.4 17.0 20.8 24.7 28.8 32.8 36.9
16 0.74 2.18 4.08 6.41 9.21 12.3 15.7 19.4 23.2 27.1 31.1 35.1
18 0.67 1.97 3.70 5.85 8.45 11.4 14.6 18.1 21.7 25.5 29.4 33.4
20 0.61 1.80 3.38 5.37 7.80 10.5 13.6 16.9 20.4 24.1 27.9 31.8
24 0.51 1.53 2.87 4.61 6.74 9.16 11.9 14.9 18.1 21.5 25.1 28.8
28 0.44 1.32 2.49 4.02 5.91 8.07 10.5 13.3 16.2 19.4 22.7 26.2
32 0.39 1.17 2.20 3.57 5.26 7.20 9.45 11.9 14.6 17.6 20.7 23.9
36 0.35 1.05 1.97 3.21 4.73 6.49 8.55 10.8 13.3 16.0 18.9 22.0
Table 7-12 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 68

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.26 6.62 10.2 13.9 17.7 21.5 25.5 29.4 33.4 37.3 41.3 45.3
3 2.87 5.92 9.19 12.7 16.4 20.2 24.0 28.0 31.9 35.9 39.9 43.9
4 2.54 5.31 8.36 11.7 15.2 18.8 22.6 26.5 30.4 34.4 38.4 42.4
5 2.25 4.78 7.63 10.8 14.1 17.6 21.3 25.1 29.0 32.9 36.8 40.8
6 2.01 4.33 6.99 9.94 13.1 16.5 20.1 23.8 27.5 31.4 35.3 39.3
7 1.81 3.93 6.42 9.20 12.2 15.5 18.9 22.5 26.2 30.0 33.8 37.7
8 1.64 3.60 5.92 8.55 11.4 14.6 17.9 21.3 24.9 28.6 32.4 36.3
9 1.49 3.31 5.49 7.96 10.7 13.7 16.9 20.3 23.8 27.4 31.1 34.9
10 1.37 3.06 5.10 7.44 10.1 12.9 16.0 19.2 22.7 26.2 29.8 33.6
12 1.17 2.65 4.46 6.55 8.93 11.6 14.4 17.5 20.7 24.0 27.5 31.1
14 1.03 2.33 3.95 5.83 8.00 10.4 13.1 15.9 18.9 22.1 25.4 28.8
16 0.91 2.08 3.54 5.24 7.23 9.47 11.9 14.6 17.4 20.4 23.6 26.8
18 0.82 1.88 3.20 4.75 6.59 8.66 10.9 13.4 16.1 18.9 21.9 25.0
20 0.74 1.71 2.92 4.35 6.04 7.96 10.1 12.4 15.0 17.6 20.5 23.5
24 0.63 1.45 2.48 3.71 5.18 6.84 8.71 10.8 13.0 15.4 18.0 20.7
28 0.54 1.26 2.15 3.23 4.52 5.99 7.65 9.50 11.5 13.7 16.0 18.5
32 0.48 1.11 1.90 2.86 4.00 5.31 6.81 8.48 10.3 12.3 14.4 16.7
36 0.43 0.99 1.69 2.56 3.59 4.77 6.13 7.64 9.30 11.1 13.1 15.2
2 3.26 6.89 10.8 14.7 18.7 22.7 26.6 30.6 34.6 38.5 42.5 46.5
3 2.87 6.28 10.1 14.0 18.0 22.0 26.0 30.0 33.9 37.9 41.9 45.9
4 2.54 5.74 9.38 13.3 17.2 21.2 25.2 29.2 33.2 37.2 41.2 45.2
5 2.25 5.27 8.75 12.6 16.5 20.4 24.5 28.5 32.5 36.5 40.5 44.5
6 2.01 4.85 8.20 11.9 15.7 19.7 23.7 27.7 31.7 35.7 39.7 43.8
7 1.81 4.49 7.70 11.3 15.0 18.9 22.9 26.9 30.9 34.9 39.0 43.0
8 1.64 4.16 7.25 10.7 14.4 18.2 22.1 26.1 30.1 34.1 38.2 42.2
9 1.49 3.87 6.83 10.2 13.7 17.5 21.4 25.3 29.3 33.3 37.4 41.4
10 1.37 3.62 6.45 9.65 13.1 16.8 20.7 24.6 28.5 32.5 36.6 40.6
12 1.17 3.19 5.78 8.75 12.0 15.6 19.3 23.1 27.0 31.0 35.0 39.0
14 1.03 2.84 5.21 7.97 11.1 14.5 18.1 21.8 25.6 29.5 33.4 37.4
16 0.91 2.56 4.74 7.30 10.2 13.5 16.9 20.5 24.3 28.1 32.0 35.9
18 0.82 2.33 4.33 6.72 9.48 12.6 15.9 19.4 23.0 26.7 30.6 34.4
20 0.74 2.13 3.98 6.21 8.83 11.8 15.0 18.3 21.8 25.5 29.2 33.1
24 0.63 1.82 3.42 5.38 7.74 10.4 13.3 16.5 19.8 23.2 26.8 30.5
28 0.54 1.59 2.99 4.74 6.87 9.30 12.0 14.9 18.0 21.3 24.7 28.2
32 0.48 1.41 2.65 4.22 6.17 8.38 10.8 13.6 16.5 19.5 22.8 26.1
36 0.43 1.26 2.38 3.81 5.59 7.62 9.89 12.4 15.2 18.0 21.1 24.3
Table 7-12 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–69
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 69

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–70 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.63 7.25 10.9 14.6 18.3 22.1 25.9 29.7 33.6 37.5 41.4 45.3
3 3.38 6.77 10.2 13.8 17.4 21.1 24.8 28.6 32.4 36.3 40.2 44.1
4 3.10 6.27 9.55 13.0 16.5 20.1 23.7 27.5 31.3 35.1 38.9 42.8
5 2.84 5.80 8.92 12.2 15.6 19.1 22.7 26.4 30.1 33.9 37.8 41.6
6 2.60 5.36 8.33 11.5 14.8 18.2 21.7 25.4 29.1 32.8 36.6 40.4
7 2.38 4.96 7.79 10.8 14.1 17.4 20.9 24.4 28.0 31.7 35.5 39.3
8 2.19 4.60 7.30 10.2 13.4 16.6 20.0 23.5 27.1 30.7 34.4 38.2
9 2.02 4.28 6.85 9.68 12.7 15.9 19.2 22.6 26.1 29.7 33.4 37.1
10 1.87 3.99 6.45 9.17 12.1 15.2 18.4 21.8 25.3 28.8 32.4 36.1
12 1.62 3.51 5.75 8.27 11.0 13.9 17.0 20.3 23.6 27.0 30.6 34.1
14 1.43 3.12 5.18 7.50 10.1 12.8 15.8 18.9 22.1 25.4 28.9 32.4
16 1.27 2.81 4.70 6.85 9.23 11.9 14.7 17.6 20.7 24.0 27.3 30.7
18 1.15 2.56 4.29 6.28 8.52 11.0 13.7 16.5 19.5 22.6 25.8 29.1
20 1.04 2.34 3.95 5.80 7.89 10.2 12.8 15.5 18.4 21.4 24.5 27.7
24 0.88 2.00 3.39 5.01 6.87 8.98 11.3 13.8 16.4 19.2 22.1 25.2
28 0.76 1.74 2.96 4.39 6.07 7.97 10.1 12.3 14.8 17.4 20.1 23.0
32 0.67 1.54 2.63 3.91 5.43 7.15 9.06 11.2 13.4 15.8 18.4 21.1
36 0.60 1.38 2.36 3.52 4.91 6.48 8.22 10.2 12.3 14.5 16.9 19.4
2 3.63 7.29 11.1 14.9 18.8 22.7 26.6 30.5 34.5 38.4 42.4 46.3
3 3.38 6.88 10.6 14.3 18.2 22.1 26.0 29.9 33.9 37.8 41.8 45.7
4 3.10 6.46 10.0 13.8 17.6 21.5 25.4 29.3 33.2 37.2 41.1 45.1
5 2.84 6.06 9.55 13.2 17.0 20.9 24.7 28.7 32.6 36.5 40.4 44.4
6 2.60 5.69 9.09 12.7 16.4 20.3 24.1 28.0 31.9 35.9 39.8 43.8
7 2.38 5.34 8.66 12.2 15.9 19.7 23.5 27.4 31.3 35.2 39.2 43.1
8 2.19 5.03 8.27 11.7 15.4 19.1 22.9 26.8 30.7 34.6 38.5 42.4
9 2.02 4.74 7.90 11.3 14.9 18.6 22.4 26.2 30.1 34.0 37.9 41.8
10 1.87 4.47 7.55 10.9 14.4 18.1 21.8 25.6 29.5 33.4 37.3 41.2
12 1.62 4.01 6.93 10.1 13.6 17.1 20.8 24.5 28.3 32.2 36.0 39.9
14 1.43 3.63 6.38 9.46 12.8 16.2 19.8 23.5 27.3 31.0 34.9 38.7
16 1.27 3.31 5.91 8.84 12.0 15.4 18.9 22.5 26.2 30.0 33.8 37.6
18 1.15 3.04 5.49 8.28 11.3 14.6 18.0 21.6 25.2 28.9 32.7 36.5
20 1.04 2.81 5.12 7.77 10.7 13.9 17.2 20.7 24.3 28.0 31.7 35.4
24 0.88 2.44 4.49 6.90 9.62 12.6 15.8 19.1 22.6 26.1 29.8 33.4
28 0.76 2.15 3.99 6.18 8.70 11.5 14.5 17.7 21.1 24.5 28.0 31.6
32 0.67 1.91 3.58 5.58 7.93 10.6 13.4 16.5 19.7 23.0 26.4 29.9
36 0.60 1.73 3.24 5.08 7.27 9.76 12.5 15.4 18.4 21.6 24.9 28.3
Table 7-12 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 70

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.86 7.69 11.5 15.3 19.1 22.9 26.7 30.5 34.3 38.2 42.0 45.9
3 3.79 7.53 11.2 14.9 18.6 22.4 26.1 29.9 33.6 37.4 41.3 45.1
4 3.70 7.34 11.0 14.6 18.2 21.8 25.5 29.2 33.0 36.7 40.5 44.3
5 3.59 7.13 10.6 14.2 17.7 21.3 24.9 28.6 32.3 36.1 39.8 43.6
6 3.47 6.89 10.3 13.8 17.2 20.8 24.4 28.0 31.7 35.4 39.1 42.9
7 3.34 6.65 9.98 13.4 16.8 20.3 23.8 27.4 31.1 34.7 38.4 42.2
8 3.20 6.40 9.64 12.9 16.3 19.8 23.3 26.8 30.4 34.1 37.8 41.5
9 3.07 6.16 9.31 12.6 15.9 19.3 22.8 26.3 29.9 33.5 37.1 40.8
10 2.94 5.91 8.98 12.2 15.4 18.8 22.2 25.7 29.3 32.9 36.5 40.2
12 2.68 5.45 8.36 11.4 14.6 17.9 21.3 24.7 28.2 31.8 35.4 39.0
14 2.45 5.03 7.79 10.7 13.8 17.1 20.4 23.8 27.2 30.7 34.3 37.9
16 2.24 4.65 7.28 10.1 13.1 16.3 19.5 22.9 26.3 29.7 33.2 36.8
18 2.06 4.31 6.81 9.55 12.5 15.5 18.7 22.0 25.4 28.8 32.2 35.8
20 1.90 4.01 6.40 9.03 11.9 14.8 18.0 21.2 24.5 27.9 31.3 34.8
24 1.63 3.51 5.69 8.13 10.8 13.6 16.6 19.7 22.8 26.1 29.5 32.9
28 1.43 3.11 5.11 7.36 9.83 12.5 15.3 18.3 21.4 24.6 27.8 31.1
32 1.27 2.79 4.62 6.71 9.02 11.5 14.2 17.1 20.0 23.1 26.3 29.5
36 1.14 2.53 4.22 6.15 8.31 10.7 13.3 16.0 18.8 21.8 24.9 28.0
2 3.86 7.67 11.5 15.3 19.1 23.0 26.9 30.8 35.2 39.1 43.0 47.0
3 3.79 7.51 11.2 15.0 18.8 22.6 26.4 30.3 34.2 38.1 42.1 46.0
4 3.70 7.32 11.0 14.7 18.4 22.2 26.0 29.9 33.8 37.7 41.6 45.5
5 3.59 7.12 10.7 14.4 18.1 21.8 25.6 29.5 33.3 37.2 41.1 45.0
6 3.47 6.92 10.4 14.1 17.7 21.5 25.3 29.1 32.9 36.8 40.7 44.6
7 3.34 6.70 10.2 13.8 17.4 21.1 24.9 28.7 32.5 36.4 40.2 44.1
8 3.20 6.49 9.92 13.5 17.1 20.8 24.5 28.3 32.1 36.0 39.8 43.7
9 3.07 6.28 9.66 13.2 16.8 20.5 24.2 28.0 31.8 35.6 39.4 43.3
10 2.94 6.08 9.42 12.9 16.5 20.2 23.9 27.6 31.4 35.2 39.0 42.9
12 2.68 5.69 8.95 12.4 15.9 19.5 23.2 26.9 30.7 34.5 38.3 42.1
14 2.45 5.33 8.51 11.9 15.4 19.0 22.6 26.3 30.0 33.8 37.6 41.4
16 2.24 4.99 8.10 11.4 14.9 18.4 22.0 25.7 29.4 33.1 36.9 40.7
18 2.06 4.69 7.72 11.0 14.4 17.9 21.5 25.1 28.8 32.5 36.2 40.0
20 1.90 4.42 7.36 10.6 13.9 17.4 21.0 24.6 28.2 31.9 35.6 39.3
24 1.63 3.95 6.74 9.83 13.1 16.5 20.0 23.5 27.1 30.7 34.4 38.1
28 1.43 3.57 6.21 9.16 12.3 15.6 19.0 22.5 26.1 29.7 33.3 36.9
32 1.27 3.25 5.74 8.56 11.6 14.8 18.2 21.6 25.1 28.6 32.2 35.9
36 1.14 2.98 5.33 8.02 11.0 14.1 17.3 20.7 24.1 27.6 31.2 34.8
Table 7-12 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–71
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 71

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–72 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.82 5.98 9.46 13.3 17.3 21.3 25.5 29.6 33.7 37.7 41.8 45.8
3 2.50 5.31 8.43 12.0 15.7 19.7 23.8 28.0 32.2 36.3 40.4 44.6
4 2.23 4.74 7.58 10.8 14.3 18.2 22.2 26.3 30.4 34.6 38.8 43.0
5 2.01 4.27 6.86 9.82 13.1 16.7 20.5 24.5 28.6 32.8 37.0 41.3
6 1.81 3.86 6.24 8.96 12.0 15.4 19.0 22.9 26.9 31.0 35.2 39.4
7 1.64 3.52 5.70 8.22 11.1 14.2 17.6 21.3 25.2 29.2 33.3 37.5
8 1.49 3.22 5.24 7.57 10.2 13.2 16.4 19.9 23.6 27.5 31.5 35.6
9 1.36 2.96 4.83 7.01 9.48 12.3 15.3 18.6 22.1 25.9 29.8 33.8
10 1.25 2.73 4.47 6.51 8.83 11.4 14.3 17.5 20.8 24.4 28.2 32.1
12 1.07 2.37 3.89 5.68 7.74 10.1 12.6 15.5 18.5 21.8 25.3 29.0
14 0.94 2.08 3.42 5.02 6.86 8.95 11.3 13.8 16.6 19.6 22.8 26.2
16 0.83 1.86 3.05 4.49 6.15 8.04 10.2 12.5 15.0 17.8 20.7 23.9
18 0.75 1.67 2.75 4.06 5.56 7.29 9.22 11.4 13.7 16.3 19.0 21.9
20 0.68 1.52 2.50 3.70 5.07 6.65 8.43 10.4 12.6 14.9 17.5 20.2
24 0.58 1.29 2.12 3.14 4.30 5.66 7.18 8.88 10.8 12.8 15.0 17.4
28 0.50 1.12 1.84 2.72 3.73 4.92 6.24 7.73 9.37 11.2 13.1 15.2
32 0.44 0.98 1.62 2.40 3.30 4.34 5.51 6.84 8.29 9.90 11.6 13.5
36 0.40 0.88 1.45 2.15 2.95 3.89 4.94 6.13 7.43 8.88 10.4 12.1
Cφ, in. 15.0 32.8 54.2 79.9 110 145 184 229 279 333 393 458
2 2.82 6.54 10.6 14.8 18.9 22.9 26.9 30.9 34.9 38.9 42.8 46.8
3 2.50 5.90 9.81 14.0 18.1 22.3 26.4 30.4 34.5 38.5 42.5 46.5
4 2.23 5.33 9.01 13.1 17.3 21.5 25.7 29.8 33.9 37.9 42.0 46.0
5 2.01 4.84 8.27 12.2 16.4 20.6 24.8 29.0 33.2 37.3 41.4 45.5
6 1.81 4.42 7.60 11.4 15.5 19.7 24.0 28.2 32.4 36.6 40.7 44.8
7 1.64 4.05 7.02 10.6 14.6 18.8 23.0 27.3 31.5 35.7 39.9 44.1
8 1.49 3.73 6.51 9.94 13.7 17.8 22.0 26.3 30.6 34.8 39.1 43.3
9 1.36 3.45 6.06 9.30 13.0 16.9 21.1 25.3 29.6 33.9 38.2 42.4
10 1.25 3.20 5.66 8.72 12.2 16.1 20.2 24.4 28.6 32.9 37.2 41.5
12 1.07 2.80 4.98 7.73 10.9 14.5 18.4 22.5 26.7 30.9 35.2 39.5
14 0.94 2.47 4.43 6.92 9.81 13.2 16.8 20.7 24.8 29.0 33.2 37.5
16 0.83 2.21 3.98 6.25 8.90 12.0 15.4 19.1 23.0 27.1 31.3 35.5
18 0.75 2.00 3.60 5.68 8.13 11.0 14.2 17.7 21.4 25.3 29.4 33.6
20 0.68 1.82 3.29 5.21 7.47 10.1 13.1 16.4 20.0 23.7 27.7 31.7
24 0.58 1.55 2.79 4.45 6.40 8.72 11.3 14.3 17.5 20.9 24.5 28.3
28 0.50 1.34 2.42 3.87 5.59 7.64 9.96 12.6 15.5 18.6 21.9 25.5
32 0.44 1.18 2.14 3.43 4.95 6.79 8.87 11.2 13.8 16.7 19.7 23.0
36 0.40 1.06 1.92 3.07 4.44 6.10 7.98 10.1 12.5 15.1 17.9 20.9
Cφ, in. 15.0 39.4 71.8 115 167 230 304 388 483 588 705 832
Table 7-13
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =0°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 72

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 2.91 6.06 9.56 13.3 17.2 21.3 25.3 29.4 33.5 37.5 41.6 45.6
3 2.57 5.40 8.57 12.0 15.8 19.7 23.7 27.8 31.9 36.1 40.2 44.3
4 2.30 4.84 7.72 10.9 14.4 18.2 22.1 26.1 30.2 34.3 38.5 42.6
5 2.06 4.37 6.99 9.93 13.2 16.7 20.5 24.4 28.5 32.6 36.7 40.9
6 1.86 3.96 6.37 9.09 12.1 15.5 19.0 22.8 26.7 30.8 34.9 39.0
7 1.69 3.61 5.83 8.36 11.2 14.3 17.7 21.3 25.1 29.0 33.1 37.2
8 1.53 3.31 5.36 7.72 10.4 13.3 16.5 19.9 23.6 27.4 31.3 35.3
9 1.40 3.04 4.95 7.15 9.64 12.4 15.4 18.7 22.2 25.8 29.7 33.6
10 1.29 2.81 4.59 6.65 9.0 11.6 14.5 17.6 20.9 24.4 28.1 31.9
12 1.11 2.44 4.00 5.82 7.9 10.2 12.8 15.6 18.7 21.9 25.3 28.9
14 0.97 2.15 3.52 5.15 7.0 9.12 11.5 14.0 16.8 19.8 22.9 26.3
16 0.86 1.92 3.15 4.61 6.3 8.21 10.3 12.7 15.2 18.0 20.9 24.0
18 0.78 1.73 2.84 4.17 5.7 7.45 9.41 11.6 13.9 16.5 19.2 22.1
20 0.71 1.57 2.59 3.80 5.2 6.81 8.61 10.6 12.8 15.2 17.7 20.4
24 0.60 1.33 2.19 3.23 4.4 5.80 7.36 9.07 11.0 13.0 15.3 17.6
28 0.52 1.15 1.90 2.80 3.9 5.05 6.41 7.91 9.59 11.4 13.4 15.5
32 0.46 1.02 1.68 2.48 3.4 4.46 5.67 7.01 8.50 10.1 11.9 13.8
36 0.41 0.91 1.50 2.22 3.0 4.00 5.08 6.29 7.63 9.09 10.7 12.4
2 2.91 6.57 10.6 14.7 18.8 22.8 26.8 30.8 34.8 38.8 42.7 46.7
3 2.57 5.93 9.81 13.9 18.0 22.1 26.2 30.3 34.3 38.3 42.3 46.3
4 2.30 5.37 9.04 13.0 17.2 21.3 25.5 29.6 33.6 37.7 41.7 45.8
5 2.06 4.89 8.33 12.2 16.3 20.5 24.6 28.8 32.9 37.0 41.1 45.1
6 1.86 4.48 7.70 11.4 15.4 19.5 23.7 27.9 32.1 36.2 40.3 44.4
7 1.69 4.12 7.13 10.6 14.5 18.6 22.8 27.0 31.2 35.4 39.5 43.7
8 1.53 3.80 6.62 9.95 13.7 17.7 21.8 26.0 30.2 34.4 38.6 42.8
9 1.40 3.52 6.17 9.32 12.9 16.8 20.9 25.1 29.3 33.5 37.7 41.9
10 1.29 3.27 5.77 8.76 12.2 16.0 20.0 24.1 28.3 32.5 36.8 41.0
12 1.11 2.86 5.09 7.80 11.0 14.5 18.3 22.3 26.4 30.6 34.8 39.0
14 0.97 2.54 4.53 7.00 9.92 13.2 16.8 20.6 24.6 28.7 32.8 37.1
16 0.86 2.27 4.08 6.34 9.02 12.0 15.4 19.0 22.9 26.9 30.9 35.1
18 0.78 2.06 3.70 5.78 8.26 11.1 14.2 17.7 21.3 25.2 29.1 33.2
20 0.71 1.88 3.38 5.30 7.60 10.2 13.2 16.4 19.9 23.6 27.5 31.4
24 0.60 1.59 2.88 4.54 6.54 8.84 11.5 14.4 17.5 20.9 24.5 28.2
28 0.52 1.38 2.50 3.96 5.72 7.77 10.1 12.7 15.6 18.7 22.0 25.4
32 0.46 1.22 2.21 3.51 5.08 6.92 9.03 11.4 14.0 16.8 19.9 23.1
36 0.41 1.09 1.98 3.15 4.56 6.23 8.15 10.3 12.7 15.3 18.1 21.1
Table 7-13 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =15°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–73
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 73

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–74 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.14 6.41 9.91 13.6 17.5 21.4 25.4 29.4 33.4 37.4 41.4 45.4
3 2.79 5.75 8.95 12.4 16.1 20.0 23.9 27.9 31.9 35.9 40.0 44.0
4 2.50 5.19 8.16 11.4 14.9 18.5 22.4 26.3 30.3 34.3 38.4 42.4
5 2.25 4.71 7.45 10.5 13.7 17.2 20.9 24.7 28.6 32.6 36.7 40.7
6 2.04 4.29 6.83 9.65 12.7 16.0 19.6 23.3 27.1 31.0 35.0 39.0
7 1.85 3.93 6.28 8.92 11.8 15.0 18.3 21.9 25.6 29.4 33.3 37.3
8 1.69 3.61 5.80 8.27 11.0 14.0 17.2 20.6 24.2 27.9 31.7 35.6
9 1.55 3.33 5.38 7.70 10.3 13.1 16.2 19.4 22.9 26.5 30.2 34.0
10 1.43 3.08 5.00 7.19 9.64 12.3 15.3 18.4 21.7 25.2 28.8 32.5
12 1.23 2.68 4.37 6.32 8.52 11.0 13.6 16.5 19.6 22.8 26.2 29.8
14 1.08 2.36 3.88 5.62 7.61 9.83 12.3 14.9 17.8 20.8 24.0 27.3
16 0.96 2.11 3.47 5.05 6.86 8.89 11.1 13.6 16.2 19.0 22.0 25.2
18 0.87 1.91 3.14 4.57 6.24 8.10 10.2 12.4 14.9 17.5 20.3 23.3
20 0.79 1.74 2.86 4.18 5.71 7.43 9.35 11.5 13.8 16.2 18.9 21.6
24 0.67 1.48 2.43 3.56 4.88 6.36 8.03 9.87 11.9 14.1 16.4 18.9
28 0.58 1.28 2.11 3.10 4.25 5.55 7.02 8.65 10.4 12.4 14.5 16.7
32 0.51 1.13 1.87 2.74 3.76 4.92 6.23 7.69 9.29 11.0 12.9 14.9
36 0.46 1.01 1.67 2.45 3.37 4.41 5.60 6.91 8.36 9.95 11.7 13.5
2 3.14 6.75 10.7 14.7 18.7 22.7 26.7 30.7 34.7 38.6 42.6 46.6
3 2.79 6.12 9.94 13.9 18.0 22.0 26.1 30.1 34.1 38.1 42.1 46.1
4 2.50 5.58 9.23 13.1 17.2 21.2 25.3 29.4 33.4 37.5 41.5 45.5
5 2.25 5.13 8.58 12.4 16.3 20.4 24.5 28.6 32.7 36.7 40.8 44.8
6 2.04 4.73 8.00 11.6 15.5 19.5 23.6 27.7 31.8 35.9 40.0 44.1
7 1.85 4.38 7.47 10.9 14.7 18.7 22.7 26.8 31.0 35.1 39.2 43.3
8 1.69 4.06 6.98 10.3 14.0 17.9 21.9 25.9 30.1 34.2 38.3 42.4
9 1.55 3.78 6.55 9.72 13.3 17.1 21.0 25.1 29.2 33.3 37.4 41.5
10 1.43 3.53 6.15 9.18 12.6 16.3 20.2 24.2 28.3 32.4 36.5 40.6
12 1.23 3.10 5.47 8.25 11.4 14.9 18.6 22.5 26.5 30.6 34.7 38.8
14 1.08 2.76 4.90 7.46 10.4 13.7 17.2 21.0 24.9 28.8 32.9 37.0
16 0.96 2.48 4.43 6.79 9.55 12.6 16.0 19.6 23.3 27.2 31.2 35.2
18 0.87 2.25 4.04 6.22 8.79 11.7 14.9 18.3 21.9 25.7 29.5 33.5
20 0.79 2.06 3.70 5.72 8.14 10.9 13.9 17.1 20.6 24.2 28.0 31.9
24 0.67 1.76 3.17 4.93 7.06 9.48 12.2 15.2 18.3 21.7 25.3 28.9
28 0.58 1.53 2.76 4.32 6.22 8.38 10.8 13.5 16.5 19.6 22.9 26.3
32 0.51 1.35 2.45 3.84 5.54 7.50 9.73 12.2 14.9 17.8 20.9 24.1
36 0.46 1.21 2.19 3.46 5.00 6.77 8.82 11.1 13.6 16.3 19.1 22.2
Table 7-13 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =30°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 74

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.46 6.96 10.5 14.2 18.0 21.8 25.7 29.6 33.5 37.4 41.4 45.3
3 3.15 6.38 9.73 13.2 16.8 20.6 24.4 28.2 32.1 36.1 40.0 44.0
4 2.87 5.84 8.97 12.3 15.7 19.3 23.1 26.9 30.7 34.6 38.6 42.5
5 2.61 5.36 8.30 11.4 14.7 18.2 21.8 25.5 29.3 33.2 37.1 41.0
6 2.39 4.93 7.69 10.7 13.9 17.2 20.7 24.3 28.0 31.8 35.6 39.5
7 2.19 4.55 7.15 9.98 13.0 16.2 19.6 23.1 26.7 30.4 34.2 38.1
8 2.01 4.21 6.66 9.34 12.2 15.3 18.6 22.0 25.5 29.2 32.9 36.7
9 1.86 3.90 6.21 8.76 11.5 14.5 17.7 21.0 24.4 27.9 31.6 35.3
10 1.72 3.63 5.82 8.24 10.9 13.8 16.8 20.0 23.3 26.8 30.4 34.0
12 1.49 3.18 5.14 7.33 9.76 12.4 15.2 18.3 21.4 24.7 28.1 31.6
14 1.32 2.82 4.59 6.58 8.81 11.3 13.9 16.7 19.7 22.8 26.1 29.5
16 1.17 2.53 4.14 5.95 8.00 10.3 12.7 15.4 18.2 21.2 24.3 27.5
18 1.06 2.29 3.76 5.43 7.32 9.44 11.7 14.2 16.9 19.7 22.7 25.7
20 0.96 2.10 3.44 4.98 6.74 8.71 10.9 13.2 15.7 18.4 21.2 24.2
24 0.82 1.79 2.94 4.26 5.81 7.53 9.43 11.5 13.8 16.2 18.7 21.4
28 0.71 1.56 2.56 3.73 5.09 6.61 8.31 10.2 12.2 14.4 16.7 19.2
32 0.63 1.38 2.26 3.31 4.52 5.89 7.42 9.11 11.0 12.9 15.1 17.3
36 0.56 1.23 2.03 2.97 4.06 5.30 6.69 8.23 9.91 11.7 13.7 15.8
2 3.46 7.09 10.9 14.8 18.7 22.7 26.7 30.6 34.6 38.5 42.5 46.5
3 3.15 6.58 10.3 14.1 18.1 22.0 26.0 30.0 33.9 37.9 41.9 45.9
4 2.87 6.09 9.65 13.4 17.3 21.3 25.3 29.3 33.3 37.3 41.2 45.2
5 2.61 5.66 9.07 12.8 16.6 20.6 24.5 28.5 32.5 36.5 40.5 44.5
6 2.39 5.26 8.54 12.1 15.9 19.8 23.8 27.8 31.8 35.8 39.8 43.8
7 2.19 4.91 8.07 11.6 15.3 19.1 23.0 27.0 31.0 35.0 39.0 43.0
8 2.01 4.59 7.63 11.0 14.6 18.4 22.3 26.2 30.2 34.2 38.2 42.2
9 1.86 4.30 7.23 10.5 14.0 17.7 21.5 25.5 29.4 33.4 37.4 41.4
10 1.72 4.04 6.85 10.0 13.4 17.1 20.8 24.7 28.6 32.6 36.6 40.6
12 1.49 3.59 6.19 9.14 12.4 15.9 19.5 23.3 27.2 31.1 35.1 39.1
14 1.32 3.22 5.62 8.38 11.4 14.8 18.3 22.0 25.8 29.6 33.5 37.5
16 1.17 2.91 5.13 7.71 10.6 13.8 17.2 20.8 24.4 28.2 32.1 36.0
18 1.06 2.66 4.71 7.12 9.87 12.9 16.2 19.6 23.2 26.9 30.7 34.6
20 0.96 2.44 4.35 6.61 9.22 12.1 15.3 18.6 22.1 25.7 29.4 33.2
24 0.82 2.10 3.76 5.76 8.11 10.8 13.7 16.7 20.0 23.4 27.0 30.6
28 0.71 1.83 3.30 5.08 7.22 9.64 12.3 15.2 18.3 21.5 24.9 28.4
32 0.63 1.63 2.94 4.54 6.50 8.71 11.2 13.9 16.7 19.8 23.0 26.3
36 0.56 1.46 2.64 4.11 5.90 7.93 10.2 12.7 15.4 18.3 21.3 24.5
Table 7-13 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =45°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–75
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 75

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–76 DESIGN CONSIDERATIONS FOR BOLTS
s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.74 7.46 11.2 14.9 18.6 22.4 26.2 30.0 33.9 37.7 41.6 45.5
3 3.57 7.12 10.7 14.3 17.9 21.6 25.3 29.0 32.8 36.7 40.5 44.4
4 3.38 6.75 10.2 13.6 17.1 20.7 24.3 28.0 31.8 35.6 39.4 43.2
5 3.17 6.36 9.61 12.9 16.4 19.8 23.4 27.0 30.7 34.5 38.2 42.0
6 2.97 5.99 9.09 12.3 15.6 19.0 22.5 26.1 29.7 33.4 37.1 40.9
7 2.78 5.63 8.59 11.7 14.9 18.2 21.6 25.1 28.7 32.3 36.0 39.8
8 2.60 5.29 8.13 11.1 14.2 17.5 20.8 24.3 27.8 31.4 35.0 38.7
9 2.44 4.98 7.69 10.6 13.6 16.8 20.1 23.4 26.9 30.4 34.0 37.7
10 2.28 4.69 7.28 10.1 13.0 16.1 19.3 22.7 26.1 29.5 33.1 36.7
12 2.02 4.18 6.56 9.16 11.9 14.9 18.0 21.2 24.5 27.8 31.3 34.8
14 1.80 3.76 5.95 8.38 11.0 13.8 16.7 19.8 23.0 26.3 29.6 33.1
16 1.62 3.40 5.43 7.70 10.2 12.8 15.6 18.6 21.6 24.8 28.1 31.4
18 1.47 3.10 4.99 7.11 9.42 11.9 14.6 17.4 20.4 23.5 26.7 29.9
20 1.34 2.85 4.61 6.59 8.76 11.1 13.7 16.4 19.3 22.2 25.3 28.5
24 1.15 2.45 3.99 5.73 7.67 9.82 12.2 14.6 17.3 20.1 23.0 26.0
28 1.00 2.15 3.51 5.06 6.80 8.76 10.9 13.2 15.6 18.2 20.9 23.8
32 0.88 1.91 3.13 4.52 6.11 7.89 9.83 11.9 14.2 16.6 19.2 21.8
36 0.79 1.72 2.81 4.08 5.53 7.16 8.95 10.9 13.0 15.3 17.7 20.2
2 3.74 7.47 11.2 15.0 18.9 22.8 26.7 30.6 34.5 38.5 42.4 46.4
3 3.57 7.16 10.8 14.6 18.4 22.2 26.1 30.0 33.9 37.9 41.8 45.8
4 3.38 6.82 10.4 14.1 17.8 21.7 25.5 29.4 33.3 37.3 41.2 45.1
5 3.17 6.47 9.94 13.6 17.3 21.1 24.9 28.8 32.7 36.6 40.5 44.5
6 2.97 6.14 9.52 13.1 16.7 20.5 24.3 28.2 32.1 36.0 39.9 43.8
7 2.78 5.82 9.11 12.6 16.2 19.9 23.7 27.6 31.5 35.3 39.3 43.2
8 2.60 5.52 8.73 12.1 15.7 19.4 23.2 27.0 30.8 34.7 38.6 42.5
9 2.44 5.24 8.37 11.7 15.2 18.9 22.6 26.4 30.2 34.1 38.0 41.9
10 2.28 4.98 8.03 11.3 14.8 18.4 22.1 25.8 29.7 33.5 37.4 41.3
12 2.02 4.51 7.41 10.6 14.0 17.5 21.1 24.8 28.5 32.3 36.2 40.1
14 1.80 4.10 6.86 9.91 13.2 16.6 20.1 23.8 27.5 31.2 35.0 38.9
16 1.62 3.76 6.37 9.29 12.4 15.8 19.2 22.8 26.5 30.2 33.9 37.7
18 1.47 3.46 5.94 8.74 11.8 15.0 18.4 21.9 25.5 29.2 32.9 36.6
20 1.34 3.21 5.56 8.23 11.2 14.3 17.6 21.0 24.6 28.2 31.9 35.6
24 1.15 2.79 4.91 7.34 10.1 13.0 16.2 19.5 22.9 26.4 30.0 33.6
28 1.00 2.47 4.38 6.61 9.13 11.9 14.9 18.1 21.4 24.7 28.2 31.8
32 0.88 2.21 3.95 5.99 8.33 11.0 13.8 16.8 20.0 23.2 26.6 30.1
36 0.79 2.00 3.58 5.46 7.65 10.1 12.8 15.7 18.7 21.9 25.1 28.5
Table 7-13 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =60°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 76

s, in.ex, in.
Number of Bolts in One Vertical Row,
n
123456789101112
2 3.89 7.75 11.6 15.5 19.3 23.1 26.9 30.8 34.6 38.5 42.3 46.2
3 3.84 7.66 11.5 15.2 19.0 22.7 26.5 30.3 34.1 37.9 41.7 45.5
4 3.79 7.54 11.3 15.0 18.7 22.4 26.1 29.8 33.5 37.3 41.0 44.8
5 3.72 7.40 11.1 14.7 18.3 21.9 25.6 29.3 32.9 36.7 40.4 44.1
6 3.65 7.25 10.8 14.4 17.9 21.5 25.1 28.7 32.4 36.1 39.8 43.5
7 3.56 7.08 10.6 14.1 17.6 21.1 24.6 28.2 31.8 35.5 39.1 42.8
8 3.47 6.90 10.3 13.7 17.2 20.6 24.1 27.7 31.3 34.9 38.5 42.2
9 3.37 6.71 10.0 13.4 16.8 20.2 23.7 27.2 30.7 34.3 37.9 41.6
10 3.27 6.52 9.77 13.1 16.4 19.8 23.2 26.7 30.2 33.7 37.3 41.0
12 3.07 6.14 9.23 12.4 15.6 18.9 22.3 25.7 29.1 32.6 36.2 39.8
14 2.87 5.76 8.71 11.8 14.9 18.1 21.4 24.7 28.1 31.6 35.1 38.7
16 2.68 5.40 8.22 11.1 14.2 17.3 20.5 23.8 27.2 30.6 34.1 37.6
18 2.50 5.07 7.76 10.6 13.5 16.6 19.7 23.0 26.3 29.7 33.1 36.6
20 2.34 4.76 7.33 10.0 12.9 15.9 19.0 22.2 25.5 28.8 32.2 35.6
24 2.06 4.23 6.57 9.10 11.8 14.7 17.6 20.7 23.9 27.1 30.4 33.8
28 1.82 3.78 5.94 8.30 10.9 13.5 16.4 19.3 22.4 25.5 28.7 32.0
32 1.63 3.41 5.41 7.61 10.0 12.6 15.3 18.1 21.0 24.1 27.2 30.4
36 1.48 3.11 4.95 7.01 9.26 11.7 14.3 17.0 19.8 22.8 25.8 28.9
2 3.89 7.74 11.6 15.4 19.3 23.1 27.0 30.9 35.2 39.1 43.0 47.0
3 3.84 7.64 11.4 15.2 19.0 22.8 26.6 30.5 34.4 38.3 42.2 46.1
4 3.79 7.52 11.2 14.9 18.7 22.5 26.3 30.1 34.0 37.8 41.7 45.6
5 3.72 7.38 11.0 14.7 18.4 22.1 25.9 29.7 33.6 37.4 41.3 45.2
6 3.65 7.23 10.8 14.4 18.1 21.8 25.6 29.3 33.2 37.0 40.8 44.7
7 3.56 7.07 10.6 14.2 17.8 21.5 25.2 29.0 32.8 36.6 40.4 44.3
8 3.47 6.90 10.4 13.9 17.5 21.2 24.9 28.6 32.4 36.2 40.0 43.9
9 3.37 6.73 10.1 13.6 17.2 20.8 24.5 28.3 32.0 35.8 39.6 43.5
10 3.27 6.56 9.92 13.4 16.9 20.5 24.2 27.9 31.7 35.5 39.3 43.1
12 3.07 6.21 9.48 12.9 16.4 19.9 23.6 27.3 31.0 34.7 38.5 42.3
14 2.87 5.88 9.07 12.4 15.9 19.4 23.0 26.6 30.3 34.1 37.8 41.6
16 2.68 5.57 8.67 11.9 15.4 18.8 22.4 26.0 29.7 33.4 37.1 40.9
18 2.50 5.27 8.29 11.5 14.9 18.3 21.9 25.5 29.1 32.8 36.5 40.2
20 2.34 4.99 7.94 11.1 14.4 17.8 21.3 24.9 28.5 32.2 35.8 39.6
24 2.06 4.50 7.29 10.3 13.6 16.9 20.4 23.9 27.4 31.0 34.7 38.3
28 1.82 4.08 6.73 9.67 12.8 16.1 19.4 22.9 26.4 30.0 33.6 37.2
32 1.63 3.73 6.25 9.06 12.1 15.3 18.6 22.0 25.4 29.0 32.5 36.1
36 1.48 3.43 5.82 8.51 11.4 14.5 17.8 21.1 24.5 28.0 31.5 35.1
Table 7-13 (continued)
Coefficients Cfor Eccentrically Loaded Bolt Groups
Angle =75°
3
6
Available strength of a bolt group,
φ
Rnor Rn/Ω, is determined with
Rn=C×rn
or
where
P= required force, Puor Pa, kips
rn= nominal strength per bolt, kips
e= eccentricity of Pwith respect
to centroid of bolt group, in.
(not tabulated, may be
determined by geometry)
ex= horizontal component of e, in.
s= bolt spacing, in.
C= coefficient tabulated below
LRFD ASD
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–77
Cmin=
Pu
φrn
Cmin=
Ω
Pa
rn
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 77

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–78 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-14
Dimensions of High-Strength Fasteners, in.
Measurement
Nominal Bolt Diameter, in
1
/2
5 /8
3 /4
7 /8 11
1
/8 1
1
/4 1
3
/8 1
1
/2
Width Across
Flats, F
7
/8 1
1
/161
1
/4 1
7
/16 1
5
/81
13
/16 22
3
/162
3
/8
Height, H
5
/16
25 /64
15 /32
35 /64
39 /64
11 /16
25 /32
27 /32
15 /16
Thread Length11
1
/4 1
3
/8 1
1
/2 1
3
/4 222
1
/4 2
1
/4
Bolt Length=
Grip+Washer
11
/16
7 /8 11
1
/8 1
1
/4 1
1
/2 1
5
/8 1
3
/4 1
7
/8
Thickness+→
Width Across
Flats, W
7
/8 1
1
/161
1
/4 1
7
/16 1
5
/81
13
/16 22
3
/16 2
3
/8
Height, H
31
/64
39 /64
47 /64
55 /64
63 /641
7
/641
7
/321
11
/321
15
/32
Nom. Outside
Diameter, OD
1
1
/161
5
/161
15
/321
3
/4 22
1
/4 2
1
/2 2
3
/4 3
Nom. Inside
Diameter, ID
17
/32
11 /16
13 /16
15 /16 1
1
/8 1
1
/4 1
3
/8 1
1
/2 1
5
/8
Thckns.,
Min.0.097 0.122 0.122 0.136 0.136 0.136 0.136 0.136 0.136
T Max.0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177
Min. Edge
Distance, E
c
7
/16
9 /16
21 /32
25 /32
7 /8 11
3
/321
7
/321
5
/16
Min. Side
Dimension, A
1
3
/4 1
3
/4 1
3
/4 1
3
/4 1
3
/4 2
1
/4 2
1
/4 2
1
/4 2
1
/4
Mean
Thickness, T
5
/16
5 /16
5 /16
5 /16
5 /16
5 /16
5 /16
5 /16
5 /16
Taper in
Thickness
2:12 2:12 2:12 2:12 2:12 2:12 2:12 2:12 2:12
Min. Edge
Distance, E
c
7
/16
9 /16
21 /32
25 /32
7 /8 11
3
/321
7
/321
5
/16
a
Tolerances as specified in ASME B18.2.6
b
ASTM F436 washer tolerances, in.:
Nominal outside diameter −1/32; +1/32
Nominal diameter of hole −0; +1/32
Flatness: max. deviation from straight-edge placed on cut side shall not exceed 0.010
Concentricity: center of hole to outside diameter (full indicator runout) 0.030
Burr shall not project above immediately adjacent washer surface more than 0.010
c
For clipped washers only
d
For use with American standard beams (S) and channels (C)
A325 and
A490 Bolts
a
A563
Nuts
a
F436 Square or
Rect. Washers
b,d
F436 Circular Washers
b
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 78

Aligned Bolts
Nominal Socket
C3
Bolt Dia. Dia.H1H2C1C2Circular Clipped
5
/8 1
3
/4
25 /641
1
/41
11
/16
11 /16
9 /16
3
/4 2
1
/4
15 /321
3
/81
1
/4
3 /4
3 /4
11 /16
7
/8 2
1
/2
35 /641
1
/21
3
/8
7 /8
7 /8
13 /16
1 2
5
/8
39 /641
5
/81
7
/16
15 /161
7
/8
1
1
/8 2
7
/8
11 /161
7
/81
9
/161
1
/161
1
/81
1
1
/4 3
1
/8
25 /3221
11
/161
1
/8 1
1
/41
1
/8
1
3
/8 3
1
/4
27 /322
1
/81
3
/41
1
/4 1
3
/81
1
/4
1
1
/2 3
1
/2
15 /162
1
/41
7
/81
5
/161
1
/21
5
/16
Staggered Bolts
Stagger P, in.
Nominal Bolt Diameter, in.
F
5
/8
3 /4
7 /8 11
1
/81
1
/41
3
/81
1
/2
1 1
5
/8
1
1
/81
1
/2
1
1
/41
1
/2 1
15
/16
1
3
/81
7
/161
7
/82
3
/16
1
1
/21
1
/41
13
/162
1
/8 2
5
/16
1
5
/81
1
/4 1
3
/42
1
/162
5
/162
9
/16
1
3
/41
3
/161
11
/1622
1
/42
9
/162
13
/163
1
7
/81
1
/8 1
9
/161
15
/162
3
/162
1
/22
3
/433
3
/4
2 11
1
/21
13
/162
1
/82
7
/162
3
/42
15
/163
1
/4
2
1
/8
13 /161
3
/81
11
/1622
3
/82
11
/162
15
/163
3
/16
2
1
/4 1
1
/41
9
/161
7
/82
1
/42
5
/82
7
/8 3
3
/16
2
3
/8 1
1
/81
1
/2 1
3
/42
1
/82
1
/22
13
/163
1
/8
2
1
/2
7 /81
3
/8 1
5
/822
7
/162
3
/43
1
/16
2
5
/8 1
3
/161
1
/21
15
/162
5
/162
7
/83
2
3
/4
15 /161
3
/81
7
/82
1
/82
1
/22
7
/8
2
7
/8 1
3
/161
3
/42
1
/162
3
/82
13
/16
3
7
/81
5
/822
1
/4 2
11
/16
3
1
/8 1
1
/21
7
/82
1
/82
1
/2
3
1
/4 1
1
/41
3
/422
3
/8
3
3
/8
15 /161
5
/81
15
/162
1
/4
3
1
/2 1
3
/81
3
/42
1
/8
3
5
/8 1
1
/161
9
/162
3
3
/4 1
5
/161
7
/83
7
/8 1
11
/16
4 1
3
/8
Notes:
H1=height of head C3=clearance for fillet*
H2=maximum shank extension*P=bolt stagger
C1=clearance for tighteningF=clearance for tightening staggered bolts
C2=clearance for entering * Based on the use of one ASTM F436 washer
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–79
Table 7-15
Entering and Tightening Clearance, in.
Conventional ASTM A325 and A490 Bolts
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 79

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–80 DESIGN CONSIDERATIONS FOR BOLTS
Aligned Bolts
Nominal
C3
Tools Bolt Dia. H1 H2 C1 C2Circular Clipped
4
1
/4-in. Diameter Critical
3
/4
1 /2 1
3
/8 2
1
/8
7 /8
3 /4 —
7
/8
9 /16 1
1
/2 2
1
/8 1
7
/8 —
1
5
/8 1
3
/4 2
1
/8 1
1
/8 1—
2
3
/4-in. Diameter Critical
3
/4
1 /2 1
3
/8 1
3
/8
7 /8
3 /4 —
7
/8
9 /16 1
1
/2 1
3
/8 1
7
/8 —
1
5
/8 1
3
/4 1
3
/8 1
1
/8 1—
3
1
/8-in. Diameter Critical
5
/8
7 /16 1
1
/4 1
5
/8
13 /16
11 /16 —
3
/4
1 /2 1
3
/8 1
5
/8
7 /8
3 /4 —
7
/8
9 /16 1
1
/2 1
5
/8 1
7
/8 —
2
1
/8-in. Diameter Critical
5
/8
7 /16 1
1
/4 1
1
/8
13 /16
11 /16 —
3
/4
1 /2 1
3
/8 1
1
/8
7 /8
3 /4 —
7
/8
9 /16 1
1
/2 1
1
/8 1
7
/8 —
Staggered Bolts
Stagger P, in.
Nominal Bolt Diameter, in.
F
5
/8
3 /4
7 /8 1
1
1
/41
13
/16 1
3
/81
3
/4 2
1
/16 2
1
/4 2
7
/16
1
1
/21
11
/1622
3
/162
3
/8
1
5
/81
9
/161
7
/8 2
1
/162
1
/4
1
3
/41
1
/2 1
13
/1622
3
/16
1
7
/81
7
/161
3
/4 1
7
/82
1
/8
2 1
5
/161
5
/8 1
3
/42
2
1
/81
1
/4 1
9
/16 1
11
/161
15
/16
2
1
/41
3
/161
1
/2 1
9
/161
7
/82
3
/81
1
/8 1
3
/8 1
1
/2 1
3
/4
2
1
/211
5
/16 1
3
/81
11
/16
2
5
/8 1
3
/16 1
5
/161
9
/16
2
3
/4 1
1
/8 1
3
/161
1
/2
2
7
/8 1
1
/8 1
3
/8
3 1
5
/16
3
3
/8 1
5
/16
Notes:
H1=height of head C3=clearance for fillet*
H2=maximum shank extension*P=bolt stagger
C1=clearance for tighteningF=clearance for tightening staggered bolts
C2=clearance for entering * Based on one standard hardened washer
Large Tools
Small Tools
Table 7-16
Entering and Tightening Clearance, in.
Tension Control ASTM F1852 and F2280 Bolts
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 80

Diameter Area
Bolt Diameter Min. Root
K, Gross Bolt Min. Root Net Tensile Threads per
d, in. in. Area, in.
2 Area, in.
2 Area
a, in.
2 inch, n
b
1
/4 0.196 0.0490 0.0301 0.0320 20
3
/8 0.307 0.110 0.0742 0.0780 16
1
/2 0.417 0.196 0.136 0.142 13
5
/8 0.527 0.307 0.218 0.226 11
3
/4 0.642 0.442 0.323 0.334 10
7
/8 0.755 0.601 0.447 0.462 9
1 0.865 0.785 0.587 0.606 8
1
1
/8 0.970 0.994 0.740 0.763 7
1
1
/4 1.10 1.23 0.942 0.969 7
1
3
/8 1.19 1.49 1.12 1.16 6
1
1
/2 1.32 1.77 1.37 1.41 61
3
/4 1.53 2.41 1.85 1.90 5
2 1.76 3.14 2.43 2.50 4.5
2
1
/4 2.01 3.98 3.17 3.25 4.5
2
1
/2 2.23 4.91 3.90 4.00 42
3
/4 2.48 5.94 4.83 4.93 4
3 2.73 7.07 5.85 5.97 4
3
1
/4 2.98 8.30 6.97 7.10 4
3
1
/2 3.23 9.62 8.19 8.33 43
3
/4 3.48 11.0 9.51 9.66 4
4 3.73 12.6 10.9 11.1 4
a
Net tensile area =0.7854 × φ
d−Ω
0.9
n
743
ΩΩ
2
b
For diameters listed, thread series is UNC (coarse). For larger diameters, thread series is 4UN.
c2A denotes Class 2A fit applicable to external threads;
2B denotes corresponding Class 2B fit for internal threads.
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–81
Table 7-17
Threading Dimensions for High-Strength
and Non-High-Strength Bolts
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 81

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–82 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-18
Weights of High-Strength Fasteners,
pounds per 100 count
Bolt Length, in.
Nominal Bolt Diameter, in.
1
/2
5 /8
3 /4
7 /8 11
1
/8 1
1
/4 1
3
/8 1
1
/2
1 16.5 29.4 47.0 — — — — — —
1
1
/4 17.8 31.1 49.6 74.4 104 — — — —
1
1
/2 19.2 33.1 52.2 78.0 109 148 197 — —
1
3
/4 20.5 35.3 55.3 81.9 114 154 205 261 333
2 21.9 37.4 58.4 86.1 119 160 212 270 344
2
1
/4 23.3 39.8 61.6 90.3 124 167 220 279 355
2
1
/2 24.7 41.7 64.7 94.6 130 174 229 290 366
2
3
/4 26.1 43.9 67.8 98.8 135 181 237 300 379
3 27.4 46.1 70.9 103 141 188 246 310 391
3
1
/4 28.8 48.2 74.0 107 146 195 255 321 403
3
1
/2 30.2 50.4 77.1 111 151 202 263 332 416
3
3
/4 31.6 52.5 80.2 116 157 209 272 342 428
4 33.0 54.7 83.3 120 162 216 280 353 441
4
1
/4 34.3 56.9 86.4 124 168 223 289 363 453
4
1
/2 35.7 59.0 89.5 128 173 230 298 374 465
4
3
/4 37.1 61.2 92.7 133 179 237 306 384 478
5 38.5 63.3 95.8 137 184 244 315 395 490
5
1
/4 39.9 65.5 98.9 141 190 251 324 405 503
5
1
/2 41.2 67.7 102 146 196 258 332 416 515
5
3
/4 42.6 69.8 105 150 201 265 341 426 527
6 44.0 71.9 108 154 207 272 349 437 540
6
1
/4 — 74.1 111 158 212 279 358 447 552
6
1
/2 — 76.3 114 163 218 286 367 458 565
6
3
/4 — 78.5 118 167 223 293 375 468 577
7 — 80.6 121 171 229 300 384 479 589
7
1
/4 — 82.8 124 175 234 307 392 489 602
7
1
/2 — 84.9 127 179 240 314 401 500 614
7
3
/4 — 87.1 130 183 246 321 410 510 626
8 — 89.2 133 187 251 328 418 521 639
8
1
/4 — — — 192 257 335 427 531 651
8
1
/2 — — — 196 262 342 435 542 664
8
3
/4 — — — — — — 444 552 676
9 — — — — — — 453 563 689
Per inch
add’tl. Add
5.50 8.60 12.4 16.9 22.1 28.0 34.4 42.5 49.7
100, F436
Circular Washers
2.10 3.60 4.80 7.00 9.40 11.3 13.8 16.8 20.0
100, F436
Square Washers
23.1 22.4 21.0 20.2 19.2 34.0 31.6 31.2 32.9
This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI), updated for washer weights.
100, Conventional A325 or A490 Bolts with A563 Nuts
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 82

Table 7-19
Dimensions of Non-High-Strength
Fasteners, in.
Min, Thrd.
Bolts Dia
Square Hex Heavy Hex Countersunk
Length, in.
d, in.
L≤L>
F, in.C, in.H, in.F, in.C, in.H, in.F, in.C, in.H, in.C, in.H, in. 6 in. 6 in.
1
/4
3/8
1 /2
3 /16
7 /16
1 /2
3 /16–––
1
/2
1 /8
3 /41
3
/8
9/16
13 /16
1/4
9 /16
5 /8
1 /4 –––
11
/16
3/1611
1
/4
1
/2
3/41
1
/16
5 /16
3 /4
7 /8
3 /8
7 /81
3
/8
7 /8
1 /4 1
1
/41
1
/2
5
/8
15/161
5
/16
7/16
15 /161
1
/16
7 /161
1
/161
1
/4
7 /161
1
/8
5 /161
1
/21
3
/4
3
/41
1
/81
9
/16
1/21
1
/81
5
/16
1 /21
1
/41
7
/16
1 /21
3
/8
3 /8 1
3
/42
7
/81
5
/161
7
/8
5/81
5
/161
1
/2
9 /161
7
/161
11
/16
9 /161
9
/16
7 /1622
1
/4
1 1
1
/22
1
/8
11/161
1
/21
3
/4
11/161
5
/81
7
/8
11 /161
13
/16
1/2 2
1
/42
1
/2
1
1
/81
11
/162
3
/8
3/41
11
/161
15
/16
3/41
13
/162
1
/16
3 /42
1
/16
9 /162
1
/22
3
/4
1
1
/41
7
/82
5
/8
7/81
7
/82
3
/16
7 /822
5
/16
7 /82
1
/4
5 /8 2
3
/43
1
3
/82
1
/162
15
/16
15/162
1
/162
3
/8
15 /162
3
/162
1
/2
15 /162
1
/2
11 /1633
1
/4
1
1
/22
1
/43
3
/1612
1
/42
5
/812
3
/82
3
/412
11
/16
3/4 3
1
/43
1
/2
1
3
/4———2
5
/831
3
/162
3
/43
3
/161
3
/16——3
3
/44
2 ———3 3
7
/161
3
/83
1
/83
5
/81
3
/8——4
1
/44
1
/2
2
1
/4———3
3
/83
7
/81
1
/23
1
/24
1
/161
1
/2 ——4
3
/45
2
1
/2———3
3
/44
5
/161
11
/163
7
/84
1
/21
11
/16——5
1
/45
1
/2
2
3
/4———4
1
/84
3
/41
13
/164
1
/44
15
/161
13
/16——5
3
/46
3 ———4
1
/25
3
/1624
5
/85
5
/162——66
1
/2
3
1
/4———4
7
/85
5
/82
3
/16—————6 7
3
1
/2———5
1
/46
1
/162
5
/16—————6 7
1
/2
3
3
/4———5
5
/86
1
/22
1
/2 —————6 8
4 ———6 6
15
/162
11
/16—————6 8
1
/2
Notes:
For high-strength bolt and nut dimensions, refer to Table 7-14.
Square, hex and heavy hex bolt dimensions, rounded to nearest
1
/16in., are in accordance with ANSI B18.2.1.
Countersunk bolt dimensions, rounded to the nearest
1
/16in., are in accordance with ANSI 18.5.
Minimum thread length =2
d+
1
/4in. for bolts up to 6 in. long, and 2d+
1
/2in. for bolts longer than 6 in.
Bolts
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–83
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 83

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–84 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-19 (continued)
Dimensions of Non-High-Strength
Fasteners, in.
Nut Size,
Square Hex Heavy Square Heavy Hex
in.
W, in.C, in.N, in.W, in.C, in.N, in.W, in.C, in.N, in.W, in.C, in.N, in.
1
/4
7 /16
5 /8
1 /4
7 /16
1 /2
3 /16
1 /2
11 /16
1 /4
1 /2
9 /16
1 /4
3
/8
5 /8
7 /8
5 /16
9 /16
5 /8
1 /4
11 /161
3
/8
11 /16
13 /16
3 /8
1
/2
4 /51
1
/8
7 /16
3 /4
7 /8
3 /8
7 /81
1
/4
1 /2
7 /81
1
/2
5
/811
7
/16
9 /16
15 /161
1
/16
7 /161
1
/161
1
/2
5 /81
1
/161
1
/4
5 /8
3
/41
1
/81
9
/16
11 /161
1
/81
5
/16
1 /21
1
/41
3
/4
3 /41
1
/41
7
/16
3 /4
7
/81
5
/161
7
/8
3 /41
5
/161
1
/2
9 /161
7
/162
1
/16
7 /81
7
/161
11
/16
7 /8
1 1
1
/22
1
/8
7 /81
1
/21
3
/4
11 /161
5
/82
5
/1611
5
/81
7
/81
1
1
/81
11
/162
3
/811
11
/161
15
/16
3 /41
13
/162
9
/161
1
/81
13
/162
1
/161
1
/8
1
1
/41
7
/82
5
/81
1
/81
7
/82
3
/16
7 /822
13
/161
1
/422
5
/161
1
/4
1
3
/82
1
/162
15
/161
1
/42
1
/162
3
/8
15 /162
3
/163
1
/8 1
3
/82
3
/162
1
/21
3
/8
1
1
/22
1
/43
3
/161
5
/162
1
/42
5
/812
3
/83
3
/8 1
1
/22
3
/82
3
/41
1
/2
1
3
/4—————————2
3
/43
3
/161
3
/4
2 —————————3
1
/83
5
/82
2
1
/4—————————3
1
/24
1
/162
3
/16
2
1
/2—————————3
7
/84
1
/22
7
/16
2
3
/4—————————4
1
/44
15
/162
11
/16
3 —————————4
5
/85
5
/162
15
/16
3
1
/4—————————5 5
3
/43
3
/16
3
1
/2—————————5
3
/86
3
/163
7
/16
3
3
/4—————————5
3
/46
5
/83
11
/16
4 —————————6
1
/87
1
/163
15
/16
Notes:
For high-strength bolt and nut dimensions, refer to Table 7-14.
Square, hex and heavy hex bolt dimensions, rounded to nearest
1
/16in., are in accordance with ANSI B18.2.1.
Countersunk bolt dimensions, rounded to the nearest
1
/16in., are in accordance with ANSI 18.5.
Minimum thread length =2
d+
1
/4in. for bolts up to 6 in. long, and 2d+
1
/2in. for bolts longer than 6 in.
Nuts
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 84

Bolt Length, in.
Nominal Bolt Diameter, in.
1
/4
3 /8
1 /2
5 /8
3 /4
7 /8 11
1
/8 1
1
/4
1 2.38 6.11 13.0 24.1 38.9 — — — —
1
1
/4 2.71 6.71 14.0 25.8 41.5 — — — —
1
1
/2 3.05 7.47 15.1 27.6 44.0 67.3 95.1 — —
1
3
/4 3.39 8.23 16.5 29.3 46.5 70.8 99.7 — —
2 3.73 8.99 17.8 31.4 49.1 74.4 104 143 —
2
1
/4 4.06 9.75 19.1 33.5 52.1 77.9 109 149 —
2
1
/2 4.40 10.5 20.5 35.6 55.1 82.0 114 155 206
2
3
/4 4.74 11.3 21.8 37.7 58.2 86.1 119 161 213
3 5.07 12.0 23.2 39.8 61.2 90.2 124 168 221
3
1
/4 5.41 12.8 24.5 41.9 64.2 94.4 129 174 229
3
1
/2 5.75 13.5 25.9 44.0 67.2 98.5 135 181 237
3
3
/4 6.09 14.3 27.2 46.1 70.2 103 140 188 246
4 6.42 15.1 28.6 48.2 73.3 107 145 195 254
4
1
/4 6.76 15.8 29.9 50.3 76.3 111 151 202 262
4
1
/2 7.10 16.6 31.3 52.3 79.3 115 156 208 271
4
3
/4 7.43 17.3 32.6 54.4 82.3 119 162 215 279
5 7.77 18.1 33.9 56.5 85.3 123 167 222 288
5
1
/4 8.11 18.9 35.3 58.6 88.4 127 172 229 296
5
1
/2 8.44 19.6 36.6 60.7 91.4 131 178 236 304
5
3
/4 8.78 20.4 38.0 62.8 94.4 136 183 242 313
6 9.12 21.1 39.3 64.9 97.4 140 188 249 321
6
1
/4 9.37 21.7 40.4 66.7 100 143 193 255 329
6
1
/2 9.71 22.5 41.8 68.7 103 147 198 262 337
6
3
/4 10.1 23.3 43.1 70.8 106 151 204 269 345
7 10.4 24.0 44.4 72.9 109 156 209 275 354
7
1
/4 10.7 24.8 45.8 75.0 112 160 214 282 362
7
1
/2 11.0 25.5 47.1 77.1 115 164 220 289 371
7
3
/4 11.4 26.3 48.5 79.2 118 168 225 296 379
8 11.7 27.0 49.8 81.3 121 172 231 303 387
8
1
/2 — 28.6 52.5 85.5 127 180 241 316 404
9 — 30.1 55.2 89.7 133 189 252 330 421
9
1
/2 — 31.6 57.9 93.9 139 197 263 343 438
10 — 66.1 60.6 98.1 145 205 274 357 454
10
1
/2 — 34.6 63.3 102 151 213 284 371 471
11 — 36.2 66.0 106 157 221 295 384 488
11
1
/2 — 37.7 68.7 110 163 230 306 398 505
12 — 39.2 71.3 115 170 238 316 411 522
12
1
/2 — — 74.0 119 176 246 327 425 538
13 — — 76.7 123 182 254 338 439 556
13
1
/2 — — 79.4 127 188 263 349 452 572
14 — — 82.1 131 194 271 359 466 589
14
1
/2 — — 84.8 135 200 279 370 479 605
15 — — 87.5 140 206 287 381 493 622
15
1
/2 — — 90.2 144 212 296 392 507 639
16 — — 92.9 148 218 304 402 520 656
Per inch
add’tl. Add
1.3 3.0 5.4 8.4 12.1 16.5 21.4 27.2 33.6
Notes:
For weight of high-strength fasteners, see Table 7-19.
This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI).
*Square bolt per ANSI B 18.2.1, hexagonal nut per ANSI B18.2.2. For other non-high-strength fasteners, refer to Tables 7-21 and 7-22.
100 Square Bolts with Hexagonal Nuts*
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–85
Table 7-20
Weights of Non-High-Strength
Fasteners, pounds
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 85

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–86 DESIGN CONSIDERATIONS FOR BOLTS
Table 7-21
Weight Adjustments
for Combinations of Non-High-Strength
Fasteners Other than Tabulated in Table 7-20
Combinations of 100
Add
Nominal Bolt Diameter, in.
or Subtr.1
/4
3 /8
1 /2
5 /8
3 /4
7 /8 11
1
/81
1
/4
Square Nuts + 0.1 1.0 2.0 3.4 3.5 5.5 8.0 12.2 16.3
Heavy Square Nuts+ 0.6 2.1 4.1 7.0 11.6 17.2 23.2 32.1 41.2
Heavy Hex Nuts + 0.4 1.5 2.8 4.6 7.6 10.7 14.2 18.9 24.3
Square Nuts + 0.1 0.6 1.1 1.4 0.2 0.5 -0.2 -0.1 -1.7
Hex Nuts – 0.0 0.4 0.9 2.0 3.3 5.0 8.2 12.3 18.0
Heavy Square Nuts+ 0.6 1.7 3.2 5.0 8.3 12.2 15.0 19.8 23.2
Heavy Hex Nuts + 0.4 1.1 1.9 2.6 4.3 5.7 6.0 6.6 6.3
Heavy Square Nuts+ — — 4.7 7.3 11.3 16.5 20.7 27.0 33.6
Heavy Hex Nuts + — — 3.4 4.9 7.3 10.0 11.7 13.8 16.7
Notes:
For weights of high-strength fasteners, see Table 7-18.
This table conforms to weight standards adopted by the Industrial Fasteners Institute (IFI).
*Add or subtract value in this table to or from the value in Table 7-20.
100,
Hex
Bolts
100, Square
Bolts with
Hexagonal
Nuts*
Square
Bolts
With
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 86

Table 7-22
Weights of Non-High-Strength Bolts
of Diameter Greater than 1
1
/4in., pounds
Weight of 100 Each
Nominal Bolt Diameter, in.
1
3
/81
1
/21
3
/422
1
/42
1
/22
3
/433
1
/43
1
/23
3
/44
Square Bolts105130 ——————————
Hex Bolts84.0 112 178 259 369 508 680 900 1120 1390 1730 2130
Heavy Hex Bolts95.0 124 195 280 397 541 720 950 — — — —
One Linear Inch,
Unthreaded Shank42.0 50.0 68.2 89.0 113 139 168 200 235 272 313 356
One Linear Inch,
Threaded Shank35.0 42.5 57.4 75.5 97.4 120 147 178 210 246 284 325
Square Nuts 94.5 122 — — — — ——————
Heavy Square Nuts125161 ——————————
Heavy Hex Nuts102 131 204 299 419 564 738 950 1190 1530 1810 2180
– Indicates that the bolt size is not available
Heads of:
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLES 7–87
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 87

AMERICANINSTITUTE OFSTEELCONSTRUCTION
7–88 DESIGN CONSIDERATIONS FOR BOLTS
AISC_Part 7B:14th Ed. 2/24/11 8:36 AM Page 88

AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 8
DESIGN CONSIDERATIONS FOR WELDS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
GENERAL REQUIREMENTS FOR WELDED JOINTS . . . . . . . . . . . . . . . . . . . . . . . 8–3
Consumables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Thermal Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Air-Arc Gouging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Visual Testing (VT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Penetrant Testing (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Magnetic-Particle Testing (MT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
Ultrasonic Testing (UT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
Radiographic Testing (RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
PROPER SPECIFICATION OF JOINT TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
Selection of Weld Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
Weld Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
Available Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
Effect of Load Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
CONCENTRICALLY LOADED WELD GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
ECCENTRICALLY LOADED WELD GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
Eccentricity in the Plane of the Faying Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
Instantaneous Center of Rotation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9
Elastic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–12
Eccentricity Normal to the Plane of the Faying Surface . . . . . . . . . . . . . . . . . . . . . 8–14
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Special Requirements for Heavy Shapes and Plates . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Placement of Weld Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Welds in Combination with Bolts or Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8–15
One-Sided Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Welding Considerations and Appurtenances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Clearance Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Excessive Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
DESIGN CONSIDERATIONS FOR WELDS 8–1
AISC_Part 8A:14th Ed. 4/1/11 8:56 AM Page 1

8–2 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Minimum Shelf Dimensions for Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
Beam Copes and Weld Access Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
Corner Clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
Backing Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
Spacer Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
Weld Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
Tack Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
Lamellar Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
Prior Qualification of Welding Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
Painting Welded Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–22
WELDING CONSIDERATIONS FOR HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–23
HSS Welding Requirements in AWS D1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–24
Clause 2, Part D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–25
Clause 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–25
Clause 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–25
Clause 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–26
Clause 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–26
Weld Sizing for Uneven Distribution of Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–26
Detailing Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–27
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–27
PART 8 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–32
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–33
Table 8-1. Coefficients, C, for Concentrically Loaded Weld Group Elements . . . . 8–33
Table 8-2. Prequalified Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–34
Table 8-3. Electrode Strength Coefficient, C
1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–65
Table 8-4. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–66
Table 8-5. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–72
Table 8-6. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–78
Table 8-7. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–84
Table 8-8. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–90
Table 8-9. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . . . 8–96
Table 8-10. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . 8–102
Table 8-10a. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . 8–108
Table 8-11. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . . 8–113
Table 8-11a. Coefficients, C, for Eccentrically Loaded Weld Groups . . . . . . . . . . 8–119
Tables 8-12. Approximate Number of Passes for Welds . . . . . . . . . . . . . . . . . . . . 8–124
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 2

GENERAL REQUIREMENTS FOR WELDED JOINTS 8–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of welded joints. For the design of connecting elements, see Part 9. For the
design of simple shear, moment, bracing and other connections, see Parts 10 through 15.
GENERAL REQUIREMENTS FOR WELDED JOINTS
The requirements for welded construction are given in AISC SpecificationSection M2.4,
which requires the use of AWS D1.1, except as modified in AISC SpecificationSection J2.
For further information see also Blodgett et al. (1997).
Welding in structural steel is performed in compliance with written welding procedure
specifications (WPS). WPS are qualified by test or prequalified in AWS D1.1. WPS are used
to control base metal, consumables, joint geometry, electrical and other essential variables
for welded joints.
Consumables
Requirements for welding consumables are given in AISC SpecificationSections A3.5,
J2.6 and J2.7. Permissible filler metal strengths are shown in Table J2.5, based on matching
filler metals shown in AWS D1.1 Table 3.1. Filler metal notch-toughness requirements are
given in AISC SpecificationSection J2.6. Low-hydrogen electrodes for shielded metal arc
welding (SMAW) are required, as shown in AWS D1.1 Table 3.1. Low-hydrogen SMAW
electrodes have a limited exposure time and rod ovens are necessary near the point of use
for storage.
Requirements for the manufacture, classification and packing of consumables are given
in AWS A5.x specifications. Consumables vary based upon their welding process. SMAW,
or “stick” welding, is a manual process. Submerged arc welding (SAW) is a semiautomatic
or automatic process. Consumables are classified as an electrode flux combination because
the weld metal properties are dependant on both the electrode and the flux. SAW is suitable
for long straight or circumferential welds but the work must be performed in horizontal or
flat positions. Flux-cored arc welding (FCAW) uses wire electrode that contains flux in the
center. FCAW electrodes are provided for use with a gas shield or self shield. Gas for shield-
ing is argon, carbon dioxide or a combination of the two. Gas metal arc welding (GMAW)
uses wire electrodes that are solid or have a metal core. GMAW is performed with gas
shielding.
Thermal Cutting
Oxygen-fuel gas cutting can be used to cut almost any commercially available plate thick-
ness. If the plate being cut contains large discontinuities or nonmetallic inclusions,
turbulence may be created in the cutting stream, resulting in notches or gouges in the edge
of the cut. Plasma-arc cutting is much faster and less susceptible to the effects of disconti-
nuities or nonmetallic inclusions, but leaves a slight taper in the cut as it descends and can
be used only up to about 1
1
/2-in. thickness.
Air-Arc Gouging
In this method, a carbon arc is used to melt a nugget-shaped area of the base metal, which
is blown away with a jet of compressed air. Air-arc gouging can be used to remove weld
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 3

8–4 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
defects, gouge the weld root to sound weld metal, form a U groove on one side of a square
butt joint, and for similar operations.
Inspection
The five most commonly used methods for welding inspection are discussed following and
in the Guide for the Nondestructive Examination of Welds(AWS B1.10) (AWS, 1992).
Chapter N of the AISC Specification contains requirements for nondestructive examination
(NDE) of welds. The general contractor or owner must arrange for this. This work must be
scheduled to minimize interruption of the fabricator and erector. See AISC Specification
Section N5.2.The designer may specify in the contract documents the types of weld inspec-
tion required as well as the extent and application of each type of inspection differing from
the requirements of Chapter N. In the absence of instructions for weld inspection, the fab-
ricator or erector is only responsible for those weld discontinuities found by visual
inspection (see AWS D1.1). Welds may have defects that cannot be rejected based on AWS
criteria. Stipulation of various NDE methods has the effect of selecting acceptance criteria
and therefore has a related effect on costs. Weld repairs which may be difficult to perform
and which may potentially damage other aspects of the connection are best referred to the
engineer of record to determine the necessity of the correction with due consideration of
fitness for purpose.
Visual inspection is the most commonly required inspection process. The designer must
realize that more stringent requirements for inspection can needlessly add significant cost to
the project and should specify them only in those instances where they are essential to the
integrity of the structure.
Visual Testing (VT)
Visual inspection provides the most economical way to check weld quality and is the most
commonly used method. Joints are scrutinized prior to the commencement of welding to
check fit-up, preparation bevels, gaps, alignment and other variables. After the joint is
welded, it is then visually inspected in accordance with AWS D1.1. If a discontinuity is sus-
pected, the weld is either repaired or other inspection methods are used to validate the
integrity of the weld. In most cases, timely visual inspection by an experienced inspector is
sufficient and offers the most practical and effective inspection alternative to other, more
costly methods.
Penetrant Testing (PT)
This test uses a red dye penetrant applied to the work from a pressure spray can. The dye
penetrates any crack or crevice open to the surface. Excess dye is removed and white devel-
oper is sprayed on. Dye seeps out of the crack, producing a red image on the white developer
(See Figure 8-1).
Penetrant testing (PT) can be used to detect tight cracks as long as they are open to the
surface. However, only surface cracks are detectable. Furthermore, deep weld ripples and
scratches may give a false indication when PT is used.
Dye penetrant examination tends to be messy and slow, but can be helpful when deter-
mining the extent of a defect found by visual inspection. This is especially true when a
defect is being removed by gouging or grinding for the repair of a weld to assure that the
defect is completely removed.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 4

GENERAL REQUIREMENTS FOR WELDED JOINTS 8–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Magnetic-Particle Testing (MT)
A magnetizing current is introduced with a yoke or contact prods into the weldment to be
inspected, as sketched in Figure 8-2 (prods shown). This induces a magnetic field in the work,
which will be distorted by any cracks, seams, inclusions, etc. located on or near (within
approximately 0.1 in. of) the surface. A dry magnetic powder blown lightly on the surface by
a rubber squirt bulb will be picked up at such discontinuities making a distinct mark. The
magnetically held particles show the location, size, and shape of the discontinuity.
The method will indicate surface cracks that might be difficult for liquid penetrant to
enter and subsurface cracks to about 0.1-in. depth, with proper magnetization. Records may
be kept by picking up the powder pattern with clear plastic tape. Cleanup is easy, but demag-
netizing, if necessary, may not be. If the magnetizing prod is lifted from the work while the
current is still on, an arc strike which could lead to cracking could result. If arc strikes occur,
they should be ground out.
Magnetic particle examination can be useful when a defect is suspected from visual
inspection or when the absence of cracking in areas of high restraint must be confirmed.
Relatively smooth surfaces are required for MT and it is reasonably economical. Where
delayed cracking is suspected, the nondestructive examination may have to be performed
after a cooling time—typically 48 hours.
Fig. 8-1. Schematic illustration of penetrant testing (PT).
Fig. 8-2. Schematic illustration of magnetic particle testing (MT).
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 5

8–6 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ultrasonic Testing (UT)
The ultrasonic inspection process is analogous to sonar. A short pulse of high-frequency
sound is broadcast from a crystal into a metal, after which the crystal waits to receive reflec-
tions from the far end of the metal member and from any voids encountered on the way
through. The technique is called pulse echo. The sound beam is produced by a piezoelectric
transducer energized by an electric current which causes the crystal to vibrate and transmit
through a liquid couplant into the metal. Any reflections are displayed as pips on a cathode
ray tube (CRT) grid whose horizontal scale represents distance through the metal. The ver-
tical scale represents the strength (or area) of the reflecting surface. The system is shown
schematically in Figure 8-3.
The accuracy of ultrasonic inspection is highly dependent upon the skill and training of
the operator and frequent calibration of the instrument. There is a “dead” area beneath most
transducers that makes it difficult to inspect members less than
5
/16in. in thickness.
Austenitic stainless steels and extremely coarse-grained steels, e.g., electroslag welds, are
difficult to inspect; but on structural carbon and low-alloy steels, the process can detect flat
discontinuities (favorably oriented for reflection) smaller than
1
/64in. The crystal, which is
3
/8in. to 1 in. in size, can be readily moved about to check many orientations and can pro-
ject the beam into the metal at angles of 90°, 70°, 60° and 45°. With the latter three angles,
Fig. 8-3. Variations in UT reflections caused by defects at the boundary.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 6

PROPER SPECIFICATION OF JOINT TYPE 8–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the beam can be bounced around inside the metal, producing echoes from any discontinuity
on the way. For more information see Krautkramer (1990) and Institute of Welding (1972).
Ultrasonic testing (UT) is a more versatile, rapid and economical inspection method than
radiography, but it does not provide a permanent record like the X-ray negative. The oper-
ator, instead, makes a written record of discontinuity indications appearing on his CRT.
Certain joint geometry limits the use of the ultrasonic method.
Ultrasonic examination has limited applicability in some applications, such as HSS fab-
rication. Relatively thin sections and variations in joint geometry can lead to difficulties in
interpreting the signals, although technicians with specific experience on weldments similar
to those to be examined may be able to decipher UT readings in some instances. Similarly,
UT is usually not suitable for use with fillet welds and smaller partial-joint-penetration (PJP)
groove welds. Complete-joint-penetration (CJP) groove welds with and without backing
bars also give readings that are subject to differing interpretations. Ultrasonic examination
may be specified to validate the integrity of CJP groove welds that are subject to tension.
Ultrasonic examination has largely replaced radiographic examination for the inspection
of critical CJP groove welds in building construction. New technology called phased array
is in development and in use in some applications. Phased array is a computer controlled
ultrasonic examination capable of providing an informative display. AWSD1.1 provisions
for acceptance criteria have not been adopted for this method at this time.
Radiographic Testing (RT)
Radiographic testing (RT) is basically an X-ray film process. To be detected by radiography,
a crack must be oriented roughly parallel to the impinging radiation beam, and occupy about
1
1
/2% of the metal thickness along that beam. There are problems with radiographs of fil-
lets, tee and corner joints, however, because the radiation beam must penetrate varying
thicknesses.
Precautions for avoiding radiation hazards interfere with shop work, and equipment and
film costs make it the most expensive inspection method. Ultrasonic systems have gradually
supplemented and even supplanted radiography.
Radiographic examination has very limited applicability in some applications, such as for
HSS fabrication, because of the irregular shape of common joints and the resulting varia-
tions in thickness of material as projected onto film. RT can be used successfully for butt
splices, but can only provide limited information about the condition of fusion at backing
bars near the root corners. The general inability to place either the radiation source or the
film inside the HSS means that exposures must usually be taken through both the front and
back faces of the section with the film attached to the outside of the back face. Several such
shots progressing around the member are needed to examine the complete joint.
PROPER SPECIFICATION OF JOINT TYPE
Selection of Weld Type
The most common weld types are fillet and groove welds. Fillet welds are normally more
economical than groove welds and generally should be used in applications for which
groove welds are not required. Additionally, fillet welds around the inside of holes or slots
require less weld metal than plug or slot welds of the same size, even though the diameters
of holes and widths of slots for fillet welds must be larger to accommodate the necessary tilt
of the electrode.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 7

PJP groove welds are more economical than CJP groove welds. When groove welds are
required, bevel and V groove welds, which can be flame-cut, are usually more economical
than J and U groove welds, which must be air-arc gouged or planed. Also, double-bevel,
double-V, double-J, and double-U welds are typically more economical than welds of the
same type with single-sided preparation because they use less weld metal, particularly as the
thickness of the connection element(s) being welded increases. The symmetry also results
in less rotational distortion strain. However, in thinner connection elements, the savings in
weld-metal volume may not offset the additional cost of double edge preparation, weld-root
cleaning, and repositioning. As a general rule of thumb, double-sided joint preparation is
normally less expensive than single-sided preparation above 1-in. thickness.
Weld Symbols
For guidance on the proper use of weld symbols, refer to Table 8-2. More extensive infor-
mation on weld symbols may be found in AWS A2.4, Standard Symbols for Welding,
Brazing, and Nondestructive Examination (AWS, 2007).
Available Strength
The available strength of a welded joint is determined in accordance with AISC
SpecificationSection J2.4 and Table J2.5. The calculation of the available strength of a
longitudinally loaded fillet weld can be simplified from that given in AISC Specification
Table J2.5. For a fillet weld less than or equal to 100 times the weld size in length, the
available shear strength, φR
nor Rn/Ω, may be calculated as follows:
(8-1)
φ=0.75 Ω=2.00
where
l=length, in.
D=weld size in sixteenths of an inch
For F
EXX= 70 ksi:
8–8 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
φRn=1.392Dl
R
n
=0.928Dl
Ω
RF
D
ln EXX=












060
2
216
.
When the fillet weld is not longitudinally loaded, the alternative provisions in AISC
SpecificationSection J2.4(a) may be used to take advantage of the increased strength due to
load angle. The maximum strength increase will be for a transversely loaded fillet weld,
which is 50% stronger than the same fillet weld longitudinally loaded.
(8-2b)(8-2a)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 8

ECCENTRICALLY LOADED WELD GROUPS 8–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effect of Load Angle
When designing fillet welds, the increased strength due to loading angle may be accounted
for by multiplying the available strength of the weld by the following expression, as given
in AISC SpecificationEquation J2-5:
(1.0 +0.50sin
1.5
θ)
where
θ=angle of loading measured from the weld longitudinal axis, degrees
For transversely loaded welds, θ=90°. This accounts for a 50% increase in weld strength
over a longitudinally loaded weld. However, this increased weld strength is accompanied
by a decrease in ductility. For a single line weld, the decreased ductility is inconsequen-
tial for most applications. However, for weld groups composed of welds loaded at various
angles, this change in ductility means that the designer must consider load-deformation
compatibility.
CONCENTRICALLY LOADED WELD GROUPS
The load-deformation curves shown in Figure 8-5 highlight the need for consideration of
deformation compatibility, since the transversely loaded weld will fracture before the lon-
gitudinally loaded weld obtains its full strength.
A simplified procedure for determining the available strength of concentrically loaded fil-
let weld groups is discussed later in Part 8 using Table 8-1. In lieu of using this procedure,
it is permitted to sum the capacities of individual weld elements, neglecting load-deforma-
tion compatibility, when no increase in strength due to the loading angle is assumed.
ECCENTRICALLY LOADED WELD GROUPS
Eccentricity in the Plane of the Faying Surface
Eccentricity in the plane of the faying surface produces additional shear. The welds must be
designed to resist the combined effect of the direct shear, P
uor Pa, and the additional shear
from the induced moment, P
ueor P ae. Two methods of analysis for this type of eccentricity
are the instantaneous center of rotation method and the elastic method.
The instantaneous center of rotation method is more accurate, but generally requires the
use of tabulated values or an iterative solution. The elastic method is simplified, but may be
excessively conservative because it neglects the ductility of the weld group and the poten-
tial load increase.
Instantaneous Center of Rotation Method
Eccentricity produces both a rotation and a translation of one connection element with
respect to the other. The combined effect of this rotation and translation is equivalent to a
rotation about a point defined as the instantaneous center of rotation (IC) as illustrated in
Figure 8-4(a). The location of the IC depends upon the geometry of the weld group as well
as the direction and point of application of the load.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 9

8–10 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The load deformation relationship for a unit length segment of the weld, as illustrated in
Figure 8-5, is an approximation of the equation by Lesik and Kennedy (1990). The nominal
shear strength of the weld element, F
nwi,is limited by the deformation, Δui, of the weld seg-
ment that first reaches its limit, where
F
nwi=0.60F EXX(1.0 +0.50 sin
1.5
θi) [pi(1.9 − 0.9p i)]
0.3
(8-3)
Fig. 8-4. Instantaneous center of rotation method.
(b) Forces on weld elements
(a) Instantaneous center of rotation (IC)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 10

ECCENTRICALLY LOADED WELD GROUPS 8–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
nwi=nominal shear strength of the weld segment at a deformation, Δ, ksi
F
EXX=weld electrode strength, ksi
θ
i=load angle measured relative to the weld longitudinal axis, degrees
p
i=ratio of element deformation, Δi, to its deformation at the maximum stress, Δmi
Δi=deformation of the element taken as the critical deformation, Δucr, proportioned
by the ratio of the IC to element distance to the IC to critical element distance, in.
Δ
ucr =ultimate deformation of the critical element, Δui, of the element with the mini-
mum Δ
ui/(IC to element distance), in.
Δ
ui=1.087w(θ i+6)
-0.65
≤0.17w, in. (8-4)
w=weld leg size, in.
Unlike the load-deformation relationship for bolts, the strength deformation of welds is
dependent upon the angle, θ
i, that the resultant elemental force makes with the axis of the
weld element. Load-deformation curves in Figure 8-5 for values of weld element shear
strength, P, relative to P
o =0.60F EXXfor values of θi=0º, 15º, 30º, 45º, 60º, 75º and 90º are
shown. For further information, see AISC SpecificationSection J2.4 and its commentary.
The nominal strengths of the other unit-length weld segments in the joint can be deter-
mined by applying a deformation, Δ, that varies linearly with the distance from the IC.
The nominal shear strength of the weld group is, then, the sum of the individual strengths
of all weld segments. Because of the nonlinear nature of the requisite iterative solution,
for sufficient accuracy, a minimum of 20 weld elements for the longest line segment is
generally recommended.
Fig. 8-5. Fillet weld strength as a function of load angle, θ.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 11

8–12 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The individual resistance of each weld segment is assumed to act on a line perpendicular
to a ray passing through the IC and the centroid of that weld segment, as illustrated in Figure
8-4(b). If the correct location of the instantaneous center has been selected, the three equa-
tions of in-plane static equilibrium,ΣF
xAwei=0, ΣF yAwei=0, andΣM =0, will be satisfied,
where A
weiis the effective weld area.
For further information, see Crawford and Kulak (1968) and Butler et al. (1972).
Elastic Method
For a force applied as illustrated in Figure 8-4, the eccentric force, P uor Pa, is resolved into
a force, P
uor Pa, acting through the center of gravity (CG) of the weld group and a moment,
P
ueor P ae, where eis the eccentricity. Each weld element is then assumed to resist an equal
share of the direct shear, P
uor Pa, and a share of the eccentric moment, P ueor P ae, propor-
tional to its distance from the CG. The resultant vectorial sum of these forces, r
uor ra, is the
required strength for the weld.
The shear per linear inch of weld due to the concentric force, r
puor rpa, is determined as
where
l =total length of the weld in the weld group, in.
To determine the resultant shear per linear inch of weld, r
puor rpamust be resolved into
horizontal components, r
puxor rpax, and vertical components, r puyor rpay, where
r
pux=rpusinθ(LRFD) (8-6a)
r
pax=rpasinθ(ASD) (8-6b)
r
puy=rpucosθ(LRFD) (8-7a)
r
pay=rpacosθ(ASD) (8-7b)
The shear per linear inch of weld due to the moment, P
ueor P ae, is r muor rma, where
where
c= radial distance from CG to point in weld group most remote from CG, in.
I
p= Ix+Iy=polar moment of inertia of the weld group, in.
4
per in. Refer to Figure 8-6.
For section moduli and torsional constants of various welds treated as line elements,
refer to Table 5 in Section 7 of Blodgett (1966).
LRFD ASD
r
P
lpu
u= r
P
lpa
a=
LRFD ASD
r
Pec
Imu
u
p=
r
Pec
Ima
a
p=
(8-5b)
(8-8b)(8-8a)
(8-5a)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 12

ECCENTRICALLY LOADED WELD GROUPS 8–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 8-6. Moments of inertia of various weld segments.
IR
IRld
Ixo
xy
yo=−






=−






+
()
π
π
π
π
4
2
4
2
3
3
2
==−






π
π4
2
3
R
=−






+ ()
π
π4
2
3 2
IRldyx
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 13

8–14 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
To determine the resultant force on the most highly stressed weld element, r muor rmamust
be resolved into horizontal component r
muxor rmaxand vertical component r muyor rmay,
where
In the above equations, c
xand c yare the horizontal and vertical components of the radial
distance cat the point where r
uor rais a maximum. The point in the weld group where the
stress is highest will usually be at a corner, or a termination, or where the element is farthest
from the center of gravity. Thus, the resultant force, r
uor ra, is determined as
which should be compared against the available strength, found in AISC Specification
Table J2.5. For further information, see Higgins (1971).
Eccentricity Normal to the Plane of the Faying Surface
Eccentricity normal to the plane of the faying surface produces tension above and compres-
sion below the neutral axis, as illustrated in Figure 8-7 for a bracket connection. The
eccentric force, P
uor Pa, is resolved into a direct shear, P uor Pa, acting at the faying surface
Fig. 8-7. Welds subject to eccentricity normal to the plane of the faying surface.
LRFD ASD
LRFD ASD
rrr rru pux mux puy muy=+( )++( )
22
rrr rra pax max pay may=+( )++( )
22
r
Pec
I
r
Pec
Imux
uy
p
muy
ux
p=
=
r
Pec
I
r
Pec
Imax
ay
p
may
ax
p=
=
(8-9b)
(8-10b)
(8-9a)
(8-10a)
(8-11b)(8-11a)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 14

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
of the joint and a moment normal to the plane of the faying surface, P ueor P ae, where eis
the eccentricity. Each unit-length segment of weld is then assumed to resist an equal share
of the concentric force, P
uor Pa, and the moment is resisted by tension in the welds above
the neutral axis and compression below the neutral axis.
In contrast to bolts, where the interaction of shear and tension must be considered, for
welds, shear and tension can be combined vectorially into a resultant shear. Thus, the solu-
tion of a weld loaded eccentrically normal to the plane of the faying surface is similar to that
discussed previously for welds loaded eccentrically in the plane of the faying surface.
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of welded joints.
Special Requirements for Heavy Shapes and Plates
For CJP groove welded joints in heavy shapes with a flange thickness exceeding 2 in.
or built-up sections consisting of plates with a thickness exceeding 2 in., see AISC
SpecificationSections A3.1c and Section A3.1d.
Placement of Weld Groups
For the required placement of weld groups at the ends of axially loaded members, see AISC
SpecificationSection J1.7.
Welds in Combination with Bolts or Rivets
For welds used in combination with bolts or rivets, see AISC SpecificationSection J1.8.
Fatigue
For applications involving fatigue, see AISC SpecificationAppendix 3.
One-Sided Fillet Welds
When lateral deformation is not otherwise prevented, a severe notch can result at locations
of one-sided welds. For the fillet-welded joint illustrated in Figure 8-8, the unwelded side
has no strength in tension and a notch may form from the unwelded side. Using one fillet
weld on each side will eliminate this condition. This is also true with PJP groove welds.
Welding Considerations and Appurtenances
Clearance Requirements
Clearances are required to allow the welder to make proper welds. Ample room must be pro-
vided so that the welder or welding operator may manipulate the electrode and observe the
weld as it is being deposited.
In the SMAW process, the preferred position of the electrode when welding in the hori-
zontal position is in a plane forming 30° with the vertical side of the fillet weld being made.
However, this angle, shown as angle xin Figure 8-9, may be varied somewhat to avoid
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 15

8–16 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
contact with some projecting part of the work. A simple rule to provide adequate clearance
for the electrode in horizontal fillet welding is that the clear distance to a projecting element
should be at least one-half the distance yin Figure 8-9(b).
A special case of minimum clearance for welding with a straight electrode is illustrated
in Figure 8-10. The 20° angle is the minimum that will allow satisfactory welding along
the bottom of the angle and therefore governs the setback with respect to the end of the
beam. If a
1
/2-in. setback and
3
/8-in. electrode diameter were used, the clearance between
the angle and the beam flange could be no less than 1
1
/4in. for an angle with a leg dimen-
sion, w, of 3 in., nor less than 1
5
/8in. with a wof 4 in. When it is not possible to provide
Fig. 8-9. Clearances for SMAW welding.
Fig. 8-8. Notch effect at one-sided weld.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 16

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
this clearance, the end of the angle may be cut as noted by the optional cut in Figure 8-10
to allow the necessary angle. However, this secondary cut will increase the cost of fabri-
cating the connection.
Excessive Welding
The specification of over or excessive welding will increase the amount of heat input into
the parts joined and thereby add to distortion in the joint. Distortion of the joint is caused by
three fundamental dimensional changes that occur during and after welding:
1. Transverse shrinkage that occurs perpendicular to the weld line,
2. Longitudinal shrinkage that occurs parallel to the weld line, and
3. Angular change that consists of rotation around the weld line.
If these dimensional changes alter the joint so that it is no longer within fabrication tol-
erances, the joint may need to be repaired with additional heating to bring the joint back to
within fabrication tolerances. This added work will result in expensive repair costs which
could have been avoided with appropriately sized welds.
Over-specification of weld size also increases the cost of welding for no structural benefit.
Minimum Shelf Dimensions for Fillet Welds
The recommended minimum shelf dimensions for normal size SMAW fillet welds are sum-
marized in Figure 8-11. SAW fillet welds would require a greater shelf dimension to contain
Fig. 8-10. Clearances for SMAW welding.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 17

8–18 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the flux, although auxiliary material can be clamped to the member to provide for this. The
dimension billustrated in Figure 8-12 must be sufficient to accommodate the combined
dimensional variations of the angle length, cope depth, beam depth and weld size.
Beam Copes and Weld Access Holes
Requirements for beam copes and weld access holes are given in AISC Specification
Sections J1.6 and M2.2. Weld access holes, as illustrated in Figure 8-13, are used to permit
down-hand welding to the beam bottom flange, as well as the placement of a continuous
backing bar under the beam top flange. Weld access holes also help to mitigate the effects
of weld shrinkage strains and prevent the intersection or close juncture of welds in orthog-
onal directions. Weld access holes should not be filled with weld metal because doing so
may result in a state of triaxial stress under loading.
Corner Clips
Corners of stiffeners and similar elements that fit into a corner should be clipped generously
to avoid the lack of fusion that would likely result in that corner. In general, a
3
/4-in. clip will
be adequate, although this dimension can be adjusted to suit conditions, such as when the
fillet radius is larger or smaller than that for which a
3
/4-in. clip is appropriate. For further
information, see Butler et al. (1972) and Blodgett (1980).
Fig. 8-11. Recommended minimum shelf dimensions for SMAW fillet welds.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 18

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Backing Bars
Backing bars, illustrated in Figure 8-13, should be of approved weldable material as speci-
fied in AWS D1.1 Section 5.2.2.2. Per AWS D1.1, backing bars on groove-welded joints are
usually continuous or fully spliced to avoid stress concentrations or discontinuities and
should be thoroughly fused with the weld metal. Backing bar removal is addressed in AISC
SpecificationSection J2.6 and AWS D1.1.
Spacer Bars
Spacer bars, illustrated in Figure 8-13, must be of the same material specification as the base
metal, per AWS D1.1 Section 5.2.2.3. This can create a procurement problem, since small
tonnage requirements may make them difficult to obtain in the specified ASTM designation.
Weld Tabs
To obtain a fully welded cross section, the termination at either end of the joint must be of
sound weld metal. Weld tabs, illustrated in Figure 8-13, should be of approved weldable
material as specified in AWS D1.1 Section 5.2.2.1. Two configurations of weld tabs are
illustrated in Figure 8-14, including flat-type weld tabs, which are normally used with bevel
and V groove welds, and contour-type weld tabs, which are normally used with J and U
Fig. 8-12. Illustration of shelf dimensions for fillet welding.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 19

8–20 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
groove welds. Weld-tab removal is addressed in AWS D1.1. Frequently, the backing bar can
be extended to serve as the weld tab. Some welds performed in the horizontal position
require shelf bars. Shelf bars will be left in place unless they are required to be removed by
the engineer.
Fig. 8-13. Illustration of backing bars, spacer bars, weld tabs and
other fittings for welding.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 20

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 8–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tack Welds
Tack welds placed as shown in Figure 8-15(a) should be avoided as they may cause notches.
An improved detail is as shown in Figure 8-15(b), with the tack welds placed where they
will be consumed in the final welded joint.
Lamellar Tearing
Figures 8-16 and 8-17 illustrate preferred welded joint selection and connection configura-
tions for avoiding susceptibility to lamellar tearing. Refer to the discussion “Avoiding
Lamellar Tearing” in Part 2.
Prior Qualification of Welding Procedures
Evidence of prior qualification of welding procedures, welders, welding operators or tack-
ers may be accepted at the discretion of the owner’s designated representative for design,
Fig. 8-14. Illustration of weld tabs.
Fig. 8-15. Backing bar tack welding.
(a) Susceptible Detail (b) Improved Detail
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 21

8–22 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 8-16. Susceptible and improved details to reduce
the incidence of lamellar tearing.
resulting in significant cost savings. Fabricators that participate in the AISC Quality
Certification Program have the experience and documentation necessary to assure that such
prior qualifications could be accepted. For more information about the AISC Quality
Certification Program, visit www.aisc.org.
Painting Welded Connections
Paint is normally omitted in areas to be field-welded, per AISC SpecificationSection M3.5.
Note that this requirement does not generally apply to shop-assembled connections, because
painting is normally done after the welds are made. When required, the small paint-free
(a)
(b)
(c)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 22

WELDING CONSIDERATIONS FOR HSS 8–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
areas can generally be identified with a general note (e.g., “no paint on OSL of connection
angles,” where OSL stands for outstanding leg).
WELDING CONSIDERATIONS FOR HSS
Flare welds are more common in HSS because of the increasing likelihood that the HSS
corner is a part of the welded joint. A common flare bevel configuration which occurs
when equal width sections are joined is illustrated in Figure 8-18. The easiest arrangement
for welding occurs with equal wall thickness sections. However, when the corner radius
increases due to wall thickness or manufacturing tolerances, the root gap may need to be
adjusted by profile shaping, building out with weld metal, or by use of backing. See Figures
8-18 and 8-19.
Fig. 8-17. Susceptible and improved details to avoid
intersecting welds with high restraint.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 23

8–24 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS Welding Requirements in AWS D1.1
AWS uses the terminology “tubular” for all hollow members including pipe, hollow struc-
tural sections, and fabricated box sections. The following sections in AWS D1.1 apply to
welded HSS-to-HSS connections:
Fig. 8-18. Flare bevel weld, equal width HSS weld joint.
Fig. 8-19. Welding methods accounting for the HSS corner radius.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 24

WELDING CONSIDERATIONS FOR HSS 8–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Clause 2, Part D
As explained in AWS D1.1 Commentary Section C-2.21, “In commonly used types of tubu-
lar connections, the weld itself may not be the factor limiting the capacity of the joint. Such
limitations as local failure (punching shear), general collapse of the main member, and
lamellar tearing are discussed because they are not adequately covered in other codes.”
Because of these various failure modes, the design of HSS-to-HSS connections must be part
of the member sizing process. The members selected must be capable of transmitting the
required strength or adequate reinforcement must be shown on the design documents.
Differences in the relative stiffness across HSS walls loaded normal to their surface can
make the load transfer highly nonuniform. To prevent progressive failure and to ensure duc-
tile behavior of the joint, minimum welds must be provided in T-, Y- and K-connections to
transmit the factored load in the branch or web member. For normal building applications,
fillet welds and PJP welds can be used.
While Part D deals primarily with HSS-to-HSS connections, some of these provisions are
applicable to welded attachments that deliver a load normal to the wall of a tubular member.
Clause 3
AWS D1.1 Figure 3.2 shows prequalified fillet weld details for tubular joints that differ from
details for nontubular skewed T-joints. These details will provide the minimum weld
strength needed to ensure ductile joint behavior.
AWS Figure 3.3 shows the joint detail and the effective throat for a flare-bevel and flare-
V PJP groove weld that is commonly used for welding connection material to the face of an
HSS. Groove welded joint details for HSS are designed to accommodate both the geometry
of the section and the lack of access to the back side of the joint.
AWS Figure 3.5 shows various PJP groove welded HSS joint details and AWS Figures
3.6, 3.8, 3.9 and 3.10 show CJP groove welded HSS joint details. The joint preparation and
weld sizing are complex and critical to obtain a sound weld. These details also provide the
weld strength needed to ensure ductile joint behavior.
Clause 4
AWS D1.1 Clause 4, Qualification, covers the requirements for qualification testing of
welding procedure specifications (WPS, see p. 8-3) and performance testing of the welder’s
ability to produce sound welds. HSS connections may not always meet the requirements for
a prequalified WPS because of unique geometry, connection access or for other reasons.
This section also gives the requirements for a procedure qualification record (PQR), which
is the basis for qualifying a WPS.
The performance testing of welders and welding operators considers process, material
thickness, position, nontubular or tubular joint access. AWS D1.1 Tables 4.1 through 4.4 list
the required qualifications needed for each type of joint. Most welders are qualified for a
particular process and position-in-plate (nontubular) joints. These qualifications will allow
the welder to make similar fillet, PJP groove and backed CJP welds in tubular members.
However, certain types of tubular connections, such as unbacked T-, Y- and K-connections,
require special welder certifications because the lack of access to the back of the joint, the
position of the connection, and the access to the connection require special skill to produce
a sound connection.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 25

8–26 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Clause 5
Clause 5, Fabrication, covers the requirements for the preparation, assembly and workman-
ship of welded steel structures. AWS Table 5.5, Tubular Root Opening Tolerances, gives
the acceptable fitup for unbacked groove welds. AWS Table 5.8, Minimum Fillet Weld
Size, and Section 2.25.1.3 give the minimum weld pass size based on material thickness
and process.
Clause 6
Clause 6, Inspection, contains all of the requirements for the inspector’s qualifications and
responsibilities, acceptance criteria for discontinuities, and procedures for NDE. AWS D1.1
considers fabrication/erection inspection and testing a separate function from verification
inspection and testing. Fabrication/erection inspection and testing is usually the responsi-
bility of the contractor and is performed as appropriate prior to assembly, during assembly,
during welding, and after welding to ensure the requirements of the contract documents are
met. Verification inspection and testing are the prerogatives of the owner. The extent of
NDE and verification inspection must be specified in the contract documents.
The inspection covers WPS qualification, equipment, welder qualification, joint prepara-
tion, joint fitup, welding techniques, and weld size length and location. It is especially
important when inspecting HSS-to-HSS joints that joint preparation and fitup be checked
prior to welding.
In addition to inspecting the above items, AWS requires all welds to be visually inspected
for conformance to the standards in AWS Table 6.1, Visual Acceptance Criteria.
Four types of nondestructive testing can be used to supplement visual inspection. They
are penetrant testing, magnetic particle testing, radiographic testing, and ultrasonic testing.
The AWS ultrasonic testing (UT) acceptance criteria for non-HSS type groove welds
starts at
5
/16-in.-thick material. The procedures for HSS T-, Y- and K- connections have a
minimum applicable thickness of
1
/2in., and diameter of 12
3
/4in. AWS does, however, make
provision for qualifying UT procedures for smaller size applications. It is possible to UT
portions of butt-type splices with backing bars using the non-HSS criteria, however, the cor-
ners of rectangular HSS cannot be inspected.
AWS D1.1 makes provision for using alternate acceptance criteria based upon an evalu-
ation of suitability for service using past experience, experimental evidence or engineering
analysis. This can be especially important when deciding if and how to make any repairs.
Weld Sizing for Uneven Distribution of Loads
The connection strength for a member welded normal to an HSS wall is a function of the
geometric parameters of the connected members and is often less than the full strength of
the member. When limited by geometry, the available strength cannot be increased by
increasing the weld strength. Due to the varying relative flexibility of the HSS wall loaded
normal to its surface and the axial stiffness of the connected member, the transfer of load
along the weld line is highly nonuniform. To prevent progressive failure, or “unzipping”
of the weld, it is important to provide adequate welds to maintain ductile behavior of
the joint.
Welds that satisfy this ductility requirement can be proportioned for the required strength
using an effective width criteria similar to that used for checking the axial strength of the
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 26

WELDING CONSIDERATIONS FOR HSS 8–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
branch member or plate. For effective weld length of HSS-to-HSS connections, refer to
AISC SpecificationSection K4.
An alternative to the effective length procedure is the use of the prequalified fillet and PJP
groove weld details in AWS D1.1 that are sized to ensure ductile behavior. In addition, fil-
let welds with an effective throat of 1.1 times the thickness of the branch member can be
used. Either of these two alternatives will, in most cases, be conservative.
Detailing Considerations
1. Butt joints will require a groove weld detail. Where possible the joint should be a pre-
qualified PJP groove weld sized for actual load or a CJP groove weld with steel
backing.
2. T-, Y- and K-connections should, where possible, use either fillet welds or PJP groove
welds sized for the design forces and checked for the minimum size needed to ensure
ductile joint behavior. Where CJP welds are required, joint details using steel
backing should be used whenever possible. For a detailed discussion of various types
of backing and the advantages of using backing, see Post (1990).
DESIGN TABLE DISCUSSION
Table 8-1. Coefficients, C, for Concentrically Loaded Weld
Group Elements
Concentrically loaded fillet weld groups must consider the effect of loading angle and defor-
mation compatibility on weld strength.
By multiplying the appropriate values of Cfrom Table 8-1 by the available strength of
each weld element, an effective strength is determined for each weld element. The available
strength of the weld group can be determined by summing the effective strengths of all of
the elements in a weld group. It should be noted that this table is to be entered at the largest
load angle on any weld in the weld group. For the weld group shown in Figure 8-20, this is
calculated as:
LRFD ASD
φRDw=
×
()+()+ ()⎡



=
1 392
1 5 1 1 29 1 41 0 825 1
577
.
....
.

DD
RDw/

Ω=
×
()+()+ ()⎡



=
0 928
1 5 1 1 29 1 41 0 825 1
38
.
....
.55D
(8-12a) (8-12b)
Table 8-2. Prequalified Welded Joints
The prequalified welded joints details given in AWS D1.1 and Table 8-2 provide joint
geometries, such as root openings, angles and clearances (see Figures 8-21 and 8-22) that
will permit the deposition of sound weld material. Prequalified welded joints are not, in
themselves, adequate consideration of welded design details and the other provisions in
AWS D1.1 must be satisfied as they are referenced in AISC SpecificationSection J2. The
design and detailing for successful welded construction requires consideration of factors
which include, but are not limited to, the magnitude, type and distribution of forces to be
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 27

8–28 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
transmitted, access, restraint against weld shrinkage, thickness of connected materials,
residual stress, and distortion. AWS D1.1 has provisions for material that is thinner than is
normally considered applicable for structural applications. See AWS D1.1 and D1.3 for
welding requirements and limits applicable to these materials in lieu of provisions such as
AISC Specification Table J2.3.
The designations such as B-L1a, B-U2 and B-P3 are those used in AWS D1.1. Note that
lowercase letters (e.g., a, b, c, etc.) are often used to differentiate between joints that would
otherwise have the same joint designation. These prequalified welded joints are limited to
those made by the SMAW, SAW, GMAW (except short circuit transfer), and FCAW proce-
dures. Small deviations from dimensions, angles of grooves, and variation in depth of
groove joints are permissible within the tolerances given.
In general, all fillet welds are prequalified, provided they conform to the requirements in
AWS D1.1. Groove welds are classified using the conventions indicated in the tables.
Welded joints other than those prequalified by AWS may be qualified, provided they are
tested and qualified in accordance with AWS D1.1.
Table 8-3. Electrode Strength Coefficient, C 1
Electrode strength coefficients, C 1, which can be used to adjust the tabulated values of
Tables 8-4 through 8-11 for electrodes other than E70XX, are given in Table 8-3. Note that
this coefficient includes an additional reduction factor of 0.90 for E80 and E90 electrodes
and 0.85 for E100 and E110; this accounts for the uncertainty of extrapolation to these
higher-strength electrodes.
Tables 8-4 through 8-11. Coefficients, C, for Eccentrically
Loaded Weld Groups
Tables 8-4 through 8-11 employ the instantaneous center of rotation method in accordance with
AISC SpecificationSection J2.4 for the weld patterns and eccentric conditions indicated and
inclined loads at 0°, 15°, 30°, 45°, 60° and 75°. The tabulated nondimensional coefficient, C,
represents the effective strength of the weld group in resisting the eccentric shear force.
Fig. 8-20. Concentrically loaded weld group.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 28

DESIGN TABLE DISCUSSION 8–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 8-21. Fillet weld nomenclature.
When Analyzing a Known Weld Group Geometry
For any of the weld group geometries shown, the available strength, φR nor Rn/Ω, of the
eccentrically loaded weld group is determined by
R
n=CC1Dl (8-13)
φ=0.75 Ω=2.00
where
C=tabular value
C
1=electrode coefficient from Table 8-3
D=number of sixteenths-of-an-inch in the weld size
l=length of the reference weld, in.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 29

8–30 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 8-22. Groove weld nomenclature.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 30

DESIGN TABLE DISCUSSION 8–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In developing these tables, the instantaneous center of rotation method was used, with a
convergence criterion of less than
1
/2% and considering deformation compatibility of adja-
cent weld elements. The first row in each table (a=0) gives the available strength of a
concentrically loaded weld group in accordance with AISC SpecificationSection J2.4.
Linear interpolation within a given table between adjacent aand kvalues is permitted.
Straight-line interpolation between values for loads at different angles may be signifi-
cantly unconservative. Either a rational analysis should be performed or the values for the
next lower angle increment in the tables should be used for design. For weld group patterns
not treated in these tables, a rational analysis is required.
Table 8-12. Approximate Number of Passes for Welds
Table 8-12 lists the approximate number of passes required for various welds. The actual
number of passes can vary depending on the welding position and process used. The table
can be used as a guide in selecting economical welds because the labor required will be
roughly proportional to the number of passes. Longer single-pass welds will generally be
more economical than shorter multi-pass welds because the number of passes, and therefore
the cost, required to deposit the larger multi-pass weld increases faster than the strength of
the weld.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 31

8–32 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 8 REFERENCES
AWS (1992), Guide for the Nondestructive Inspection of Welds, AWSB1.10, American
Welding Society, Miami, FL.
AWS (2007), Standard Symbols for Welding, Brazing, and Nondestructive Examination,
American Welding Society, Miami, FL.
Blodgett, O.W. (1966), Design of Welded Structures, James F. Lincoln Arc Welding
Foundation, Cleveland, OH.
Blodgett, O.W. (1980), “Detailing to Achieve Practical Welded Fabrication,” Engineering
Journal, AISC, Vol. 17, No. 4, 4th Quarter, pp. 106–119, Chicago, IL.
Blodgett, O.W., Funderburk, R.S. and Miller, D.K. (1997), Fabricator’s and Erector’s Guide
to Welded Steel Construction, James F. Lincoln Arc Welding Foundation, Cleveland, OH.
Butler, L.J., Pal, S. and Kulak, G.L. (1972), Eccentrically Loaded Welded Connections,”
Journal of the Structural Division, ASCE, Vol. 98, No. ST5, May, pp. 989–1005, Reston,
VA .
Crawford, S.F and Kulak, G.L. (1968), “Behavior of Eccentrically Loaded Bolted
Connections,” Studies in Structural Engineering, No. 4, Department of Civil Engineering,
Nova Scotia Technical College, Halifax, Nova Scotia.
Higgins, T.R. (1971), “Treatment of Eccentrically Loaded Connections in the AISC Manual,”
Engineering Journal, AISC, Vol. 8, No. 2, April, pp. 52-54, Chicago, IL.
Institute of Welding (1972), Procedures and Recommendations for the Ultrasonic Testing
of Butt Welds, London, England.
Kaufmann, J.A., Pense, A.W. and Stout, R.D. (1981), “An Evaluation of Factors Significant
to Lamellar Tearing,” Welding Journal Research Supplement, AWS, Vol. 60, No. 3, March,
Miami, FL.
Krautkramer, J. (1990), Ultrasonic Testing of Materials, 4th Ed., Springer-Verlag, Berlin,
West Germany.
Lesik, D.F. and Kennedy, D.J.L. (1990), “Ultimate Strength of Fillet-Welded Connections
Loaded in Plane,” Canadian Journal of Civil Engineering, National Research Council
of Canada, Vol. 17, No. 1, Ottawa, Canada.
Post, J.W. (1990), “Box-Tube Connections: Choices of Joint Details and Their Influence on
Costs,” National Steel Construction Conference Proceedings, AISC, Chicago, IL.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 32

DESIGN TABLES 8–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-1
Coefficients, C, for Concentrically Loaded
Weld Group Elements
Largest load angle on any weld group element, degrees
90 75 60 45 30 15 0
Load angle
on weld
element,
degrees
0
15
30
45
60
75
90
0.825 0.849 0.876 0.909 0.948 0.994 1.00
1.02 1.04 1.05 1.07 1.06 0.883
1.16 1.17 1.18 1.17 1.10
1.29 1.30 1.29 1.26
1.40 1.40 1.39
1.48 1.47
1.50
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 33

8–34 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-2
Prequalified Welded Joints
Symbols for Joint Types
B butt joint BC butt or corner joint
C corner joint TC T- or corner joint
T T-joint BTC butt, T- or corner joint
Symbols for Base Metal Thickness and Penetration
L limited thickness, complete-joint-penetration
U unlimited thickness, complete-joint-penetration
P partial-joint-penetration
Symbols for Weld Types
1 square-groove 6 single-U-groove
2 single-V-groove 7 double-U-groove
3 double-V-groove 8 single-J-groove
4 single-bevel-groove 9 double-J-groove
5 double-bevel-groove 10 flare-bevel-groove
Symbols for Welding Processes if not Shielded Metal Arc Welding (SMAW):
S submerged arc welding (SAW)
G gas metal arc welding (GMAW)
F flux cored arc welding (FCAW)
Symbols for Welding Positions
Fflat
H horizontal
V vertical
OH overhead
Symbols for Joint Designation
The lower case letters (e.g., a, b, c, d, etc.) are used to differentiate between joints that would otherwise have the same joint
designation.
Symbols for Dimensions
R Root opening
α, β Groove angles
f Root face
r J- or U-groove radius
S, S
1, S2PJP groove weld depth of groove
E, E
1, E2PJP groove weld sizes corresponding to S, S1, S2, respectively
Notes to Prequalified Welded Joints
1 Not prequalified for gas metal arc welding (GMAW) using short circuiting transfer nor GTAW. Refer to AWS D1.1 Annex A.
2 Joint is welded from one side only.
3 Cyclic load application limits these joints to the horizontal welding position. Refer to AWS D1.1 Section 2.18.2.
4 Backgouge root to sound metal before welding second side.
5 SMAW joints may be used for prequalified GMAW (except GMAW-S) and FCAW.
6 Minimum effective throat thickness (E) as shown in AISC
SpecificationTable J2.3; S as specified on drawings.
7 If fillet welds are used in buildings to reinforce groove welds in corner and T-joints, they shall be equal to
1
/4T1, but
need not exceed
3
/8 in. Groove welds in corner and T-joints of cyclically loaded structures shall be reinforced with fillet
welds equal to
1
/4T1, but need not exceed
3
/8 in.
8 Double-groove welds may have grooves of unequal depth, but the depth of the shallower groove shall be no less than
one-fourth of the thickness of the thinner part joined.
9 Double-groove welds may have grooves of unequal depth, provided these conform to the limitations of Note 6. Also, the
effective throat thickness (E) applies individually to each groove.
10 The orientation of the two members in the joints may vary from 135° to 180° for butt joints, or 45° to 135° for corner
joints, or 45° to 90° for T-joints.
11 For corner joints, the outside groove preparation may be in either or both members, provided the basic groove
configuration is not changed and adequate edge distance is maintained to support the welding operations without
excessive edge melting.
12 Effective throat thickness (E) is based on joints welded flush.
AISC_Part 8A_14th Ed._Nov. 20, 2012 14-11-10 11:10 AM Page 34 (Black plate)

DESIGN TABLES 8–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Dimensions of fillet welds must be shown on both the arrow side and the other side.
Table 8-2 (continued)
Prequalified Welded Joints
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 35

8–36 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-2 (continued)
Prequalified Welded Joints
Fillet Welds
FILLET
Notes:
1. (E
n), (E’n) = Effective throat thickness dependant on magnitude of root opening (Rn). Refer to AWS D1.1 Section 5.22.1.
Subscript
nrepresents 1, 2, 3, 4, or 5.
2. t = thickness of thinner part.
3. Not prequalified for gas metal arc welding (GMAW) using short circuit transfer nor GTAW. Refer to AWS D1.1 Annex A for GMAW-S.
4. Figure D. Apply Z loss dimension of AWS D1.1 Table 2.2 to determine effective throat thickness.
5. Figure D. Not prequlaified for angles under 30°. For welder qualifications see AWS D1.1 Table 4.8.
6. Angles under 60° are permissible, however, if the weld is considered to be a partial-joint-penetration groove weld.
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 36

Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
B-L1a
C-L1a
B-L1a-GF
1
/4max
1
/4max
3
/8max

U

R = T
1
R = T1
R = T1
+
1
/16, –0
+
1
/16, –0
+
1
/16, –0
+
1
/4, –
1
/16
+
1
/4, –
1
/16
+
1
/4, –
1
/16
All
All
All


Not Required
5, 10
5, 10
1, 10
FCAW
GMAW
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Square-groove weld (1)
Butt joint (B)
Corner joint (C)
DESIGN TABLES 8–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
CJP
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
SAW
SAW
B-L1b
B-L1b-GF
B-L1-S
B-L1a-S
1
/4max
3
/8max
3
/8max
5
/8max




R = 0 to
1
/8
R = 0
R = 0
+
1
/16, –0
+
1
/16, –0
±0
±0
+
1
/16, –
1
/8
+
1
/16, –
1
/8
+
1
/16, –0
+
1
/16,–0
All
All
F
F

Not
Required


4, 5, 10
1, 4, 10
10
4, 10
GMAW
FCAW
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Square-groove weld (1)
Butt joint (B)
R =
T1
Δ
2
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 37

8–38 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
SAW
TC-L1b
TC-L1-GF
TC-L1-S
1
/4max
3
/8max
3
/8max
U
U
U
R = 0 to
1
/8
R = 0
+
1
/16, –0
+
1
/16, –0
±0
+
1
/16, –
1
/8
+
1
/16, –
1
/8
+
1
/16, –0
All
All
F

Not
Required

4, 5, 7
1, 4, 7
4, 7
GMAW
FCAW
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Square-groove weld (1)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
CJP
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2 Root Opening
Welding
Process
SMAW
SAW
SAW
B-U2a
B-U2a-GF
B-L2a-S
B-U2-S
U
U
2 max
U




R =
1
/4 α = 45°
α = 30°
α = 20°
α = 30°
α = 30°
α = 45°
α = 30°
α = 20°
R =
3
/8
R =
1
/2
R =
3
/16
R =
3
/8
R =
1
/4
R =
1
/4
R =
5
/8
All
F, V, O H
F, V, O H
F, V, O H
F, V, O H
F, V, O H
F
F




Required
Not req.
Not req.


5, 10
5, 10
5, 10
1, 10
1, 10
1, 10
10
10
GMAW
FCAW
Joint
Designation
Groove Angle
α= +10°, –0°+10°, –5°
R = +
1
/16,–0 +
1
/4,–
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-V-groove weld (2)
Butt joint (B)
R =
T1
Δ
2
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 38

DESIGN TABLES 8–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2 Root Opening
Welding
Process
SMAW
SAW
SAW
C-U2a
C-U2a-GF
C-L2a-S
C-U2-S
U
U
2 max
U
U
U
U
U
R =
1
/4 α = 45°
α = 30°
α = 20°
α = 30°
α = 30°
α = 45°
α = 30°
α = 20°
R =
3
/8
R =
1
/2
R =
3
/16
R =
3
/8
R =
1
/4
R =
1
/4
R =
5
/8
All
F, V, O H
F, V, O H
F, V, O H
F, V, O H
F, V, O H
F
F




Required
Not req.
Not req.


5, 10
5, 10
5, 10
1
1, 10
1, 10
10
10
GMAW
FCAW
Joint
Designation
Groove Angle
α= +10°, –0°+10°, –5°
R = +
1
/16,–0 +
1
/4,–
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-V-groove weld (2)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
CJP
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 39

8–40 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
B-U2
B-U2-GF
B-L2c-S
U
U
Over
1
/2to 1
Over 1 to 1
1
/2
Over 1
1
/2to 2





R = 0 to
1
/8
f = 0 to
1
/8
α= 60°
R = 0 to
1
/8
f = 0 to
1
/8
α= 60°
R = 0
f =
1
/4max
α= 60°
R = 0
f =
1
/2max
α= 60°
R = 0
f =
5
/8max
α= 60°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
R = ±0
f = +0, –f
α= +10°, –0°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/16, –0
±
1
/16
+10°, –5°
All
All
F

Not
Required

4, 5, 10
1, 4, 10
4, 10
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-V-groove weld (2)
Butt joint (B)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
CJP
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 40

DESIGN TABLES 8–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
C-U2
C-U2-GF
C-U2b-S
U
U
U
U
U
U
R = 0 to
1
/8
f = 0 to
1
/8
α= 60°
R = 0 to
1
/8
f = 0 to
1
/8
α= 60°
R = 0 to
1
/8
f =
1
/4max
α= 60°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
±0
+0, –
1
/4
+10°, –0°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/16, –0
±
1
/16
+10°, –5°
All
All
F

Not
Required

4, 5, 7,
10
1, 4, 7,
10
4, 7, 10
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-V-groove weld (2)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
SAW
B-U3a
B-U3a-S
U
Spacer =
1
/8×R
U
Spacer =
1
/4×R


R =
1
/4
R =
3
/8
R =
1
/2
R =
5
/8
f = 0 to
1
/8
f = 0 to
1
/8
f = 0 to
1
/8
f = 0 to
1
/4
α= 45°
α= 30°
α= 20°
α= 20°
All
F, V, O H
F, V, O H
F




4, 5, 8,
10
4, 8, 10
Joint
Designation
Root Face
Groove
Angle
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
f = ±0
α= +10°, –0°
±0SAW
Spacer
SMAW ±0
+
1
/16,–0
+10°, –5°
+
1
/16, –0
1
/8, –0
R = ±0 +
1
/4, –0
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Double-V-groove weld (3)
Butt joint (B)
AISC_Part 8A:14th Ed. 2/24/11 8:24 AM Page 41

8–42 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
B-U3b
B-U3-GF
B-U3c-S
U
U


R = 0 to
1
/8
f = 0 to
1
/8
α= β= 60°
R = 0
f =
1
/4min
α= β= 60°
To find S
1see table above: S2= T1– (S1+f)
+
1
/16, –0
+
1
/16, –0
+10°, –0°
+
1
/16, –0
+
1
/4, –0
+10°, –0°
+
1
/16, –
1
/8
Not limited
+10°, –5°
+
1
/16, –0
+
1
/4, –0
+10°, –5°
All
All
F

Not required

4, 5, 8, 10
1, 4, 8, 10
4, 8, 10
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
2
1
/2
3
3
5
/8
4
3
3
5
/8
4
4
3
/4
4
3
/4 5
1
/2
5
1
/2 6
1
/4
For T1> 6
1
/4or T1≤ 2
S
1 =
2
/3(T1–
1
/4)
2
Over
2
1
/2
to
1
3
/8
1
3
/4
2
1
/8
2
3
/8
2
3
/4
3
1
/4
3
3
/4
T1 S1
For B-U3c-S only
Double-V-groove weld (3)
Butt joint (B)
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 42

DESIGN TABLES 8–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2 Root Opening
Welding
Process
SMAW TC-U4a
TC-U4a-GF
U
U
U
U
U
R =
1
/4 α = 45°
α = 30°
α = 30°
α = 30°
α = 45°
α = 30°
α = 45°
R =
3
/8
R =
3
/16
R =
3
/8
R =
1
/4
R =
3
/8
R =
1
/4
All
F, V, O H
All
F
All
F



Required
Not req.
Not req.

5, 7, 10, 11
5, 7, 10, 11
1, 7, 10, 11
1, 7, 10, 11
1, 7, 10, 11
7, 10, 11
GMAW
FCAW
Joint
Designation
Groove Angle
α= +10°, –0°+10°, –5°
R = +
1
/16, –0 +
1
/4,–
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2 Root Opening
Welding
Process
SMAW
SAW
B-U4a
B-U4a-GF
B-U4a-S
U
U
U
SAW TC-U4a-S U


U
R =
1
/4 α = 45°
α = 30°
α = 30°
α = 45°
α = 30°
α = 30°
α = 45°
R =
3
/8
R =
3
/16
R =
1
/4
R =
3
/8
R =
3
/8
R =
1
/4
All
All
All
All
F, H
F


Required
Not req.
Not req.

3, 5, 10
3, 5, 10
1, 3, 10
1, 3, 10
1, 3, 10
3, 10
GMAW
FCAW
Joint
Designation
Groove Angle
α= +10°, –0°+10°, –5°
R = +
1
/16,–0 +
1
/4, –
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-bevel-groove weld (4)
Butt joint (B)
Single-bevel-groove weld (4)
T-joint (T)
Corner joint (C)
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 43

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
8–44 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
TC-U4b
TC-U4b-GF
TC-U4b-S
U
U
U
U
U
U
R = 0 to
1
/8
f = 0 to
1
/8
α= 45°
R = 0
f =
1
/4max
α= 60°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
±0
+0, –
1
/8
+ 10°, –0°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/4, –0
±
1
/16
10°, –5°
All
All
F

Not Required

4, 5, 7,
10, 11
1, 4, 7,
10, 11
4, 7, 10,
11
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-bevel-groove weld (4)
T-joint (T)
Corner joint (C)
CJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
B-U4b
B-U4b-GF
B-U4b-S
U
U
U


U
R = 0 to
1
/8
f = 0 to
1
/8
α= 45°
R = 0
f =
1
/4max
α= 60°
+
1
/16, –0
+
1
/16, –0
+ 10°, –0°
±0
+0, –
1
/8
+ 10°, –0°
+
1
/16, –
1
/8
Not Limited
+10°, –5°
+
1
/4, –0
±
1
/16
10°, –5°
All
All
F

Not Required

3, 4, 5, 10
1, 3, 4, 10
3, 4, 10
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Single-bevel-groove weld (4)
Butt joint (B)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 44

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
DESIGN TABLES 8–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
B-U5b
TC-U5a
U
Spacer =
1
/8×R
U
Spacer =
1
/4×R
U
U
R =
1
/4
R =
1
/4
R =
3
/8
f = 0 to
1
/8
f = 0 to
1
/8
f = 0 to
1
/8
α= 45°
α= 45°
α= 30°
All
All
F, O H



3, 4, 5,
8, 10
4, 5, 7, 8,
10, 11
4, 5, 7, 8,
10, 11
Joint
Designation
Root Face
Groove
Angle
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
f = +
1
/16,–0
α= +10°, –0°
+
1
/16,–0Spacer
±
1
/16
+10°, –5°
+
1
/8, –0
R = ±0 +
1
/4,–0
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Double-bevel-groove weld (5)
Butt joint (B)
T-joint (T)
Corner joint (C)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
B-U5a
B-U5-GF
U
U


R = 0 to
1
/8
f = 0 to
1
/8
α= 45°
β= 0° to 15°
R = 0 to
1
/8
f = 0 to
1
/8
α= 45°
β= 0° to 15°
+
1
/16, –0
+
1
/16, –0
+10°

+10°
–5°
+
1
/16, –0
+
1
/16, –0
α+ β =
+ 10°, –0°
+
1
/16, –
1
/8
Not limited
+
1
/16, –
1
/8
Not limited
α+ β =
+ 10°, –5°
All
All

Not
Required
3, 4, 5, 8,
10
1, 3, 4, 8,
10
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Double-bevel-groove weld
Butt joint (B)
α+ β α+ β
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 45

8–46 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
TC-U5b
TC-U5-GF
TC-U5-S
U
U
U
U
U
U
R = 0 to
1
/8
f = 0 to
1
/8
α= 45°
R = 0
f =
1
/4max
α= 60°
+
1
/16, –0
+
1
/16, –0
+10°, –0 +10°, –5°
± 0
+0, –
3
/16
+10°, –0°
+
1
/16, –
1
/8
Not limited
+
1
/16, –0
±
1
/16
+10°, –5°
All
All
F

Not
Required

4, 5, 7, 8,
10, 11
1, 4, 7, 8,
10, 11
4, 7, 8,
10, 11
Joint
Designation
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Double-bevel-groove weld (5)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 46

DESIGN TABLES 8–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
GMAW
FCAW
B-U6
C-U6
B-U6-GF
C-U6-GF
U
U
U
U
U
U
U
U
R = 0 to
1
/8
R = 0 to
1
/8
R = 0 to
1
/8
R = 0 to
1
/8
α= 45°
α= 20°
α= 45°
α= 20°
f =
1
/8
f =
1
/8
f =
1
/8
f =
1
/8
All
F, O H
All
F, O H




4, 5, 10
4, 5, 10
R = 0 to
1
/8α= 20°f =
1
/8 All Not req. 1, 4, 10
R = 0 to
1
/8α= 20°f =
1
/8 All Not req. 1, 4, 7, 10
4, 5, 7, 10
4, 5, 7, 10
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
1
/4
r =
1
/4
r =
1
/4
r =
1
/4
r =
1
/4
r =
1
/4
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
α= +10°, –0°
f = ±
1
/16
r = +
1
/8, –0
+10°, –5°
Not Limited
+
1
/8, –0
R = +
1
/16,–0 +
1
/16, –
1
/8
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Single-U-groove weld (6)
Butt joint (B)
Corner joint (C)
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 47

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
SAW
GMAW
FCAW
B-U7
B-U7-GF
B-U7-S
U
U
U



R = 0 to
1
/8
R = 0 to
1
/8
R = 0 to
1
/8
α= 45°
α= 20°
α= 20°
f =
1
/8
f =
1
/8
f =
1
/8
All
F, O H
All


Not req.
4, 5,
8, 10
R = 0α= 20°
f =
1
/4
max
F — 4, 8, 10
4, 5,
8, 10
1, 4,
10, 8
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
1
/4
r =
1
/4
r =
1
/4
r =
1
/4
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
R = +
1
/16, –0
α= +10°, –0°
f = ±
1
/16, –0
1
/16, –
1
/8
+10°, –5°
Not Limited
r = +
1
/4, –0 ±
1
/16
For B-U7-S
R = ±0 +
1
/16, –0
f = +0, +
1
/4 ±
1
/16
For B-U7 and B-U7-GF
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Double-U-groove weld (7)
Butt joint (B)
8–48 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 48

DESIGN TABLES 8–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
GMAW
FCAW
SAW
B-U8
B-U8-GF
B-U8-S
U
U
U


U
R = 0 to
1
/8
R = 0 to
1
/8
R = 0
α= 45°
α= 30°
α= 45°
f =
1
/8
f =
1
/8
f =
1
/4
max
All
All
F

Not req.

3, 4,
5, 10
1, 3,
4, 10
3, 4, 10
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
3
/8
r =
3
/8
r =
3
/8
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
R = +
1
/16, –0
α= +10°, –0°
f = +
1
/8, –0
+
1
/16, –
1
/8
+10°, –5°
Not Limited
r = +
1
/4, –0 ±
1
/16
B-U8-S
R = ±0 +
1
/4, –0
α= +10°, –0°+10°, –5°
f = +0, –
1
/8 ±
1
/16
r = +
1
/4, –0 ±
1
/16
B-U8 and B-U8-GF
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Single-J-groove weld (8)
Butt joint (B)
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 49

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
GMAW
FCAW
SAW
TC-U8a
TC-U8a-GF
TC-U8a-S
U
U
U
U
U
U
R = 0 to
1
/8
R = 0 to
1
/8
R = 0
α= 45°
α= 30°
α= 45°
f =
1
/8
f =
1
/8
f =
1
/4
max
All
All
F

Not req.

4, 5, 7,
10, 11
1, 4, 7,
10, 11
4, 7,
10, 11
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
3
/8
R = 0 to
1
/8α= 30°f =
1
/8 F, O H —
4, 5, 7,
10, 11
r =
3
/8
r =
3
/8
r =
3
/8
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
R = +
1
/16, –0
α= +10°, –0°
f = +
1
/16, –0
1
/16, –
1
/8
+10°, –5°
Not Limited
r = +
1
/4, –0 ±
1
/16
TC-U8a-S
R = ±0 +
1
/4, –0
α= +10°, –0°+10°, –5°
f = +0, –
1
/8 ±
1
/16
r = +
1
/4, –0 ±
1
/16
TC-U8a and TC-U8a-GF
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Single-J-groove weld (8)
T-joint (T)
Corner joint (C)
8–50 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 50

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
CJP
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
GMAW
FCAW
B-U9
B-U9-GF
U
U


R = 0 to
1
/8α= 45°f =
1
/8 All —
3, 4, 5,
8, 10
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
3
/8
R = 0 to
1
/8α= 30°f =
1
/8 All Not req.
1, 3, 4,
8, 10
r =
3
/8
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
Table 8-2 (continued)
Prequalified Welded Joints
Complete-Joint-Penetration Groove Welds
R = +
1
/16, –0
α= +10°, –0°
f = +
1
/16, –0
+
1
/16, –
1
/8
+10°, –5°
Not Limited
r = +
1
/8, –0 ±
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Double-J-groove weld (9)
Butt joint (B)
DESIGN TABLES 8–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Groove Preparation
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
GMAW
FCAW
TC-U9a
TC-U9a-GF
U
U
U
U
R = 0 to
1
/8α= 45°f =
1
/8 All —
4, 5, 7, 8,
10, 11
Joint
Designation
Groove
Angle
Root
Face
Bevel
Radius
r =
3
/8
R = 0 to
1
/8
R = 0 to
1
/8
α= 30°
α= 30°
f =
1
/8
f =
1
/8
F, O H
All

Not req.
4, 5, 7,
8, 11
1, 4, 7, 8,
10, 11
r =
3
/8
r =
3
/8
Allowed
Welding
Positions
Gas
Shielding
for FCAW
Notes
R = +
1
/16, –0
α= +10°, –0°
f = +
1
/16, –0
+
1
/16, –
1
/8
+10°, –5°
Not Limited
r =
1
/8, –0 ±
1
/16
As Detailed
(see 3.13.1)
As Fit-Up
(see 3.13.1)
Tolerances
Double-J-groove weld (9)
T-joint (T)
Corner joint (C)
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 51

8–52 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW
B-P1a
B-P1c
1
/8
1
/4max


R = 0 to
1
/16
T1
2
+
1
/16, –0
+
1
/16, –0
±
1
/16
±
1
/16
All
All
T 1–
1
/32
T1
2
2, 5
2, 5
Joint
Designation
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Weld Size
(E)
Notes
Square-groove weld (1)
Butt joint (B)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
PJP
R = min
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Welding
Process
SMAW B-P1b
1
/4max —
T1
2
+
1
/16, –0 ±
1
/16 All3T1
4
5
Joint
Designation
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(E
1+ E2)
Notes
Square-groove weld (1)
Butt joint (B)
R =
E1+ E2 must not exceed 3T1
4
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 52

DESIGN TABLES 8–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
PJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
BC-P2
BC-P2-GF
1
/4min
1
/4min
U
U
R = 0
f =
1
/32min
α= 60°
R = 0
f =
1
/8min
α= 60°
R = 0
f =
1
/4min
–0, +
1
/16
+U, –0
+10°, –0°+ 10°, –5°
+U, –0
+10°, –0°
±0
+
1
/8, –
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+
1
/16, –0
±
1
/16
All
All
S
S
2, 5, 6,
10
1, 2, 6,
10
Joint
Designation
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Weld Size
(E)
Notes
Single-V-groove weld (2)
Butt joint (B)
Corner joint (C)
SAW BC-P2-S
7
/16min U
α= 60°
+U, –0
+10°, –0°
–0, +
1
/16+
1
/8, –
1
/16
+ 10°, –5°
F S 2, 6, 10
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 53

8–54 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
PJP
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
B-P3
B-P3-GF
1
/2min
1
/2min


R = 0
f =
1
/8min
α= 60°
R = 0
f =
1
/8min
α= 60°
R = 0
f =
1
/4min
+
1
/16, –0
+U, –0
+10°, –0°+ 10°, –5°
+U, –0
+10°, –0°
±0
+
1
/8, –
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+
1
/16, –0
±
1
/16
All
All
S 1+ S2
S1+ S2
5, 6, 9,
10
1, 6, 9,
10
Joint
Designation
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E
1+ E2)
Notes
Double-V-groove weld (3)
Butt joint (B)
SAW B-P3-S
3
/4min —
α= 60°
+U, –0
+10°, –0°
+
1
/16, –0 +
1
/8, –
1
/16
+ 10°, –5°
F S
1+ S26, 9, 10
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 54

DESIGN TABLES 8–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
BTC-P4
BTC-P4-GF
U
1
/4min
U
U
R = 0
f =
1
/8min
α= 45°
R = 0
f =
1
/8min
α= 45°
R = 0
f =
1
/4min
+
1
/16, –0
+U, –0
+10°, –0°+ 10°, –5°
+U, –0
+10°, –0°
±0
+
1
/8, –
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+
1
/16, –0
±
1
/16
All
F, H
V, O H
S–
1/8
S
S–
1/8
2, 5, 6,
7, 10, 11
1, 2, 6,
7, 10, 11
Joint
Designation
As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Single-bevel-groove weld (4)
Butt joint (B)
T-joint (T)
Corner joint (C)
SAW TC-P4-S
7
/16min U
α= 60°
+U, –0
+10°, –0°
+
1
/16, –0 +
1
/8, –
1
/16
+ 10°, –5°
FS
2, 6, 7,
10, 11
PJPTable 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 55

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
8–56 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root
Opening
Root Face
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
BTC-P5
BTC-P5-GF
5
/16min
1
/2min
U
U
R = 0
f =
1
/8min
α= 45°
R = 0
f =
1
/8min
α= 45°
R = 0
f =
1
/4min
+
1
/16, –0
+U, –0
+10°, –0°+ 10°, –5°
+U, –0
+10°, –0°
±0
+
1
/8, –
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+
1
/16, –0
±
1
/16
All
F, H
V, O H
S
1+ S2

1
/4
S1+ S2
S1+ S2

1
/4
5, 6, 7,
9, 10, 11
1, 6, 7, 9,
10, 11
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E
1+ E2)
Notes
Double-bevel-groove weld (5)
Butt joint (B)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
SAW TC-P5-S
3
/4min U
α= 60°
+U, –0
+10°, –0°
+
1
/16, –0 +
1
/8, –
1
/16
+ 10°, –5°
F S
1+ S2
6, 7, 9,
10, 11
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 56

DESIGN TABLES 8–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
PJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Bevel Radius
Groove AngleWelding
Process
SMAW
GMAW
FCAW
BC-P6
BC-P6-GF
1
/4min
1
/4min
U
U
R = 0
f =
1
/32min
r =
1
/4
α= 45°
R = 0
f =
1
/8min
r =
1
/4
α= 20°
+
1
/16, –0
+
1
/16, –0
±0
+U, –0
+U, –0
+U, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
±
1
/16
+
1
/8, –
1
/16
±
1
/16
+
1
/8, –
1
/16
+
1
/16, –0°
±
1
/16
±
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+ 10°, –5°
All
All
S
S
2, 5, 6,
10
1, 2, 6,
10
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Single-U-groove weld (6)
Butt joint (B)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
SAW BC-P6-S
7
/16min U
R = 0
f =
1
/4min
r =
1
/4
α= 20°
+10°, –0°
+10°, –0°
+10°, –0°
+ 10°, –5°
F S 2, 6, 10
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 57

8–58 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
PJP
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Bevel Radius
Groove AngleWelding
Process
SMAW
GMAW
FCAW
B-P7
B-P7-GF
1
/2min
1
/2min


R = 0
f =
1
/8min
r =
1
/4
α= 45°
R = 0
f =
1
/8min
r =
1
/4
α= 20°
+
1
/16, –0
+
1
/16, –0
±0
+U, –0
+U, –0
+U, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
±
1
/16
+
1
/8, –
1
/16
±
1
/16
+
1
/8, –
1
/16
+
1
/16, –0°
±
1
/16
±
1
/16
±
1
/16
±
1
/16
+ 10°, –5°
+ 10°, –5°
All
All
S
1+ S2
S1+ S2
5, 6, 9,
10
1, 6, 9,
10
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E
1+ E2)
Notes
Double-U-groove weld (7)
Butt joint (B)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
SAW B-P7-S
3
/4min —
R = 0
f =
1
/4min
r =
1
/4
α= 20°
+10°, –0°
+10°, –0°
+10°, –0°
+ 10°, –5°
F S
1+ S26, 9,10
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 58

DESIGN TABLES 8–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Bevel Radius
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
B-P8
TC-P8
B-P8-GF
TC-P8-GF
B-P8-S
TC-P8-S
1/4 min
1/4 min
1/4 min
1/4 min
7/16 min
7/16 min
U
U
U
U
U
U
R = 0
R = 0
R = 0
R = 0
R = 0
R = 0
α
ic= 45°**
α
ic= 45°**
α
ic= 45°**
f =
1
/8min
f =
1
/8min
f =
1
/4min
f =
1
/8min
f =
1
/8min
f =
1
/4min
r =
3
/8
r =
3
/8
r =
1
/2
r =
3
/8
r =
3
/8
r =
1
/2
α = 30°
α = 30°
α = 20°
α
oc= 30°*
α
oc= 30°*
α
oc= 20°*
+
1
/16, –0
+
1
/16, –0
±0
+
1
/16, –0
+
1
/16, –0
±0
+10°, –0°
+10°, –0°
+10°, –0°
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+
1
/8, –
1
/16
+
1
/8, –
1
/16
+
1
/16, –0
+
1
/8, –
1
/16
+
1
/8, –
1
/16
+
1
/16, –0
+10°, –5°
+10°, –5°
+10°, –5°
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
All
All
All
All
F
F
S
S
S
S
S
S
5, 6, 7,
10, 11
5, 6, 7,
10, 11
1, 6, 7,
10, 11
1, 6, 7,
10, 11
6, 7,
10, 11
6, 7,
10, 11
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(E)
Notes
Single-J-groove weld (8)
Butt joint (B)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
PJP
*αoc= Outside corner groove angle.
**α
ic= Inside corner groove angle.
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 59

8–60 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2
Root Opening
Root Face
Bevel Radius
Groove Angle
Welding
Process
SMAW
GMAW
FCAW
SAW
B-P9
TC-P9
B-P9-GF
TC-P9-GF
B-P9-S
TC-P9-S
1
/2min
1
/2min
1
/2min
1
/2min
3
/4min
3
/4min
U
U
U
U
U
U
R = 0
R = 0
R = 0
R = 0
R = 0
R = 0
α
ic= 45°**
α
ic= 45°**
α
ic= 45°**
f =
1
/8min
f =
1
/8min
f =
1
/4min
f =
1
/8min
f =
1
/8min
f =
1
/4min
r =
3
/8
r =
3
/8
r =
1
/2
r =
3
/8
r =
3
/8
r =
1
/2
α = 30°
α = 30°
α = 20°
α
oc= 30°*
α
oc= 30°*
α
oc= 20°*
+
1
/16, –0
+
1
/16, –0
±0
+
1
/16, –0
±0
±0
+10°, –0°
+10°, –0°
+10°, –0°
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+
1
/4, –0
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+10°, –0°
+
1
/8, –
1
/16
+
1
/8, –
1
/16
+
1
/16, –0
+
1
/8, –
1
/16
+
1
/16, –0
+
1
/16, –0
+10°, –5°
+10°, –5°
+10°, –5°
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
±
1
/16
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
+10°, –5°
All
All
All
All
F
F
S
1+S2
S1+S2
S1+S2
S1+S2
S1+S2
S1+S2
5, 6, 7,
9, 10,
11
5, 6, 7,
9, 10,
11
1, 6, 7,
9, 10,
11
1, 6, 7,
9, 10,
11
6, 7, 9,
10, 11
6, 7, 9,
10, 11
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total Weld
Size
(E
1+ E2)
Notes
Double-J-groove weld (9)
Butt joint (B)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Partial-Joint-Penetration Groove Welds
PJP
*αoc= Outside corner groove angle.
**α
ic= Inside corner groove angle.
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 60

DESIGN TABLES 8–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Groove Preparation
Tolerances
Base Metal Thickness
(U = unlimited)
T
1 T2 T3
Root Opening
Root Face
Bend Radius*
Welding
Process
SMAW
FCAW-S
GMAW
FCAW-G
BTC-P10
BTC-P10-GF
3
/16
min
U
3
/16
min
U
T
1
min
T
1
min
R = 0
f =
3
/16min
3T1
2
R = 0
f =
3
/16min
+
1
/16, –0
+
1
/16, –0
±0
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+U, –0
+
1
/8, –
1
/16
+U, –
1
/16
+
1
/8, –
1
/16
+
1
/16, –0°
+U, –
1
/16
+U, –
1
/16
+U, –0
+U, –0
All
All
5T1
8
5T1
4
5, 7, 10,
12
1, 7, 10,
12
Joint
Designation As Detailed
(see 3.12.3)
As Fit-Up
(see 3.12.3)
Allowed
Welding
Positions
Total
Weld Size
(E)
Notes
Flare-bevel-groove weld (10)
Butt joint (B)
T-joint (T)
Corner joint (C)
Table 8-2 (continued)
Prequalified Welded Joints
Flare-Bevel Groove Welds
SAW B-P10-S
1
/2
min
N/A
1
/2
min
R = 0
f =
1
/2min
F
5T1
8
7, 10, 12
FLARE
C = min
3T1
2
C = min
3T1
2
C = min
* For cold formed (A500) rectangular tubes, C dimension is not limited. See the following:
Effective Weld Size of Flare-Bevel-Groove Welded Joints. Tests have been performed on cold formed ASTM A 500 material exhibiting a "C" dimension as small as T1 with a
nominal radius of 2t. As the radius increases, the "C" dimension also increases. The corner curvature may not be a quadrant of a circle tangent to the sides. The corner
dimension, "C," may be less than the radius of the corner.
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 61

8–62 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Table 8-2 (continued)
Prequalified Welded Joints
PJP T-, Y- and K-Tubular Connections
TUBE
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 62

Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
DESIGN TABLES 8–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-2 (continued)
Prequalified Welded Joints
PJP T-, Y- and K-Tubular Connections
TUBE
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 63

8–64 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Reprinted from AWS D1.1 with permission from the American Welding Society (AWS)
Table 8-2 (continued)
Prequalified Welded Joints
PJP T-, Y- and K-Tubular Connections
TUBE
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 64

DESIGN TABLES 8–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-3
Electrode Strength Coefficient, C 1
Electrode FEXX(ksi) C1
E60 60 0.857
E70 70 1.00
E80 80 1.03
E90 90 1.16
E100 100 1.21
E110 110 1.34
AISC_Part 8A:14th Ed. 2/24/11 8:25 AM Page 65

0.00 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71 3.71
0.10 3.72 3.72 3.72 3.71 3.70 3.69 3.67 3.65 3.63 3.61 3.59 3.55 3.52 3.48 3.44 3.43
0.15 3.67 3.66 3.65 3.64 3.62 3.60 3.58 3.56 3.54 3.52 3.50 3.46 3.43 3.39 3.36 3.33
0.20 3.51 3.51 3.50 3.49 3.47 3.46 3.44 3.42 3.41 3.39 3.38 3.35 3.32 3.30 3.27 3.25
0.25 3.31 3.31 3.31 3.30 3.29 3.28 3.28 3.27 3.26 3.25 3.25 3.23 3.21 3.20 3.18 3.16
0.30 3.09 3.09 3.10 3.10 3.10 3.10 3.11 3.11 3.11 3.11 3.11 3.11 3.10 3.09 3.08 3.07
0.40 2.66 2.67 2.68 2.70 2.73 2.75 2.77 2.80 2.81 2.83 2.84 2.87 2.88 2.89 2.90 2.90
0.50 2.30 2.30 2.32 2.36 2.40 2.44 2.48 2.52 2.55 2.58 2.60 2.65 2.68 2.70 2.72 2.73
0.60 2.00 2.00 2.03 2.07 2.12 2.18 2.23 2.28 2.32 2.36 2.39 2.45 2.49 2.53 2.56 2.58
0.70 1.76 1.77 1.79 1.84 1.90 1.96 2.02 2.07 2.12 2.16 2.20 2.27 2.33 2.38 2.41 2.45
0.80 1.57 1.57 1.60 1.65 1.71 1.78 1.84 1.90 1.95 2.00 2.04 2.12 2.18 2.24 2.28 2.32
0.90 1.41 1.42 1.45 1.50 1.56 1.62 1.69 1.75 1.80 1.85 1.90 1.98 2.05 2.11 2.16 2.20
1.0 1.28 1.29 1.32 1.37 1.43 1.49 1.56 1.62 1.67 1.72 1.77 1.86 1.93 2.00 2.05 2.10
1.2 1.08 1.08 1.12 1.16 1.22 1.28 1.35 1.41 1.46 1.51 1.56 1.65 1.73 1.80 1.86 1.91
1.4 0.928 0.936 0.966 1.01 1.07 1.13 1.19 1.24 1.30 1.35 1.40 1.49 1.57 1.64 1.70 1.75
1.6 0.815 0.823 0.852 0.894 0.945 1.00 1.06 1.11 1.16 1.21 1.26 1.35 1.43 1.50 1.56 1.62
1.8 0.727 0.734 0.761 0.800 0.848 0.899 0.953 1.00 1.05 1.10 1.15 1.24 1.31 1.38 1.45 1.50
2.0 0.655 0.663 0.688 0.724 0.768 0.817 0.867 0.916 0.964 1.01 1.06 1.14 1.22 1.28 1.35 1.40
2.2 0.597 0.604 0.627 0.661 0.702 0.747 0.794 0.841 0.887 0.931 0.975 1.06 1.13 1.20 1.26 1.31
2.4 0.547 0.554 0.576 0.608 0.646 0.689 0.733 0.777 0.821 0.864 0.905 0.983 1.06 1.12 1.18 1.24
2.6 0.506 0.512 0.533 0.562 0.598 0.638 0.680 0.722 0.764 0.805 0.845 0.920 0.990 1.05 1.11 1.17
2.8 0.470 0.476 0.495 0.523 0.557 0.595 0.634 0.674 0.714 0.753 0.791 0.864 0.932 0.994 1.05 1.10
3.0 0.439 0.445 0.463 0.489 0.521 0.557 0.594 0.632 0.670 0.708 0.745 0.815 0.880 0.940 0.996 1.05
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
8–66 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 66

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
0.00 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96
0.10 3.79 3.79 3.78 3.78 3.77 3.76 3.75 3.74 3.73 3.72 3.71 3.69 3.67 3.65 3.64 3.62
0.15 3.68 3.68 3.67 3.66 3.65 3.64 3.63 3.62 3.61 3.61 3.60 3.58 3.57 3.55 3.54 3.53
0.20 3.51 3.51 3.51 3.50 3.50 3.49 3.49 3.48 3.48 3.47 3.47 3.46 3.46 3.45 3.44 3.43
0.25 3.31 3.31 3.31 3.31 3.31 3.32 3.32 3.32 3.33 3.33 3.33 3.34 3.34 3.34 3.34 3.34
0.30 3.09 3.09 3.10 3.11 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.21 3.22 3.23 3.24 3.24
0.40 2.68 2.68 2.69 2.72 2.75 2.79 2.82 2.85 2.88 2.90 2.93 2.96 3.00 3.02 3.04 3.06
0.50 2.32 2.32 2.35 2.38 2.43 2.48 2.53 2.57 2.61 2.65 2.68 2.74 2.79 2.83 2.86 2.89
0.60 2.03 2.03 2.06 2.10 2.16 2.22 2.27 2.33 2.38 2.42 2.46 2.54 2.60 2.65 2.69 2.72
0.70 1.79 1.80 1.82 1.87 1.93 2.00 2.06 2.12 2.18 2.23 2.27 2.36 2.42 2.48 2.53 2.58
0.80 1.60 1.60 1.63 1.68 1.75 1.81 1.88 1.94 2.00 2.06 2.11 2.20 2.27 2.34 2.39 2.44
0.90 1.44 1.45 1.48 1.53 1.59 1.66 1.73 1.79 1.85 1.91 1.96 2.05 2.14 2.21 2.27 2.32
1.0 1.31 1.32 1.35 1.40 1.46 1.53 1.60 1.66 1.72 1.78 1.83 1.93 2.01 2.09 2.15 2.21
1.2 1.10 1.11 1.14 1.19 1.25 1.32 1.38 1.45 1.51 1.56 1.62 1.72 1.80 1.88 1.95 2.01
1.4 0.954 0.961 0.993 1.04 1.10 1.16 1.22 1.28 1.34 1.39 1.45 1.54 1.63 1.71 1.78 1.84
1.6 0.839 0.847 0.876 0.919 0.972 1.03 1.09 1.15 1.20 1.25 1.31 1.40 1.49 1.57 1.64 1.70
1.8 0.748 0.756 0.783 0.824 0.872 0.926 0.981 1.04 1.09 1.14 1.19 1.28 1.37 1.45 1.52 1.58
2.0 0.675 0.683 0.708 0.746 0.791 0.841 0.893 0.945 0.995 1.04 1.09 1.18 1.26 1.34 1.41 1.47
2.2 0.615 0.622 0.646 0.681 0.723 0.770 0.819 0.868 0.916 0.963 1.01 1.10 1.18 1.25 1.32 1.38
2.4 0.565 0.572 0.594 0.626 0.666 0.710 0.756 0.802 0.848 0.893 0.937 1.02 1.10 1.17 1.24 1.30
2.6 0.522 0.529 0.550 0.580 0.617 0.658 0.702 0.746 0.789 0.832 0.874 0.954 1.03 1.10 1.16 1.22
2.8 0.485 0.491 0.511 0.540 0.575 0.614 0.655 0.697 0.738 0.779 0.819 0.896 0.969 1.04 1.10 1.16
3.0 0.453 0.459 0.478 0.505 0.538 0.574 0.614 0.653 0.693 0.732 0.771 0.845 0.915 0.980 1.04 1.10
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 67

0.00 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37
0.10 4.05 4.05 4.05 4.05 4.06 4.06 4.07 4.08 4.08 4.08 4.08 4.08 4.08 4.08 4.07 4.06
0.15 3.83 3.83 3.83 3.84 3.84 3.84 3.85 3.85 3.86 3.87 3.87 3.89 3.91 3.92 3.92 3.93
0.20 3.64 3.64 3.64 3.65 3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.74 3.76 3.77 3.79
0.25 3.43 3.43 3.43 3.45 3.46 3.48 3.50 3.51 3.53 3.54 3.56 3.58 3.60 3.62 3.64 3.66
0.30 3.22 3.22 3.23 3.24 3.27 3.30 3.32 3.35 3.37 3.39 3.41 3.45 3.48 3.50 3.52 3.54
0.40 2.81 2.81 2.83 2.86 2.90 2.94 2.99 3.03 3.07 3.11 3.14 3.19 3.24 3.28 3.31 3.34
0.50 2.46 2.46 2.49 2.53 2.58 2.64 2.69 2.75 2.80 2.85 2.89 2.96 3.02 3.08 3.12 3.16
0.60 2.17 2.17 2.20 2.25 2.31 2.37 2.44 2.50 2.56 2.62 2.67 2.75 2.83 2.89 2.94 2.99
0.70 1.93 1.93 1.96 2.02 2.08 2.15 2.22 2.29 2.36 2.42 2.47 2.57 2.65 2.72 2.78 2.84
0.80 1.73 1.74 1.77 1.82 1.89 1.96 2.03 2.11 2.18 2.24 2.30 2.40 2.49 2.57 2.64 2.69
0.90 1.57 1.57 1.61 1.66 1.73 1.80 1.88 1.95 2.02 2.08 2.14 2.25 2.34 2.43 2.50 2.56
1.0 1.43 1.44 1.47 1.52 1.59 1.66 1.74 1.81 1.88 1.95 2.01 2.12 2.22 2.30 2.38 2.44
1.2 1.21 1.22 1.25 1.31 1.37 1.44 1.51 1.59 1.65 1.72 1.78 1.89 1.99 2.08 2.16 2.23
1.4 1.05 1.06 1.09 1.14 1.20 1.27 1.34 1.41 1.47 1.53 1.59 1.71 1.81 1.90 1.98 2.05
1.6 0.926 0.934 0.966 1.01 1.07 1.13 1.20 1.26 1.33 1.39 1.44 1.55 1.65 1.74 1.82 1.90
1.8 0.827 0.835 0.865 0.909 0.962 1.02 1.08 1.14 1.20 1.26 1.32 1.42 1.52 1.61 1.69 1.76
2.0 0.747 0.755 0.783 0.824 0.874 0.929 0.987 1.04 1.10 1.16 1.21 1.31 1.41 1.49 1.57 1.64
2.2 0.681 0.689 0.715 0.754 0.800 0.852 0.906 0.961 1.01 1.07 1.12 1.22 1.31 1.39 1.47 1.54
2.4 0.626 0.634 0.658 0.694 0.737 0.786 0.837 0.889 0.940 0.990 1.04 1.13 1.22 1.30 1.38 1.45
2.6 0.579 0.586 0.609 0.643 0.684 0.729 0.778 0.827 0.875 0.924 0.971 1.06 1.15 1.23 1.30 1.37
2.8 0.538 0.545 0.567 0.599 0.637 0.680 0.726 0.773 0.819 0.865 0.910 0.997 1.08 1.16 1.23 1.30
3.0 0.503 0.510 0.530 0.560 0.596 0.637 0.681 0.725 0.769 0.813 0.856 0.940 1.02 1.09 1.16 1.23
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
8–68 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 68

0.00 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82
0.10 4.49 4.49 4.50 4.51 4.53 4.55 4.57 4.59 4.61 4.62 4.63 4.66 4.67 4.68 4.69 4.69
0.15 4.18 4.18 4.20 4.23 4.26 4.30 4.34 4.37 4.40 4.43 4.46 4.50 4.54 4.57 4.60 4.61
0.20 3.92 3.92 3.94 3.96 3.99 4.03 4.08 4.13 4.18 4.22 4.26 4.33 4.38 4.43 4.47 4.50
0.25 3.70 3.70 3.71 3.74 3.77 3.81 3.86 3.91 3.96 4.01 4.06 4.14 4.21 4.27 4.33 4.37
0.30 3.49 3.49 3.51 3.54 3.57 3.62 3.67 3.72 3.77 3.81 3.86 3.96 4.04 4.12 4.18 4.23
0.40 3.10 3.10 3.12 3.16 3.21 3.27 3.33 3.39 3.45 3.50 3.55 3.64 3.73 3.82 3.90 3.96
0.50 2.75 2.76 2.79 2.83 2.89 2.96 3.03 3.10 3.17 3.24 3.29 3.39 3.48 3.56 3.64 3.72
0.60 2.46 2.47 2.50 2.55 2.62 2.70 2.77 2.85 2.93 3.00 3.06 3.17 3.27 3.36 3.43 3.50
0.70 2.21 2.22 2.26 2.31 2.39 2.47 2.55 2.63 2.71 2.79 2.85 2.98 3.08 3.17 3.25 3.33
0.80 2.01 2.01 2.05 2.11 2.19 2.27 2.35 2.44 2.52 2.60 2.67 2.80 2.91 3.01 3.09 3.17
0.90 1.83 1.84 1.88 1.94 2.01 2.10 2.18 2.27 2.35 2.43 2.51 2.64 2.75 2.85 2.95 3.03
1.0 1.68 1.69 1.73 1.79 1.87 1.95 2.04 2.12 2.20 2.28 2.36 2.49 2.61 2.72 2.81 2.89
1.2 1.44 1.45 1.49 1.55 1.62 1.70 1.79 1.87 1.95 2.03 2.11 2.24 2.36 2.47 2.57 2.66
1.4 1.25 1.26 1.30 1.36 1.43 1.51 1.59 1.67 1.75 1.83 1.90 2.03 2.15 2.26 2.36 2.45
1.6 1.11 1.12 1.16 1.21 1.28 1.35 1.43 1.51 1.58 1.66 1.73 1.86 1.98 2.09 2.19 2.28
1.8 0.996 1.01 1.04 1.09 1.15 1.22 1.30 1.37 1.44 1.51 1.58 1.71 1.82 1.93 2.03 2.12
2.0 0.902 0.911 0.944 0.993 1.05 1.12 1.19 1.26 1.32 1.39 1.46 1.58 1.69 1.80 1.90 1.99
2.2 0.824 0.833 0.864 0.910 0.965 1.03 1.09 1.16 1.22 1.29 1.35 1.47 1.58 1.68 1.78 1.87
2.4 0.758 0.767 0.796 0.839 0.891 0.949 1.01 1.07 1.14 1.20 1.26 1.37 1.48 1.58 1.67 1.76
2.6 0.702 0.711 0.738 0.778 0.827 0.882 0.940 1.00 1.06 1.12 1.17 1.28 1.39 1.49 1.58 1.66
2.8 0.653 0.662 0.688 0.726 0.772 0.823 0.879 0.936 0.992 1.05 1.10 1.21 1.31 1.40 1.49 1.58
3.0 0.611 0.619 0.644 0.680 0.723 0.772 0.825 0.879 0.932 0.986 1.04 1.14 1.24 1.33 1.42 1.50
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 69

8–70 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
0.00 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21
0.10 4.86 4.87 4.90 4.94 4.99 5.03 5.07 5.10 5.12 5.13 5.14 5.15 5.15 5.15 5.15 5.15
0.15 4.61 4.62 4.65 4.70 4.77 4.84 4.91 4.96 5.01 5.04 5.07 5.10 5.12 5.13 5.14 5.14
0.20 4.36 4.37 4.41 4.46 4.54 4.62 4.71 4.79 4.86 4.92 4.97 5.03 5.07 5.09 5.11 5.12
0.25 4.13 4.14 4.17 4.23 4.31 4.40 4.51 4.61 4.70 4.78 4.84 4.94 5.00 5.04 5.06 5.08
0.30 3.93 3.94 3.97 4.03 4.10 4.19 4.30 4.41 4.52 4.62 4.70 4.83 4.91 4.97 5.01 5.04
0.40 3.58 3.59 3.62 3.68 3.75 3.84 3.93 4.04 4.15 4.27 4.39 4.57 4.71 4.81 4.88 4.93
0.50 3.26 3.27 3.31 3.37 3.45 3.54 3.64 3.74 3.84 3.95 4.07 4.29 4.47 4.61 4.71 4.79
0.60 2.98 2.99 3.03 3.10 3.19 3.28 3.39 3.49 3.59 3.69 3.78 4.01 4.22 4.39 4.52 4.63
0.70 2.74 2.75 2.79 2.86 2.95 3.05 3.16 3.26 3.37 3.47 3.56 3.76 3.97 4.16 4.32 4.45
0.80 2.52 2.53 2.58 2.65 2.75 2.85 2.96 3.06 3.17 3.27 3.37 3.55 3.74 3.94 4.11 4.26
0.90 2.34 2.35 2.39 2.47 2.56 2.67 2.78 2.88 2.99 3.09 3.19 3.37 3.54 3.72 3.90 4.07
1.0 2.17 2.18 2.23 2.31 2.40 2.50 2.61 2.72 2.83 2.93 3.03 3.21 3.37 3.54 3.71 3.88
1.2 1.89 1.90 1.95 2.03 2.12 2.23 2.33 2.44 2.54 2.65 2.74 2.93 3.09 3.24 3.39 3.54
1.4 1.67 1.69 1.73 1.81 1.90 2.00 2.10 2.20 2.31 2.41 2.50 2.68 2.85 2.99 3.13 3.27
1.6 1.50 1.51 1.56 1.63 1.71 1.81 1.91 2.01 2.11 2.20 2.30 2.47 2.63 2.78 2.92 3.05
1.8 1.35 1.36 1.41 1.48 1.56 1.65 1.74 1.84 1.94 2.03 2.12 2.29 2.45 2.60 2.73 2.85
2.0 1.23 1.24 1.29 1.35 1.43 1.51 1.60 1.70 1.79 1.88 1.97 2.13 2.29 2.43 2.56 2.69
2.2 1.13 1.14 1.18 1.24 1.32 1.40 1.48 1.57 1.66 1.75 1.83 1.99 2.14 2.28 2.41 2.54
2.4 1.04 1.06 1.10 1.15 1.22 1.30 1.38 1.46 1.55 1.63 1.71 1.87 2.02 2.15 2.28 2.40
2.6 0.970 0.981 1.02 1.07 1.14 1.21 1.29 1.37 1.45 1.53 1.61 1.76 1.90 2.03 2.16 2.28
2.8 0.905 0.916 0.951 1.00 1.06 1.13 1.21 1.29 1.36 1.44 1.51 1.66 1.80 1.93 2.05 2.16
3.0 0.848 0.859 0.892 0.941 1.00 1.07 1.14 1.21 1.28 1.36 1.43 1.57 1.70 1.83 1.95 2.06
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 70

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-4 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
0.00 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47
0.10 5.17 5.19 5.25 5.32 5.38 5.42 5.44 5.45 5.45 5.46 5.46 5.46 5.46 5.46 5.45 5.45
0.15 5.00 5.03 5.10 5.19 5.28 5.34 5.38 5.41 5.43 5.44 5.45 5.45 5.45 5.45 5.45 5.45
0.20 4.85 4.87 4.95 5.06 5.16 5.25 5.32 5.36 5.39 5.41 5.42 5.44 5.45 5.45 5.45 5.45
0.25 4.71 4.73 4.80 4.92 5.04 5.15 5.24 5.30 5.34 5.37 5.39 5.42 5.43 5.44 5.44 5.45
0.30 4.57 4.59 4.65 4.78 4.92 5.04 5.15 5.23 5.28 5.33 5.36 5.40 5.42 5.43 5.44 5.44
0.40 4.32 4.33 4.39 4.51 4.67 4.82 4.95 5.06 5.15 5.22 5.27 5.33 5.37 5.40 5.41 5.42
0.50 4.09 4.11 4.17 4.27 4.43 4.60 4.76 4.89 5.00 5.09 5.16 5.25 5.32 5.35 5.38 5.40
0.60 3.88 3.90 3.96 4.07 4.21 4.38 4.56 4.71 4.84 4.95 5.04 5.16 5.25 5.30 5.34 5.36
0.70 3.69 3.71 3.77 3.87 4.01 4.18 4.36 4.53 4.68 4.80 4.91 5.06 5.17 5.24 5.29 5.33
0.80 3.51 3.53 3.59 3.70 3.83 3.99 4.17 4.35 4.51 4.65 4.77 4.96 5.08 5.17 5.24 5.28
0.90 3.34 3.36 3.42 3.53 3.66 3.81 3.99 4.18 4.35 4.50 4.64 4.84 4.99 5.10 5.17 5.23
1.0 3.18 3.20 3.27 3.37 3.50 3.65 3.83 4.01 4.19 4.35 4.49 4.73 4.90 5.02 5.11 5.18
1.2 2.90 2.92 2.99 3.09 3.22 3.37 3.53 3.70 3.88 4.06 4.22 4.49 4.69 4.85 4.97 5.06
1.4 2.65 2.67 2.74 2.85 2.97 3.11 3.27 3.43 3.61 3.78 3.95 4.24 4.48 4.67 4.81 4.92
1.6 2.44 2.46 2.53 2.63 2.75 2.89 3.04 3.19 3.36 3.53 3.70 4.01 4.27 4.48 4.65 4.78
1.8 2.26 2.27 2.34 2.44 2.56 2.69 2.84 2.99 3.14 3.30 3.47 3.78 4.06 4.29 4.48 4.63
2.0 2.09 2.11 2.18 2.27 2.39 2.52 2.66 2.80 2.95 3.10 3.26 3.57 3.86 4.10 4.31 4.48
2.2 1.95 1.97 2.03 2.13 2.24 2.36 2.50 2.63 2.78 2.92 3.07 3.38 3.66 3.92 4.14 4.32
2.4 1.82 1.84 1.90 1.99 2.10 2.22 2.35 2.48 2.62 2.76 2.90 3.20 3.48 3.74 3.97 4.16
2.6 1.71 1.73 1.79 1.88 1.98 2.10 2.22 2.35 2.48 2.62 2.75 3.04 3.31 3.57 3.80 4.01
2.8 1.61 1.63 1.69 1.77 1.87 1.98 2.10 2.23 2.36 2.49 2.62 2.88 3.16 3.41 3.64 3.85
3.0 1.52 1.54 1.60 1.68 1.77 1.88 2.00 2.12 2.24 2.37 2.49 2.75 3.01 3.26 3.49 3.71
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 71

8–72 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
0.00 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57 5.57
0.10 4.32 4.36 4.48 4.65 4.82 4.97 5.11 5.21 5.29 5.35 5.39 5.45 5.48 5.50 5.52 5.53
0.15 3.90 3.94 4.04 4.20 4.39 4.58 4.75 4.90 5.02 5.12 5.20 5.31 5.38 5.42 5.45 5.48
0.20 3.54 3.57 3.67 3.81 3.99 4.20 4.40 4.57 4.73 4.86 4.97 5.13 5.24 5.32 5.37 5.41
0.25 3.22 3.25 3.34 3.47 3.64 3.85 4.06 4.26 4.43 4.59 4.72 4.93 5.08 5.19 5.26 5.32
0.30 2.94 2.97 3.06 3.19 3.34 3.53 3.74 3.95 4.14 4.32 4.47 4.72 4.91 5.04 5.14 5.22
0.40 2.48 2.51 2.60 2.71 2.85 3.01 3.19 3.40 3.61 3.81 3.99 4.29 4.54 4.72 4.87 4.99
0.50 2.14 2.17 2.24 2.34 2.47 2.62 2.78 2.95 3.15 3.35 3.54 3.88 4.16 4.39 4.58 4.73
0.60 1.87 1.89 1.96 2.06 2.17 2.31 2.45 2.61 2.78 2.96 3.15 3.50 3.81 4.06 4.28 4.46
0.70 1.65 1.68 1.74 1.83 1.93 2.06 2.19 2.33 2.48 2.64 2.81 3.17 3.48 3.75 3.99 4.19
0.80 1.48 1.50 1.56 1.64 1.74 1.85 1.97 2.10 2.24 2.38 2.54 2.87 3.18 3.46 3.71 3.92
0.90 1.34 1.36 1.41 1.49 1.58 1.68 1.79 1.91 2.04 2.17 2.31 2.61 2.92 3.20 3.45 3.68
1.0 1.22 1.24 1.29 1.36 1.44 1.54 1.64 1.75 1.87 1.99 2.12 2.39 2.69 2.97 3.22 3.45
1.2 1.04 1.05 1.10 1.16 1.23 1.31 1.41 1.50 1.60 1.71 1.82 2.05 2.30 2.56 2.81 3.03
1.4 0.900 0.914 0.952 1.00 1.07 1.14 1.23 1.31 1.40 1.49 1.59 1.79 2.00 2.24 2.47 2.69
1.6 0.794 0.807 0.840 0.888 0.946 1.01 1.08 1.16 1.24 1.33 1.41 1.59 1.78 1.98 2.19 2.40
1.8 0.710 0.722 0.752 0.795 0.848 0.907 0.973 1.04 1.12 1.19 1.27 1.43 1.60 1.77 1.96 2.16
2.0 0.643 0.653 0.680 0.719 0.767 0.822 0.881 0.945 1.01 1.08 1.15 1.30 1.45 1.61 1.77 1.95
2.2 0.586 0.596 0.621 0.657 0.701 0.751 0.805 0.864 0.925 0.988 1.05 1.19 1.33 1.47 1.62 1.78
2.4 0.539 0.548 0.571 0.604 0.644 0.691 0.741 0.795 0.852 0.910 0.970 1.09 1.22 1.35 1.49 1.64
2.6 0.498 0.507 0.528 0.559 0.597 0.640 0.687 0.737 0.789 0.844 0.899 1.01 1.13 1.26 1.38 1.51
2.8 0.464 0.472 0.491 0.520 0.555 0.595 0.639 0.686 0.735 0.786 0.838 0.946 1.06 1.17 1.29 1.41
3.0 0.434 0.441 0.459 0.486 0.519 0.557 0.598 0.642 0.688 0.736 0.785 0.886 0.990 1.10 1.21 1.32
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 72

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
0.00 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47 5.47
0.10 4.38 4.40 4.46 4.58 4.73 4.88 5.01 5.11 5.19 5.25 5.29 5.35 5.39 5.41 5.42 5.43
0.15 3.97 3.98 4.04 4.15 4.29 4.47 4.64 4.78 4.91 5.01 5.09 5.20 5.28 5.32 5.36 5.38
0.20 3.60 3.62 3.69 3.79 3.92 4.09 4.27 4.45 4.60 4.74 4.85 5.01 5.13 5.21 5.27 5.31
0.25 3.29 3.30 3.37 3.48 3.61 3.76 3.94 4.12 4.29 4.45 4.59 4.81 4.96 5.07 5.15 5.21
0.30 3.01 3.03 3.09 3.20 3.33 3.48 3.64 3.82 4.00 4.17 4.33 4.58 4.78 4.92 5.03 5.11
0.40 2.55 2.57 2.64 2.74 2.87 3.01 3.16 3.32 3.49 3.66 3.83 4.13 4.38 4.58 4.74 4.86
0.50 2.20 2.22 2.29 2.38 2.50 2.63 2.77 2.92 3.07 3.23 3.40 3.71 3.99 4.23 4.42 4.58
0.60 1.92 1.94 2.01 2.10 2.21 2.33 2.47 2.60 2.74 2.89 3.04 3.35 3.63 3.88 4.10 4.29
0.70 1.71 1.72 1.78 1.87 1.97 2.09 2.21 2.34 2.47 2.61 2.74 3.03 3.30 3.56 3.79 4.00
0.80 1.53 1.55 1.60 1.68 1.78 1.89 2.00 2.12 2.25 2.37 2.50 2.76 3.02 3.27 3.50 3.72
0.90 1.38 1.40 1.45 1.53 1.62 1.72 1.83 1.94 2.06 2.18 2.29 2.53 2.77 3.02 3.24 3.46
1.0 1.26 1.28 1.33 1.40 1.48 1.58 1.68 1.79 1.90 2.01 2.12 2.34 2.56 2.79 3.01 3.22
1.2 1.07 1.09 1.13 1.19 1.26 1.35 1.44 1.53 1.63 1.73 1.83 2.03 2.23 2.42 2.63 2.82
1.4 0.931 0.944 0.982 1.04 1.10 1.18 1.26 1.34 1.43 1.52 1.61 1.79 1.97 2.14 2.32 2.50
1.6 0.822 0.834 0.868 0.916 0.975 1.04 1.12 1.19 1.27 1.35 1.43 1.60 1.76 1.92 2.08 2.24
1.8 0.735 0.746 0.777 0.821 0.874 0.935 1.00 1.07 1.14 1.22 1.29 1.44 1.59 1.74 1.88 2.03
2.0 0.665 0.675 0.703 0.743 0.792 0.848 0.909 0.973 1.04 1.11 1.18 1.31 1.45 1.59 1.72 1.85
2.2 0.607 0.616 0.642 0.678 0.723 0.775 0.831 0.890 0.951 1.01 1.08 1.21 1.33 1.46 1.58 1.71
2.4 0.558 0.566 0.590 0.624 0.666 0.713 0.765 0.820 0.877 0.935 0.994 1.11 1.23 1.35 1.47 1.58
2.6 0.516 0.524 0.546 0.578 0.617 0.661 0.709 0.760 0.813 0.867 0.922 1.03 1.15 1.26 1.37 1.47
2.8 0.480 0.488 0.508 0.538 0.574 0.615 0.660 0.708 0.758 0.808 0.860 0.965 1.07 1.17 1.28 1.38
3.0 0.449 0.456 0.475 0.503 0.537 0.576 0.618 0.663 0.709 0.757 0.806 0.905 1.00 1.10 1.20 1.30
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 73

8–74 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
0.00 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21
0.10 4.49 4.50 4.54 4.59 4.66 4.74 4.82 4.89 4.94 4.99 5.02 5.07 5.10 5.11 5.12 5.13
0.15 4.09 4.10 4.13 4.19 4.27 4.36 4.46 4.57 4.66 4.75 4.81 4.91 4.98 5.03 5.05 5.07
0.20 3.76 3.77 3.80 3.86 3.93 4.01 4.12 4.23 4.35 4.46 4.56 4.71 4.82 4.90 4.95 4.99
0.25 3.47 3.48 3.51 3.57 3.65 3.74 3.83 3.93 4.04 4.16 4.28 4.48 4.63 4.74 4.83 4.89
0.30 3.21 3.21 3.25 3.32 3.40 3.49 3.59 3.69 3.79 3.89 4.01 4.24 4.42 4.57 4.68 4.76
0.40 2.76 2.77 2.81 2.88 2.97 3.07 3.17 3.28 3.38 3.48 3.58 3.77 3.99 4.18 4.33 4.46
0.50 2.40 2.41 2.45 2.53 2.62 2.73 2.84 2.94 3.05 3.15 3.25 3.43 3.60 3.79 3.97 4.13
0.60 2.11 2.12 2.17 2.25 2.34 2.45 2.55 2.66 2.77 2.87 2.97 3.15 3.31 3.47 3.64 3.81
0.70 1.88 1.89 1.94 2.01 2.11 2.21 2.32 2.42 2.53 2.63 2.73 2.91 3.07 3.22 3.37 3.52
0.80 1.69 1.70 1.75 1.82 1.91 2.01 2.12 2.22 2.32 2.42 2.52 2.70 2.86 3.01 3.15 3.28
0.90 1.53 1.54 1.59 1.66 1.75 1.84 1.94 2.05 2.15 2.24 2.34 2.51 2.68 2.82 2.96 3.09
1.0 1.40 1.41 1.46 1.53 1.61 1.70 1.80 1.89 1.99 2.09 2.18 2.35 2.51 2.66 2.79 2.92
1.2 1.19 1.20 1.24 1.31 1.38 1.47 1.55 1.65 1.74 1.83 1.91 2.08 2.23 2.37 2.50 2.62
1.4 1.03 1.05 1.08 1.14 1.21 1.29 1.37 1.45 1.54 1.62 1.70 1.85 2.00 2.14 2.26 2.38
1.6 0.914 0.925 0.960 1.01 1.07 1.14 1.22 1.30 1.37 1.45 1.53 1.67 1.81 1.94 2.06 2.18
1.8 0.818 0.829 0.861 0.908 0.965 1.03 1.10 1.17 1.24 1.31 1.38 1.52 1.65 1.78 1.90 2.01
2.0 0.740 0.750 0.780 0.823 0.876 0.935 0.999 1.07 1.13 1.20 1.27 1.40 1.52 1.64 1.75 1.86
2.2 0.675 0.685 0.712 0.752 0.801 0.856 0.915 0.978 1.04 1.10 1.17 1.29 1.41 1.52 1.63 1.73
2.4 0.621 0.630 0.656 0.693 0.738 0.789 0.845 0.902 0.961 1.02 1.08 1.19 1.31 1.41 1.52 1.62
2.6 0.575 0.583 0.607 0.642 0.684 0.732 0.784 0.838 0.893 0.948 1.00 1.11 1.22 1.32 1.42 1.52
2.8 0.535 0.543 0.565 0.598 0.637 0.682 0.731 0.782 0.834 0.886 0.939 1.04 1.14 1.24 1.34 1.43
3.0 0.500 0.508 0.529 0.559 0.596 0.639 0.684 0.732 0.781 0.831 0.881 0.980 1.08 1.17 1.26 1.35
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 74

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
0.00 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82 4.82
0.10 4.49 4.49 4.50 4.51 4.53 4.55 4.57 4.59 4.61 4.62 4.63 4.66 4.67 4.68 4.69 4.69
0.15 4.18 4.18 4.20 4.23 4.26 4.30 4.34 4.37 4.40 4.43 4.46 4.50 4.54 4.57 4.60 4.61
0.20 3.92 3.92 3.94 3.96 3.99 4.03 4.08 4.13 4.18 4.22 4.26 4.33 4.38 4.43 4.47 4.50
0.25 3.70 3.70 3.71 3.74 3.77 3.81 3.86 3.91 3.96 4.01 4.06 4.14 4.21 4.27 4.33 4.37
0.30 3.49 3.49 3.51 3.54 3.57 3.62 3.67 3.72 3.77 3.81 3.86 3.96 4.04 4.12 4.18 4.23
0.40 3.10 3.10 3.12 3.16 3.21 3.27 3.33 3.39 3.45 3.50 3.55 3.64 3.73 3.82 3.90 3.96
0.50 2.75 2.76 2.79 2.83 2.89 2.96 3.03 3.10 3.17 3.24 3.29 3.39 3.48 3.56 3.64 3.72
0.60 2.46 2.47 2.50 2.55 2.62 2.70 2.77 2.85 2.93 3.00 3.06 3.17 3.27 3.36 3.43 3.50
0.70 2.21 2.22 2.26 2.31 2.39 2.47 2.55 2.63 2.71 2.79 2.85 2.98 3.08 3.17 3.25 3.33
0.80 2.01 2.01 2.05 2.11 2.19 2.27 2.35 2.44 2.52 2.60 2.67 2.80 2.91 3.01 3.09 3.17
0.90 1.83 1.84 1.88 1.94 2.01 2.10 2.18 2.27 2.35 2.43 2.51 2.64 2.75 2.85 2.95 3.03
1.0 1.68 1.69 1.73 1.79 1.87 1.95 2.04 2.12 2.20 2.28 2.36 2.49 2.61 2.72 2.81 2.89
1.2 1.44 1.45 1.49 1.55 1.62 1.70 1.79 1.87 1.95 2.03 2.11 2.24 2.36 2.47 2.57 2.66
1.4 1.25 1.26 1.30 1.36 1.43 1.51 1.59 1.67 1.75 1.83 1.90 2.03 2.15 2.26 2.36 2.45
1.6 1.11 1.12 1.16 1.21 1.28 1.35 1.43 1.51 1.58 1.66 1.73 1.86 1.98 2.09 2.19 2.28
1.8 0.996 1.01 1.04 1.09 1.15 1.22 1.30 1.37 1.44 1.51 1.58 1.71 1.82 1.93 2.03 2.12
2.0 0.902 0.911 0.944 0.993 1.05 1.12 1.19 1.26 1.32 1.39 1.46 1.58 1.69 1.80 1.90 1.99
2.2 0.824 0.833 0.864 0.910 0.965 1.03 1.09 1.16 1.22 1.29 1.35 1.47 1.58 1.68 1.78 1.87
2.4 0.758 0.767 0.796 0.839 0.891 0.949 1.01 1.07 1.14 1.20 1.26 1.37 1.48 1.58 1.67 1.76
2.6 0.702 0.711 0.738 0.778 0.827 0.882 0.940 1.00 1.06 1.12 1.17 1.28 1.39 1.49 1.58 1.66
2.8 0.653 0.662 0.688 0.726 0.772 0.823 0.879 0.936 0.992 1.05 1.10 1.21 1.31 1.40 1.49 1.58
3.0 0.611 0.619 0.644 0.680 0.723 0.772 0.825 0.879 0.932 0.986 1.04 1.14 1.24 1.33 1.42 1.50
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 75

0.00 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37 4.37
0.10 4.26 4.26 4.26 4.25 4.25 4.25 4.25 4.24 4.24 4.23 4.23 4.22 4.21 4.20 4.19 4.17
0.15 4.12 4.12 4.13 4.13 4.13 4.13 4.13 4.14 4.14 4.14 4.13 4.13 4.13 4.12 4.11 4.10
0.20 3.97 3.97 3.97 3.97 3.98 3.98 3.99 4.00 4.01 4.01 4.02 4.03 4.03 4.03 4.03 4.02
0.25 3.86 3.86 3.86 3.86 3.86 3.86 3.87 3.87 3.88 3.89 3.90 3.92 3.93 3.94 3.94 3.94
0.30 3.74 3.74 3.74 3.75 3.75 3.76 3.76 3.77 3.78 3.78 3.79 3.81 3.83 3.84 3.85 3.86
0.40 3.51 3.51 3.51 3.52 3.54 3.55 3.56 3.57 3.59 3.60 3.61 3.63 3.65 3.67 3.69 3.70
0.50 3.26 3.26 3.27 3.29 3.31 3.34 3.36 3.38 3.40 3.42 3.44 3.48 3.50 3.53 3.55 3.57
0.60 3.02 3.02 3.04 3.06 3.09 3.13 3.17 3.20 3.23 3.26 3.28 3.33 3.36 3.40 3.42 3.45
0.70 2.80 2.80 2.81 2.85 2.89 2.93 2.98 3.02 3.06 3.09 3.13 3.18 3.23 3.27 3.30 3.33
0.80 2.59 2.59 2.61 2.65 2.70 2.75 2.80 2.85 2.90 2.94 2.98 3.05 3.10 3.15 3.19 3.23
0.90 2.40 2.40 2.43 2.47 2.52 2.58 2.64 2.70 2.75 2.80 2.84 2.92 2.98 3.04 3.09 3.13
1.0 2.23 2.23 2.26 2.31 2.36 2.43 2.49 2.56 2.61 2.67 2.71 2.80 2.87 2.93 2.98 3.03
1.2 1.94 1.95 1.98 2.03 2.09 2.16 2.23 2.30 2.37 2.43 2.48 2.58 2.66 2.73 2.79 2.85
1.4 1.72 1.72 1.75 1.81 1.87 1.95 2.02 2.09 2.16 2.23 2.28 2.39 2.48 2.56 2.62 2.68
1.6 1.53 1.54 1.57 1.63 1.69 1.77 1.84 1.91 1.98 2.05 2.11 2.22 2.31 2.40 2.47 2.53
1.8 1.38 1.39 1.42 1.48 1.54 1.62 1.69 1.76 1.83 1.90 1.96 2.07 2.17 2.25 2.33 2.40
2.0 1.25 1.26 1.30 1.35 1.42 1.49 1.56 1.63 1.70 1.77 1.83 1.94 2.04 2.13 2.21 2.28
2.2 1.15 1.16 1.19 1.24 1.31 1.38 1.45 1.52 1.59 1.65 1.71 1.82 1.92 2.01 2.09 2.17
2.4 1.06 1.07 1.10 1.15 1.21 1.28 1.35 1.42 1.48 1.55 1.61 1.72 1.82 1.91 1.99 2.06
2.6 0.983 0.991 1.02 1.07 1.13 1.20 1.26 1.33 1.39 1.46 1.51 1.62 1.72 1.81 1.90 1.97
2.8 0.917 0.925 0.956 1.00 1.06 1.12 1.19 1.25 1.31 1.37 1.43 1.54 1.64 1.73 1.81 1.88
3.0 0.858 0.866 0.897 0.942 0.996 1.06 1.12 1.18 1.24 1.30 1.36 1.46 1.56 1.65 1.73 1.81
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
8–76 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 76

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-5 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
0.00 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96 3.96
0.10 3.82 3.83 3.84 3.84 3.85 3.85 3.85 3.85 3.85 3.85 3.85 3.84 3.82 3.80 3.78 3.76
0.15 3.85 3.86 3.86 3.86 3.86 3.85 3.85 3.85 3.84 3.83 3.83 3.81 3.79 3.77 3.75 3.73
0.20 3.84 3.84 3.84 3.84 3.83 3.83 3.82 3.82 3.81 3.80 3.80 3.78 3.76 3.74 3.72 3.71
0.25 3.83 3.83 3.83 3.82 3.82 3.81 3.80 3.80 3.79 3.78 3.77 3.75 3.73 3.72 3.70 3.68
0.30 3.82 3.82 3.81 3.81 3.80 3.79 3.78 3.77 3.76 3.76 3.75 3.73 3.71 3.69 3.67 3.66
0.40 3.78 3.78 3.77 3.76 3.75 3.74 3.73 3.72 3.71 3.70 3.69 3.67 3.66 3.64 3.62 3.61
0.50 3.72 3.72 3.71 3.70 3.69 3.68 3.67 3.66 3.65 3.64 3.64 3.62 3.60 3.59 3.57 3.56
0.60 3.65 3.64 3.64 3.63 3.62 3.61 3.60 3.60 3.59 3.58 3.57 3.56 3.54 3.53 3.52 3.51
0.70 3.56 3.55 3.55 3.54 3.54 3.53 3.52 3.52 3.51 3.51 3.50 3.49 3.48 3.47 3.47 3.46
0.80 3.46 3.45 3.45 3.45 3.45 3.44 3.44 3.44 3.44 3.43 3.43 3.43 3.42 3.42 3.41 3.41
0.90 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.35 3.36 3.36 3.36 3.36 3.36 3.36 3.35
1.0 3.23 3.23 3.24 3.24 3.25 3.25 3.26 3.27 3.27 3.28 3.28 3.29 3.30 3.30 3.30 3.30
1.2 3.00 3.00 3.01 3.02 3.04 3.06 3.08 3.09 3.11 3.12 3.14 3.16 3.17 3.19 3.20 3.20
1.4 2.78 2.78 2.79 2.81 2.84 2.87 2.90 2.93 2.95 2.97 2.99 3.02 3.05 3.07 3.09 3.10
1.6 2.57 2.57 2.59 2.62 2.65 2.69 2.73 2.77 2.80 2.83 2.85 2.90 2.93 2.96 2.99 3.01
1.8 2.38 2.38 2.40 2.44 2.48 2.53 2.58 2.62 2.66 2.69 2.72 2.78 2.82 2.86 2.89 2.91
2.0 2.21 2.21 2.24 2.27 2.32 2.38 2.43 2.48 2.52 2.56 2.60 2.66 2.72 2.76 2.80 2.83
2.2 2.05 2.06 2.09 2.13 2.18 2.24 2.30 2.35 2.40 2.44 2.48 2.56 2.61 2.66 2.71 2.74
2.4 1.92 1.92 1.95 2.00 2.05 2.12 2.18 2.24 2.29 2.33 2.38 2.45 2.52 2.57 2.62 2.66
2.6 1.80 1.80 1.83 1.88 1.94 2.00 2.07 2.13 2.18 2.23 2.28 2.36 2.43 2.49 2.54 2.58
2.8 1.69 1.69 1.72 1.77 1.83 1.90 1.97 2.03 2.09 2.14 2.19 2.27 2.35 2.41 2.46 2.51
3.0 1.59 1.60 1.63 1.68 1.74 1.81 1.87 1.94 2.00 2.05 2.10 2.19 2.27 2.33 2.39 2.44
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 77

8–78 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-6
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
0.00 3.71 4.08 4.45 4.83 5.38 5.94 6.50 7.05 7.61 8.17 8.72 9.84 10.9 12.1 13.2 14.3
0.10 3.72 4.09 4.55 5.04 5.54 6.04 6.55 7.07 7.58 8.10 8.62 9.66 10.7 11.8 12.8 13.9
0.15 3.67 4.06 4.49 4.94 5.41 5.89 6.38 6.87 7.36 7.86 8.36 9.36 10.4 11.4 12.4 13.4
0.20 3.51 3.93 4.34 4.77 5.21 5.66 6.13 6.59 7.07 7.54 8.03 9.00 9.98 11.0 12.0 13.0
0.25 3.31 3.72 4.13 4.54 4.96 5.39 5.84 6.29 6.74 7.20 7.67 8.61 9.57 10.5 11.5 12.5
0.30 3.09 3.48 3.89 4.29 4.69 5.11 5.53 5.97 6.41 6.86 7.31 8.23 9.17 10.1 11.1 12.1
0.40 2.66 3.01 3.39 3.77 4.16 4.55 4.94 5.35 5.76 6.19 6.62 7.50 8.40 9.33 10.3 11.2
0.50 2.30 2.60 2.94 3.30 3.67 4.04 4.41 4.79 5.19 5.59 6.00 6.84 7.71 8.61 9.52 10.5
0.60 2.00 2.27 2.57 2.90 3.25 3.60 3.96 4.32 4.69 5.07 5.46 6.27 7.11 7.97 8.86 9.77
0.70 1.76 2.00 2.27 2.57 2.90 3.24 3.57 3.91 4.26 4.63 5.00 5.77 6.58 7.41 8.27 9.15
0.80 1.57 1.78 2.02 2.30 2.61 2.93 3.25 3.57 3.90 4.24 4.60 5.34 6.11 6.91 7.74 8.59
0.90 1.41 1.60 1.82 2.08 2.36 2.67 2.97 3.27 3.59 3.91 4.25 4.95 5.69 6.45 7.25 8.07
1.0 1.28 1.45 1.66 1.90 2.16 2.45 2.73 3.02 3.32 3.62 3.94 4.61 5.31 6.04 6.81 7.60
1.2 1.08 1.22 1.40 1.61 1.84 2.09 2.35 2.61 2.87 3.15 3.43 4.03 4.67 5.34 6.04 6.77
1.4 0.928 1.05 1.21 1.40 1.60 1.83 2.06 2.29 2.53 2.78 3.03 3.58 4.16 4.77 5.42 6.09
1.6 0.815 0.927 1.07 1.23 1.42 1.62 1.83 2.04 2.25 2.48 2.71 3.21 3.74 4.30 4.90 5.53
1.8 0.727 0.827 0.954 1.10 1.27 1.45 1.64 1.83 2.03 2.24 2.45 2.90 3.39 3.92 4.47 5.05
2.0 0.655 0.746 0.861 0.996 1.15 1.31 1.49 1.66 1.85 2.04 2.23 2.65 3.10 3.59 4.10 4.65
2.2 0.597 0.679 0.785 0.908 1.05 1.20 1.36 1.52 1.69 1.87 2.05 2.44 2.86 3.31 3.79 4.30
2.4 0.547 0.623 0.721 0.835 0.963 1.10 1.25 1.41 1.56 1.72 1.89 2.26 2.65 3.07 3.52 4.00
2.6 0.506 0.576 0.666 0.772 0.891 1.02 1.16 1.30 1.45 1.60 1.76 2.10 2.47 2.86 3.29 3.74
2.8 0.470 0.536 0.620 0.718 0.829 0.950 1.08 1.21 1.35 1.49 1.64 1.96 2.31 2.68 3.08 3.50
3.0 0.439 0.500 0.579 0.671 0.775 0.888 1.01 1.14 1.27 1.40 1.54 1.84 2.17 2.52 2.90 3.30
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:28 AM Page 78

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
0.00 3.96 4.39 4.94 5.48 6.03 6.57 7.12 7.66 8.21 8.75 9.30 10.4 11.5 12.6 13.7 14.7
0.10 3.79 4.22 4.70 5.19 5.70 6.21 6.73 7.25 7.77 8.29 8.82 9.87 10.9 12.0 13.0 14.1
0.15 3.68 4.14 4.59 5.05 5.53 6.01 6.49 6.98 7.48 7.97 8.47 9.47 10.5 11.5 12.5 13.6
0.20 3.51 3.95 4.40 4.85 5.31 5.76 6.23 6.69 7.17 7.64 8.12 9.09 10.1 11.1 12.1 13.1
0.25 3.31 3.72 4.16 4.61 5.04 5.49 5.93 6.38 6.84 7.30 7.76 8.71 9.66 10.6 11.6 12.6
0.30 3.09 3.48 3.90 4.33 4.76 5.19 5.62 6.06 6.50 6.95 7.40 8.32 9.26 10.2 11.2 12.2
0.40 2.68 3.02 3.39 3.79 4.20 4.62 5.02 5.44 5.86 6.29 6.72 7.60 8.51 9.43 10.4 11.3
0.50 2.32 2.62 2.95 3.31 3.70 4.10 4.49 4.88 5.29 5.69 6.10 6.95 7.83 8.73 9.65 10.6
0.60 2.03 2.29 2.59 2.92 3.28 3.65 4.03 4.41 4.79 5.17 5.57 6.39 7.23 8.10 8.99 9.91
0.70 1.79 2.03 2.30 2.60 2.93 3.28 3.64 4.00 4.36 4.73 5.11 5.89 6.70 7.55 8.41 9.30
0.80 1.60 1.81 2.05 2.33 2.64 2.97 3.31 3.65 4.00 4.35 4.71 5.45 6.23 7.04 7.88 8.73
0.90 1.44 1.63 1.86 2.11 2.40 2.71 3.03 3.36 3.68 4.01 4.35 5.07 5.81 6.59 7.39 8.22
1.0 1.31 1.48 1.69 1.93 2.20 2.49 2.80 3.10 3.40 3.72 4.05 4.72 5.43 6.18 6.95 7.75
1.2 1.10 1.25 1.43 1.64 1.88 2.14 2.41 2.68 2.95 3.24 3.53 4.14 4.79 5.47 6.19 6.93
1.4 0.954 1.08 1.24 1.43 1.64 1.87 2.11 2.36 2.60 2.86 3.12 3.68 4.27 4.90 5.56 6.25
1.6 0.839 0.953 1.10 1.26 1.45 1.66 1.87 2.10 2.32 2.55 2.79 3.30 3.85 4.43 5.04 5.68
1.8 0.748 0.850 0.980 1.13 1.30 1.49 1.68 1.89 2.09 2.31 2.53 3.00 3.50 4.03 4.60 5.19
2.0 0.675 0.768 0.885 1.02 1.18 1.35 1.53 1.72 1.90 2.10 2.30 2.74 3.20 3.70 4.23 4.78
2.2 0.615 0.700 0.808 0.934 1.08 1.23 1.40 1.57 1.75 1.93 2.12 2.52 2.95 3.41 3.91 4.43
2.4 0.565 0.642 0.742 0.859 0.990 1.13 1.29 1.45 1.61 1.78 1.96 2.33 2.74 3.17 3.63 4.12
2.6 0.522 0.594 0.687 0.795 0.916 1.05 1.19 1.34 1.50 1.65 1.82 2.17 2.55 2.96 3.39 3.85
2.8 0.485 0.552 0.639 0.739 0.853 0.977 1.11 1.25 1.40 1.54 1.70 2.03 2.38 2.77 3.18 3.61
3.0 0.453 0.516 0.597 0.691 0.798 0.914 1.04 1.17 1.31 1.45 1.59 1.90 2.24 2.60 2.99 3.40
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
DESIGN TABLES 8–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 79

8–80 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
0.00 4.37 4.89 5.40 5.91 6.43 6.94 7.46 7.97 8.48 9.00 9.51 10.5 11.6 12.6 13.6 14.7
0.10 4.05 4.60 5.13 5.65 6.16 6.67 7.17 7.68 8.18 8.69 9.20 10.2 11.2 12.3 13.3 14.4
0.15 3.83 4.33 4.85 5.36 5.86 6.36 6.86 7.35 7.85 8.35 8.85 9.85 10.9 11.9 12.9 14.0
0.20 3.64 4.09 4.57 5.06 5.55 6.04 6.52 7.00 7.48 7.97 8.46 9.45 10.4 11.5 12.5 13.5
0.25 3.43 3.85 4.30 4.77 5.24 5.72 6.20 6.66 7.12 7.59 8.06 9.03 10.0 11.0 12.1 13.1
0.30 3.22 3.61 4.03 4.47 4.93 5.40 5.87 6.33 6.78 7.24 7.70 8.64 9.61 10.6 11.6 12.6
0.40 2.81 3.15 3.53 3.93 4.36 4.80 5.25 5.71 6.15 6.59 7.03 7.94 8.86 9.81 10.8 11.8
0.50 2.46 2.77 3.10 3.47 3.86 4.28 4.71 5.15 5.58 6.01 6.44 7.31 8.21 9.14 10.1 11.0
0.60 2.17 2.44 2.75 3.08 3.45 3.84 4.25 4.67 5.09 5.50 5.91 6.76 7.64 8.54 9.45 10.4
0.70 1.93 2.17 2.45 2.76 3.11 3.47 3.86 4.26 4.67 5.06 5.46 6.27 7.12 7.99 8.88 9.79
0.80 1.73 1.95 2.21 2.50 2.82 3.16 3.53 3.91 4.30 4.67 5.05 5.84 6.65 7.49 8.35 9.24
0.90 1.57 1.77 2.00 2.28 2.58 2.90 3.25 3.61 3.97 4.33 4.70 5.44 6.23 7.04 7.87 8.74
1.0 1.43 1.61 1.83 2.09 2.37 2.68 3.00 3.35 3.69 4.03 4.38 5.09 5.84 6.63 7.44 8.27
1.2 1.21 1.37 1.56 1.79 2.04 2.31 2.61 2.91 3.22 3.53 3.85 4.50 5.19 5.92 6.67 7.46
1.4 1.05 1.19 1.36 1.56 1.79 2.03 2.29 2.57 2.85 3.13 3.42 4.02 4.66 5.33 6.03 6.76
1.6 0.926 1.05 1.20 1.38 1.59 1.81 2.05 2.29 2.55 2.80 3.07 3.62 4.21 4.84 5.49 6.18
1.8 0.827 0.938 1.08 1.24 1.43 1.63 1.84 2.07 2.30 2.54 2.78 3.29 3.84 4.42 5.03 5.67
2.0 0.747 0.848 0.977 1.13 1.29 1.48 1.68 1.89 2.10 2.32 2.54 3.02 3.52 4.07 4.64 5.24
2.2 0.681 0.774 0.892 1.03 1.18 1.35 1.54 1.73 1.93 2.13 2.34 2.78 3.26 3.76 4.30 4.86
2.4 0.626 0.711 0.821 0.948 1.09 1.25 1.42 1.60 1.78 1.97 2.16 2.58 3.02 3.50 4.00 4.53
2.6 0.579 0.658 0.760 0.878 1.01 1.16 1.31 1.48 1.65 1.83 2.01 2.40 2.82 3.27 3.74 4.24
2.8 0.538 0.612 0.707 0.818 0.942 1.08 1.23 1.38 1.54 1.71 1.88 2.25 2.64 3.06 3.51 3.99
3.0 0.503 0.572 0.661 0.765 0.882 1.01 1.15 1.29 1.45 1.60 1.77 2.11 2.48 2.88 3.31 3.76
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 80

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
0.00 4.82 5.14 5.61 6.08 6.54 7.01 7.48 7.95 8.41 8.88 9.35 10.3 11.2 12.2 13.1 14.0
0.10 4.49 4.99 5.48 5.96 6.45 6.94 7.43 7.92 8.41 8.90 9.39 10.4 11.4 12.3 13.3 14.3
0.15 4.18 4.69 5.19 5.67 6.16 6.65 7.15 7.65 8.15 8.65 9.14 10.1 11.1 12.1 13.1 14.1
0.20 3.92 4.39 4.87 5.36 5.84 6.33 6.83 7.33 7.84 8.34 8.85 9.86 10.9 11.9 12.9 13.9
0.25 3.70 4.13 4.58 5.05 5.52 6.01 6.50 7.00 7.50 8.02 8.53 9.54 10.6 11.6 12.6 13.6
0.30 3.49 3.89 4.32 4.76 5.22 5.70 6.18 6.67 7.18 7.69 8.20 9.21 10.2 11.3 12.3 13.3
0.40 3.10 3.45 3.84 4.25 4.68 5.13 5.60 6.07 6.56 7.06 7.57 8.56 9.57 10.6 11.6 12.7
0.50 2.75 3.07 3.42 3.81 4.22 4.65 5.10 5.56 6.03 6.52 7.01 7.96 8.94 9.96 11.0 12.0
0.60 2.46 2.75 3.08 3.44 3.83 4.24 4.67 5.11 5.58 6.05 6.52 7.43 8.38 9.37 10.4 11.4
0.70 2.21 2.48 2.78 3.12 3.49 3.88 4.30 4.73 5.17 5.62 6.08 6.96 7.87 8.83 9.81 10.8
0.80 2.01 2.25 2.53 2.85 3.20 3.57 3.97 4.39 4.81 5.25 5.69 6.54 7.42 8.34 9.29 10.3
0.90 1.83 2.06 2.32 2.62 2.95 3.31 3.69 4.08 4.49 4.91 5.33 6.16 7.01 7.89 8.81 9.76
1.0 1.68 1.89 2.13 2.42 2.73 3.08 3.44 3.81 4.20 4.60 5.01 5.81 6.63 7.48 8.38 9.30
1.2 1.44 1.62 1.84 2.10 2.38 2.69 3.02 3.36 3.71 4.08 4.46 5.20 5.97 6.77 7.60 8.47
1.4 1.25 1.41 1.61 1.84 2.10 2.38 2.68 2.99 3.32 3.65 4.00 4.69 5.41 6.17 6.95 7.76
1.6 1.11 1.25 1.43 1.64 1.88 2.13 2.40 2.69 2.99 3.30 3.62 4.27 4.94 5.65 6.38 7.15
1.8 0.996 1.13 1.29 1.48 1.70 1.93 2.18 2.44 2.72 3.00 3.30 3.90 4.53 5.20 5.89 6.62
2.0 0.902 1.02 1.17 1.35 1.55 1.76 1.99 2.23 2.49 2.75 3.03 3.59 4.18 4.81 5.46 6.15
2.2 0.824 0.934 1.07 1.24 1.42 1.62 1.83 2.06 2.29 2.54 2.80 3.32 3.88 4.47 5.09 5.74
2.4 0.758 0.860 0.990 1.14 1.31 1.49 1.69 1.90 2.12 2.36 2.60 3.09 3.62 4.17 4.76 5.37
2.6 0.702 0.797 0.918 1.06 1.22 1.39 1.57 1.77 1.98 2.19 2.42 2.89 3.38 3.91 4.46 5.05
2.8 0.653 0.742 0.855 0.987 1.14 1.30 1.47 1.66 1.85 2.05 2.27 2.71 3.18 3.67 4.20 4.76
3.0 0.611 0.694 0.801 0.925 1.06 1.22 1.38 1.55 1.74 1.93 2.13 2.55 2.99 3.47 3.97 4.50
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 81

8–82 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
0.00 5.21 5.58 6.01 6.45 6.89 7.33 7.76 8.20 8.64 9.07 9.51 10.4 11.3 12.1 13.0 13.9
0.10 4.86 5.29 5.73 6.19 6.65 7.12 7.59 8.06 8.52 8.98 9.43 10.3 11.2 12.1 13.0 13.9
0.15 4.61 5.04 5.48 5.93 6.40 6.88 7.37 7.86 8.34 8.81 9.28 10.2 11.1 12.0 12.9 13.8
0.20 4.36 4.80 5.23 5.67 6.14 6.63 7.13 7.62 8.12 8.61 9.10 10.1 11.0 11.9 12.8 13.7
0.25 4.13 4.56 4.99 5.43 5.89 6.37 6.87 7.38 7.89 8.39 8.89 9.87 10.8 11.8 12.7 13.6
0.30 3.93 4.34 4.76 5.19 5.64 6.12 6.62 7.13 7.65 8.16 8.67 9.67 10.6 11.6 12.5 13.5
0.40 3.58 3.95 4.35 4.77 5.20 5.66 6.15 6.66 7.17 7.69 8.21 9.24 10.2 11.2 12.2 13.2
0.50 3.26 3.60 3.98 4.39 4.82 5.27 5.74 6.24 6.75 7.27 7.78 8.81 9.83 10.8 11.8 12.8
0.60 2.98 3.30 3.66 4.05 4.47 4.92 5.39 5.86 6.36 6.87 7.38 8.41 9.44 10.4 11.4 12.4
0.70 2.74 3.04 3.38 3.75 4.17 4.60 5.06 5.52 6.00 6.50 7.01 8.03 9.05 10.1 11.1 12.1
0.80 2.52 2.81 3.13 3.49 3.89 4.31 4.75 5.21 5.68 6.16 6.65 7.66 8.68 9.70 10.7 11.7
0.90 2.34 2.60 2.91 3.26 3.64 4.05 4.48 4.92 5.38 5.85 6.33 7.32 8.32 9.32 10.3 11.3
1.0 2.17 2.42 2.71 3.05 3.42 3.82 4.23 4.66 5.11 5.56 6.03 6.99 7.98 8.96 9.95 10.9
1.2 1.89 2.12 2.39 2.70 3.04 3.41 3.79 4.20 4.61 5.05 5.49 6.40 7.33 8.28 9.24 10.2
1.4 1.67 1.88 2.12 2.41 2.73 3.07 3.43 3.80 4.20 4.60 5.02 5.89 6.76 7.66 8.60 9.55
1.6 1.50 1.68 1.91 2.18 2.47 2.78 3.12 3.47 3.84 4.22 4.62 5.44 6.26 7.12 8.01 8.93
1.8 1.35 1.52 1.73 1.98 2.25 2.54 2.86 3.19 3.53 3.89 4.26 5.04 5.82 6.63 7.49 8.37
2.0 1.23 1.39 1.59 1.81 2.07 2.34 2.63 2.94 3.26 3.60 3.96 4.69 5.44 6.20 7.02 7.86
2.2 1.13 1.28 1.46 1.67 1.91 2.16 2.44 2.73 3.03 3.35 3.68 4.38 5.10 5.82 6.59 7.41
2.4 1.04 1.18 1.35 1.55 1.77 2.01 2.27 2.54 2.83 3.13 3.44 4.10 4.79 5.49 6.22 6.99
2.6 0.970 1.10 1.26 1.45 1.65 1.88 2.12 2.38 2.65 2.94 3.23 3.86 4.51 5.18 5.88 6.62
2.8 0.905 1.02 1.18 1.35 1.55 1.76 1.99 2.23 2.49 2.76 3.04 3.64 4.26 4.90 5.57 6.28
3.0 0.848 0.961 1.10 1.27 1.46 1.66 1.88 2.11 2.35 2.61 2.87 3.44 4.04 4.65 5.29 5.97
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 82

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-6 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
0.00 5.47 5.83 6.22 6.60 6.99 7.37 7.76 8.14 8.53 8.91 9.30 10.1 10.8 11.6 12.4 13.1
0.10 5.17 5.55 5.97 6.41 6.84 7.26 7.67 8.07 8.47 8.86 9.25 10.0 10.8 11.6 12.3 13.1
0.15 5.00 5.38 5.80 6.25 6.70 7.14 7.57 7.99 8.40 8.80 9.20 9.98 10.8 11.5 12.3 13.1
0.20 4.85 5.22 5.64 6.09 6.56 7.01 7.46 7.89 8.31 8.72 9.13 9.93 10.7 11.5 12.3 13.1
0.25 4.71 5.07 5.48 5.94 6.41 6.87 7.33 7.78 8.21 8.63 9.05 9.87 10.7 11.5 12.2 13.0
0.30 4.57 4.94 5.34 5.79 6.26 6.73 7.20 7.66 8.10 8.54 8.96 9.79 10.6 11.4 12.2 13.0
0.40 4.32 4.68 5.07 5.52 5.99 6.48 6.95 7.42 7.88 8.32 8.76 9.62 10.5 11.3 12.1 12.9
0.50 4.09 4.45 4.84 5.27 5.74 6.23 6.72 7.20 7.67 8.13 8.58 9.44 10.3 11.1 11.9 12.7
0.60 3.88 4.23 4.62 5.05 5.51 5.99 6.49 6.98 7.46 7.94 8.40 9.28 10.1 11.0 11.8 12.6
0.70 3.69 4.03 4.41 4.84 5.29 5.77 6.26 6.76 7.25 7.74 8.21 9.12 10.0 10.8 11.7 12.5
0.80 3.51 3.84 4.22 4.64 5.09 5.56 6.05 6.55 7.04 7.54 8.02 8.96 9.85 10.7 11.5 12.4
0.90 3.34 3.66 4.03 4.45 4.90 5.36 5.84 6.34 6.84 7.34 7.83 8.78 9.70 10.6 11.4 12.3
1.0 3.18 3.49 3.86 4.27 4.72 5.17 5.64 6.14 6.64 7.14 7.63 8.60 9.54 10.4 11.3 12.2
1.2 2.90 3.19 3.55 3.95 4.38 4.82 5.28 5.76 6.25 6.75 7.25 8.24 9.21 10.1 11.0 11.9
1.4 2.65 2.93 3.27 3.65 4.07 4.51 4.95 5.41 5.89 6.38 6.88 7.88 8.86 9.82 10.8 11.7
1.6 2.44 2.71 3.03 3.40 3.79 4.22 4.65 5.10 5.56 6.04 6.53 7.52 8.51 9.49 10.4 11.4
1.8 2.26 2.51 2.82 3.17 3.55 3.96 4.38 4.82 5.26 5.73 6.21 7.19 8.17 9.16 10.1 11.1
2.0 2.09 2.33 2.63 2.96 3.33 3.72 4.13 4.55 4.99 5.44 5.90 6.86 7.84 8.83 9.80 10.8
2.2 1.95 2.18 2.46 2.78 3.13 3.50 3.90 4.31 4.74 5.17 5.62 6.56 7.53 8.50 9.47 10.4
2.4 1.82 2.04 2.31 2.61 2.95 3.31 3.69 4.09 4.50 4.93 5.36 6.28 7.22 8.19 9.16 10.1
2.6 1.71 1.92 2.18 2.47 2.79 3.13 3.50 3.89 4.29 4.70 5.12 6.01 6.93 7.88 8.85 9.81
2.8 1.61 1.81 2.06 2.34 2.64 2.97 3.33 3.70 4.09 4.49 4.90 5.76 6.66 7.60 8.55 9.51
3.0 1.52 1.71 1.95 2.21 2.51 2.83 3.17 3.53 3.90 4.29 4.69 5.53 6.41 7.32 8.26 9.21
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 83

8–84 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-7
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
0.00 5.57 5.88 6.20 6.51 6.83 7.15 7.46 7.78 8.09 8.41 8.72 9.35 9.98 10.6 11.2 11.9
0.10 4.32 4.68 5.08 5.54 6.02 6.49 6.95 7.40 7.82 8.23 8.62 9.37 10.1 10.8 11.5 12.1
0.15 3.90 4.24 4.65 5.08 5.55 6.04 6.52 7.00 7.47 7.92 8.36 9.18 9.96 10.7 11.4 12.1
0.20 3.54 3.86 4.26 4.69 5.14 5.61 6.10 6.60 7.08 7.56 8.03 8.92 9.76 10.6 11.3 12.1
0.25 3.22 3.53 3.91 4.34 4.77 5.23 5.71 6.20 6.69 7.19 7.67 8.61 9.50 10.3 11.2 12.0
0.30 2.94 3.24 3.60 4.01 4.44 4.88 5.35 5.83 6.32 6.82 7.31 8.27 9.20 10.1 11.0 11.8
0.40 2.48 2.76 3.09 3.46 3.87 4.30 4.73 5.18 5.65 6.13 6.62 7.60 8.57 9.52 10.4 11.3
0.50 2.14 2.38 2.69 3.03 3.40 3.80 4.21 4.64 5.07 5.53 6.00 6.96 7.93 8.90 9.85 10.8
0.60 1.87 2.09 2.37 2.68 3.02 3.39 3.78 4.18 4.59 5.02 5.46 6.38 7.34 8.30 9.26 10.2
0.70 1.65 1.86 2.11 2.40 2.71 3.05 3.41 3.79 4.18 4.58 5.00 5.87 6.79 7.73 8.69 9.64
0.80 1.48 1.67 1.90 2.16 2.45 2.77 3.10 3.46 3.82 4.20 4.60 5.42 6.30 7.21 8.14 9.09
0.90 1.34 1.51 1.73 1.97 2.24 2.53 2.84 3.17 3.52 3.88 4.25 5.03 5.86 6.73 7.64 8.56
1.0 1.22 1.38 1.58 1.81 2.06 2.33 2.62 2.92 3.25 3.59 3.94 4.68 5.47 6.31 7.18 8.07
1.2 1.04 1.17 1.35 1.55 1.76 2.00 2.26 2.53 2.82 3.12 3.43 4.10 4.81 5.57 6.37 7.21
1.4 0.900 1.02 1.17 1.35 1.54 1.75 1.98 2.22 2.48 2.75 3.03 3.64 4.29 4.98 5.71 6.48
1.6 0.794 0.902 1.04 1.19 1.37 1.56 1.76 1.98 2.21 2.45 2.71 3.26 3.85 4.48 5.16 5.85
1.8 0.710 0.807 0.930 1.07 1.23 1.40 1.59 1.78 1.99 2.22 2.45 2.95 3.49 4.08 4.69 5.33
2.0 0.643 0.731 0.842 0.972 1.12 1.27 1.44 1.62 1.81 2.02 2.23 2.69 3.19 3.73 4.30 4.89
2.2 0.586 0.667 0.770 0.888 1.02 1.17 1.32 1.49 1.66 1.85 2.05 2.48 2.94 3.44 3.97 4.51
2.4 0.539 0.613 0.708 0.818 0.941 1.07 1.22 1.37 1.54 1.71 1.89 2.29 2.72 3.18 3.68 4.19
2.6 0.498 0.568 0.656 0.758 0.872 0.996 1.13 1.27 1.43 1.59 1.76 2.13 2.53 2.97 3.42 3.90
2.8 0.464 0.528 0.611 0.706 0.812 0.929 1.05 1.19 1.33 1.48 1.64 1.99 2.37 2.77 3.20 3.65
3.0 0.434 0.494 0.571 0.661 0.760 0.870 0.988 1.11 1.25 1.39 1.54 1.87 2.22 2.60 3.01 3.43
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 84

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
0.00 5.47 5.83 6.22 6.60 6.99 7.37 7.76 8.14 8.53 8.91 9.30 10.1 10.8 11.6 12.4 13.1
0.10 4.38 4.75 5.14 5.59 6.06 6.54 7.02 7.48 7.93 8.38 8.82 9.67 10.5 11.3 12.1 12.9
0.15 3.97 4.32 4.71 5.13 5.60 6.09 6.58 7.07 7.55 8.01 8.47 9.35 10.2 11.0 11.8 12.7
0.20 3.60 3.94 4.32 4.75 5.19 5.67 6.16 6.66 7.16 7.64 8.12 9.05 9.93 10.8 11.6 12.4
0.25 3.29 3.60 3.98 4.39 4.84 5.29 5.77 6.27 6.77 7.27 7.76 8.72 9.65 10.5 11.4 12.2
0.30 3.01 3.31 3.67 4.07 4.51 4.95 5.42 5.91 6.40 6.90 7.40 8.39 9.34 10.3 11.2 12.0
0.40 2.55 2.82 3.16 3.53 3.94 4.37 4.81 5.26 5.74 6.22 6.72 7.71 8.70 9.67 10.6 11.5
0.50 2.20 2.45 2.75 3.10 3.47 3.87 4.30 4.73 5.17 5.63 6.10 7.08 8.06 9.05 10.0 11.0
0.60 1.92 2.15 2.43 2.75 3.09 3.46 3.86 4.27 4.69 5.12 5.57 6.50 7.46 8.44 9.41 10.4
0.70 1.71 1.91 2.17 2.46 2.78 3.12 3.49 3.88 4.28 4.69 5.11 5.99 6.92 7.87 8.83 9.79
0.80 1.53 1.72 1.95 2.22 2.52 2.84 3.18 3.54 3.92 4.31 4.71 5.54 6.42 7.34 8.28 9.23
0.90 1.38 1.56 1.78 2.03 2.30 2.60 2.92 3.25 3.61 3.98 4.35 5.15 5.99 6.86 7.77 8.70
1.0 1.26 1.42 1.63 1.86 2.12 2.39 2.69 3.01 3.34 3.69 4.05 4.80 5.59 6.44 7.31 8.20
1.2 1.07 1.21 1.39 1.59 1.82 2.06 2.32 2.60 2.90 3.21 3.53 4.21 4.93 5.70 6.48 7.30
1.4 0.931 1.05 1.21 1.39 1.59 1.81 2.04 2.29 2.55 2.83 3.12 3.74 4.40 5.09 5.80 6.56
1.6 0.822 0.932 1.07 1.23 1.41 1.61 1.82 2.04 2.28 2.53 2.79 3.36 3.96 4.60 5.25 5.93
1.8 0.735 0.834 0.961 1.11 1.27 1.45 1.64 1.84 2.06 2.29 2.53 3.04 3.59 4.18 4.78 5.42
2.0 0.665 0.755 0.870 1.00 1.15 1.31 1.49 1.68 1.87 2.08 2.30 2.78 3.29 3.83 4.39 4.98
2.2 0.607 0.690 0.795 0.918 1.05 1.20 1.37 1.54 1.72 1.91 2.12 2.55 3.03 3.53 4.05 4.60
2.4 0.558 0.634 0.732 0.845 0.972 1.11 1.26 1.42 1.59 1.77 1.96 2.36 2.80 3.27 3.76 4.27
2.6 0.516 0.587 0.678 0.783 0.901 1.03 1.17 1.32 1.47 1.64 1.82 2.20 2.61 3.05 3.50 3.99
2.8 0.480 0.546 0.631 0.730 0.840 0.960 1.09 1.23 1.38 1.53 1.70 2.05 2.44 2.85 3.28 3.73
3.0 0.449 0.511 0.591 0.683 0.786 0.899 1.02 1.15 1.29 1.44 1.59 1.93 2.29 2.67 3.08 3.51
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 85

8–86 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
0.00 5.21 5.58 6.01 6.45 6.89 7.33 7.76 8.20 8.64 9.07 9.51 10.4 11.3 12.1 13.0 13.9
0.10 4.49 4.93 5.36 5.81 6.28 6.77 7.26 7.75 8.24 8.72 9.20 10.1 11.1 12.0 12.9 13.8
0.15 4.09 4.51 4.94 5.38 5.84 6.32 6.82 7.33 7.84 8.35 8.85 9.83 10.8 11.7 12.7 13.6
0.20 3.76 4.15 4.56 4.99 5.43 5.90 6.40 6.91 7.42 7.94 8.46 9.47 10.5 11.4 12.4 13.3
0.25 3.47 3.83 4.22 4.64 5.07 5.52 6.01 6.51 7.03 7.55 8.06 9.09 10.1 11.1 12.1 13.0
0.30 3.21 3.54 3.92 4.32 4.75 5.20 5.67 6.16 6.67 7.19 7.70 8.73 9.75 10.8 11.7 12.7
0.40 2.76 3.06 3.40 3.77 4.19 4.62 5.08 5.55 6.03 6.53 7.03 8.06 9.08 10.1 11.1 12.1
0.50 2.40 2.67 2.98 3.33 3.72 4.14 4.57 5.02 5.48 5.95 6.44 7.43 8.44 9.45 10.4 11.4
0.60 2.11 2.35 2.64 2.98 3.34 3.73 4.14 4.56 5.00 5.45 5.91 6.87 7.85 8.82 9.81 10.8
0.70 1.88 2.10 2.37 2.68 3.02 3.38 3.77 4.17 4.59 5.02 5.46 6.37 7.29 8.24 9.20 10.2
0.80 1.69 1.89 2.14 2.43 2.75 3.09 3.45 3.83 4.22 4.63 5.05 5.92 6.80 7.71 8.64 9.59
0.90 1.53 1.72 1.95 2.22 2.52 2.84 3.18 3.53 3.91 4.30 4.70 5.52 6.36 7.23 8.13 9.05
1.0 1.40 1.57 1.79 2.04 2.32 2.62 2.94 3.28 3.63 4.00 4.38 5.17 5.96 6.79 7.66 8.56
1.2 1.19 1.34 1.53 1.76 2.00 2.27 2.55 2.85 3.17 3.50 3.85 4.56 5.30 6.05 6.84 7.68
1.4 1.03 1.17 1.34 1.54 1.76 2.00 2.25 2.52 2.81 3.11 3.42 4.07 4.75 5.45 6.17 6.94
1.6 0.914 1.03 1.19 1.37 1.56 1.78 2.01 2.25 2.51 2.79 3.07 3.67 4.30 4.94 5.61 6.32
1.8 0.818 0.927 1.07 1.23 1.41 1.60 1.81 2.04 2.27 2.52 2.78 3.33 3.92 4.51 5.14 5.80
2.0 0.740 0.840 0.966 1.11 1.28 1.46 1.65 1.86 2.07 2.30 2.54 3.05 3.59 4.15 4.74 5.35
2.2 0.675 0.767 0.884 1.02 1.17 1.34 1.51 1.70 1.90 2.12 2.34 2.81 3.31 3.83 4.39 4.97
2.4 0.621 0.706 0.814 0.939 1.08 1.23 1.40 1.57 1.76 1.96 2.16 2.61 3.07 3.56 4.08 4.63
2.6 0.575 0.653 0.754 0.871 1.00 1.14 1.30 1.46 1.64 1.82 2.01 2.43 2.87 3.32 3.81 4.33
2.8 0.535 0.608 0.702 0.812 0.934 1.07 1.21 1.37 1.53 1.70 1.88 2.27 2.68 3.11 3.57 4.06
3.0 0.500 0.569 0.657 0.760 0.874 1.00 1.14 1.28 1.43 1.59 1.77 2.13 2.52 2.93 3.36 3.83
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 86

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
0.00 4.82 5.14 5.61 6.08 6.54 7.01 7.48 7.95 8.41 8.88 9.35 10.3 11.2 12.2 13.1 14.0
0.10 4.49 4.99 5.48 5.96 6.45 6.94 7.43 7.92 8.41 8.90 9.39 10.4 11.4 12.3 13.3 14.3
0.15 4.18 4.69 5.19 5.67 6.16 6.65 7.15 7.65 8.15 8.65 9.14 10.1 11.1 12.1 13.1 14.1
0.20 3.92 4.39 4.87 5.36 5.84 6.33 6.83 7.33 7.84 8.34 8.85 9.86 10.9 11.9 12.9 13.9
0.25 3.70 4.13 4.58 5.05 5.52 6.01 6.50 7.00 7.50 8.02 8.53 9.54 10.6 11.6 12.6 13.6
0.30 3.49 3.89 4.32 4.76 5.22 5.70 6.18 6.67 7.18 7.69 8.20 9.21 10.2 11.3 12.3 13.3
0.40 3.10 3.45 3.84 4.25 4.68 5.13 5.60 6.07 6.56 7.06 7.57 8.56 9.57 10.6 11.6 12.7
0.50 2.75 3.07 3.42 3.81 4.22 4.65 5.10 5.56 6.03 6.52 7.01 7.96 8.94 9.96 11.0 12.0
0.60 2.46 2.75 3.08 3.44 3.83 4.24 4.67 5.11 5.58 6.05 6.52 7.43 8.38 9.37 10.4 11.4
0.70 2.21 2.48 2.78 3.12 3.49 3.88 4.30 4.73 5.17 5.62 6.08 6.96 7.87 8.83 9.81 10.8
0.80 2.01 2.25 2.53 2.85 3.20 3.57 3.97 4.39 4.81 5.25 5.69 6.54 7.42 8.34 9.29 10.3
0.90 1.83 2.06 2.32 2.62 2.95 3.31 3.69 4.08 4.49 4.91 5.33 6.16 7.01 7.89 8.81 9.76
1.0 1.68 1.89 2.13 2.42 2.73 3.08 3.44 3.81 4.20 4.60 5.01 5.81 6.63 7.48 8.38 9.30
1.2 1.44 1.62 1.84 2.10 2.38 2.69 3.02 3.36 3.71 4.08 4.46 5.20 5.97 6.77 7.60 8.47
1.4 1.25 1.41 1.61 1.84 2.10 2.38 2.68 2.99 3.32 3.65 4.00 4.69 5.41 6.17 6.95 7.76
1.6 1.11 1.25 1.43 1.64 1.88 2.13 2.40 2.69 2.99 3.30 3.62 4.27 4.94 5.65 6.38 7.15
1.8 0.996 1.13 1.29 1.48 1.70 1.93 2.18 2.44 2.72 3.00 3.30 3.90 4.53 5.20 5.89 6.62
2.0 0.902 1.02 1.17 1.35 1.55 1.76 1.99 2.23 2.49 2.75 3.03 3.59 4.18 4.81 5.46 6.15
2.2 0.824 0.934 1.07 1.24 1.42 1.62 1.83 2.06 2.29 2.54 2.80 3.32 3.88 4.47 5.09 5.74
2.4 0.758 0.860 0.990 1.14 1.31 1.49 1.69 1.90 2.12 2.36 2.60 3.09 3.62 4.17 4.76 5.37
2.6 0.702 0.797 0.918 1.06 1.22 1.39 1.57 1.77 1.98 2.19 2.42 2.89 3.38 3.91 4.46 5.05
2.8 0.653 0.742 0.855 0.987 1.14 1.30 1.47 1.66 1.85 2.05 2.27 2.71 3.18 3.67 4.20 4.76
3.0 0.611 0.694 0.801 0.925 1.06 1.22 1.38 1.55 1.74 1.93 2.13 2.55 2.99 3.47 3.97 4.50
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
DESIGN TABLES 8–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 87

8–88 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
0.00 4.37 4.89 5.40 5.91 6.43 6.94 7.46 7.97 8.48 9.00 9.51 10.5 11.6 12.6 13.6 14.7
0.10 4.26 4.79 5.31 5.82 6.34 6.85 7.37 7.88 8.40 8.91 9.43 10.5 11.5 12.5 13.6 14.6
0.15 4.12 4.67 5.19 5.71 6.22 6.73 7.24 7.75 8.26 8.77 9.28 10.3 11.3 12.4 13.4 14.5
0.20 3.97 4.51 5.05 5.57 6.07 6.58 7.08 7.58 8.09 8.59 9.10 10.1 11.1 12.2 13.2 14.2
0.25 3.86 4.36 4.88 5.39 5.90 6.40 6.90 7.39 7.89 8.39 8.89 9.90 10.9 11.9 13.0 14.0
0.30 3.74 4.22 4.72 5.22 5.72 6.21 6.70 7.19 7.68 8.17 8.67 9.67 10.7 11.7 12.7 13.8
0.40 3.51 3.94 4.40 4.88 5.36 5.84 6.32 6.79 7.25 7.73 8.21 9.19 10.2 11.2 12.2 13.3
0.50 3.26 3.66 4.09 4.54 5.00 5.47 5.94 6.40 6.86 7.32 7.78 8.73 9.70 10.7 11.7 12.7
0.60 3.02 3.39 3.79 4.21 4.66 5.11 5.57 6.03 6.48 6.93 7.38 8.30 9.25 10.2 11.2 12.2
0.70 2.80 3.14 3.51 3.91 4.33 4.77 5.23 5.68 6.12 6.56 7.01 7.91 8.84 9.78 10.8 11.8
0.80 2.59 2.91 3.26 3.64 4.04 4.47 4.90 5.35 5.79 6.22 6.65 7.54 8.45 9.38 10.3 11.3
0.90 2.40 2.70 3.03 3.39 3.78 4.19 4.61 5.05 5.48 5.90 6.33 7.20 8.09 9.01 9.95 10.9
1.0 2.23 2.51 2.82 3.17 3.54 3.93 4.34 4.77 5.20 5.61 6.03 6.88 7.76 8.67 9.59 10.5
1.2 1.94 2.19 2.47 2.79 3.13 3.50 3.88 4.28 4.69 5.09 5.49 6.31 7.15 8.02 8.92 9.84
1.4 1.72 1.94 2.19 2.48 2.80 3.14 3.50 3.88 4.27 4.64 5.02 5.80 6.61 7.45 8.31 9.20
1.6 1.53 1.73 1.96 2.23 2.52 2.85 3.19 3.54 3.90 4.26 4.62 5.36 6.13 6.94 7.77 8.62
1.8 1.38 1.56 1.77 2.02 2.30 2.60 2.92 3.25 3.59 3.92 4.26 4.97 5.71 6.48 7.28 8.10
2.0 1.25 1.42 1.62 1.85 2.11 2.39 2.69 3.00 3.32 3.63 3.96 4.62 5.33 6.07 6.83 7.63
2.2 1.15 1.30 1.49 1.70 1.94 2.21 2.49 2.78 3.08 3.38 3.68 4.32 4.99 5.70 6.43 7.20
2.4 1.06 1.20 1.37 1.58 1.80 2.05 2.31 2.59 2.87 3.15 3.44 4.05 4.69 5.37 6.07 6.81
2.6 0.983 1.11 1.28 1.47 1.68 1.91 2.16 2.42 2.69 2.96 3.23 3.81 4.42 5.07 5.75 6.45
2.8 0.917 1.04 1.19 1.37 1.57 1.79 2.03 2.27 2.53 2.78 3.04 3.59 4.18 4.80 5.45 6.13
3.0 0.858 0.973 1.12 1.29 1.48 1.69 1.91 2.14 2.38 2.62 2.87 3.40 3.96 4.55 5.18 5.84
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 88

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-7 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
0.00 3.96 4.39 4.94 5.48 6.03 6.57 7.12 7.66 8.21 8.75 9.30 10.4 11.5 12.6 13.7 14.7
0.10 3.82 4.36 4.90 5.44 5.99 6.53 7.07 7.62 8.16 8.70 9.25 10.3 11.4 12.5 13.6 14.7
0.15 3.85 4.32 4.86 5.41 5.95 6.49 7.03 7.57 8.11 8.65 9.20 10.3 11.4 12.4 13.5 14.6
0.20 3.84 4.26 4.81 5.36 5.90 6.44 6.98 7.52 8.05 8.59 9.13 10.2 11.3 12.4 13.4 14.5
0.25 3.83 4.23 4.75 5.30 5.84 6.38 6.91 7.45 7.98 8.52 9.05 10.1 11.2 12.3 13.3 14.4
0.30 3.82 4.22 4.72 5.24 5.77 6.30 6.84 7.37 7.90 8.43 8.96 10.0 11.1 12.1 13.2 14.3
0.40 3.78 4.21 4.68 5.18 5.68 6.18 6.69 7.21 7.72 8.24 8.76 9.81 10.9 11.9 13.0 14.0
0.50 3.72 4.17 4.63 5.11 5.59 6.08 6.57 7.07 7.57 8.07 8.58 9.59 10.6 11.7 12.7 13.7
0.60 3.65 4.10 4.56 5.02 5.49 5.96 6.44 6.92 7.41 7.90 8.40 9.39 10.4 11.4 12.4 13.5
0.70 3.56 4.00 4.46 4.91 5.37 5.83 6.30 6.77 7.25 7.73 8.21 9.19 10.2 11.2 12.2 13.2
0.80 3.46 3.89 4.34 4.78 5.23 5.69 6.14 6.61 7.07 7.54 8.02 8.98 9.96 10.9 11.9 12.9
0.90 3.35 3.76 4.20 4.65 5.09 5.54 5.98 6.44 6.90 7.36 7.83 8.77 9.74 10.7 11.7 12.7
1.0 3.23 3.64 4.06 4.51 4.94 5.38 5.82 6.27 6.72 7.17 7.63 8.57 9.52 10.5 11.5 12.5
1.2 3.00 3.38 3.79 4.21 4.64 5.06 5.49 5.92 6.36 6.80 7.25 8.16 9.10 10.0 11.0 12.0
1.4 2.78 3.13 3.51 3.92 4.34 4.75 5.17 5.59 6.01 6.44 6.88 7.77 8.69 9.62 10.6 11.5
1.6 2.57 2.90 3.26 3.64 4.05 4.46 4.86 5.27 5.69 6.11 6.53 7.41 8.30 9.22 10.2 11.1
1.8 2.38 2.69 3.02 3.39 3.78 4.19 4.58 4.98 5.38 5.79 6.21 7.06 7.94 8.85 9.77 10.7
2.0 2.21 2.50 2.81 3.16 3.54 3.93 4.32 4.70 5.10 5.50 5.90 6.74 7.61 8.49 9.40 10.3
2.2 2.05 2.32 2.63 2.96 3.32 3.70 4.08 4.45 4.84 5.23 5.62 6.44 7.29 8.16 9.06 9.97
2.4 1.92 2.17 2.46 2.77 3.12 3.48 3.86 4.22 4.59 4.97 5.36 6.16 7.00 7.85 8.74 9.64
2.6 1.80 2.03 2.30 2.61 2.94 3.29 3.66 4.01 4.37 4.74 5.12 5.91 6.72 7.56 8.43 9.32
2.8 1.69 1.91 2.17 2.46 2.78 3.12 3.47 3.82 4.17 4.53 4.90 5.66 6.46 7.29 8.14 9.01
3.0 1.59 1.80 2.05 2.32 2.63 2.96 3.30 3.64 3.98 4.33 4.69 5.44 6.22 7.02 7.86 8.71
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shaded values indicate the value is based on the greatest available strength permitted by AISC Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 89

0.00 1.86 2.23 2.69 3.25 3.80 4.36 4.92 5.47 6.03 6.59 7.15 8.26 9.37 10.5 11.6 12.7
0.10 1.86 2.28 2.78 3.30 3.83 4.37 4.92 5.46 6.01 6.56 7.11 8.22 9.32 10.4 11.5 12.7
0.15 1.83 2.25 2.73 3.23 3.75 4.27 4.80 5.33 5.87 6.41 6.94 8.02 9.11 10.2 11.3 12.4
0.20 1.76 2.18 2.63 3.11 3.60 4.11 4.61 5.13 5.64 6.16 6.68 7.72 8.77 9.83 10.9 12.0
0.25 1.66 2.07 2.51 2.96 3.42 3.90 4.38 4.87 5.37 5.86 6.36 7.37 8.39 9.42 10.5 11.5
0.30 1.55 1.95 2.36 2.79 3.23 3.68 4.14 4.60 5.08 5.55 6.03 7.01 8.00 9.00 10.0 11.0
0.40 1.33 1.69 2.07 2.45 2.84 3.24 3.65 4.07 4.50 4.94 5.39 6.30 7.24 8.19 9.16 10.1
0.50 1.15 1.46 1.79 2.14 2.49 2.85 3.22 3.60 4.00 4.40 4.82 5.67 6.56 7.47 8.40 9.35
0.60 0.999 1.27 1.57 1.88 2.19 2.52 2.85 3.20 3.57 3.94 4.33 5.13 5.97 6.84 7.74 8.65
0.70 0.879 1.12 1.38 1.66 1.95 2.24 2.55 2.87 3.20 3.55 3.91 4.66 5.46 6.29 7.15 8.04
0.80 0.783 0.996 1.23 1.48 1.75 2.02 2.30 2.59 2.90 3.22 3.56 4.27 5.02 5.82 6.64 7.50
0.90 0.704 0.896 1.11 1.34 1.58 1.83 2.09 2.36 2.65 2.95 3.26 3.93 4.65 5.40 6.19 7.01
1.0 0.639 0.813 1.00 1.21 1.44 1.67 1.91 2.16 2.43 2.71 3.01 3.64 4.31 5.03 5.78 6.56
1.2 0.538 0.684 0.845 1.02 1.21 1.42 1.63 1.85 2.08 2.33 2.59 3.15 3.75 4.39 5.07 5.79
1.4 0.464 0.589 0.729 0.883 1.05 1.23 1.42 1.61 1.82 2.04 2.27 2.77 3.31 3.89 4.50 5.15
1.6 0.408 0.517 0.640 0.775 0.924 1.09 1.25 1.43 1.61 1.81 2.02 2.46 2.95 3.48 4.04 4.64
1.8 0.363 0.461 0.570 0.691 0.825 0.970 1.12 1.28 1.45 1.62 1.81 2.22 2.66 3.14 3.66 4.21
2.0 0.328 0.415 0.514 0.623 0.744 0.877 1.01 1.16 1.31 1.47 1.64 2.01 2.42 2.86 3.34 3.85
2.2 0.298 0.378 0.468 0.567 0.678 0.800 0.926 1.06 1.20 1.35 1.50 1.84 2.22 2.62 3.07 3.54
2.4 0.274 0.347 0.429 0.521 0.623 0.735 0.852 0.973 1.10 1.24 1.38 1.70 2.04 2.42 2.84 3.28
2.6 0.253 0.320 0.396 0.481 0.576 0.680 0.788 0.901 1.02 1.15 1.28 1.57 1.90 2.25 2.64 3.05
2.8 0.235 0.297 0.368 0.447 0.535 0.632 0.734 0.839 0.950 1.07 1.19 1.47 1.77 2.10 2.46 2.85
3.0 0.219 0.278 0.343 0.417 0.500 0.591 0.686 0.784 0.889 1.00 1.12 1.37 1.66 1.97 2.31 2.68
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
8–90 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 90

0.00 1.98 2.47 3.01 3.56 4.10 4.65 5.19 5.74 6.28 6.83 7.37 8.46 9.55 10.6 11.7 12.8
0.10 1.90 2.35 2.87 3.41 3.95 4.50 5.05 5.60 6.15 6.70 7.24 8.34 9.43 10.5 11.6 12.7
0.15 1.84 2.30 2.79 3.30 3.81 4.33 4.86 5.39 5.92 6.45 6.98 8.06 9.13 10.2 11.3 12.4
0.20 1.76 2.21 2.68 3.16 3.65 4.15 4.65 5.16 5.67 6.18 6.69 7.72 8.76 9.80 10.9 11.9
0.25 1.65 2.08 2.54 3.00 3.47 3.94 4.42 4.91 5.39 5.89 6.38 7.38 8.39 9.40 10.4 11.5
0.30 1.55 1.95 2.39 2.82 3.27 3.72 4.18 4.64 5.11 5.58 6.06 7.03 8.01 9.00 10.0 11.0
0.40 1.34 1.69 2.07 2.47 2.88 3.28 3.70 4.12 4.55 4.99 5.43 6.34 7.27 8.23 9.19 10.2
0.50 1.16 1.47 1.80 2.16 2.53 2.89 3.27 3.66 4.05 4.46 4.87 5.73 6.62 7.53 8.46 9.41
0.60 1.01 1.28 1.58 1.89 2.23 2.56 2.91 3.26 3.63 4.00 4.39 5.20 6.04 6.91 7.81 8.73
0.70 0.895 1.13 1.40 1.68 1.98 2.29 2.60 2.93 3.27 3.62 3.98 4.74 5.54 6.38 7.24 8.13
0.80 0.799 1.01 1.25 1.50 1.77 2.06 2.35 2.65 2.96 3.29 3.63 4.35 5.11 5.91 6.74 7.60
0.90 0.720 0.912 1.12 1.35 1.60 1.87 2.14 2.42 2.71 3.01 3.33 4.01 4.74 5.50 6.29 7.11
1.0 0.654 0.829 1.02 1.23 1.46 1.70 1.96 2.22 2.49 2.78 3.08 3.72 4.40 5.12 5.88 6.67
1.2 0.552 0.700 0.863 1.04 1.24 1.45 1.67 1.90 2.14 2.40 2.66 3.23 3.84 4.49 5.18 5.90
1.4 0.477 0.604 0.746 0.902 1.07 1.26 1.46 1.66 1.87 2.10 2.34 2.84 3.39 3.98 4.61 5.27
1.6 0.420 0.531 0.656 0.794 0.946 1.11 1.29 1.47 1.66 1.86 2.08 2.53 3.03 3.57 4.14 4.75
1.8 0.374 0.474 0.585 0.709 0.845 0.995 1.16 1.32 1.49 1.68 1.87 2.28 2.74 3.23 3.75 4.32
2.0 0.338 0.427 0.528 0.640 0.764 0.900 1.05 1.19 1.35 1.52 1.70 2.08 2.49 2.94 3.43 3.95
2.2 0.308 0.389 0.481 0.583 0.696 0.822 0.956 1.09 1.24 1.39 1.55 1.90 2.28 2.70 3.16 3.64
2.4 0.282 0.357 0.441 0.535 0.640 0.756 0.880 1.00 1.14 1.28 1.43 1.75 2.11 2.50 2.92 3.37
2.6 0.261 0.330 0.408 0.495 0.592 0.699 0.814 0.931 1.05 1.19 1.32 1.63 1.96 2.32 2.72 3.14
2.8 0.242 0.307 0.379 0.460 0.551 0.651 0.758 0.866 0.982 1.10 1.23 1.51 1.83 2.17 2.54 2.94
3.0 0.226 0.286 0.354 0.430 0.515 0.609 0.709 0.810 0.918 1.03 1.15 1.42 1.71 2.03 2.38 2.76
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 91

8–92 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.70 3.21 3.73 4.24 4.76 5.27 5.78 6.30 6.81 7.33 8.35 9.38 10.4 11.4 12.5
0.10 2.02 2.57 3.10 3.62 4.14 4.67 5.19 5.71 6.23 6.75 7.28 8.32 9.37 10.4 11.5 12.5
0.15 1.92 2.43 2.95 3.47 3.98 4.49 5.00 5.52 6.03 6.54 7.05 8.09 9.12 10.2 11.2 12.2
0.20 1.82 2.29 2.79 3.29 3.78 4.28 4.77 5.27 5.77 6.27 6.77 7.78 8.80 9.83 10.9 11.9
0.25 1.71 2.15 2.62 3.10 3.58 4.06 4.53 5.01 5.49 5.97 6.46 7.45 8.45 9.47 10.5 11.5
0.30 1.61 2.01 2.45 2.91 3.37 3.83 4.29 4.75 5.21 5.68 6.15 7.11 8.09 9.10 10.1 11.1
0.40 1.41 1.76 2.15 2.55 2.97 3.40 3.83 4.26 4.69 5.13 5.57 6.49 7.42 8.38 9.36 10.4
0.50 1.23 1.54 1.88 2.24 2.62 3.01 3.41 3.81 4.22 4.63 5.05 5.92 6.82 7.74 8.68 9.65
0.60 1.08 1.36 1.66 1.99 2.33 2.68 3.06 3.43 3.81 4.20 4.60 5.42 6.28 7.17 8.09 9.03
0.70 0.964 1.21 1.48 1.77 2.08 2.41 2.75 3.11 3.46 3.83 4.20 4.99 5.81 6.67 7.56 8.47
0.80 0.865 1.09 1.33 1.60 1.88 2.18 2.50 2.83 3.16 3.51 3.86 4.61 5.40 6.22 7.07 7.95
0.90 0.783 0.986 1.21 1.45 1.71 1.99 2.29 2.60 2.91 3.23 3.57 4.28 5.03 5.81 6.63 7.47
1.0 0.714 0.900 1.10 1.33 1.57 1.83 2.10 2.39 2.69 3.00 3.31 3.98 4.70 5.45 6.23 7.04
1.2 0.606 0.764 0.939 1.13 1.34 1.57 1.81 2.07 2.33 2.60 2.89 3.49 4.13 4.81 5.53 6.29
1.4 0.525 0.663 0.815 0.983 1.17 1.37 1.58 1.81 2.05 2.29 2.55 3.09 3.67 4.30 4.96 5.66
1.6 0.463 0.584 0.719 0.868 1.03 1.21 1.41 1.61 1.82 2.04 2.27 2.77 3.30 3.87 4.49 5.13
1.8 0.414 0.522 0.643 0.777 0.925 1.09 1.27 1.45 1.64 1.84 2.05 2.50 2.99 3.52 4.09 4.69
2.0 0.374 0.472 0.581 0.703 0.838 0.988 1.15 1.32 1.49 1.67 1.87 2.28 2.73 3.22 3.75 4.31
2.2 0.341 0.430 0.530 0.642 0.766 0.903 1.05 1.21 1.37 1.53 1.71 2.09 2.51 2.97 3.46 3.98
2.4 0.313 0.395 0.487 0.590 0.705 0.832 0.970 1.11 1.26 1.41 1.58 1.93 2.32 2.75 3.21 3.70
2.6 0.289 0.365 0.451 0.546 0.653 0.771 0.899 1.03 1.17 1.31 1.47 1.80 2.16 2.56 2.99 3.45
2.8 0.269 0.340 0.419 0.508 0.608 0.718 0.838 0.960 1.09 1.22 1.37 1.68 2.02 2.39 2.80 3.24
3.0 0.251 0.317 0.392 0.475 0.569 0.672 0.784 0.899 1.02 1.15 1.28 1.57 1.89 2.25 2.63 3.04
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 92

0.00 2.41 2.80 3.27 3.74 4.21 4.67 5.14 5.61 6.08 6.54 7.01 7.95 8.88 9.82 10.8 11.7
0.10 2.24 2.74 3.24 3.73 4.23 4.73 5.22 5.72 6.21 6.71 7.20 8.19 9.17 10.1 11.1 12.1
0.15 2.09 2.60 3.09 3.58 4.07 4.57 5.06 5.56 6.06 6.55 7.05 8.04 9.03 10.0 11.0 12.0
0.20 1.96 2.44 2.92 3.40 3.88 4.37 4.86 5.36 5.85 6.35 6.84 7.83 8.83 9.82 10.8 11.8
0.25 1.85 2.29 2.75 3.21 3.68 4.16 4.64 5.13 5.62 6.11 6.60 7.58 8.58 9.58 10.6 11.6
0.30 1.74 2.16 2.59 3.03 3.48 3.94 4.42 4.89 5.38 5.86 6.34 7.32 8.31 9.32 10.3 11.3
0.40 1.55 1.91 2.30 2.70 3.12 3.55 3.99 4.44 4.91 5.37 5.83 6.77 7.75 8.76 9.77 10.8
0.50 1.38 1.70 2.05 2.42 2.80 3.20 3.62 4.04 4.48 4.93 5.37 6.27 7.22 8.20 9.20 10.2
0.60 1.23 1.52 1.84 2.18 2.53 2.90 3.29 3.70 4.11 4.54 4.96 5.83 6.73 7.68 8.65 9.65
0.70 1.11 1.38 1.66 1.97 2.30 2.65 3.01 3.40 3.79 4.20 4.61 5.44 6.30 7.21 8.15 9.12
0.80 1.00 1.25 1.51 1.80 2.11 2.43 2.77 3.13 3.51 3.91 4.29 5.08 5.91 6.78 7.69 8.64
0.90 0.915 1.14 1.39 1.65 1.94 2.24 2.56 2.91 3.27 3.64 4.01 4.76 5.56 6.39 7.27 8.19
1.0 0.839 1.05 1.28 1.52 1.79 2.08 2.38 2.71 3.05 3.40 3.75 4.47 5.24 6.04 6.89 7.77
1.2 0.719 0.900 1.10 1.31 1.55 1.80 2.08 2.37 2.68 3.00 3.31 3.98 4.68 5.43 6.22 7.04
1.4 0.627 0.786 0.961 1.15 1.36 1.59 1.84 2.11 2.39 2.67 2.96 3.57 4.22 4.91 5.65 6.42
1.6 0.555 0.697 0.854 1.03 1.22 1.42 1.65 1.89 2.15 2.40 2.67 3.23 3.83 4.48 5.16 5.88
1.8 0.498 0.625 0.767 0.923 1.10 1.29 1.49 1.72 1.95 2.18 2.42 2.94 3.50 4.10 4.74 5.42
2.0 0.451 0.567 0.696 0.839 0.997 1.17 1.36 1.57 1.78 1.99 2.22 2.70 3.22 3.78 4.38 5.02
2.2 0.412 0.518 0.636 0.768 0.914 1.08 1.25 1.44 1.63 1.83 2.04 2.49 2.97 3.50 4.07 4.67
2.4 0.379 0.477 0.586 0.708 0.844 0.995 1.16 1.33 1.51 1.70 1.89 2.31 2.76 3.26 3.79 4.36
2.6 0.351 0.442 0.543 0.657 0.784 0.924 1.08 1.24 1.40 1.58 1.76 2.15 2.58 3.05 3.55 4.09
2.8 0.327 0.411 0.506 0.612 0.731 0.863 1.01 1.16 1.31 1.47 1.64 2.01 2.42 2.86 3.33 3.84
3.0 0.306 0.385 0.474 0.573 0.685 0.809 0.943 1.09 1.23 1.38 1.54 1.89 2.27 2.69 3.14 3.63
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 93

8–94 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 3.01 3.44 3.88 4.32 4.76 5.19 5.63 6.07 6.50 6.94 7.82 8.69 9.56 10.4 11.3
0.10 2.43 2.86 3.30 3.75 4.21 4.68 5.14 5.61 6.07 6.53 6.99 7.89 8.79 9.67 10.5 11.4
0.15 2.31 2.74 3.17 3.62 4.07 4.54 5.01 5.49 5.96 6.44 6.90 7.83 8.74 9.64 10.5 11.4
0.20 2.18 2.61 3.04 3.47 3.93 4.39 4.86 5.34 5.83 6.31 6.79 7.73 8.66 9.57 10.5 11.4
0.25 2.07 2.49 2.91 3.33 3.77 4.23 4.70 5.18 5.67 6.16 6.64 7.61 8.55 9.48 10.4 11.3
0.30 1.97 2.37 2.78 3.20 3.63 4.07 4.54 5.02 5.51 6.00 6.49 7.46 8.42 9.36 10.3 11.2
0.40 1.79 2.16 2.55 2.94 3.35 3.77 4.22 4.69 5.17 5.66 6.15 7.14 8.12 9.09 10.0 11.0
0.50 1.63 1.98 2.34 2.71 3.10 3.50 3.93 4.38 4.85 5.33 5.82 6.80 7.79 8.77 9.73 10.7
0.60 1.49 1.81 2.15 2.50 2.87 3.26 3.67 4.10 4.55 5.02 5.50 6.48 7.46 8.42 9.38 10.3
0.70 1.37 1.67 1.99 2.32 2.67 3.05 3.44 3.86 4.29 4.74 5.21 6.16 7.11 8.07 9.04 10.0
0.80 1.26 1.54 1.84 2.16 2.50 2.85 3.23 3.63 4.05 4.48 4.94 5.85 6.78 7.73 8.69 9.65
0.90 1.17 1.43 1.71 2.02 2.34 2.68 3.04 3.43 3.83 4.25 4.68 5.57 6.47 7.40 8.35 9.31
1.0 1.08 1.33 1.60 1.89 2.19 2.52 2.87 3.24 3.63 4.03 4.45 5.30 6.18 7.09 8.03 8.98
1.2 0.946 1.17 1.41 1.67 1.95 2.25 2.58 2.92 3.28 3.65 4.04 4.82 5.65 6.52 7.42 8.35
1.4 0.837 1.04 1.25 1.49 1.75 2.03 2.33 2.65 2.98 3.33 3.69 4.42 5.19 6.01 6.87 7.77
1.6 0.748 0.930 1.13 1.34 1.58 1.84 2.12 2.42 2.73 3.05 3.38 4.07 4.79 5.56 6.38 7.24
1.8 0.676 0.842 1.02 1.22 1.44 1.68 1.94 2.22 2.51 2.81 3.12 3.76 4.45 5.17 5.95 6.77
2.0 0.616 0.768 0.936 1.12 1.32 1.55 1.79 2.05 2.32 2.60 2.90 3.50 4.14 4.83 5.56 6.34
2.2 0.565 0.706 0.861 1.03 1.22 1.43 1.66 1.90 2.15 2.42 2.69 3.26 3.87 4.53 5.22 5.96
2.4 0.522 0.653 0.797 0.958 1.14 1.33 1.55 1.77 2.01 2.26 2.52 3.05 3.63 4.25 4.91 5.62
2.6 0.485 0.607 0.742 0.893 1.06 1.25 1.44 1.66 1.88 2.12 2.36 2.87 3.42 4.01 4.64 5.31
2.8 0.453 0.567 0.694 0.835 0.994 1.17 1.36 1.56 1.77 1.99 2.22 2.70 3.22 3.79 4.39 5.03
3.0 0.424 0.531 0.651 0.785 0.934 1.10 1.28 1.47 1.67 1.88 2.09 2.55 3.05 3.59 4.17 4.78
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 94

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-8 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.74 3.11 3.49 3.88 4.26 4.65 5.03 5.42 5.80 6.19 6.57 7.34 8.11 8.88 9.65 10.4
0.10 2.59 2.95 3.34 3.75 4.16 4.58 4.99 5.40 5.80 6.20 6.59 7.37 8.15 8.92 9.69 10.5
0.15 2.50 2.87 3.26 3.67 4.09 4.51 4.94 5.35 5.76 6.17 6.57 7.36 8.14 8.91 9.69 10.5
0.20 2.43 2.79 3.18 3.59 4.01 4.44 4.87 5.29 5.71 6.13 6.53 7.33 8.12 8.90 9.67 10.4
0.25 2.35 2.72 3.10 3.51 3.93 4.36 4.80 5.23 5.66 6.08 6.49 7.30 8.09 8.88 9.66 10.4
0.30 2.28 2.65 3.03 3.43 3.85 4.28 4.72 5.16 5.59 6.02 6.44 7.26 8.06 8.85 9.63 10.4
0.40 2.16 2.52 2.88 3.27 3.69 4.12 4.57 5.01 5.45 5.88 6.31 7.15 7.97 8.78 9.57 10.4
0.50 2.05 2.40 2.75 3.13 3.54 3.97 4.41 4.86 5.30 5.75 6.18 7.04 7.86 8.68 9.48 10.3
0.60 1.94 2.28 2.63 3.00 3.40 3.82 4.26 4.71 5.16 5.61 6.06 6.93 7.77 8.59 9.39 10.2
0.70 1.85 2.18 2.52 2.88 3.26 3.68 4.11 4.56 5.02 5.47 5.92 6.81 7.67 8.51 9.32 10.1
0.80 1.75 2.08 2.41 2.76 3.14 3.54 3.97 4.42 4.87 5.33 5.79 6.69 7.57 8.42 9.25 10.1
0.90 1.67 1.98 2.31 2.65 3.02 3.42 3.84 4.28 4.73 5.19 5.64 6.56 7.45 8.32 9.16 9.98
1.0 1.59 1.90 2.21 2.55 2.91 3.30 3.71 4.14 4.59 5.04 5.50 6.42 7.33 8.21 9.07 9.91
1.2 1.45 1.74 2.04 2.36 2.71 3.08 3.47 3.89 4.32 4.77 5.22 6.15 7.07 7.97 8.86 9.72
1.4 1.33 1.60 1.89 2.20 2.53 2.88 3.26 3.66 4.07 4.51 4.95 5.87 6.79 7.71 8.62 9.51
1.6 1.22 1.48 1.75 2.05 2.37 2.71 3.06 3.44 3.85 4.27 4.70 5.60 6.52 7.44 8.36 9.27
1.8 1.13 1.37 1.63 1.91 2.22 2.54 2.89 3.25 3.64 4.04 4.46 5.34 6.25 7.17 8.10 9.01
2.0 1.05 1.28 1.52 1.79 2.09 2.40 2.73 3.08 3.45 3.84 4.24 5.10 5.99 6.90 7.81 8.73
2.2 0.975 1.19 1.43 1.69 1.97 2.27 2.58 2.92 3.27 3.65 4.04 4.87 5.74 6.62 7.53 8.44
2.4 0.912 1.12 1.34 1.59 1.86 2.15 2.45 2.77 3.11 3.47 3.85 4.65 5.50 6.36 7.25 8.15
2.6 0.856 1.05 1.27 1.50 1.76 2.04 2.33 2.64 2.97 3.31 3.68 4.45 5.26 6.10 6.98 7.87
2.8 0.806 0.993 1.20 1.42 1.67 1.94 2.22 2.52 2.83 3.17 3.52 4.27 5.05 5.86 6.72 7.60
3.0 0.762 0.940 1.14 1.35 1.59 1.84 2.12 2.40 2.71 3.03 3.37 4.09 4.84 5.64 6.47 7.34
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 95

8–96 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 1.86 2.23 2.69 3.25 3.80 4.36 4.92 5.47 6.03 6.59 7.15 8.26 9.37 10.5 11.6 12.7
0.10 1.86 2.30 2.80 3.30 3.82 4.32 4.83 5.34 5.84 6.34 6.84 7.84 8.84 9.83 10.8 11.8
0.15 1.83 2.26 2.73 3.21 3.69 4.18 4.66 5.14 5.62 6.10 6.58 7.54 8.51 9.48 10.4 11.4
0.20 1.76 2.18 2.62 3.07 3.53 3.99 4.45 4.91 5.37 5.83 6.30 7.22 8.16 9.11 10.1 11.0
0.25 1.66 2.06 2.48 2.91 3.35 3.79 4.23 4.67 5.11 5.55 6.00 6.90 7.81 8.73 9.67 10.6
0.30 1.55 1.93 2.33 2.74 3.15 3.57 3.99 4.41 4.84 5.27 5.70 6.57 7.46 8.37 9.29 10.2
0.40 1.33 1.67 2.03 2.39 2.77 3.15 3.53 3.92 4.32 4.72 5.12 5.95 6.79 7.66 8.54 9.44
0.50 1.15 1.45 1.75 2.07 2.41 2.76 3.12 3.47 3.84 4.21 4.59 5.37 6.17 7.00 7.86 8.73
0.60 0.999 1.26 1.52 1.81 2.11 2.43 2.77 3.10 3.44 3.79 4.14 4.88 5.65 6.45 7.27 8.11
0.70 0.879 1.11 1.34 1.60 1.88 2.18 2.48 2.80 3.12 3.44 3.78 4.47 5.20 5.96 6.75 7.56
0.80 0.783 0.982 1.20 1.43 1.69 1.96 2.25 2.55 2.84 3.15 3.47 4.12 4.81 5.54 6.29 7.07
0.90 0.704 0.882 1.08 1.30 1.53 1.78 2.05 2.33 2.61 2.90 3.20 3.82 4.47 5.16 5.89 6.64
1.0 0.639 0.800 0.980 1.18 1.40 1.64 1.88 2.14 2.41 2.69 2.97 3.55 4.17 4.83 5.52 6.24
1.2 0.538 0.674 0.829 1.00 1.19 1.40 1.61 1.84 2.08 2.33 2.58 3.11 3.67 4.27 4.90 5.57
1.4 0.464 0.582 0.717 0.869 1.04 1.22 1.41 1.61 1.83 2.05 2.28 2.76 3.27 3.82 4.40 5.01
1.6 0.408 0.511 0.631 0.766 0.915 1.08 1.25 1.43 1.63 1.83 2.04 2.48 2.95 3.45 3.98 4.55
1.8 0.363 0.456 0.563 0.684 0.818 0.964 1.12 1.29 1.46 1.65 1.84 2.24 2.67 3.14 3.63 4.16
2.0 0.328 0.411 0.508 0.618 0.740 0.872 1.01 1.17 1.33 1.49 1.67 2.05 2.45 2.88 3.34 3.82
2.2 0.298 0.375 0.463 0.563 0.675 0.796 0.926 1.06 1.21 1.37 1.53 1.88 2.25 2.65 3.08 3.54
2.4 0.274 0.344 0.425 0.518 0.620 0.732 0.852 0.980 1.11 1.26 1.41 1.73 2.09 2.46 2.86 3.29
2.6 0.253 0.318 0.393 0.479 0.574 0.678 0.789 0.908 1.03 1.16 1.30 1.61 1.94 2.29 2.67 3.07
2.8 0.235 0.295 0.365 0.445 0.534 0.630 0.735 0.845 0.960 1.08 1.21 1.50 1.81 2.15 2.50 2.88
3.0 0.219 0.276 0.341 0.416 0.499 0.589 0.687 0.791 0.897 1.01 1.13 1.40 1.70 2.02 2.35 2.71
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 96

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–97
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 1.98 2.47 3.01 3.56 4.10 4.65 5.19 5.74 6.28 6.83 7.37 8.46 9.55 10.6 11.7 12.8
0.10 1.90 2.36 2.87 3.38 3.88 4.38 4.88 5.38 5.87 6.37 6.86 7.85 8.84 9.84 10.8 11.9
0.15 1.84 2.30 2.78 3.26 3.74 4.21 4.69 5.16 5.63 6.10 6.57 7.52 8.47 9.43 10.4 11.4
0.20 1.76 2.20 2.65 3.11 3.56 4.02 4.47 4.92 5.37 5.82 6.27 7.18 8.10 9.04 9.98 10.9
0.25 1.65 2.07 2.49 2.93 3.37 3.80 4.23 4.66 5.09 5.53 5.96 6.84 7.74 8.65 9.58 10.5
0.30 1.55 1.93 2.33 2.74 3.16 3.58 3.99 4.41 4.82 5.24 5.66 6.52 7.39 8.28 9.19 10.1
0.40 1.34 1.67 2.02 2.38 2.75 3.13 3.52 3.92 4.31 4.70 5.10 5.90 6.74 7.59 8.47 9.37
0.50 1.16 1.45 1.75 2.06 2.39 2.74 3.10 3.47 3.85 4.22 4.60 5.38 6.18 7.00 7.85 8.73
0.60 1.01 1.27 1.53 1.80 2.10 2.42 2.75 3.10 3.46 3.82 4.19 4.92 5.69 6.48 7.30 8.15
0.70 0.895 1.12 1.35 1.60 1.88 2.17 2.48 2.80 3.14 3.48 3.83 4.53 5.26 6.02 6.81 7.62
0.80 0.799 0.997 1.21 1.44 1.69 1.96 2.25 2.55 2.86 3.19 3.52 4.19 4.89 5.61 6.37 7.15
0.90 0.720 0.898 1.09 1.31 1.54 1.79 2.05 2.33 2.63 2.94 3.25 3.89 4.56 5.25 5.97 6.73
1.0 0.654 0.816 0.996 1.20 1.41 1.64 1.89 2.15 2.43 2.72 3.02 3.63 4.26 4.92 5.62 6.34
1.2 0.552 0.689 0.845 1.02 1.21 1.41 1.63 1.86 2.10 2.36 2.63 3.18 3.76 4.37 5.01 5.68
1.4 0.477 0.596 0.733 0.886 1.05 1.23 1.43 1.63 1.85 2.08 2.32 2.83 3.36 3.91 4.50 5.12
1.6 0.420 0.525 0.646 0.782 0.933 1.10 1.27 1.45 1.65 1.86 2.08 2.54 3.03 3.54 4.08 4.66
1.8 0.374 0.468 0.577 0.700 0.836 0.983 1.14 1.31 1.49 1.68 1.88 2.30 2.75 3.23 3.73 4.27
2.0 0.338 0.423 0.522 0.633 0.757 0.891 1.04 1.19 1.35 1.53 1.71 2.10 2.52 2.96 3.43 3.93
2.2 0.308 0.385 0.476 0.578 0.692 0.815 0.948 1.09 1.24 1.40 1.57 1.93 2.32 2.73 3.17 3.64
2.4 0.282 0.354 0.437 0.532 0.636 0.750 0.873 1.00 1.14 1.29 1.45 1.79 2.15 2.54 2.95 3.39
2.6 0.261 0.327 0.404 0.492 0.589 0.695 0.809 0.931 1.06 1.20 1.34 1.66 2.00 2.36 2.75 3.17
2.8 0.242 0.304 0.376 0.458 0.548 0.647 0.754 0.868 0.989 1.12 1.25 1.54 1.87 2.21 2.58 2.97
3.0 0.226 0.284 0.352 0.428 0.513 0.606 0.706 0.812 0.926 1.04 1.17 1.45 1.75 2.08 2.43 2.80
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 97

8–98 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.70 3.21 3.73 4.24 4.76 5.27 5.78 6.30 6.81 7.33 8.35 9.38 10.4 11.4 12.5
0.10 2.02 2.56 3.06 3.54 4.02 4.50 4.98 5.46 5.94 6.43 6.92 7.90 8.89 9.89 10.9 11.9
0.15 1.92 2.41 2.90 3.37 3.83 4.28 4.73 5.19 5.65 6.12 6.58 7.54 8.51 9.50 10.5 11.5
0.20 1.82 2.27 2.72 3.16 3.60 4.03 4.46 4.89 5.34 5.78 6.23 7.16 8.11 9.08 10.1 11.1
0.25 1.71 2.13 2.55 2.97 3.37 3.78 4.19 4.60 5.02 5.46 5.90 6.79 7.72 8.68 9.66 10.7
0.30 1.61 1.99 2.38 2.77 3.16 3.55 3.94 4.34 4.75 5.18 5.61 6.48 7.38 8.31 9.27 10.2
0.40 1.41 1.74 2.08 2.43 2.78 3.14 3.50 3.89 4.29 4.70 5.12 5.95 6.81 7.69 8.61 9.54
0.50 1.23 1.52 1.82 2.13 2.45 2.79 3.14 3.51 3.89 4.28 4.69 5.50 6.31 7.16 8.04 8.94
0.60 1.08 1.34 1.60 1.88 2.18 2.50 2.83 3.18 3.54 3.92 4.30 5.09 5.88 6.69 7.53 8.40
0.70 0.964 1.20 1.43 1.69 1.96 2.26 2.57 2.90 3.25 3.60 3.97 4.73 5.48 6.26 7.07 7.91
0.80 0.865 1.07 1.29 1.53 1.79 2.06 2.35 2.66 2.99 3.32 3.67 4.40 5.13 5.88 6.66 7.47
0.90 0.783 0.970 1.17 1.40 1.64 1.89 2.16 2.45 2.76 3.08 3.41 4.11 4.81 5.53 6.29 7.07
1.0 0.714 0.885 1.07 1.28 1.51 1.75 2.00 2.28 2.56 2.87 3.18 3.85 4.53 5.22 5.94 6.70
1.2 0.606 0.753 0.918 1.10 1.30 1.51 1.74 1.98 2.24 2.51 2.80 3.40 4.03 4.67 5.34 6.05
1.4 0.525 0.653 0.800 0.963 1.14 1.33 1.53 1.75 1.98 2.23 2.49 3.04 3.63 4.22 4.84 5.50
1.6 0.463 0.577 0.708 0.854 1.01 1.19 1.37 1.57 1.78 2.00 2.24 2.74 3.29 3.84 4.42 5.03
1.8 0.414 0.516 0.634 0.767 0.913 1.07 1.24 1.42 1.61 1.81 2.03 2.49 3.00 3.51 4.05 4.63
2.0 0.374 0.467 0.574 0.695 0.829 0.974 1.13 1.29 1.47 1.66 1.85 2.28 2.75 3.23 3.74 4.28
2.2 0.341 0.426 0.525 0.636 0.759 0.893 1.04 1.19 1.35 1.52 1.71 2.11 2.54 2.99 3.47 3.97
2.4 0.313 0.392 0.483 0.586 0.699 0.823 0.956 1.10 1.25 1.41 1.58 1.95 2.36 2.78 3.23 3.71
2.6 0.289 0.362 0.447 0.542 0.649 0.764 0.888 1.02 1.16 1.31 1.47 1.82 2.20 2.60 3.02 3.47
2.8 0.269 0.337 0.416 0.505 0.604 0.713 0.829 0.953 1.09 1.23 1.38 1.70 2.06 2.44 2.84 3.27
3.0 0.251 0.315 0.389 0.473 0.566 0.667 0.777 0.894 1.02 1.15 1.29 1.60 1.93 2.29 2.68 3.08
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 98

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–99
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.41 2.80 3.27 3.74 4.21 4.67 5.14 5.61 6.08 6.54 7.01 7.95 8.88 9.82 10.8 11.7
0.10 2.24 2.72 3.17 3.61 4.05 4.49 4.94 5.41 5.88 6.35 6.82 7.78 8.74 9.71 10.7 11.7
0.15 2.09 2.57 3.00 3.41 3.82 4.24 4.67 5.13 5.59 6.06 6.54 7.51 8.48 9.46 10.4 11.4
0.20 1.96 2.41 2.83 3.21 3.59 3.99 4.41 4.85 5.30 5.77 6.24 7.21 8.19 9.17 10.2 11.2
0.25 1.85 2.27 2.66 3.02 3.38 3.76 4.16 4.59 5.03 5.49 5.95 6.91 7.88 8.87 9.87 10.9
0.30 1.74 2.13 2.50 2.86 3.20 3.57 3.96 4.38 4.81 5.25 5.70 6.64 7.59 8.56 9.55 10.6
0.40 1.55 1.89 2.22 2.55 2.89 3.24 3.62 4.01 4.42 4.84 5.28 6.18 7.11 8.05 8.99 9.95
0.50 1.38 1.68 1.98 2.29 2.61 2.96 3.32 3.69 4.08 4.49 4.91 5.78 6.69 7.60 8.52 9.45
0.60 1.23 1.50 1.77 2.06 2.37 2.71 3.05 3.41 3.78 4.17 4.58 5.42 6.30 7.18 8.08 8.99
0.70 1.11 1.36 1.60 1.88 2.17 2.48 2.81 3.16 3.52 3.89 4.28 5.09 5.94 6.79 7.67 8.57
0.80 1.00 1.23 1.46 1.72 2.00 2.29 2.61 2.93 3.28 3.63 4.01 4.79 5.61 6.43 7.29 8.16
0.90 0.915 1.12 1.34 1.59 1.84 2.12 2.42 2.73 3.06 3.41 3.76 4.51 5.31 6.10 6.93 7.78
1.0 0.839 1.03 1.24 1.47 1.71 1.98 2.26 2.56 2.87 3.20 3.54 4.26 5.03 5.80 6.60 7.43
1.2 0.719 0.886 1.07 1.28 1.50 1.73 1.99 2.26 2.54 2.84 3.16 3.83 4.54 5.26 6.01 6.79
1.4 0.627 0.775 0.943 1.13 1.33 1.54 1.77 2.02 2.28 2.55 2.84 3.46 4.12 4.81 5.50 6.23
1.6 0.555 0.688 0.840 1.01 1.19 1.39 1.60 1.82 2.06 2.31 2.58 3.15 3.77 4.41 5.07 5.75
1.8 0.498 0.618 0.756 0.910 1.08 1.26 1.45 1.66 1.87 2.11 2.36 2.89 3.47 4.07 4.69 5.34
2.0 0.451 0.561 0.687 0.829 0.984 1.15 1.33 1.52 1.72 1.94 2.17 2.66 3.20 3.78 4.36 4.97
2.2 0.412 0.513 0.630 0.760 0.904 1.06 1.22 1.40 1.59 1.79 2.01 2.47 2.97 3.52 4.07 4.65
2.4 0.379 0.473 0.581 0.702 0.836 0.981 1.14 1.30 1.48 1.66 1.86 2.30 2.77 3.29 3.81 4.36
2.6 0.351 0.438 0.539 0.652 0.777 0.913 1.06 1.21 1.38 1.55 1.74 2.15 2.60 3.08 3.58 4.10
2.8 0.327 0.408 0.502 0.608 0.726 0.853 0.990 1.14 1.29 1.46 1.63 2.02 2.44 2.90 3.37 3.87
3.0 0.306 0.382 0.470 0.570 0.680 0.801 0.930 1.07 1.21 1.37 1.54 1.90 2.30 2.74 3.19 3.66
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 99

8–100 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 3.01 3.44 3.88 4.32 4.76 5.19 5.63 6.07 6.50 6.94 7.82 8.69 9.56 10.4 11.3
0.10 2.43 2.84 3.23 3.62 4.04 4.47 4.91 5.36 5.81 6.26 6.71 7.61 8.51 9.40 10.3 11.2
0.15 2.31 2.70 3.07 3.44 3.84 4.26 4.69 5.14 5.59 6.05 6.51 7.43 8.34 9.25 10.2 11.1
0.20 2.18 2.58 2.92 3.27 3.65 4.06 4.48 4.92 5.37 5.83 6.30 7.23 8.16 9.08 9.99 10.9
0.25 2.07 2.46 2.79 3.12 3.49 3.89 4.30 4.73 5.17 5.62 6.08 7.01 7.95 8.89 9.81 10.7
0.30 1.97 2.34 2.67 3.00 3.36 3.75 4.15 4.58 5.01 5.45 5.90 6.81 7.73 8.68 9.62 10.6
0.40 1.79 2.13 2.45 2.78 3.12 3.49 3.89 4.30 4.72 5.16 5.60 6.49 7.39 8.30 9.22 10.1
0.50 1.63 1.95 2.25 2.57 2.91 3.27 3.65 4.05 4.46 4.89 5.33 6.21 7.11 8.01 8.92 9.82
0.60 1.49 1.79 2.08 2.39 2.72 3.06 3.43 3.82 4.22 4.64 5.07 5.95 6.85 7.75 8.65 9.56
0.70 1.37 1.64 1.92 2.22 2.54 2.88 3.23 3.60 4.00 4.40 4.83 5.70 6.59 7.49 8.40 9.30
0.80 1.26 1.52 1.78 2.07 2.38 2.71 3.05 3.41 3.79 4.19 4.60 5.45 6.33 7.23 8.14 9.05
0.90 1.17 1.41 1.66 1.94 2.24 2.55 2.88 3.23 3.60 3.98 4.38 5.22 6.09 6.98 7.89 8.80
1.0 1.08 1.31 1.56 1.82 2.11 2.41 2.73 3.07 3.42 3.79 4.18 5.00 5.85 6.74 7.64 8.54
1.2 0.946 1.15 1.38 1.62 1.88 2.16 2.46 2.78 3.11 3.46 3.82 4.59 5.41 6.27 7.15 8.04
1.4 0.837 1.02 1.23 1.46 1.70 1.96 2.23 2.53 2.84 3.17 3.51 4.24 5.02 5.84 6.69 7.56
1.6 0.748 0.919 1.11 1.32 1.54 1.78 2.04 2.32 2.61 2.91 3.24 3.92 4.66 5.45 6.27 7.10
1.8 0.676 0.832 1.01 1.20 1.41 1.64 1.88 2.13 2.41 2.69 3.00 3.65 4.35 5.09 5.88 6.67
2.0 0.616 0.760 0.924 1.11 1.30 1.51 1.73 1.97 2.23 2.50 2.79 3.40 4.07 4.78 5.52 6.28
2.2 0.565 0.699 0.852 1.02 1.21 1.40 1.61 1.84 2.08 2.33 2.60 3.19 3.82 4.49 5.20 5.93
2.4 0.522 0.647 0.790 0.948 1.12 1.31 1.51 1.72 1.94 2.19 2.44 2.99 3.59 4.24 4.91 5.61
2.6 0.485 0.602 0.735 0.885 1.05 1.22 1.41 1.61 1.82 2.05 2.30 2.82 3.39 4.00 4.65 5.32
2.8 0.453 0.562 0.688 0.829 0.983 1.15 1.33 1.52 1.72 1.94 2.17 2.66 3.21 3.79 4.42 5.05
3.0 0.424 0.528 0.646 0.779 0.926 1.08 1.25 1.43 1.62 1.83 2.05 2.52 3.04 3.60 4.20 4.81
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 100

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-9 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–101
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.74 3.11 3.49 3.88 4.26 4.65 5.03 5.42 5.80 6.19 6.57 7.34 8.11 8.88 9.65 10.4
0.10 2.59 2.94 3.30 3.68 4.07 4.47 4.88 5.28 5.69 6.08 6.48 7.27 8.05 8.83 9.61 10.4
0.15 2.50 2.84 3.19 3.56 3.94 4.34 4.75 5.16 5.57 5.98 6.39 7.19 7.98 8.77 9.55 10.3
0.20 2.43 2.76 3.09 3.46 3.84 4.24 4.63 5.04 5.45 5.86 6.28 7.10 7.90 8.70 9.49 10.3
0.25 2.35 2.68 3.01 3.37 3.76 4.15 4.55 4.95 5.35 5.75 6.16 6.99 7.81 8.62 9.42 10.2
0.30 2.28 2.61 2.93 3.29 3.68 4.07 4.47 4.88 5.28 5.68 6.07 6.88 7.71 8.53 9.34 10.1
0.40 2.16 2.48 2.80 3.15 3.53 3.93 4.33 4.74 5.15 5.55 5.95 6.75 7.54 8.33 9.14 9.97
0.50 2.05 2.37 2.68 3.02 3.40 3.79 4.20 4.61 5.02 5.43 5.84 6.64 7.44 8.22 9.01 9.80
0.60 1.94 2.25 2.57 2.90 3.27 3.66 4.06 4.48 4.89 5.31 5.73 6.55 7.35 8.14 8.92 9.70
0.70 1.85 2.15 2.46 2.79 3.15 3.53 3.93 4.35 4.77 5.19 5.61 6.44 7.26 8.06 8.85 9.63
0.80 1.75 2.05 2.36 2.69 3.03 3.41 3.81 4.22 4.64 5.06 5.49 6.33 7.16 7.98 8.78 9.57
0.90 1.67 1.96 2.26 2.59 2.93 3.29 3.69 4.09 4.51 4.93 5.36 6.22 7.06 7.89 8.70 9.50
1.0 1.59 1.87 2.17 2.49 2.83 3.18 3.57 3.97 4.38 4.81 5.24 6.10 6.95 7.79 8.62 9.43
1.2 1.45 1.72 2.00 2.31 2.64 2.98 3.35 3.74 4.14 4.56 4.99 5.85 6.72 7.59 8.43 9.27
1.4 1.33 1.58 1.86 2.15 2.47 2.80 3.15 3.53 3.92 4.33 4.75 5.61 6.48 7.36 8.23 9.08
1.6 1.22 1.46 1.73 2.01 2.31 2.63 2.97 3.33 3.71 4.11 4.52 5.37 6.24 7.12 8.00 8.87
1.8 1.13 1.36 1.61 1.88 2.17 2.48 2.81 3.15 3.52 3.90 4.30 5.14 6.00 6.88 7.77 8.65
2.0 1.05 1.27 1.51 1.77 2.04 2.34 2.66 2.99 3.34 3.71 4.10 4.92 5.77 6.65 7.53 8.42
2.2 0.975 1.18 1.41 1.66 1.93 2.21 2.52 2.84 3.18 3.54 3.91 4.71 5.54 6.41 7.30 8.19
2.4 0.912 1.11 1.33 1.57 1.82 2.10 2.39 2.70 3.03 3.38 3.74 4.51 5.33 6.18 7.06 7.95
2.6 0.856 1.04 1.26 1.48 1.73 1.99 2.27 2.57 2.89 3.23 3.58 4.32 5.12 5.96 6.83 7.71
2.8 0.806 0.986 1.19 1.41 1.65 1.90 2.17 2.46 2.76 3.09 3.43 4.15 4.93 5.75 6.61 7.48
3.0 0.762 0.933 1.13 1.34 1.57 1.81 2.07 2.35 2.64 2.96 3.29 3.99 4.75 5.55 6.39 7.26
x0.000 0.008 0.029 0.056 0.089 0.125 0.164 0.204 0.246 0.289 0.333 0.424 0.516 0.610 0.704 0.800
k
2.01.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 101

8–102 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
0.00 1.86 2.04 2.23 2.41 2.69 2.97 3.25 3.53 3.80 4.08 4.36 4.92 5.47 6.03 6.59 7.15
0.10 1.86 2.04 2.28 2.53 2.78 3.04 3.31 3.57 3.84 4.11 4.38 4.93 5.48 6.00 6.55 7.10
0.15 1.83 2.03 2.25 2.49 2.74 2.99 3.24 3.50 3.75 4.01 4.28 4.81 5.34 5.89 6.44 7.00
0.20 1.76 1.97 2.18 2.40 2.64 2.87 3.11 3.36 3.60 3.85 4.11 4.62 5.14 5.66 6.20 6.73
0.25 1.66 1.86 2.07 2.29 2.50 2.73 2.95 3.19 3.42 3.66 3.90 4.40 4.90 5.42 5.94 6.47
0.30 1.55 1.74 1.94 2.15 2.36 2.57 2.78 3.00 3.22 3.45 3.69 4.17 4.66 5.17 5.68 6.20
0.40 1.33 1.49 1.67 1.85 2.05 2.24 2.44 2.63 2.84 3.05 3.27 3.73 4.20 4.69 5.19 5.70
0.50 1.15 1.29 1.44 1.60 1.77 1.95 2.13 2.31 2.50 2.70 2.90 3.33 3.78 4.25 4.74 5.23
0.60 0.999 1.12 1.25 1.39 1.54 1.70 1.87 2.04 2.21 2.40 2.59 2.99 3.42 3.87 4.34 4.82
0.70 0.879 0.987 1.10 1.22 1.35 1.50 1.66 1.82 1.98 2.15 2.32 2.71 3.11 3.55 4.00 4.47
0.80 0.783 0.878 0.978 1.09 1.20 1.34 1.48 1.63 1.78 1.94 2.11 2.46 2.85 3.27 3.70 4.15
0.90 0.704 0.790 0.879 0.976 1.08 1.20 1.33 1.48 1.62 1.77 1.92 2.26 2.63 3.02 3.43 3.86
1.0 0.639 0.717 0.797 0.885 0.983 1.09 1.21 1.35 1.48 1.62 1.76 2.08 2.43 2.80 3.20 3.61
1.2 0.538 0.603 0.671 0.745 0.828 0.922 1.03 1.14 1.26 1.38 1.51 1.79 2.10 2.44 2.80 3.18
1.4 0.464 0.520 0.579 0.643 0.715 0.796 0.888 0.991 1.10 1.21 1.32 1.57 1.85 2.15 2.48 2.83
1.6 0.408 0.457 0.508 0.564 0.628 0.700 0.783 0.874 0.972 1.07 1.17 1.40 1.65 1.93 2.22 2.54
1.8 0.363 0.407 0.453 0.503 0.560 0.625 0.699 0.782 0.871 0.957 1.05 1.26 1.49 1.74 2.01 2.31
2.0 0.328 0.367 0.408 0.454 0.505 0.564 0.632 0.706 0.788 0.867 0.952 1.14 1.35 1.58 1.84 2.11
2.2 0.298 0.334 0.372 0.413 0.460 0.514 0.576 0.644 0.719 0.792 0.870 1.04 1.24 1.45 1.69 1.94
2.4 0.274 0.306 0.341 0.379 0.422 0.472 0.529 0.592 0.661 0.728 0.801 0.960 1.14 1.34 1.56 1.79
2.6 0.253 0.283 0.315 0.350 0.390 0.437 0.489 0.547 0.611 0.674 0.741 0.890 1.06 1.24 1.45 1.67
2.8 0.235 0.263 0.293 0.325 0.363 0.406 0.455 0.509 0.568 0.628 0.690 0.829 0.986 1.16 1.35 1.56
3.0 0.219 0.246 0.273 0.304 0.339 0.379 0.425 0.475 0.531 0.587 0.645 0.776 0.924 1.09 1.27 1.46
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 102

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–103
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 1.98 2.20 2.47 2.74 3.01 3.29 3.56 3.83 4.10 4.38 4.65 5.19 5.74 6.28 6.83 7.37
0.10 1.90 2.13 2.41 2.68 2.97 3.25 3.53 3.81 4.09 4.36 4.64 5.18 5.73 6.28 6.83 7.37
0.15 1.84 2.10 2.35 2.62 2.88 3.15 3.42 3.69 3.96 4.23 4.50 5.04 5.58 6.12 6.66 7.20
0.20 1.76 1.99 2.26 2.52 2.77 3.02 3.28 3.53 3.79 4.05 4.31 4.84 5.37 5.90 6.44 6.98
0.25 1.65 1.87 2.11 2.37 2.63 2.87 3.11 3.36 3.60 3.85 4.10 4.61 5.13 5.66 6.19 6.72
0.30 1.55 1.75 1.97 2.20 2.45 2.69 2.93 3.16 3.40 3.64 3.88 4.38 4.89 5.41 5.93 6.46
0.40 1.34 1.51 1.69 1.89 2.10 2.33 2.56 2.77 2.99 3.21 3.44 3.91 4.41 4.91 5.42 5.94
0.50 1.16 1.31 1.46 1.63 1.81 2.01 2.21 2.42 2.63 2.83 3.05 3.50 3.97 4.45 4.95 5.46
0.60 1.01 1.14 1.27 1.42 1.58 1.75 1.93 2.13 2.32 2.51 2.71 3.14 3.59 4.06 4.54 5.04
0.70 0.895 1.01 1.12 1.25 1.39 1.54 1.71 1.89 2.07 2.25 2.44 2.84 3.26 3.71 4.18 4.66
0.80 0.799 0.898 1.00 1.11 1.24 1.38 1.53 1.69 1.86 2.03 2.21 2.58 2.99 3.41 3.86 4.32
0.90 0.720 0.809 0.901 1.00 1.11 1.24 1.38 1.53 1.69 1.85 2.01 2.36 2.75 3.15 3.58 4.03
1.0 0.654 0.735 0.818 0.910 1.01 1.13 1.25 1.39 1.54 1.69 1.85 2.18 2.54 2.92 3.33 3.76
1.2 0.552 0.620 0.690 0.767 0.854 0.951 1.06 1.18 1.31 1.45 1.58 1.87 2.20 2.54 2.92 3.31
1.4 0.477 0.535 0.596 0.662 0.737 0.822 0.918 1.03 1.14 1.26 1.38 1.64 1.93 2.25 2.58 2.94
1.6 0.420 0.471 0.524 0.582 0.648 0.724 0.809 0.905 1.01 1.11 1.22 1.46 1.72 2.01 2.32 2.65
1.8 0.374 0.420 0.467 0.519 0.578 0.646 0.723 0.809 0.902 0.997 1.09 1.31 1.55 1.81 2.09 2.40
2.0 0.338 0.378 0.421 0.468 0.522 0.583 0.653 0.731 0.816 0.902 0.991 1.19 1.41 1.65 1.91 2.19
2.2 0.308 0.345 0.383 0.426 0.475 0.532 0.596 0.666 0.744 0.824 0.905 1.08 1.29 1.51 1.75 2.01
2.4 0.282 0.316 0.352 0.391 0.436 0.488 0.547 0.612 0.684 0.757 0.833 0.999 1.19 1.39 1.62 1.86
2.6 0.261 0.292 0.325 0.362 0.403 0.451 0.506 0.566 0.632 0.701 0.771 0.925 1.10 1.29 1.50 1.73
2.8 0.242 0.272 0.302 0.336 0.375 0.420 0.470 0.526 0.588 0.652 0.717 0.862 1.03 1.21 1.40 1.62
3.0 0.226 0.254 0.282 0.314 0.350 0.392 0.439 0.492 0.549 0.610 0.671 0.806 0.960 1.13 1.32 1.52
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 103

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.44 2.70 2.96 3.21 3.47 3.73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6.81 7.33
0.10 2.02 2.35 2.66 2.96 3.24 3.52 3.79 4.06 4.33 4.59 4.86 5.38 5.90 6.43 6.95 7.47
0.15 1.92 2.22 2.53 2.84 3.13 3.41 3.69 3.96 4.23 4.49 4.76 5.29 5.81 6.34 6.86 7.38
0.20 1.82 2.09 2.38 2.67 2.97 3.26 3.53 3.80 4.07 4.33 4.60 5.13 5.65 6.18 6.71 7.23
0.25 1.71 1.96 2.22 2.50 2.78 3.06 3.34 3.60 3.87 4.13 4.39 4.92 5.45 5.98 6.51 7.05
0.30 1.61 1.83 2.07 2.32 2.59 2.86 3.13 3.40 3.65 3.91 4.17 4.70 5.23 5.76 6.30 6.83
0.40 1.41 1.59 1.79 2.01 2.23 2.47 2.72 2.98 3.24 3.48 3.72 4.23 4.75 5.28 5.82 6.37
0.50 1.23 1.39 1.56 1.74 1.94 2.15 2.37 2.61 2.85 3.09 3.32 3.80 4.30 4.83 5.36 5.90
0.60 1.08 1.22 1.37 1.53 1.70 1.89 2.09 2.30 2.53 2.75 2.97 3.43 3.91 4.41 4.94 5.47
0.70 0.964 1.09 1.21 1.35 1.51 1.67 1.86 2.05 2.26 2.48 2.68 3.12 3.58 4.06 4.56 5.07
0.80 0.865 0.974 1.09 1.21 1.35 1.50 1.66 1.84 2.04 2.24 2.44 2.84 3.28 3.74 4.22 4.72
0.90 0.783 0.881 0.983 1.09 1.22 1.36 1.51 1.67 1.85 2.04 2.23 2.61 3.03 3.47 3.93 4.40
1.0 0.714 0.803 0.896 0.997 1.11 1.24 1.38 1.53 1.70 1.88 2.05 2.41 2.80 3.22 3.66 4.12
1.2 0.606 0.681 0.759 0.844 0.940 1.05 1.17 1.30 1.45 1.61 1.76 2.08 2.43 2.81 3.22 3.64
1.4 0.525 0.590 0.657 0.731 0.814 0.908 1.02 1.13 1.26 1.40 1.53 1.82 2.14 2.49 2.86 3.25
1.6 0.463 0.520 0.579 0.644 0.717 0.801 0.897 1.00 1.12 1.24 1.36 1.62 1.91 2.23 2.57 2.92
1.8 0.414 0.464 0.517 0.575 0.641 0.716 0.802 0.897 1.00 1.11 1.22 1.46 1.72 2.01 2.32 2.66
2.0 0.374 0.419 0.467 0.519 0.579 0.647 0.725 0.811 0.905 1.01 1.11 1.32 1.57 1.83 2.12 2.43
2.2 0.341 0.382 0.425 0.473 0.528 0.590 0.661 0.740 0.826 0.919 1.01 1.21 1.44 1.68 1.95 2.24
2.4 0.313 0.351 0.391 0.434 0.485 0.543 0.608 0.680 0.760 0.845 0.930 1.12 1.32 1.55 1.80 2.07
2.6 0.289 0.324 0.361 0.402 0.448 0.502 0.562 0.629 0.703 0.782 0.861 1.03 1.23 1.44 1.67 1.92
2.8 0.269 0.302 0.336 0.373 0.417 0.467 0.523 0.585 0.654 0.727 0.801 0.963 1.15 1.35 1.56 1.80
3.0 0.251 0.282 0.314 0.349 0.389 0.436 0.489 0.547 0.611 0.680 0.749 0.901 1.07 1.26 1.47 1.69
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
8–104 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 104

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–105
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.41 2.57 2.80 3.04 3.27 3.51 3.74 3.97 4.21 4.44 4.67 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.54 2.83 3.12 3.40 3.67 3.94 4.20 4.45 4.71 4.95 5.44 5.93 6.41 6.89 7.36
0.15 2.09 2.41 2.71 3.00 3.28 3.57 3.85 4.13 4.40 4.67 4.93 5.43 5.92 6.41 6.90 7.38
0.20 1.96 2.26 2.56 2.84 3.13 3.42 3.71 4.00 4.28 4.56 4.84 5.35 5.85 6.35 6.85 7.34
0.25 1.85 2.12 2.40 2.68 2.96 3.25 3.54 3.83 4.12 4.41 4.69 5.22 5.74 6.25 6.75 7.25
0.30 1.74 1.99 2.25 2.51 2.79 3.07 3.35 3.64 3.93 4.23 4.52 5.06 5.59 6.11 6.63 7.14
0.40 1.55 1.76 1.98 2.21 2.46 2.71 2.98 3.26 3.54 3.83 4.13 4.68 5.23 5.77 6.31 6.84
0.50 1.38 1.56 1.75 1.95 2.17 2.40 2.64 2.90 3.17 3.45 3.74 4.29 4.84 5.40 5.95 6.49
0.60 1.23 1.39 1.56 1.74 1.93 2.14 2.36 2.60 2.85 3.12 3.39 3.92 4.46 5.02 5.58 6.13
0.70 1.11 1.25 1.40 1.56 1.73 1.92 2.13 2.35 2.59 2.84 3.10 3.59 4.12 4.66 5.21 5.77
0.80 1.00 1.13 1.26 1.41 1.57 1.74 1.93 2.14 2.36 2.59 2.84 3.30 3.80 4.33 4.87 5.42
0.90 0.915 1.03 1.15 1.28 1.43 1.59 1.76 1.96 2.16 2.38 2.61 3.06 3.53 4.04 4.56 5.10
1.0 0.839 0.945 1.06 1.18 1.31 1.46 1.62 1.80 2.00 2.20 2.42 2.84 3.29 3.77 4.28 4.80
1.2 0.719 0.809 0.902 1.00 1.12 1.25 1.39 1.55 1.72 1.90 2.10 2.48 2.88 3.32 3.79 4.28
1.4 0.627 0.705 0.786 0.875 0.975 1.09 1.22 1.36 1.51 1.67 1.84 2.19 2.56 2.96 3.39 3.85
1.6 0.555 0.624 0.695 0.774 0.863 0.964 1.08 1.20 1.34 1.49 1.64 1.96 2.30 2.66 3.06 3.48
1.8 0.498 0.559 0.623 0.693 0.773 0.865 0.968 1.08 1.20 1.34 1.48 1.76 2.08 2.42 2.78 3.17
2.0 0.451 0.506 0.564 0.628 0.700 0.783 0.877 0.980 1.09 1.21 1.34 1.61 1.89 2.21 2.55 2.91
2.2 0.412 0.462 0.515 0.573 0.639 0.716 0.801 0.896 0.999 1.11 1.23 1.47 1.74 2.03 2.35 2.69
2.4 0.379 0.425 0.474 0.527 0.588 0.659 0.738 0.825 0.920 1.02 1.13 1.36 1.61 1.88 2.17 2.49
2.6 0.351 0.394 0.438 0.488 0.545 0.610 0.683 0.764 0.853 0.948 1.05 1.26 1.49 1.75 2.03 2.32
2.8 0.327 0.366 0.408 0.454 0.507 0.568 0.636 0.712 0.794 0.883 0.979 1.18 1.39 1.63 1.89 2.18
3.0 0.306 0.343 0.381 0.424 0.474 0.531 0.595 0.666 0.743 0.826 0.916 1.10 1.31 1.53 1.78 2.04
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 105

8–106 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 2.79 3.01 3.23 3.44 3.66 3.88 4.10 4.32 4.54 4.76 5.19 5.63 6.07 6.50 6.94
0.10 2.43 2.70 2.97 3.23 3.48 3.72 3.96 4.19 4.42 4.64 4.87 5.31 5.75 6.18 6.62 7.05
0.15 2.31 2.59 2.86 3.13 3.40 3.66 3.91 4.16 4.40 4.64 4.87 5.32 5.77 6.21 6.64 7.08
0.20 2.18 2.47 2.74 3.01 3.29 3.56 3.83 4.09 4.35 4.59 4.84 5.30 5.76 6.21 6.65 7.09
0.25 2.07 2.35 2.62 2.89 3.16 3.44 3.72 3.99 4.26 4.52 4.77 5.26 5.73 6.19 6.64 7.08
0.30 1.97 2.24 2.50 2.76 3.03 3.31 3.59 3.88 4.16 4.43 4.69 5.20 5.68 6.15 6.61 7.06
0.40 1.79 2.03 2.27 2.52 2.77 3.04 3.32 3.61 3.90 4.19 4.48 5.02 5.54 6.04 6.52 6.98
0.50 1.63 1.84 2.06 2.29 2.53 2.78 3.05 3.34 3.63 3.93 4.22 4.79 5.34 5.87 6.37 6.86
0.60 1.49 1.68 1.88 2.09 2.31 2.55 2.81 3.08 3.37 3.66 3.96 4.55 5.11 5.66 6.19 6.69
0.70 1.37 1.54 1.73 1.92 2.12 2.35 2.59 2.85 3.12 3.41 3.71 4.30 4.87 5.43 5.97 6.50
0.80 1.26 1.42 1.59 1.77 1.96 2.17 2.40 2.64 2.90 3.18 3.47 4.05 4.64 5.20 5.74 6.28
0.90 1.17 1.32 1.47 1.63 1.81 2.01 2.23 2.46 2.71 2.97 3.25 3.82 4.39 4.95 5.50 6.04
1.0 1.08 1.22 1.36 1.52 1.69 1.87 2.08 2.30 2.53 2.78 3.05 3.60 4.15 4.71 5.26 5.80
1.2 0.946 1.07 1.19 1.32 1.47 1.64 1.82 2.02 2.23 2.46 2.70 3.21 3.72 4.26 4.80 5.34
1.4 0.837 0.942 1.05 1.17 1.30 1.45 1.62 1.80 1.99 2.20 2.42 2.88 3.36 3.86 4.38 4.92
1.6 0.748 0.842 0.939 1.04 1.16 1.30 1.45 1.61 1.79 1.98 2.18 2.60 3.04 3.52 4.02 4.53
1.8 0.676 0.760 0.847 0.943 1.05 1.17 1.31 1.46 1.62 1.80 1.98 2.37 2.78 3.23 3.70 4.19
2.0 0.616 0.692 0.772 0.859 0.958 1.07 1.20 1.33 1.48 1.64 1.82 2.18 2.55 2.97 3.42 3.88
2.2 0.565 0.635 0.708 0.788 0.879 0.983 1.10 1.23 1.36 1.51 1.67 2.01 2.36 2.75 3.17 3.61
2.4 0.522 0.586 0.653 0.728 0.812 0.908 1.02 1.13 1.26 1.40 1.55 1.86 2.19 2.56 2.95 3.37
2.6 0.485 0.544 0.607 0.675 0.754 0.844 0.944 1.05 1.17 1.30 1.44 1.74 2.05 2.39 2.76 3.16
2.8 0.453 0.508 0.566 0.630 0.704 0.787 0.881 0.984 1.10 1.22 1.35 1.63 1.92 2.24 2.59 2.97
3.0 0.424 0.476 0.530 0.590 0.659 0.738 0.826 0.923 1.03 1.14 1.26 1.53 1.80 2.11 2.44 2.80
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 106

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
DESIGN TABLES 8–107
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4.65 5.03 5.42 5.80 6.19 6.57
0.10 2.59 2.86 3.11 3.31 3.50 3.69 3.88 4.07 4.27 4.46 4.65 5.04 5.42 5.81 6.20 6.58
0.15 2.50 2.78 3.04 3.28 3.50 3.70 3.90 4.09 4.28 4.47 4.67 5.05 5.44 5.83 6.21 6.60
0.20 2.43 2.69 2.96 3.22 3.46 3.68 3.89 4.09 4.29 4.48 4.68 5.06 5.45 5.84 6.22 6.61
0.25 2.35 2.62 2.88 3.14 3.40 3.63 3.86 4.07 4.28 4.48 4.68 5.07 5.46 5.84 6.23 6.61
0.30 2.28 2.55 2.80 3.07 3.33 3.58 3.82 4.04 4.26 4.46 4.67 5.06 5.46 5.84 6.23 6.62
0.40 2.16 2.41 2.66 2.92 3.19 3.45 3.71 3.95 4.18 4.41 4.62 5.04 5.44 5.83 6.23 6.61
0.50 2.05 2.29 2.53 2.78 3.05 3.32 3.58 3.84 4.09 4.32 4.55 4.99 5.40 5.81 6.21 6.60
0.60 1.94 2.18 2.41 2.64 2.90 3.18 3.45 3.72 3.97 4.22 4.46 4.92 5.35 5.77 6.17 6.57
0.70 1.85 2.07 2.29 2.52 2.77 3.04 3.31 3.58 3.85 4.11 4.36 4.83 5.28 5.71 6.12 6.53
0.80 1.75 1.97 2.18 2.40 2.64 2.90 3.18 3.45 3.73 3.99 4.25 4.74 5.20 5.64 6.06 6.48
0.90 1.67 1.87 2.08 2.29 2.52 2.77 3.04 3.32 3.60 3.87 4.14 4.65 5.12 5.57 6.00 6.42
1.0 1.59 1.79 1.98 2.19 2.41 2.65 2.92 3.19 3.47 3.75 4.02 4.55 5.04 5.50 5.94 6.37
1.2 1.45 1.63 1.81 2.00 2.21 2.44 2.68 2.95 3.22 3.50 3.78 4.33 4.85 5.34 5.81 6.25
1.4 1.33 1.49 1.66 1.84 2.03 2.24 2.47 2.72 2.99 3.27 3.55 4.11 4.65 5.16 5.65 6.12
1.6 1.22 1.37 1.53 1.69 1.88 2.07 2.29 2.53 2.78 3.05 3.32 3.88 4.43 4.97 5.48 5.96
1.8 1.13 1.27 1.41 1.57 1.74 1.93 2.13 2.35 2.59 2.85 3.11 3.66 4.22 4.76 5.29 5.79
2.0 1.05 1.18 1.31 1.46 1.62 1.79 1.99 2.20 2.42 2.67 2.92 3.46 4.01 4.56 5.09 5.61
2.2 0.975 1.10 1.22 1.36 1.51 1.68 1.86 2.06 2.27 2.50 2.75 3.27 3.81 4.36 4.90 5.42
2.4 0.912 1.03 1.14 1.27 1.41 1.57 1.74 1.93 2.14 2.36 2.59 3.09 3.62 4.16 4.70 5.23
2.6 0.856 0.963 1.07 1.19 1.33 1.48 1.64 1.82 2.02 2.22 2.45 2.93 3.44 3.97 4.50 5.03
2.8 0.806 0.906 1.01 1.12 1.25 1.39 1.55 1.72 1.90 2.10 2.32 2.78 3.28 3.79 4.30 4.83
3.0 0.762 0.856 0.954 1.06 1.18 1.32 1.47 1.63 1.80 2.00 2.20 2.64 3.12 3.61 4.12 4.64
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 107

8–108 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10a
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 1.98 2.20 2.47 2.74 3.01 3.29 3.56 3.83 4.10 4.38 4.65 5.19 5.74 6.28 6.83 7.37
0.10 1.90 2.08 2.30 2.54 2.97 3.04 3.30 3.57 3.84 4.12 4.41 4.99 5.57 6.15 6.72 7.29
0.15 1.84 2.04 2.25 2.47 2.70 2.94 3.18 3.43 3.68 3.94 4.19 4.72 5.26 5.82 6.38 6.95
0.20 1.76 1.97 2.17 2.38 2.59 2.82 3.04 3.28 3.52 3.76 4.00 4.51 5.02 5.55 6.08 6.63
0.25 1.65 1.86 2.07 2.26 2.46 2.67 2.89 3.11 3.33 3.57 3.80 4.29 4.79 5.30 5.82 6.35
0.30 1.55 1.74 1.95 2.13 2.32 2.52 2.72 2.93 3.15 3.37 3.60 4.07 4.56 5.06 5.57 6.09
0.40 1.34 1.51 1.70 1.87 2.04 2.22 2.40 2.59 2.79 3.00 3.21 3.66 4.12 4.61 5.10 5.61
0.50 1.16 1.31 1.47 1.63 1.79 1.95 2.12 2.29 2.47 2.67 2.87 3.29 3.74 4.20 4.69 5.18
0.60 1.01 1.15 1.29 1.42 1.57 1.72 1.88 2.04 2.21 2.38 2.57 2.97 3.40 3.85 4.32 4.80
0.70 0.895 1.01 1.13 1.25 1.39 1.53 1.68 1.82 1.98 2.15 2.32 2.70 3.11 3.54 3.99 4.46
0.80 0.799 0.906 1.01 1.12 1.24 1.37 1.51 1.65 1.79 1.95 2.11 2.47 2.86 3.27 3.71 4.16
0.90 0.720 0.816 0.909 1.01 1.12 1.24 1.37 1.50 1.63 1.78 1.94 2.27 2.64 3.04 3.45 3.89
1.0 0.654 0.742 0.825 0.915 1.01 1.12 1.25 1.37 1.50 1.64 1.78 2.10 2.45 2.83 3.22 3.64
1.2 0.552 0.626 0.695 0.771 0.856 0.950 1.06 1.17 1.29 1.41 1.54 1.82 2.13 2.47 2.84 3.22
1.4 0.477 0.540 0.600 0.665 0.739 0.822 0.916 1.02 1.12 1.23 1.35 1.60 1.88 2.19 2.52 2.87
1.6 0.420 0.474 0.527 0.585 0.650 0.724 0.808 0.901 0.995 1.09 1.20 1.43 1.68 1.96 2.27 2.59
1.8 0.374 0.422 0.469 0.521 0.580 0.646 0.722 0.806 0.892 0.981 1.08 1.28 1.52 1.78 2.05 2.35
2.0 0.338 0.381 0.423 0.470 0.523 0.584 0.653 0.729 0.809 0.889 0.976 1.17 1.38 1.62 1.88 2.16
2.2 0.308 0.346 0.385 0.428 0.476 0.532 0.595 0.665 0.739 0.813 0.893 1.07 1.27 1.49 1.73 1.99
2.4 0.282 0.318 0.353 0.393 0.437 0.489 0.547 0.612 0.680 0.749 0.822 0.986 1.17 1.37 1.60 1.84
2.6 0.261 0.294 0.326 0.363 0.404 0.452 0.506 0.566 0.630 0.694 0.762 0.914 1.09 1.28 1.49 1.71
2.8 0.242 0.273 0.303 0.337 0.376 0.420 0.470 0.526 0.586 0.646 0.710 0.852 1.01 1.19 1.39 1.60
3.0 0.226 0.255 0.283 0.315 0.351 0.392 0.439 0.492 0.549 0.604 0.664 0.798 0.949 1.12 1.30 1.50
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:29 AM Page 108

DESIGN TABLES 8–109
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.44 2.70 2.96 3.21 3.47 3.73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6.81 7.33
0.10 2.02 2.24 2.47 2.70 2.94 3.18 3.43 3.69 3.95 4.21 4.48 5.01 5.56 6.11 6.65 7.20
0.15 1.92 2.13 2.34 2.55 2.77 3.00 3.23 3.47 3.71 3.96 4.21 4.73 5.27 5.82 6.37 6.93
0.20 1.82 2.02 2.23 2.43 2.64 2.85 3.07 3.29 3.52 3.76 4.00 4.50 5.01 5.55 6.09 6.64
0.25 1.71 1.91 2.11 2.31 2.50 2.70 2.91 3.12 3.34 3.57 3.80 4.28 4.78 5.30 5.83 6.37
0.30 1.61 1.79 1.98 2.18 2.37 2.56 2.75 2.96 3.17 3.39 3.61 4.08 4.57 5.08 5.60 6.13
0.40 1.41 1.57 1.74 1.92 2.10 2.28 2.45 2.64 2.84 3.04 3.26 3.71 4.18 4.67 5.18 5.69
0.50 1.23 1.38 1.53 1.70 1.87 2.03 2.19 2.36 2.55 2.74 2.94 3.37 3.83 4.30 4.80 5.30
0.60 1.08 1.22 1.36 1.51 1.66 1.81 1.96 2.13 2.30 2.48 2.67 3.08 3.52 3.98 4.46 4.95
0.70 0.964 1.08 1.21 1.35 1.49 1.63 1.77 1.92 2.08 2.26 2.44 2.83 3.25 3.69 4.15 4.64
0.80 0.865 0.974 1.09 1.22 1.34 1.48 1.61 1.75 1.90 2.06 2.23 2.60 3.01 3.44 3.89 4.35
0.90 0.783 0.882 0.989 1.10 1.22 1.34 1.47 1.60 1.74 1.90 2.06 2.41 2.80 3.21 3.64 4.09
1.0 0.714 0.805 0.904 1.01 1.11 1.23 1.35 1.48 1.61 1.75 1.91 2.24 2.61 3.00 3.42 3.86
1.2 0.606 0.684 0.769 0.852 0.944 1.05 1.16 1.27 1.39 1.52 1.66 1.96 2.29 2.65 3.04 3.44
1.4 0.525 0.593 0.665 0.737 0.818 0.908 1.01 1.11 1.22 1.34 1.46 1.73 2.04 2.37 2.72 3.09
1.6 0.463 0.523 0.585 0.649 0.720 0.801 0.892 0.990 1.09 1.19 1.30 1.55 1.83 2.13 2.46 2.80
1.8 0.414 0.468 0.522 0.579 0.644 0.717 0.799 0.890 0.978 1.07 1.18 1.40 1.66 1.93 2.23 2.56
2.0 0.374 0.423 0.471 0.523 0.581 0.648 0.724 0.807 0.889 0.977 1.07 1.28 1.51 1.77 2.05 2.35
2.2 0.341 0.386 0.429 0.476 0.530 0.591 0.661 0.738 0.814 0.895 0.982 1.17 1.39 1.63 1.89 2.17
2.4 0.313 0.354 0.394 0.437 0.487 0.543 0.608 0.679 0.750 0.825 0.906 1.08 1.29 1.51 1.75 2.02
2.6 0.289 0.327 0.364 0.404 0.450 0.503 0.562 0.628 0.696 0.766 0.841 1.01 1.20 1.40 1.63 1.88
2.8 0.269 0.304 0.338 0.376 0.418 0.467 0.523 0.585 0.648 0.714 0.784 0.940 1.12 1.31 1.53 1.76
3.0 0.251 0.284 0.316 0.351 0.391 0.437 0.489 0.547 0.607 0.668 0.734 0.881 1.05 1.23 1.44 1.66
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 109

8–110 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.41 2.57 2.80 3.04 3.27 3.51 3.74 3.97 4.21 4.44 4.67 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.44 2.65 2.86 3.07 3.29 3.52 3.76 4.00 4.24 4.49 5.01 5.53 6.06 6.59 7.12
0.15 2.09 2.28 2.48 2.68 2.89 3.11 3.33 3.56 3.79 4.03 4.28 4.79 5.32 5.85 6.40 6.94
0.20 1.96 2.14 2.33 2.54 2.74 2.95 3.16 3.38 3.61 3.84 4.08 4.58 5.10 5.64 6.19 6.74
0.25 1.85 2.02 2.21 2.40 2.61 2.81 3.01 3.22 3.44 3.67 3.90 4.39 4.90 5.43 5.98 6.53
0.30 1.74 1.91 2.09 2.28 2.47 2.67 2.87 3.07 3.29 3.51 3.73 4.21 4.72 5.24 5.78 6.33
0.40 1.55 1.70 1.87 2.04 2.23 2.42 2.60 2.80 3.00 3.21 3.43 3.89 4.38 4.89 5.41 5.95
0.50 1.38 1.52 1.67 1.84 2.01 2.19 2.36 2.55 2.74 2.94 3.15 3.60 4.07 4.57 5.09 5.62
0.60 1.23 1.36 1.50 1.66 1.82 1.99 2.16 2.33 2.51 2.70 2.90 3.33 3.80 4.28 4.79 5.31
0.70 1.11 1.23 1.36 1.50 1.66 1.82 1.97 2.13 2.31 2.49 2.68 3.10 3.55 4.02 4.52 5.03
0.80 1.00 1.12 1.24 1.37 1.52 1.67 1.81 1.97 2.13 2.31 2.49 2.89 3.33 3.79 4.27 4.77
0.90 0.915 1.02 1.13 1.26 1.39 1.54 1.67 1.82 1.98 2.14 2.32 2.71 3.12 3.57 4.04 4.53
1.0 0.839 0.938 1.04 1.16 1.29 1.42 1.55 1.69 1.84 2.00 2.17 2.54 2.94 3.37 3.83 4.30
1.2 0.719 0.805 0.900 1.00 1.12 1.24 1.35 1.48 1.61 1.76 1.91 2.25 2.62 3.02 3.45 3.90
1.4 0.627 0.704 0.788 0.880 0.979 1.08 1.19 1.31 1.43 1.56 1.70 2.01 2.36 2.73 3.13 3.54
1.6 0.555 0.624 0.700 0.783 0.868 0.962 1.07 1.17 1.28 1.40 1.53 1.82 2.14 2.48 2.85 3.24
1.8 0.498 0.560 0.629 0.701 0.778 0.864 0.961 1.06 1.16 1.27 1.39 1.66 1.95 2.27 2.61 2.98
2.0 0.451 0.508 0.571 0.635 0.704 0.784 0.873 0.964 1.06 1.16 1.27 1.52 1.79 2.09 2.41 2.75
2.2 0.412 0.464 0.522 0.579 0.643 0.716 0.799 0.885 0.974 1.07 1.17 1.40 1.65 1.93 2.23 2.55
2.4 0.379 0.428 0.480 0.532 0.592 0.660 0.736 0.818 0.900 0.989 1.08 1.30 1.53 1.79 2.08 2.38
2.6 0.351 0.396 0.444 0.493 0.548 0.611 0.683 0.760 0.837 0.920 1.01 1.21 1.43 1.67 1.94 2.23
2.8 0.327 0.369 0.413 0.458 0.510 0.569 0.636 0.709 0.781 0.859 0.943 1.13 1.34 1.57 1.82 2.10
3.0 0.306 0.345 0.386 0.428 0.477 0.532 0.595 0.665 0.733 0.806 0.885 1.06 1.26 1.48 1.72 1.98
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 110

DESIGN TABLES 8–111
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 2.79 3.01 3.23 3.44 3.66 3.88 4.10 4.32 4.54 4.76 5.19 5.63 6.07 6.50 6.94
0.10 2.43 2.59 2.76 2.94 3.14 3.35 3.57 3.80 4.03 4.28 4.52 5.04 5.56 6.07 6.56 7.03
0.15 2.31 2.45 2.62 2.80 3.00 3.21 3.43 3.66 3.89 4.13 4.38 4.89 5.43 5.96 6.48 6.97
0.20 2.18 2.32 2.49 2.67 2.87 3.08 3.30 3.52 3.75 3.99 4.23 4.75 5.28 5.83 6.37 6.88
0.25 2.07 2.21 2.38 2.56 2.75 2.96 3.17 3.40 3.62 3.86 4.10 4.60 5.14 5.69 6.24 6.78
0.30 1.97 2.11 2.27 2.45 2.64 2.84 3.06 3.28 3.50 3.73 3.97 4.47 5.00 5.55 6.11 6.66
0.40 1.79 1.93 2.08 2.25 2.44 2.64 2.84 3.06 3.27 3.50 3.73 4.22 4.74 5.28 5.84 6.41
0.50 1.63 1.76 1.91 2.08 2.26 2.45 2.65 2.86 3.06 3.28 3.51 3.99 4.50 5.03 5.58 6.15
0.60 1.49 1.62 1.76 1.92 2.09 2.28 2.47 2.67 2.87 3.08 3.30 3.77 4.28 4.80 5.35 5.91
0.70 1.37 1.49 1.63 1.78 1.95 2.12 2.31 2.50 2.70 2.90 3.12 3.58 4.07 4.59 5.13 5.68
0.80 1.26 1.38 1.51 1.66 1.82 1.99 2.17 2.35 2.54 2.74 2.95 3.39 3.88 4.39 4.92 5.46
0.90 1.17 1.28 1.41 1.55 1.70 1.86 2.04 2.21 2.39 2.58 2.79 3.23 3.70 4.20 4.72 5.25
1.0 1.08 1.19 1.31 1.45 1.59 1.75 1.92 2.08 2.26 2.45 2.64 3.07 3.53 4.02 4.53 5.05
1.2 0.946 1.05 1.16 1.28 1.41 1.56 1.71 1.87 2.03 2.20 2.39 2.79 3.22 3.69 4.17 4.68
1.4 0.837 0.928 1.03 1.14 1.27 1.40 1.54 1.68 1.83 2.00 2.17 2.54 2.96 3.40 3.86 4.34
1.6 0.748 0.832 0.926 1.03 1.14 1.27 1.40 1.53 1.67 1.82 1.98 2.33 2.72 3.14 3.58 4.04
1.8 0.676 0.754 0.840 0.936 1.04 1.16 1.28 1.40 1.53 1.67 1.82 2.15 2.52 2.91 3.33 3.77
2.0 0.616 0.688 0.768 0.857 0.957 1.07 1.17 1.29 1.41 1.54 1.68 1.99 2.34 2.71 3.11 3.53
2.2 0.565 0.632 0.707 0.790 0.883 0.981 1.08 1.19 1.30 1.43 1.56 1.85 2.18 2.53 2.91 3.31
2.4 0.522 0.585 0.655 0.733 0.818 0.909 1.01 1.11 1.21 1.33 1.46 1.73 2.04 2.37 2.73 3.11
2.6 0.485 0.544 0.609 0.682 0.760 0.845 0.940 1.03 1.13 1.24 1.36 1.62 1.91 2.23 2.57 2.93
2.8 0.453 0.508 0.570 0.638 0.709 0.789 0.879 0.969 1.06 1.17 1.28 1.53 1.80 2.10 2.43 2.78
3.0 0.424 0.476 0.535 0.598 0.665 0.740 0.825 0.911 1.00 1.10 1.21 1.44 1.70 1.99 2.30 2.63
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 111

8–112 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-10a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4.65 5.03 5.42 5.80 6.19 6.57
0.10 2.59 2.68 2.81 2.97 3.16 3.36 3.58 3.82 4.07 4.33 4.58 5.06 5.50 5.91 6.31 6.69
0.15 2.50 2.60 2.74 2.90 3.08 3.29 3.51 3.75 4.00 4.26 4.52 5.02 5.48 5.90 6.30 6.69
0.20 2.43 2.53 2.66 2.83 3.01 3.22 3.44 3.68 3.93 4.19 4.46 4.98 5.45 5.88 6.29 6.69
0.25 2.35 2.46 2.60 2.76 2.94 3.15 3.37 3.61 3.86 4.12 4.39 4.92 5.42 5.86 6.28 6.68
0.30 2.28 2.39 2.53 2.69 2.88 3.09 3.31 3.54 3.79 4.05 4.32 4.86 5.37 5.84 6.26 6.67
0.40 2.16 2.27 2.41 2.57 2.76 2.96 3.18 3.42 3.66 3.92 4.19 4.72 5.27 5.77 6.22 6.64
0.50 2.05 2.16 2.30 2.46 2.64 2.85 3.06 3.30 3.54 3.80 4.06 4.59 5.13 5.66 6.15 6.59
0.60 1.94 2.05 2.19 2.35 2.54 2.73 2.95 3.18 3.42 3.68 3.93 4.46 5.00 5.54 6.06 6.54
0.70 1.85 1.96 2.10 2.25 2.43 2.63 2.84 3.07 3.31 3.56 3.81 4.33 4.87 5.42 5.95 6.45
0.80 1.75 1.87 2.00 2.16 2.34 2.53 2.74 2.97 3.20 3.45 3.69 4.21 4.75 5.30 5.84 6.35
0.90 1.67 1.78 1.92 2.07 2.25 2.44 2.65 2.87 3.10 3.34 3.58 4.09 4.62 5.17 5.72 6.24
1.0 1.59 1.70 1.84 1.99 2.16 2.35 2.55 2.77 3.00 3.24 3.47 3.97 4.50 5.05 5.60 6.13
1.2 1.45 1.56 1.69 1.84 2.00 2.18 2.38 2.60 2.82 3.04 3.27 3.76 4.27 4.81 5.37 5.91
1.4 1.33 1.43 1.56 1.70 1.86 2.04 2.23 2.44 2.65 2.86 3.08 3.55 4.06 4.59 5.13 5.68
1.6 1.22 1.32 1.45 1.58 1.74 1.91 2.09 2.29 2.49 2.69 2.91 3.37 3.86 4.37 4.91 5.46
1.8 1.13 1.23 1.35 1.48 1.63 1.79 1.97 2.16 2.34 2.54 2.75 3.19 3.67 4.17 4.70 5.24
2.0 1.05 1.14 1.26 1.38 1.52 1.68 1.85 2.03 2.21 2.40 2.60 3.03 3.50 3.99 4.50 5.03
2.2 0.975 1.07 1.18 1.30 1.44 1.59 1.75 1.92 2.09 2.27 2.47 2.88 3.33 3.81 4.31 4.83
2.4 0.912 1.00 1.11 1.22 1.35 1.50 1.66 1.82 1.98 2.16 2.34 2.74 3.18 3.64 4.13 4.64
2.6 0.856 0.943 1.04 1.15 1.28 1.42 1.57 1.72 1.88 2.05 2.23 2.62 3.04 3.49 3.96 4.46
2.8 0.806 0.890 0.986 1.09 1.21 1.35 1.49 1.64 1.79 1.95 2.12 2.50 2.91 3.35 3.81 4.29
3.0 0.762 0.842 0.934 1.04 1.15 1.28 1.42 1.56 1.70 1.86 2.03 2.39 2.78 3.21 3.66 4.13
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 112

DESIGN TABLES 8–113
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 1.86 2.04 2.23 2.41 2.69 2.97 3.25 3.53 3.80 4.08 4.36 4.92 5.47 6.03 6.59 7.15
0.10 1.86 2.06 2.32 2.57 2.83 3.08 3.32 3.55 3.77 3.98 4.19 4.60 5.02 5.45 5.89 6.35
0.15 1.83 2.04 2.27 2.51 2.74 2.97 3.18 3.39 3.58 3.78 3.97 4.37 4.79 5.22 5.66 6.11
0.20 1.76 1.96 2.17 2.38 2.59 2.78 2.98 3.17 3.36 3.56 3.76 4.16 4.57 5.00 5.44 5.89
0.25 1.66 1.85 2.03 2.22 2.40 2.58 2.76 2.95 3.14 3.34 3.55 3.95 4.36 4.78 5.22 5.67
0.30 1.55 1.72 1.89 2.06 2.22 2.39 2.56 2.74 2.94 3.14 3.35 3.76 4.16 4.58 5.02 5.46
0.40 1.33 1.48 1.63 1.76 1.90 2.05 2.22 2.40 2.59 2.78 2.99 3.40 3.80 4.21 4.64 5.08
0.50 1.15 1.28 1.40 1.52 1.65 1.79 1.94 2.11 2.29 2.48 2.68 3.08 3.48 3.88 4.30 4.73
0.60 0.999 1.11 1.22 1.33 1.45 1.58 1.72 1.88 2.05 2.23 2.41 2.81 3.20 3.59 3.99 4.41
0.70 0.879 0.979 1.08 1.18 1.29 1.41 1.54 1.69 1.85 2.01 2.19 2.56 2.95 3.33 3.72 4.12
0.80 0.783 0.871 0.960 1.06 1.16 1.27 1.39 1.53 1.67 1.83 2.00 2.35 2.73 3.10 3.48 3.87
0.90 0.704 0.783 0.865 0.954 1.05 1.15 1.27 1.39 1.53 1.68 1.84 2.17 2.53 2.89 3.26 3.63
1.0 0.639 0.711 0.786 0.869 0.959 1.06 1.16 1.28 1.41 1.55 1.69 2.01 2.36 2.71 3.06 3.42
1.2 0.538 0.599 0.664 0.735 0.814 0.900 0.993 1.09 1.21 1.33 1.46 1.75 2.07 2.40 2.72 3.06
1.4 0.464 0.517 0.574 0.636 0.706 0.782 0.865 0.956 1.06 1.17 1.28 1.54 1.83 2.14 2.44 2.76
1.6 0.408 0.454 0.505 0.560 0.622 0.691 0.766 0.847 0.937 1.04 1.14 1.38 1.64 1.92 2.21 2.51
1.8 0.363 0.405 0.450 0.500 0.556 0.618 0.686 0.760 0.841 0.931 1.03 1.24 1.48 1.75 2.02 2.29
2.0 0.328 0.365 0.406 0.451 0.502 0.559 0.621 0.689 0.763 0.845 0.935 1.13 1.35 1.60 1.85 2.11
2.2 0.298 0.333 0.370 0.411 0.458 0.510 0.567 0.630 0.698 0.773 0.856 1.04 1.24 1.47 1.71 1.95
2.4 0.274 0.305 0.340 0.378 0.421 0.469 0.522 0.580 0.643 0.713 0.789 0.959 1.15 1.36 1.58 1.82
2.6 0.253 0.282 0.314 0.349 0.389 0.434 0.483 0.537 0.596 0.661 0.731 0.890 1.07 1.26 1.47 1.69
2.8 0.235 0.262 0.292 0.324 0.362 0.403 0.450 0.500 0.555 0.615 0.682 0.830 0.997 1.18 1.37 1.58
3.0 0.219 0.245 0.272 0.303 0.338 0.377 0.420 0.468 0.519 0.576 0.638 0.777 0.934 1.10 1.28 1.48
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 0°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 113

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
8–114 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 1.98 2.20 2.47 2.74 3.01 3.29 3.56 3.83 4.10 4.38 4.65 5.19 5.74 6.28 6.83 7.37
0.10 1.90 2.09 2.32 2.55 2.79 3.02 3.26 3.49 3.71 3.94 4.16 4.60 5.04 5.49 5.95 6.42
0.15 1.84 2.05 2.26 2.48 2.70 2.92 3.13 3.35 3.56 3.77 3.98 4.40 4.83 5.27 5.72 6.18
0.20 1.76 1.96 2.17 2.38 2.58 2.78 2.99 3.19 3.38 3.58 3.78 4.19 4.61 5.05 5.49 5.95
0.25 1.65 1.85 2.05 2.25 2.44 2.63 2.82 3.01 3.20 3.39 3.58 3.99 4.41 4.84 5.28 5.74
0.30 1.55 1.74 1.92 2.10 2.28 2.46 2.64 2.82 3.01 3.21 3.40 3.81 4.22 4.65 5.09 5.54
0.40 1.34 1.51 1.67 1.82 1.97 2.12 2.29 2.48 2.67 2.87 3.08 3.47 3.88 4.29 4.73 5.17
0.50 1.16 1.31 1.44 1.58 1.71 1.86 2.02 2.19 2.37 2.56 2.77 3.17 3.57 3.97 4.39 4.83
0.60 1.01 1.14 1.26 1.38 1.51 1.65 1.79 1.95 2.12 2.31 2.50 2.91 3.29 3.69 4.09 4.51
0.70 0.895 1.01 1.12 1.23 1.34 1.47 1.61 1.75 1.91 2.09 2.27 2.66 3.04 3.43 3.82 4.23
0.80 0.799 0.897 0.995 1.10 1.21 1.32 1.45 1.59 1.74 1.90 2.07 2.44 2.83 3.19 3.58 3.97
0.90 0.720 0.809 0.897 0.991 1.09 1.20 1.32 1.45 1.59 1.74 1.90 2.26 2.63 2.99 3.36 3.74
1.0 0.654 0.735 0.816 0.902 0.996 1.10 1.21 1.33 1.46 1.60 1.76 2.09 2.45 2.80 3.16 3.53
1.2 0.552 0.621 0.689 0.763 0.845 0.936 1.03 1.14 1.25 1.38 1.52 1.82 2.15 2.48 2.81 3.16
1.4 0.477 0.536 0.595 0.660 0.733 0.813 0.900 0.994 1.10 1.21 1.33 1.60 1.90 2.22 2.53 2.85
1.6 0.420 0.471 0.523 0.581 0.646 0.718 0.796 0.881 0.974 1.08 1.19 1.43 1.70 2.00 2.29 2.59
1.8 0.374 0.420 0.467 0.519 0.577 0.642 0.713 0.790 0.874 0.967 1.07 1.29 1.54 1.81 2.09 2.37
2.0 0.338 0.379 0.421 0.468 0.521 0.580 0.645 0.716 0.793 0.877 0.969 1.18 1.41 1.66 1.92 2.19
2.2 0.308 0.345 0.384 0.426 0.475 0.529 0.589 0.654 0.725 0.803 0.888 1.08 1.29 1.52 1.77 2.02
2.4 0.282 0.317 0.352 0.391 0.436 0.486 0.542 0.602 0.668 0.739 0.818 0.994 1.19 1.41 1.64 1.88
2.6 0.261 0.292 0.325 0.362 0.403 0.450 0.501 0.557 0.619 0.685 0.758 0.923 1.11 1.31 1.52 1.75
2.8 0.242 0.272 0.302 0.336 0.375 0.418 0.466 0.519 0.576 0.638 0.707 0.860 1.03 1.22 1.42 1.64
3.0 0.226 0.254 0.282 0.314 0.350 0.391 0.436 0.485 0.539 0.598 0.662 0.806 0.967 1.14 1.33 1.53
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 114

DESIGN TABLES 8–115
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.44 2.70 2.96 3.21 3.47 3.73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6.81 7.33
0.10 2.02 2.24 2.47 2.70 2.93 3.17 3.40 3.63 3.87 4.10 4.34 4.82 5.31 5.80 6.30 6.81
0.15 1.92 2.12 2.33 2.54 2.76 2.98 3.20 3.42 3.64 3.86 4.09 4.55 5.02 5.51 6.01 6.53
0.20 1.82 2.01 2.21 2.41 2.62 2.83 3.03 3.24 3.46 3.67 3.89 4.33 4.79 5.26 5.74 6.24
0.25 1.71 1.90 2.08 2.28 2.47 2.67 2.88 3.08 3.28 3.49 3.70 4.13 4.57 5.03 5.50 5.99
0.30 1.61 1.78 1.96 2.14 2.32 2.52 2.72 2.91 3.11 3.31 3.51 3.93 4.37 4.82 5.29 5.76
0.40 1.41 1.56 1.72 1.87 2.05 2.24 2.43 2.63 2.82 3.01 3.21 3.62 4.04 4.48 4.93 5.39
0.50 1.23 1.37 1.50 1.66 1.82 2.00 2.19 2.37 2.56 2.75 2.95 3.34 3.75 4.18 4.62 5.06
0.60 1.08 1.21 1.33 1.48 1.63 1.80 1.96 2.13 2.31 2.51 2.71 3.10 3.50 3.91 4.33 4.77
0.70 0.964 1.07 1.19 1.33 1.47 1.62 1.77 1.93 2.10 2.28 2.48 2.87 3.26 3.66 4.08 4.50
0.80 0.865 0.965 1.07 1.20 1.33 1.46 1.60 1.75 1.92 2.09 2.27 2.67 3.05 3.44 3.84 4.25
0.90 0.783 0.874 0.976 1.09 1.21 1.33 1.46 1.60 1.76 1.92 2.10 2.47 2.85 3.23 3.62 4.03
1.0 0.714 0.798 0.893 0.997 1.10 1.22 1.34 1.48 1.62 1.77 1.94 2.30 2.68 3.04 3.42 3.81
1.2 0.606 0.678 0.761 0.847 0.938 1.04 1.15 1.27 1.39 1.53 1.68 2.01 2.37 2.71 3.07 3.44
1.4 0.525 0.589 0.661 0.734 0.815 0.904 1.00 1.11 1.22 1.35 1.48 1.78 2.10 2.44 2.77 3.12
1.6 0.463 0.520 0.582 0.647 0.719 0.799 0.887 0.982 1.09 1.20 1.32 1.59 1.89 2.21 2.52 2.85
1.8 0.414 0.465 0.520 0.577 0.642 0.715 0.795 0.882 0.975 1.08 1.19 1.43 1.71 2.01 2.31 2.61
2.0 0.374 0.421 0.469 0.521 0.580 0.647 0.720 0.799 0.885 0.978 1.08 1.31 1.56 1.84 2.12 2.41
2.2 0.341 0.384 0.427 0.475 0.529 0.590 0.657 0.730 0.809 0.895 0.989 1.20 1.44 1.69 1.96 2.24
2.4 0.313 0.353 0.392 0.436 0.486 0.542 0.604 0.672 0.745 0.825 0.912 1.11 1.32 1.56 1.81 2.08
2.6 0.289 0.326 0.363 0.403 0.450 0.502 0.559 0.622 0.690 0.765 0.845 1.03 1.23 1.45 1.68 1.94
2.8 0.269 0.303 0.337 0.375 0.418 0.467 0.520 0.579 0.643 0.712 0.788 0.958 1.15 1.35 1.57 1.81
3.0 0.251 0.283 0.315 0.350 0.391 0.436 0.487 0.542 0.602 0.667 0.738 0.898 1.07 1.26 1.47 1.70
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 115

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
8–116 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.41 2.57 2.80 3.04 3.27 3.51 3.74 3.97 4.21 4.44 4.67 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.44 2.65 2.87 3.09 3.32 3.56 3.79 4.03 4.26 4.50 4.99 5.47 5.96 6.45 6.94
0.15 2.09 2.28 2.48 2.69 2.91 3.14 3.38 3.62 3.85 4.09 4.33 4.83 5.32 5.82 6.31 6.81
0.20 1.96 2.14 2.32 2.51 2.72 2.94 3.17 3.42 3.66 3.90 4.15 4.65 5.15 5.65 6.15 6.65
0.25 1.85 2.02 2.19 2.37 2.56 2.76 2.98 3.21 3.45 3.70 3.95 4.45 4.95 5.46 5.97 6.47
0.30 1.74 1.90 2.06 2.23 2.41 2.61 2.82 3.04 3.26 3.50 3.74 4.24 4.75 5.26 5.77 6.28
0.40 1.55 1.69 1.84 1.99 2.17 2.36 2.56 2.77 2.99 3.22 3.44 3.89 4.36 4.86 5.37 5.88
0.50 1.38 1.51 1.64 1.80 1.97 2.15 2.35 2.56 2.77 2.98 3.20 3.63 4.07 4.54 5.02 5.52
0.60 1.23 1.35 1.48 1.63 1.79 1.97 2.16 2.36 2.57 2.78 2.99 3.41 3.84 4.28 4.74 5.21
0.70 1.11 1.22 1.34 1.48 1.64 1.81 1.99 2.19 2.38 2.59 2.80 3.20 3.62 4.05 4.50 4.95
0.80 1.00 1.11 1.22 1.36 1.51 1.67 1.84 2.03 2.22 2.42 2.62 3.01 3.42 3.84 4.28 4.72
0.90 0.915 1.01 1.12 1.25 1.39 1.54 1.71 1.88 2.07 2.25 2.44 2.84 3.24 3.65 4.07 4.51
1.0 0.839 0.929 1.03 1.15 1.29 1.43 1.59 1.75 1.92 2.10 2.28 2.68 3.07 3.47 3.88 4.31
1.2 0.719 0.799 0.891 0.997 1.12 1.25 1.38 1.52 1.67 1.83 2.00 2.37 2.76 3.14 3.53 3.94
1.4 0.627 0.699 0.782 0.877 0.981 1.09 1.21 1.34 1.47 1.62 1.78 2.11 2.49 2.86 3.23 3.62
1.6 0.555 0.620 0.695 0.781 0.870 0.967 1.07 1.19 1.31 1.45 1.59 1.90 2.24 2.61 2.97 3.34
1.8 0.498 0.557 0.625 0.701 0.780 0.868 0.965 1.07 1.18 1.31 1.44 1.72 2.04 2.38 2.73 3.09
2.0 0.451 0.505 0.568 0.634 0.706 0.786 0.875 0.972 1.08 1.19 1.31 1.57 1.86 2.18 2.53 2.86
2.2 0.412 0.462 0.520 0.579 0.644 0.718 0.800 0.889 0.986 1.09 1.20 1.44 1.72 2.01 2.33 2.67
2.4 0.379 0.426 0.479 0.532 0.593 0.661 0.737 0.819 0.909 1.01 1.11 1.33 1.59 1.87 2.17 2.49
2.6 0.351 0.394 0.443 0.492 0.549 0.612 0.682 0.760 0.843 0.933 1.03 1.24 1.48 1.74 2.02 2.32
2.8 0.327 0.367 0.412 0.458 0.510 0.570 0.635 0.707 0.786 0.870 0.961 1.16 1.38 1.63 1.89 2.18
3.0 0.306 0.344 0.385 0.428 0.477 0.533 0.594 0.662 0.735 0.814 0.900 1.09 1.29 1.53 1.78 2.05
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 116

DESIGN TABLES 8–117
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 2.79 3.01 3.23 3.44 3.66 3.88 4.10 4.32 4.54 4.76 5.19 5.63 6.07 6.50 6.94
0.10 2.43 2.59 2.76 2.94 3.14 3.36 3.59 3.83 4.07 4.30 4.54 5.00 5.46 5.92 6.37 6.82
0.15 2.31 2.45 2.61 2.79 2.98 3.20 3.42 3.67 3.91 4.16 4.41 4.89 5.36 5.82 6.28 6.74
0.20 2.18 2.32 2.48 2.64 2.83 3.04 3.27 3.51 3.75 4.00 4.25 4.76 5.24 5.72 6.19 6.65
0.25 2.07 2.21 2.35 2.51 2.70 2.91 3.14 3.38 3.62 3.87 4.11 4.61 5.11 5.60 6.08 6.55
0.30 1.97 2.10 2.24 2.40 2.59 2.79 3.01 3.25 3.50 3.75 3.99 4.48 4.97 5.47 5.96 6.44
0.40 1.79 1.92 2.05 2.21 2.39 2.59 2.81 3.03 3.27 3.52 3.77 4.26 4.75 5.23 5.71 6.20
0.50 1.63 1.75 1.88 2.04 2.22 2.42 2.63 2.85 3.07 3.31 3.55 4.06 4.55 5.04 5.52 5.99
0.60 1.49 1.61 1.74 1.89 2.07 2.26 2.47 2.68 2.90 3.13 3.36 3.85 4.36 4.85 5.34 5.81
0.70 1.37 1.48 1.61 1.76 1.93 2.12 2.32 2.53 2.75 2.97 3.20 3.67 4.16 4.67 5.16 5.64
0.80 1.26 1.37 1.49 1.64 1.81 1.99 2.18 2.39 2.60 2.82 3.04 3.51 3.98 4.48 4.98 5.47
0.90 1.17 1.27 1.39 1.53 1.69 1.87 2.06 2.26 2.46 2.68 2.90 3.35 3.82 4.30 4.79 5.29
1.0 1.08 1.18 1.30 1.44 1.59 1.76 1.94 2.14 2.34 2.55 2.76 3.21 3.67 4.13 4.61 5.11
1.2 0.946 1.04 1.15 1.27 1.41 1.57 1.74 1.92 2.11 2.30 2.49 2.92 3.37 3.83 4.29 4.75
1.4 0.837 0.921 1.02 1.14 1.27 1.41 1.57 1.74 1.90 2.07 2.26 2.66 3.09 3.55 4.00 4.45
1.6 0.748 0.827 0.920 1.03 1.15 1.28 1.43 1.58 1.73 1.89 2.06 2.43 2.84 3.28 3.74 4.17
1.8 0.676 0.749 0.836 0.935 1.05 1.17 1.31 1.44 1.58 1.72 1.88 2.23 2.62 3.04 3.49 3.92
2.0 0.616 0.684 0.765 0.856 0.961 1.08 1.20 1.32 1.45 1.59 1.73 2.06 2.43 2.83 3.25 3.69
2.2 0.565 0.629 0.704 0.790 0.887 0.991 1.10 1.22 1.34 1.47 1.61 1.91 2.26 2.64 3.04 3.46
2.4 0.522 0.582 0.652 0.732 0.822 0.916 1.02 1.13 1.24 1.36 1.49 1.78 2.11 2.47 2.85 3.26
2.6 0.485 0.541 0.607 0.682 0.763 0.851 0.948 1.05 1.16 1.27 1.39 1.67 1.98 2.32 2.68 3.07
2.8 0.453 0.506 0.568 0.638 0.712 0.794 0.885 0.984 1.08 1.19 1.31 1.57 1.86 2.18 2.53 2.90
3.0 0.424 0.475 0.533 0.599 0.667 0.744 0.830 0.923 1.02 1.12 1.23 1.47 1.75 2.06 2.39 2.74
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 117

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11 (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
8–118 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4.65 5.03 5.42 5.80 6.19 6.57
0.10 2.59 2.67 2.78 2.93 3.12 3.32 3.53 3.75 3.96 4.17 4.38 4.78 5.22 5.64 6.06 6.46
0.15 2.50 2.59 2.70 2.86 3.05 3.26 3.48 3.70 3.92 4.13 4.34 4.74 5.15 5.58 6.01 6.42
0.20 2.43 2.52 2.63 2.79 2.98 3.19 3.42 3.64 3.87 4.09 4.30 4.71 5.11 5.52 5.95 6.37
0.25 2.35 2.44 2.56 2.73 2.92 3.13 3.36 3.59 3.82 4.04 4.26 4.68 5.08 5.48 5.89 6.31
0.30 2.28 2.38 2.50 2.66 2.85 3.07 3.30 3.53 3.77 4.00 4.22 4.65 5.06 5.45 5.85 6.26
0.40 2.16 2.25 2.38 2.55 2.74 2.95 3.17 3.41 3.66 3.90 4.13 4.58 5.00 5.41 5.80 6.19
0.50 2.05 2.14 2.27 2.44 2.63 2.83 3.06 3.30 3.55 3.79 4.04 4.50 4.94 5.35 5.76 6.15
0.60 1.94 2.04 2.17 2.34 2.52 2.73 2.95 3.19 3.43 3.69 3.94 4.42 4.87 5.30 5.71 6.11
0.70 1.85 1.94 2.08 2.24 2.42 2.63 2.85 3.08 3.32 3.58 3.83 4.33 4.80 5.24 5.66 6.07
0.80 1.75 1.85 1.99 2.15 2.33 2.53 2.75 2.98 3.22 3.47 3.73 4.23 4.72 5.17 5.60 6.02
0.90 1.67 1.77 1.90 2.06 2.24 2.44 2.66 2.89 3.12 3.37 3.62 4.14 4.63 5.10 5.54 5.97
1.0 1.59 1.69 1.82 1.98 2.16 2.36 2.57 2.80 3.03 3.27 3.52 4.04 4.54 5.02 5.47 5.91
1.2 1.45 1.55 1.68 1.83 2.00 2.20 2.40 2.62 2.85 3.09 3.33 3.83 4.35 4.85 5.33 5.78
1.4 1.33 1.43 1.55 1.70 1.86 2.05 2.25 2.47 2.69 2.92 3.15 3.64 4.15 4.67 5.16 5.64
1.6 1.22 1.32 1.44 1.58 1.74 1.92 2.11 2.32 2.54 2.76 2.98 3.45 3.96 4.48 4.99 5.48
1.8 1.13 1.22 1.34 1.47 1.63 1.80 1.99 2.19 2.40 2.61 2.82 3.27 3.76 4.28 4.81 5.31
2.0 1.05 1.14 1.25 1.38 1.53 1.69 1.87 2.07 2.27 2.46 2.67 3.11 3.58 4.09 4.61 5.14
2.2 0.975 1.06 1.17 1.30 1.44 1.60 1.77 1.95 2.14 2.33 2.53 2.95 3.41 3.90 4.42 4.95
2.4 0.912 0.998 1.10 1.22 1.36 1.51 1.68 1.85 2.03 2.21 2.40 2.81 3.25 3.73 4.23 4.75
2.6 0.856 0.940 1.04 1.15 1.29 1.43 1.59 1.76 1.92 2.09 2.28 2.67 3.11 3.57 4.06 4.57
2.8 0.806 0.887 0.983 1.09 1.22 1.36 1.51 1.67 1.83 1.99 2.17 2.55 2.97 3.42 3.90 4.40
3.0 0.762 0.839 0.932 1.04 1.16 1.29 1.44 1.59 1.74 1.90 2.07 2.44 2.84 3.28 3.75 4.24
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 118

LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11a
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 15°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 1.98 2.20 2.47 2.74 3.01 3.29 3.56 3.83 4.10 4.38 4.65 5.19 5.74 6.28 6.83 7.37
0.10 1.90 2.15 2.44 2.71 2.97 3.20 3.42 3.62 3.82 4.02 4.22 4.64 5.07 5.52 5.99 6.47
0.15 1.84 2.09 2.34 2.58 2.80 3.00 3.19 3.38 3.57 3.77 3.98 4.40 4.83 5.28 5.75 6.22
0.20 1.76 1.98 2.20 2.41 2.61 2.79 2.97 3.15 3.35 3.55 3.76 4.18 4.61 5.05 5.51 5.99
0.25 1.65 1.85 2.05 2.24 2.42 2.59 2.76 2.94 3.14 3.34 3.55 3.97 4.40 4.84 5.30 5.77
0.30 1.55 1.73 1.90 2.07 2.24 2.40 2.57 2.75 2.94 3.14 3.35 3.78 4.20 4.64 5.09 5.56
0.40 1.34 1.49 1.64 1.77 1.92 2.07 2.24 2.42 2.60 2.80 3.00 3.42 3.84 4.27 4.71 5.17
0.50 1.16 1.29 1.41 1.54 1.67 1.81 1.97 2.14 2.32 2.50 2.70 3.11 3.52 3.94 4.37 4.81
0.60 1.01 1.13 1.24 1.35 1.47 1.60 1.75 1.91 2.08 2.26 2.44 2.83 3.25 3.65 4.06 4.50
0.70 0.895 0.998 1.10 1.20 1.31 1.43 1.57 1.72 1.88 2.05 2.22 2.60 3.00 3.39 3.79 4.21
0.80 0.799 0.889 0.980 1.08 1.18 1.29 1.42 1.56 1.71 1.87 2.03 2.39 2.77 3.16 3.55 3.95
0.90 0.720 0.801 0.885 0.975 1.07 1.18 1.29 1.42 1.56 1.71 1.87 2.21 2.58 2.95 3.33 3.71
1.0 0.654 0.728 0.806 0.889 0.980 1.08 1.19 1.31 1.44 1.58 1.73 2.05 2.40 2.77 3.13 3.50
1.2 0.552 0.615 0.682 0.755 0.835 0.921 1.02 1.12 1.24 1.36 1.50 1.79 2.11 2.45 2.79 3.14
1.4 0.477 0.532 0.590 0.654 0.725 0.803 0.887 0.980 1.08 1.20 1.32 1.58 1.87 2.19 2.51 2.83
1.6 0.420 0.468 0.520 0.577 0.640 0.710 0.786 0.870 0.963 1.07 1.17 1.42 1.68 1.97 2.27 2.58
1.8 0.374 0.417 0.464 0.515 0.573 0.636 0.706 0.781 0.866 0.958 1.06 1.28 1.52 1.79 2.07 2.36
2.0 0.338 0.377 0.419 0.465 0.518 0.576 0.639 0.709 0.786 0.870 0.962 1.16 1.39 1.64 1.91 2.17
2.2 0.308 0.343 0.382 0.424 0.472 0.526 0.584 0.648 0.719 0.797 0.882 1.07 1.28 1.51 1.76 2.01
2.4 0.282 0.315 0.350 0.390 0.434 0.483 0.538 0.597 0.662 0.735 0.813 0.987 1.18 1.40 1.63 1.87
2.6 0.261 0.291 0.324 0.360 0.401 0.447 0.498 0.553 0.614 0.681 0.754 0.917 1.10 1.30 1.51 1.74
2.8 0.242 0.271 0.301 0.335 0.373 0.416 0.464 0.516 0.572 0.635 0.703 0.856 1.03 1.21 1.41 1.63
3.0 0.226 0.253 0.281 0.313 0.349 0.389 0.434 0.483 0.536 0.594 0.659 0.802 0.963 1.14 1.32 1.53
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
DESIGN TABLES 8–119
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 119

8–120 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 30°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.18 2.44 2.70 2.96 3.21 3.47 3.73 3.98 4.24 4.50 4.76 5.27 5.78 6.30 6.81 7.33
0.10 2.02 2.34 2.61 2.86 3.08 3.27 3.46 3.66 3.86 4.08 4.31 4.78 5.27 5.76 6.26 6.77
0.15 1.92 2.20 2.46 2.68 2.88 3.05 3.23 3.42 3.63 3.85 4.07 4.54 5.03 5.52 6.02 6.52
0.20 1.82 2.07 2.30 2.50 2.68 2.85 3.02 3.21 3.41 3.63 3.86 4.33 4.81 5.30 5.79 6.29
0.25 1.71 1.93 2.14 2.33 2.50 2.66 2.83 3.02 3.22 3.43 3.65 4.12 4.61 5.09 5.58 6.07
0.30 1.61 1.81 1.99 2.16 2.32 2.49 2.66 2.84 3.04 3.25 3.47 3.93 4.41 4.89 5.38 5.87
0.40 1.41 1.57 1.72 1.87 2.02 2.18 2.35 2.53 2.72 2.92 3.13 3.58 4.05 4.53 5.01 5.49
0.50 1.23 1.37 1.50 1.63 1.78 1.93 2.09 2.26 2.45 2.64 2.84 3.27 3.73 4.20 4.67 5.14
0.60 1.08 1.21 1.33 1.45 1.57 1.72 1.88 2.04 2.21 2.40 2.59 3.00 3.45 3.91 4.36 4.82
0.70 0.964 1.08 1.18 1.29 1.41 1.54 1.69 1.85 2.01 2.19 2.37 2.77 3.19 3.64 4.08 4.53
0.80 0.865 0.965 1.06 1.17 1.28 1.40 1.54 1.68 1.84 2.01 2.18 2.56 2.97 3.40 3.83 4.27
0.90 0.783 0.873 0.964 1.06 1.16 1.28 1.40 1.54 1.69 1.85 2.02 2.38 2.77 3.19 3.60 4.03
1.0 0.714 0.796 0.881 0.971 1.07 1.17 1.29 1.42 1.56 1.71 1.87 2.22 2.59 2.99 3.39 3.81
1.2 0.606 0.676 0.749 0.828 0.914 1.01 1.11 1.23 1.35 1.49 1.63 1.95 2.29 2.66 3.04 3.42
1.4 0.525 0.586 0.650 0.720 0.797 0.881 0.974 1.08 1.19 1.31 1.44 1.73 2.04 2.38 2.74 3.10
1.6 0.463 0.516 0.574 0.636 0.706 0.782 0.865 0.958 1.06 1.17 1.29 1.55 1.84 2.15 2.49 2.82
1.8 0.414 0.462 0.513 0.570 0.633 0.702 0.778 0.862 0.955 1.06 1.17 1.41 1.67 1.96 2.27 2.59
2.0 0.374 0.417 0.464 0.515 0.573 0.637 0.706 0.783 0.868 0.961 1.06 1.28 1.53 1.80 2.09 2.39
2.2 0.341 0.380 0.423 0.470 0.523 0.582 0.646 0.717 0.795 0.881 0.974 1.18 1.41 1.66 1.93 2.21
2.4 0.313 0.349 0.389 0.432 0.481 0.536 0.595 0.661 0.733 0.813 0.900 1.09 1.30 1.54 1.79 2.06
2.6 0.289 0.323 0.360 0.400 0.445 0.496 0.552 0.613 0.680 0.755 0.836 1.01 1.21 1.44 1.67 1.92
2.8 0.269 0.300 0.334 0.372 0.415 0.462 0.514 0.571 0.634 0.704 0.780 0.947 1.14 1.34 1.56 1.80
3.0 0.251 0.281 0.313 0.348 0.388 0.432 0.481 0.535 0.594 0.659 0.731 0.889 1.07 1.26 1.47 1.69
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 120

DESIGN TABLES 8–121
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 45°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.41 2.57 2.80 3.04 3.27 3.51 3.74 3.97 4.21 4.44 4.67 5.14 5.61 6.08 6.54 7.01
0.10 2.24 2.52 2.76 2.97 3.17 3.37 3.58 3.80 4.02 4.25 4.49 4.98 5.47 5.96 6.45 6.94
0.15 2.09 2.38 2.61 2.80 2.98 3.17 3.37 3.58 3.81 4.04 4.28 4.77 5.27 5.77 6.27 6.77
0.20 1.96 2.23 2.45 2.63 2.80 2.98 3.18 3.39 3.61 3.84 4.08 4.57 5.06 5.57 6.08 6.59
0.25 1.85 2.10 2.30 2.47 2.63 2.81 3.00 3.21 3.44 3.67 3.90 4.39 4.88 5.38 5.88 6.39
0.30 1.74 1.97 2.16 2.33 2.49 2.65 2.84 3.05 3.27 3.50 3.73 4.22 4.71 5.21 5.71 6.22
0.40 1.55 1.73 1.90 2.06 2.22 2.38 2.56 2.76 2.97 3.19 3.43 3.91 4.40 4.90 5.41 5.91
0.50 1.38 1.54 1.68 1.83 1.99 2.15 2.32 2.51 2.71 2.92 3.15 3.62 4.12 4.62 5.12 5.62
0.60 1.23 1.38 1.51 1.64 1.79 1.95 2.11 2.29 2.48 2.69 2.90 3.36 3.85 4.34 4.84 5.35
0.70 1.11 1.24 1.36 1.48 1.62 1.77 1.93 2.10 2.28 2.48 2.68 3.13 3.60 4.09 4.59 5.09
0.80 1.00 1.12 1.23 1.35 1.48 1.62 1.77 1.94 2.11 2.29 2.49 2.92 3.38 3.85 4.34 4.84
0.90 0.915 1.02 1.13 1.24 1.36 1.49 1.64 1.79 1.96 2.13 2.32 2.73 3.17 3.64 4.12 4.60
1.0 0.839 0.937 1.04 1.14 1.25 1.38 1.51 1.66 1.82 1.99 2.17 2.56 2.99 3.44 3.90 4.38
1.2 0.719 0.802 0.889 0.982 1.08 1.19 1.31 1.45 1.59 1.75 1.91 2.27 2.66 3.09 3.53 3.98
1.4 0.627 0.700 0.777 0.860 0.950 1.05 1.16 1.28 1.41 1.55 1.70 2.03 2.40 2.79 3.20 3.64
1.6 0.555 0.620 0.689 0.764 0.846 0.935 1.03 1.14 1.27 1.40 1.53 1.84 2.17 2.54 2.93 3.34
1.8 0.498 0.556 0.618 0.686 0.761 0.843 0.933 1.03 1.14 1.26 1.39 1.67 1.98 2.32 2.69 3.08
2.0 0.451 0.504 0.560 0.622 0.691 0.766 0.849 0.942 1.04 1.15 1.27 1.53 1.82 2.14 2.48 2.85
2.2 0.412 0.460 0.512 0.569 0.632 0.702 0.779 0.864 0.959 1.06 1.17 1.41 1.69 1.98 2.30 2.65
2.4 0.379 0.423 0.471 0.524 0.583 0.648 0.719 0.798 0.886 0.982 1.08 1.31 1.57 1.84 2.15 2.47
2.6 0.351 0.392 0.436 0.485 0.540 0.601 0.668 0.741 0.823 0.913 1.01 1.22 1.46 1.72 2.01 2.31
2.8 0.327 0.365 0.406 0.452 0.503 0.560 0.623 0.692 0.768 0.852 0.943 1.14 1.37 1.62 1.88 2.17
3.0 0.306 0.341 0.380 0.423 0.471 0.525 0.584 0.649 0.720 0.799 0.885 1.07 1.29 1.52 1.77 2.04
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 121

8–122 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 60°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.60 2.79 3.01 3.23 3.44 3.66 3.88 4.10 4.32 4.54 4.76 5.19 5.63 6.07 6.50 6.94
0.10 2.43 2.68 2.91 3.12 3.34 3.56 3.79 4.01 4.24 4.46 4.69 5.14 5.58 6.02 6.47 6.91
0.15 2.31 2.56 2.77 2.97 3.18 3.40 3.62 3.85 4.08 4.32 4.55 5.01 5.47 5.93 6.38 6.83
0.20 2.18 2.44 2.63 2.82 3.02 3.24 3.46 3.69 3.92 4.15 4.39 4.87 5.34 5.81 6.27 6.73
0.25 2.07 2.32 2.50 2.68 2.88 3.09 3.31 3.54 3.77 4.01 4.24 4.71 5.19 5.67 6.15 6.61
0.30 1.97 2.21 2.39 2.56 2.75 2.96 3.18 3.41 3.64 3.88 4.11 4.58 5.05 5.53 6.01 6.49
0.40 1.79 2.00 2.19 2.35 2.53 2.72 2.94 3.16 3.40 3.64 3.88 4.35 4.83 5.29 5.76 6.23
0.50 1.63 1.82 1.99 2.16 2.33 2.51 2.72 2.94 3.17 3.41 3.65 4.14 4.62 5.10 5.57 6.03
0.60 1.49 1.67 1.82 1.99 2.15 2.33 2.52 2.74 2.97 3.20 3.44 3.94 4.43 4.91 5.39 5.86
0.70 1.37 1.53 1.68 1.83 2.00 2.17 2.35 2.55 2.77 3.01 3.24 3.74 4.23 4.73 5.21 5.69
0.80 1.26 1.41 1.55 1.70 1.85 2.02 2.20 2.39 2.60 2.83 3.06 3.55 4.04 4.54 5.03 5.52
0.90 1.17 1.30 1.44 1.57 1.73 1.89 2.06 2.24 2.44 2.66 2.89 3.37 3.86 4.36 4.86 5.35
1.0 1.08 1.21 1.34 1.47 1.61 1.77 1.93 2.11 2.30 2.51 2.73 3.20 3.69 4.18 4.68 5.18
1.2 0.946 1.06 1.17 1.29 1.42 1.56 1.71 1.88 2.06 2.25 2.45 2.89 3.36 3.85 4.35 4.84
1.4 0.837 0.935 1.04 1.15 1.26 1.39 1.53 1.69 1.85 2.03 2.22 2.63 3.08 3.55 4.04 4.53
1.6 0.748 0.837 0.929 1.03 1.13 1.25 1.38 1.53 1.68 1.85 2.02 2.41 2.83 3.28 3.75 4.23
1.8 0.676 0.756 0.840 0.931 1.03 1.14 1.26 1.39 1.54 1.69 1.85 2.21 2.61 3.04 3.49 3.96
2.0 0.616 0.689 0.766 0.850 0.941 1.04 1.15 1.28 1.41 1.56 1.71 2.05 2.42 2.83 3.26 3.71
2.2 0.565 0.632 0.703 0.781 0.866 0.960 1.06 1.18 1.30 1.44 1.58 1.90 2.26 2.64 3.05 3.49
2.4 0.522 0.584 0.650 0.722 0.802 0.889 0.986 1.09 1.21 1.34 1.47 1.77 2.11 2.48 2.87 3.28
2.6 0.485 0.542 0.604 0.671 0.746 0.828 0.918 1.02 1.13 1.25 1.38 1.66 1.98 2.33 2.70 3.10
2.8 0.453 0.506 0.563 0.626 0.697 0.774 0.859 0.954 1.06 1.17 1.29 1.56 1.86 2.19 2.55 2.93
3.0 0.424 0.474 0.528 0.587 0.653 0.727 0.807 0.896 0.995 1.10 1.22 1.47 1.76 2.07 2.41 2.77
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 122

DESIGN TABLES 8–123
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
Cmin=
ΩP
a
C1DlDmin=
ΩP
a
CC1llmin=
ΩP
a
CC1Dlmin=
P
u
φCC1DDmin=
P
u
φCC1lCmin=
P
u
φC1Dl
Table 8-11a (continued)
Coefficients, C,
for Eccentrically Loaded Weld Groups
Angle = 75°
where
P= required force, Puor Pa, kips
D= number of sixteenths-of-an-inch in the fillet weld size
l= characteristic length of weld group, in.
a= ex/l
e
x= horizontal component of eccentricity of P
with respect to centroid of weld group, in.
C= coefficient tabulated below
C1= electrode strength coefficient from Table 8-3
(1.0 for E70XX electrodes)
Note: Shaded values indicate the value is based on the
greatest available strength permitted by AISC
Specification
Sections J2.4, J2.4(a), J2.4(b) and J2.4(c).
Available strength of a weld group, φ Rnor Rn/Ω, is determined with
Rn=CC1Dl(φ=0.75, Ω =2.00)
0.00 2.74 2.92 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4.65 5.03 5.42 5.80 6.19 6.57
0.10 2.59 2.86 3.11 3.30 3.49 3.69 3.88 4.07 4.26 4.46 4.65 5.03 5.42 5.80 6.19 6.57
0.15 2.50 2.76 3.02 3.26 3.48 3.68 3.88 4.07 4.26 4.45 4.65 5.03 5.42 5.80 6.19 6.57
0.20 2.43 2.67 2.92 3.17 3.40 3.63 3.84 4.05 4.25 4.45 4.64 5.03 5.41 5.80 6.18 6.57
0.25 2.35 2.59 2.83 3.07 3.30 3.53 3.76 3.97 4.19 4.39 4.59 4.99 5.39 5.78 6.17 6.56
0.30 2.28 2.52 2.74 2.97 3.21 3.44 3.67 3.89 4.10 4.32 4.53 4.93 5.34 5.73 6.13 6.52
0.40 2.16 2.39 2.59 2.81 3.04 3.27 3.50 3.73 3.95 4.16 4.37 4.79 5.21 5.62 6.02 6.42
0.50 2.05 2.27 2.46 2.67 2.89 3.13 3.36 3.60 3.82 4.04 4.25 4.67 5.07 5.48 5.90 6.31
0.60 1.94 2.16 2.35 2.54 2.76 2.99 3.23 3.47 3.70 3.93 4.15 4.58 4.99 5.38 5.78 6.18
0.70 1.85 2.05 2.24 2.43 2.64 2.86 3.10 3.34 3.58 3.82 4.05 4.49 4.91 5.32 5.71 6.11
0.80 1.75 1.95 2.14 2.32 2.52 2.74 2.98 3.22 3.46 3.71 3.95 4.40 4.84 5.25 5.66 6.05
0.90 1.67 1.86 2.04 2.22 2.41 2.63 2.86 3.10 3.35 3.59 3.84 4.31 4.76 5.19 5.60 6.00
1.0 1.59 1.77 1.95 2.13 2.31 2.52 2.75 2.98 3.23 3.48 3.73 4.21 4.67 5.11 5.54 5.95
1.2 1.45 1.62 1.78 1.95 2.13 2.32 2.54 2.77 3.01 3.26 3.51 4.01 4.49 4.96 5.40 5.83
1.4 1.33 1.48 1.64 1.80 1.97 2.15 2.35 2.57 2.81 3.05 3.30 3.81 4.31 4.79 5.25 5.70
1.6 1.22 1.36 1.51 1.66 1.82 2.00 2.19 2.40 2.62 2.86 3.11 3.61 4.12 4.61 5.09 5.55
1.8 1.13 1.26 1.40 1.54 1.69 1.86 2.04 2.24 2.45 2.68 2.92 3.42 3.93 4.43 4.92 5.40
2.0 1.05 1.17 1.30 1.43 1.58 1.74 1.91 2.10 2.30 2.52 2.75 3.24 3.75 4.25 4.75 5.23
2.2 0.975 1.09 1.21 1.34 1.48 1.63 1.80 1.97 2.17 2.38 2.60 3.07 3.57 4.07 4.58 5.07
2.4 0.912 1.02 1.13 1.26 1.39 1.53 1.69 1.86 2.05 2.25 2.46 2.92 3.41 3.91 4.41 4.90
2.6 0.856 0.959 1.07 1.18 1.31 1.44 1.59 1.76 1.94 2.13 2.33 2.78 3.25 3.74 4.24 4.74
2.8 0.806 0.903 1.00 1.11 1.23 1.36 1.51 1.67 1.84 2.02 2.21 2.64 3.11 3.59 4.08 4.58
3.0 0.762 0.853 0.949 1.05 1.17 1.29 1.43 1.58 1.74 1.92 2.11 2.52 2.97 3.44 3.93 4.42
x0.000 0.005 0.017 0.035 0.057 0.083 0.113 0.144 0.178 0.213 0.250 0.327 0.408 0.492 0.579 0.667
y0.500 0.455 0.417 0.385 0.357 0.333 0.313 0.294 0.278 0.263 0.250 0.227 0.208 0.192 0.179 0.167
k
2.0
1.81.61.41.21.00.90.80.70.60.50.40.30.20.10
a
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 123

8–124 DESIGN CONSIDERATIONS FOR WELDS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 8-12
Approximate Number of
Passes for Welds
Single-Bevel Groove Welds Single-V Groove Welds
(Back-Up Weld Not Included) (Back-Up Weld Not Included)
Weld Size* Fillet 30º 45º 30º 60º 90º
in. Welds Bevel Bevel Groove Angle Groove Angle Groove Angle3
/16 1 ———— —
1
/4 111233
5
/16 111233
3
/8 322346
7
/16 422346
1
/2 422457
5
/8 633468
3
/4 845479
7
/8 — 5 8 5 10 10
1 — 5 11 5 13 22
1
1
/8 — 7 11 9 15 27
1
1
/4 — 8 11 12 16 32
1
3
/8 — 9 15 13 21 36
1
1
/2 — 9 18 13 25 40
1
3
/4 —11 21132540
*Plate thickness for groove welds.
AISC_PART 8B:14th Ed. 2/24/11 8:30 AM Page 124

9–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 9
DESIGN OF CONNECTING ELEMENTS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
GROSS AREA, EFFECTIVE NET AREA, AND WHITMORE SECTION . . . . . . . . . 9–3
Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
Whitmore Section (Effective Width) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING . . . . . . . . . . . . 9–3
CONNECTING ELEMENTS SUBJECT TO TENSION . . . . . . . . . . . . . . . . . . . . . . . . 9–4
CONNECTING ELEMENTS SUBJECT TO SHEAR . . . . . . . . . . . . . . . . . . . . . . . . . . 9–4
CONNECTING ELEMENTS SUBJECT TO BLOCK SHEAR RUPTURE . . . . . . . . . 9–5
CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS . . . . . . . . . . . . . . . 9–5
CONNECTING ELEMENTS SUBJECT TO COMPRESSION
YIELDING AND BUCKLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5
AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE . . . . . . . . 9–6
Yielding, Lateral-Torsional Buckling, and Local Buckling . . . . . . . . . . . . . . . . . . . . 9–6
Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9–6
Coped Beam Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–6
BEARING LIMIT STATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
Steel-on-Steel Bearing Strength (Other Than at Bolt Holes) . . . . . . . . . . . . . . . . . . 9–10
Bearing Strength on Concrete or Masonry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
OTHER SPECIFICATION REQUIREMENTS AND
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
Prying Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
Rotational Ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–14
Concentrated Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15
Shims and Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15
Copes, Blocks and Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–16
Web Reinforcement of Coped Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–17
AISC_PART 9:14th Ed. 4/1/11 8:58 AM Page 1

9–2 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19
PART 9 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–22
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
Table 9-1. Reduction in Area for Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
Table 9-2. Elastic Section Modulus for Coped W-Shapes . . . . . . . . . . . . . . . . . . . . 9–24
Table 9-3. Block Shear Rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–33
Table 9-4. Beam Bearing Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–40
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 2

CONNECTING ELEMENTS SUBJECT TO COMBINED LOADING 9–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of connecting elements (angles, plates, tees, gussets, etc.) used to trans-
fer load from one structural member to another, as well as the affected elements of the
connected members (beam webs, beam flanges, column webs, column flanges, etc.). For
design considerations for bolts and welds, see Parts 7 and 8, respectively. For design provi-
sions specific to particular connection configurations, see Parts 10 through 15.
GROSS AREA, EFFECTIVE NET AREA, AND
WHITMORE SECTION
In the determination of the available strength of connecting elements, the gross area, A g, is
used for the yielding limit states, and the net area, A
n, is used for the rupture limit states. In
either case, the Whitmore section may limit the effective width to less than the overall
dimension of a connecting element.
Gross Area
The gross area, A g, is determined as specified in AISC SpecificationSection B4.3, subject
to the limitations given below for the Whitmore section.
Effective Net Area
The effective net area, A e, is determined as specified in AISC SpecificationSection J4.1,
subject to the limitations given below for the Whitmore section. The reduction in area for
bolt holes can be determined using Table 9-1.
Whitmore Section (Effective Width)
When connecting elements are large in comparison to the bolted or welded joints within
them, the Whitmore section may limit the gross and net areas of the connecting element to
less than the full area (Whitmore, 1952). As illustrated in Figure 9-1, the width of the
Whitmore section, l
w, is determined at the end of the joint by spreading the force from the
start of the joint 30° to each side in the connecting element along the line of force. The
Whitmore section may spread across the joint between connecting elements, but cannot
spread beyond an unconnected edge.
CONNECTING ELEMENTS SUBJECT TO
COMBINED LOADING
Connection design has traditionally been based on simple stresses, such as shear, tension,
compression or flexure, not taken in combination. This simplification is adequate because
connection elements are usually small or short enough that an interaction-type distribution
cannot form. Even a theoretical combination analysis using the von Mises criterion for
plane stress is not any more refined. To illustrate this point, von Mises criterion is
expressed as
(9-1)
ffffffFexxyyxyy=−++≤
222
3
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 3

9–4 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
f
xand f y=normal stresses, ksi
f
xy =shear stress, ksi
F
y =specified minimum yield stress, ksi
This formulation requires three stresses at any one point. Assumingf
xy andf x are known for
any one cut section,f
y on the perpendicular cut section is still undefined and must be
assumed, thereby bringing inaccuracy into the formulation. Compounding this dilemma,f
y
could be assumed as equal to zero, equal to and having the same sign asf x, or equal to and
having the opposite sign off
x. Thus, what might appear to be a more sophisticated approach
to the analysis and design of a connection does not necessarily add any reliability to the
resulting design.
Though shear and normal stress interaction is generally not included in AISC design pro-
cedures, it is explicitly considered in the design of the extended configuration of the single
plate shear connection in Part 10 (Muir and Hewitt, 2009). The intent is to prevent other
limit states from controlling.
CONNECTING ELEMENTS SUBJECT TO TENSION
The available strength due to tension yielding and tension rupture, φR nor Rn/Ω, which
must equal or exceed the required tensile strength, R
uor Ra, respectively, is determined in
accordance with AISC SpecificationSection J4.1.
CONNECTING ELEMENTS SUBJECT TO SHEAR
The available strength due to shear yielding and shear rupture, φR nor Rn/Ω, which must
equal or exceed the required shear strength, R
uor Ra, respectively, are determined in accor-
dance with AISC SpecificationSection J4.2.
Fig. 9-1. Illustration of the width of the Whitmore section.
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 4

CONNECTING ELEMENTS SUBJECT TO COMPRESSION YIELDING AND BUCKLING 9–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CONNECTING ELEMENTS SUBJECT TO BLOCK
SHEAR RUPTURE
The available strength due to block shear rupture, φR nor Rn/Ω, which must equal or exceed
the required strength, R
uor R a, respectively, is determined in accordance with AISC
SpecificationSection J4.3. The values tabulated in Table 9-3 are used to calculate the available
block shear rupture strength.
CONNECTING ELEMENT RUPTURE STRENGTH AT WELDS
In many cases, the load path from a weld to the connecting element is such that the strength
of the connecting element can be evaluated directly. However, in some cases, the available
strength of the connecting element is not directly calculable. For example, while the strength
of the beam-web welds for a double-angle connection can be directly calculated, the
strength of the beam web at this weld cannot. In cases such as these, it is often convenient
to calculate the minimum base metal thickness that will match the available shear rupture
strength of the base metal to the available shear rupture strength of the weld(s).
For fillet welds with F
EXX=70 ksi on one side of the connection, the minimum base metal
thickness required to match the shear rupture strength of the connecting element to the shear
rupture strength of the base metal is
(9-2)
For fillet welds with F
EXX=70 ksi on both sides of the connecting element, the minimum
base metal thickness required to match the shear rupture strength of the connecting element
to the shear rupture strength of the base metal is 2 times Equation 9-2:
(9-3)
where
D= number of sixteenths of an inch in the weld size on each side of the connecting
element
F
u= specified minimum tensile strength of the connecting element, ksi
CONNECTING ELEMENTS SUBJECT TO
COMPRESSION YIELDING AND BUCKLING
When connecting elements are subject to compression, the available strength, φP nor Pn/Ω,
which must equal or exceed the required compressive strength, P
uor Pa, respectively, is
determined in accordance with AISC SpecificationSection J4.4.
t
D
Fmin
u=
619.
t
F
D
F
D
Fmin
EXX
u
u=












=
060
2
216
06
309
.
.
.
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 5

9–6 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AFFECTED AND CONNECTING ELEMENTS SUBJECT
TO FLEXURE
Affected and connecting elements are normally short enough and thick enough that flexural
effects, if present at all, do not impact the design. When such elements are long enough and
thin enough that flexural effects must be considered, the following provisions are used for
determining the available strength.
Yielding, Lateral-Torsional Buckling, and Local Buckling
Generally, the available flexural strength, φM nor M n/Ω, which must equal or exceed the
required flexural strength of affected and connecting elements, M
uor M a, respectively, is
determined in accordance with AISC SpecificationSection J4.5 and Chapter F. Section F1.1
provides guidance based upon cross-section shape for the applicable Chapter F section.
Treatment of coped beams is provided in the following.
Rupture
For beams and rolled girders with bolt holes in the tension flange, see AISC Specification
Section F13.1. For affected and connecting elements, the available flexural rupture strength,
φ
bMnorMn/Ωb, is
M
n=FuZnet (9-4)
φ
b=0.75 Ω b=2.00
where
Z
net=net plastic section modulus of the affected or connecting element, in.
3
Coped Beam Strength
For beam ends with short copes no greater than the length of the connection angle(s), plate,
or tee, flexural local web buckling will generally not occur. Otherwise, the end reaction for
a coped beam may be limited by the flexural limit states of yielding, rupture, flexural local
buckling, or lateral-torsional buckling. The strength of coped beams with bolted shear con-
nections as shown in Part 10 will rarely be governed by flexural rupture. Other limit states,
such as block shear rupture, bolt shear rupture, and bolt bearing will generally limit the
strength of the connection.
For a coped beam, the required flexural strength is
where
R
uor Ra=beam end reaction (LRFD or ASD), kips
e =distance from the face of the cope to the point of inflection of the beam, in. It
is usually assumed that the point of inflection is located at the face of the sup-
porting member and eis as shown in Figure 9-2. However, depending upon
the connection type and stiffness and support condition, the point of inflection
may move away from the face of the supporting member; when this is the
LRFD ASD
Mu=Rue (9-5a) M a=Rae (9-5b)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 6

AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
case, a lesser value of emay be justified, and the use of eshown in Figure
9-2 is conservative.
The available flexural local buckling strength of a beam coped at the top flange or both the
top and bottom flanges must equal or exceed the required strength. The available strength,
φ
bMnor Mn/Ωb, is
M
n=FcrSnet (9-6)
φ
b=0.90 Ω b=1.67
where
F
cr=flexural local buckling stress, determined according to the following, ksi
S
net=net section modulus, in.
3
Values of S netfor beams coped at the top flange only are
tabulated in Table 9-2.
1. When a beam is coped at the top flange only, the flexural local buckling stress is
based upon the classical plate buckling formula with buckling coefficient, k, corre-
sponding to the condition with three edges simply supported and one free edge. An
additional plate buckling model adjustment factor,
f, is applied to account for stress
concentrations at the cope and to correlate the solution with experimental results
(Cheng and Yura, 1986).
The flexural local buckling stress for a beam coped at the top flange only whenc
≤2d and d
c≤d/2 (see Figure 9-2) is
(9-7)
where
E=29,000 ksi =modulus of elasticity of steel
F
y=specified minimum yield stress of beam web material, ksi
ν=0.3 =Poisson’s ratio
f=plate buckling model adjustment factor determined as follows
t
w=thickness of web, in.
k=plate buckling coefficient determined as follows
F
Et
h
fk F
t
hcr
w
o
y
w
o=

( )







=





π
ν
2
2
2
12 1
26 210,
⎟⎟

()
2
fk Fyksi
When
c
d
≤10.
f
c
d
=
2
When
c
d
>10.
f
c
d
=+1
(9-8)
(9-9)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 7

9–8 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ho=d–dc, reduced beam depth, in. Note that, for convenience, the dimension h o, as
illustrated in Figure 9-2, is used in these calculations instead of the more precise
dimension h
1to eliminate the detailed calculation required to locate the neutral
axis of the coped beam. Alternatively, the dimension h
1may be substituted for h o
in the local buckling calculations.
c=cope length as illustrated in Figure 9-2, in.
d=beam depth, in.
d
c=cope depth as illustrated in Figure 9-2, in.
2. For a beam with the same cope length at both flanges, the flexural local buckling stress
whenc≤2dand d
c≤0.2d(see Figure 9-3) is (Cheng and Yura, 1986)
F
cr=0.62πE
t
w
2
fd≤Fy (9-12)
ch
o
where
f
d (9-13)
d
ct=cope depth at the compression flange as illustrated in Figure 9-3, in.
h
o=reduced beam depth as illustrated in Figure 9-3, in.
=−





⎟35 75..
d
d
ct
Fig. 9-2. Flexural local buckling of beam web coped at top flange only.
When
c
h
o
≤10.
k
h
c
o
=





⎟22.
1.65
When
c
h
o
>10.
k
h
c
o
=
22.
(9-10)
(9-11)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 8

AFFECTED AND CONNECTING ELEMENTS SUBJECT TO FLEXURE 9–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. For all other conditions, a conservative procedure also based upon the classical plate
buckling equation can be used. Including both elastic and inelastic buckling, the avail-
able buckling stress, φF
cror Fcr/Ω, is
F
cr=QFy (9-14)
When λ≤ 0.7
Q=1 (9-15)
When 0.7 <λ≤1.41
Q=(1.34 −0.486λ) (9-16)
When λ>1.41
(9-17)
where
λ (9-18)
h
o=reduced beam depth as illustrated in Figure 9-3, in.
4. When the tension flange cope is longer than the compression flange cope, flexural yield-
ing should be checked at the end of the tension flange cope. The available strength,φ
bMn
or Mn/Ωb,is
M
n=FySnet (9-19)
φ
b=0.90Ω b=1.67
where
S
net=net elastic section modulus at the end of the tension flange cope, in.
3
Fig. 9-3. Flexural local buckling of beam web coped at both flanges.
=
+






hF
t
h
c
oy
w
o
10 475 280
2
Q=
130
2
.
λ
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 9

9–10 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
BEARING LIMIT STATES
Bearing Strength at Bolt Holes
For available bearing strength at bolt holes, see Part 7.
Steel-on-Steel Bearing Strength (Other Than at Bolt Holes)
Bearing strength for applications other than at bolt holes is determined as given in AISC
SpecificationSection J7. The fabrication and erection requirements in AISC Specification
Sections M2.6, M2.8 and M4.4 are applicable to connecting elements that transfer load by
contact bearing on steel.
Bearing Strength on Concrete or Masonry
The bearing strength of concrete is determined as given in AISC SpecificationSection J8. For
bearing on masonry, seeBuilding Code Requirements for Masonry Structures, ACI 530/
ASCE 5/TMS 402 (ACI/ASCE/TMS, 2005a) and Specification for Masonry Structures,
ACI 530.1/ASCE 6/TMS 602 (ACI/ASCE/TMS, 2005b).
The fabrication and erection
requirements in AISC SpecificationSections M2.8 and M4.1 are applicable to connecting ele-
ments that transfer load by contact bearing on concrete or masonry.
OTHER SPECIFICATION REQUIREMENTS AND DESIGN
CONSIDERATIONS
The following other specification requirements and design considerations apply to the
design of connecting elements:
Prying Action
Prying action is a phenomenon whereby the deformation of a connecting element under a
tensile force increases the tensile force in the bolt above that due to the applied tensile force
alone. Design for prying action includes the selection of bolt diameter and fitting thickness
such that there is sufficient strength in the connecting element and the bolt. The following
discussion of prying action is similar to what has been considered prior to the 13th Edition
Steel Construction Manual, except that the design is based onF
u, which provides better cor-
relation with available test data than previous design methods. For the development of the
prying action equations presented here, see Thornton (1992) and Swanson (2002).
Consider the tee or angle used in a hanger connection as shown in Figure 9-4. The defor-
mation of the connected tee flange or angle leg is assumed to be in double curvature, as
shown in Figure 9-4. The dimension pidentifies the tributary length for each bolt shown.
Note thatpmay be limited by the edge of the plate for the bolt closest to the edge.
The thickness required to eliminate prying action, t
min, is determined as
LRFD ASD
t
Tb
pFmin
u=
′Ω4
t
Tb
pFmin
u=
′4
φ
(9-20a) (9-20b)
φ=0.90 Ω=1.67
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 10

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
u=specified minimum tensile strength of connecting element, ksi
T=required strength, r
utor rat, per bolt, kips
b′ (9-21)
b=for a tee-type connecting element, the distance from bolt centerline to the face of
the tee stem, in.; for an angle-type connecting element, the distance from bolt cen-
terline to centerline of angle leg, in.
d
b=bolt diameter, in.
p= tributary length; maximum = 2b, but ≤s, unless tests indicate larger lengths can be
used. See Dowswell (2011) and Wheeler et al. (1998).
s= bolt spacing, in.
When the fitting thickness, t, is greater than or equal to t
min, no further check of prying
action is necessary. In this solution, the additional force in the bolt due to prying action, q,
is essentially zero.
Alternatively, it is usually possible to determine a lesser required thickness by designing
the connecting element and bolted joint for the actual effects of prying action with qgreater
Fig. 9-4. Illustration of variables in prying action calculations.
=−





⎟b
d
b
2
(a) Prying forces in tee (b) Prying forces in angle
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 11

φ=0.90 Ω=1.67
Table 15-2 can be used to select the preliminary fitting thickness. Subsequently, the thick-
ness required to ensure an acceptable combination of fitting strength and stiffness and bolt
strength, t
min, can be determined as
φ=0.90 Ω=1.67
where
δ= (9-24)
=ratio of the net length at bolt line to gross length at the face of the stem or leg of angle
α′ =1.0 if β≥1
=the lesser of 1 and if β<1
d′=width of the hole along the length of the fitting, in.
β (9-25)
ρ (9-26)
a′ (9-27)
a=distance from the bolt centerline to the edge of the fitting, in.
B=available tension per bolt, φr
nor rn/Ω, kips
If t
min≤t, the preliminary fitting thickness is satisfactory. Otherwise, a fitting with a thicker
flange, or a change in geometry (i.e., band p) is required.
Although it is not necessary to do so, if desired, the prying force per bolt, q, can be deter-
mined as
(9-28)
9–12 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
=−






1
1
ρ
B
T
=


b
a
=+





⎟≤+





⎟a
d
b
d
bb
2
125
2
.
qB
t
t
c
=














δαρ
2
LRFD ASD
T
Ft p
b
u

2

T
Ft p
b
u

φ
2
2
LRFD ASD
t
Tb
pFmin
u=

+′
( )
Ω4
1δα
t
Tb
pFmin
u=

+′
( )
4
1φδα
1−
′d
p
1

β
β−






(9-22b)
(9-23b)
(9-22a)
(9-23a)
than zero. To do so, a preliminary fitting thickness, t, can be selected based upon flexural
yielding such that
AISC_PART 9_14th Ed._Nov. 19, 2012 14-11-10 11:13 AM Page 12 (Black plate)

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(9-29)
The parameter αis the ratio of the moment at the face of the tee stem or at the center
of the unconnected angle leg thickness, to the moment at the bolt line. When α=0, the
connection is strong enough to prevent prying action. When α>1 the connection is not
adequate.
t
c=flange or angle thickness required to develop the available strength of the bolt, B,
with no prying action, in.
The total force per bolt including the effects of prying action is then T +q.
Alternatively, when the fitting geometry is known, the available tensile strength per bolt,
B, determined per AISC SpecificationSections J3.6 or J3.7, can be multiplied by Qto deter-
mine the available tensile strength including the effects of prying action, T
avail, as follows:
T
avail=BQ (9-31)
When α′ <0, which means that the fitting has sufficient strength and stiffness to develop the
full bolt available tensile strength,
Q=1 (9-32)
When 0 ≤ α′ ≤1, which means that the fitting has sufficient strength to develop the full bolt
available tensile strength, but insufficient stiffness to prevent prying action,
(9-33)
When α′ >1, which means that the fitting has insufficient strength to develop the full bolt
available tensile strength,
(9-34)
where
(9-35)
= value of αthat either maximizes the bolt available tensile strength for a given thick-
ness or minimizes the thickness required for a given bolt available tensile strength
α
δ
α=















≤≤
1
1
2
T
B
t
tc
where 0 1.0
LRFD ASD
t
Bbc
u
pF
=
′Ω4
tc
Bb
pF
u
=
′4
φ
Q
t
t
c
=





⎟+′ ( )
2
1δα
Q
t
t
c
=





⎟+ ()
2

′=
+
()





⎟−








α
δρ
1
1
1
2
t
tc
(9-30a) (9-30b)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 13

9–14 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Rotational Ductility
Simple shear connections provide for the rotational ductility required by AISC Specification
Section J1.2 as follows:
1. For double-angle, shear end-plate, single-angle, and tee shear connections, the geom-
etry and thickness of the connecting elements attached to the support (angle legs, plate,
or tee flange) are configured so that flexing of those connecting elements accommo-
dates the simple-beam end rotation.
2. For unstiffened and stiffened seated connections, the geometry and thickness of the top
or side stability angle is configured so that flexing of that connecting element accom-
modates the simple-beam end rotation.
3. For single-plate connections, the geometry and thickness of the plate are configured so
that the plate will yield, bolt group will rotate, and/or the bolt holes will elongate at
failure prior to the failure of the welds or bolts.
For each of the simple-shear connections in Part 10, except tee shear connections, prescrip-
tive guidance is provided to ensure adequate rotational ductility. Rotational ductility can be
ensured for tee shear connections as follows. Note that this approach can also be used to
demonstrate adequate rotational ductility in other simple shear connections that flex to
accommodate the simple beam end rotation, but with configurations that differ from those
prescribed in Part 10.
When the flanges of the tee stub are welded to the support and bolted to the supported
beam, weld size, w, with F
EXX=70 ksi, must be such that the minimum weld size, w min, is
(9-36)
but need not exceed

5
⁄8φts(Thornton, 1996), where
b= flexible width in connecting element as illustrated in Figure 9-5, in.
t
f= thickness of the tee flange, in.
t
s= thickness of the tee stem, in.
L= depth of connecting element as illustrated in Figure 9-5, in.
For a tee bolted to the support and bolted or welded to the supported beam, the minimum
diameter for bolts through the tee flange for ductility is
(9-37)
but need not exceed . Additionally, to provide for rotational ductility when the tee
stem is bolted to the supported beam, the maximum tee stem thickness is
(9-38)
where
d=bolt diameter, in.
dt
F
b
b
Lmin f
y=+






0 163 2
2
2
.
w
Ft
b
b
Lmin
yf=+






0 0155 2
22
2
.
069.t s
t
dsmax =+
2
1
/16in.
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 14

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When the tee stem is welded to the supported beam, there is no perceived ductility prob-
lem for this weld.
Concentrated Forces
If the connecting element delivers a concentrated force to a member or other connecting ele-
ment, see AISC SpecificationSection J10 or Section K1, as appropriate. See also AISC
Design Guide 13, Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications (Carter, 1999).
Shims and Fillers
Shims are furnished to the erector for use in filling the spaces allowed for field clearance
which might be present at connections such as simple shear connections, PR and FR moment
connections, column base plates, and column splices. These shims, illustrated in Figure 9-6,
may be either strip shims, with round punched holes, or finger shims, with slots cut through
the edge. Whereas strip shims are less expensive to fabricate, finger shims may be laterally
inserted and eliminate the need to remove erection bolts or pins already in place.
Finger shims, when inserted fully against the bolt shank, are acceptable for slip-critical
connections and are not to be considered as an internal ply with the slotted hole determining
Fig. 9-5. Illustration of variables in shear connection ductility checks.
Fig. 9-6. Shims.
(a) Welded flange (b) Bolted flange
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 15

9–16 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the available strength of the connection. This is because less than 25% of the contact surface
is lost, which is not enough to affect the performance of the joint.
A filler is furnished to occupy spaces which will be present because of dimensional sep-
arations between elements of a connection across which load transfer occurs. Examples
where fillers might be used are beams framing off center on a column and raised beams.
For the effect of fillers and shims on available joint strength, see AISC Specification
Sections J3.8 and J5.2.
Copes, Blocks and Cuts
When structural members frame together, a minimum clearance of
1
⁄2in. should be provided,
when possible. In cases where material removal is necessary to provide such a clearance,
material may be removed by coping, blocking or cutting as illustrated in Figure 9-7.
Material removal is costly and should be avoided when possible. In some cases, it may
be possible to do so by setting the elevations of the tops of infill beams a sufficient distance
below the tops of girders to clear the girder fillet radius. Alternatively, a connection such as
that illustrated in Figure 9-8 could be used.
When material removal is necessary, coping is usually the most economical method to
remove material. The recommended practices for coping are illustrated in Figure 9-9. The
potential notch left by the first cut will occur in waste material and subsequently be removed
by the second cut. All re-entrant corners must be shaped notch-free per AWS D1.1/D1.1M
(AWS, 2010) to a radius. An approximate minimum radius to which this corner must be
shaped is
1
⁄2in. Copes, blocks and cuts can significantly reduce the available strengths of
members and may require web reinforcement; it may be more economical to use a heavier
member than to provide such reinforcement.
Fig. 9-7. Copes, blocks and cuts.
(a) Cope (b) Blocks (c) Cut
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 16

OTHER SPECIFICATION REQUIREMENTS AND DESIGN CONSIDERATIONS 9–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 9-9. Recommended coping practices.
Fig. 9-8. Eliminating coping requirements.
Web Reinforcement of Coped Beams
When the strength of a coped beam is inadequate, either a different beam with a thicker web
can be selected to eliminate the need for reinforcement, or reinforcement can be provided to
increase the strength. In spite of the increase in material cost, the former solution may be the
most economical option due to the appreciable labor cost associated with adding stiffeners
and/or doubler plates. When the latter solution is required, some typical reinforcing details
are illustrated in Figure 9-10.
The doubler plate illustrated in Figure 9-10(a) and the longitudinal stiffener illustrated
in Figure 9-10b are used with rolled sections where h/t
w≤60. When a doubler plate is
used, the required doubler-plate thickness, t
d req, is determined by substituting the quantity
(t
w+tdreq) for t win the available strength calculations for flexural yielding and local web
buckling. To prevent local crippling of the beam web, the doubler plate must be extended
at least a distance d
c(depth of cope) beyond the cope as illustrated in Figure 9-10(a). When
longitudinal stiffening is used, the stiffening elements must be proportioned to meet the
width-to-thickness ratios specified in AISC SpecificationTable B4.1b. The stiffened cross
section must then be checked for flexural yielding, but web local buckling need not be
(a) Coping Required (b) Coping Eliminated
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 17

9–18 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
checked. To prevent local crippling of the beam web, the longitudinal stiffening must be
extended a distance d
cbeyond the cope as illustrated in Figure 9-10(b).
The combination of longitudinal and transverse stiffeners shown in Figure 9-10(c) may
be required for thin-web plate girders, where h/t
w>60. When longitudinal and transverse
stiffening is used, the stiffening elements must be proportioned to meet the width-to-thick-
ness ratios specified in AISC SpecificationTable B4.1b. The stiffened cross section must
then be checked for flexural yielding, but web local buckling need not be checked. To pre-
vent local crippling of the beam web, longitudinal stiffeners must be extended a distance c/3
beyond the cope, as illustrated in Figure 9-10(c).
Fig. 9-10. Web reinforcement of coped beams.
(a) Doubler plate (b) Longitudinal stiffener
(c) Combination longitudinal and
transverse stiffeners
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 18

DESIGN TABLE DISCUSSION 9–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION
Table 9-1. Reduction in Area for Hole
Area reduction for standard, oversized, short-slotted and long-slotted holes in material
thicknesses from
3
/16in. to 1 in. are given in Table 9-1. For material thicknesses not listed,
the tabular value for 1-in. thickness can be multiplied by the actual thickness. The table is
based on a net area using a width that is
1
/16in. greater than the actual hole width.
Table 9-2. Elastic Section Modulus for Coped W-Shapes
Values are given for the gross and net elastic section modulus for coped W-shapes, as illus-
trated in the table header.
Tables 9-3. Block Shear Rupture
The terms in AISC SpecificationEquation J4-5 are tabulated in Tables 9-3a, 9-3b and 9-3c.
The indicated values are given per inch of material thickness. Note that when the stress dis-
tribution is nonuniform, the tension component from Table 9-3a must be reduced by a factor
of 0.5 to account for U
bs.
Table 9-4. Beam Bearing Constants
At beam ends and at any location on beams or columns where concentrated loads occur, the
available strength for web local yielding and web local crippling, φR
nor Rn/Ω, at concen-
trated loads is determined per AISC SpecificationSections J10.2 and J10.3. Values of R
nare
given for a bearing length, l
b=3
1
/4in. The web local yielding (Equations J10-2 and J10-3)
and web local crippling (Equations J10-4, J10-5a and J10-5b) equations can be simplified
using the bearing length, l
b, and the constants R 1through R 6as follows.
R
1=2.5kF ywtw (9-39)
R
2=Fywtw (9-40)
(9-41)
(9-42)
(9-43)
(9-44)
Rt
EF t
t w
yw f
w
3
2040=.
Rt
d
t
t
EF t
t w
w
f
yw f
w
4
2
15040
3
=












.
.
Rt
t
t
EF t
t w
w
f
yw f
w
5
2
15040 1 02=−














..
.
Rt
d
t
t
EF t
t w
w
f
yw f
w
6
2
15040
4
=












.
.
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 19

Web Local Yielding
The available strength for web local yielding, φR nor Rn/Ω, is determined per AISC
SpecificationSection J10.2 using Equations J10-2 or J10-3, which can be simplified using
the constants R
1and R 2from Table 9-4 as follows, where φ=1.00 and Ω=1.50.
When the compressive force to be resisted is applied at a distance, x, from the member end
that is less than or equal to the depth of the member (x≤d),
When the compressive force to be resisted is applied at a distance, x, from the member end
that is greater than the depth of the member (x>d),
Note that the minimum length of bearing, l
b, is k, per AISC SpecificationSection J10.2 for end
beam reactions, where k=k
desfor W-shapes.
Web Local Crippling
The available strength for web local crippling, φR nor Rn/Ω, is determined per AISC
SpecificationSection J10.3 using Equations J10-4, J10-5a or J10-5b, which can be simpli-
fied using constants R
3, R4, R5and R 6from Table 9-4 as follows, where φ=0.75 and Ω=
2.00.
When the compressive force to be resisted is applied at a distance, x, from the member end
that is less than one-half of the depth of the member (x<d/2),
For l
b/d≤0.2:
For l
b/d>0.2:
9–20 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
φR
n=2(φR 1) +lb(φR2) (9-46a) R n/Ω=2(R 1/Ω) +l b(R2/Ω) (9-46b)
LRFD ASD
φR
n=φR3+lb(φR4) (9-47a) R n/Ω=R 3/Ω+l b(R4/Ω) (9-47b)
LRFD ASD
φR
n=φR5+lb(φR6) (9-48a) R n/Ω=R 5/Ω+l b(R6/Ω) (9-48b)
LRFD ASD
φR
n=φR 1+lb(φR2) (9-45a) R n/Ω=R 1/Ω+l b(R2/Ω) (9-45b)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 20

DESIGN TABLE DISCUSSION 9–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When the compressive force to be resisted is applied at a distance, x, from the member end
that is greater than or equal to one-half of the depth of the member (x≥ d/2),
LRFD ASD
φR
n=2[(φR3) +lb(φR4)](9-49a)R n/Ω=2[(R3/Ω) +l b(R4/Ω)](9-49b)
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 21

9–22 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 9 REFERENCES
ACI/ASCE/TMS (2005a), Building Code Requirements for Masonry Structures, ACI
530/ASCE 5/TMS 402, Farmington Hills, MI.
ACI/ASCE/TMS (2005b), Specification for Masonry Structures, ACI 530.1/ASCE 6/
TMS 602, Farmington Hills, MI.
AWS (2010), Structural Welding Code—Steel, AWS D1.1/D1.1M, American Welding
Society, Miami, FL.
Carter, C.J. (1999),Stiffening of Wide-Flange Columns at Moment Connections: Wind
and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Cheng J.J. and Yura, J.A. (1986), “Local Web Buckling of Coped Beams,”Journal of
Structural Engineering, ASCE Vol. 112, No. 10, pp. 2,314–2,331.
Dowswell, R.S. (2011), “A Yield Line Component Method for Bolted Flange
Connections,” Engineering Journal, AISC, Vol. 48, No. 2, 2nd Quarter, Chicago, IL.
Muir, L.S. and Hewitt, C.M. (2009), “Design of Unstiffened Extended Single-Plate
Shear Connections,” Engineering Journal, AISC, Vol. 46, No. 2, 2nd Quarter, pp.
67–79, Chicago, IL.
Swanson, J.A. (2002), “Ultimate Strength Prying Models for Bolted T-Stub
Connections,” Engineering Journal, Vol. 39, No. 3, 3rd Quarter, pp. 136–147, AISC,
Chicago, IL.
Thornton, W.A. (1992), “Strength and Serviceability of Hanger Connections,”
Engineering Journal, AISC, Vol. 29, No. 4, 4th Quarter, pp. 145–149, Chicago, IL.
See also ERRATA, Engineering Journal, Vol. 33, No. 1, 1st Quarter, 1996, pp. 39, 40.
Thornton, W.A. (1996), “Rational Design of Tee Shear Connections,” Engineering
Journal, AISC, Vol. 33, No.1, 1st Quarter, pp. 34–37, Chicago, IL.
Wheeler, A.T., Clarke, M.J., Hancock, G.J. and Murray, T.M. (1998), “Design Model
for Bolted Moment End-Plate Connections Joining Rectangular Hollow Sections,”
Journal of Structural Engineering, ASCE, Vol. 124, No. 2.
Whitmore, R.E. (1952), “Experimental Investigation of Stresses in Gusset Plates,”
Bulletin No. 16, Civil Engineering, The University of Tennessee Engineering
Experiment Station, Knoxville, TN.
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 22

DESIGN TABLES 9–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-1
Reduction in Area for Holes, in.
2
Thick-
ness
t,
in.
3
/4
7
/8 11
1
/81
1
/41
3
/81
1
/2
3
/4
7
/8 11
1
/81
1
/41
3
/81
1
/2
A ×t
B ×t
Bolt Diameter, d, in.Bolt Diameter, d, in.
Thick-
ness
t,
in.
3
/4
7
/8 11
1
/81
1
/41
3
/81
1
/2
3
/4
7
/8 11
1
/81
1
/41
3
/81
1
/2
C ×t
D ×t
Bolt Diameter, d, in.Bolt Diameter, d, in.
3
⁄160.164 0.188 0.211 0.234 0.258 0.281 0.305 0.188 0.211 0.246 0.281 0.305 0.328 0.352
1
⁄40.219 0.250 0.281 0.313 0.344 0.375 0.406 0.250 0.281 0.328 0.375 0.406 0.438 0.469
5
⁄160.273 0.313 0.352 0.391 0.430 0.469 0.508 0.313 0.352 0.410 0.469 0.508 0.547 0.586
3
⁄80.328 0.375 0.422 0.469 0.516 0.563 0.609 0.375 0.422 0.492 0.563 0.609 0.656 0.703
7
⁄160.383 0.438 0.492 0.547 0.602 0.656 0.711 0.438 0.492 0.574 0.656 0.711 0.766 0.820
1
⁄20.438 0.500 0.563 0.625 0.688 0.750 0.813 0.500 0.563 0.656 0.750 0.813 0.875 0.938
9
⁄160.492 0.563 0.633 0.703 0.773 0.844 0.914 0.563 0.633 0.738 0.844 0.914 0.984 1.05
5
⁄80.547 0.625 0.703 0.781 0.859 0.938 1.02 0.625 0.703 0.820 0.938 1.02 1.09 1.17
11
⁄160.602 0.688 0.773 0.859 0.945 1.03 1.12 0.688 0.773 0.902 1.03 1.12 1.20 1.29
3
⁄40.656 0.750 0.844 0.938 1.03 1.13 1.22 0.750 0.844 0.984 1.13 1.22 1.31 1.41
13
⁄160.711 0.813 0.914 1.02 1.12 1.22 1.32 0.813 0.914 1.07 1.22 1.32 1.42 1.52
7
⁄80.766 0.875 0.984 1.09 1.20 1.31 1.42 0.875 0.984 1.15 1.31 1.42 1.53 1.64
15
⁄160.820 0.938 1.05 1.17 1.29 1.41 1.52 0.938 1.05 1.23 1.41 1.52 1.64 1.76
10.875 1.00 1.13 1.25 1.38 1.50 1.63 1.00 1.13 1.31 1.50 1.63 1.75 1.88
3
⁄160.199 0.223 0.258 0.293 0.316 0.340 0.363 0.363 0.422 0.480 0.539 0.598 0.656 0.715
1
⁄40.266 0.297 0.344 0.391 0.422 0.453 0.484 0.484 0.563 0.641 0.719 0.797 0.875 0.953
5
⁄160.332 0.371 0.430 0.488 0.527 0.566 0.605 0.605 0.703 0.801 0.898 0.996 1.09 1.19
3
⁄80.398 0.445 0.516 0.586 0.633 0.680 0.727 0.727 0.844 0.961 1.08 1.20 1.31 1.43
7
⁄160.465 0.520 0.602 0.684 0.738 0.793 0.848 0.848 0.984 1.12 1.26 1.39 1.53 1.67
1
⁄20.531 0.594 0.688 0.781 0.844 0.906 0.969 0.969 1.13 1.28 1.44 1.59 1.75 1.91
9
⁄160.598 0.668 0.773 0.879 0.949 1.02 1.09 1.09 1.27 1.44 1.62 1.79 1.97 2.14
5
⁄80.664 0.742 0.859 0.977 1.05 1.13 1.21 1.21 1.41 1.60 1.80 1.99 2.19 2.38
11
⁄160.730 0.816 0.945 1.07 1.16 1.25 1.33 1.33 1.55 1.76 1.98 2.19 2.41 2.62
3
⁄40.797 0.891 1.03 1.17 1.27 1.36 1.45 1.45 1.69 1.92 2.16 2.39 2.63 2.86
13
⁄160.863 0.965 1.12 1.27 1.37 1.47 1.57 1.57 1.83 2.08 2.34 2.59 2.84 3.10
7
⁄80.930 1.04 1.20 1.37 1.48 1.59 1.70 1.70 1.97 2.24 2.52 2.79 3.06 3.34
15
⁄160.996 1.11 1.29 1.46 1.58 1.70 1.82 1.82 2.11 2.40 2.70 2.99 3.28 3.57
11.06 1.19 1.38 1.56 1.69 1.81 1.94 1.94 2.25 2.56 2.88 3.19 3.50 3.81
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 23

9–24 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
W44×335 44.0 1.77 1410 494 453 433 413 394 375 357 339 321 304
×290 43.6 1.58 1240 415 380 363 346 330 314 298 283 268 254
×262 43.3 1.42 1110 372 340 325 310 295 281 267 253 240 227
×230 42.9 1.22 971 330 301 288 274 261 249 236 224 212 200
W40×593 43.0 3.23 2340 810 — — 671 639 607 575 545 515 486
×503 42.1 2.75 1980 671 — 582 554 527 500 473 448 423 398
×431 41.3 2.36 1690 567 — 491 467 444 421 398 376 355 334
×397 41.0 2.20 1560 512 — 444 422 400 379 359 339 319 300
×372 40.6 2.05 1460 480 — 415 394 374 354 335 316 298 280
×362 40.6 2.01 1420 463 — 400 380 361 342 323 305 287 270
×324 40.2 1.81 1280 408 371 352 335 317 300 284 268 252 237
×297 39.8 1.65 1170 374 339 323 306 290 275 259 245 230 216
×277 39.7 1.58 1100 335 304 289 274 260 246 232 219 206 193
×249 39.4 1.42 993 299 271 258 245 232 219 207 195 183 172
×215 39.0 1.22 859 256 231 220 208 197 186 176 166 156 146
×199 38.7 1.07 770 247 224 213 202 191 180 170 160 150 141
W40×392 41.6 2.52 1440 579 — 503 478 454 431 408 386 364 343
×331 40.8 2.13 1210 483 — 419 398 378 358 339 320 302 284
×327 40.8 2.13 1200 470 — 407 387 367 348 329 311 293 276
×294 40.4 1.93 1080 417 379 360 342 325 308 291 275 259 243
×278 40.2 1.81 1020 397 361 344 326 310 293 277 262 246 232
×264 40.0 1.73 971 371 337 321 305 289 274 259 244 230 216
×235 39.7 1.58 875 320 291 276 262 249 235 222 210 197 185
×211 39.4 1.42 786 286 259 246 234 221 209 198 186 175 165
×183 39.0 1.20 675 243 221 210 199 188 178 168 158 149 140
×167 38.6 1.03 600 234 212 201 191 181 171 161 152 143 134
×149 38.2 0.830 513 217 196 186 177 167 158 149 140 132 123
—Indicates that cope depth is less than flange thickness.
Table 9-2
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 24

DESIGN TABLES 9–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
W36×652 41.1 3.54 2460 816 — — 669 635 601 568 536 505 475
×529 39.8 2.91 1990 636 — 547 519 491 464 438 413 388 364
×487 39.3 2.68 1830 581 — 499 473 448 423 399 375 352 330
×441 38.9 2.44 1650 518 — 444 420 398 375 354 332 312 292
×395 38.4 2.20 1490 457 — 391 370 350 330 311 292 274 256
×361 38.0 2.01 1350 412 — 352 333 315 297 279 262 246 230
×330 37.7 1.85 1240 371 335 317 300 283 267 251 235 220 206
×302 37.3 1.68 1130 338 305 289 273 258 243 228 214 200 187
×282 37.1 1.57 1050 314 283 268 253 239 225 211 198 185 173
×262 36.9 1.44 972 294 264 250 236 223 210 197 185 172 161
×247 36.7 1.35 913 277 249 236 223 210 198 185 174 162 151
×231 36.5 1.26 854 260 234 222 209 197 186 174 163 152 142
W36×256 37.4 1.73 895 329 297 281 266 251 237 223 209 196 183
×232 37.1 1.57 809 295 266 251 238 224 211 199 186 174 163
×210 36.7 1.36 719 272 245 232 219 207 195 183 172 161 150
×194 36.5 1.26 664 249 224 212 201 189 178 167 157 146 137
×182 36.3 1.18 623 234 211 199 188 178 167 157 147 137 128
×170 36.2 1.10 581 218 196 185 175 165 155 146 137 128 119
×160 36.0 1.02 542 206 185 175 165 156 147 138 129 120 112
×150 35.9 0.940 504 195 176 166 157 148 139 130 122 114 106
×135 35.6 0.790 439 181 163 154 145 137 129 121 113 105 98.1
W33×387 36.0 2.28 1350 413 — 349 329 310 291 272 254 237 220
×354 35.6 2.09 1240 373 — 315 297 279 262 245 229 213 198
×318 35.2 1.89 1110 330 295 278 262 246 230 216 201 187 173
×291 34.8 1.73 1020 300 268 253 238 223 209 195 182 169 157
×263 34.5 1.57 919 268 239 226 212 199 186 174 162 151 139
×241 34.2 1.40 831 250 223 210 197 185 173 162 150 140 129
×221 33.9 1.28 759 230 205 193 181 170 159 148 138 128 118
×201 33.7 1.15 686 209 186 175 165 154 144 135 125 116 107
—Indicates that cope depth is less than flange thickness.
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 25

9–26 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
—Indicates that cope depth is less than flange thickness.
W33×169 33.8 1.22 549 191 170 161 151 141 132 124 115 107 98.6
×152 33.5 1.06 487 176 157 148 139 130 122 114 106 97.9 90.5
×141 33.3 0.960 448 165 147 139 130 122 114 106 98.8 91.6 84.6
×130 33.1 0.855 406 155 138 130 122 114 107 99.6 92.5 85.7 79.2
×118 32.9 0.740 359 143 128 120 113 106 98.6 91.9 85.4 79.1 73.0
W30×391 33.2 2.44 1250 378 — 315 295 276 257 239 222 205 188
×357 32.8 2.24 1140 339 — 282 264 246 230 213 197 182 167
×326 32.4 2.05 1040 305 — 254 237 221 206 191 177 163 150
×292 32.0 1.85 930 269 238 223 208 194 180 167 155 142 130
×261 31.6 1.65 829 240 212 198 185 172 160 148 137 126 115
×235 31.3 1.50 748 211 186 174 163 152 141 130 120 110 101
×211 30.9 1.32 665 192 170 159 148 138 128 118 109 99.8 91.2
×191 30.7 1.19 600 174 153 143 133 124 115 106 97.7 89.6 81.8
×173 30.4 1.07 541 158 139 130 121 112 104 96.1 88.4 81.0 73.9
W30×148 30.7 1.18 436 152 134 125 117 109 101 93.3 86.0 78.9 72.1
×132 30.3 1.00 380 139 123 115 107 99.3 92.1 85.1 78.3 71.8 65.5
×124 30.2 0.930 355 131 115 108 100 93.4 86.5 79.9 73.6 67.4 61.5
×116 30.0 0.850 329 124 109 102 95.3 88.6 82.1 75.8 69.7 63.9 58.2
×108 29.8 0.760 299 118 103 96.5 89.9 83.6 77.4 71.4 65.7 60.1 54.8
×99 29.7 0.670 269 110 96.4 90.0 83.9 77.9 72.1 66.5 61.1 56.0 51.0
×90 29.5 0.610 245 98.7 86.7 80.9 75.4 70.0 64.8 59.7 54.9 50.2 45.7
W27×539 32.5 3.54 1570 509 — — 394 367 341 316 292 269 247
×368 30.4 2.48 1060 321 — 262 244 226 209 193 177 162 147
×336 30.0 2.28 972 287 — 234 218 202 186 172 157 143 130
×307 29.6 2.09 887 259 — 211 196 181 167 154 141 128 116
×281 29.3 1.93 814 233 203 189 176 162 150 137 126 114 104
×258 29.0 1.77 745 212 185 172 159 147 136 124 114 103 93.3
×235 28.7 1.61 677 193 168 156 145 134 123 113 103 93.2 84.2
×217 28.4 1.50 627 174 152 141 130 120 111 101 92.3 83.7 75.5
×194 28.1 1.34 559 155 134 125 115 106 97.6 89.3 81.3 73.6 66.3
×178 27.8 1.19 505 145 126 117 108 99.7 91.5 83.6 76.1 68.8 61.9
×161 27.6 1.08 458 131 113 105 97.2 89.5 82.0 74.9 68.1 61.5 55.3
×146 27.4 0.975 414 118 102 95.0 87.7 80.7 74.0 67.5 61.3 55.3 49.7
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 26

Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
—Indicates that cope depth is less than flange thickness.
DESIGN TABLES 9–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W27×129 27.6 1.10 345 117 101 94.0 86.9 80.1 73.5 67.2 61.1 55.3 49.7
×114 27.3 0.930 299 106 91.6 84.9 78.4 72.2 66.2 60.5 54.9 49.6 44.6
×102 27.1 0.830 267 94.2 81.6 75.6 69.8 64.2 58.9 53.7 48.8 44.0 39.5
×94 26.9 0.745 243 88.0 76.2 70.6 65.1 59.9 54.9 50.1 45.4 41.0 36.8
×84 26.7 0.640 213 80.5 69.7 64.5 59.5 54.7 50.1 45.7 41.4 37.4 33.5
W24×370 28.0 2.72 957 295 — 237 219 201 184 168 153 138 124
×335 27.5 2.48 864 261 — 209 193 177 162 147 133 120 108
×306 27.1 2.28 789 234 — 186 172 157 144 131 118 106 94.9
×279 26.7 2.09 718 210 — 167 154 141 128 116 105 94.3 84.0
×250 26.3 1.89 644 184 158 146 134 123 112 101 91.2 81.7 72.6
×229 26.0 1.73 588 167 143 132 121 111 101 91.0 81.8 73.1 64.9
×207 25.7 1.57 531 149 127 117 107 98.0 89.0 80.4 72.2 64.4 57.0
×192 25.5 1.46 491 136 117 107 98.2 89.5 81.2 73.3 65.8 58.6 51.8
×176 25.2 1.34 450 124 106 97.6 89.4 81.4 73.8 66.5 59.6 53.0 46.8
×162 25.0 1.22 414 115 98.0 90.0 82.3 74.9 67.9 61.1 54.7 48.6 42.8
×146 24.7 1.09 371 104 88.5 81.2 74.2 67.5 61.1 54.9 49.1 43.6 38.3
×131 24.5 0.960 329 94.4 80.3 73.7 67.3 61.1 55.3 49.7 44.3 39.3 34.5
×117 24.3 0.850 291 84.4 71.7 65.7 60.0 54.5 49.2 44.2 39.4 34.8 30.5
×104 24.1 0.750 258 75.4 64.1 58.7 53.5 48.6 43.8 39.3 35.0 30.9 27.1
W24×103 24.5 0.980 245 82.9 70.7 64.9 59.3 53.9 48.8 43.9 39.2 34.8 30.6
×94 24.3 0.875 222 76.2 64.9 59.5 54.3 49.4 44.6 40.1 35.8 31.7 27.9
×84 24.1 0.770 196 68.3 58.0 53.2 48.6 44.1 39.8 35.8 31.9 28.2 24.8
×76 23.9 0.680 176 62.6 53.2 48.7 44.5 40.4 36.4 32.7 29.1 25.8 22.6
×68 23.7 0.585 154 57.5 48.8 44.7 40.8 37.0 33.4 29.9 26.6 23.5 20.6
W24×62 23.7 0.590 131 56.9 48.3 44.3 40.4 36.7 33.1 29.7 26.5 23.4 20.5
×55 23.6 0.505 114 51.1 43.4 39.7 36.2 32.9 29.7 26.6 23.7 20.9 18.3
W21×201 23.0 1.63 461 125 105 95.2 86.2 77.6 69.4 61.6 54.2 47.3 40.8
×182 22.7 1.48 417 111 93.3 84.8 76.6 68.8 61.4 54.4 47.8 41.6 35.8
×166 22.5 1.36 380 99.3 83.0 75.3 68.0 61.0 54.4 48.1 42.2 36.6 31.4
×147 22.1 1.15 329 91.2 76.1 68.9 62.1 55.7 49.5 43.7 38.2 33.1 28.2
×132 21.8 1.04 295 81.0 67.5 61.1 55.0 49.2 43.7 38.5 33.6 29.0 24.7
×122 21.7 0.960 273 74.1 61.6 55.7 50.2 44.8 39.8 35.0 30.5 26.3 22.4
×111 21.5 0.875 249 67.1 55.7 50.4 45.3 40.4 35.9 31.5 27.4 23.6 20.1
×101 21.4 0.800 227 60.4 50.1 45.3 40.7 36.3 32.1 28.2 24.5 21.1 17.9
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 27

9–28 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
—Indicates that cope depth is less than flange thickness.
Note: Values are omitted when cope depth exceeds
d/2.
W21×93 21.6 0.930 192 67.2 56.0 50.7 45.7 40.9 36.3 32.0 27.9 24.1 20.5
×83 21.4 0.835 171 59.0 49.1 44.4 40.0 35.7 31.7 27.9 24.3 20.9 17.8
×73 21.2 0.740 151 51.5 42.7 38.7 34.8 31.0 27.5 24.2 21.0 18.1 15.3
×68 21.1 0.685 140 48.1 39.9 36.1 32.4 29.0 25.6 22.5 19.6 16.8 14.2
×62 21.0 0.615 127 44.1 36.5 33.0 29.7 26.5 23.4 20.5 17.8 15.3 12.9
×55 20.8 0.522 110 40.1 33.2 30.0 26.9 24.0 21.2 18.6 16.1 13.8 11.7
×48 20.6 0.430 93.0 36.2 30.0 27.0 24.2 21.6 19.1 16.7 14.5 12.4 10.4
W21×57 21.1 0.650 111 43.4 36.1 32.6 29.3 26.2 23.2 20.4 17.7 15.2 12.9
×50 20.8 0.535 94.5 39.2 32.5 29.4 26.4 23.6 20.8 18.3 15.9 13.6 11.5
×44 20.7 0.450 81.6 35.2 29.1 26.3 23.6 21.0 18.6 16.3 14.1 12.1 10.2
W18×311 22.3 2.74 624 186 — 140 126 113 100 88.2 77.0 66.5 56.8
×283 21.9 2.50 565 166 — 124 111 99.3 87.8 77.1 67.0 57.6 48.9
×258 21.5 2.30 514 148 — 110 98.3 87.4 77.2 67.5 58.5 50.0 42.3
×234 21.1 2.11 466 130 — 96.1 85.9 76.2 67.1 58.5 50.4 43.0 36.1
×211 20.7 1.91 419 115 94.5 84.8 75.6 66.9 58.7 51.0 43.8 37.1 31.0
×192 20.4 1.75 380 102 83.4 74.7 66.5 58.7 51.4 44.5 38.1 32.1 26.7
×175 20.0 1.59 344 92.1 75.1 67.2 59.7 52.6 45.9 39.6 33.8 28.4 23.5
×158 19.7 1.44 310 81.7 66.4 59.3 52.6 46.2 40.2 34.6 29.4 24.6
×143 19.5 1.32 282 72.5 58.8 52.4 46.4 40.7 35.4 30.4 25.7 21.5
×130 19.3 1.20 256 65.2 52.8 47.0 41.5 36.4 31.5 27.0 22.8 19.0
×119 19.0 1.06 231 61.7 49.8 44.3 39.1 34.2 29.5 25.2 21.2 17.6
×106 18.7 0.940 204 54.4 43.8 38.9 34.3 29.9 25.8 22.0 18.5 15.2
×97 18.6 0.870 188 48.9 39.3 34.9 30.7 26.8 23.1 19.6 16.4 13.5
×86 18.4 0.770 166 43.1 34.6 30.6 26.9 23.4 20.2 17.1 14.3 11.7
×76 18.2 0.680 146 37.6 30.1 26.7 23.4 20.3 17.5 14.8 12.3 10.1
W18×71 18.5 0.810 127 42.4 34.1 30.3 26.7 23.3 20.1 17.1 14.3 11.8
×65 18.4 0.750 117 38.3 30.8 27.3 24.0 20.9 18.0 15.3 12.8 10.5
×60 18.2 0.695 108 35.0 28.1 24.9 21.9 19.1 16.4 13.9 11.6 9.53
×55 18.1 0.630 98.3 32.4 26.0 23.0 20.2 17.6 15.1 12.8 10.7 8.72
×50 18.0 0.570 88.9 29.1 23.4 20.7 18.2 15.8 13.5 11.5 9.54
W18×46 18.1 0.605 78.8 28.9 23.2 20.6 18.1 15.7 13.5 11.5 9.56 7.81
×40 17.9 0.525 68.4 24.9 20.0 17.7 15.5 13.5 11.6 9.80 8.16
×35 17.7 0.425 57.6 22.7 18.2 16.1 14.1 12.3 10.5 8.88 7.37
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 28

Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
—Indicates that cope depth is less than flange thickness.
Note: Values are omitted when cope depth exceeds
d/2.
DESIGN TABLES 9–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W16×100 17.0 0.985 175 44.4 34.9 30.5 26.4 22.6 19.0 15.7 12.8
×89 16.8 0.875 155 39.0 30.6 26.7 23.1 19.7 16.5 13.6 11.0
×77 16.5 0.760 134 33.1 25.9 22.6 19.4 16.5 13.8 11.4 9.13
×67 16.3 0.665 117 28.3 22.1 19.2 16.5 14.0 11.7 9.58 7.66
W16×57 16.4 0.715 92.2 29.4 23.0 20.1 17.3 14.8 12.4 10.2 8.17
×50 16.3 0.630 81.0 25.6 20.0 17.4 15.0 12.7 10.7 8.74 6.99
×45 16.1 0.565 72.7 22.9 17.9 15.5 13.4 11.3 9.47 7.75 6.19
×40 16.0 0.505 64.7 20.1 15.6 13.6 11.7 9.89 8.24 6.73 5.35
×36 15.9 0.430 56.5 18.8 14.6 12.7 10.9 9.21 7.67 6.25
W16×31 15.9 0.440 47.2 17.1 13.3 11.6 9.96 8.44 7.03 5.73
×26 15.7 0.345 38.4 14.9 11.6 10.1 8.64 7.31 6.08 4.95
W14×730 22.4 4.91 1280 365 — — — 220 195 172 151 132 114
×665 21.6 4.52 1150 317 — — — 187 165 144 126 109 93.3
×605 20.9 4.16 1040 275 — — — 158 139 121 105 89.6 76.2
×550 20.2 3.82 931 238 — — 153 134 117 101 86.9 73.8 62.1
×500 19.6 3.50 838 208 — — 131 115 99.4 85.3 72.5 60.9
×455 19.0 3.21 756 182 — — 113 98.2 84.6 72.1 60.7 50.6
×426 18.7 3.04 706 164 — — 101 87.6 75.2 63.8 53.4 44.2
×398 18.3 2.85 656 150 — 104 91.1 78.7 67.2 56.7 47.2 38.7
×370 17.9 2.66 607 135 — 93.7 81.4 70.1 59.6 50.0 41.3
×342 17.5 2.47 558 122 — 83.4 72.3 61.9 52.3 43.6 35.8
×311 17.1 2.26 506 107 — 72.7 62.7 53.5 44.9 37.2 30.2
×283 16.7 2.07 459 94.4 — 63.6 54.6 46.3 38.7 31.8 25.6
×257 16.4 1.89 415 83.1 64.1 55.5 47.4 40.0 33.3 27.1 21.6
×233 16.0 1.72 375 73.2 56.1 48.4 41.3 34.6 28.6 23.2 18.3
×211 15.7 1.56 338 64.9 49.5 42.6 36.1 30.2 24.8 19.9
×193 15.5 1.44 310 57.6 43.8 37.5 31.7 26.4 21.6 17.3
×176 15.2 1.31 281 52.2 39.5 33.8 28.5 23.6 19.2 15.2
×159 15.0 1.19 254 45.7 34.5 29.4 24.7 20.4 16.5 13.0
×145 14.8 1.09 232 40.9 30.7 26.1 21.9 18.0 14.5 11.4
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 29

9–30 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
—Indicates that cope depth is less than flange thickness.
Note: Values are omitted when cope depth exceeds
d/2.
W14×132 14.7 1.03 209 38.1 28.6 24.3 20.3 16.7 13.4 10.5
×120 14.5 0.940 190 34.2 25.5 21.7 18.1 14.8 11.8 9.20
×109 14.3 0.860 173 30.0 22.3 18.9 15.7 12.8 10.2 7.91
×99 14.2 0.780 157 27.2 20.2 17.0 14.2 11.5 9.15 7.04
×90 14.0 0.710 143 24.3 18.0 15.2 12.6 10.2 8.07 6.18
W14×82 14.3 0.855 123 28.0 20.9 17.7 14.8 12.1 9.64 7.46
×74 14.2 0.785 112 24.4 18.2 15.4 12.8 10.4 8.31 6.40
×68 14.0 0.720 103 22.2 16.5 13.9 11.6 9.41 7.46 5.72
×61 13.9 0.645 92.1 19.7 14.6 12.3 10.2 8.28 6.54
W14×53 13.9 0.660 77.8 19.1 14.2 12.0 9.93 8.07 6.39
×48 13.8 0.595 70.2 17.3 12.8 10.8 8.93 7.23 5.71
×43 13.7 0.530 62.6 15.3 11.3 9.49 7.84 6.34 4.99
W14×38 14.1 0.515 54.6 16.0 12.0 10.2 8.48 6.94 5.54 4.28
×34 14.0 0.455 48.6 14.4 10.8 9.14 7.62 6.22 4.95
×30 13.8 0.385 42.0 13.2 9.88 8.37 6.96 5.68 4.51
W14×26 13.9 0.420 35.3 12.3 9.20 7.80 6.50 5.31 4.23
×22 13.7 0.335 29.0 10.7 7.97 6.75 5.62 4.58 3.64
W12×336 16.8 2.96 483 123 — 83.1 71.4 60.6 50.8 41.9 34.1
×305 16.3 2.71 435 108 — 71.4 61.0 51.4 42.7 34.9 28.0
×279 15.9 2.47 393 96.1 — 63.1 53.5 44.8 36.9 29.8
×252 15.4 2.25 353 83.7 — 54.2 45.7 38.0 31.0 24.8
×230 15.1 2.07 321 74.2 — 47.5 39.9 32.9 26.7 21.1
×210 14.7 1.90 292 65.6 49.0 41.6 34.7 28.5 22.9 17.9
×190 14.4 1.74 263 57.0 42.3 35.7 29.7 24.2 19.3 14.9
×170 14.0 1.56 235 49.6 36.5 30.7 25.3 20.5 16.2 12.4
×152 13.7 1.40 209 43.3 31.6 26.5 21.7 17.5 13.7
×136 13.4 1.25 186 37.9 27.5 22.9 18.7 14.9 11.6
×120 13.1 1.11 163 32.8 23.7 19.7 16.0 12.6 9.70
×106 12.9 0.990 145 27.6 19.8 16.3 13.2 10.4 7.91
×96 12.7 0.900 131 24.3 17.4 14.3 11.5 9.03 6.83
×87 12.5 0.810 118 22.2 15.8 13.0 10.4 8.11 6.09
×79 12.4 0.735 107 19.9 14.1 11.5 9.23 7.16 5.35
×72 12.3 0.670 97.4 17.9 12.6 10.3 8.24 6.37 4.73
×65 12.1 0.605 87.9 16.0 11.2 9.16 7.28 5.61 4.14
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 30

Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
Note: Values are omitted when cope depth exceeds d/2.
DESIGN TABLES 9–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
W12×58 12.2 0.640 78.0 14.8 10.4 8.52 6.79 5.24 3.88
×53 12.1 0.575 70.6 13.9 9.75 7.94 6.31 4.85 3.58
W12×50 12.2 0.640 64.2 14.8 10.4 8.54 6.82 5.27 3.91
×45 12.1 0.575 57.7 13.1 9.27 7.56 6.02 4.63 3.42
×40 11.9 0.515 51.5 11.4 8.03 6.54 5.19 3.98
W12×35 12.5 0.520 45.6 12.3 8.85 7.30 5.89 4.61 3.48
×30 12.3 0.440 38.6 10.5 7.47 6.15 4.94 3.86 2.90
×26 12.2 0.380 33.4 9.08 6.47 5.32 4.27 3.32 2.48
W12×22 12.3 0.425 25.4 9.60 6.89 5.69 4.59 3.59 2.71
×19 12.2 0.350 21.3 8.39 6.01 4.95 3.98 3.11 2.33
×16 12.0 0.265 17.1 7.43 5.30 4.36 3.50 2.72
×14 11.9 0.225 14.9 6.61 4.71 3.86 3.10 2.41
W10×112 11.4 1.25 126 25.7 17.5 13.9 10.8 8.02
×100 11.1 1.12 112 22.3 15.0 11.9 9.12 6.72
×88 10.8 0.990 98.5 19.1 12.8 10.0 7.62 5.54
×77 10.6 0.870 85.9 16.2 10.7 8.35 6.29 4.52
×68 10.4 0.770 75.7 13.9 9.13 7.10 5.30 3.77
×60 10.2 0.680 66.7 12.1 7.88 6.09 4.52 3.18
×54 10.1 0.615 60.0 10.5 6.78 5.22 3.85 2.69
×49 10.0 0.560 54.6 9.49 6.13 4.71 3.46 2.40
W10×45 10.1 0.620 49.1 9.75 6.33 4.88 3.61 2.52
×39 9.92 0.530 42.1 8.49 5.48 4.20 3.08
×33 9.73 0.435 35.0 7.49 4.80 3.67 2.67
W10×30 10.5 0.510 32.4 8.64 5.75 4.51 3.41 2.45
×26 10.3 0.440 27.9 7.33 4.86 3.80 2.85 2.04
×22 10.2 0.360 23.2 6.51 4.29 3.34 2.50 1.77
W10×19 10.2 0.395 18.8 6.52 4.33 3.39 2.55 1.82
×17 10.1 0.330 16.2 6.01 3.98 3.10 2.33 1.65
×15 9.99 0.270 13.8 5.53 3.65 2.84 2.12 1.50
×12 9.87 0.210 10.9 4.43 2.91 2.26 1.68
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 31

9–32 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shape
d,
in.
tf,
in.
Sx,
in.
3
So,
in.
3
2345678910
Snet,in.
3
dc, in.
Note: Values are omitted when cope depth exceeds d/2.
W8×67 9.00 0.935 60.4 12.2 7.42 5.44 3.77
×58 8.75 0.810 52.0 10.4 6.24 4.52 3.08
×48 8.50 0.685 43.2 7.89 4.63 3.32 2.21
×40 8.25 0.560 35.5 6.71 3.89 2.74 1.80
×35 8.12 0.495 31.2 5.66 3.24 2.28 1.47
×31 8.00 0.435 27.5 5.06 2.88 2.01 1.28
W8×28 8.06 0.465 24.3 5.04 2.89 2.02 1.30
×24 7.93 0.400 20.9 4.23 2.40 1.67
W8×21 8.28 0.400 18.2 4.55 2.67 1.91 1.26
×18 8.14 0.330 15.2 4.02 2.35 1.66 1.09
W8×15 8.11 0.315 11.8 4.03 2.36 1.68 1.10
×13 7.99 0.255 9.91 3.61 2.10 1.49
×10 7.89 0.205 7.81 2.65 1.54 1.08
Table 9-2 (continued)
Elastic Section Modulus for Coped W-Shapes
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 32

1 16.3 24.5 14.5 21.8 12.7 19.0
1
1
⁄8 19.9 29.9 18.1 27.2 16.3 24.5
1
1
⁄4 23.6 35.3 21.8 32.6 19.9 29.9
1
3
⁄8 27.2 40.8 25.4 38.1 23.6 35.3
1
1
⁄2 30.8 46.2 29.0 43.5 27.2 40.8
1
5
⁄8 34.4 51.7 32.6 48.9 30.8 46.2
1
3
⁄4 38.1 57.1 36.3 54.4 34.4 51.7
1
7
⁄8 41.7 62.5 39.9 59.8 38.1 57.1
2 45.3 68.0 43.5 65.3 41.7 62.5
2
1
⁄4 52.6 78.8 50.7 76.1 48.9 73.4
2
1
⁄2 59.8 89.7 58.0 87.0 56.2 84.3
2
3
⁄4 67.1 101 65.3 97.9 63.4 95.2
3 74.3 111 72.5 109 70.7 106
1 18.3 27.4 16.3 24.4 14.2 21.3
1
1
⁄8 22.3 33.5 20.3 30.5 18.3 27.4
1
1
⁄4 26.4 39.6 24.4 36.6 22.3 33.5
1
3
⁄8 30.5 45.7 28.4 42.7 26.4 39.6
1
1
⁄2 34.5 51.8 32.5 48.8 30.5 45.7
1
5
⁄8 38.6 57.9 36.6 54.8 34.5 51.8
1
3
⁄4 42.7 64.0 40.6 60.9 38.6 57.9
1
7
⁄8 46.7 70.1 44.7 67.0 42.7 64.0
2 50.8 76.2 48.8 73.1 46.7 70.1
2
1
⁄4 58.9 88.4 56.9 85.3 54.8 82.3
2
1
⁄2 67.0 101 65.0 97.5 63.0 94.5
2
3
⁄4 75.2 113 73.1 110 71.1 107
3 83.3 125 81.3 122 79.2 119
DESIGN TABLES 9–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3a
Block Shear
Tension Rupture
Component
per inch of thickness, kips/in.
Fu
3
/4
Leh, in.
LRFDASD
Ubs= 1.0
7
/8 1
58 ksi
Bolt diameter,
d, in.
ASD
LRFD LRFDASD
FuAnt


FuAnt


FuAnt


φ
FuAnt

t
φFuAnt

t
φFuAnt

t
Fu
3
/4
Leh, in.
LRFDASD
7
/8 1
65 ksi
Bolt diameter,
d, in.
ASD
LRFD LRFDASD
FuAnt


FuAnt


FuAnt


φ
FuAnt

t
φFuAnt

t
φFuAnt

t
LRFDASD
Ω=2.00φ=0.75
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 33

9–34 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3b
Block Shear
Shear Yielding
Component
per inch of thickness, kips/in.
Fy, ksi
5036
Lev, in.
LRFDASD
36 50
Fy, ksi
ASD LRFD LRFDASD ASD LRFD
n n 0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
1
1
⁄4 370
555 514 771 273 409 379 568
1
3
⁄8 371 557 516 773 274 411 381 571
1
1
⁄2 373 559 518 776 275 413 383 574
1
5
⁄8 374 561 519 779 277 415 384 577
1
3
⁄4 375 563 521 782 278 417 386 579
1
7
⁄812 377 565 523 785 9 279 419 388 582
2 378 567 525 788 281 421 390 585
2
1
⁄4 381 571 529 793 284 425 394 591
2
1
⁄2 383 575 533 799 286 429 398 596
2
3
⁄4 386 579 536 804 289 433 401 602
3 389 583 540 810 292 437 405 608
1
1
⁄4 337 506 469 703 240 360 334 501
1
3
⁄8 339 508 471 706 242 362 336 503
1
1
⁄2 340 510 473 709 243 364 338 506
1
5
⁄8 342 512 474 712 244 367 339 509
1
3
⁄4 343 514 476 714 246 369 341 512
1
7
⁄811 344 516 478 717 8 247 371 343 515
2 346 518 480 720 248 373 345 518
2
1
⁄4 348 522 484 726 251 377 349 523
2
1
⁄2 351 526 488 731 254 381 353 529
2
3
⁄4 354 531 491 737 257 385 356 534
3 356 535 495 743 259 389 360 540
1
1
⁄4 305 458 424 636 208 312 289 433
1
3
⁄8 306 460 426 638 209 314 291 436
1
1
⁄2 308 462 428 641 211 316 293 439
1
5
⁄8 309 464 429 644 212 318 294 442
1
3
⁄4 310 466 431 647 213 320 296 444
1
7
⁄810 312 468 433 650 7 215 322 298 447
2 313 470 435 653 216 324 300 450
2
1
⁄4 316 474 439 658 219 328 304 456
2
1
⁄2 319 478 443 664 221 332 308 461
2
3
/4 321 482 446 669 224 336 311 467
3 324 486 450 675 227 340 315 473
LRFDASD
Ω=2.00φ=0.75
AISC_PART 9:14th Ed. 2/24/11 8:19 AM Page 34

DESIGN TABLES 9–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3b (continued)
Block Shear
Shear Yielding
Component
per inch of thickness, kips/in.
Fy, ksi
5036
Lev, in.
LRFDASD
36 50
Fy, ksi
ASD LRFD LRFDASD ASD LRFD
n n 0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
0.6FyAgv


φ0.6
FyAgv
≤≤
t
LRFDASD
Ω=2.00φ=0.75
1
1
⁄4 175 263 244 366 78.3 117 109 163
1
3
⁄8 177 265 246 368 79.6 119 111 166
1
1
⁄2 178 267 248 371 81.0 121 113 169
1
5
⁄8 180 269 249 374 82.3 124 114 172
1
3
⁄4 181 271 251 377 83.7 126 116 174
1
7
⁄86 182 273 253 380 3 85.0 128 118 177
2 184 275 255 383 86.4 130 120 180
2
1
⁄4 186 279 259 388 89.1 134 124 186
2
1
⁄2 189 283 263 394 91.8 138 128 191
2
3
⁄4 192 288 266 399 94.5 142 131 197
3 194 292 270 405 97.2 146 135 203
1
1
⁄4 143 215 199 298 45.9 68.8 63.8 95.6
1
3
⁄8 144 217 201 301 47.2 70.9 65.6 98.4
1
1
⁄2 146 219 203 304 48.6 72.9 67.5 101
1
5
⁄8 147 221 204 307 49.9 74.9 69.4 104
1
3
⁄4 148 223 206 309 51.3 76.9 71.3 107
1
7
⁄85 150 225 208 312 2 52.7 79.0 73.1 110
2 151 227 210 315 54.0 81.0 75.0 113
2
1
⁄4 154 231 214 321 56.7 85.0 78.8 118
2
1
⁄2 157 235 218 326 59.4 89.1 82.5 124
2
3
⁄4 159 239 221 332 62.1 93.1 86.3 129
3 162 243 225 338 64.8 97.2 90.0 135
1
1
⁄4 111 166 154 231
1
3
⁄8 112 168 156 233
1
1
⁄2 113 170 158 236
1
5
⁄8 115 172 159 239
1
3
⁄4 116 174 161 242
1
7
⁄84 117 176 163 245
2 119 178 165 248
2
1
⁄4 121 182 169 253
2
1
⁄2 124 186 173 259
2
3
⁄4 127 190 176 264
3 130 194 180 270
AISC_PART 9:14th Ed. 2/24/11 8:20 AM Page 35

9–36 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3c
Block Shear
Shear Rupture
Component
per inch of thickness, kips/in.
58
7
/8
3
/4
Lev, in.
LRFDASD
1
65
ASDLRFDASDLRFD LRFDASD ASD LRFDASDLRFD
n
7
/8
3
/4 1
0.6FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

φ0.6
FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
1
1
/4421
631396594371556472707444665416623
1
3
/8423635398597373560474711446669418627
1
1
/2425638400600375563477715449673420631
1
5
/8427641402604377566479718451676423634
1
3
/4430644405607380569481722453680425638
12 1
7
/8432648407610382573484726456684428642
2 434651409613384576486729458687430645
2
1
/4438657413620388582491737463695435653
2
1
/2443664418626393589496744468702440660
2
3
/4447670422633397595501751473709445667
3 451677426639401602506759478717450675
1
1
⁄4384576361542338507430645405607379569
1
3
⁄8386579363545340511433649407611381572
1
1
⁄2388582365548343514435653410614384576
1
5
⁄8390586368551345517438656412618386580
1
3
⁄4393589370555347520440660414622389583
11 1
7
⁄8395592372558349524442664417625391587
2 397595374561351527445667419629394590
2
1
⁄4401602378568356533450675424636399598
2
1
⁄2406608383574360540455682429644403605
2
3
⁄4410615387581364546459689434651408612
3 414622391587369553464697439658413620
1
1
⁄4347520326489306458389583366548342514
1
3
⁄8349524328493308462391587368552345517
1
1
⁄2351527331496310465394590371556347521
1
5
⁄8353530333499312468396594373559350525
1
3
⁄4356533335502314471399598375563352528
10 1
7
⁄8358537337506316475401601378567355532
2 360540339509319478403605380570357536
2
1
⁄4364546344515323484408612385578362543
2
1
⁄2369553348522327491413620390585367550
2
3
⁄4373560352529332498418627395592372558
3 377566357535336504423634400600377565
LRFDASD
Ω=2.00φ=0.75
Bolt diameter, d, in.
Fu, ksi
AISC_PART 9:14th Ed. 2/24/11 8:20 AM Page 36

DESIGN TABLES 9–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of thickness, kips/in.
58
7
/8
3
/4
Lev, in.
LRFDASD
1
65
ASDLRFDASDLRFD LRFDASD ASD LRFDASDLRFD
n
7
/8
3
/4 1
0.6FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

φ0.6
FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
LRFDASD
Ω=2.00φ=0.75
1
1
⁄4310465291437273409347521327490306459
1
3
⁄8312468294440275413350525329494308463
1
1
⁄2314471296444277416352528332497311466
1
5
⁄8316475298447279419355532334501313470
1
3
⁄4319478300450282422357536336505316473
91
7
⁄8321481302453284426360539339508318477
2 323484305457286429362543341512321481
2
1
⁄4327491309463290436367550346519325488
2
1
⁄2332498313470295442372558351527330495
2
3
⁄4336504318476299449377565356534335503
3 340511322483303455381572361541340510
1
1
⁄4273409257385240361306459288431269404
1
3
⁄8275413259388243364308463290435272408
1
1
⁄2277416261392245367311466293439274411
1
5
⁄8279419263395247370313470295442277415
1
3
⁄4282422265398249374316473297446279419
81
7
⁄8284426268401251377318477300450282422
2 286429270405253380321481302453284426
2
1
⁄4290436274411258387325488307461289433
2
1
⁄2295442278418262393330495312468294441
2
3
⁄4299449283424266400335503317475299448
3 303455287431271406340510322483303455
1
1
⁄4236354222333208312264397249373233349
1
3
⁄8238357224336210315267400251377235353
1
1
⁄2240361226339212318269404254380238356
1
5
⁄8243364228343214321272408256384240360
1
3
⁄4245367231346216325274411258388243364
71
7
⁄8247370233349219328277415261391245367
2 249374235352221331279419263395247371
2
1
/4253380239359225338284426268402252378
2
1
/2258387244365229344289433273410257386
2
3
/4262393248372234351294441278417262393
3 266400252378238357299448283424267400
Bolt diameter, d, in.
Fu, ksi
AISC_PART 9:14th Ed. 2/24/11 8:20 AM Page 37

9–38 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of thickness, kips/in.
7
/8
3
/4
Lev, in.
LRFDASD
1
ASDLRFDASDLRFD LRFDASD ASD LRFDASDLRFD
n
7
/8
3
/4 1
0.6FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

φ0.6
FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
LRFDASD
Ω=2.00φ=0.75
1
1
⁄4199299187281175263223335210314196294
1
3
⁄8201302189284177266225338212318199298
1
1
⁄2203305191287179269228342215322201302
1
5
⁄8206308194290182272230346217325204305
1
3
⁄4208312196294184276233349219329206309
61
7
⁄8210315198297186279235353222333208313
2 212318200300188282238356224336211316
2
1
⁄4216325204307192289243364229344216324
2
1
⁄2221331209313197295247371234351221331
2
3
⁄4225338213320201302252378239358225338
3 229344217326206308257386244366230346
1
1
⁄4162243152228142214182272171256160239
1
3
⁄8164246154232145217184276173260162243
1
1
⁄2166250157235147220186280176263165247
1
5
⁄8169253159238149223189283178267167250
1
3
⁄4171256161241151227191287180271169254
51
7
⁄8173259163245153230194291183274172258
2 175263165248156233196294185278174261
2
1
⁄4179269170254160240201302190285179269
2
1
⁄2184276174261164246206309195293184276
2
3
⁄4188282178268169253211316200300189283
3 192289183274173259216324205307194291
1
1
⁄4125188117176110165140210132197123185
1
3
⁄8127191120179112168143214134201126188
1
1
⁄2129194122183114171145218137205128192
1
5
⁄8132197124186116175147221139208130196
1
3
⁄4134201126189119178150225141212133199
41
7
⁄8136204128192121181152229144216135203
2 138207131196123184155232146219138207
2
1
⁄4142214135202127191160239151227143214
2
1
⁄2147220139209132197165247156234147221
2
3
⁄4151227144215136204169254161241152229
3 156233148222140210174261166249157236
58 65
Bolt diameter,
d, in.
Fu, ksi
AISC_PART 9:14th Ed. 2/24/11 8:20 AM Page 38

DESIGN TABLES 9–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-3c (continued)
Block Shear
Shear Rupture
Component
per inch of thickness, kips/in.
7
/8
3
/4
Lev, in.
LRFDASD
1
ASDLRFDASDLRFD LRFDASD ASD LRFDASDLRFD
n
7
/8
3
/4 1
0.6FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

0.6
FuAnv
≤≤

φ0.6
FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
φ0.6FuAnv
≤≤
t
LRFDASD
Ω=2.00φ=0.75
1
1
⁄4 88.1132 82.6124 77.2116 98.7148 92.6139 86.5130
1
3
⁄8 90.3135 84.8127 79.4119101152 95.1143 89.0133
1
1
⁄2 92.4139 87.0131 81.6122104155 97.5146 91.4137
1
5
⁄8 94.6142 89.2134 83.7126106159 99.9150 93.8141
1
3
⁄4 96.8145 91.4137 85.9129108163102154 96.3144
31
7
⁄8 99.0148 93.5140 88.1132111166105157 98.7148
2 101152 95.7144 90.3135113170107161101152
2
1
⁄4105158100150 94.6142118177112168106159
2
1
⁄2110165104157 99.0148123185117176111166
2
3
⁄4114171109163103155128192122183116174
3 119178113170108161133199127190121181
1
1
⁄4 51.176.747.871.844.666.957.385.953.680.450.075.0
1
3
⁄8 53.379.950.075.046.870.159.789.656.184.152.478.6
1
1
⁄2 55.583.252.278.348.973.462.293.258.587.854.882.3
1
5
/857.686.554.481.651.176.764.696.960.991.457.385.9
1
3
/459.889.756.684.853.379.967.0101 63.495.159.789.6
21
7
/862.093.058.788.155.583.269.5104 65.898.762.293.2
2 64.296.260.991.457.686.571.9108 68.3102 64.696.9
2
1
⁄4 68.5103 65.397.962.093.076.8115 73.1110 69.5104
2
1
⁄2 72.9109 69.6104 66.399.581.7122 78.0117 74.3112
2
3
⁄4 77.2116 73.9111 70.7106 86.5130 82.9124 79.2119
3 81.6122 78.3117 75.0113 91.4137 87.8132 84.1126
58 65
Bolt diameter,
d, in.
Fu, ksi
AISC_PART 9:14th Ed. 2/24/11 8:20 AM Page 39

9–40 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4
Beam Bearing
Constants
Shape kips
LRFDASD
Fy= 50 ksi
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
W44×335 220 330 34.3 51.5 335 502 10.1 15.2
×290 170 255 28.8 43.3 244 365 6.7910.2
×262 144 216 26.2 39.3 200 299 5.68 8.53
×230 119 178 23.7 35.5 159 239 4.94 7.41
W40×593 658 987 59.7 89.5 1040 1550 29.8 44.8
×503 506 758 51.3 77.0 765 1150 22.7 34.1
×431 395 593 44.7 67.0 574 861 17.8 26.8
×397 344 515 40.7 61.0 481 722 14.5 21.8
×372 312 468 38.7 58.0 431 646 13.5 20.3
×362 298 447 37.3 56.0 405 607 12.4 18.7
×324 249 374 33.3 50.0 324 486 9.9314.9
×297 219 329 31.0 46.5 277 416 8.8513.3
×277 191 286 27.7 41.5 229 343 6.59 9.88
×249 163 244 25.0 37.5 186 280 5.45 8.17
×215 130 195 21.7 32.5 139 209 4.17 6.26
×199 122 183 21.7 32.5 131 196 4.79 7.19
W40×392 438 657 47.3 71.0 647 970 19.7 29.6
×331 337 505 40.7 61.0 474 710 15.1 22.6
×327 325 488 39.3 59.0 451 676 13.7 20.5
×294 275 412 35.3 53.0 365 548 11.0 16.6
×278 257 385 34.3 51.5 339 508 10.9 16.3
×264 233 349 32.0 48.0 298 447 9.2413.9
×235 191 286 27.7 41.5 229 343 6.59 9.88
×211 163 244 25.0 37.5 186 280 5.45 8.17
×183 129 193 21.7 32.5 138 207 4.24 6.36
×167 120 180 21.7 32.5 128 192 4.99 7.49
×149 106 158 21.0 31.5 110 165 5.70 8.55
W36×652 737 1110 65.7 98.5 1250 1880 38.0 56.9
×529 518 777 53.7 80.5 839 1260 26.0 39.1
×487 454 681 50.0 75.0 724 1090 23.2 34.7
×441 384 576 45.3 68.0 597 895 19.1 28.7
×395 320 480 40.7 61.0 481 722 15.5 23.3
×361 276 414 37.3 56.0 405 607 13.3 19.9
×330 238 357 34.0 51.0 337 506 11.0 16.5
×302 207 311 31.5 47.3 287 430 9.7314.6
×282 186 279 29.5 44.3 251 377 8.6012.9
×262 167 251 28.0 42.0 222 334 8.0612.1
×247 153 230 26.7 40.0 200 300 7.4711.2
×231 140 210 25.3 38.0 179 269 6.9010.3
For R1and R2 For R3, R4, R5, R6
φ=1.00Ω=1.50
ASD LRFD LRFDASD
φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 40

DESIGN TABLES 9–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
kips
lb/ft LRFDASD
Fy= 50 ksi
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
—Indicates that 3
1
/4-in. bearing length is insufficient for end beam reactions since lb<k.
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
335 30545813.520.3331497331497 5518279061360
290 224 3369.0513.6264396264396 4346517541130
262 183 2757.5811.4218327229344 3735606801020
230 145 2186.599.88175263196293 315471547822
593 951 143039.859.7— — — — 1510226015402310
503 701 105030.345.4— — — — 1180177013001950
431 525 78723.835.7— — — — 935140011101660
397 442 66219.429.1— — — — 820123010001500
372 394 59118.127.1438657438657 75011209421410
362 371 55716.624.9419629419629 71710809091360
324 297 44613.219.9356534357537 6069118041210
297 254 38111.817.7306459320480 5398097401110
277 211 3178.7813.2250375281421 472707659989
249 172 2587.2610.9204307244366 407610591887
215 129 1935.568.34153229201301 305459507761
199 118 1776.399.58147219193289 293439503755
392 592 88826.339.5— — — — 1030154011801770
331 433 64920.130.2— — — — 80612109961490
327 413 62018.227.3— — — — 77811709631440
294 335 50314.722.1390584390584 6659968561280
278 310 46414.521.7368552368552 6259378281240
264 273 41012.318.5328492337505 5708547681150
235 211 3178.7813.2250375281421 472707659989
211 172 2587.2610.9204307244366 407610591887
183 127 1915.658.48152228200299 304455507761
167 115 1736.659.98144216191286 288433502753
149 95.2 1437.6011.4129193174260 257386432650
652 1150 172050.675.9— — — — 1690254016202430
529 770 116034.752.1— — — — 1210182012801920
487 664 99530.946.3— — — — 1070161011801770
441 547 82025.538.3— — — — 915137010601590
395 442 66220.731.1452678452678 77211609371410
361 371 55717.726.6397596397596 67310108511280
330 310 46514.722.0349523349523 5878807691150
302 263 39413.019.5309465309465 5167767051060
282 230 34511.517.2279419282423 468702657985
262 203 30410.716.1248373258388 425639620930
247 182 2739.9614.9224336240360 393590587881
231 162 2439.1913.8201302222334 362544555832
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 41

9–42 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W36×256 198 298 32.0 48.0 298 447 9.8814.8
×232 168 252 29.0 43.5 245 367 8.1712.3
×210 146 219 27.7 41.5 212 319 8.2812.4
×194 128 192 25.5 38.3 181 271 7.0310.5
×182 117 175 24.2 36.3 161 242 6.43 9.64
×170 105 157 22.7 34.0 142 212 5.71 8.56
×160 95.9 144 21.7 32.5 127 191 5.40 8.11
×150 88.0 132 20.8 31.3 115 173 5.23 7.84
×135 77.0 116 20.0 30.0 99.5149 5.55 8.32
W33×387 322 484 42.0 63.0 514 771 17.6 26.4
×354 278 418 38.7 58.0 435 652 15.2 22.7
×318 232 348 34.7 52.0 351 527 12.2 18.3
×291 202 302 32.0 48.0 298 447 10.6 15.9
×263 171 257 29.0 43.5 245 367 8.7813.2
×241 151 227 27.7 41.5 215 323 8.6312.9
×221 133 200 25.8 38.8 186 279 7.7511.6
×201 116 173 23.8 35.8 156 234 6.8110.2
W33×169 107 161 22.3 33.5 146 219 5.27 7.90
×152 93.1 140 21.2 31.8 125 188 5.21 7.81
×141 83.7 126 20.2 30.3 111 167 5.00 7.51
×130 75.4 113 19.3 29.0 98.4148 4.98 7.47
×118 66.0 99.0 18.3 27.5 84.5127 4.94 7.41
W30×391 366 549 45.3 68.0 597 895 22.4 33.7
×357 313 470 41.3 62.0 498 747 18.7 28.1
×326 270 405 38.0 57.0 420 630 16.1 24.2
×292 224 337 34.0 51.0 337 506 13.0 19.4
×261 189 284 31.0 46.5 277 416 11.1 16.7
×235 158 238 27.7 41.5 223 335 8.8013.2
×211 136 203 25.8 38.8 189 283 8.2512.4
×191 117 175 23.7 35.5 157 236 7.0810.6
×173 101 151 21.8 32.8 132 198 6.24 9.36
W30×148 99.1 149 21.7 32.5 137 206 5.48 8.22
×132 84.6 127 20.5 30.8 116 174 5.55 8.32
×124 77.0 116 19.5 29.3 104 156 5.15 7.73
×116 70.6 106 18.8 28.3 94.3141 5.11 7.67
×108 64.0 96.1 18.2 27.3 84.5127 5.16 7.75
×99 57.2 85.8 17.3 26.0 73.9111 5.11 7.66
×90 49.4 74.0 15.7 23.5 60.6 90.9 4.17 6.25
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
kips
LRFDASD
kips/in. kips
LRFDASD ASD
kips/in.kips kips/in. kips kips/in.
LRFD
φ
R1
R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
ASDLRFD
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 42

DESIGN TABLES 9–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
—Indicates that 3
1
/4-in. bearing length is insufficient for end beam reactions since lb<k.
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
256 27341013.219.8302 454302454500 7527181080
232 225 33710.916.3262 393262393430 645646 968
210 192 28811.016.6236 354236354382 573609 914
194 164 246 9.3814.1204 305211316339 508558 838
182 146 219 8.5712.9182 273196293313 468526 790
170 128 192 7.6111.4161 240179268284 425492 738
160 114 172 7.2010.8145 217166250262 394468 702
150 103 154 6.9710.5132 198156234244 366449 673
135 86.3 129 7.4011.1118 176142214219 330384 577
387 472 70823.535.2459 68945968978111709071360
354 399 59920.230.3404 60740460768210208261240
318 322 48416.324.4345 517345517577 8657321100
291 273 41014.221.2306 458306458508 7606681000
263 225 33711.717.6265 398265398436 655600 900
241 196 29411.517.3241 362241362392 589568 852
221 168 25310.315.5211 317217326350 526525 788
201 141 211 9.0913.6178 267193289309 462482 723
169 134 201 7.0310.5163 245179270286 431453 679
152 114 171 6.9510.4142 213162243255 383425 638
141 99.9 150 6.6710.0127 191149224233 350403 604
130 87.4 131 6.649.96115 172138207214 320384 576
118 73.7 111 6.589.87101 151125188191 287325 489
391 547 82029.944.9513 77051377087913209031350
357 457 68525.037.5447 67244767276011408131220
326 385 57721.532.2394 590394590664 9957391110
292 310 46517.325.9335 503335503559 840653 979
261 254 38114.922.3290 435290435479 719588 882
235 205 30711.717.6248 373248373406 611520 779
211 172 25811.016.5216 323220329356 532479 718
191 143 214 9.4414.2180 270194290311 465436 654
173 119 179 8.3212.5152 228172258273 409398 597
148 126 189 7.3011.0155 233170255269 404399 599
132 105 157 7.4011.1134 201151227236 354373 559
124 93.5 140 6.8710.3121 181140211217 327353 530
116 84.1 126 6.8110.2111 166132198202 304339 509
108 74.2 111 6.8910.3101 152123185187 281325 487
99 63.8 95.76.8110.290.5136113170171 256309 463
90 52.4 78.65.568.3474.2111100150148 222249 374
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 43

9–44 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W27×539 711 1070 65.7 98.51250 1880 48.0 72.0
×368 376 564 46.0 69.0 615 922 25.2 37.8
×336 322 484 42.0 63.0 514 771 21.1 31.7
×307 278 418 38.7 58.0 435 652 18.2 27.3
×281 240 360 35.3 53.0 365 548 15.2 22.8
×258 209 314 32.7 49.0 311 466 13.2 19.9
×235 182 273 30.3 45.5 265 398 11.8 17.7
×217 158 238 27.7 41.5 223 335 9.7014.5
×194 133 200 25.0 37.5 181 272 8.0912.1
×178 120 179 24.2 36.3 162 243 8.3212.5
×161 103 154 22.0 33.0 134 201 6.9710.5
×146 88.7 133 20.2 30.3 112 168 5.99 8.98
W27×129 86.4 130 20.3 30.5 120 181 5.40 8.10
×114 72.7 109 19.0 28.5 99.9150 5.27 7.91
×102 61.4 92.117.2 25.8 81.1122 4.39 6.58
×94 54.7 82.116.3 24.5 71.3107 4.24 6.36
×84 47.5 71.315.3 23.0 60.1 90.2 4.12 6.17
W24×370 408 612 50.7 76.0 744 1120 33.3 50.0
×335 343 514 46.0 69.0 615 922 27.8 41.8
×306 292 438 42.0 63.0 514 771 23.4 35.1
×279 250 376 38.7 58.0 435 652 20.2 30.3
×250 207 311 34.7 52.0 351 527 16.3 24.5
×229 178 268 32.0 48.0 298 447 14.2 21.3
×207 150 225 29.0 43.5 245 367 11.8 17.7
×192 132 198 27.0 40.5 212 318 10.3 15.5
×176 115 173 25.0 37.5 181 272 9.0313.5
×162 101 152 23.5 35.3 157 236 8.3012.5
×146 86.1 129 21.7 32.5 132 198 7.3711.1
×131 73.6 110 20.2 30.3 111 167 6.8010.2
×117 61.9 92.818.3 27.5 90.6136 5.82 8.73
×104 52.1 78.116.7 25.0 73.7111 5.00 7.49
W24×103 67.8 102 18.3 27.5 97.2146 5.01 7.51
×94 59.2 88.817.2 25.8 83.3125 4.64 6.96
×84 49.7 74.615.7 23.5 68.1102 4.04 6.06
×76 43.3 64.914.7 22.0 58.0 86.9 3.79 5.68
×68 37.7 56.513.8 20.8 49.2 73.9 3.72 5.59
×62 39.1 58.614.3 21.5 52.2 78.2 4.11 6.16
×55 33.2 49.913.2 19.8 42.5 63.7 3.74 5.60
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 44

DESIGN TABLES 9–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
—Indicates that 3
1
/4-in. bearing length is insufficient for end beam reactions since lb<k.
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
539 1150172064.096.0— — — — 1640246012801920
368 564 84633.650.4— — — — 90213508391260
336 472 70828.242.3459689459 689 78111707561130
307 399 59924.336.5404607404 607 68210206871030
281 335 50320.330.4355532355 532 595892621932
258 285 42817.726.5315473315 473 524787568853
235 243 36415.723.6280421280 421 462694522784
217 205 30712.919.4248373248 373 406611471707
194 166 24910.816.2207311214 322 347522422632
178 147 22011.116.6189284199 297 319476403605
161 121 182 9.2913.9157235175 261 278415364546
146 101 151 7.9912.0131197154 231 243364332497
129 110 166 7.2010.8138207152 229 239359337505
114 90.4 136 7.0310.5117176134 202 207311311467
102 73.2 110 5.858.7795.4143117 176 179268279419
94 63.7 95.55.668.4885.1128108 162 162244264395
84 52.8 79.25.498.2373.5110 97.2146 145217246368
370 682 102044.466.6573859573 859 98114708511280
335 564 84637.155.7493738493 738 83612507591140
306 472 70831.246.8429643429 643 72110806831020
279 399 59926.940.4376565376 565 626941619929
250 322 48421.832.7320480320 480 527791547821
229 273 41018.928.4282424282 424 460692499749
207 225 33715.723.6244366244 366 394591447671
192 195 29213.820.6220330220 330 352528413620
176 166 24912.018.1196295196 295 311468378567
162 144 21511.116.6177267177 267 278419353529
146 120 179 9.8314.7156234157 235 243364321482
131 99.9 150 9.0713.6133200139 208 213318296445
117 81.1 122 7.7611.6110164121 182 183275267401
104 65.7 98.66.669.9990.0135106 159 158237241362
103 89.1 134 6.6810.0113170127 191 195293270404
94 75.7 114 6.199.2898.4148115 173 174261250375
84 61.6 92.45.398.0881.2122101 151 150226227340
76 51.9 77.95.057.5770.3105 91.1136 134201210315
68 43.4 65.04.977.4561.392.182.6124 120181197295
62 45.7 68.55.488.2265.698.285.6128 125187204306
55 36.6 54.94.987.4754.781.976.1114 109164167252
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 45

9–46 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W21×201 162 242 30.3 45.5 267 400 14.5 21.8
×182 137 205 27.7 41.5 222 332 12.3 18.4
×166 116 174 25.0 37.5 182 274 9.9614.9
×147 99.0 149 24.0 36.0 158 237 10.6 15.9
×132 83.4 125 21.7 32.5 129 193 8.7513.1
×122 73.0 110 20.0 30.0 110 165 7.4911.2
×111 63.3 94.9 18.3 27.5 91.9138 6.39 9.58
×101 54.2 81.3 16.7 25.0 76.2114 5.28 7.91
W21×93 69.1 104 19.3 29.0 103 154 7.0210.5
×83 57.5 86.3 17.2 25.8 81.3122 5.52 8.28
×73 47.0 70.5 15.2 22.8 63.6 95.4 4.34 6.51
×68 42.6 64.0 14.3 21.5 56.2 84.3 3.97 5.96
×62 37.3 56.0 13.3 20.0 47.8 71.7 3.58 5.37
×55 31.9 47.8 12.5 18.8 40.0 59.9 3.51 5.26
×48 27.1 40.7 11.7 17.5 32.7 49.1 3.50 5.25
W21×57 38.8 58.2 13.5 20.3 50.0 75.1 3.50 5.25
×50 32.9 49.4 12.7 19.0 41.3 61.9 3.56 5.34
×44 27.7 41.6 11.7 17.5 33.5 50.2 3.33 4.99
W18×311 410 616 50.7 76.0 747 1120 41.5 62.3
×283 350 525 46.7 70.0 631 946 36.2 54.3
×258 288 432 42.7 64.0 529 793 30.6 46.0
×234 243 364 38.7 58.0 437 656 25.3 38.0
×211 204 306 35.3 53.0 363 545 21.8 32.6
×192 172 258 32.0 48.0 300 450 17.9 26.9
×175 148 221 29.7 44.5 255 382 16.0 24.0
×158 124 186 27.0 40.5 211 316 13.5 20.3
×143 105 157 24.3 36.5 173 259 10.9 16.4
×130 89.3 134 22.3 33.5 145 217 9.3814.1
×119 79.7 120 21.8 32.8 131 197 10.1 15.1
×106 65.9 98.8 19.7 29.5 106 159 8.4412.7
×97 56.6 84.9 17.8 26.8 87.9132 6.8410.3
×86 46.8 70.2 16.0 24.0 70.3105 5.64 8.46
×76 38.3 57.4 14.2 21.3 55.0 82.5 4.48 6.72
W18×71 49.9 74.9 16.5 24.8 75.5113 5.85 8.77
×65 43.1 64.7 15.0 22.5 63.0 94.4 4.77 7.16
×60 38.0 57.1 13.8 20.8 53.7 80.5 4.08 6.12
×55 33.5 50.2 13.0 19.5 46.6 69.8 3.76 5.64
×50 28.8 43.1 11.8 17.8 38.5 57.7 3.15 4.73
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 46

DESIGN TABLES 9–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
201 24536719.429.0260390260390422 632419 628
182 203 30416.424.6227340227340364 545377 565
166 167 25113.319.9197296197296313 470338 506
147 142 21314.121.2177266177266276 415318 477
132 116 17411.717.5154231154231237 356283 425
122 98.8 148 9.9915.0134201138208211 318260 391
111 82.7 124 8.5212.8113169123184186 279237 355
101 68.6 103 7.0310.693.4140108163163 244214 321
93 92.5 139 9.3614.0126188132198201 302251 376
83 73.5 110 7.3611.099.2149113170171 256220 331
73 57.5 86.25.788.6877.7117 96.4145143 215193 289
68 50.6 75.95.307.9569.1104 89.1134132 198181 272
62 42.8 64.24.777.1659.489.280.5121118 177168 252
55 35.1 52.64.687.0251.477.072.5109103 154156 234
48 27.9 41.84.666.9944.166.265.197.688.2132144 216
57 45.1 67.74.677.0061.492.282.7124121 182171 256
50 36.3 54.54.757.1352.979.374.2111106 159158 237
44 28.9 43.34.436.6544.366.465.798.588.6133145 217
311 685 103055.483.157586357586398514806781020
283 578 86748.372.45027535027538521280613 920
258 485 72840.961.34276404276407151070550 826
234 401 60233.850.7369553369553612 917490 734
211 333 50029.043.5319478319478523 784439 658
192 275 41323.935.8276414276414448 672392 588
175 234 35021.432.0245366245366393 587356 534
158 193 28918.027.1212318212318336 504319 479
143 158 23814.621.8184276184276289 433285 427
130 133 19912.518.8162243162243251 377259 388
119 119 17813.420.2151227151227230 347249 373
106 95.3 14311.316.9130195130195196 293221 331
97 79.4 119 9.1213.7110165114172171 257199 299
86 63.4 95.07.5211.388.6132 98.8148146 218177 265
76 49.6 74.45.988.9669.6104 84.5127123 184155 232
71 68.3 102 7.8011.794.5142104156153 230183 275
65 57.1 85.76.369.5478.5118 91.9138135 203166 248
60 48.7 73.15.448.1667.0100 82.9125121 182151 227
55 42.0 63.05.017.5258.888.175.8114109 164141 212
50 34.7 52.04.206.3048.773.167.2101 96.0144128 192
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 47

9–48 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W18×46 30.3 45.512.0 18.0 40.5 60.7 3.08 4.62
×40 24.3 36.510.5 15.8 30.9 46.3 2.40 3.60
×35 20.7 31.010.0 15.0 25.8 38.7 2.59 3.89
W16×100 67.8 102 19.5 29.3 107 160 8.6413.0
×89 56.0 84.017.5 26.3 85.7129 7.1110.7
×77 44.0 66.015.2 22.8 64.4 96.7 5.43 8.14
×67 35.2 52.813.2 19.8 48.8 73.1 4.11 6.16
W16×57 40.1 60.214.3 21.5 57.4 86.1 4.90 7.35
×50 32.6 48.912.7 19.0 44.8 67.2 3.86 5.79
×45 27.8 41.711.5 17.3 36.7 55.0 3.26 4.89
×40 23.1 34.610.2 15.3 28.8 43.2 2.54 3.81
×36 20.5 30.7 9.83 14.8 25.3 38.0 2.71 4.07
W16×31 19.3 28.9 9.17 13.8 23.0 34.6 2.15 3.22
×26 15.6 23.3 8.33 12.5 17.7 26.5 2.08 3.13
W14×730 1410 2110 102 154 2870 4310 190 285
×665 1210 1810 94.3 142 2440 3660 168 252
×605 1030 1550 86.7 130 2060 3090 146 219
×550 877 1310 79.3 119 1730 2590 126 189
×500 748 1120 73.0 110 1460 2190 111 166
×455 641 962 67.3 101 1240 1860 97.6146
×426 569 853 62.7 94.01080 1620 84.4127
×398 507 761 59.0 88.5 957 1440 76.8115
×370 451 676 55.3 83.0 840 1260 69.4104
×342 394 591 51.3 77.0 723 1090 61.0 91.6
×311 336 504 47.0 70.5 606 909 52.4 78.6
×283 287 431 43.0 64.5 508 762 44.9 67.3
×257 245 367 39.3 59.0 424 637 38.3 57.4
×233 207 310 35.7 53.5 350 524 32.2 48.2
×211 176 265 32.7 49.0 292 438 27.8 41.6
×193 151 227 29.7 44.5 243 364 22.8 34.2
×176 132 198 27.7 41.5 208 313 20.7 31.1
×159 111 167 24.8 37.3 169 253 16.7 25.1
×145 95.8 144 22.7 34.0 141 211 14.1 21.1
W14×132 87.6 131 21.5 32.3 127 190 12.8 19.2
×120 75.7 114 19.7 29.5 106 159 10.9 16.3
×109 63.9 95.817.5 26.3 85.0127 8.5012.8
×99 55.8 83.716.2 24.3 71.8108 7.4411.2
×90 48.0 72.114.7 22.0 59.2 88.8 6.19 9.29
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:21 AM Page 48

DESIGN TABLES 9–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
—Indicates that 3
1
/4-in. bearing length is insufficient for end beam reactions since lb<k.
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
46 36.755.14.106.1650.575.769.3104 99.6150130 195
40 28.0 42.03.204.8138.758.058.487.977.4116113 169
35 22.7 34.13.465.1934.251.353.279.868.4103106 159
100 97.2 14611.517.3131197131197 199299199 298
89 77.7 117 9.4814.2109164113169 169253176 265
77 58.5 87.77.2410.982.0123 93.4140 137206150 225
67 44.3 66.45.488.2262.293.178.1117 113170129 193
57 52.1 78.16.539.8073.3110 86.6130 127190141 212
50 40.6 60.95.157.7257.386.073.9111 106160124 186
45 33.2 49.84.356.5247.371.065.297.993.0140111 167
40 26.1 39.23.385.0737.155.756.384.374.1111 97.6146
36 22.4 33.63.625.4334.251.252.478.868.2102 93.8141
31 20.8 31.12.864.3030.145.149.173.860.090.187.5131
26 15.5 23.32.784.1724.536.942.763.948.973.370.5106
730 25903880253380 — — — — 3150472013802060
665 22003290224335 — — — — 2730408012201830
605 18602780195292 — — — — 2340352010901630
550 15602340168252 — — — — 201030109621440
500 13201970147221 — — — — 173026008581290
455 11201670130195 — — — — 150022507681150
426 977 1470113169 — — — — 134020107031050
398 864 1300102154 — — — — 12101810648 972
370 757 114092.5139 — — — — 10801620594 891
342 652 97881.4122 561841561841 9551430539 809
311 546 82069.9105 489733489733 8251240482 723
283 458 68759.889.7427641427641 7141070431 646
257 383 57451.176.6373559373559 618926387 581
233 315 47342.964.3323484323484 530794342 514
211 263 39437.055.5282424282424 458689308 462
193 219 32930.445.6248372248372 399599276 414
176 187 28127.741.5222333222333 354531252 378
159 152 22822.333.5192288192288 303455224 335
145 127 19118.828.2170255170255 265399201 302
132 114 17117.125.6157236157236 245367190 284
120 95.3 14314.521.8140210140210 215324171 257
109 76.9 11511.317.0114170121181 185277150 225
99 64.8 97.29.9214.997.0146108163 164246138 207
90 53.4 80.28.2612.480.2121 95.8144 144216123 185
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 49

9–50 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W14×82 61.6 92.417.0 25.5 81.1 122 7.8411.8
×74 51.8 77.615.0 22.5 64.4 96.6 5.91 8.86
×68 45.3 68.013.8 20.8 54.6 81.9 5.12 7.68
×61 38.8 58.112.5 18.8 44.4 66.6 4.25 6.37
W14×53 38.5 57.812.3 18.5 44.0 66.1 3.99 5.98
×48 33.7 50.611.3 17.0 36.8 55.2 3.46 5.19
×43 28.5 42.710.2 15.3 29.5 44.3 2.82 4.23
W14×38 23.6 35.510.3 15.5 29.8 44.7 2.96 4.45
×34 20.3 30.5 9.5014.3 24.7 37.1 2.63 3.94
×30 17.7 26.5 9.0013.5 21.0 31.4 2.68 4.01
W14×26 17.4 26.1 8.5012.8 20.1 30.1 2.05 3.08
×22 14.1 21.1 7.6711.5 15.4 23.1 1.92 2.87
W12×336 527 790 59.3 89.0 984 1480 81.9123
×305 448 672 54.3 81.5 825 1240 70.8106
×279 391 587 51.0 76.5 716 1070 65.9 98.8
×252 333 499 46.7 70.0 598 898 57.2 85.8
×230 287 431 43.0 64.5 508 762 49.6 74.4
×210 246 369 39.3 59.0 426 638 42.5 63.8
×190 206 309 35.3 53.0 347 520 34.3 51.5
×170 173 259 32.0 48.0 283 424 29.3 43.9
×152 145 218 29.0 43.5 231 347 24.8 37.2
×136 122 183 26.3 39.5 189 284 21.3 31.9
×120 101 151 23.7 35.5 152 228 17.8 26.7
×106 80.8 121 20.3 30.5 114 171 12.8 19.3
×96 68.8 103 18.3 27.5 93.2 140 10.5 15.8
×87 60.5 90.817.2 25.8 80.1 120 9.7514.6
×79 52.1 78.115.7 23.5 66.5 99.8 8.2312.3
×72 45.5 68.314.3 21.5 55.6 83.4 6.9710.5
×65 39.0 58.513.0 19.5 45.6 68.4 5.85 8.78
W12×58 37.2 55.812.0 18.0 41.6 62.4 4.32 6.48
×53 33.9 50.911.5 17.3 37.0 55.5 4.26 6.40
W12×50 35.2 52.712.3 18.5 43.4 65.0 4.69 7.03
×45 30.2 45.211.2 16.8 35.4 53.1 3.90 5.86
×40 25.1 37.6 9.8314.8 27.7 41.5 3.03 4.54
W12×35 20.5 30.810.0 15.0 28.5 42.8 3.00 4.50
×30 16.0 24.1 8.6713.0 21.2 31.8 2.35 3.52
×26 13.0 19.6 7.6711.5 16.4 24.6 1.90 2.84
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 50

DESIGN TABLES 9–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
—Indicates that 3
1
/4-in. bearing length is insufficient for end beam reactions since lb<k.
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
82 73.611010.515.7108161117175 178268146219
74 58.8 88.27.8811.884.4127101151 152228128192
68 49.9 74.86.8310.272.1108 90.2136 135204116174
61 40.5 60.75.678.5058.988.379.4119 116175104156
53 40.3 60.55.327.9857.686.478.5118 114171103154
48 33.6 50.54.616.9248.673.070.4106 96.1144 93.8141
43 27.0 40.43.765.6539.258.861.792.477.3116 83.6125
38 27.0 40.63.955.9339.859.957.185.978.8118 87.4131
34 22.3 33.43.505.2533.750.551.277.066.599.879.8120
30 18.5 27.83.575.3530.145.247.070.459.488.974.5112
26 18.2 27.32.744.1027.140.645.067.753.580.270.9106
22 13.6 20.42.553.8321.932.839.058.543.364.963.094.5
336 892 1340109164 — — — — 12501870598897
305 748 112094.4142 — — — — 10701610531797
279 646 97087.9132 557836557836 9481420487730
252 540 80976.3114 485727485727 8181230431647
230 458 68766.299.2427641427641 7141070390584
210 384 57656.785.0374561374561 620930347520
190 314 47145.868.7321481321481 527790305458
170 256 38339.058.5277415277415 450674269403
152 209 31333.149.6239359239359 384577238358
136 170 25528.442.5207311207311 329494212318
120 136 20423.735.6178266178266 279417186279
106 103 15517.125.7147220147220 228341157236
96 84.3 12614.021.0128192128192 197295140210
87 72.0 10813.019.5114171116175 177265129193
79 59.7 89.611.016.595.5143103154 155233117175
72 49.9 74.89.2913.980.1120 92.0138 137206106159
65 40.9 61.47.8111.766.399.481.3122 120180 94.4142
58 38.1 57.25.768.6356.885.276.2114 111167 87.8132
53 33.6 50.35.698.5352.178.071.3107 102153 83.5125
50 39.5 59.36.259.3759.889.875.2113 110166 90.3135
45 32.3 48.45.217.8149.273.866.699.896.2144 81.1122
40 25.3 37.94.046.0538.457.657.085.775.1113 70.2105
35 26.0 39.14.006.0039.058.653.079.673.5110 75.0113
30 19.3 28.93.134.6929.544.144.266.457.786.564.095.9
26 14.8 22.32.533.7923.034.637.957.045.267.756.184.2
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 51

Table 9-4 (continued)
Beam Bearing
Constants
Shape
Fy= 50 ksi
W12×22 15.7 23.6 8.6713.0 20.8 31.2 2.43 3.64
×19 12.7 19.1 7.8311.8 16.2 24.3 2.20 3.29
×16 10.4 15.5 7.3311.0 12.8 19.2 2.42 3.63
×14 8.75 13.1 6.6710.0 10.2 15.3 2.16 3.24
W10×112 110 165 25.2 37.8 177 265 21.8 32.7
×100 91.8 138 22.7 34.0 143 214 18.3 27.4
×88 75.1 113 20.2 30.3 113 169 15.0 22.4
×77 60.5 90.817.7 26.5 86.7 130 11.7 17.5
×68 49.7 74.615.7 23.5 68.1 102 9.3714.1
×60 41.3 62.014.0 21.0 54.1 81.1 7.7211.6
×54 34.5 51.812.3 18.5 42.5 63.8 5.89 8.84
×49 30.0 45.111.3 17.0 35.7 53.6 5.07 7.61
W10×45 32.7 49.011.7 17.5 39.3 58.9 4.95 7.42
×39 27.0 40.610.5 15.8 31.0 46.5 4.30 6.44
×33 22.6 33.9 9.6714.5 24.8 37.2 4.16 6.24
W10×30 20.3 30.410.0 15.0 28.3 42.4 3.64 5.46
×26 16.0 24.1 8.6713.0 21.2 31.8 2.80 4.20
×22 13.2 19.8 8.0012.0 17.0 25.5 2.72 4.08
W10×19 14.5 21.7 8.3312.5 18.9 28.4 2.80 4.20
×17 12.6 18.9 8.0012.0 16.3 24.4 3.00 4.49
×15 10.9 16.4 7.6711.5 13.8 20.7 3.26 4.89
×12 8.08 12.1 6.33 9.50 9.14 13.7 2.39 3.59
W8×67 63.2 94.819.0 28.5 100 150 15.9 23.9
×58 51.0 76.517.0 25.5 78.9 118 13.5 20.3
×48 36.0 54.013.3 20.0 50.4 75.6 7.9411.9
×40 28.6 42.912.0 18.0 38.9 58.4 7.3010.9
×35 23.0 34.410.3 15.5 29.2 43.9 5.35 8.03
×31 19.7 29.5 9.5014.3 24.2 36.3 4.81 7.21
W8×28 20.4 30.6 9.5014.3 25.0 37.5 4.46 6.69
×24 16.2 24.3 8.1712.3 18.5 27.7 3.35 5.02
W8×21 14.6 21.9 8.3312.5 19.0 28.6 3.41 5.11
×18 12.1 18.1 7.6711.5 15.3 22.9 3.27 4.91
W8×15 12.6 18.8 8.1712.3 16.4 24.6 4.16 6.24
×13 10.6 16.0 7.6711.5 13.4 20.1 4.31 6.47
×10 7.15 10.7 5.67 8.50 7.64 11.5 2.19 3.29
For R1and R2 For R3, R4, R5, R6
ASD LRFD LRFDASD
9–52 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips/in.kips kips/in. kips kips/in.
LRFDASD
φR1R1/Ω φR2R2/Ω φR3R3/Ω φR4R4/Ω
φ=1.00Ω=1.50 φ=0.75Ω=2.00
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 52

DESIGN TABLES 9–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 9-4 (continued)
Beam Bearing
Constants
Nom-
inal
Wt.
lb/ft
Fy= 50 ksi
x<d/2 d/2 ≤ x≤ dx >d
(lb=3
1
/4in.)
Vnx/ΩvφvVnx
lb=length of bearing, in.
x=location of concentrated force with respect to the member end, in.
22 18.828.23.244.8629.344.043.965.957.486.164.095.9
19 14.4 21.72.934.3923.936.038.157.546.770.057.386.0
16 10.9 16.33.234.8421.432.034.251.341.362.052.879.2
14 8.51 12.82.884.3217.926.830.445.634.451.742.864.3
112 160 240 29.143.6192288192288302453172258
100 129 194 24.436.5166249166249257387151226
88 102 153 20.029.9141211141211216324131196
77 78.4118 15.623.3118177118177179268112169
68 61.6 92.412.518.7101151101151150226 97.8147
60 48.8 73.210.315.482.3123 86.8130128192 85.7129
54 38.5 57.87.8611.864.096.274.5112109164 74.7112
49 32.3 48.56.7610.154.381.366.7100 96.7145 68.0102
45 35.9 53.96.609.8957.486.070.7106103155 70.7106
39 28.2 42.25.738.5946.870.161.192.088.1133 62.593.7
33 22.1 33.25.558.3340.160.354.081.076.6115 56.484.7
30 25.7 38.64.867.2941.562.352.879.273.1110 63.094.5
26 19.3 28.93.745.6031.547.144.266.460.290.553.680.3
22 15.1 22.73.635.4426.940.439.258.851.777.549.073.4
19 17.0 25.53.745.6029.243.741.662.356.084.051.076.5
17 14.2 21.44.005.9927.240.938.657.951.276.848.572.7
15 11.6 17.44.356.5225.738.635.853.846.770.246.068.9
12 7.57 11.43.194.7817.926.928.743.033.850.737.556.3
67 90.7136 21.231.8125187125187188282103154
58 71.1107 18.027.0106159106159157236 89.3134
48 45.9 68.910.615.979.2119 79.2119115173 68.0102
40 34.9 52.49.7314.666.599.967.6101 96.2144 59.489.1
35 26.3 39.57.1410.749.574.356.584.879.5119 50.375.5
31 21.6 32.46.419.6142.463.650.676.070.3105 45.668.4
28 22.6 33.95.958.9341.962.951.377.171.7108 45.968.9
24 16.7 25.14.476.7031.246.942.864.358.888.038.958.3
21 17.2 25.74.546.8232.047.941.762.556.384.441.462.1
18 13.5 20.24.366.5527.741.537.055.549.173.637.456.2
15 14.1 21.25.558.3232.148.239.258.851.877.639.759.6
13 11.1 16.75.758.6329.844.735.553.446.169.436.855.1
10 6.49 9.732.934.3916.024.025.638.329.544.426.840.2
kips
LRFDASD
kips/in. kips
LRFDASD LRFDASD
kips kipskips kips/in. kips kips kips kips kips
LRFDASD
φR5R5/Ω φR6R6/Ω
φRnRn/Ω φRnRn/Ω
LRFDASD LRFDASD
φRnRn/Ω
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 53

9–54 DESIGN OF CONNECTING ELEMENTS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 9:14th Ed. 2/24/11 8:22 AM Page 54

PART 10
DESIGN OF SIMPLE SHEAR CONNECTIONS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–4
FORCE TRANSFER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–4
COMPARING CONNECTION ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
Two-Sided Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
Seated Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
One-Sided Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
CONSTRUCTABILITY CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
Double Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
Accessibility in Column Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
Field-Welded Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
Riding the Fillet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
DOUBLE-ANGLE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
Available Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
Recommended Angle Length and Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–9
DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3) . . . . . . . . . . . . . . 10–9
Table 10-1. All-Bolted Double-Angle Connections . . . . . . . . . . . . . . . . . . . . . . . . 10–13
Table 10-2. Available Weld Strength of Bolted/Welded Double-Angle
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–46
Table 10-3. Available Weld Strength of All-Welded Double-Angle
Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–47
SHEAR END-PLATE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
Recommended End-Plate Dimensions and Thickness . . . . . . . . . . . . . . . . . . . . . . 10–49
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
DESIGN TABLE DISCUSSION (TABLE 10-4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–50
Table 10-4. Bolted/Welded Shear End-Plate Connections . . . . . . . . . . . . . . . . . . . 10–51
UNSTIFFENED SEATED CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–84
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–85
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–85
Bolted/Welded Unstiffened Seated Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 10–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
10–1
AISC_PART 10A:14th Ed. 4/1/11 9:00 AM Page 1

10–2 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) . . . . . . . . . . . . . . . . . . 10–85
Table 10-5. All-Bolted Unstiffened Seated Connections . . . . . . . . . . . . . . . . . . . . 10–89
Table 10-6. All-Welded Unstiffened Seated Connections . . . . . . . . . . . . . . . . . . . 10–91
STIFFENED SEATED CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–93
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–94
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–95
DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8) . . . . . . . . . . . . . . . . . . 10–95
Table 10-7. All-Bolted Stiffened Seated Connections . . . . . . . . . . . . . . . . . . . . . . 10–97
Table 10-8. Bolted/Welded Stiffened Seated Connections . . . . . . . . . . . . . . . . . . . 10–98
SINGLE-PLATE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
Conventional Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
Dimensional Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–103
Table 10-9. Design Values for Conventional Single-Plate
Shear Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–103
Extended Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–103
Dimensional Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–104
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–104
Requirement for Stabilizer Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–105
Recommended Plate Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–106
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–106
DESIGN TABLE DISCUSSION (TABLE 10-10) . . . . . . . . . . . . . . . . . . . . . . . . . . 10–107
Table 10-10. Single-Plate Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–108
SINGLE-ANGLE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–132
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–133
Recommended Angle Length and Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–133
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–133
DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12) . . . . . . . . . . . . . . . 10–134
Table 10-11. All-Bolted Single-Angle Connections . . . . . . . . . . . . . . . . . . . . . . . 10–135
Table 10-12. Bolted/Welded Single-Angle Connections . . . . . . . . . . . . . . . . . . . 10–136
TEE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–138
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–138
Recommended Tee Length and Flange and Web Thicknesses . . . . . . . . . . . . . . . 10–139
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–139
SHEAR SPLICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–139
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 2

DESIGN OF SIMPLE SHEAR CONNECTIONS 10–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS . . . . . . . 10–141
Simple Shear Connections Subject to Axial Forces . . . . . . . . . . . . . . . . . . . . . . . 10–141
Simple Shear Connections at Stiffened Column-Web Locations . . . . . . . . . . . . . 10–141
Eccentric Effect of Extended Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–143
Column-Web Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–143
Girder-Web Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–146
Alternative Treatment of Eccentric Moment . . . . . . . . . . . . . . . . . . . . . . . . . . 10–147
Double Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–147
Supported Beams of Different Nominal Depths . . . . . . . . . . . . . . . . . . . . . . . 10–147
Supported Beams Offset Laterally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–147
Beams Offset from Column Centerline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–147
Framing to the Column Flange from the Strong Axis . . . . . . . . . . . . . . . . . . . 10–147
Framing to the Column Flange from the Weak Axis . . . . . . . . . . . . . . . . . . . . 10–150
Framing to the Column Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–153
Connections for Raised Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–153
Non-Rectangular Simple Shear Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–157
Skewed Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–159
Sloped Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–162
Canted Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–164
Inclines in Two or More Directions (Hip and Valley Framing) . . . . . . . . . . . 10–166
DESIGN CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS
TO HSS COLUMNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167
Double-Angle Connections to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167
Single-Plate Connections to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167
Unstiffened Seated Connections to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167
Stiffened Seated Connections to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–168
Through-Plate Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–168
Single-Angle Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–169
DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A, 10-14B, 10-14C
AND 10-15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–169
Table 10-13. Minimum Inside Radius for Cold-Blending . . . . . . . . . . . . . . . . . . 10–172
Table 10-14A. Clearances for All-Bolted Skewed Connections . . . . . . . . . . . . . 10–173
Table 10-14B. Clearances for Bolted/Welded Skewed Connections . . . . . . . . . . 10–174
Table 10-14C. Welding Details for Skewed Single-Plate Connections . . . . . . . . 10–176
Table 10-15. Required Length and Thickness for Stiffened Seated
Connections to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–178
PART 10 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–181
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 3

10–4 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of simple shear connections. For the design of partially restrained
moment connections, see Part 11. For the design of fully restrained (FR) moment
connections, see Part 12.
FORCE TRANSFER
The required strength (end reaction), R uor Ra, is determined by analysis as indicated in AISC
SpecificationSection B3.6a. Per AISC SpecificationSection J1.2, the ends of members with
simple shear connections are normally assumed to be free to rotate under load. While simple
shear connections do actually possess some rotational restraint (see curve A in Figure 10-1),
this small amount can be neglected and the connection idealized as completely flexible. The
simple shear connections shown in this Manual are suitable to accommodate the end rotations
required per AISC SpecificationSection J1.2.
Support rotation is acceptably limited for most framing details involving simple shear
connections without explicit consideration. The case of a bare spandrel girder supporting
infill beams, however, may require consideration to verify that an acceptable level of support
rotational stiffness is present. Sumner (2003) showed that a nominal interconnection between
Fig. 10-1. Illustration of typical moment rotation curve for simple shear connection.
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 4

CONSTRUCTABILITY CONSIDERATIONS 10–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the top flange of the girder and the top flange of the framing beam is sufficient to limit
support rotation.
COMPARING CONNECTION ALTERNATIVES
Two-Sided Connections
Two-sided connections, such as double-angle and shear end-plate connections, offer the
following advantages:
1. suitability for use when the end reaction is large;
2. compact connections (usually, the entire connection is contained within the flanges of
the supported beam); and,
3. eccentricity perpendicular to the beam axis need not be considered for workable gages
(see Table 1-7A).
Note that two-sided connections may require additional consideration for erectability, as
discussed in “Constructability Considerations” below.
Seated Connections
Unstiffened and stiffened seated connections offer the following advantages:
1. seats can be shop attached to the support, simplifying erection;
2. ample erection clearance is provided;
3. excellent safety during erection since double connections often can be eliminated; and,
4. the bay length of the structure is easily maintained (seated connections may be prefer-
able when maintaining bay length is a concern for repetitive bays of framing).
One-Sided Connections
One-sided connections such as single-plate, single-angle and tee connections offer the
following advantages:
1. shop attachment of connection elements to the support, simplifying shop fabrication
and erection;
2. reduced material and shop labor requirements;
3. ample erection clearance is provided; and,
4. excellent safety during erection since double connections often can be eliminated.
CONSTRUCTABILITY CONSIDERATIONS
Double Connections
A double connection occurs in field-bolted construction when beams or girders frame
opposite each other. Double connections are a safety concern when they occur in the web of
a column (see Figure 10-2) or the web of a beam that frames continuously over the top of a
column
1
and all field bolts take the same open holes. A positive connection must be made
1
This requirement applies only at the location of the column, not at locations away from the column.
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 5

10–6 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and maintained for the first member to be erected while the second member to be erected is
brought into its final position. Conditions requiring the connector to hang one beam
temporarily on a partially inserted bolt or drift pin are not allowed by OSHA.
Framing details can be configured using staggered angles or other similar details to
provide a means to make a positive connection for the first member while the second
member is brought into its final position. Alternatively, a temporary erection seat, as shown
in Figure 10-2, can be provided. The erection seat, usually an angle, is sized and attached to
the column web to support the dead weight of the member, unless additional loading is
indicated in the contract documents. It is located to clear the bottom flange of the supported
member by approximately
3
/8in. to accommodate mill, fabrication and erection tolerances.
The sequence of erection is most important in determining the need for erection seats. If
the erection sequence is known, the erection seat is provided on the side needing the support.
If the erection sequence is not known, a seat can be provided on both sides of the column
web. Temporary erection seats may be reused at other locations after the connection(s) are
made, but need not be removed unless they create an interference or removal is required in
the contract documents.
See also the discussion under “Special Considerations for Simple Shear Connections.”
Accessibility in Column Webs
Because of bolting and welding clearances, double-angle, shear end-plate, single-plate,
single-angle, and tee shear connections may not be suitable for connections to the webs of
W-shape and similar columns, particularly for W8 columns, unless gages are reduced. Such
connections may be impossible for W6, W5 and W4 columns.
There is also an accessibility concern for entering and tightening the field bolts when the
connection material is shop-attached to the supporting column web and contained within the
column flanges.
Fig. 10-2. Erection seat.
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 6

DOUBLE-ANGLE CONNECTIONS 10–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Field-Welded Connections
In field-welded connections, temporary erection bolts are usually provided to support the
member until final welding is performed. A minimum of two bolts (one bolt in bracing
members) must be placed for erection safety per OSHA requirements. Additional erection
bolts may be required for loads during erection, to assist in pulling the connection angles
up tightly against the web of the supporting beam prior to welding or for other reasons.
Temporary erection bolts may be reused at other locations after final welding, but need not be
removed unless they create an interference or removal is required in the contract documents.
Riding the Fillet
The detailed dimensions of connection elements must be compatible with the T-dimension
of an uncoped beam and the remaining web depth of a coped beam. Note that the element
may encroach upon the fillet(s), as given in Figure 10-3.
DOUBLE-ANGLE CONNECTIONS
A double-angle connection is made with two angles, one on each side of the web of the beam
to be supported, as illustrated in Figure 10-4. These angles may be bolted or welded to the
supported beam as well as to the supporting member.
When the angles are welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Figure 10-4(c), line welds are placed along the toes of the
angles with a return at the top per AISC SpecificationSection J2.2b. Note that welding
across the entire top of the angles must be avoided as it inhibits the flexibility and, therefore,
the necessary end rotation of the connection. The performance of the resulting connection
would not be as intended for simple shear connections.
Available Strength
The available strength of a double-angle connection is determined from the applicable limit
states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In
all cases, the available strength, φR
nor Rn/Ω, must equal or exceed the required strength,
R
uor Ra.
Fig. 10-3. Fillet encroachment (riding the fillet).
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 7

10–8 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For standard or short-slotted holes, eccentricity on the supported side of double angle
connections may be neglected for gages [distance from the face of the outstanding angle legs
to the centerline of the vertical bolt row, shown as dimension ain Figure 10-4(a)] not
exceeding 3 in., except in the case of a double vertical row of bolts through the web of the
supported beam. Eccentricity should always be considered in the design of welds for dou-
ble-angle connections.
Fig. 10-4. Double-angle connections.
(a) All-bolted
(c) Bolted/welded, angles welded to support
(b) Bolted/welded, angles welded to support beam
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 8

DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3) 10–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Recommended Angle Length and Thickness
To provide for stability during erection, it is recommended that the minimum angle length
be one-half the T-dimension of the beam to be supported. The maximum length of the
connection angles must be compatible with the T-dimension of an uncoped beam and the
remaining web depth of a coped beam. Note that the element may encroach upon the fillet(s),
as given in Figure 10-3.
To provide for flexibility, the maximum angle thickness for use with workable gages
should be limited to
5
/8in. Alternatively, the shear-connection ductility checks illustrated in
Part 9 can be used to justify other combinations of gage and angle thickness.
Shop and Field Practices
When framing to a girder web, both angles are usually shop-attached to the web of the
supported beam. When framing to a column web, both angles should be shop-attached to the
supported beam, when possible, and the associated constructability considerations should be
addressed (see the preceding discussion under “Constructability Considerations”).
When framing to a column flange, both angles can be shop-attached to the column flange
or the supported beam. In the former case, this is a knifed connection, as illustrated in Figure
10-4(c), which requires an erection clearance, as illustrated in Figure 10-5(a), and that the
bottom flange be coped. Also, provision must be made for possible mill variation in the
depth of the columns, particularly in fairly long runs (i.e., six or more bays of framing). If
both angles are shop-attached to the beam web, the beam length can be shortened to provide
for mill overrun with shims furnished at the appropriate intervals to fill the resulting gaps or
to provide for mill underrun. If both angles are shop-attached to the column flange, the
erected beam is knifed into place and play in the open holes is normally sufficient to provide
for the necessary adjustment. Alternatively, short-slotted holes can also be used.
When special requirements preclude the use of any of the foregoing practices, one
angle could be shop-attached to the support and the other shipped loose. In this case, the
spread between the outstanding legs should equal the decimal beam web thickness plus a
clearance that will produce an opening to the next higher
1
/16-in. increment, as illustrated
in Figure 10-5(b). Alternatively, short-slotted holes in the support leg of the angle
eliminate the need to provide for variations in web thickness. Note that the practice of
shipping one angle loose is not desirable because it requires additional material handling
as well as added erection costs and complexity.
DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3)
Table 10-1. All-Bolted Double-Angle Connections
Table 10-1 is a design aid for all-bolted double-angle connections. Available strengths are
tabulated for supported and supporting member material with F
y=50 ksi and F u=65 ksi
and angle material with F
y=36 ksi and F u=58 ksi. Eccentricity effects on the supported
(beam) side of the connections are neglected, as discussed previously for gages not
exceeding 3 in. All values, including slip-critical bolt available strengths, are for comparison
with the governing LRFD or ASD load combination.
Tabulated bolt and angle available strengths consider the limit states of bolt shear, bolt
bearing on the angles, shear yielding of the angles, shear rupture of the angles, and block
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 9

10–10 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
shear rupture of the angles. Values are tabulated for 2 through 12 rows of
3
/4-in.-,
7
/8-in.- and
1-in.-diameter Group A and Group B bolts (as defined in AISC SpecificationSection J3.1)
at 3-in. spacing. For calculation purposes, angle edge distances, L
evand L eh, are assumed to
be 1
1
/4in.
Tabulated beam web available strengths, per in. of web thickness, consider the limit
state of bolt bearing on the beam web. For beams coped at the top flange only, the limit
state of block shear rupture is also considered. Additionally, for beams coped at both the
top and bottom flanges, the tabulated values consider the limit states of shear yielding and
shear rupture of the beam web. Values are tabulated for beam web edge distances, L
ev,
from 1
1
/4in. to 3 in. and for beam end distances, L eh, of 1
1
/2in. and 1
3
/4in. For calculation
purposes, these end distances have been reduced to 1
1
/4in. and 1
1
/2in., respectively, to
account for possible underrun in beam length. For coped members, the limit states of
flexural yielding and local buckling must be checked independently per Part 9. When
required, web reinforcement of coped members is treated as in Part 9.
Fig. 10-5. Erection clearances for double-angle connections.
(a) Both angles shop attached to the column flange (beam knifed into place)
(b) One shop attached to the column flange, other shipped loose
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 10

DESIGN TABLE DISCUSSION (TABLES 10-1, 10-2 AND 10-3) 10–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tabulated supporting member available strengths, per in. of flange or web thickness,
consider the limit state of bolt bearing on the support. Note that resistance and safety factors
are not noted in these tables, as they vary by limit state.
Table 10-2. Available Weld Strength of Bolted/Welded
Double-Angle Connections
Table 10-2 is a design aid arranged to permit substitution of welds for bolts in connections
designed with Table 10-1. Electrode strength is assumed to be 70 ksi. Holes for erection
bolts may be placed as required in angle legs that are to be field-welded.
Welds A may be used in place of bolts through the supported-beam web legs of the double
angles or welds B may be used in place of bolts through the support legs of the double
angles. Although it is permissible to use welds A and B from Table 10-2 in combination to
obtain all-welded connections, it is recommended that such connections be selected from
Table 10-3. This table will allow increased flexibility in the selection of angle lengths and
connection strengths because Table 10-2 conforms to the bolt spacing and edge distance
requirements for the all-bolted double-angle connections of Table 10-1.
Weld available strengths are tabulated for the limit state of weld shear. Available strengths
for welds A are determined by the instantaneous center of rotation method using Table 8-8
with θ=0°. Available strengths for welds B are determined by the elastic method. With the
neutral axis assumed at one-sixth the depth of the angles measured downward and the tops
of the angles in compression against each other through the beam web, the available
strength, φR
nor Rn/Ω, of these welds is determined by
where
D=number of sixteenths-of-an-inch in the weld size
L=length of the connection angles, in.
e=width of the leg of the connection angle attached to the support, in.
Note that φ=0.75 is included in the right hand side of Equation 10-1a and Ω=2.00 is
included in the right hand side of Equation 10-1b.
The tabulated minimum thicknesses of the supported beam web for welds A and the
support for welds B match the shear rupture strength of these elements with the strength of
the weld metal. As derived in Part 9, the minimum supported beam web thickness for welds
A (two lines of weld) is
(9-3)
t
D
Fmin
u=
619.
LRFD ASD
RDL
e
Ln
Ω
=
+












2
0 928
1
12 96 2
2
.
.
φR
DL
e
Ln=
+












2
1 392
1
12 96
2
2
.
.
(10-1b)(10-1a)
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 11

10–12 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and the minimum supporting flange or web thickness for welds B (one line of weld) is
(9-2)
When welds B line up on opposite sides of the support, the minimum thickness is the sum
of the thicknesses required for each weld. In either case, when less than the minimum
material thickness is present, the tabulated weld available strength must be reduced by the
ratio of the thickness provided to the minimum thickness.
When Table 10-2 is used, the minimum angle thickness is the weld size plus
1
/16in., but
not less than the angle thickness determined from Table 10-1. The angle length, L, must be
as tabulated in Table 10-2. In general, 2L4×3
1
/2will accommodate workable gages, with the
4-in. leg attached to the supporting member. The width of web legs in Case I (web legs
welded and outstanding legs bolted) may be optionally reduced from 3
1
/2in. to 3 in. The
width of outstanding legs in Case II (web legs bolted and outstanding legs welded) may be
optionally reduced from 4 in. to 3 in. for values of Lfrom 5
1
/2through 17
1
/2in.
Table 10-3. Available Weld Strength of All-Welded
Double-Angle Connections
Table 10-3 is a design aid for all-welded double-angle connections. Electrode strength is
assumed to be 70 ksi. Holes for erection bolts may be placed as required in angle legs that
are to be field-welded.
Weld available strengths are tabulated for the limit state of weld shear. Available strengths
for welds A are determined by the instantaneous center of rotation method using Table 8-8
with θ=0°. Available strengths for welds B are determined by the elastic method as
discussed previously for bolted/welded double-angle connections.
The tabulated minimum thicknesses of the supported beam web for welds A and the
support for welds B match the shear rupture strength of these elements with the strength of
the weld metal and are determined as discussed previously for Table 10-2. When welds B
line up on opposite sides of the support, the minimum thickness is the sum of the thicknesses
required for each weld. When less than the minimum material thickness is present, the
tabulated weld available strength must be reduced by the ratio of the thickness provided to
the minimum thickness.
When Table 10-3 is used, the minimum angle thickness must be equal to the weld size
plus
1
/16in. The angle length, L, must be as tabulated in Table 10-3. 2L4×3
1
/2should be used
for angle lengths equal to or greater than 18 in. For angle length less than 18 in., the 4-in.
leg can be reduced to 3 in.
t
D
Fmin
u=
309.
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 12

DESIGN TABLES 10–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle
3
/4
-in.
BoltsBeam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1
All-Bolted Double-Angle
Connections
1400
2110
W44
12 Rows
N STD 197 295246369286430286430
X STD 197 295246369295443361541
STD 152 228152228152228152228
OVS 129 194129194129194129194
SSLT 152 228152228152228152228
STD 197 295246369253380253380
OVS 196 294216323216323216323
SSLT 195 293244366253380253380
N STD 197 295246369295443361541
X STD 197 295246369295443393590
STD 190 285190285190285190285
OVS 162 242162242162242162242
SSLT 190 285190285190285190285
STD 197 295246369295443316475
OVS 196 294245367270403270403
SSLT 195 293244366293440316475
1
1
/4498747506759468702476714495743503755
1
3
/8501751509763470706479718497746506758
1
1
/2503754511767473709481722500750508762
1
5
/8505758514770475713483725502753510766
2 513769521781483724491736510764518777
3 532798540810502753510765529794537806
1
1
/4488731488731458687458687488731488731
1
3
/8492739492739463695463695492739492739
1
1
/2497746497746468702468702497746497746
1
5
/8502753502753473709473709502753502753
2 513769517775483724488731510764517775
3 532798540810502753510765529794537806
702105070210507021050702105070210507021050
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
B
Group
A
AISC_PART 10A:14th Ed. 2/24/11 9:13 AM Page 13

10–14 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1290
1930
W44, 40
11 Rows
N STD 181 271226338263394263394
X STD 181 271226338271406331496
STD 139 209139209139209139209
OVS 119 178119178119178119178
SSLT 139 209139209139209139209
STD 181 271226338232348232348
OVS 180 269198296198296198296
SSLT 179 269224336232348232348
N STD 181 271226338271406331496
X STD 181 271226338271406361542
STD 174 261174261174261174261
OVS 148 222148222148222148222
SSLT 174 261174261174261174261
STD 181 271226338271406290435
OVS 180 269225337247370247370
SSLT 179 269224336269403290435
1
1
/4457685465697429644437656454680462693
1
3
/8459689467701431647440659456684464696
1
1
/2462692470704434651442663458688467700
1
5
/8464696472708436654444667461691469704
2 471707479719444665452678468702476714
3 491736499748463695471707488732496744
1
1
/4446669446669419629419629446669446669
1
3
/8451676451676424636424636451676451676
1
1
/2456684456684429644429644456684456684
1
5
/8461691461691434651434651461691461691
2 471707475713444665449673468702475713
3 491736499748463695471707488732496744
644965644965644965644965644965644965
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 14

DESIGN TABLES 10–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
1170 1760
Hole
Type
ASD LRFD
W44, 40, 36
10 Rows
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
N STD 164 246205308239358239358
X STD 164 246205308246370301451
STD 127 190127190127190127190
OVS 108 161108161108161108161
SSLT 127 190127190127190127190
STD 164 246205308211316211316
OVS 163 245180269180269180269
SSLT 163 244204306211316211316
N STD 164 246205308246370301451
X STD 164 246205308246370329493
STD 158 237158237158237158237
OVS 135 202135202135202135202
SSLT 158 237158237158237158237
STD 164 246205308246370264396
OVS 163 245204306225336225336
SSLT 163 244204306244367264396
Group
A
Group
B
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
1
1
/4415
623423635390585398597412618420630
1
3
/8418626426639392589401601415622423634
1
1
/2420630428642395592403605417626425638
1
5
/8423634431646397596405608419629428641
2 430645438657405607413619427640435652
3 449674457686424636432648446669454682
1
1
/4405607405607380570380570405607405607
1
3
/8410614410614385578385578410614410614
1
1
/2414622414622390585390585414622414622
1
5
/8419629419629395592395592419629419629
2 430645434651405607410614427640434651
3 449674457686424636432648446669454682
585878585878585878585878585878585878
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 15

10–16 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1050
1580
W44, 40, 36, 33
9 Rows
N STD 148 222185278215322215322
X STD 148 222185278222333271406
STD 114 171114171114171114171
OVS 97.1 14597.114597.114597.1145
SSLT 114 171114171114171114171
STD 148 222185278190285190285
OVS 147 221162242162242162242
SSLT 147 220183275190285190285
N STD 148 222185278222333271406
X STD 148 222185278222333296444
STD 142 214142214142214142214
OVS 121 182121182121182121182
SSLT 142 214142214142214142214
STD 148 222185278222333237356
OVS 147 221184276202303202303
SSLT 147 220183275220330237356
1
1
/4374561382573351527359539371556379568
1
3
/8376564384576353530362542373560381572
1
1
/2379568387580356534364546376563384576
1
5
/8381572389584358537366550378567386579
2 388583397595366548374561385578393590
3 408612416624385578393590405607413619
1
1
/4363545363545341512341512363545363545
1
3
/8368552368552346519346519368552368552
1
1
/2373559373559351527351527373559373559
1
5
/8378567378567356534356534378567378567
2 388583392589366548371556385578392589
3 408612416624385578393590405607413619
527790527790527790527790527790527790
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 16

DESIGN TABLES 10–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
936
1400
W44, 40, 36, 33, 30
8 Rows
N STD 132 198165247191286191286
X STD 132 198165247198297240361
STD 101 152101152101152101152
OVS 86.3 12986.312986.312986.3129
SSLT 101 152101152101152101152
STD 132 198165247169253169253
OVS 131 197144215144215144215
SSLT 131 196163245169253169253
N STD 132 198165247198297240361
X STD 132 198165247198297264396
STD 127 190127190127190127190
OVS 108 161108161108161108161
SSLT 127 190127190127190127190
STD 132 198165247198297211316
OVS 131 197164246180269180269
SSLT 131 196163245196294211316
1
1
/4332498340511312468320480329494337506
1
3
/8335502343514314472323484332498340510
1
1
/2337506345518317475325488334501342513
1
5
/8340509348522319479327491337505345517
2 347520355533327490335502344516352528
3 366550375562346519354531363545372557
1
1
/4322483322483302453302453322483322483
1
3
/8327490327490307461307461327490327490
1
1
/2332497332497312468312468332497332497
1
5
/8336505336505317475317475336505336505
2 347520351527327490332497344516351527
3 366550375562346519354531363545372557
468702468702468702468702468702468702
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/17/12 10:35 AM Page 17

10–18 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
819
1230
W44, 40, 36, 33, 30,
27, 24
7 Rows
N STD 116 174145217167251167251
X STD 116 174145217174260210316
STD 88.6 13388.613388.613388.6133
OVS 75.5 11375.511375.511375.5113
SSLT 88.6 13388.613388.613388.6133
STD 116 174145217148221148221
OVS 115 172126188126188126188
SSLT 114 172143214148221148221
N STD 116 174145217174260210316
X STD 116 174145217174260231347
STD 111 166111166111166111166
OVS 94.4 14194.414194.414194.4141
SSLT 111 166111166111166111166
STD 116 174145217174260185277
OVS 115 172144215157235157235
SSLT 114 172143214172257185277
1
1
/4291436299449273410281422288432296444
1
3
/8293440301452275413284425290435298448
1
1
/2296444304456278417286429293439301451
1
5
/8298447306459280420288433295443303455
2 306458314470288431296444302454311466
3 325488333500307461315473322483330495
1
1
/4280420280420263395263395280420280420
1
3
/8285428285428268402268402285428285428
1
1
/2290435290435273410273410290435290435
1
5
/8295442295442278417278417295442295442
2 306458310464288431293439302454310464
3 325488333500307461315473322483330495
410614410614410614410614410614410614
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 18

DESIGN TABLES 10–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
702
1050
W40, 36, 33, 30, 27,
24, 21
6 Rows
N STD 99.5 149124187143215143215
X STD 99.5 149124187149224180271
STD 75.9 11475.911475.911475.9114
OVS 64.7 96.864.796.864.796.864.796.8
SSLT 75.9 11475.911475.911475.9114
STD 99.5 149124187127190127190
OVS 98.6 148108161108161108161
SSLT 98.2 147123184127190127190
N STD 99.5 149124187149224180271
X STD 99.5 149124187149224199299
STD 94.9 14294.914294.914294.9142
OVS 80.9 12180.912180.912180.9121
SSLT 94.9 14294.914294.914294.9142
STD 99.5 149124187149224158237
OVS 98.6 148123185135202135202
SSLT 98.2 147123184147221158237
1
1
/4249374258386234351242363246370255382
1
3
/8252378260390236355245367249373257385
1
1
/2254381262394239358247371251377259389
1
5
/8257385265397241362249374254381262393
2 264396272408249373257385261392269404
3 284425292438268402276414281421289433
1
1
/4239358239358224336224336239358239358
1
3
/8244366244366229344229344244366244366
1
1
/2249373249373234351234351249373249373
1
5
/8254380254380239358239358254380254380
2 264396268402249373254380261392268402
3 284425292438268402276414281421289433
351527351527351527351527351527351527
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 19

10–20 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
585
878
W30, 27, 24, 21, 18
5 Rows
N STD 83.3 125104156119179119179
X STD 83.3 125104156125187150225
STD 63.3 94.963.394.963.394.963.394.9
OVS 53.9 80.753.980.753.980.753.980.7
SSLT 63.3 94.963.394.963.394.963.394.9
STD 83.3 125104156105158105158
OVS 82.4 12489.913489.913489.9134
SSLT 82.0 123102154105158105158
N STD 83.3 125104156125187150225
X STD 83.3 125104156125187167250
STD 79.1 11979.111979.111979.1119
OVS 67.4 10167.410167.410167.4101
SSLT 79.1 11979.111979.111979.1119
STD 83.3 125104156125187132198
OVS 82.4 124103155112168112168
SSLT 82.0 123102154123184132198
1
1
/4208312216324195293203305205307213320
1
3
/8210316219328197296206308207311216323
1
1
/2213319221332200300208312210315218327
1
5
/8215323223335202303210316212318220331
2 223334231346210314218327220329228342
3 242363250375229344237356239359247371
1
1
/4197296197296185278185278197296197296
1
3
/8202303202303190285190285202303202303
1
1
/2207311207311195293195293207311207311
1
5
/8212318212318200300200300212318212318
2 223334227340210314215322220329227340
3 242363250375229344237356239359247371
293439293439293439293439293439293439
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:14 AM Page 20

DESIGN TABLES 10–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
468
702
W24, 21, 18, 16
4 Rows
N STD 67.1 10183.912695.514395.5143
X STD 67.1 10183.9126101151120180
STD 50.6 75.950.675.950.675.950.675.9
OVS 43.1 64.543.164.543.164.543.164.5
SSLT 50.6 75.950.675.950.675.950.675.9
STD 67.1 10183.912684.412784.4127
OVS 65.3 97.971.910871.910871.9108
SSLT 65.8 98.782.212384.412784.4127
N STD 67.1 10183.9126101151120180
X STD 67.1 10183.9126101151134201
STD 63.3 94.963.394.963.394.963.394.9
OVS 53.9 80.753.980.753.980.753.980.7
SSLT 63.3 94.963.394.963.394.963.394.9
STD 67.1 10183.9126101151105158
OVS 65.3 97.981.612289.913489.9134
SSLT 65.8 98.782.212398.7148105158
1
1
/4167250175262156234164246164245172257
1
3
/8169254177266158238167250166249174261
1
1
/2171257180269161241169254168253177265
1
5
/8174261182273163245171257171256179268
2 181272189284171256179268178267186279
3 201301209313190285198297198296206309
1
1
/4156234156234146219146219156234156234
1
3
/8161241161241151227151227161241161241
1
1
/2166249166249156234156234166249166249
1
5
/8171256171256161241161241171256171256
2 181272185278171256176263178267185278
3 201301209313190285198297198296206309
234351234351234351234351234351234351
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 21

10–22 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
351
526
W18, 16, 14, 12, 10
+
+
Ltd. to W10x12, 15, 17,
19, 22, 26, 30
3 Rows
N STD 50.9 76.463.795.571.610771.6107
X STD 50.9 76.463.795.576.411590.2135
STD 38.0 57.038.057.038.057.038.057.0
OVS 32.4 48.432.448.432.448.432.448.4
SSLT 38.0 57.038.057.038.057.038.057.0
STD 50.9 76.463.394.963.394.963.394.9
OVS 47.9 71.853.980.753.980.753.980.7
SSLT 49.6 74.462.092.963.394.963.394.9
N STD 50.9 76.463.795.576.411590.2135
X STD 50.9 76.463.795.576.4115102153
STD 47.5 71.247.571.247.571.247.571.2
OVS 40.4 60.540.460.540.460.540.460.5
SSLT 47.5 71.247.571.247.571.247.571.2
STD 50.9 76.463.795.576.411579.1119
OVS 47.9 71.859.889.767.410167.4101
SSLT 49.6 74.462.092.974.411279.1119
1
1
/4125188133200117176125188122183130195
1
3
/8128191136204119179128191125187133199
1
1
/2130195138207122183130195127190135203
1
5
/8132199141211124186132199129194138206
2 140210148222132197140210137205145217
3 159239167251151227159239156234164246
1
1
/4115172115172107161107161115172115172
1
3
/8119179119179112168112168119179119179
1
1
/2124186124186117176117176124186124186
1
5
/8129194129194122183122183129194129194
2 140210144216132197137205137205144216
3 159239167251151227159239156234164246
176263176263176263176263176263176263
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 22

DESIGN TABLES 10–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
234
351
W12, 10, 8
2 Rows
N STD 32.6 48.940.861.247.771.647.771.6
X STD 32.6 48.940.861.248.973.460.190.2
STD 25.3 38.025.338.025.338.025.338.0
OVS 21.6 32.321.632.321.632.321.632.3
SSLT 25.3 38.025.338.025.338.025.338.0
STD 32.6 48.940.861.242.263.342.263.3
OVS 30.5 45.736.053.836.053.836.053.8
SSLT 32.6 48.940.861.242.263.342.263.3
N STD 32.6 48.940.861.248.973.460.190.2
X STD 32.6 48.940.861.248.973.465.397.9
STD 31.6 47.531.647.531.647.531.647.5
OVS 27.0 40.327.040.327.040.327.040.3
SSLT 31.6 47.531.647.531.647.531.647.5
STD 32.6 48.940.861.248.973.452.779.1
OVS 30.5 45.738.157.144.967.244.967.2
SSLT 32.6 48.940.861.248.973.452.779.1
1
1
/483.712691.413778.011786.112980.612188.8133
1
3
/886.112994.314180.412188.613383.112591.2137
1
1
/288.613396.714582.912491.013785.512893.6140
1
5
/891.013799.114985.312893.414088.013296.1144
2 98.314710616092.613910115195.3143103155
3116175117176112168117176113170117176
1
1
/473.111073.111068.310268.310273.111073.1110
1
3
/878.011778.011773.111073.111078.011778.0117
1
1
/282.912482.912478.011778.011782.912482.9124
1
5
/887.813287.813282.912482.912487.813287.8132
2 98.314710215492.613997.514695.3143102154
3116175117176112168117176113170117176
117176117176117176117176117176117176
3
/4
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 23

10–24 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1640
2460
W44
12 Rows
N STD 196 294245367294441389584
X STD 196 294245367294441392587
STD 196 294212317212317212317
OVS 180 270180270180270180270
SSLT 194 292212317212317212317
STD 196 294245367294441353529
OVS 191 287239359287431300450
SSLT 194 292243365292438353529
N STD 196 294245367294441392587
X STD 196 294245367294441392587
STD 196 294245367266399266399
OVS 191 287227339227339227339
SSLT 194 292243365266399266399
STD 196 294245367294441392587
OVS 191 287239359287431378565
SSLT 194 292243365292438389583
1
1
/4468702476714438657446669465697473710
1
3
/8470706479718440661449673467701476713
1
1
/2473709481722443664451676470705478717
1
5
/8475713483725445668453680472708480721
2 483724491736453679461691480719488732
3 502753510765472708480720499749507761
1
1
/4458687458687429644429644458687458687
1
3
/8463695463695434651434651463695463695
1
1
/2468702468702439658439658468702468702
1
5
/8473709473709444665444665472708473709
2 483724488731453679458687480719488731
3 502753510765472708480720499749507761
819123081912308191230819123081912308191230
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 24

DESIGN TABLES 10–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1500
2250
W44, 40
11 Rows
N STD 180 269225337269404357535
X STD 180 269225337269404359539
STD 180 269194291194291194291
OVS 165 247165247165247165247
SSLT 178 267194291194291194291
STD 180 269225337269404323485
OVS 175 263219328263394275412
SSLT 178 267223334267401323485
N STD 180 269225337269404359539
X STD 180 269225337269404359539
STD 180 269225337244365244365
OVS 175 263208311208311208311
SSLT 178 267223334244365244365
STD 180 269225337269404359539
OVS 175 263219328263394346518
SSLT 178 267223334267401357535
1
1
/4429644437656401602410614426639434651
1
3
/8431647440659404606412618428643437655
1
1
/2434651442663406609414622431646439658
1
5
/8436654444667409613417625433650441662
2 444665452678416624424636441661449673
3 463695471707436653444665460690468702
1
1
/4419629419629392589392589419629419629
1
3
/8424636424636397596397596424636424636
1
1
/2429644429644402603402603429644429644
1
5
/8434651434651407611407611433650434651
2 444665449673416624422633441661449673
3 463695471707436653444665460690468702
751113075111307511130751113075111307511130
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 25

10–26 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1370
2050
W44, 40, 36
10 Rows
N STD 163 245204306245368325487
X STD 163 245204306245368327490
STD 163 245176264176264176264
OVS 150 225150225150225150225
SSLT 162 243176264176264176264
STD 163 245204306245368294441
OVS 159 238198298238357250375
SSLT 162 243203304243365294441
N STD 163 245204306245368327490
X STD 163 245204306245368327490
STD 163 245204306221332221332
OVS 159 238189282189282189282
SSLT 162 243203304221332221332
STD 163 245204306245368327490
OVS 159 238198298238357315471
SSLT 162 243203304243365324486
1
1
/4390585398597365547373559387580395593
1
3
/8392589401601367551375563389584398596
1
1
/2395592403605370555378567392588400600
1
5
/8397596405608372558380570394591402604
2 405607413619379569388581402602410615
3 424636432648399598407611421632429644
1
1
/4380570380570356534356534380570380570
1
3
/8385578385578361541361541385578385578
1
1
/2390585390585366548366548390585390585
1
5
/8395592395592371556371556394591395592
2 405607410614379569385578402602410614
3 424636432648399598407611421632429644
683102068310206831020683102068310206831020
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 26

DESIGN TABLES 10–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1230
1840
W44, 40, 36, 33
9 Rows
N STD 147 221184276221331292438
X STD 147 221184276221331294442
STD 147 221159238159238159238
OVS 135 202135202135202135202
SSLT 146 219159238159238159238
STD 147 221184276221331264397
OVS 142 214178267214321225337
SSLT 146 219182273219328264397
N STD 147 221184276221331294442
X STD 147 221184276221331294442
STD 147 221184276199299199299
OVS 142 214170254170254170254
SSLT 146 219182273199299199299
STD 147 221184276221331294442
OVS 142 214178267214321283424
SSLT 146 219182273219328292438
1
1
/4351527359539328492336505348522356534
1
3
/8353530362542331496339508350526359538
1
1
/2356534364546333500341512353529361541
1
5
/8358537366550336503344516355533363545
2 366548374561343514351527363544371556
3 385578393590362544371556382573390585
1
1
/4341512341512319479319479341512341512
1
3
/8346519346519324486324486346519346519
1
1
/2351527351527329494329494351527351527
1
5
/8356534356534334501334501355533356534
2 366548371556343514349523363544371556
3 385578393590362544371556382573390585
614921614921614921614921614921614921
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:15 AM Page 27

10–28 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
1090
1640
W44, 40, 36, 33, 30
8 Rows
N STD 131 197164246197295260389
X STD 131 197164246197295262393
STD 131 197141212141212141212
OVS 120 180120180120180120180
SSLT 130 194141212141212141212
STD 131 197164246197295235353
OVS 126 189158237189284200300
SSLT 130 194162243194292235353
N STD 131 197164246197295262393
X STD 131 197164246197295262393
STD 131 197164246177266177266
OVS 126 189151226151226151226
SSLT 130 194162243177266177266
STD 131 197164246197295262393
OVS 126 189158237189284252377
SSLT 130 194162243194292259389
1
1
/4312468320480292438300450309463317476
1
3
/8314472323484294441302453311467320479
1
1
/2317475325488297445305457314471322483
1
5
/8319479327491299449307461316474324487
2 327490335502306459314472324485332498
3 346519354531326489334501343515351527
1
1
/4302453302453283424283424302453302453
1
3
/8307461307461288431288431307461307461
1
1
/2312468312468293439293439312468312468
1
5
/8317475317475297446297446316474317475
2 327490332497306459312468324485332497
3 346519354531326489334501343515351527
546819546819546819546819546819546819
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 28

DESIGN TABLES 10–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
956
1430
W44, 40, 36, 33, 30,
27, 24
7 Rows
N STD 115 172144215172258227341
X STD 115 172144215172258230344
STD 115 172123185123185123185
OVS 105 157105157105157105157
SSLT 113 170123185123185123185
STD 115 172144215172258206308
OVS 110 165137206165247175262
SSLT 113 170142213170255206308
N STD 115 172144215172258230344
X STD 115 172144215172258230344
STD 115 172144215155233155233
OVS 110 165132198132198132198
SSLT 113 170142213155233155233
STD 115 172144215172258230344
OVS 110 165137206165247220329
SSLT 113 170142213170255227340
1
1
/4273410281422255383263395270405278417
1
3
/8275413284425258386266399272409281421
1
1
/2278417286429260390268402275412283424
1
5
/8280420288433262394271406277416285428
2 288431296444270405278417285427293439
3 307461315473289434297446304456312468
1
1
/4263395263395246369246369263395263395
1
3
/8268402268402251377251377268402268402
1
1
/2273410273410256384256384273410273410
1
5
/8278417278417261391261391277416278417
2 288431293439270405275413285427293439
3 307461315473289434297446304456312468
478717478717478717478717478717478717
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 29

10–30 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
819
1230
W40, 36, 33, 30, 27,
24, 21
6 Rows
N STD 98.6 148123185148222195292
X STD 98.6 148123185148222197296
STD 98.6 148106159106159106159
OVS 90.1 13590.113590.113590.1135
SSLT 97.3 146106159106159106159
STD 98.6 148123185148222176264
OVS 93.5 140117175140210150225
SSLT 97.3 146122182146219176264
N STD 98.6 148123185148222197296
X STD 98.6 148123185148222197296
STD 98.6 148123185133199133199
OVS 93.5 140113169113169113169
SSLT 97.3 146122182133199133199
STD 98.6 148123185148222197296
OVS 93.5 140117175140210187281
SSLT 97.3 146122182146219195292
1
1
/4234351242363219328227340231346239359
1
3
/8236355245367221332229344233350242362
1
1
/2239358247371223335232347236354244366
1
5
/8241362249374226339234351238357246370
2 249373257385233350241362246368254381
3 268402276414253379261391265398273410
1
1
/4224336224336210314210314224336224336
1
3
/8229344229344215322215322229344229344
1
1
/2234351234351219329219329234351234351
1
5
/8239358239358224336224336238357239358
2 249373254380233350239358246368254380
3 268402276414253379261391265398273410
410614410614410614410614410614410614
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 30

DESIGN TABLES 10–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
683
1020
W30, 27, 24, 21, 18
5 Rows
N STD 82.4 124103155124185162243
X STD 82.4 124103155124185165247
STD 82.4 12488.113288.113288.1132
OVS 75.1 11275.111275.111275.1112
SSLT 81.1 12288.113288.113288.1132
STD 82.4 124103155124185147220
OVS 77.2 11696.5145116174125187
SSLT 81.1 122101152122182147220
N STD 82.4 124103155124185165247
X STD 82.4 124103155124185165247
STD 82.4 124103155111166111166
OVS 77.2 11694.414194.414194.4141
SSLT 81.1 122101152111166111166
STD 82.4 124103155124185165247
OVS 77.2 11696.5145116174154232
SSLT 81.1 122101152122182162243
1
1
/4195293203305182273190285192288200300
1
3
/8197296206308184277193289194292203304
1
1
/2200300208312187280195293197295205307
1
5
/8202303210316189284197296199299207311
2 210314218327197295205307207310215322
3 229344237356216324224336226339234351
1
1
/4185278185278173260173260185278185278
1
3
/8190285190285178267178267190285190285
1
1
/2195293195293183274183274195293195293
1
5
/8200300200300188282188282199299200300
2 210314215322197295202303207310215322
3 229344237356216324224336226339234351
341512341512341512341512341512341512
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 31

10–32 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
546
819
W24, 21, 18, 16
4 Rows
N STD 65.3 97.981.612297.9147130195
X STD 65.3 97.981.612297.9147131196
STD 65.3 97.970.510670.510670.5106
OVS 60.1 89.960.189.960.189.960.189.9
SSLT 64.9 97.370.510670.510670.5106
STD 65.3 97.981.612297.9147118176
OVS 60.9 91.476.111491.4137100150
SSLT 64.9 97.381.112297.3146118176
N STD 65.3 97.981.612297.9147131196
X STD 65.3 97.981.612297.9147131196
STD 65.3 97.981.612288.613388.6133
OVS 60.9 91.475.511375.511375.5113
SSLT 64.9 97.381.112288.613388.6133
STD 65.3 97.981.612297.9147131196
OVS 60.9 91.476.111491.4137122183
SSLT 64.9 97.381.112297.3146130195
1
1
/4156234164246145218154230153229161242
1
3
/8158238167250148222156234155233164245
1
1
/2161241169254150225158238158237166249
1
5
/8163245171257153229161241160240168253
2 171256179268160240168252168251176264
3 190285198297180269188282187281195293
1
1
/4146219146219137205137205146219146219
1
3
/8151227151227141212141212151227151227
1
1
/2156234156234146219146219156234156234
1
5
/8161241161241151227151227160240161241
2 171256176263160240166249168251176263
3 190285198297180269188282187281195293
273410273410273410273410273410273410
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 32

DESIGN TABLES 10–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
409
614
W18, 16, 14, 12, 10
+
+
Ltd. to W10x12, 15, 17,
19, 22, 26, 30
3 Rows
N STD 47.9 71.859.889.771.810895.7144
X STD 47.9 71.859.889.771.810895.7144
STD 47.9 71.852.979.352.979.352.979.3
OVS 44.6 66.945.167.445.167.445.167.4
SSLT 47.9 71.852.979.352.979.352.979.3
STD 47.9 71.859.889.771.810888.1132
OVS 44.6 66.955.783.666.910075.1112
SSLT 47.9 71.859.889.771.810888.1132
N STD 47.9 71.859.889.771.810895.7144
X STD 47.9 71.859.889.771.810895.7144
STD 47.9 71.859.889.766.499.766.499.7
OVS 44.6 66.955.783.656.684.756.684.7
SSLT 47.9 71.859.889.766.499.766.499.7
STD 47.9 71.859.889.771.810895.7144
OVS 44.6 66.955.783.666.910089.2134
SSLT 47.9 71.859.889.771.810895.7144
1
1
/4117176125188109163117176114171122183
1
3
/8119179128191111167119179116175125187
1
1
/2122183130195114171122183119178127190
1
5
/8124186132199116174124186121182129194
2 132197140210124185132197129193137205
3 151227159239143215151227148222156234
1
1
/410716110716199.915099.9150107161107161
1
3
/8112168112168105157105157112168112168
1
1
/2117176117176110165110165117176117176
1
5
/8122183122183115172115172121182122183
2 132197137205124185129194129193137205
3 151227159239143215151227148222156234
205307205307205307205307205307205307
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:16 AM Page 33

10–34 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
STD/
OVS/
SSLT
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
273
410
W12, 10, 8
2 Rows
N STD 30.5 45.738.157.145.768.560.991.4
X STD 30.5 45.738.157.145.768.560.991.4
STD 30.5 45.735.352.935.352.935.352.9
OVS 28.3 42.430.045.030.045.030.045.0
SSLT 30.5 45.735.352.935.352.935.352.9
STD 30.5 45.738.157.145.768.558.888.1
OVS 28.3 42.435.353.042.463.650.174.9
SSLT 30.5 45.738.157.145.768.558.888.1
N STD 30.5 45.738.157.145.768.560.991.4
X STD 30.5 45.738.157.145.768.560.991.4
STD 30.5 45.738.157.144.366.444.366.4
OVS 28.3 42.435.353.037.856.537.856.5
SSLT 30.5 45.738.157.144.366.444.366.4
STD 30.5 45.738.157.145.768.560.991.4
OVS 28.3 42.435.353.042.463.656.684.8
SSLT 30.5 45.738.157.145.768.560.991.4
1
1
/478.011786.112972.310880.412175.011283.1125
1
3
/880.412188.613374.811282.912477.411685.5128
1
1
/282.912491.013777.211685.312879.812088.0132
1
5
/885.312893.414079.611987.813282.312390.4136
2 92.613910115186.913095.114389.613497.7147
3112168120180106160115172109164117176
1
1
/468.310268.310263.495.163.495.168.310268.3102
1
3
/873.111073.111068.310268.310273.111073.1110
1
1
/278.011778.011773.111073.111078.011778.0117
1
5
/882.912482.912478.011778.011782.312382.9124
2 92.613997.514686.913092.613989.613497.5146
3112168120180106160115172109164117176
137205137205137205137205137205137205
7
/8
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 34

DESIGN TABLES 10–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1820
1660
2730 2490
W44
12 Rows
N STD 191 287239359287431383574
X STD 191 287239359287431383574
STD 191 287239359277415277415
OVS 172 258215322236353236353
SSLT 191 287239359277415277415
STD 191 287239359287431383574
OVS 172 258215322258387344515
SSLT 191 287239359287431383574
N STD 191 287239359287431383574
X STD 191 287239359287431383574
STD 191 287239359287431347521
OVS 172 258215322258387296443
SSLT 191 287239359287431347521
STD 191 287239359287431383574
OVS 172 258215322258387344515
SSLT 191 287239359287431383574
1
1
/4438657446669393589401601434651442663
1
3
/8440661449673395593403605436654444667
1
1
/2443664451676398597406609439658447670
1
5
/8445668453680400600408612441662449674
2 453679461691407611416623449673457685
3 472708480720427640435653468702476714
1
1
/4429644429644385578385578429644429644
1
3
/8434651434651390585390585434651434651
1
1
/2439658439658395592395592439658439658
1
5
/8444665444665400600400600441662444665
2 453679458687407611414622449673457685
3 472708480720427640435653468702476714
909136090913608291240829124090913609091360
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 35

10–36 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle
1
-in.
Bolts
Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1670
1520
2500 2280
W44, 40
11 Rows
N STD 175 263219328263394350525
X STD 175 263219328263394350525
STD 175 263219328254380254380
OVS 157 236196295216323216323
SSLT 175 263219328254380254380
STD 175 263219328263394350525
OVS 157 236196295236354314471
SSLT 175 263219328263394350525
N STD 175 263219328263394350525
X STD 175 263219328263394350525
STD 175 263219328263394318477
OVS 157 236196295236354271406
SSLT 175 263219328263394318477
STD 175 263219328263394350525
OVS 157 236196295236354314471
SSLT 175 263219328263394350525
1
1
/4401602410614360540368552397596405608
1
3
/8404606412618362544371556400600408612
1
1
/2406609414622365547373559402603410615
1
5
/8409613417625367551375563405607413619
2 416624424636375562383574412618420630
3 436653444665394591402603431647440659
1
1
/4392589392589352528352528392589392589
1
3
/8397596397596357536357536397596397596
1
1
/2402603402603362543362543402603402603
1
5
/8407611407611367550367550405607407611
2 416624422633375562381572412618420630
3 436653444665394591402603431647440659
834125083412507611140761114083412508341250
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 36

DESIGN TABLES 10–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1520
1380
2270 2080
W44, 40, 36
10 Rows
N STD 159 238198298238357318476
X STD 159 238198298238357318476
STD 159 238198298231346231346
OVS 142 214178267196294196294
SSLT 159 238198298231346231346
STD 159 238198298238357318476
OVS 142 214178267214321285427
SSLT 159 238198298238357318476
N STD 159 238198298238357318476
X STD 159 238198298238357318476
STD 159 238198298238357289434
OVS 142 214178267214321247369
SSLT 159 238198298238357289434
STD 159 238198298238357318476
OVS 142 214178267214321285427
SSLT 159 238198298238357318476
1
1
/4365547373559327491335503361541369553
1
3
/8367551375563329494338506363545371557
1
1
/2370555378567332498340510366548374561
1
5
/8372558380570334502342514368552376564
2 379569388581342512350525375563384575
3 399598407611361542369554395592403605
1
1
/4356534356534319479319479356534356534
1
3
/8361541361541324486324486361541361541
1
1
/2366548366548329494329494366548366548
1
5
/8371556371556334501334501368552371556
2 379569385578342512349523375563384575
3 399598407611361542369554395592403605
758114075811406921040692104075811407581140
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 37

10–38 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1370
1250
2050 1870
W44, 40, 36, 33
9 Rows
N STD 142 214178267214321285427
X STD 142 214178267214321285427
STD 142 214178267207311207311
OVS 128 192160240177265177265
SSLT 142 214178267207311207311
STD 142 214178267214321285427
OVS 128 192160240192288256383
SSLT 142 214178267214321285427
N STD 142 214178267214321285427
X STD 142 214178267214321285427
STD 142 214178267214321260391
OVS 128 192160240192288222332
SSLT 142 214178267214321260391
STD 142 214178267214321285427
OVS 128 192160240192288256383
SSLT 142 214178267214321285427
1
1
/4328492336505294441302453324486332498
1
3
/8331496339508297445305457327490335502
1
1
/2333500341512299449307461329494337506
1
5
/8336503344516301452310464332497340509
2 343514351527309463317475339508347520
3 362544371556328492336505358537366550
1
1
/4319479319479286430286430319479319479
1
3
/8324486324486291437291437324486324486
1
1
/2329494329494296444296444329494329494
1
5
/8334501334501301452301452332497334501
2 343514349523309463316473339508347520
3 362544371556328492336505358537366550
6831020683102062493662493668310206831020
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 38

DESIGN TABLES 10–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1210
1110
1820 1670
W44, 40, 36, 33, 30
8 Rows
N STD 126 189158237189284252378
X STD 126 189158237189284252378
STD 126 189158237184277184277
OVS 113 170141212157235157235
SSLT 126 189158237184277184277
STD 126 189158237189284252378
OVS 113 170141212170254226339
SSLT 126 189158237189284252378
N STD 126 189158237189284252378
X STD 126 189158237189284252378
STD 126 189158237189284231347
OVS 113 170141212170254197295
SSLT 126 189158237189284231347
STD 126 189158237189284252378
OVS 113 170141212170254226339
SSLT 126 189158237189284252378
1
1
/4292438300450261392269404288431296444
1
3
/8294441302453264395272408290435298447
1
1
/2297445305457266399274411293439301451
1
5
/8299449307461269403277415295442303455
2 306459314472276414284426302453310466
3 326489334501295443303455322483330495
1
1
/4283424283424254380254380283424283424
1
3
/8288431288431258388258388288431288431
1
1
/2293439293439263395263395293439293439
1
5
/8297446297446268402268402295442297446
2 306459312468276414283424302453310466
3 326489334501295443303455322483330495
607910607910556834556834607910607910
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 39

10–40 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
1060
975
1590 1460
W44, 40, 36, 33, 30,
27, 24
7 Rows
N STD 110 165137206165247220330
X STD 110 165137206165247220330
STD 110 165137206161242161242
OVS 98.4 148123185138206138206
SSLT 110 165137206161242161242
STD 110 165137206165247220330
OVS 98.4 148123185148221197295
SSLT 110 165137206165247220330
N STD 110 165137206165247220330
X STD 110 165137206165247220330
STD 110 165137206165247202304
OVS 98.4 148123185148221173258
SSLT 110 165137206165247202304
STD 110 165137206165247220330
OVS 98.4 148123185148221197295
SSLT 110 165137206165247220330
1
1
/4255383263395228342236355251377259389
1
3
/8258386266399231346239358254380262392
1
1
/2260390268402233350241362256384264396
1
5
/8262394271406236353244366258388267400
2 270405278417243364251377266399274411
3 289434297446262394271406285428293440
1
1
/4246369246369221331221331246369246369
1
3
/8251377251377225338225338251377251377
1
1
/2256384256384230346230346256384256384
1
5
/8261391261391235353235353258388261391
2 270405275413243364250375266399274411
3 289434297446262394271406285428293440
531797531797488731488731531797531797
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:17 AM Page 40

DESIGN TABLES 10–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
912
839
1370 1260
W40, 36, 33, 30, 27,
24, 21
6 Rows
N STD 93.5 140117175140210187281
X STD 93.5 140117175140210187281
STD 93.5 140117175138207138207
OVS 83.7 126105157118176118176
SSLT 93.5 140117175138207138207
STD 93.5 140117175140210187281
OVS 83.7 126105157126188167251
SSLT 93.5 140117175140210187281
N STD 93.5 140117175140210187281
X STD 93.5 140117175140210187281
STD 93.5 140117175140210174260
OVS 83.7 126105157126188148221
SSLT 93.5 140117175140210174260
STD 93.5 140117175140210187281
OVS 83.7 126105157126188167251
SSLT 93.5 140117175140210187281
1
1
/4219328227340195293204305215322223334
1
3
/8221332229344198297206309217325225338
1
1
/2223335232347200300208313219329228341
1
5
/8226339234351203304211316222333230345
2 233350241362210315218327229344237356
3 253379261391230344238356249373257385
1
1
/4210314210314188282188282210314210314
1
3
/8215322215322193289193289215322215322
1
1
/2219329219329197296197296219329219329
1
5
/8224336224336202303202303222333224336
2 233350239358210315217325229344237356
3 253379261391230344238356249373257385
456684456684419629419629456684456684
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
B
Group
A
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 41

10–42 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
761
702
1140 1050
W30, 27, 24, 21, 18
5 Rows
N STD 77.2 11696.5145116174154232
X STD 77.2 11696.5145116174154232
STD 77.2 11696.5145115173115173
OVS 69.1 10486.312998.214798.2147
SSLT 77.2 11696.5145115173115173
STD 77.2 11696.5145116174154232
OVS 69.1 10486.3129104155138207
SSLT 77.2 11696.5145116174154232
N STD 77.2 11696.5145116174154232
X STD 77.2 11696.5145116174154232
STD 77.2 11696.5145116174145217
OVS 69.1 10486.3129104155123184
SSLT 77.2 11696.5145116174145217
STD 77.2 11696.5145116174154232
OVS 69.1 10486.3129104155138207
SSLT 77.2 11696.5145116174154232
1
1
/4182273190285163244171256178267186279
1
3
/8184277193289165247173260180271189283
1
1
/2187280195293167251176263183274191286
1
5
/8189284197296170255178267185278193290
2 197295205307177266185278193289201301
3 216324224336197295205307212318220330
1
1
/4173260173260155232155232173260173260
1
3
/8178267178267160239160239178267178267
1
1
/2183274183274165247165247183274183274
1
5
/8188282188282169254169254185278188282
2 197295202303177266184276193289201301
3 216324224336197295205307212318220330
380570380570351527351527380570380570
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 42

DESIGN TABLES 10–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
609
566
914 848
W24, 21, 18, 16
4 Rows
N STD 60.9 91.476.111491.4137122183
X STD 60.9 91.476.111491.4137122183
STD 60.9 91.476.111491.413792.2138
OVS 54.4 81.668.010278.611878.6118
SSLT 60.9 91.476.111491.413792.2138
STD 60.9 91.476.111491.4137122183
OVS 54.4 81.668.010281.6122109163
SSLT 60.9 91.476.111491.4137122183
N STD 60.9 91.476.111491.4137122183
X STD 60.9 91.476.111491.4137122183
STD 60.9 91.476.111491.4137116174
OVS 54.4 81.668.010281.612298.6148
SSLT 60.9 91.476.111491.4137116174
STD 60.9 91.476.111491.4137122183
OVS 54.4 81.668.010281.6122109163
SSLT 60.9 91.476.111491.4137122183
1
1
/4145218154230130194138207141212150224
1
3
/8148222156234132198140210144216152228
1
1
/2150225158238134202143214146219154232
1
5
/8153229161241137205145218149223157235
2 160240168252144216152229156234164246
3 180269188282164246172258176263184275
1
1
/4137205137205122183122183137205137205
1
3
/8141212141212127190127190141212141212
1
1
/2146219146219132197132197146219146219
1
5
/8151227151227137205137205149223151227
2 160240166249144216151227156234164246
3 180269188282164246172258176263184275
305457305457283424283424305457305457
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 43

10–44 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
458
429
687 644
W18, 16, 14, 12, 10
+
+
Ltd. to W10x12, 15, 17,
19, 22, 26, 30
3 Rows
N STD 44.6 66.955.783.666.910089.2134
X STD 44.6 66.955.783.666.910089.2134
STD 44.6 66.955.783.666.910069.2104
OVS 39.7 59.549.674.458.988.258.988.2
SSLT 44.6 66.955.783.666.910069.2104
STD 44.6 66.955.783.666.910089.2134
OVS 39.7 59.549.674.459.589.379.4119
SSLT 44.6 66.955.783.666.910089.2134
N STD 44.6 66.955.783.666.910089.2134
X STD 44.6 66.955.783.666.910089.2134
STD 44.6 66.955.783.666.910086.8130
OVS 39.7 59.549.674.459.589.374.0111
SSLT 44.6 66.955.783.666.910086.8130
STD 44.6 66.955.783.666.910089.2134
OVS 39.7 59.549.674.459.589.379.4119
SSLT 44.6 66.955.783.666.910089.2134
1
1
/410916311717696.7145105157105157113169
1
3
/811116711917999.1149107161107161115173
1
1
/2114171122183102152110165110165118177
1
5
/8116174124186104156112168112168120180
2124185132197111167119179119179128191
3143215151227131196139208139208147221
1
1
/499.915099.915089.013389.013399.915099.9150
1
3
/810515710515793.814193.8141105157105157
1
1
/211016511016598.714898.7148110165110165
1
5
/8115172115172104155104155112168115172
2124185129194111167118177119179128191
3143215151227131196139208139208147221
229344229344215322215322229344229344
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 44

DESIGN TABLES 10–45
AMERICANINSTITUTE OFSTEELCONSTRUCTION
* Tabulated values include
1
/4-in. reduction in end distance, Leh, to account for possible
underrun in beam length.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have
been added to distribute loads in the fillers.
Hole
Type
ASD LRFD
Bolt
Group
Fy= 36 ksi
Fu= 58 ksi
Fy= 50 ksi
Fu= 65 ksi
Hole
Type
Hole Type
Thread
Cond.
Angle Thickness, in.
LRFDASD LRFDASD LRFDASD LRFDASD
LRFDASD LRFDASDLRFDASD LRFDASD LRFDASD LRFDASD
Angle Beam
Beam Web Available Strength per Inch Thickness, kips/in.
Leh*, in.
SSLTOVSSTD
Lev, in.
SC
Class A
SC
Class A
SC
Class B
SC
Class B
Coped at Top
Flange Only
Coped at Both
Flanges
Support Available
Strength per
Inch Thickness,
kips/in.
Uncoped
Notes:
STD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
Bolt and Angle Available Strength, kips
Table 10-1 (continued)
All-Bolted Double-Angle
Connections
STD/
SSLT
OVS
307
293
461 439
W12, 10, 8
2 Rows
N STD 28.3 42.435.353.042.463.656.684.8
X STD 28.3 42.435.353.042.463.656.684.8
STD 28.3 42.435.353.042.463.646.169.2
OVS 25.0 37.531.346.937.556.339.358.8
SSLT 28.3 42.435.353.042.463.646.169.2
STD 28.3 42.435.353.042.463.656.684.8
OVS 25.0 37.531.346.937.556.350.075.0
SSLT 28.3 42.435.353.042.463.656.684.8
N STD 28.3 42.435.353.042.463.656.684.8
X STD 28.3 42.435.353.042.463.656.684.8
STD 28.3 42.435.353.042.463.656.684.8
OVS 25.0 37.531.346.937.556.349.373.8
SSLT 28.3 42.435.353.042.463.656.684.8
STD 28.3 42.435.353.042.463.656.684.8
OVS 25.0 37.531.346.937.556.350.075.0
SSLT 28.3 42.435.353.042.463.656.684.8
1
1
/472.310880.412163.895.771.910868.310276.4115
1
3
/874.811282.912466.299.374.311270.710678.8118
1
1
/277.211685.312868.710376.811573.111081.3122
1
5
/879.611987.813271.110779.211975.611383.7126
2 86.913095.114378.411886.513082.912491.0137
310616011517297.9147106159102154111166
1
1
/463.495.163.495.156.184.156.184.163.495.163.495.1
1
3
/868.310268.310260.991.460.991.468.310268.3102
1
1
/273.111073.111065.898.765.898.773.111073.1110
1
5
/878.011778.011770.710670.710675.611378.0117
2 86.913092.613978.411885.312882.912491.0137
310616011517297.9147106159102154111166
154230154230146219146219154230154230
1
-in.
Bolts
1
/4
5 /16
3 /8
1 /2
1
1
/2 1
3
/41
1
/2 1
3
/4 1
1
/2 1
3
/4
Group
A
Group
B
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 45

10–46 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-2
Available Weld Strength of Bolted/Welded
Double-Angle Connections
nL , in.
kips kips kips kips
Welds B (70 ksi)Welds A (70 ksi)
LRFD LRFDASD ASD
Rn/Ωφ Rn Rn/Ωφ Rn
Ω=2.00φ=0.75
ASD LRFD
12 35
1
/2
5 /16 393
589 0.476
3
/8 366 550 0.286
1
/4 314 471 0.381
5
/16 305 458 0.238
3
/16 236 353 0.286
1
/4 244 366 0.190
11 32
1
/2
5 /16 365
548 0.476
3
/8 331 496 0.286
1
/4 292 438 0.381
5
/16 276 414 0.238
3
/16 219 329 0.286
1
/4 221 331 0.190
10 29
1
/2
5 /16 337
505 0.476
3
/8 295 443 0.286
1
/4 269 404 0.381
5
/16 246 369 0.238
3
/16 202 303 0.286
1
/4 197 295 0.190
926
1
/2
5 /16 309
463 0.476
3
/8 259 389 0.286
1
/4 247 371 0.381
5
/16 216 324 0.238
3
/16 185 278 0.286
1
/4 173 259 0.190
823
1
/2
5 /16 281
422 0.476
3
/8 223 335 0.286
1
/4 225 337 0.381
5
/16 186 279 0.238
3
/16 169 253 0.286
1
/4 149 223 0.190
720
1
/2
5 /16 253
379 0.476
3
/8 187 280 0.286
1
/4 202 303 0.381
5
/16 156 234 0.238
3
/16 152 227 0.286
1
/4 125 187 0.190
617
1
/2
5 /16 222
334 0.476
3
/8 150 226 0.286
1
/4 178 267 0.381
5
/16 125 188 0.238
3
/16 133 200 0.286
1
/4 100 150 0.190
514
1
/2
5 /16 191
287 0.476
3
/8 115 172 0.286
1
/4 153 229 0.381
5
/16 95.5143 0.238
3
/16 115 172 0.286
1
/4 76.4115 0.190
411
1
/2
5 /16 158
237 0.476
3
/8 79.9120 0.286
1
/4 127 190 0.381
5
/16 66.6 99.90.238
3
/16 95.0142 0.286
1
/4 53.3 79.90.190
38
1
/2
5 /16 122
184 0.476
3
/8 48.1 72.20.286
1
/4 98.0147 0.381
5
/16 40.1 60.20.238
3
/16 73.5110 0.286
1
/4 32.1 48.10.190
25
1
/2
5 /16 83.7
125 0.476
3
/8 21.9 32.80.286
1
/4 66.9100 0.381
5
/16 18.2 27.30.238
3
/16 50.2 75.30.286
1
/4 14.6 21.90.190
Weld
Size, in.
Minimum
Web
Thickness,
in.
Weld
Size, in.
Minimum
Support
Thickness,
in.
Fy= 50 ksiFu= 65 ksi
Beam
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 46

DESIGN TABLES 10–47
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-3
Available Weld Strength of All-Welded
Double-Angle Connections
L, in.
kips kips
Welds B (70 ksi)Welds A (70 ksi)
LRFDASD
Rn/Ωφ Rn
Weld
Size, in.
Minimum
Web
Thickness, in.
kips kips
LRFDASD
Rn/Ωφ Rn
Weld
Size, in.
Minimum
Web
Thickness, in.
36
5
/16 397 596 0.476
3
/8 372 558 0.286
1
/4 318 477 0.381
5
/16 310 465 0.238
3
/16 238 357 0.286
1
/4 248 372 0.190
34
5
/16 379
568 0.476
3
/8 349 523 0.286
1
/4 303 455 0.381
5
/16 291 436 0.238
3
/16 227 341 0.286
1
/4 232 349 0.190
32
5
/16 360
541 0.476
3
/8 325 487 0.286
1
/4 288 432 0.381
5
/16 271 406 0.238
3
/16 216 324 0.286
1
/4 217 325 0.190
30
5
/16 341
512 0.476
3
/8 301 452 0.286
1
/4 273 410 0.381
5
/16 251 377 0.238
3
/16 205 307 0.286
1
/4 201 301 0.190
28
5
/16 323
484 0.476
3
/8 277 416 0.286
1
/4 258 387 0.381
5
/16 231 347 0.238
3
/16 194 291 0.286
1
/4 185 277 0.190
26
5
/16 304
457 0.476
3
/8 253 380 0.286
1
/4 243 365 0.381
5
/16 211 317 0.238
3
/16 183 274 0.286
1
/4 169 253 0.190
24
5
/16 286
429 0.476
3
/8 229 344 0.286
1
/4 229 343 0.381
5
/16 191 286 0.238
3
/16 171 257 0.286
1
/4 153 229 0.190
22
5
/16 267
401 0.476
3
/8 205 308 0.286
1
/4 214 321 0.381
5
/16 171 256 0.238
3
/16 160 240 0.286
1
/4 137 205 0.190
20
5
/16 248
372 0.476
3
/8 181 271 0.286
1
/4 198 297 0.381
5
/16 151 226 0.238
3
/16 149 223 0.286
1
/4 121 181 0.190
18
5
/16 227
341 0.476
3
/8 157 235 0.286
1
/4 182 273 0.381
5
/16 130 196 0.238
3
/16 136 205 0.286
1
/4 104 157 0.190
16
5
/16 207
310 0.476
3
/8 148 222 0.286
1
/4 166 248 0.381
5
/16 123 185 0.238
3
/16 124 186 0.286
1
/4 98.5148 0.190
Ω=2.00 φ=0.75
ASD LRFD
Fy= 50 ksiFu= 65 ksi
Beam
AISC_PART 10A:14th Ed. 2/24/11 9:18 AM Page 47

Table 10-3 (continued)
Available Weld Strength of All-Welded
Double-Angle Connections
L, in.
kips kips
Welds B (70 ksi)Welds A (70 ksi)
LRFDASD
Rn/Ωφ Rn
Weld
Size, in.
Minimum
Web
Thickness, in.
kips kips
LRFDASD
Rn/Ωφ Rn
Weld
Size, in.
Minimum
Web
Thickness, in.
Ω=2.00 φ=0.75
ASD
Fy= 50 ksiFu= 65 ksi
BeamLRFD
10–48 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
14
5
/16 186 279 0.476
3
/8 123 185 0.286
1
/4 149 223 0.381
5
/16 103 154 0.238
3
/16 111 167 0.286
1
/4 82.3123 0.190
12
5
/16 164
246 0.476
3
/8 99.3149 0.286
1
/4 131 197 0.381
5
/16 82.8124 0.238
3
/16 98.5148 0.286
1
/4 66.2 99.3 0.190
10
5
/16 141
211 0.476
3
/8 75.7113 0.286
1
/4 112 169 0.381
5
/16 63.1 94.6 0.238
3
/16 84.3127 0.286
1
/4 50.4 75.7 0.190
9
5
/16 129
193 0.476
3
/8 64.2 96.3 0.286
1
/4 103 154 0.381
5
/16 53.5 80.2 0.238
3
/16 77.2116 0.286
1
/4 42.8 64.2 0.190
8
5
/16 116
174 0.476
3
/8 53.0 79.5 0.286
1
/4 92.9139 0.381
5
/16 44.2 66.3 0.238
3
/16 69.7105 0.286
1
/4 35.4 53.0 0.190
7
5
/16 103
155 0.476
3
/8 42.4 63.6 0.286
1
/4 82.6124 0.381
5
/16 35.3 53.0 0.238
3
/16 62.0 92.9 0.286
1
/4 28.3 42.4 0.190
6
5
/16 90.4
136 0.476
3
/8 32.5 48.7 0.286
1
/4 72.3108 0.381
5
/16 27.0 40.6 0.238
3
/16 54.2 81.3 0.286
1
/4 21.6 32.5 0.190
5
5
/16 77.1
116 0.476
3
/8 23.4 35.1 0.286
1
/4 61.7 92.6 0.381
5
/16 19.5 29.2 0.238
3
/16 46.3 69.4 0.286
1
/4 15.6 23.4 0.190
4
5
/16 64.2
96.3 0.476
3
/8 15.5 23.2 0.286
1
/4 51.4 77.0 0.381
5
/16 12.9 19.3 0.238
3
/16 38.5 57.8 0.286
1
/4 10.3 15.5 0.190
AISC_PART 10A:14th Ed. 2/24/11 9:19 AM Page 48

SHEAR END-PLATE CONNECTIONS 10–49
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SHEAR END-PLATE CONNECTIONS
A shear end-plate connection is made with a plate length less than the supported beam depth,
as illustrated in Figure 10-6. The end plate is always shop-welded to the beam web with
fillet welds on each side and usually field-bolted to the supporting member. Welds
connecting the end plate to the beam web should not be returned across the thickness of the
beam web at the top or bottom of the end plate because of the danger of creating a notch in
the beam web.
If the end plate is field-welded to the support, adequate flexibility must be provided in the
connection. Line welds are placed along the vertical edges of the plate with a return at the
top per AISC SpecificationSection J2.2b. Note that welding across the entire top of the plate
must be avoided as it would inhibit the flexibility and, therefore, the necessary end rotation
of the connection. The performance of the resulting connection would not be as intended for
simple shear connections.
Design Checks
The available strength of a shear end-plate connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Note that the limit state of shear rupture of the beam web must be checked along the length
of weld connecting the end plate to the beam web. In all cases, the available strength, φR
n
or Rn/Ω, must equal or exceed the required strength, R uor Ra.
Recommended End-Plate Dimensions and Thickness
To provide for stability during erection, it is recommended that the minimum end-plate
length be one-half the T-dimension of the beam to be supported. The maximum length of
the end plate must be compatible with the clear distance between the flanges of an uncoped
beam and the remaining clear distance of a coped beam.
To provide for flexibility, the combination of plate thickness and gage should be
consistent with the recommendations given previously for a double-angle connection of
similar thickness and gage.
Shop and Field Practices
When framing to a column web, the associated constructability considerations should be
addressed (see the preceding discussion under “Constructability Considerations”).
Fig. 10-6. Shear end-plate connections.
AISC_PART 10A:14th Ed. 2/24/11 9:19 AM Page 49

10–50 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When framing to a column flange, provision must be made for possible mill variation in
the depth of the columns, particularly in fairly long runs (i.e., six or more bays of framing).
The beam length can be shortened to provide for mill overrun with shims furnished at the
appropriate intervals to fill the resulting gaps or to provide for mill underrun. Shear end-plate
connections require close control in cutting the beam to the proper length and in squaring the
beam ends such that both end plates are parallel, particularly when beams are cambered.
DESIGN TABLE DISCUSSION (TABLE 10-4)
Table 10-4. Bolted/Welded Shear End-Plate Connections
Table 10-4 is a design aid for shear end-plate connections bolted to the supporting member
and welded to the supported beam. Available strengths are tabulated for supported and
supporting member material with F
y=50 ksi and F u=65 ksi, and end-plate material with
F
y =36 ksi and F u=58 ksi. Electrode strength is assumed to be 70 ksi. All values, including
slip-critical bolt available strengths, are for comparison with the governing LRFD or ASD
load combination.
Tabulated bolt and end-plate available strengths consider the limit states of bolt shear,
bolt bearing on the end plate, shear yielding of the end plate, shear rupture of the end plate,
and block shear rupture of the end plate. Values are included for 2 through 12 rows of
3
/4-in.,
7
/8-in. and 1-in.-diameter Group A and Group B bolts at 3-in. spacing. End-plate
edge distances, L
evand L eh, are assumed to be 1
1
/4in.
Tabulated weld available strengths consider the limit state of weld shear assuming an
effective weld length equal to the end-plate length minus twice the weld size. The tabulated
minimum beam web thickness matches the shear rupture strength of the web material to the
strength of the weld metal. As derived in Part 9, the minimum supported beam web
thickness for two lines of weld is
(9-3)
where Dis the number of sixteenths-of-an-inch in the weld size. When less than the
minimum material thickness is present, the tabulated weld available strength must be
reduced by the ratio of the thickness provided to the minimum thickness.
Tabulated supporting member available strengths, per in. of flange or web thickness,
consider the limit state of bolt bearing.
t
D
Fmin
u=
619.
AISC_PART 10A:14th Ed. 2/24/11 9:19 AM Page 50

DESIGN TABLES 10–51
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-4
Bolted/Welded
Shear End-Plate
Connections
W44
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1400 2110
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
196
260
324
387
293 390 486 581
3
/4
-in. Bolts
12 Rows
L= 35
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
197
295 246 369 286 430
197 295 246 369 295 443
152 228 152 228 152 228
129 194 129 194 129 194
152 228 152 228 152 228
197 295 246 369 253 380
196 294 216 323 216 323
195 293 244 366 253 380
197 295 246 369 295 443
197 295 246 369 295 443
190 285 190 285 190 285
162 242 162 242 162 242
190 285 190 285 190 285
197 295 246 369 295 443
196 294 245 367 270 403
195 293 244 366 293 440
AISC_Part 10B:14th Ed. 2/24/11 9:20 AM Page 51

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1290 1930
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
179
238
296
354
268 356 444 530
10–52 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
181 271 226 338 263 394
181 271 226 338 271 406
139 209 139 209 139 209
119 178 119 178 119 178
139 209 139 209 139 209
181 271 226 338 232 348
180 269 198 296 198 296
179 269 224 336 232 348
181 271 226 338 271 406
181 271 226 338 271 406
174 261 174 261 174 261
148 222 148 222 148 222
174 261 174 261 174 261
181 271 226 338 271 406
180 269 225 337 247 370
179 269 224 336 269 403
3
/4
-in. Bolts
11 Rows
L= 32
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 52

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1170 1760
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
162
215
268
320
243 323 402 480
DESIGN TABLES 10–53
AMERICANINSTITUTE OFSTEELCONSTRUCTION
164 246 205 308 239 358
164 246 205 308 246 370
127 190 127 190 127 190
108 161 108 161 108 161
127 190 127 190 127 190
164 246 205 308 211 316
163 245 180 269 180 269
163 244 204 306 211 316
164 246 205 308 246 370
164 246 205 308 246 370
158 237 158 237 158 237
135 202 135 202 135 202
158 237 158 237 158 237
164 246 205 308 246 370
163 245 204 306 225 336
163 244 204 306 244 367
3
/4
-in. Bolts
10 Rows
L= 29
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 53

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1050 1580
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
145
193
240
287
218 290 360 430
10–54 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
148 222 185 278 215 322
148 222 185 278 222 333
114 171 114 171 114 171
97.1 145 97.1 145 97.1 145
114 171 114 171 114 171
148 222 185 278 190 285
147 221 162 242 162 242
147 220 183 275 190 285
148 222 185 278 222 333
148 222 185 278 222 333
142 214 142 214 142 214
121 182 121 182 121 182
142 214 142 214 142 214
148 222 185 278 222 333
147 221 184 276 202 303
147 220 183 275 220 330
3
/4
-in. Bolts
9 Rows
L= 26
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 54

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
936 1400
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
129
171
212
253
193 256 318 380
DESIGN TABLES 10–55
AMERICANINSTITUTE OFSTEELCONSTRUCTION
132 198 165 247 191 286
132 198 165 247 198 297
101 152 101 152 101 152
86.3 129 86.3 129 86.3 129
101 152 101 152 101 152
132 198 165 247 169 253
131 197 144 215 144 215
131 196 163 245 169 253
132 198 165 247 198 297
132 198 165 247 198 297
127 190 127 190 127 190
108 161 108 161 108 161
127 190 127 190 127 190
132 198 165 247 198 297
131 197 164 246 180 269
131 196 163 245 196 294
3
/4
-in. Bolts
8 Rows
L= 23
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 55

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30, 27,
24
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
819 1230
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
112
148
184
220
168 223 277 330
10–56 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
116 174 145 217 167 251
116 174 145 217 174 260
88.6 133 88.6 133 88.6 133
75.5 113 75.5 113 75.5 113
88.6 133 88.6 133 88.6 133
116 174 145 217 148 221
115 172 126 188 126 188
114 172 143 214 148 221
116 174 145 217 174 260
116 174 145 217 174 260
111 166 111 166 111 166
94.4 141 94.4 141 94.4 141
111 166 111 166 111 166
116 174 145 217 174 260
115 172 144 215 157 235
114 172 143 214 172 257
3
/4
-in. Bolts
7 Rows
L= 20
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 56

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30, 27,
24, 21
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
702 1050
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
95.4
126
157
187
143 189 235 280
DESIGN TABLES 10–57
AMERICANINSTITUTE OFSTEELCONSTRUCTION
99.5 149 124 187 143 215
99.5 149 124 187 149 224
75.9 114 75.9114 75.9114
64.7 96.8 64.7 96.8 64.7 96.8
75.9 114 75.9114 75.9114
99.5 149 124 187 127 190
98.6 148 108 161 108 161
98.2 147 123 184 127 190
99.5 149 124 187 149 224
99.5 149 124 187 149 224
94.9 142 94.9142 94.9142
80.9 121 80.9121 80.9121
94.9 142 94.9142 94.9142
99.5 149 124 187 149 224
98.6 148 123 185 135 202
98.2 147 123 184 147 221
3
/4
-in. Bolts
6 Rows
L= 17
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 57

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W30, 27,
24, 21,
18
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
585 878
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
78.7
104
129
153
118 156 193 230
10–58 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
83.3 125 104 156 119 179
83.3 125 104 156 125 187
63.3 94.9 63.3 94.9 63.3 94.9
53.9 80.7 53.9 80.7 53.9 80.7
63.3 94.9 63.3 94.9 63.3 94.9
83.3 125 104 156 105 158
82.4 124 89.9134 89.9134
82.0 123 102 154 105 158
83.3 125 104 156 125 187
83.3 125 104 156 125 187
79.1 119 79.1119 79.1119
67.4 101 67.4101 67.4101
79.1 119 79.1119 79.1119
83.3 125 104 156 125 187
82.4 124 103 155 112 168
82.0 123 102 154 123 184
3
/4
-in. Bolts
5 Rows
L= 14
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 58

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W24, 21,
18, 16
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
468 702
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
61.9
81.7
101
120
92.9
123
151
180
DESIGN TABLES 10–59
AMERICANINSTITUTE OFSTEELCONSTRUCTION
67.1 101 83.9 126 95.5143
67.1 101 83.9 126 101 151
50.6 75.9 50.6 75.9 50.6 75.9
43.1 64.5 43.1 64.5 43.1 64.5
50.6 75.9 50.6 75.9 50.6 75.9
67.1 101 83.9 126 84.4127
65.3 97.9 71.9 108 71.9108
65.8 98.7 82.2 123 84.4127
67.1 101 83.9 126 101 151
67.1 101 83.9 126 101 151
63.3 94.9 63.3 94.9 63.3 94.9
53.9 80.7 53.9 80.7 53.9 80.7
63.3 94.9 63.3 94.9 63.3 94.9
67.1 101 83.9 126 101 151
65.3 97.9 81.6 122 89.9134
65.8 98.7 82.2 123 98.7148
3
/4
-in. Bolts
4 Rows
L= 11
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 59

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W18, 16,
14, 12,
10*
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
351 526
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
45.2
59.4
73.1
88.3
67.9 89.1
110
129
10–60 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
50.9 76.4 63.7 95.5 71.6107
50.9 76.4 63.7 95.5 76.4115
38.0 57.0 38.0 57.0 38.0 57.0
32.4 48.4 32.4 48.4 32.4 48.4
38.0 57.0 38.0 57.0 38.0 57.0
50.9 76.4 63.3 94.9 63.3 94.9
47.9 71.8 53.9 80.7 53.9 80.7
49.6 74.4 62.0 92.9 63.3 94.9
50.9 76.4 63.7 95.5 76.4115
50.9 76.4 63.7 95.5 76.4115
47.5 71.2 47.5 71.2 47.5 71.2
40.4 60.5 40.4 60.5 40.4 60.5
47.5 71.2 47.5 71.2 47.5 71.2
50.9 76.4 63.7 95.5 76.4115
47.9 71.8 59.8 89.7 67.4101
49.6 74.4 62.0 92.9 74.4112
3
/4
-in. Bolts
3 Rows
L= 8
1
/2 in.
*Limited to W10×12, 15,17, 19, 22, 26, 30
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 60

DESIGN TABLES 10–61
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W12, 10,
8
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
234 351
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
28.5
37.1
45.2
52.9
42.8 55.7 67.9 79.4
32.6 48.9 40.8 61.2 47.7 71.6
32.6 48.9 40.8 61.2 48.9 73.4
25.3 38.0 25.3 38.0 25.3 38.0
21.6 32.3 21.6 32.3 21.6 32.3
25.3 38.0 25.3 38.0 25.3 38.0
32.6 48.9 40.8 61.2 42.2 63.3
30.5 45.7 36.0 53.8 36.0 53.8
32.6 48.9 40.8 61.2 42.2 63.3
32.6 48.9 40.8 61.2 48.9 73.4
32.6 48.9 40.8 61.2 48.9 73.4
31.6 47.5 31.6 47.5 31.6 47.5
27.0 40.3 27.0 40.3 27.0 40.3
31.6 47.5 31.6 47.5 31.6 47.5
32.6 48.9 40.8 61.2 48.9 73.4
30.5 45.7 38.1 57.1 44.9 67.2
32.6 48.9 40.8 61.2 48.9 73.4
3
/4
-in. Bolts
2 Rows
L= 5
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 61

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1640 2460
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
196
260
324
387
293 390 486 581
10–62 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
196 294 245 367 294 441
196 294 245 367 294 441
196 294 212 317 212 317
180 270 180 270 180 270
194 292 212 317 212 317
196 294 245 367 294 441
191 287 239 359 287 431
194 292 243 365 292 438
196 294 245 367 294 441
196 294 245 367 294 441
196 294 245 367 266 399
191 287 227 339 227 339
194 292 243 365 266 399
196 294 245 367 294 441
191 287 239 359 287 431
194 292 243 365 292 438
7
/8
-in. Bolts
12 Rows
L= 35
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 62

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1500 2250
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
179
238
296
354
268 356 444 530
DESIGN TABLES 10–63
AMERICANINSTITUTE OFSTEELCONSTRUCTION
180 269 225 337 269 404
180 269 225 337 269 404
180 269 194 291 194 291
165 247 165 247 165 247
178 267 194 291 194 291
180 269 225 337 269 404
175 263 219 328 263 394
178 267 223 334 267 401
180 269 225 337 269 404
180 269 225 337 269 404
180 269 225 337 244 365
175 263 208 311 208 311
178 267 223 334 244 365
180 269 225 337 269 404
175 263 219 328 263 394
178 267 223 334 267 401
7
/8
-in. Bolts
11 Rows
L= 32
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 63

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44,
40, 36
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1370 2050
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
162
215
268
320
243 323 402 480
163 245 204 306 245 368
163 245 204 306 245 368
163 245 176 264 176 264
150 225 150 225 150 225
162 243 176 264 176 264
163 245 204 306 245 368
159 238 198 298 238 357
162 243 203 304 243 365
163 245 204 306 245 368
163 245 204 306 245 368
163 245 204 306 221 332
159 238 189 282 189 282
162 243 203 304 221 332
163 245 204 306 245 368
159 238 198 298 238 357
162 243 203 304 243 365
10–64 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
-in. Bolts
10 Rows
L= 29
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 64

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1230 1840
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
145
193
240
287
218 290 360 430
DESIGN TABLES 10–65
AMERICANINSTITUTE OFSTEELCONSTRUCTION
147 221 184 276 221 331
147 221 184 276 221 331
147 221 159 238 159 238
135 202 135 202 135 202
146 219 159 238 159 238
147 221 184 276 221 331
142 214 178 267 214 321
146 219 182 273 219 328
147 221 184 276 221 331
147 221 184 276 221 331
147 221 184 276 199 299
142 214 170 254 170 254
146 219 182 273 199 299
147 221 184 276 221 331
142 214 178 267 214 321
146 219 182 273 219 328
7
/8
-in. Bolts
9 Rows
L= 26
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 65

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1090 1640
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
129
171
212
253
193 256 318 380
131 197 164 246 197 295
131 197 164 246 197 295
131 197 141 212 141 212
120 180 120 180 120 180
130 194 141 212 141 212
131 197 164 246 197 295
126 189 158 237 189 284
130 194 162 243 194 292
131 197 164 246 197 295
131 197 164 246 197 295
131 197 164 246 177 266
126 189 151 226 151 226
130 194 162 243 177 266
131 197 164 246 197 295
126 189 158 237 189 284
130 194 162 243 194 292
10–66 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
-in. Bolts
8 Rows
L= 23
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 66

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30, 27,
24
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
956 1430
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
112
148
184
220
168 223 277 330
DESIGN TABLES 10–67
AMERICANINSTITUTE OFSTEELCONSTRUCTION
115 172 144 215 172 258
115 172 144 215 172 258
115 172 123 185 123 185
105 157 105 157 105 157
113 170 123 185 123 185
115 172 144 215 172 258
110 165 137 206 165 247
113 170 142 213 170 255
115 172 144 215 172 258
115 172 144 215 172 258
115 172 144 215 155 233
110 165 132 198 132 198
113 170 142 213 155 233
115 172 144 215 172 258
110 165 137 206 165 247
113 170 142 213 170 255
7
/8
-in. Bolts
7 Rows
L= 20
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:21 AM Page 67

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W40, 36,
33, 30,
27, 24,
21
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
819 1230
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
95.4
126
157
187
143 189 235 280
98.6 148 123 185 148 222
98.6 148 123 185 148 222
98.6 148 106 159 106 159
90.1 135 90.1 135 90.1 135
97.3 146 106 159 106 159
98.6 148 123 185 148 222
93.5 140 117 175 140 210
97.3 146 122 182 146 219
98.6 148 123 185 148 222
98.6 148 123 185 148 222
98.6 148 123 185 133 199
93.5 140 113 169 113 169
97.3 146 122 182 133 199
98.6 148 123 185 148 222
93.5 140 117 175 140 210
97.3 146 122 182 146 219
10–68 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
-in. Bolts
6 Rows
L= 17
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 68

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W30, 27,
24, 21,
18
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
683 1020
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
78.7
104
193
153
118 156 193 230
DESIGN TABLES 10–69
AMERICANINSTITUTE OFSTEELCONSTRUCTION
82.4 124 103 155 124 185
82.4 124 103 155 124 185
82.4 124 88.1 132 88.1 132
75.1 112 75.1 112 75.1 112
81.1 122 88.1 132 88.1 132
82.4 124 103 155 124 185
77.2 116 96.5 145 116 174
81.1 122 101 152 122 182
82.4 124 103 155 124 185
82.4 124 103 155 124 185
82.4 124 103 155 111 166
77.2 116 94.4 141 94.4 141
81.1 122 101 152 111 166
82.4 124 103 155 124 185
77.2 116 96.5 145 116 174
81.1 122 101 152 122 182
7
/8
-in. Bolts
5 Rows
L= 14
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 69

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W24, 21,
18, 16
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
546 819
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
61.9
81.7
101
120
92.9
123
151
180
65.3 97.9 81.6 122 97.9 147
65.3 97.9 81.6 122 97.9 147
65.3 97.9 70.5 106 70.5 106
60.1 89.9 60.1 89.9 60.1 89.9
64.9 97.3 70.5 106 70.5 106
65.3 97.9 81.6 122 97.9 147
60.9 91.4 76.1 114 91.4 137
64.9 97.3 81.1 122 97.3 146
65.3 97.9 81.6 122 97.9 147
65.3 97.9 81.6 122 97.9 147
65.3 97.9 81.6 122 88.6 133
60.9 91.4 75.5 113 75.5 113
64.9 97.3 81.1 122 88.6 133
65.3 97.9 81.6 122 97.9 147
60.9 91.4 76.1 114 91.4 137
64.9 97.3 81.1 122 97.3 146
10–70 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
-in. Bolts
4 Rows
L= 11
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 70

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W18, 16,
14, 12,
10*
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
409 614
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
45.2
59.4
73.1
86.3
67.9 89.1
110
129
DESIGN TABLES 10–71
AMERICANINSTITUTE OFSTEELCONSTRUCTION
47.9 71.8 59.8 89.7 71.8 108
47.9 71.8 59.8 89.7 71.8 108
47.9 71.8 52.9 79.3 52.9 79.3
44.6 66.9 45.1 67.4 45.1 67.4
47.9 71.8 52.9 79.3 52.9 79.3
47.9 71.8 59.8 89.7 71.8 108
44.6 66.9 55.7 83.6 66.9 100
47.9 71.8 59.8 89.7 71.8 108
47.9 71.8 59.8 89.7 71.8 108
47.9 71.8 59.8 89.7 71.8 108
47.9 71.8 59.8 89.7 66.4 99.7
44.6 66.9 55.7 83.6 56.6 84.7
47.9 71.8 59.8 89.7 66.4 99.7
47.9 71.8 59.8 89.7 71.8 108
44.6 66.9 55.7 83.6 66.9 100
47.9 71.8 59.8 89.7 71.8 108
7
/8
-in. Bolts
3 Rows
L= 8
1
/2 in.
*Limited to W10×12, 15, 17, 19, 22, 26, 30
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 71

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W12, 10,
8
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
273 409
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
28.5
37.1
45.2
52.9
42.8 55.7 67.9 79.4
30.5 45.7 38.1 57.1 45.7 68.5
30.5 45.7 38.1 57.1 45.7 68.5
30.5 45.7 35.3 52.9 35.3 52.9
28.3 42.4 30.0 45.0 30.0 45.0
30.5 45.7 35.3 52.9 35.3 52.9
30.5 45.7 38.1 57.1 45.7 68.5
28.3 42.4 35.3 53.0 42.4 63.6
30.5 45.7 38.1 57.1 45.7 68.5
30.5 45.7 38.1 57.1 45.7 68.5
30.5 45.7 38.1 57.1 45.7 68.5
30.5 45.7 38.1 57.1 44.3 66.4
28.3 42.4 35.3 53.0 37.8 56.5
30.5 45.7 38.1 57.1 44.3 66.4
30.5 45.7 38.1 57.1 45.7 68.5
28.3 42.4 35.3 53.0 42.4 63.6
30.5 45.7 38.1 57.1 45.7 68.5
10–72 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
-in. Bolts
2 Rows
L= 5
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 72

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1820 2730
2490
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
196
260
324
387
293 390 486 581
DESIGN TABLES 10–73
AMERICANINSTITUTE OFSTEELCONSTRUCTION
191 287 239 359 287 431
191 287 239 359 287 431
191 287 239 359 277 415
172 258 215 322 236 353
191 287 239 359 277 415
191 287 239 359 287 431
172 258 215 322 258 387
191 287 239 359 287 431
191 287 239 359 287 431
191 287 239 359 287 431
191 287 239 359 287 431
172 258 215 322 258 387
191 287 239 359 287 431
191 287 239 359 287 431
172 258 215 322 258 387
191 287 239 359 287 431
1660
STD/
SSLT
STD/
SSLT
OVSOVS
1
-in. Bolts
12 Rows
L= 35
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 73

10–74 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1670 2500
2280
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
179
238
296
354
268 356 444 530
1520
STD/
SSLT
STD/
SSLT
OVSOVS
175 263 219 328 263 394
175 263 219 328 263 394
175 263 219 328 254 380
157 236 196 295 216 323
175 263 219 328 254 380
175 263 219 328 263 394
157 236 196 295 236 354
175 263 219 328 263 394
175 263 219 328 263 394
175 263 219 328 263 394
175 263 219 328 263 394
157 236 196 295 236 354
175 263 219 328 263 394
175 263 219 328 263 394
157 236 196 295 236 354
175 263 219 328 263 394
1
-in. Bolts
11 Rows
L= 32
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 74

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1520 2270
2080
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
162
215
268
320
243 323 402 480
1380
STD/
SSLT
STD/
SSLT
OVSOVS
DESIGN TABLES 10–75
AMERICANINSTITUTE OFSTEELCONSTRUCTION
159 238 198 298 238 357
159 238 198 298 238 357
159 238 198 298 231 346
142 214 178 267 196 294
159 238 198 298 231 346
159 238 198 298 238 357
142 214 178 267 214 321
159 238 198 298 238 357
159 238 198 298 238 357
159 238 198 298 238 357
159 238 198 298 238 357
142 214 178 267 214 321
159 238 198 298 238 357
159 238 198 298 238 357
142 214 178 267 214 321
159 238 198 298 238 357
1
-in. Bolts
10 Rows
L= 29
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 75

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1370 2050
1870
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
145
193
240
287
218 290 360 430
1250
STD/
SSLT
STD/
SSLT
OVSOVS
142 214 178 267 214 321
142 214 178 267 214 321
142 214 178 267 207 311
128 192 160 240 177 265
142 214 178 267 207 311
142 214 178 267 214 321
128 192 160 240 192 288
142 214 178 267 214 321
142 214 178 267 214 321
142 214 178 267 214 321
142 214 178 267 214 321
128 192 160 240 192 288
142 214 178 267 214 321
142 214 178 267 214 321
128 192 160 240 192 288
142 214 178 267 214 321
10–76 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
-in. Bolts
9 Rows
L= 26
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 76

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1210 1820
1670
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
129
171
212
253
193 256 318 380
1110
STD/
SSLT
STD/
SSLT
OVSOVS
DESIGN TABLES 10–77
AMERICANINSTITUTE OFSTEELCONSTRUCTION
126 189 158 237 189 284
126 189 158 237 189 284
126 189 158 237 184 277
113 170 141 212 157 235
126 189 158 237 184 277
126 189 158 237 189 284
113 170 141 212 170 254
126 189 158 237 189 284
126 189 158 237 189 284
126 189 158 237 189 284
126 189 158 237 189 284
113 170 141 212 170 254
126 189 158 237 189 284
126 189 158 237 189 284
113 170 141 212 170 254
126 189 158 237 189 284
1
-in. Bolts
8 Rows
L= 23
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 77

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W44, 40,
36, 33,
30, 27,
24
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
1060 1590
1460
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
112
148
184
220
168 223 277 330
975
STD/
SSLT
STD/
SSLT
OVSOVS
110 165 137 206 165 247
110 165 137 206 165 247
110 165 137 206 161 242
98.4 148 123 185 138 206
110 165 137 206 161 242
110 165 137 206 165 247
98.4 148 123 185 148 221
110 165 137 206 165 247
110 165 137 206 165 247
110 165 137 206 165 247
110 165 137 206 165 247
98.4 148 123 185 148 221
110 165 137 206 165 247
110 165 137 206 165 247
98.4 148 123 185 148 221
110 165 137 206 165 247
10–78 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
-in. Bolts
7 Rows
L= 20
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 78

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W40, 36,
33, 30,
27, 24,
21
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
912 1370
1260
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
95.4
126
157
187
143 189 235 280
839
STD/
SSLT
STD/
SSLT
OVSOVS
DESIGN TABLES 10–79
AMERICANINSTITUTE OFSTEELCONSTRUCTION
93.5 140 117 175 140 210
93.5 140 117 175 140 210
93.5 140 117 175 138 207
83.7 126 105 157 118 176
93.5 140 117 175 138 207
93.5 140 117 175 140 210
83.7 126 105 157 126 188
93.5 140 117 175 140 210
93.5 140 117 175 140 210
93.5 140 117 175 140 210
93.5 140 117 175 140 210
83.7 126 105 157 126 188
93.5 140 117 175 140 210
93.5 140 117 175 140 210
83.7 126 105 157 126 188
93.5 140 117 175 140 210
1
-in. Bolts
6 Rows
L= 17
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 79

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W30, 27,
24, 21,
18
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
761 1140
1050
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
78.7
104
129
153
118 156 193 230
702
STD/
SSLT
STD/
SSLT
OVSOVS
77.2 116 96.5 145 116 174
77.2 116 96.5 145 116 174
77.2 116 96.5 145 115 173
69.1 104 86.3 129 98.2 147
77.2 116 96.5 145 115 173
77.2 116 96.5 145 116 174
69.1 104 86.3 129 104 155
77.2 116 96.5 145 116 174
77.2 116 96.5 145 116 174
77.2 116 96.5 145 116 174
77.2 116 96.5 145 116 174
69.1 104 86.3 129 104 155
77.2 116 96.5 145 116 174
77.2 116 96.5 145 116 174
69.1 104 86.3 129 104 155
77.2 116 96.5 145 116 174
10–80 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
-in. Bolts
5 Rows
L= 14
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 80

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W24, 21,
18, 16
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
609 914
848
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
61.9
81.7
101
120
92.9
123
151
180
566
STD/
SSLT
STD/
SSLT
OVSOVS
DESIGN TABLES 10–81
AMERICANINSTITUTE OFSTEELCONSTRUCTION
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
54.4 81.6 68.0 102 78.6 118
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
54.4 81.6 68.0 102 81.6 122
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
54.4 81.6 68.0 102 81.6 122
60.9 91.4 76.1 114 91.4 137
60.9 91.4 76.1 114 91.4 137
54.4 81.6 68.0 102 81.6 122
60.9 91.4 76.1 114 91.4 137
1
-in. Bolts
4 Rows
L= 11
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 81

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W18, 16,
14, 12,
10*
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
458 687
644
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
45.2
59.4
73.1
86.3
67.9 89.1
110
129
429
STD/
SSLT
STD/
SSLT
OVSOVS
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
39.7 59.5 49.6 74.4 58.9 88.2
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
39.7 59.5 49.6 74.4 59.5 89.3
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
39.7 59.5 49.6 74.4 59.5 89.3
44.6 66.9 55.7 83.6 66.9 100
44.6 66.9 55.7 83.6 66.9 100
39.7 59.5 49.6 74.4 59.5 89.3
44.6 66.9 55.7 83.6 66.9 100
10–82 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
-in. Bolts
3 Rows
L= 8
1
/2 in.
*Limited to W10×12, 15, 17, 19, 22, 26, 30
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 82

Table 10-4 (continued)
Bolted/Welded
Shear End-Plate
Connections
W12, 10,
8
Bolt and End-Plate Available Strength, kips
End-Plate Thickness, in.
1
/4
5 /16
3 /8
LRFD LRFDASD ASD LRFDASD
Rn/Ω
Weld and Beam Web Available Strength, kips
φRn
ASD LRFD
kips kips
ASD
Support Available
Strength per Inch
Thickness, kip/in.
70-ksi Weld
Size, in.
307 461
439
Minimum Beam Web
Thickness, in.
LRFD
Fy= 50 ksi
Fu= 65 ksi
Fy= 36 ksi
Fu= 58 ksi
End-Plate Beam
Thread
Cond.
N
X
SC Class A
SC Class B
N
X
SC Class A
SC Class B
Bolt
Group
Group A
Group B
Hole
Type
STD
STD
STD
OVS
SSLT
STD
OVS
SSLT
STD
STD
STD
OVS
SSLT
STD
OVS
SSLTSTD =Standard holes N =Threads included
OVS =Oversized holes X =Threads excluded
SSLT =Short-slotted holes transverse SC =Slip critical
to direction of load
3
/16
1
/4
5
/16
3
/8
0.286
0.381
0.476
0.571
28.5
37.1
45.2
52.9
42.8 55.7 67.9 79.4
293
STD/
SSLT
STD/
SSLT
OVSOVS
DESIGN TABLES 10–83
AMERICANINSTITUTE OFSTEELCONSTRUCTION
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
25.0 37.5 31.3 46.9 37.5 56.3
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
25.0 37.5 31.3 46.9 37.5 56.3
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
25.0 37.5 31.3 46.9 37.5 56.3
28.3 42.4 35.3 53.0 42.4 63.6
28.3 42.4 35.3 53.0 42.4 63.6
25.0 37.5 31.3 46.9 37.5 56.3
28.3 42.4 35.3 53.0 42.4 63.6
1
-in. Bolts
2 Rows
L= 5
1
/2 in.
Note: Slip-critical bolt values assume no more than one filler has been provided or bolts have been added to distribute loads
in the fillers.
AISC_Part 10B:14th Ed. 2/24/11 9:22 AM Page 83

10–84 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
UNSTIFFENED SEATED CONNECTIONS
An unstiffened seated connection is made with a seat angle and a top angle, as illustrated in
Figure 10-7. These angles may be bolted or welded to the supported beam as well as to the
supporting member.
While the seat angle is assumed to carry the entire end reaction of the supported beam,
the top angle must be placed as shown or in the optional side location for satisfactory
performance and stability (Roeder and Dailey, 1989). The top angle and its connections
are not usually sized for any calculated strength requirement. A
1
/4-in.-thick angle with a
4-in. vertical leg dimension will generally be adequate. It may be bolted with two bolts
through each leg or welded with minimum size welds to either the supported or the
supporting members.
When the top angle is welded to the support and/or the supported beam, adequate
flexibility must be provided in the connection. As illustrated in Figure 10-7(b), line welds
are placed along the toe of each angle leg. Note that welding along the sides of the vertical
angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end
rotation of the connection. The performance of such a connection would not be as intended
for unstiffened seated connections.
Fig. 10-7. Unstiffened seated connections.
(a) All-bolted
(b) All-welded
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 84

DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10–85
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Design Checks
The available strength of an unstiffened seated connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Additionally, the strength of the supported beam web must be checked for the limit states of
web local yielding and web local crippling. In all cases, the available strength, φR
nor Rn/Ω,
must equal or exceed the required strength, R
uor Ra. The available strength for web local
yielding and web local crippling, φR
nor Rn/Ω, is determined per AISC Specification
Sections J10.2 and J10.3, respectively, which is simplified using the constants in Table 9-4.
For further information, see Carter et al. (1997).
Shop and Field Practices
Unstiffened seated connections may be made to the webs and flanges of supporting
columns. If adequate clearance exists, unstiffened seated connections may also be made to
the webs of supporting girders.
To provide for overrun in beam length, the nominal setback for the beam end is
1
/2in.
To provide for underrun in beam length, this setback is assumed to be
3
/4in. for calculation
purposes.
The seat angle is preferably shop-attached to the support. Since the bottom flange
typically establishes the plane of reference for seated connections, mill variation in beam
depth may result in variation in the elevation of the top flange. Such variation is usually of
no consequence with concrete slab and metal deck floors, but may be a concern when a
grating or steel-plate floor is used. Unless special care is required, the usual mill tolerances
for member depth of
1
/8in. to
1
/4in. are ignored. However, when the top angle is shop-
attached to the supported beam and field bolted to the support, mill variation in beam depth
must be considered. Slotted holes, as illustrated in Figure 10-8(a), will accommodate both
overrun and underrun in the beam depth and are the preferred method for economy and
convenience to both the fabricator and erector. Alternatively, the angle could be shipped
loose with clearance provided, as shown in Figure 10-8(b). When the top angle is to be field-
welded to the support, no provision for mill variation in the beam depth is necessary.
When the top angle is shop-attached to the support, an appropriate erection clearance is
provided, as illustrated in Figure 10-8(c).
Bolted/Welded Unstiffened Seated Connections
Tables 10-5 and 10-6 may be used in combination to design unstiffened seated connections
that are welded to the supporting member and bolted to the supported beam, or bolted to the
supporting member and welded to the supported beam.
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6)
Table 10-5. All-Bolted Unstiffened Seated Connections
Table 10-5 is a design aid for all-bolted unstiffened seats. Seat available strengths are
tabulated, assuming a 4-in. outstanding leg, for angle material with F
y=36 ksi and F u=58
ksi and beam material with F
y=50 ksi and F u=65 ksi. All values are for comparison
with the governing LRFD or ASD load combination.
Tabulated seat available strengths consider the limit states of shear yielding and flexural
yielding of the outstanding angle leg. The required bearing length, l
b, req, is determined by
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 85

10–86 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the designer as the larger value of l brequired for the limit states of local yielding and
crippling of the beam web. As noted in AISC SpecificationSection J10.2, l
b, reqmust not be
less than k
des. A nominal beam setback of
1
/2in. is assumed in these tables. However, this
setback is increased to
3
/4in. for calculation purposes in determining the tabulated values to
account for the possibility of underrun in beam length.
Bolt available strengths are tabulated for the seat types illustrated in Figure 10-7(a) with
3
/4-in.-,
7
/8-in.- and 1-in.-diameter Group A and Group B bolts. Vertical spacing of bolts and
gages in seat angles may be arranged to suit conditions, provided the edge distance and
spacing requirements in AISC SpecificationSection J3 are met. Where thick angles are used,
larger entering and tightening clearances may be required in the outstanding angle leg. The
suitability of angle sizes and thicknesses for the seat types illustrated in Figure 10-7(a) is
also listed in Table 10-5.
Fig. 10-8. Providing for variation in beam depth with seated connections.
(a) Vertical slots
(b) Loose angle with (c) Shop-attached to column flange
clearance as shown with clearance as shown
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 86

Table 10-6. All-Welded Unstiffened Seated Connections
Table 10-6 is a design aid for all-welded unstiffened seats (exception: the beam is bolted to
the seat). Seat available strengths are tabulated, assuming either a 3
1
/2-in. or 4-in. outstanding
leg (as indicated in the table), for angle material with F
y=36 ksi and F u=58 ksi and beam
material with F
y=50 ksi and F u=65 ksi. Electrode strength is assumed to be 70 ksi.
Tabulated seat available strengths consider the limit states of shear yielding and flexural
yielding of the outstanding angle leg. The required bearing length, l
b, req, is to be determined
by the designer as the larger value of l
brequired for the limit states of local yielding and
crippling of the beam web. As noted in AISC SpecificationSection J10.2, l
b, reqmust not be
less than k
des. A nominal beam setback of
1
/2in. is assumed in these tables. However, this
setback is increased to
3
/4in. for calculation purposes in determining the tabulated values to
account for the possibility of underrun in beam length.
Tabulated weld available strengths are determined using the elastic method. The minimum
and maximum angle thickness for each case is also tabulated. While these tabular values are
based upon 70-ksi electrodes, they may be used for other electrodes, provided the tabular
values are adjusted for the electrodes used (e.g., for 60-ksi electrodes, the tabular values are
to be multiplied by 60/70 =0.866, etc.) and the welds and base metal meet the required
strength level provisions of AISC SpecificationTable J2.5. Should combinations of material
thickness and weld size selected from Table 10-6 exceed the limits in AISC Specification
Section J2.2, the weld size or material thickness should be increased as required. Table 8-4 is
not applicable to the design of these welds in this type of connection.
As can be seen from the following, reduction of the tabulated weld strength is not normally
required when unstiffened seats line up on opposite sides of the supporting web. From
Salmon et al. (2009), the available strength, φR
nor Rn/Ω, of the welds to the support is
where
D=number of sixteenths-of-an-inch in the weld size
L=vertical leg dimension of the seat angle, in.
e=eccentricity of the beam end reaction with respect to the weld lines, in.
The term in the denominator that accounts for the eccentricity, e, increases the weld size far
beyond what is required for shear alone, but with seats on both sides of the supporting
member web, the forces due to eccentricity react against each other and have no effect on the
web. Furthermore, as illustrated in Figure 10-9, there are actually two shear planes per weld;
one at each weld toe and heel for a total of four shear planes. Thus, for an 8-in.-long L7×4×1
seat angle supporting a LRFD required strength of 70 kips or an equivalent ASD required
strength of 46.7 kips, the minimum support thickness is determined as follows:
(10-2b)(10-2a)
DESIGN TABLE DISCUSSION (TABLES 10-5 AND 10-6) 10–87
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LRFD ASD
φR
DL
e
Ln=
+












2
1 392
1
20 25
2
2
.
.
φRDL
e
Ln
Ω
=
+












2
0 928
1
20 25 2
2
.
.
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 87

10–88 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For the identical connection on both sides of the support, the minimum support thickness is
less than
3
/16in. Thus, the supporting web thickness is generally not a concern.
Fig. 10-9. Shear planes in column web for unstiffened seated connections.
(a) Plan view
(b) Elevation
LRFD ASD
70
075 06 65 7 4
0 085
kips
ksi in. planes..
.
()( )()( )
= 5 5 in.
2 0 46 7
06 65 7 4
008
..
.
.
kips
ksi in. planes( )
( )()( )
= 5 55 in.
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 88

DESIGN TABLES 10–89
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-5
All-Bolted Unstiffened
Seated Connections
Angle
F
y= 36 ksi
ASD
3
/8
1 /2
5 /8
Angle Thickness, in.
6
Angle Length, in.
Outstanding Angle Leg Length Strength, kips
3
/4 1
LRFDASDLRFDASDLRFDASDLRFDASDLRFDin.
Required
Bearing
Length
lb,req, in.
Min.
Angle
Leg
Bolt Available Strength, kips
Connection Type from Figure 10-7(a)
A BC
Group
A
Group
B
For tabulated values above the heavy line, shear yielding of the angle leg controls the
available strength.
LRFDASD
Available Angles
ASDLRFDASDLRFDASDLRFD
3
/4
Bolt
Dia.,
in.
Bolt
Group
Thread
Cond.
Connection
Type
A, D
B, E
C
b
, F
b
b
Not suitable for use with
1-in.-diameter bolts.
Angle
Sizet,
in.
7
/8
1
8×4
1
/2– 1
23.935.8 47.771.671.6107
30.145.1 60.190.290.2135
30.145.1 60.190.290.2135
37.155.7 74.3111 111 167
32.548.7 64.997.497.4146
40.961.3 81.7123 123 184
40.961.3 81.7123 123 184
50.575.7101 151 151 227
42.463.6 84.8127 — —
53.480.1107 160 — —
53.480.1107 160 — —
65.998.9132 198 — —
φ=0.75Ω=2.00
1
/2 18.227.3
9
/16 16.224.343.264.8
5
/8 14.621.943.164.8
11
/16 13.219.937.055.5
3
/4 12.118.232.348.6
13
/16 11.216.828.743.2
7
/8 10.415.625.938.9
15
/16 9.7014.623.535.3 54.081.0
1 9.09 13.721.632.4 50.575.9
1
1
/16 8.5612.919.929.9 44.967.5
1
1
/8 8.0812.218.527.8 40.460.8
1
3
/16 7.6611.517.225.9 36.755.2
1
1
/4 7.2810.916.224.3 33.750.664.897.2
1
5
/16 6.9310.415.222.9 31.146.764.797.2 3
1
/2
1
3
/8 6.619.9414.421.6 28.943.458.287.5
1
7
/16 6.339.5113.620.5 26.940.552.979.5
1
1
/2 6.069.1112.919.4 25.338.048.572.9
1
5
/8 5.608.4111.817.7 22.533.841.662.5
1
3
/4 5.207.8110.816.2 20.230.436.454.7
1
7
/8 4.857.2910.015.0 18.427.632.348.6 86.4130
2 4.55 6.839.2413.9 16.825.329.143.7 86.2130
2
1
/8 4.286.438.6213.0 15.523.426.539.8 73.9111
2
1
/4 4.046.088.0812.2 14.421.724.336.5 64.797.2
2
3
/8 3.835.767.6111.4 13.520.322.433.6 57.586.4
2
1
/2 3.645.477.1910.8 12.619.020.831.2 51.777.8
2
5
/8 3.465.216.8110.2 11.917.919.429.2 47.070.7
2
3
/4 3.314.976.479.7211.216.918.227.3 43.164.8
2
7
/8 3.164.756.169.2610.616.017.125.7 39.859.8
3 3.03 4.565.888.8410.115.216.224.3 37.055.5
4
31
/8 2.91
4.375.628.45 9.6214.515.323.0 34.551.8
3
1
/4 2.804.215.398.10 9.1913.814.621.9 32.348.6
4×3
4×3
1
/2
4×4
3
/8–
1
/2
3
/8–
1
/2
3
/8–
3
/4
6×4
7×4
8×4 3
/8–
3
/4
3
/8–
3
/4
1
/2– 1
N
X
N
X
Group
A
Group
B
N
X
N
X
Group
A
Group
B
N
X
N
X
L6
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 89

10–90 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-5 (continued)
All-Bolted Unstiffened
Seated Connections
Angle
F
y= 36 ksi
ASD
Angle Thickness, in.
8
Angle Length, in.
Outstanding Angle Leg Length Strength, kips
LRFDASDLRFDASDLRFDASDLRFDASDLRFDin.
Required
Bearing
Length
lb,req, in.
Min.
Angle
Leg
Bolt Available Strength, kips
Connection Type from Figure 10-7(a)
D EF
Group
A
Group
B
For tabulated values above the heavy line, shear yielding of the angle leg controls the
available strength.
LRFDASD
Available Angles
ASDLRFDASDLRFDASDLRFD
3
/4
Bolt
Dia.,
in.
Bolt
Group
Thread
Cond.
Connection
Type
A, D
B, E
C
b
, F
b
b
Not suitable for use with
1-in.-diameter bolts.
Angle
Sizet,
in.
7
/8
1
8×4
1
/2– 1
φ=0.75Ω=2.00
4×3
4×3
1
/2
4×4
3
/8–
1
/2
3
/8–
1
/2
3
/8–
3
/4
6×4
7×4
8×4
3
/8–
3
/4
3
/8–
3
/4
1
/2– 1
N
X
N
X
Group
A
Group
B
N
X
N
X
Group
A
Group
B
N
X
N
X
1
/2 24.3
36.5
9
/16 21.632.457.6 86.4
5
/8 19.429.257.5 86.4
11
/16 17.626.549.3 74.1
3
/4 16.224.343.1 64.8
13
/16 14.922.438.3 57.6
7
/8 13.920.834.5 51.8
15
/16 12.919.431.4 47.172.0108
1 12.1 18.228.7 43.267.4101
1
1
/16 11.417.226.5 39.959.9 90
1
1
/8 10.816.224.6 37.053.9 81.0
1
3
/16 10.215.323.0 34.649.0 73.6
1
1
/4 9.7014.621.6 32.444.9 67.586.4130
1
5
/16 9.2413.920.3 30.541.5 62.386.2130 3
1
/2
1
3
/8 8.8213.319.2 28.838.5 57.977.6117
1
7
/16 8.4412.718.2 27.335.9 54.070.5106
1
1
/2 8.0812.217.2 25.933.7 50.664.7 97.2
1
5
/8 7.4611.215.7 23.629.9 45.055.4 83.3
1
3
/4 6.9310.414.4 21.626.9 40.548.5 72.9
1
7
/8 6.479.7213.3 19.924.5 36.843.1 64.8
2 6.06 9.1112.3 18.522.5 33.838.8 58.3115 173
2
1
/8 5.718.5811.5 17.320.7 31.235.3 53.098.5148
2
1
/4 5.398.1010.8 16.219.2 28.932.3 48.686.2130
2
3
/8 5.117.6710.1 15.218.0 27.029.8 44.976.6115
2
1
/2 4.857.299.5814.416.8 25.327.7 41.769.0104
2
5
/8 4.626.949.0813.615.9 23.825.9 38.962.794.3
2
3
/4 4.416.638.6213.015.0 22.524.3 36.557.586.4
2
7
/8 4.226.348.2112.314.2 21.322.8 34.353.179.8
3 4.04 6.087.8411.813.5 20.321.6 32.449.374.1
4
31
/8 3.88
5.837.5011.312.8 19.320.4 30.746.069.1
3
1
/4 3.735.617.1910.812.2 18.419.4 29.243.164.8
35.8 53.771.6107 107 161
45.1 67.690.2135 135 203
45.1 67.690.2135 135 203
55.7 83.5111 167 167 251
48.7 73.097.4146 146 219
61.3 92.0123 184 184 276
61.3 92.0123 184 184 276
75.7114 151 227 227 341
63.6 95.4127 191 — —
80.1120 160 240 — —
80.1120 160 240 — —
98.9148 198 297 — —
L8
3
/8
1 /2
5 /8
3 /4 1
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 90

DESIGN TABLES 10–91
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Weld (70 ksi) Available Strength, kips
Seat Angle Size (long leg vertical)
4 ×3
1
/2 5 ×3
1
/2
ASD
LRFD ASD LRFD
70-ksi Weld Size, in.
Design
Available Angle Thickness, in.
Minimum
Maximum
3
/8
1
/2
3
/8
3
/4
For tabulated values above the heavy line, shear yielding of the angle leg controls the
available strength.
— Indicates weld size exceeds that permitted for maximum angle thickness of
1
/2in.
LRFDASD
φ=0.75Ω=2.00
Table 10-6
All-Welded Unstiffened
Seated Connections
Angle
F
y= 36 ksi
ASD
Angle Thickness, in.
6
Angle Length, in.
Outstanding Angle Leg Length Strength, kips
LRFDASDLRFDASDLRFDASDLRFDASDLRFDin.
Required
Bearing
Length
lb,req, in.
Min.
Angle
Leg
1
/4 11.5 17.2 17.2 25.8
5
/16 14.3 21.5 21.5 32.2
3
/8 17.2 25.8 25.8 38.7
7
/16 20.1 30.1 30.1 45.2
1
/2 — — 34.4 51.6
9
/16 — — 38.7 58.1
5
/8 — — 43.0 64.5
11
/16 — — 47.3 71.0
1
/2 18.227.3
9
/16 16.224.3
5
/8 14.621.943.164.8
11
/16 13.219.937.055.5
3
/4 12.118.232.348.6
13
/16 11.216.828.743.2
7
/8 10.415.625.938.9
15
/16 9.7014.623.535.354.0 81.0
1 9.09 13.721.632.450.5 75.9
1
1
/16 8.5612.919.929.944.9 67.5
1
1
/8 8.0812.218.527.840.4 60.8
1
3
/16 7.6611.517.225.936.7 55.2
1
1
/4 7.2810.916.224.333.7 50.6
1
5
/16 6.9310.415.222.931.1 46.764.797.2 3
1
/2
1
3
/8 6.619.9414.421.628.9 43.458.287.5
1
7
/16 6.339.5113.620.526.9 40.552.979.5
1
1
/2 6.069.1112.919.425.3 38.048.572.9
1
5
/8 5.608.4111.817.722.5 33.841.662.5
1
3
/4 5.207.8110.816.220.2 30.436.454.7
1
7
/8 4.857.299.9515.018.4 27.632.348.6
2 4.55 6.839.2413.916.8 25.329.143.7 86.2130
2
1
/8 4.286.438.6213.015.5 23.426.539.8 73.9111
2
1
/4 4.046.088.0812.214.4 21.724.336.5 64.797.2
2
3
/8 3.835.767.6111.413.5 20.322.433.6 57.586.4
2
1
/2 3.645.477.1910.812.6 19.020.831.2 51.777.8
2
5
/8 3.465.216.8110.211.9 17.919.429.2 47.070.7
2
3
/4 3.314.976.479.7211.2 16.918.227.3 43.164.8
2
7
/8 3.164.756.169.2610.6 16.017.125.7 39.859.8
3 3.03 4.565.888.8410.1 15.216.224.3 37.055.5
4
3
1
/8 2.91
4.375.628.459.6214.515.323.0 34.551.8
3
1
/4 2.804.215.398.109.1913.814.621.9 32.348.6
L6
3
/8
1 /2
5 /8
3 /4 1
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 91

10–92 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Weld (70 ksi) Available Strength, kips
Seat Angle Size (long leg vertical)
70-ksi Weld Size, in.
Design
Available Angle Thickness, in.
Minimum
Maximum
For tabulated values above the heavy line, shear yielding of the angle leg controls the
available strength.
LRFDASD
φ=0.75Ω=2.00
Table 10-6 (continued)
All-Welded Unstiffened
Seated Connections
Angle
F
y= 36 ksi
ASD
Angle Thickness, in.
8
Angle Length, in.
Outstanding Angle Leg Length Strength, kips
LRFDASDLRFDASDLRFDASDLRFDASDLRFDin.
Required
Bearing
Length
lb,req, in.
Min.
Angle
Leg
1
/2 24.336.5
9
/16 21.632.4
5
/8 19.429.257.5 86.4
11
/16 17.626.549.3 74.1
3
/4 16.224.343.1 64.8
13
/16 14.922.438.3 57.6
7
/8 13.920.834.5 51.8
15
/16 12.919.431.4 47.172.0108
1 12.1 18.228.7 43.267.4101
1
1
/16 11.417.226.5 39.959.9 90.0
1
1
/8 10.816.224.6 37.053.9 81.0
1
3
/16 10.215.323.0 34.649.0 73.6
1
1
/4 9.7014.621.6 32.444.9 67.5
1
5
/16 9.2413.920.3 30.541.5 62.386.2130 3
1
/2
1
3
/8 8.8213.319.2 28.838.5 57.977.6117
1
7
/16 8.4412.718.2 27.335.9 54.070.5106
1
1
/2 8.0812.217.2 25.933.7 50.664.7 97.2
1
5
/8 7.4611.215.7 23.629.9 45.055.4 83.3
1
3
/4 6.9310.414.4 21.626.9 40.548.5 72.9
1
7
/8 6.479.7213.3 19.924.5 36.843.1 64.8
2 6.06 9.1112.3 18.522.5 33.838.8 58.3115 173
2
1
/8 5.718.5811.5 17.320.7 31.235.3 53.098.5148
2
1
/4 5.398.1010.8 16.219.2 28.932.3 48.686.2130
2
3
/8 5.117.6710.1 15.218.0 27.029.8 44.976.6115
2
1
/2 4.857.299.5814.416.8 25.327.7 41.769.0104
2
5
/8 4.626.949.0813.615.9 23.825.9 38.962.794.3
2
3
/4 4.416.638.6213.015.0 22.524.3 36.557.586.4
2
7
/8 4.226.348.2112.314.2 21.322.8 34.353.179.8
3 4.04 6.087.8411.813.5 20.321.6 32.449.374.1
4
3
1
/8 3.88
5.837.5011.312.8 19.320.4 30.746.069.1
3
1
/4 3.735.617.1910.812.2 18.419.4 29.243.164.8
1
/4 21.8 32.7 28.5 42.7 35.6 53.4
5
/16 27.3 40.9 35.6 53.4 44.5 66.7
3
/8 32.7 49.1 42.7 64.1 53.4 80.1
7
/16 38.2 57.2 49.8 74.7 62.3 93.4
1
/2 43.6 65.4 57.0 85.4 71.2 107
9
/16 49.1 73.6 64.1 96.1 80.1 120
5
/8 54.5 81.8 71.2 107 89.0 133
11
/16 60.0 90.0 78.3 117 97.9 147
6 ×4 7 ×48 ×4
ASD LRFD ASD LRFD ASD LRFD
3
/8
3
/4
3
/8
3
/4
1
/2
1
L8
3
/8
1 /2
5 /8
3 /4 1
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 92

STIFFENED SEATED CONNECTIONS 10–93
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-10. Stiffened seated connections.
(a) All-bolted
(b) Bolted/welded
STIFFENED SEATED CONNECTIONS
A stiffened seated connection is made with a seat plate and stiffening element (e.g., a plate,
structural tee, or pair of angles) and a top angle, as illustrated in Figure 10-10. The top angle
may be bolted or welded to the supported beam as well as to the supporting member and the
stiffening element may be bolted or welded to the support. The supported beam is bolted to
the seat plate.
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 93

10–94 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The stiffening element is assumed to carry the entire end reaction of the supported beam
applied at a distance equal to 0.8W, where Wis the dimension of the stiffening element
parallel to the beam web. The top angle must be placed as shown or in the optional side
location for satisfactory performance and stability (Roeder and Dailey, 1989). The top angle
and its connections are not usually sized for any calculated strength requirement. A
1
/4-in.-
thick angle with a 4-in. vertical leg dimension will generally be adequate. It may be fastened
with two bolts through each leg or welded with minimum size welds to either the supported
or the supporting members.
When the top angle is welded to the support and/or the supported beam, adequate
flexibility must be provided in the connection. As illustrated in Figure 10-10(b), line welds
are placed along the toe of each angle leg. Note that welding along the sides of the vertical
angle leg must be avoided as it would inhibit the flexibility and, therefore, the necessary end
rotation of the connection. The performance of such a connection would not be as intended
for simple shear connections.
Design Checks
The available strength of a stiffened seated connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see
Part 9). Additionally, the strength of the supported beam web must be checked for the
limit states of web local yielding and web local crippling. In all cases, the available
strength, φR
nor Rn/Ω, must equal or exceed the required strength, R uor Ra. The available
strength for web local yielding and web local crippling, φR
nor Rn/Ω, is determined per
AISC SpecificationSections J10.2 and J10.3, respectively, which is simplified using the
constants in Table 9-4.
When stiffened seated connections, such as the one shown in Figure 10-10(b), are made
to one side of a supporting column web, the column web may also need to be investigated
for resistance to punching shear. In lieu of a more detailed analysis, Sputo and Ellifritt
(1991) showed that punching shear will not be critical if the design parameters following
and those summarized graphically in Figure 10-10(b) are met.
1. This simplified approach is applicable to the following column sections:
W14×43 to 730 W12×40 to 336 W10×33 to 112
W8×24 to 67 W6×20 and 25 W5×16 and 19
2. The supported beam must be bolted to the seat plate with high-strength bolts to
account for the prying action caused by rotation of the connection. Welding the beam
to the seat plate is not recommended because welds may lack the required strength and
ductility. The centerline of the bolts should be located no more than the greater of W/2
or 2
5
/8in. from the column web face.
3. For seated connections where W=8 in. or 9 in. and 3
1
/2in. < B≤W/2, or where
W=7 in. and 3 in. < B≤W/2 for a W14×43 column, refer to Sputo and Ellifritt (1991).
4. The top angle may be bolted or welded, but must have a minimum
1
/4-in. thickness.
5. The seat plate should not be welded to the beam flange.
See also Ellifritt and Sputo (1999).
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 94

DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8) 10–95
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shop and Field Practices
The comments for unstiffened seated connections are equally applicable to stiffened seated
connections.
DESIGN TABLE DISCUSSION (TABLES 10-7 AND 10-8)
Table 10-7. All-Bolted Stiffened Seated Connections
Table 10-7 is a design aid for all-bolted stiffened seats. Stiffener available strengths are
tabulated for stiffener material with F
y=36 ksi and F u=58 ksi and with F y=50 ksi and
F
u=65 ksi.
Tabulated values consider the limit state of bearing on the stiffening material. The
designer must independently check the available strength of the beam web based upon the
limit states of web local yielding and web local crippling. A nominal beam setback of
1
/2in.
is assumed in these tables. However, this setback is increased to
3
/4in. for calculation
purposes in determining the tabulated values to account for the possibility of underrun in
beam length.
Bolt available strengths are tabulated for two vertical rows of from three to seven
3
/4-in.-,
7
/8-in.- and 1-in.-diameter Group A and Group B high-strength bolts based upon the limit
state of bolt shear. Vertical spacing of bolts and gages in seat angles may be arranged to suit
conditions, provided the edge distance and spacing requirements in AISC Specification
Section J3 are met.
Table 10-8. Bolted/Welded Stiffened Seated Connections
Table 10-8 is a design aid for stiffened seated connections welded to the support and bolted
to the supported beam. Electrode strength is assumed to be 70 ksi.
Weld available strengths are tabulated using the elastic method. While these tabular
values are based upon 70-ksi electrodes, they may be used for other electrodes, provided the
tabular values are adjusted for the electrodes used (e.g., for 60-ksi electrodes, the tabular
values are multiplied by 60/70 =0.866, etc.) and the weld and base metal meet the required
strength provisions of AISC SpecificationTable J2.5.
The thickness of the horizontal seat plate or tee flange should not be less than
3
/8in. If the
seat and stiffener are built up from separate plates, the stiffener should be finished to bear
under the seat. The welds connecting the two plates should have a strength equal to or
greater than the horizontal welds to the support under the seat plate.
The designer must independently check the beam web for web local yielding and web
local crippling. The nominal beam setback of
1
/2in. should be assumed to be
3
/4in. for
calculation purposes to account for possible underrun in beam length.
The stiffener thickness is conservatively determined as follows. The minimum stiffener
plate thickness, t, for supported beams with unstiffened webs is the supported beam web
thickness, t
w, multiplied by the ratio of F yof the beam material to F yof the stiffener material
(e.g., F
y,beam=50 ksi, F y, stiffener=36 ksi, t=t w×50/36 minimum). Additionally,
the minimum stiffener plate thickness, t, should be at least 2wfor stiffener material with
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 95

10–96 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fy=36 ksi or 1.5wfor stiffener material with F y=50 ksi, where wis the weld size for
70-ksi electrodes.
For 70-ksi electrodes, the minimum column web thickness is
(9-2)
where
D=weld size in sixteenths of an inch
F
u= specified minimum tensile strength of the connecting element, ksi
When welds line up on opposite sides of the support, the minimum thickness is the sum
of the thicknesses required for each weld. In either case, when less than the minimum
material thickness is present, the weld available strength must be reduced by the ratio of the
thickness provided to the minimum thickness. As with unstiffened seated connections, the
contribution of eccentricity to the required shear yielding strength is negligible. Should
combinations of material thickness and weld size selected from Table 10-8 exceed the limits
of AISC SpecificationSection J2.2, the weld size or material thickness must be increased.
t
D
Fmin
u=
309.
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 96

DESIGN TABLES 10–97
AMERICANINSTITUTE OFSTEELCONSTRUCTION
N
N
N
N
N
N
ASD
Fy= 36 ksi Fy = 50 ksi
ASDLRFD
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
LRFD
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
φ =0.75Ω=2.00
Table 10-7
All-Bolted Stiffened
Seated Connections
3
1
/2 4
34567
5
Outstanding Angle Leg Available Strength, kips
a
Stiffener Material
Bolt Available Strength, kips
Number of Bolts in One Vertical Row
3
1
/2 45
Stiffener
Outstanding
Leg,
W, in.
b
Bolt Diameter, in.
Bolt
Group
X
X
X
X
X
X
Thread
Cond.
3
/4
7
/8
1
Thickness
of Stiffener
Outstanding
Legs, in.
Use minimum
3
/8-in.-thick seat plate wide enough to extend beyond outstanding legs of stiffener.
a
See AISC SpecificationSection J7.
b
Beam bearing length assumed
3
/4in. less for calculation purposes.
5
/1655.783.565.898.786.112977.311691.4137120179
3
/866.810079.011810315592.8139110165143215
1
/289.1134105158138207124186146219191287
5
/8111167132197172258155232183274239359
3
/4134200158237207310186278219329287430
φ
Rn=0.75(1.8FyApb)
71.610795.5143119179143215167251
90.2135120180150225180271210316
90.2135120180150225180271210316
111167149223186278223334260390
97.4146130195162243195292227341
123184163245204307245368286429
123184163245204307245368286429
151227202303252379303454353530
127191170254212318254382297445
160240214320267400320480374560
160240214320267400320480374560
198297264396330495396593462692
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
R FA
n ypb
Ω
=
18
200
.
.
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 97

10–98 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASD ASD ASD ASD ASD ASD
70-ksi Weld Size, in.
1
/4
5 /16
3 /8
7 /16
5 /16
3 /8
70-ksi Weld Size, in.
5
LRFD LRFD LRFD LRFD LRFD LRFD
Table 10-8
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
4
Width of Seat,
W, in.
Limitations for Connections to Column Webs
B= 2
5
/8in. max B= 2
5
/8in. max
None
W12×40, W14×43
for
L≥ 9 in.
limit weld ≤
1
/4in.
L, in.
Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength,
Ruor Ra. For 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
but not less than 2
wfor stiffeners with Fy=36 ksi nor 1.5wfor stiffeners with Fy=50 ksi. In the above, twis the thickness
of the unstiffened supported beam web and
wis the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
SpecificationSections J4.2 and J7, respectively.
6 22.7
34.028.442.534.051.139.759.623.535.228.242.2
7 29.9 44.937.456.144.967.352.478.631.246.937.556.2
8 37.8 56.747.270.856.785.066.199.239.859.847.871.7
9 46.1 69.257.786.569.2104 80.7121 49.173.759.088.5
10 54.9 82.368.6103 82.3123 96.0144 59.088.570.8106
11 63.9 95.879.8120 95.8144112168 69.4104 83.3125
12 73.1 110 91.4137110165128192 80.2120 96.2144
13 82.5 124103155124186144217 91.3137110164
14 92.1 138115173138207161242103154123185
15 102 152127191152229178267114171137206
16 111 167139209167250195292126189151227
17 121 181151227181272212318138207165248
18 131 196163245196294229343150225180270
19 140 211175263211316246369162243194291
20 150 225188281225338263394174261209313
21 160 240200300240359280419186279223335
22 169 254212318254381296445198297238357
23 179 269224336269403313470210315252378
24 189 283236354283425330495222334267400
25 198 297248372297446347520235352281422
26 208 312260390312468364546247370296444
27 217 326272408326489380571259388310466
ASD LRFD
φ =0.75Ω=2.00
t
F
F
t
min
y beam
y stiffener
w=






,
,
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 98

ASD ASD ASD ASD ASD ASD
70-ksi Weld Size, in.
7
/16
1 /2
5 /16
3 /8
7 /16
1 /2
70-ksi Weld Size, in.
6
LRFD LRFD LRFD LRFD LRFD LRFD
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
5
Width of Seat,
W, in.
Limitations for Connections to Column Webs
B= 2
5
/8in. max B= 3 in. max
NoneNone
L, in.
Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength,
Ruor Ra. For 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
but not less than 2
wfor stiffeners with Fy=36 ksi nor 1.5wfor stiffeners with Fy=50 ksi. In the above, twis the thickness
of the unstiffened supported beam web and
wis the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
SpecificationSections J4.2 and J7, respectively.
ASD LRFD
φ =0.75Ω=2.00
DESIGN TABLES 10–99
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6 32.8 49.337.556.319.929.923.935.927.941.931.947.8
7 43.7 65.650.075.026.740.132.048.137.456.142.764.1
8 55.8 83.763.895.634.351.441.161.748.072.054.882.2
9 68.8 103 78.6118 42.563.851.176.659.689.368.1102
10 82.6 124 94.4142 51.477.261.792.672.0108 82.3123
11 97.2 146111167 60.991.373.1110 85.3128 97.4146
12 112 168128192 70.8106 85.0127 99.2149113170
13 128 192146219 81.2122 97.4146114170130195
14 144 216164246 91.9138110165129193147220
15 160 240183274103154123185144216165247
16 176 265202302114171137205160240183274
17 193 290221331126188151226176264201301
18 210 315240360137206165247192288219329
19 227 340259388149223179268208313238357
20 244 365278417161241193289225337257386
21 260 391298446173259207311242362276414
22 277 416317476185277222332258388295443
23 294 442336505197295236354275413315472
24 311 467356534209313250376292438334501
25 328 492375563221331265397309464353530
26 345 518395592233349280419326489373559
27 362 543414621245368294441343515392588
t
F
F
t
min
y beam
y stiffener
w=






,
,
AISC_PART 10C:14th Ed. 2/24/11 9:25 AM Page 99

ASD ASD ASD ASD ASD ASD
70-ksi Weld Size, in.
5
/16
3 /8
7 /16
1 /2
5 /16
3 /8
70-ksi Weld Size, in.
8
LRFD LRFD LRFD LRFD LRFD LRFD
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
7
Width of Seat,
W, in.
Limitations for Connections to Column Webs
B= 3
1
/2in. max B= 3
1
/2in. max
See item 3 in preceding
discussion “Design Checks”
W14×43, limit
B≤ 3 in.
See item 3 in preceding discussion “Design Checks”
L, in. Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength,
Ruor Ra. For 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
but not less than 2
wfor stiffeners with Fy=36 ksi nor 1.5wfor stiffeners with Fy=50 ksi. In the above, twis the thickness
of the unstiffened supported beam web and
wis the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
SpecificationSections J4.2 and J7, respectively.
ASD LRFD
φ =0.75Ω=2.00
10–100 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
11 54.0 81.064.897.275.611386.413048.472.558.087.1
12 63.1 94.775.7114 88.4133101 15156.785.168.1102
13 72.7 109 87.2131102 153116 17465.698.378.7118
14 82.6 124 99.2149116 174132 19874.8112 89.8135
15 93.0 139112167130 195149 22384.5127101152
16 104 155124186145 217166 24994.4142113170
17 114 172137206160 240183 275105157126189
18 126 188151226176 264201 301115173138208
19 137 205164246192 287219 329126189151227
20 148 223178267208 312237 356137206165247
21 160 240192288224 336256 384148222178267
22 172 258206309240 361275 412160240192287
23 184 275220330257 385294 440171257205308
24 195 293234352274 410313 469183274219329
25 207 311249373290 435332 498195292233350
26 219 329263395307 461351 526206309248371
27 231 347278417324 486370 555218327262393
28 244 365292438341 511390 584230345276414
29 256 383307460358 537409 613242363291436
30 268 402321482375 562428 643254381305457
31 280 420336504392 588448 672266399319479
32 292 438350526409 613467 701278417334501
t
F
F
t
min
y beam
y stiffener
w=






,
,
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 100

DESIGN TABLES 10–101
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASD ASD ASD ASD ASD ASD
70-ksi Weld Size, in.
1
/2
5 /8
5 /16
3 /8
1 /2
5 /8
70-ksi Weld Size, in.
9
LRFD LRFD LRFD LRFD LRFD LRFD
Table 10-8 (continued)
Bolted/Welded Stiffened
Seated Connections
Weld Available Strength, kips
8
Width of Seat,
W, in.
Limitations for Connections to Column Webs
B= 3
1
/2in. max B= 3
1
/2in. max
See item 3 in preceeding discussion “Design Checks”
See item 3 in preceding
discussion “Design Checks”
L, in. Notes:
1. Values shown assume 70-ksi electrodes. For 60-ksi electrodes, multiply tabular values by 0.857, or enter table with 1.17 times
the required strength,
Ruor Ra. For 80-ksi electrodes, multiply tabular values by 1.14, or enter table with 0.875 times the
required strength.
2. Tabulated values are valid for stiffeners with minimum thickness of
but not less than 2
wfor stiffeners with Fy=36 ksi nor 1.5wfor stiffeners with Fy=50 ksi. In the above, twis the thickness
of the unstiffened supported beam web and
wis the nominal weld size.
3. Tabulated values may be limited by shear yielding of, or bearing on, the stiffener; refer to AISC
SpecificationSections J4.2 and J7, respectively.
ASD LRFD
φ =0.75Ω=2.00
11 77.4 116 96.714543.765.652.578.769.9105 87.4131
12 90.8 136113 17051.477.161.792.582.2123103 154
13 105 157131 19759.689.371.5107 95.3143119 179
14 120 180150 22468.2102 81.8123109 164136 204
15 135 203169 25377.2116 92.6139123 185154 232
16 151 227189 28386.5130104156138 208173 260
17 168 251209 31496.2144115173154 231192 289
18 184 277231 346106159127191170 255212 319
19 202 303252 378117175140210186 280233 350
20 219 329274 411127191152229203 305254 381
21 237 356297 445138207165248220 331276 413
22 256 383319 479149223178268238 357297 446
23 274 411342 514160240192288256 384320 480
24 292 439366 548171257205308274 411342 513
25 311 467389 584183274219329292 438365 548
26 330 495413 619194291233349310 466388 582
27 349 524436 655206308247370329 494411 617
28 368 552460 690217326261391348 522435 652
29 387 581484 726229344275412367 550458 687
30 407 610508 762241362289434386 578482 723
31 426 639532 799253379304455405 607506 759
32 445 668557 835265397318477424 636530 795
t
F
F
t
min
y beam
y stiffener
w=






,
,
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 101

10–102 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SINGLE-PLATE CONNECTIONS
A single-plate connection is made with a plate, as illustrated in Figure 10-11. The plate must
be welded to the support on both sides of the plate and bolted to the supported member.
Design Checks
The available strength of a single-plate connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In
all cases, the available strength, φR
nor Rn/Ω, must equal or exceed the required strength, R u
or Ra, respectively.
Single-plate shear connections that satisfy the corresponding dimensional limitations can
be designed using the simplified design procedure for the “conventional” configuration.
Other single-plate shear connections can be designed using the procedure for the “extended”
configuration, which is applicable to any configuration of single-plate shear connections,
regardless of connection geometry.
Both the conventional and extended configurations permit the use of Group A or Group
B bolts. The procedure is valid for bolts that are snug-tightened, pretensioned or slip-critical.
In both the conventional and extended configuration, the design recommendations are
equally applicable to plate and beam web material with F
y=36 ksi or 50 ksi. In both cases,
the weld between the single plate and the support should be sized as (
5
/8)tp, which will
develop the strength of either a 36-ksi or 50-ksi plate.
Conventional Configuration
The following method may be used when the dimensional and other limitations upon which
it is based are satisfied. See Muir and Thornton (2011).
Dimensional Limitations
1. Only a single vertical row of bolts is permitted. The number of bolts in the connection,
n, must be between 2 and 12.
2. The distance from the bolt line to the weld line, a, must be equal to or less than 3
1
/2in.
Fig. 10-11. Single-plate connection.
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 102

SINGLE-PLATE CONNECTIONS 10–103
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Standard holes (STD) or short-slotted holes transverse to the direction of the supported
member reaction (SSLT) are permitted to be used as noted in Table 10-9.
4. The vertical edge distance, L
ev, must satisfy AISC SpecificationTable J3.4 require-
ments. The horizontal edge distance, L
eh, should be greater than or equal to 2d, where
dis the bolt diameter.
5. Either the plate thickness, t
p, or the beam web thickness, t w, must satisfy the maximum
thickness requirement given in Table 10-9.
Design Checks
1. The bolts and plate must be checked for required shear with an eccentricity equal to e,
as given in Table 10-9.
2. Plate buckling will not control for the conventional configuration.
Extended Configuration
The following method can be used when the dimensional and other limitations of the
conventional method are not satisfied. This procedure can be used to determine the strength
of single-plate shear connections with multiple vertical rows or in the extended configuration,
as shown in Figure 10-12.
Fig. 10-12. Single-plate connection—Extended Configuration.
Table 10-9
Design Values for Conventional
Single-Plate Shear Connections
n Hole Type e, in. Maximum tpor tw, in.
2 to 5
SSLT
a/2 None
STD
a/2 d/2 +
1
/16
6 to 12
SSLT
a/2 d/2 +
1
/16
STD ad /2 −
1
/16
Stabilizer plates,
if required
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 103

10–104 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Dimensional Limitations
1. The number of bolts, n, is not limited.
2. The distance from the weld line to the bolt line closest to the support, a, is not limited.
3. The use of holes must satisfy AISC SpecificationSection J3.2 requirements.
4. The horizontal and vertical edge distances, L
ehand L ev, must satisfy AISC Specification
Table J3.4 requirements.
Design Checks
1. Determine the bolt group required for bolt shear and bolt bearing with eccentricity e,
where eis defined as the distance from the support to the centroid of the bolt group.
Exception: Alternative considerations of the design eccentricity are acceptable when
justified by rational analysis. For example, see Sherman and Ghorbanpoor (2002).
2. Determine the maximum plate thickness permitted such that the plate moment strength
does not exceed the moment strength of the bolt group in shear, as follows:
(10-3)
where
M
max= (10−4)
=shear strength of an individual bolt from AISC SpecificationTable J3.2, ksi,
divided by a factor of 0.90 to remove the 10% reduction for uneven force
distribution in end-loaded bolt groups (Kulak, 2002). The joint in question
is not end-loaded.
A
b=area of an individual bolt, in.
2
C′=coefficient from Part 7 for the moment-only case (instantaneous center of
rotation at the centroid of the bolt group)
F
y=specified minimum yield stress of plate, ksi
d=depth of plate, in.
The foregoing check is made at the nominal strength level, since the check is to ensure
ductility, not strength.
Exceptions:
a. For a single vertical row of bolts only, the foregoing criterion need not be satisfied if
either the beam web or the plate satisfies t≤d
b/2 +
1
/16and both satisfy L eh≥2db.
b. For a double vertical row of bolts only, the foregoing criterion need not be satisfied
if both the beam web and the plate satisfy t≤d
b/2 +
1
/16and L eh≥2db.
3. Check the plate for the limit states of shear yielding, shear rupture, and block shear
rupture.
4. Check the plate for the limit states of shear yielding, shear buckling, and yielding due
to flexure as follows:
(10-5)
t
M
Fdmax
max
y=
6
2
F
ACnv
b
090.

( )
Fnv
090.
V
V
M
Mr
c
r
c⎛





+







22
10.
AISC_PART 10C_14th Ed._February 12, 2013 12/02/13 9:27 AM Page 104

SINGLE-PLATE CONNECTIONS 10–105
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
A
g=gross cross-sectional area of the shear plate, in.
2
Mc=φbMn(LRFD) or M n/Ωb(ASD), kip-in.
M
n=FyZpl, kip-in.
M
r=Mu(LRFD) or M a(ASD)
=V
re, kip-in.
V
c=φvVn(LRFD) orV n/Ωv, (ASD), kips
V
n=0.6F yAg, kips
V
r=Vu(LRFD) or V a(ASD), kips
Z
pl=plastic section modulus of the shear plate, in.
3
e=distance from support to centroid of bolt group, in.
φ
b=0.90
φ
v=1.00
Ω
b=1.67
Ω
v=1.50
5. Check the plate for the limit state of buckling using the double-coped beam procedure
given in Part 9.
6. Ensure that the supported beam is braced at points of support.
The design procedure for extended single-plate shear connections permits the column to be
designed for an axial force without eccentricity. In some cases, economy may be gained by
considering alternative design procedures that allow the transfer of some moment into the
column. A percentage of the column’s weak-axis flexural strength, such as 5%, may be used
as a mechanism to reduce the required eccentricity on the bolt group, provided that this
moment is also considered in the design of the column. Larger percentages of the column’s
weak-axis flexural strength may be justified at the roof level.
Short-slotted holes can be used with the extended configuration with the bolts designed
as bearing. Any slip of the bolts is a serviceability issue and does not affect the connection
strength (Muir and Hewitt, 2009).
Requirement for Stabilizer Plates
Lateral displacement of beams with extended single-plate connections is resisted by the tor-
sional strength of the plate and beam in the connection region. Thornton and Fortney (2011)
show that stabilizing plates are not required when the required shear strength, R
uor Ra,
respectively, is equal to or less than the available strength to resist lateral displacement, φR
n
or Rn/Ω, where
(10-6)
φ=0.90 Ω =1.67
where
a=distance from the support to the first line of bolts, in.
L=depth of plate, in.
t
p=thickness of plate, in.
When the required shear strength exceeds the available strength to resist lateral displace-
ment, stabilizer plates are required. These plates can be of nominal size and are connected
R
Lt
an
p=1 500
3
2

AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 105

to the single plate and column flanges with minimum size fillet welds as shown in Figure
10-12. They need not be connected to the column web.
The torsional strength of single-plate shear connections is the sum of two components: the
lateral shear strength of the single plate and the lateral bending strength of the beam in the
connection region. The first component always is present. The second component occurs as
bending of the beam flange in contact with the slab, and should only be considered when a
slab is present. Thornton and Fortney (2011) provide the sum of these components as follows:
where
F
yp=specified minimum yield stress of the plate, ksi
M
tu= (10-8a)
M
ta= (10-8b)
L
s=span length of beam, in.
R
a=required strength (ASD), kips
R
u=required strength (LRFD), kips
b
f=width of beam flange, in.
t
w=thickness of beam web, in.
φ
b=0.90
φ
v=1.00
Ω
b=1.67
Ω
v=1.50
Recommended Plate Length
To provide for stability during erection, it is recommended that the minimum plate length
be one-half the T-dimension of the beam to be supported. The maximum length of the plate
must be compatible with the T-dimension of an uncoped beam and the remaining web depth,
exclusive of fillets, of a coped beam. Note that the plate may encroach upon the fillet(s) as
given in Figure 10-3.
Shop and Field Practices
Conventional and extended single-plate connections may be made to the webs of supporting
girders and to the flanges of supporting columns. Extended single-plate connections are
suitable for connections to the webs of supporting columns when the bolt line is located a
sufficient distance beyond the column flanges.
10–106 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R
tt
R
ttu
wp
a
wp
+⎛





+⎛





2
2
(LRFD)
(ASD)
LRFD ASD
M
F R
Lt
Lt
Rt tta
yp
v
a
p
p
baw p≤−






+
+
(
06
2
2
2
2
.
Ω
Ω

))b
FLtf
yb s w
2
MF
R
Lt
Lt
Rt ttu v yp
u
p
p
uw p≤( )−






+
+
(
φ06
2
2
2
2
.

))
( )
b
FLtf
byb sw
φ
2
(10-7b)(10-7a)
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 106

DESIGN TABLE DISCUSSION (TABLE 10-10) 10–107
AMERICANINSTITUTE OFSTEELCONSTRUCTION
With the plate shop-attached to the support, side erection of the beam is permitted. Play
in the open holes usually compensates for mill variation in column flange supports and other
field adjustments.
DESIGN TABLE DISCUSSION (TABLE 10-10)
Table 10-10. Single-Plate Connections
Table 10-10 is a design aid for single-plate connections welded to the support and bolted to
the supported beam. Available strengths are tabulated in Table 10-10a for plate material with
F
y=36 ksi and Table 10-10b for plate material with F y=50 ksi.
Tabulated bolt and plate available strengths consider the limit states of bolt shear, bolt
bearing on the plate, shear yielding of the plate, shear rupture of the plate, block shear
rupture of the plate, and weld shear. Values are tabulated for two through twelve rows of
3
/4-in.-,
7
/8-in.-, 1-in.- and 1
1
/8-in.-diameter Group A and Group B bolts at 3-in. spacing. For
calculation purposes, plate edge distance, L
ev, is in accordance with AISC Specification
Section J3.10 and Table J3.4. End distance, L
eh, is provided as 2 times the diameter of the
bolt, to match tested connections. Weld sizes are tabulated equal to (
5
/8)tp.
While the tabular values are based on a=3 in., they may conservatively be used when
the distance from the support to the bolt line, a, is between 2
1
/2in. and 3 in. The tabulated
values are valid for laterally supported beams in steel and composite construction, all types
of loading, snug-tightened or pretensioned bolts, and for supported and supporting members
of all grades of steel.
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 107

10–108 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10a
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 35
1
/2)
11
(
L= 32
1
/2)
10
(
L= 29
1
/2)
9
(
L= 26
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
100150125188————————
99.5149124187138208138208————
100150125188————————
99.5149124187149224174261————
100150125188————————
99.5149124187149224174261————
100150125188————————
99.5149124187149224174261————
92.1138115173————————
91.4137114171126190126190————
92.1138115173————————
91.4137114171137206159239————
92.1138115173————————
91.4137114171137206159239————
92.1138115173————————
91.4137114171137206160240————
84.0126105157————————
83.3125104156115173115173————
84.0126105157————————
83.3125104156125187145217————
84.0126105157————————
83.3125104156125187145217————
84.0126105157————————
83.3125104156125187146219————
75.911494.8142————————
75.211394.0141103155103155————
75.911494.8142————————
75.211394.0141113169130194————
75.911494.8142————————
75.211394.0141113169130194————
75.911494.8142————————
75.211394.0141113169132197————
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 108

DESIGN TABLES 10–109
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
8
(
L= 23
1
/2)
7
(
L= 20
1
/2)
6
(
L= 17
1
/2)
5
(
L= 14
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
67.810284.7127————————
67.110183.912690.813790.8137————
67.810284.7127————————
67.110183.9126101151114172————
67.810284.7127————————
67.110183.9126101151114172————
67.810284.7127————————
67.110183.9126101151117176————
59.789.572.1108————————
59.088.573.711178.711878.7118————
59.789.574.6112————————
59.088.573.711188.513399.2149————
59.789.574.6112————————
59.088.573.711188.513399.2149————
59.789.574.6112————————
59.088.573.711188.5133103155————
51.677.459.389.1————————
50.976.363.695.466.510066.5100————
51.677.464.596.7————————
50.976.363.695.476.311583.8126————
51.677.464.596.7————————
50.976.363.695.476.311583.8126————
51.677.464.596.7————————
50.976.363.695.476.311589.1134————
43.565.254.181.354.181.354.181.3————
42.864.253.580.254.181.354.181.354.181.354.181.3
43.565.254.381.565.297.868.1102————
42.864.253.580.264.296.368.110268.110268.1102
43.565.254.381.565.297.868.1102————
42.864.253.580.264.296.368.110268.110268.1102
43.565.254.381.565.297.876.1114————
42.864.253.580.264.296.374.911284.512684.5126
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 109

10–110 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
4
(
L= 11
1
/2)
3
(
L= 8
1
/2)
2
(
L= 5
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
34.852.241.562.541.562.541.562.5————
34.752.041.562.541.562.541.562.541.562.541.562.5
34.852.243.565.352.278.352.478.5————
34.752.043.465.152.078.152.478.552.478.552.478.5
34.852.243.565.352.278.352.478.5————
34.752.043.465.152.078.152.478.552.478.552.478.5
34.852.243.565.352.278.360.991.4————
34.752.043.465.152.078.160.791.164.997.064.997.0
25.638.328.843.428.843.428.843.4————
25.638.328.843.428.843.428.843.428.843.428.843.4
25.638.331.947.936.354.536.354.5————
25.638.331.947.936.354.536.354.536.354.536.354.5
25.638.331.947.936.354.536.354.5————
25.638.331.947.936.354.536.354.536.354.536.354.5
25.638.331.947.938.357.544.767.1————
25.638.331.947.938.357.544.767.145.167.345.167.3
16.324.516.524.816.524.816.524.8————
16.324.516.524.816.524.816.524.816.524.816.524.8
16.324.520.430.620.831.220.831.2————
16.324.520.430.620.831.220.831.220.831.220.831.2
16.324.520.430.620.831.220.831.2————
16.324.520.430.620.831.220.831.220.831.220.831.2
16.324.520.430.624.536.725.838.5————
16.324.520.430.624.536.725.838.525.838.525.838.5
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 110

DESIGN TABLES 10–111
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 36)
11
(
L= 33)
10
(
L= 30)
9
(
L= 27)
Bolt
Group
Thread
Cond.
Hole
Type
102153128192153230——————
102152127190152228178267188282——
102153128192153230——————
102152127190152228178267203305——
102153128192153230——————
102152127190152228178267203305——
102153128192153230——————
102152127190152228178267203305——
94.1141118176141212——————
93.4140117175140210164245172258——
94.1141118176141212——————
93.4140117175140210164245187280——
94.1141118176141212——————
93.4140117175140210164245187280——
94.1141118176141212——————
93.4140117175140210164245187280——
86.0129108161129194——————
85.3128107160128192149224156234——
86.0129108161129194——————
85.3128107160128192149224171256——
86.0129108161129194——————
85.3128107160128192149224171256——
86.0129108161129194——————
85.3128107160128192149224171256——
77.911797.4146117175——————
77.211696.5145116174135203140210——
77.911797.4146117175——————
77.211696.5145116174135203154232——
77.911797.4146117175——————
77.211696.5145116174135203154232——
77.911797.4146117175——————
77.211696.5145116174135203154232——
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
7
/8
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Group
B
AISC_PART 10C:14th Ed. 2/24/11 9:26 AM Page 111

10–112 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =hreads excluded
n
8
(
L= 24)
7
(
L= 21)
6
(
L= 18)
5
(
L= 15)
Bolt
Group
Thread
Cond.
Hole
Type
69.610487.0131104157——————
69.110486.4130104156121181124185——
69.610487.0131104157——————
69.110486.4130104156121181138207——
69.610487.0131104157——————
69.110486.4130104156121181138207——
69.610487.0131104157——————
69.110486.4130104156121181138207——
60.991.476.111491.4137——————
60.991.476.111491.4137107160107161——
60.991.476.111491.4137——————
60.991.476.111491.4137107160122183——
60.991.476.111491.4137——————
60.991.476.111491.4137107160122183——
60.991.476.111491.4137——————
60.991.476.111491.4137107160122183——
52.278.365.397.978.3117——————
52.278.365.397.978.311790.513690.5136——
52.278.365.397.978.3117——————
52.278.365.397.978.311791.4137104157——
52.278.365.397.978.3117——————
52.278.365.397.978.311791.4137104157——
52.278.365.397.978.3117——————
52.278.365.397.978.311791.4137104157——
43.565.354.481.665.397.973.611073.6110——
43.565.354.481.665.397.973.611073.611073.6110
43.565.354.481.665.397.976.111487.0131——
43.565.354.481.665.397.976.111487.013192.7139
43.565.354.481.665.397.976.111487.0131——
43.565.354.481.665.397.976.111487.013192.7139
43.565.354.481.665.397.976.111487.0131——
43.565.354.481.665.397.976.111487.013197.9147
7
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Plate
F
y= 36 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 112

DESIGN TABLES 10–113
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD = Standard holes
SSLT = Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N = Threads included
X = Threads excluded
n
4
(
L= 12)
3
(
L= 9)
2
(
L= 6)
Bolt
Group
Thread
Cond.
Hole
Type
34.852.243.565.352.278.356.584.856.584.8——
34.852.243.565.352.278.356.584.856.584.856.584.8
34.852.243.565.352.278.360.991.469.6104——
34.852.243.565.352.278.360.991.469.610471.2107
34.852.243.565.352.278.360.991.469.6104——
34.852.243.565.352.278.360.991.469.610471.2107
34.852.243.565.352.278.360.991.469.6104——
34.852.243.565.352.278.360.991.469.610478.3117
26.139.232.648.939.258.739.258.939.258.9——
26.139.232.648.939.258.739.258.939.258.939.258.9
26.139.232.648.939.258.745.768.549.474.4——
26.139.232.648.939.258.745.768.549.474.449.474.4
26.139.232.648.939.258.745.768.549.474.4——
26.139.232.648.939.258.745.768.549.474.449.474.4
26.139.232.648.939.258.745.768.552.278.3——
26.139.232.648.939.258.745.768.552.278.358.788.1
17.426.121.832.622.433.722.433.722.433.7——
17.426.121.832.622.433.722.433.722.433.722.433.7
17.426.121.832.626.139.228.342.528.342.5——
17.426.121.832.626.139.228.342.528.342.528.342.5
17.426.121.832.626.139.228.342.528.342.5——
17.426.121.832.626.139.228.342.528.342.528.342.5
17.426.121.832.626.139.230.545.734.852.2——
17.426.121.832.626.139.230.545.734.852.234.952.5
7
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Plate
F
y= 36 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 113

10–114 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10a
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 36
1
/2)
11
(
L= 33
1
/2)
10
(
L= 30
1
/2)
9
(
L= 27
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
100150125188150225175263————
100150125188150225175263200300225338
100150125188150225175263————
100150125188150225175263200300225338
100150125188150225175263————
100150125188150225175263200300225338
100150125188150225175263————
100150125188150225175263200300225338
91.9138115172138207161241————
91.9138115172138207161241184276207310
91.9138115172138207161241————
91.9138115172138207161241184276207310
91.9138115172138207161241————
91.9138115172138207161241184276207310
91.9138115172138207161241————
91.9138115172138207161241184276207310
83.7126105157126188147220————
83.7126105157126188147220167251188283
83.7126105157126188147220————
83.7126105157126188147220167251188283
83.7126105157126188147220————
83.7126105157126188147220167251188283
83.7126105157126188147220————
83.7126105157126188147220167251188283
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
1
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 114

DESIGN TABLES 10–115
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
8
(
L= 24
1
/2)
7
(
L= 21
1
/2)
6
(
L= 18
1
/2)
5
(
L= 15
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
67.410184.3126101152118177————
67.410184.3126101152118177135202152228
67.410184.3126101152118177————
67.410184.3126101152118177135202152228
67.410184.3126101152118177————
67.410184.3126101152118177135202152228
67.410184.3126101152118177————
67.410184.3126101152118177135202152228
59.388.974.111188.9133104156————
59.388.974.111188.9133104156119178133200
59.388.974.111188.9133104156————
59.388.974.111188.9133104156119178133200
59.388.974.111188.9133104156————
59.388.974.111188.9133104156119178133200
59.388.974.111188.9133104156————
59.388.974.111188.9133104156119178133200
51.176.763.995.876.711589.4134————
51.176.763.995.876.711589.4134102153115173
51.176.763.995.876.711589.4134————
51.176.763.995.876.711589.4134102153115173
51.176.763.995.876.711589.4134————
51.176.763.995.876.711589.4134102153115173
51.176.763.995.876.711589.4134————
51.176.763.995.876.711589.4134102153115173
43.064.453.780.564.496.775.211385.912996.3144
43.064.453.780.564.496.775.211385.912996.7145
43.064.453.780.564.496.775.211385.912996.7145
43.064.453.780.564.496.775.211385.912996.7145
34.852.243.565.352.278.360.991.469.610474.0111
34.852.243.565.352.278.360.991.469.610478.3117
34.852.243.565.352.278.360.991.469.610478.3117
34.852.243.565.352.278.360.991.469.610478.3117
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD/
SSLT
STD/
SSLT
1
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
4
(
L= 12
1
/2)
Group
A
Group
B
N
X
N
X
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 115

10–116 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
3
(
L= 9
1
/2)
2
(
L= 6
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
26.640.033.350.040.059.946.669.951.477.051.477.0
26.640.033.350.040.059.946.669.953.379.959.989.9
26.640.033.350.040.059.946.669.953.379.959.989.9
26.640.033.350.040.059.946.669.953.379.959.989.9
18.527.723.134.727.741.629.444.029.444.029.444.0
18.527.723.134.727.741.632.448.537.055.437.055.4
18.527.723.134.727.741.632.448.537.055.437.055.4
18.527.723.134.727.741.632.448.537.055.541.662.4
1
-in.-
diameter
bolts
Group
A
Group
B
Group
A
Group
B
Weld Size
N
X
N
X
N
X
N
X
STD/
SSLT
STD/
SSLT
Plate
F
y= 36 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 116

DESIGN TABLES 10–117
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 37)
11
(
L= 34)
10
(
L= 31)
9
(
L= 28)
Bolt
Group
Thread
Cond.
Hole
Type
120179144215167251191287————
120179144215167251191287215323239359
120179144215167251191287————
120179144215167251191287215323239359
120179144215167251191287————
120179144215167251191287215323239359
120179144215167251191287————
120179144215167251191287215323239359
110165132198154231176264————
110165132198154231176264198297220330
110165132198154231176264————
110165132198154231176264198297220330
110165132198154231176264————
110165132198154231176264198297220330
110165132198154231176264————
110165132198154231176264198297220330
101151121181141211161241————
101151121181141211161241181272201302
101151121181141211161241————
101151121181141211161241181272201302
101151121181141211161241————
101151121181141211161241181272201302
101151121181141211161241————
101151121181141211161241181272201302
91.1137109164128191146219————
91.1137109164128191146219164246182273
91.1137109164128191146219————
91.1137109164128191146219164246182273
91.1137109164128191146219————
91.1137109164128191146219164246182273
91.1137109164128191146219————
91.1137109164128191146219164246182273
Plate
F
y= 36 ksi
STD
SSLT
N
Group
A
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
1
1
/8
-in.-
diameter
bolts
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
Group
B
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 117

10–118 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
8
(
L= 25)
7
(
L= 22)
6
(
L= 19)
5
(
L= 16)
Bolt
Group
Thread
Cond.
Hole
Type
81.612297.9147114171131196————
81.612297.9147114171131196147220163245
81.612297.9147114171131196————
81.612297.9147114171131196147220163245
81.612297.9147114171131196————
81.612297.9147114171131196147220163245
81.612297.9147114171131196————
81.612297.9147114171131196147220163245
72.010886.5130101151115173————
72.010886.5130101151115173130195144216
72.010886.5130101151115173————
72.010886.5130101151115173130195144216
72.010886.5130101151115173————
72.010886.5130101151115173130195144216
72.010886.5130101151115173————
72.010886.5130101151115173130195144216
62.593.875.011387.5131100150————
62.593.875.011387.5131100150113169125188
62.593.875.011387.5131100150————
62.593.875.011387.5131100150113169125188
62.593.875.011387.5131100150————
62.593.875.011387.5131100150113169125188
62.593.875.011387.5131100150————
62.593.875.011387.5131100150113169125188
53.079.563.695.474.211184.812795.4143106159
53.079.563.695.474.211184.812795.4143106159
53.079.563.695.474.211184.812795.4143106159
53.079.563.695.474.211184.812795.4143106159
43.565.352.278.360.991.469.610478.311787.0131
43.565.352.278.360.991.469.610478.311787.0131
43.565.352.278.360.991.469.610478.311787.0131
43.565.352.278.360.991.469.610478.311787.0131
1
1
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD/
SSLT
STD/
SSLT
Plate
F
y= 36 ksi
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
4
(
L= 13)
Group
A
Group
B
Group
A
Group
B
N
X
N
X
N
X
N
X
AISC_PART 10C:14th Ed. 2/24/11 9:27 AM Page 118

DESIGN TABLES 10–119
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10a (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
3
(
L= 10)
2
(
L= 7)
Bolt
Group
Thread
Cond.
Hole
Type
34.051.040.861.247.671.454.481.661.291.864.997.6
34.051.040.861.247.671.454.481.661.291.868.0102
34.051.040.861.247.671.454.481.661.291.868.0102
34.051.040.861.247.671.454.481.661.291.868.0102
24.536.729.444.034.351.437.155.837.155.837.155.8
24.536.729.444.034.351.439.258.744.066.146.870.2
24.536.729.444.034.351.439.258.744.066.146.870.2
24.536.729.444.034.351.439.258.744.066.148.973.4
Plate
F
y= 36 ksi
Group
A
Group
B
Group
A
Group
B
Weld Size
N
XN
X
N
X
N
X
STD/
SSLT
STD/
SSLT
1
1
/8
-in.-
diameter
bolts
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 119

10–120 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10b
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 35
1
/2)
11
(
L= 32
1
/2)
10
(
L= 29
1
/2)
9
(
L= 26
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
122183134202————————
122183138208138208138208————
122183152229————————
122183152229174262174262————
122183152229————————
122183152229174262174262————
122183152229————————
122183152229183274213320————
112167121183————————
112167126190126190126190————
112167139209————————
112167139209159239159239————
112167139209————————
112167139209159239159239————
112167139209————————
112167139209167251195293————
101152110165————————
101152115173115173115173————
101152126190————————
101152126190145217145217————
101152126190————————
101152126190145217145217————
101152126190————————
101152126190152228177266————
90.813697.2146————————
90.8136103155103155103155————
90.8136113170————————
90.8136113170130194130194————
90.8136113170————————
90.8136113170130194130194————
90.8136113170————————
90.8136113170136204159238————
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 120

DESIGN TABLES 10–121
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
8
(
L= 23
1
/2)
7
(
L= 20
1
/2)
6
(
L= 17
1
/2)
5
(
L= 14
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
80.412184.7127————————
80.412190.813790.813790.8137————
80.4121101151————————
80.4121101151114172114172————
80.4121101151————————
80.4121101151114172114172————
80.4121101151————————
80.4121101151121181141211————
70.110572.1108————————
70.110578.711878.711878.7118————
70.110587.6131————————
70.110587.613199.214999.2149————
70.110587.6131————————
70.110587.613199.214999.2149————
70.110587.6131————————
70.110587.6131105158123184————
59.389.159.389.1————————
59.789.666.510066.510066.5100————
59.789.674.6112————————
59.789.674.611283.812683.8126————
59.789.674.6112————————
59.789.674.611283.812683.8126————
59.789.674.6112————————
59.789.674.611289.6134104155————
49.474.054.181.354.181.354.181.3————
49.474.054.181.354.181.354.181.354.181.354.181.3
49.474.061.792.568.110268.1102————
49.474.061.792.568.110268.110268.110268.1102
49.474.061.792.568.110268.1102————
49.474.061.792.568.110268.110268.110268.1102
49.474.061.792.574.011184.5126————
49.474.061.792.574.011184.512684.512684.5126
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 121

10–122 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
4
(
L= 11
1
/2)
3
(
L= 8
1
/2)
2
(
L= 5
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
39.058.541.562.541.562.541.562.5————
39.058.541.562.541.562.541.562.541.562.541.562.5
39.058.548.873.152.478.552.478.5————
39.058.548.873.152.478.552.478.552.478.552.478.5
39.058.548.873.152.478.552.478.5————
39.058.548.873.152.478.552.478.552.478.552.478.5
39.058.548.873.158.587.864.997.0————
39.058.548.873.158.587.864.997.064.997.064.997.0
28.643.028.843.428.843.428.843.4————
28.643.028.843.428.843.428.843.428.843.428.843.4
28.643.035.853.736.354.536.354.5————
28.643.035.853.736.354.536.354.536.354.536.354.5
28.643.035.853.736.354.536.354.5————
28.643.035.853.736.354.536.354.536.354.536.354.5
28.643.035.853.743.064.445.167.3————
28.643.035.853.743.064.445.167.345.167.345.167.3
16.524.816.524.816.524.816.524.8————
16.524.816.524.816.524.816.524.816.524.816.524.8
18.327.420.831.220.831.220.831.2————
18.327.420.831.220.831.220.831.220.831.220.831.2
18.327.420.831.220.831.220.831.2————
18.327.420.831.220.831.220.831.220.831.220.831.2
18.327.422.934.325.838.525.838.5————
18.327.422.934.325.838.525.838.525.838.525.838.5
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
3
/4
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 122

DESIGN TABLES 10–123
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 36)
11
(
L= 33)
10
(
L= 30)
9
(
L= 27)
Bolt
Group
Thread
Cond.
Hole
Type
117176146219176263——————
117176146219176263188282188282——
117176146219176263——————
117176146219176263205307234351——
117176146219176263——————
117176146219176263205307234351——
117176146219176263——————
117176146219176263205307234351——
107161134201161241——————
107161134201161241172258172258——
107161134201161241——————
107161134201161241188282215322——
107161134201161241——————
107161134201161241188282215322——
107161134201161241——————
107161134201161241188282215322——
97.5146122183146219——————
97.5146122183146219156234156234——
97.5146122183146219——————
97.5146122183146219171256195293——
97.5146122183146219——————
97.5146122183146219171256195293——
97.5146122183146219——————
97.5146122183146219171256195293——
87.8132110165132197——————
87.8132110165132197140210140210——
87.8132110165132197——————
87.8132110165132197154230176263——
87.8132110165132197——————
87.8132110165132197154230176263——
87.8132110165132197——————
87.8132110165132197154230176263——
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
7
/8
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Group
B
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 123

10–124 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
8
(
L= 24)
7
(
L= 21)
6
(
L= 18)
5
(
L= 15)
Bolt
Group
Thread
Cond.
Hole
Type
78.011797.5146115173——————
78.011797.5146117176124185124185——
78.011797.5146117176——————
78.011797.5146117176137205156234——
78.011797.5146117176——————
78.011797.5146117176137205156234——
78.011797.5146117176——————
78.011797.5146117176137205156234——
68.310285.312898.2147——————
68.310285.3128102154107161107161——
68.310285.3128102154——————
68.310285.3128102154119179135203——
68.310285.3128102154——————
68.310285.3128102154119179135203——
68.310285.3128102154——————
68.310285.3128102154119179137205——
58.587.873.111080.7121——————
58.587.873.111087.813290.513690.5136——
58.587.873.111087.8132——————
58.587.873.111087.8132102154114172——
58.587.873.111087.8132——————
58.587.873.111087.8132102154114172——
58.587.873.111087.8132——————
58.587.873.111087.8132102154117176——
48.873.160.991.473.111073.611073.6110——
48.873.160.991.473.111073.611073.611073.6110
48.873.160.991.473.111085.312892.7139——
48.873.160.991.473.111085.312892.713992.7139
48.873.160.991.473.111085.312892.7139——
48.873.160.991.473.111085.312892.713992.7139
48.873.160.991.473.111085.312897.5146——
48.873.160.991.473.111085.312897.5146110165
7
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Plate
F
y= 50 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 124

DESIGN TABLES 10–125
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
4
(
L= 12)
3
(
L= 9)
2
(
L= 6)
Bolt
Group
Thread
Cond.
Hole
Type
39.058.548.873.156.584.856.584.856.584.8——
39.058.548.873.156.584.856.584.856.584.856.584.8
39.058.548.873.158.587.868.310271.2107——
39.058.548.873.158.587.868.310271.210771.2107
39.058.548.873.158.587.868.310271.2107——
39.058.548.873.158.587.868.310271.210771.2107
39.058.548.873.158.587.868.310278.0117——
39.058.548.873.158.587.868.310278.011787.8132
29.343.936.654.839.258.939.258.939.258.9——
29.343.936.654.839.258.939.258.939.258.939.258.9
29.343.936.654.843.965.849.474.449.474.4——
29.343.936.654.843.965.849.474.449.474.449.474.4
29.343.936.654.843.965.849.474.449.474.4——
29.343.936.654.843.965.849.474.449.474.449.474.4
29.343.936.654.843.965.851.276.858.587.8——
29.343.936.654.843.965.851.276.858.587.861.091.8
19.529.322.433.722.433.722.433.722.433.7——
19.529.322.433.722.433.722.433.722.433.722.433.7
19.529.324.436.628.342.528.342.528.342.5——
19.529.324.436.628.342.528.342.528.342.528.342.5
19.529.324.436.628.342.528.342.528.342.5——
19.529.324.436.628.342.528.342.528.342.528.342.5
19.529.324.436.629.343.934.151.234.952.5——
19.529.324.436.629.343.934.151.234.952.534.952.5
7
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
Plate
F
y= 50 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:28 AM Page 125

10–126 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
N =Threads included
X =Threads excluded
n
12
(
L= 36
1
/2)
11
(
L= 33
1
/2)
10
(
L= 30
1
/2)
9
(
L= 27
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
112168140210168252196294————
112168140210168252196294224336246370
112168140210168252196294————
112168140210168252196294224336252378
112168140210168252196294————
112168140210168252196294224336252378
112168140210168252196294————
112168140210168252196294224336252378
103154129193154232180270————
103154129193154232180270206309225338
103154129193154232180270————
103154129193154232180270206309232348
103154129193154232180270————
103154129193154232180270206309232348
103154129193154232180270————
103154129193154232180270206309232348
93.8141117176141211164246————
93.8141117176141211164246188282205307
93.8141117176141211164246————
93.8141117176141211164246188282211317
93.8141117176141211164246————
93.8141117176141211164246188282211317
93.8141117176141211164246————
93.8141117176141211164246188282211317
84.7127106159127191148222————
84.7127106159127191148222169254183275
84.7127106159127191148222————
84.7127106159127191148222169254191286
84.7127106159127191148222————
84.7127106159127191148222169254191286
84.7127106159127191148222————
84.7127106159127191148222169254191286
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
1
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 126

DESIGN TABLES 10–127
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
8
(
L= 24
1
/2)
7
(
L= 21
1
/2)
6
(
L= 18
1
/2)
5
(
L= 15
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
75.611394.5142113170132198————
75.611394.5142113170132198151227162243
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
75.611394.5142113170132198————
75.611394.5142113170132198151227170255
66.499.683.012599.6149116174————
66.499.683.012599.6149116174133199140210
66.499.683.012599.6149116174————
66.499.683.012599.6149116174133199149224
66.499.683.012599.6149116174————
66.499.683.012599.6149116174133199149224
66.499.683.012599.6149116174————
66.499.683.012599.6149116174133199149224
57.385.971.610785.9129100150————
57.385.971.610785.9129100150115172118178
57.385.971.610785.9129100150————
57.385.971.610785.9129100150115172129193
57.385.971.610785.9129100150————
57.385.971.610785.9129100150115172129193
57.385.971.610785.9129100150————
57.385.971.610785.9129100150115172129193
48.172.260.290.372.210884.212696.314496.3144
48.172.260.290.372.210884.212696.3144108162
48.172.260.290.372.210884.212696.3144108162
48.172.260.290.372.210884.212696.3144108162
39.058.548.873.158.587.868.310274.011174.0111
39.058.548.873.158.587.868.310278.011787.8132
39.058.548.873.158.587.868.310278.011787.8132
39.058.548.873.158.587.868.310278.011787.8132
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD/
SSLT
STD/
SSLT
1
-in.-
diameter
bolts
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
4
(
L= 12
1
/2)
Group
A
Group
B
N
X
N
X
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 127

10–128 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
3
(
L= 9
1
/2)
2
(
L= 6
1
/2)
Bolt
Group
Thread
Cond.
Hole
Type
29.944.837.356.044.867.251.477.051.477.051.477.0
29.944.837.356.044.867.252.378.459.789.664.796.9
29.944.837.356.044.867.252.378.459.789.664.796.9
29.944.837.356.044.867.252.378.459.789.667.2101
20.731.125.938.829.444.029.444.029.444.029.444.0
20.731.125.938.831.146.636.354.437.055.437.055.4
20.731.125.938.831.146.636.354.437.055.437.055.4
20.731.125.938.831.146.636.354.441.462.245.768.6
1
-in.-
diameter
bolts
Group
A
Group
B
Group
A
Group
B
Weld Size
N
X
N
X
N
X
N
X
STD/
SSLT
STD/
SSLT
Plate
F
y= 50 ksi
3
/16
1 /4
1 /4
5 /16
5 /16
3 /8
1
/4
5 /16
3 /8
7 /16
1 /2
9 /16
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 128

DESIGN TABLES 10–129
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
12
(
L= 37)
11
(
L= 34)
10
(
L= 31)
9
(
L= 28)
Bolt
Group
Thread
Cond.
Hole
Type
134201161241188282215322————
134201161241188282215322241362268402
134201161241188282215322————
134201161241188282215322241362268402
134201161241188282215322————
134201161241188282215322241362268402
134201161241188282215322————
134201161241188282215322241362268402
123185148222173259197296————
123185148222173259197296222333247370
123185148222173259197296————
123185148222173259197296222333247370
123185148222173259197296————
123185148222173259197296222333247370
123185148222173259197296————
123185148222173259197296222333247370
113169135203158237180271————
113169135203158237180271203304225338
113169135203158237180271————
113169135203158237180271203304225338
113169135203158237180271————
113169135203158237180271203304225338
113169135203158237180271————
113169135203158237180271203304225338
102153122184143214163245————
102153122184143214163245184276204306
102153122184143214163245————
102153122184143214163245184276204306
102153122184143214163245————
102153122184143214163245184276204306
102153122184143214163245————
102153122184143214163245184276204306
Plate
F
y= 50 ksi
STD
SSLT
N
Group
A
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
1
1
/8
-in.-
diameter
bolts
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
Group
B
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 129

10–130 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
8
(
L= 25)
7
(
L= 22)
6
(
L= 19)
5
(
L= 16)
Bolt
Group
Thread
Cond.
Hole
Type
91.4137110165128192146219————
91.4137110165128192146219165247183274
91.4137110165128192146219————
91.4137110165128192146219165247183274
91.4137110165128192146219————
91.4137110165128192146219165247183274
91.4137110165128192146219————
91.4137110165128192146219165247183274
80.712196.9145113170129194————
80.712196.9145113170129194145218161242
80.712196.9145113170129194————
80.712196.9145113170129194145218161242
80.712196.9145113170129194————
80.712196.9145113170129194145218161242
80.712196.9145113170129194————
80.712196.9145113170129194145218161242
70.110584.112698.1147112168————
70.110584.112698.1147112168126189140210
70.110584.112698.1147112168————
70.110584.112698.1147112168126189140210
70.110584.112698.1147112168————
70.110584.112698.1147112168126189140210
70.110584.112698.1147112168————
70.110584.112698.1147112168126189140210
59.489.171.310783.212595.1143107160119178
59.489.171.310783.212595.1143107160119178
59.489.171.310783.212595.1143107160119178
59.489.171.310783.212595.1143107160119178
48.873.158.587.868.310278.011787.813293.5141
48.873.158.587.868.310278.011787.813297.5146
48.873.158.587.868.310278.011787.813297.5146
48.873.158.587.868.310278.011787.813297.5146
1
1
/8
-in.-
diameter
bolts
STD
SSLT
N
Group
A
Group
B
Group
A
Group
B
Group
A
Group
B
Weld Size
X
N
X
N
X
N
X
N
X
N
X
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD
SSLT
STD/
SSLT
STD/
SSLT
Plate
F
y= 50 ksi
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
4
(
L= 13)
Group
A
Group
B
Group
A
Group
B
N
X
N
X
N
X
N
X
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 130

DESIGN TABLES 10–131
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASDLRFDASDLRFDASDLRFDASDLRFDASDLRFDASDLRFD
Table 10-10b (continued)
Single-Plate Connections
Bolt, Weld and Single-Plate
Available Strengths, kips
Plate Thickness, in.
STD=Standard holes
SSLT =Short-slotted holes transverse to direction of load
STD/SSLT =Standard holes or short-slotted holes transverse to direction of load
— Indicates that the plate thickness is greater than the maximum given in Table 10-9.
Tabulated values are grouped when available strength is independent of hole type.
N =Threads included
X =Threads excluded
n
3
(
L= 10)
2
(
L= 7)
Bolt
Group
Thread
Cond.
Hole
Type
38.157.145.768.653.380.060.991.464.997.664.997.6
38.157.145.768.653.380.060.991.468.610376.2114
38.157.145.768.653.380.060.991.468.610376.2114
38.157.145.768.653.380.060.991.468.610376.2114
27.441.132.949.437.155.837.155.837.155.837.155.8
27.441.132.949.438.457.643.965.846.870.246.870.2
27.441.132.949.438.457.643.965.846.870.246.870.2
27.441.132.949.438.457.643.965.849.474.054.882.3
Plate
F
y= 50 ksi
Group
A
Group
B
Group
A
Group
B
Weld Size
N
X
N
X
N
X
N
X
STD/
SSLT
STD/
SSLT
1
1
/8
-in.-
diameter
bolts
1
/4
1 /4
5 /16
5 /16
3 /8
7 /16
5
/16
3 /8
7 /16
1 /2
9 /16
5 /8
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 131

10–132 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SINGLE-ANGLE CONNECTIONS
A single-angle connection is made with an angle on one side of the web of the beam to be
supported, as illustrated in Figure 10-13. This angle is preferably shop-bolted or welded to
the supporting member and field-bolted to the supported beam.
When the angle is welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Figure 10-13(c), the weld is placed along the toe and across the
bottom of the angle with a return at the top per AISC SpecificationSection J2.2b. Note that
welding across the entire top of the angle must be avoided as it would inhibit the flexibility
and, therefore, the necessary end rotation of the connection. The performance of the
resulting connection would not be as intended for simple shear connections.
Fig. 10-13. Single-angle connections.
(a) All-bolted
(b) Bolted/welded, angle welded to supported beam
(c) Bolted/welded, angle welded to support
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 132

Design Checks
The available strength of a single-angle connection is determined from the applicable
limit states for bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
In all cases, the available strength, φR
nor Rn/Ω, must equal or exceed the required
strength, R
uor Ra.
As illustrated in Figure 10-14, the effect of eccentricity must be considered in the angle
leg attached to the supporting member. Additionally, eccentricity must be considered if the
eccentricity exceeds 3 in. (to the face of the supporting member) or if a double vertical row
of bolts through the web of the supported member is used. Eccentricity must be considered
in the design of welds for single-angle connections. Holes in the angle leg to the supporting
member must be standard holes. Holes in the angle leg to the supported member can be
standard holes or horizontal short slots.
Recommended Angle Length and Thickness
To provide for stability during erection, it is recommended that the minimum angle length
be one-half the T-dimension of the supported beam. The maximum length of the connection
angle must be compatible with the T-dimension of an uncoped beam and the remaining web
depth of a coped beam. Note that the angle may encroach upon the fillet(s) as given in
Figure 10-3.
A minimum angle thickness of
3
/8-in. for
3
/4-in.- and
7
/8-in.-diameter bolts, and
1
/2-in. for
1-in.-diameter bolts should be used. A 4×3 angle is normally selected for a single angle
welded to the support with the 3-in. leg being the welded leg.
Shop and Field Practices
Single-angle connections may be readily made to the webs of supporting girders and to the
flanges of supporting columns. When framing to a column flange, provision must be made
for possible mill variation in the depth of the column. Since the angle is usually shop-
attached to the column flange, play in the open holes or horizontal slots in the outstanding
angle leg may be used to provide the necessary adjustment to compensate for the mill
variation. Attaching the angle to the column flange offers the advantage of side erection of
the beam. The same is true for a girder web or truss support. Additionally, proper bay
dimensions may be maintained without the need for shims. This advantage is lost when the
angle is shop-attached to the supported beam web.
SINGLE-ANGLE CONNECTIONS 10–133
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-14. Eccentricity in angles.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 133

10–134 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN TABLE DISCUSSION (TABLES 10-11 AND 10-12)
Table 10-11. All-Bolted Single-Angle Connections
Table 10-11 is a design aid for all-bolted single-angle connections. The tabulated eccentrically
loaded bolt group coefficients, C, are used to determine the available strength, φR
nor Rn/Ω,
where
R
n=Crn (10-9)
φ=0.75 Ω=2.0
where
C=coefficient from Table 10-11
r
n=the nominal strength of one bolt in shear or bearing, kips
Table 10-12. Bolted/Welded Single-Angle Connections
Table 10-12 is a design aid for bolted/welded single-angle connections. Electrode strength
is assumed to be 70 ksi and Group A bolts are used. In the rare case where a single-angle
connection must be field-welded, erection bolts may be placed in the field-welded leg.
Weld available strengths are determined by the instantaneous center of rotation method
using Table 8-10 with θ=0°. The tabulated values assume a half-web thickness of
1
/4in.
and may be used conservatively for lesser half-web thicknesses. For half-web thicknesses
greater than
1
/4in., the tabulated values should be reduced proportionally by an amount up
to 8% at a half-web thickness of
1
/2in. The tabulated minimum supporting flange or web
thickness is the thickness that matches the strength of the support material to the strength of
the weld material. In a manner similar to that illustrated previously for Table 10-2, the
minimum material thickness (for one line of weld) is:
(9-2)
where Dis the number of sixteenths in the weld size. When welds line up on opposite sides
of the support, the minimum thickness is the sum of the thicknesses required for each weld.
In either case, when less than the minimum material thickness is present, the tabulated weld
available strength should be multiplied by the ratio of the thickness provided to the
minimum thickness.
t
D
Fmin
u=
309.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 134

DESIGN TABLES 10–135
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-11
All-Bolted Single-Angle Connections
φRn=C(φrn) or Rn/Ω=C(rn /Ω)
where
C=coefficient from Table above
φ
rn=design strength of one bolt in shear or bearing, kips/bolt
rn /Ω=allowable strength of one bolt in shear or bearing, kips/bolt
Notes:
For eccentricities less than or equal to those shown above, tabulated values may be used.
For greater eccentricities, coefficient
Cshould be recalculated from Part 7.
Connection may be bearing-type or slip-critical.
12 11.4 21.5 11 10.4 19.4 10 9.37 17.3
9 8.34 15.2
8 7.31 13.0
7 6.27 10.9
6 5.22 8.70
5 4.15 6.63
4 3.07 4.70
3 1.99 2.94
2 1.03 1.61
1 — 0.518
Eccentrically Loaded Bolt Group Coefficients, C
Number of Bolts in
One Vertical Row,
n
Case I Case II
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 135

ASD ASD ASDLRFD LRFD LRFD
Table 10-12
Bolted/Welded
Single-Angle Connections
Notes:
Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded leg may not be increased or
decreased.
Tabulated weld available strengths are based on a
1
/4-in. half web for the supported member. Smaller half webs will result in
these values being conservative. For half webs over
1
/4in., weld values must be reduced proportionally by an amount up to 8%
for a
1
/2-in. half web or recalculated.
When the beam web thickness of the supporting member is less than the minimum and single-angle connections are back to
back, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to the tabulated
minimum thickness to determine the reduced weld design strength.
Number
of Bolts
in One
Vertical
Row
Angle
Size
(Fy = 36 ksi)
Angle
Length,
in.
35
1
/2
32
1
/2
29
1
/2
26
1
/2
23
1
/2
20
1
/2
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
Size,
w, in.
Weld (70 ksi)
Available
Strength, kips
Minimum
twof
Supporting
Member
with Angles
Both Sides
of Web, in.Bolt and Angle Strength, kips
Group A Bolts
L4 ×3×
3
/
8
3
/4in.
7
/8in.
10–136 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
179 268 0.475
12 143 215144 216 143 214 0.380
107 161 0.285
165 247 0.475
11 131 197132 198 132 198 0.380
98.8148 0.285
151 226 0.475
10 119 179120 180 121 181 0.380
90.4136 0.285
137 205 0.475
9 107 161108 162 110 164 0.380
82.2123 0.285
123 185 0.475
8 95.5 143 95.6143 98.5148 0.380
73.9111 0.285
109 164 0.475
7 83.5 125 83.4125 87.4131 0.380
65.698.40.285
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 136

DESIGN TABLES 10–137
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASD ASD ASDLRFD LRFD LRFD
Table 10-12 (continued)
Bolted/Welded
Single-Angle Connections
Notes:
Gage in angle leg attached to beam web as well as leg width may be decreased. 3-in. welded leg may not be increased or
decreased.
Tabulated weld available strengths are based on a
1
/4-in. half web for the supported member. Smaller half webs will result in
these values being conservative. For half webs over
1
/4in., weld values must be reduced proportionally by an amount up to 8%
for a
1
/2-in. half web or recalculated.
When the beam web thickness of the supporting member is less than the minimum and single-angle connections are back to
back, either stagger the angles, or multiply the weld design strength by the ratio of the actual web thickness to the tabulated
minimum thickness to determine the reduced weld design strength.
Number
of Bolts
in One
Vertical
Row
Angle
Size
(Fy= 36 ksi)
Angle
Length,
in.
17
1
/2
14
1
/2
11
1
/2
8
1
/2
5
1
/2
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
5
/16
1
/4
3
/16
Size,
w, in.
Weld (70 ksi)
Available
Strength, kips
Minimum
twof
Supporting
Member
with Angles
Both Sides
of Web, in.Bolt and Angle Strength, kips
Group A Bolts
3
/4in.
7
/8in.
L4 ×3×
3
/
8
94.3 141 0.475
6 71.6 107 71.3107 75.5113 0.380
56.684.90.285
79.1119 0.475
5 59.7 89.559.188.7 63.394.90.380
47.471.20.285
62.994.40.475
4 47.6 71.447.070.4 50.375.50.380
37.856.60.285
45.768.50.475
3 35.5 53.234.852.2 36.654.80.380
27.441.10.285
28.242.20.475
2 23.3 35.022.734.0 22.533.80.380
16.925.30.285
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 137

10–138 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TEE CONNECTIONS
A tee connection is made with a structural tee, as illustrated in Figure 10-15. The tee is
preferably shop-bolted or welded to the supporting member and field-bolted to the
supported beam.
When the tee is welded to the support, adequate flexibility must be provided in the
connection. As illustrated in Figure 10-15(b), line welds are placed along the toes of the tee
flange with a return at the top per AISC SpecificationSection J2.2b. Note that welding
across the entire top of the tee must be avoided as it would inhibit the flexibility and,
therefore, the necessary end rotation of the connection. The performance of the resulting
connection would not be as intended for simple shear connections.
Design Checks
The available strength of a tee connection is determined from the applicable limit states for
bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases, the
available strength, φR
nor Rn/Ω, must equal or exceed the required strength, R uor Ra.
Eccentricity must be considered when determining the available strength of tee
connections. For a flexible support, the bolts or welds attaching the tee flange to the support
must be designed for the shear, R
uor Ra. Also, the bolts through the tee stem must be
designed for the shear and the eccentric moment, R
uaor R aa, where ais the distance from
the face of the support to the centroid of the bolt group through the tee stem.
For a rigid support, the bolts or welds attaching the tee flange to the support must be
designed for the shear and the eccentric moment; the bolts through the tee stem must be
designed for the shear.
Fig. 10-15. Tee connections.
(b) Bolted/welded
(a) All-bolted
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 138

SHEAR SPLICES 10–139
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Recommended Tee Length and Flange and Web
Thicknesses
To provide for stability during erection, it is recommended that the mimimum tee length be
one-half the T-dimension of the beam to be supported. The maximum length of the tee must
be compatible with the T-dimension of an uncoped beam and the remaining web depth,
exclusive of fillets, of a coped beam. Note that the tee may encroach upon the fillet(s) as
given in Figure 10-3.
To provide for flexibility, the tee selected should meet the ductility checks illustrated in
Part 9. The flange thickness of tees used in simple shear connections should be held to a
minimum to permit the flexure necessary to accommodate the end rotation of the beam,
unless the tee stem connection is proportioned to meet the geometric requirements for
single-plate connections.
Shop and Field Practices
When framing to a column flange, provision must be made for possible mill variation in the
depth of the columns. If the tee is shop-attached to the column flange, play in the open holes
usually furnishes the necessary adjustment to compensate for the mill variation. This
approach offers the advantage of side erection of the beam. Alternatively, if the tee is shop-
attached to the supported beam web, the beam length could be shortened to provide for mill
overrun and shims could be furnished at the appropriate intervals to fill the resulting gaps
or to provide for mill underrun.
When a single vertical row of bolts is used in a tee stem, a 4-in. or 5-in. stem is required
to accommodate the end distance of the supported beam and possible overrun/underrun in
beam length. A double vertical row of bolts will require a 7-in. or 8-in. tee stem. There is no
maximum limit on L
ehfor the tee stem.
SHEAR SPLICES
Shear splices are usually made with a single plate, as shown in Figure 10-16(a), or two plates,
as shown in Figures 10-16(b) and 10-16(c). Although the rotational flexibility required at a
shear splice is usually much less than that required at the end of a simple-span beam, when
a highly flexible splice is desired, the splice utilizing four framing angles, shown in Figure
10-17, is especially useful. These shear splices may be bolted and/or welded.
The available strength of a shear splice is determined from the applicable limit states for
the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). In all cases,
the available strength, φR
nor Rn/Ω, must equal or exceed the required strength, R uor Ra.
Eccentricity must be considered in the design of shear splices, with the exception of all-
bolted shear splices utilizing four framing angles, as illustrated in Figure 10-17. When the
splice is symmetrical, as shown for the bolted splice in Figure 10-16(a), each side of the
splice is equally restrained regardless of the relative flexibility of the spliced members.
Accordingly, as illustrated in Figure 10-18, the eccentricity of the shear to the center of
gravity of either bolt group is equal to half the distance between the centroids of the bolt
groups. Therefore, each bolt group can be designed for the shear, R
uor Ra, and one-half the
eccentric moment, R
ueor R ae(Kulak and Green, 1990). This approach is also applicable to
symmetrical welded splices.
When the splice is not symmetrical, as shown in Figures 10-16(b) and 10-16(c), one side
of the splice will possess a higher degree of rigidity. For the splice shown in Figure 10-16(b),
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 139

10–140 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the right side is more rigid because the stiffness of the weld group exceeds the stiffness of the
bolt group, even if the bolts are pretensioned or slip-critical. Also, for the splice shown in
Figure 10-16(c), the right side is more rigid since there are two vertical rows of bolts while
the left side has only one. In these cases, it is conservative to design the side with the higher
rigidity for the shear, R
uor Ra, and the full eccentric moment, R ueor R ae. The side with the
lower rigidity can then be designed for the shear only. This approach is applicable regardless
of the relative flexibility of the spliced members.
Fig. 10-16. Plate-type shear splices.
Fig. 10-17. Angle-type shear splice.
(a) (b)
(c)
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 140

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–141
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-18. Eccentricity in a symmetrical shear splice.
Some splices, such as those that occur at expansion joints, require special attention and
are beyond the scope of this Manual.
SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR
CONNECTIONS
Simple Shear Connections Subject to Axial Forces
When simple shear connections are subjected to axial load in addition to the shear, the
important limit states are outstanding angle leg bending and prying action. These tend to
require that the angle, plate or flange thickness increase or the gage decrease, or both, and
these requirements may compromise the connection’s ability to remain flexible enough to
accommodate the simple beam end rotation. The shear connection rotational ductility checks
derived in Part 9 can be used to ensure that adequate ductility exists.
Simple Shear Connections at Stiffened Column-Web
Locations
Stiffeners are obstacles to direct connections to the column web. Figure 10-19(a) illustrates
a seat angle welded to the toes of the column flanges; Figure 10-19(d) shows a vertical plate
extended beyond the column flanges. Figures 10-19(b) and 10-19(c) offer two additional
options for framing at locations of diagonal stiffeners; these should be examined carefully
as they may create erection problems. Additionally, the deep cope of Figure 10-19(c) may
significantly reduce the available strength of the beam at the end connection. Alternatively,
the bottom transverse stiffener could be extended to serve as a seat plate with a bearing
stiffener provided to distribute the beam reaction.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 141

10–142 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-19. Simple shear connections at stiffened column-web locations.
(a) (b)
(c) (d)
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 142

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–143
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Eccentric Effect of Extended Gages
Consider a simple shear connection to the web of a column that requires transverse stiffeners
for two concurrent beam-to-column-flange moment connections. If it were not possible to
eliminate the stiffeners by selection of a heavier column section, the field connection would
have to be located clear of the column flanges, as shown in Figure 10-20, to provide for
access and erectability.
The extension of the connection beyond normal gage lines results in an eccentric
moment. While this eccentric moment is usually neglected in a connection framing to a
column flange, the resistance of the column to weak-axis bending is typically only 20% to
50% of that in the strong axis. Thus the eccentric moment should be considered in this
column-web connection, especially if the eccentricity, e, is large. Similarly, eccentricities
larger than normal gages may also be a concern in connections to girder webs.
Column-Web Supports
There are two components contributing to the total eccentric moment: (1) the eccentricity of
the beam end reaction, Re; and (2) M
pr, the partial restraint of the connection. To determine
what eccentric moment must be considered in the design, first assume that the column is
part of a braced frame for weak-axis bending, is pinned-ended with K=1, and will be
concentrically loaded, as illustrated in Figure 10-21. The beam is loaded before the
column and will deflect under load as shown in Figure 10-22. Because of the partial
restraint of the connection, a couple, M
pr, develops between the beam and column and
adds to the eccentric couple, Re. Thus, M
con=Re+M pr.
As the loading of the column begins, the assembly will deflect further in the same
direction under load, as indicated in Figure 10-23, until the column load reaches some
magnitude, P
sbr, when the rotation of the column will equal the simply supported beam end
rotation. At this load, the rotation of the column negates M
prsince it also relieves the partial
restraint effect of the connection, and M
con=Re. As the column load is increased above P sbr,
the column rotation exceeds the simply supported beam end rotation and a moment M′
pr
results such that M con=Re– M′ pr.
Fig. 10-20. Eccentric effect of extended gages.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 143

10–144 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-22. Illustration of beam, column and connection behavior
under loading of beam only.
Fig. 10-21. Column subject to dual eccentric moments.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 144

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–145
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-23. Illustration of beam, column and connection behavior
under loading of beam and column.
Note that the partial restraint of the connection now actually stabilizes the column and
reduces its effective length factor, K, below the originally assumed value of 1. Thus, since M′
pr
must be greater than zero, it must also be true that Re>M con. It is therefore conservative to
design the connection for the shear, R, and the eccentric moment, Re.
The welds connecting the plate to the supporting column web should be designed to resist
the full shear, R, only; the top and bottom plate-to-stiffener welds have minimal strength
normal to their length, are not assumed to carry any calculated force, and may be of
minimum size in accordance with AISC SpecificationSection J2.
If simple shear connections frame to both sides of the column web, as illustrated in Figure
10-21, each connection should be designed for its respective shear, R
1and R 2, and the
eccentric moment ⎪R
2e2– R1e1⎪may be apportioned between the two simple shear
connections as the designer sees fit. The total eccentric moment may be assumed to act on
the larger connection, the moment may be divided proportionally among the connections
according to the polar moments of inertia of the bolt groups (relative stiffness), or the
moment may be divided proportionally between the connections according to the section
moduli of the bolt groups (relative moment strength). If provision is made for ductility and
stability, it follows from the lower bound theorem of limit states analysis that the distribution
which yields the greatest strength is closest to the true strength. Note that the possibility
exists that one of the beams may be devoid of live load at the same time that the opposite
beam is fully loaded. This condition must be considered by the designer when apportioning
the moment.
AISC_PART 10C:14th Ed. 2/24/11 9:29 AM Page 145

10–146 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-24. Eccentric moment on girder-web support.
Fig. 10-25. Girder-web support subject to dual eccentric moments.
Girder-Web Supports
The girder-web support of Figure 10-24 usually provides only minimal torsional stiffness or
strength. When larger-than-normal gages are used, the end rotation of the supported beam
will usually be accommodated through rotation of the girder support. It follows that the bolt
group should be designed to resist both the shear, R, and the eccentric moment, Re. The
beam end reaction will then be carried through to the center of the supporting girder web.
The welds connecting the plate to the supporting girder web should be designed to resist
the shear, R,only; the top and bottom plate-to-girder-flange welds have minimal strength
normal to their length, are not assumed to carry any calculated force, and may be of
minimum size in accordance with AISC SpecificationSection J2.
Similarly, for the girder illustrated in Figure 10-25 supporting two eccentric reactions,
each connection should be designed for its respective shear, R
1and R 2, and the eccentric
moment, ⎪R
2e2– R1e1⎪, may be apportioned between the two simple shear connections as
the designer sees fit.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 146

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–147
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Alternative Treatment of Eccentric Moment
In the foregoing treatment of eccentric moments with column- and girder-web supports, it
is possible to design the support (instead of the connection) for the eccentric moment, Re.
Additionally, when metal deck is used with puddle welds or self-tapping screws, the metal
deck tends to reduce relative movement between the two members and thus will tend to
carry all or some of the eccentric moment. In these cases, the connection may be designed
for the shear, R,only or the shear and a reduced eccentric moment.
Double Connections
When beams frame opposite each other and are welded to the web of the supporting girder
or column, there are usually no dimensional constraints imposed on one connection by the
presence of the other connection unless erection bolts are common to each connection.
When the connections are bolted to the web of the supporting column or girder, however,
the close proximity of the connections requires that some or all fasteners be common to
both connections. This is known as a double connection. See also the discussion under
“Constructability Considerations” in an earlier section in this Part.
Supported Beams of Different Nominal Depths
When beams of different nominal depths frame into a double connection, care must be taken
to avoid interference from the bottom flange of the shallower beam with the entering and
tightening clearances for the bolts of the connection for the deeper beam. Access to the bolts
that will support the deeper beam may be provided by coping or blocking the bottom flange
of the shallower beam. Alternatively, stagger may be used to favorably position the bolts
around the bottom flange of the shallower beam.
Supported Beams Offset Laterally
Frequently, beams do not frame exactly opposite each other, but are offset slightly, as
illustrated in Figure 10-26. Several connection configurations are possible, depending on the
offset dimension.
If the offset were equal to the gage on the support, the connection could be designed with
all bolts on the same gage lines, as shown in Figure 10-26(b), and the angles arranged, as
shown in Figure 10-26(d). If the offset were less than the gage on the support, staggering
the bolts, as shown in Figure 10-26(c), would reduce the required gage and the angles could
be arranged, as shown in Figure 10-26(c). In any case, each bolt transmits an equal share of
its beam reaction(s) to the supporting member, with the bolts that are loaded in double shear
ultimately carrying twice as much force as those loaded in single shear. Once the geometry
of the connection has been determined, the distribution of the forces is patterned after that
in the design of a typical connection. For normal gages, eccentricity may be ignored in this
type of connection.
Beams Offset From Column Centerline
Framing to the Column Flange from the Strong Axis
As illustrated in Figure 10-27, beam-to-column-flange connections offset from the column
centerline may be supported on a typical welded seat, stiffened or unstiffened, provided the
welds for the seat can be spaced approximately equal on either side of the beam centerline.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 147

10–148 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-26. Offset beams connected to girder.
Two such seats offset from the W12×65 column centerline by 2
1
/4in. and 3
1
/2in. are shown
in Figures 10-27(a) and 10-27(b), respectively. While not shown, top angles should be used
with this connection.
Since the entire seat fits within the flange width of the column, the connection of Figure
10-27(a) is readily selected from the design aids presented previously. However, the larger
(a)
(b) (c)
(d) (e)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 148

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–149
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-27. Offset beams connected to column flanges.
(a) (b) (c)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 149

10–150 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
beam offsets in Figures 10-27(b) and 10-27(c) require that one of the welds be made along
the edge of the column flange against the back side of the seat angle. Note that the end return
is omitted because weld returns should not be carried around such a corner.
For the beam offset of 5
1
/2in. shown in Figure 10-27(c), the seat angle overhangs the edge
of the beam and the horizontal distance between the vertical welds is reduced to 3
1
/2in.; the
center of gravity of the weld group is located 1
1
/4in. to the left of the beam centerline. The
force on each weld may be determined by statics. In this case, the larger force is in the right-
hand weld and may be determined by summing moments about the lefthand weld. Once the
larger force has been determined, each weld should be designed to share the force in the more
highly loaded weld.
Framing to the Column Flange from the Weak Axis
Spandrel beams X and Y in the partial plan shown in Figure 10-28 are offset 4
1
/8in. from
the centerline of column C1, permitting the beam web to be connected directly to the
column flange. At column B2, spandrel beam X is offset 5 in. and requires a
7
/8-in. filler
between the beam web and the column flange. Beams X and Y are both plain-punched
beams, with flange cuts on one side, as noted in Figure 10-28(a), Section F-F.
In establishing gages, the requirements of other connections to the column at adjacent
locations must be considered. While the workable flange gage is 3
1
/2in. for the W8×28
columns supporting the spandrel beams, for beams Z, the combination of a 4-in. column
gage and 1
1
/2-in. stagger of fasteners is used to provide entering and tightening clearance
for the field bolts and sufficient edge distance on the column flange, as illustrated in Figure
10-28(b). The 4-in. column gage also permits a 1
1
/2-in. edge distance at the ends of the
spandrel beams, which will accommodate the normal length tolerance of ±
1
/4in. as specified
in “Standard Mill Practice” in Part 1.
The spandrel beams are shown with the notation “Cut and Grind Flush FS” in Sections
E-E and F-F. This cut permits the beam web to lie flush against the column flange. The
uncut flange on the near side of the spandrel beam contributes to the stiffness of the
connection. The 2
1
/2×
7
/8-in. filler is required between the spandrel beam web and the flange
of column B2 because of the
7
/8-in. offset. Accordingly, the filler provisions of AISC
SpecificationSection J5 must be satisfied.
In the part plan in Figure 10-29(a), the W16×40 beam is offset 6
1
/4in. from the
centerline of column D1. This prevents the web of the W16×40 from being placed flush
against the side of the column flange. A plate and filler are used to connect the beam to the
column flange, as shown in Figure 10-29(b). Such a connection is eccentric and one group
of fasteners must be designed for the eccentricity. Lack of space on the inner flange face
of the column requires development of the moment induced by the eccentricity in the beam
web fasteners.
To minimize the number of field fasteners, the plate in this case is shop-bolted to the
beam and field-bolted to the column. A careful check must be made to ensure that the beam
can be erected without interference from fittings on the column web. Some fabricators
would elect to shop-attach the plate to the column to eliminate possible interference and
permit use of plain-punched beams. Additionally, if the column were a heavy section, the
fabricator may elect to shop-weld the plate to the column to avoid drilling the thick flanges.
The welding of this plate to the column creates a much stiffer connection and the design
should be modified to recognize the increased rigidity.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 150

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–151
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-28. Offset beams connected to column.
(a)
(b)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 151

10–152 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-29. Offset beam connected to column.
(a)
(b)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 152

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–153
AMERICANINSTITUTE OFSTEELCONSTRUCTION
If the centerline of the W16 were offset 6
1
/16in. from line 1, it would be possible to
cope or cut the flanges flush top and bottom and frame the web directly to the column flange
with details similar to those shown in Figure 10-29. This type of framing also provides a
connection with more rigidity than normally contemplated in simple construction. A coped
connection of this type would create a bending moment at the root of the cope that might
require reinforcement of the beam web.
One method frequently adopted to avoid moment transfer to the column because of beam
connection rigidity is to use slotted holes and a bearing connection to provide some
flexibility. The slotted holes would be provided in the connection plate only and would be
in the field connection only. These slotted connections also would accommodate fabrication
and erection tolerances.
The type of connection detailed in Figure 10-29 is similar to a coped beam and should be
checked for buckling, as illustrated in Part 9. The following differences are apparent and
should be recognized in the analysis:
1. The effective length of equivalent “cope” is longer by the amount of end distance
to the first bolt gage line.
2. There is an inherent eccentricity due to the beam web and plate thickness. The
ordinary web and plate thicknesses normally will not require an analysis for this
condition, since the inelastic rotation allowed by the AISC Specificationwill
relieve this secondary moment effect. Two plates may sometimes be required to
counter this eccentricity when dimensions are significant.
3. The connection plate can be made of sufficient thickness as required for bending
or buckling stresses with a minimum thickness of
3
/8in.
Framing to the Column Web
If the offset of the beam from the centerline of the column web is small enough that the
connection may still be centered on or under the supported beam, no special considerations
need be made. However, when the offset of the beam is too large to permit the centering of
the connection under the beam, as in Figure 10-30, it may be necessary to consider the effect
of eccentricity in the fastener group.
The offset of the beam in Figure 10-30 requires that the top and bottom flanges be blocked
to provide erection clearance at the column flange. Since only half of each flange, then,
remains in which to punch holes, a 6-in. outstanding leg is used for both the seat and top
angles of these connections; this permits the use of two field bolts to each of the seat and
top angles, which are required by OSHA.
Connections for Raised Beams
When raised beams are connected to column flanges or webs, there is usually no special
consideration required. However, when the support is a girder, the differing tops of steel
may preclude the use of typical connections. Figure 10-31 shows several typical details
commonly used for such cases in bolted construction. Figure 10-32 shows several typical
details commonly used in welded construction.
In Figure 10-31(a), since the top of the W12×35 is located somewhat less than 12 in.
above the top of the W18 supporting beam, a double-angle connection is used. This
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 153

10–154 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connection would be designed for the beam reaction and the shop bolts would be governed
by double shear or bearing, just as if they were located in a vertical position. However, the
field bolts are not required to carry any calculated force under gravity loading.
The maximum permissible distance, m, depends on the beam reaction, since the web
remaining after the bottom cope must provide sufficient area to resist the vertical shear as
well as the bending moment which would be critical at the end of the cope. The beam can
be reinforced by extending the angles beyond the cope and adding additional shop bolts for
development. The angle size and/or thickness can be increased to gain shear area or section
modulus, if required. The effect of any eccentricity would be a matter of judgment, but could
be neglected for small dimensions.
When this connection is used for flexure or for dynamic or cyclical loading, the web is
subjected to high stress concentrations at the end of the cope, and it is good practice to
extend the angles, as shown in Figure 10-31(a), to add at least two additional web fasteners.
Fig. 10-30. Offset beam connected to column web.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 154

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–155
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-31. Bolted raised-beam connections.
Figure 10-31(b) covers the case where the bottom flange of the W12×35 is located a few
inches above the top of the W18. The beam bears directly upon fillers and is connected to
the W18 by four field bolts which are not required to transmit a calculated gravity load. If
the distance mexceeds the thickest plate which can be punched, two or more plates may be
used. Even though the fillers in this case need only be 6
1
/2-in. square, the amount of material
required increases rapidly as mincreases. If mexceeds 2 or 3 in., another type of detail may
be more economical.
(c) (d)
(b)(a)
(e)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 155

10–156 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The detail shown in Figure 10-31(c) is used frequently when mis up to 6 or 7 in. The load
on the shop bolts in this case is no greater than that in Figure 10-31(a). However, to provide
more lateral stiffness, the fittings are cut from a 15-in. channel and are detailed to overlap
the beam web sufficiently to permit four shop bolts on two gage lines.
A stool or pedestal, cut from a rolled shape, can be used with or without fillers to provide
for the necessary mdistance, as in Figure 10-31(d). A pair of connection angles and a tee
will also serve a similar purpose, as shown in Figure 10-31(e). To provide adequate strength
to carry the beam end reaction and to provide lateral stiffness, the web thickness of the
pedestal in each of these cases should be at least as thick as the member being supported.
In Figure 10-32(a), welded framing angles are substituted for the bolted angles of Figure
10-31(a). In Figure 10-32(b), a single horizontal plate is shown replacing the pair of framing
angles; this results in a savings in material and the amount of shop-welding. In this case,
particular care must be taken in cutting the beam web and positioning the plate at right
angles to the beam web. For this reason, if only a few connections of this type are to be
made, some fabricators prefer to use the angles, as in Figure 10-32(a). If sufficient
duplication were available to warrant making a simple jig to position the plate during
welding, the solution of Figure 10-32(b) may be economical.
Figure 10-32(c) shows a tee centered on the beam web and welded to the bottom flange
of the beam. The tee stem thickness should not be less than the beam web thickness. The
welded solutions shown in Figures 10-32(d) and 10-32(e) are capable of providing good
lateral stiffness. The latter two types also permit end rotation as the beam deflects under
load. However, if the mdistance exceeds 3 or 4 in., it is advisable to shop-weld a triangular
bracket plate at one end of the beam, as indicated by the dashed lines, to prevent the beam
from deflecting along its longitudinal axis.
Other equally satisfactory details may be devised to meet the needs of connections for
raised beams. They will vary depending on the size of the supported beam and the distance
m. When using this type of connection where the load is transmitted through bearing, the
provisions of AISC SpecificationSections J10.2 and J10.3 must be satisfied for both the
supported and supporting members. For the detail of Figure 10-32(b), since the rolled fillet
has been removed by the cut, the value of kwould be taken as the thickness of the plate plus
the fillet weld size.
AISC SpecificationAppendix 6 requires stability and restraint against rotation about the
beam’s longitudinal axis. This provision is most easily accomplished with a floor on top of
the supported beam. In the absence of a floor, the top flange may be supported by a strut or
bracket attached to the supporting member. When the beam is encased in a wall, this
stability may also be provided with wall anchors.
This discussion has considered that the field bolts which attach the beam to the pedestal
or support beam are subject to no calculated load. It is important, however, to recognize that
when the beam deflects about its neutral axis, a tensile force can be exerted on the outside
bolts. The intensity of this tensile force is a function of the dimension d,indicated in Figure
10-31, the span length of the supported member, and the beam stiffness. If these forces are
large, high-strength bolts should be used and the connection analyzed for the effects of
prying action.
Raised-beam connections such as these are used frequently as equipment or machinery
supports where it is important to maintain a true and level surface or elevation. When this
tolerance becomes important, the dimension dshould be noted “keep” to advise the
fabricator of this importance, as shown in Figure 10-31(b). Since the supporting beam is
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 156

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–157
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-32. Welded raised-beam connections.
subject to certain camber/deflection tolerances, it also may be appropriate to furnish shim
packs between the connection and the supporting member.
Non-Rectangular Simple Shear Connections
It is often necessary to design connections for beams that do not frame into a support
orthogonally. Such a beam may be inclined with respect to the supporting member in
(c) (d)
(b)(a)
(e)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 157

10–158 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
various directions. Depending upon the relative angular position which a beam assumes,
the connection may be classified among three categories: skewed, sloped or canted. These
conditions are illustrated in Figure 10-33 for beam-to-girder web connections; the same
descriptions apply to beam-to-column-flange and web connections. Additionally, beams
may be oriented in a combination of any or all of these conditions. For any condition of
skewed, sloped or canted framing, the single-plate connection is generally the simplest and
most economical of those illustrated in this text.
Fig. 10-33. Non-rectangular connections.
(a) Skewed beam (b) Sloped beam
(c) Canted beam (d) Skewed and sloped beam
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 158

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–159
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Skewed Connections
A beam is said to be skewed when its flanges lie in a plane perpendicular to the plane of the
face of the supporting member, but its web inclined to the face of the supporting member.
The angle of skew A appears in Figure 10-33(a) and represents the horizontal bevel to which
the fittings must be bent or set, or the direction of gage lines on a seated connection.
When the skew angle is less than 5° (1-in-12 slope), a pair of double angles can be bent
inward or outward to make the connection, as shown in Figure 10-34. While bent angle
sections are usually drawn as bending in a straight line from the heel, rolled angles will tend
to bend about the root of the fillet (dimension kin Manual Part 1). This produces a
significant jog in the leg alignment, which is magnified by the amount of bend. Above this
angle of skew, it becomes impractical to bend rolled angles.
For skews approximately greater than 5° (1-in-12 slope), a pair of bent plates, shown in
Figure 10-35, may be a more practical solution. Bent plates are not subject to the
deformation problem described for bent angles, but the radius and direction of the bend must
be considered to avoid cracking during the cold-bending operation.
Bent plates exhibit better ductility when bent perpendicular to the rolling direction and
are, therefore, less likely to crack. Whenever possible, bent connection plates should be
billed with the width dimension parallel to the bend line. The length of the plate is measured
Fig. 10-34. Skewed beam connections with bent double angles.
Fig. 10-35. Skewed beam connections with double bent plates.
(a) All-bolted (b) Bolted/welded
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 159

10–160 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
on its mid-thickness, without regard to the radius of the bend. While this will provide a plate
that is slightly longer than necessary, this will be corrected when the bend is laid out to the
proper radius prior to fabrication.
Before bending, special attention should be given to the condition of plate edges transverse
to the bend lines. Flame-cut edges of hardenable steels should be machined or softened by
heat treatment. Nicks should be ground out and sharp corners should be rounded.
The strength of bent angles and bent plate connections may be calculated in the same
manner as for square framed beams, making due allowances for eccentricity. The load is
assumed to be applied at the point where the skewed beam center line intersects the face of
the supporting member.
As the angle of skew increases, entering and tightening clearances on the acutely angled
side of the connection will require a larger gage on the support. If the gage were to become
objectionable, a single bent plate, illustrated in Figure 10-36, may provide a better solution.
Note that the single-bent plate may be of the conventional type, or a more compact
connection may be developed by “wrapping” the single bent plate, as illustrated in Figure
10-36(c).
In all-bolted construction, both the shop and field bolts should be designed for shear and
the eccentric moment. A C-shaped weld is preferable to avoid turning the beam during shop
fabrication. Single bent plates should be checked for flexural strength.
Skewed single-plate and skewed end-plate connections, shown in Figures 10-37 and
10-38, provide a simple, direct connection with a minimum of fittings and multiple punching
requirements. When fillet-welded, these connections may be used for skews up to 30° (or a
slope of 6
5
/16-in-12) provided the root opening formed does not exceed
3
/16in. For skew
angles greater than 30°, see AWS D1.1/D1.1M, Section 2.3.5.2 (AWS, 2010).
Fig. 10-36. Skewed-beam connections with single-bent plates.
(a) All-bolted (b) Bolted/welded
(c) Configurations
AISC_PART 10C:14th Ed._ 2/17/12 10:37 AM Page 160

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–161
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-38. Skewed shear end-plate connections.
Fig. 10-37. Skewed single-plate connections.
The maximum beam-web thickness which may be supported is a function of the maximum
root opening and the angle of skew. If the thickness of the beam web were such that a larger
root opening were encountered, the skewed single plate or the web connecting to the skewed
end plate may be beveled, as shown in Figures 10-37(b) and 10-38(b). Since no root opening
occurs with the bevel, there is no limitation on the thickness of the beam web. However,
beveling, especially of the beam web, requires careful finishing and is an expensive procedure
which may outweigh its advantages.
The design of skewed end-plate connections is similar to that discussed previously in
“Shear End-Plate Connections” in this Part. However, when the gage of the bolts is not
centered on the beam web, this eccentric loading should be considered. The design of
skewed single-plate connections is similar to that discussed previously in “Single-Plate
Connections” in this Part.
When skewed, stiffened seated connections are used, the stiffening element should be
located so as to cross the skewed beam centerline well out on the seat. This can be
accomplished by shifting the stiffener to the left or right of center to support beams which
skew to the left or to the right, respectively. Alternatively, it may be possible to skew the
stiffening element.
(a) Square edge (preferred) (b) Beveled edge (alternative)
(a) Square edge (preferred) (b) Beveled edge (alternative)
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 161

10–162 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sloped Connections
A beam is said to be sloped if the plane of its web is perpendicular to the plane of the face of
the supporting member, but its flanges are not perpendicular to this face. The angle of slope
B is shown in Figure 10-33(b) and represents the vertical angle to which the fittings must be
set to the web of the sloped beam, or the amount that seat and top angles must be bent.
The design of sloped connections usually can be adapted directly from the rectangular
connections covered earlier in this part, with consideration of the geometry of the
connection to establish the location of fittings and fasteners. Note that sloped beams often
require copes to clear supporting girders, as illustrated in Figure 10-39.
Figure 10-40 shows a sloped beam with double-angle connections, welded to the beam
and bolted to the support. The design of this connection is essentially similar to that for
rectangular double-angle connections. Alternatively, shear end-plate, tee, single-angle,
single-plate, or seated connections could be used. Selection of a particular connection type
may be influenced by fabrication economy, erectability, and/or by the types of connections
used elsewhere in the structure.
Sloped seated beam connections may utilize either bent angles or plates, depending on
the angle of slope. Dimensioning and entering and clearance requirements for sloped seated
connections are generally similar to those for skewed connections. The bent seat and top
plate shown in Figure 10-41 may be used for smaller bevels.
When the angle of slope is small, it is economical to place transverse holes in the beam
web on lines perpendicular to the beam flange; this requires only one stroke of a multiple
Fig. 10-39. Sloped all-bolted double-angle connection.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 162

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–163
AMERICANINSTITUTE OFSTEELCONSTRUCTION
punch per line. Since non-standard hole arrangements, then, usually occur in the connecting
materials (which are single-punched), this requires that sufficient dimensions be provided
for the connecting material to contain fasteners with adequate edges and gages, and at the
same time fit the angle to the web without encroaching on the flange fillets of the beam. For
the end connection of the beam, this was accomplished by using a 6-in. angle leg; a 4-in. or
even a 5-in. leg would not have furnished sufficient edge distance at the extreme fastener.
As the angle of slope increases, however, bolts for the end connections cannot conveniently
be lined up to permit simultaneous punching of all holes in a transverse row. In this case,
the fabricator may choose to disregard beam gage lines and arrange the hole-punching so
that ordinary square-framed connection material can be used throughout, as shown in
Figure 10-42.
Fig. 10-40. Sloped bolted/welded double-angle connection.
Fig. 10-41. Sloped seated connections.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 163

10–164 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Canted Connections
A beam perpendicular to the face of a supporting member, but rotated so that its flanges are
tilted with respect to those of the support, is said to be canted. The angle of cant C is shown
in Figure 10-33(c).
The design of canted connections usually can be adapted directly from the rectangular
connections covered earlier in this part. In Figure 10-43, a double-angle connection is used.
Alternatively, shear end-plate, seated, single-angle, single-plate, and tee connections may
also be used.
For channel B2 in Figure 10-44, which is supported by a sloping member B1 (not shown),
to match the hole pattern in supporting member B1, the holes in the connecting materials
Fig. 10-43. Canted double-angle connections.
Fig. 10-42. Sloped beam with rectangular connections.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 164

SPECIAL CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–165
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-44. Canted connections to a sloping support.
must be canted. As shown in Figure 10-44, the top flange of the channel and the connection
angles, d
R
and d
L
, are cut to clear the flanges of beam B1. In this detail, with a 3-in-12 angle
of cant, 4-in. legs were wide enough to contain the pattern of hole-punching.
Since the multiple punching or drilling of column flanges requires strict adherence to
column gage lines, punching is generally skewed in the fittings. When, for some reason, this
is not possible, as in Figure 10-45, skewed reference lines are shown on the column to aid
in matching connections.
When canted connecting materials are assembled on the beam, particular care must be
used in determining the direction of skew for punching the connection angles. An error
reversing this skew may permit matching of holes in both members, but the beam will be
canted opposite to the intended direction.
Fig. 10-45. Canted connection to column flange.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 165

10–166 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 10-46. Canted seated connections.
Note the connection angles in Figure 10-45 are shown shop-welded to the beam. This was
done to provide tightening clearance for
3
/4-in. high-strength field bolts in the opposite leg.
Had the shop fasteners been bolts, it would have been necessary to stagger the field and shop
fasteners and provide longer angles for the increased spacing.
Canted seated beams, shown in Figure 10-46, present few problems other than those in
ordinary square-end seated beams. Sufficient width and length of angle leg must be
provided to contain the gage line punching or drilling in the column face, as well as the off-
center location of the holes matching the punching in the beam flange. The elevation of the
top flange centerline and the bevel of the beam flange may be given for reference on the
beam detail, although the bevel shown will not affect the fabrication.
Inclines in Two or More Directions (Hip and Valley Framing)
When a beam inclines in two or more directions with respect to the axis of its supporting
member, it can be classified as a combination of those inclination directions. For example,
the beam of Figure 10-33(d) is both skewed and sloped. Angle A shows the skew and angle
B shows the slope. Note that, since the inclined beam is foreshortened in the elevation, the
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 166

DESIGN CONSIDERATIONS FOR SIMPLE SHEAR CONNECTIONS 10–167
AMERICANINSTITUTE OFSTEELCONSTRUCTION
true angle B appears only in the auxiliary projection, Section X-X. The development of
these details is quite complicated and graphical solutions to this compound angle work can
be found in any textbook on descriptive geometry. Accurate dimensions may then be
determined with basic trigonometry.
DESIGN CONSIDERATIONS FOR SIMPLE SHEAR
CONNECTIONS TO HSS COLUMNS
Many of the familiar simple shear connections that are used to connect to wide-flange
columns can be used with HSS columns. These include double and single angles,
unstiffened and stiffened seats, single plates, and tee connections. One additional connection
that is unique for HSS columns is the through-plate; note that this alternative is seldom
required structurally and presents a significant economic penalty when a single plate
connection would otherwise suffice. Variations in attachments are more limited with HSS
columns since the connecting element will typically be shop-welded to the HSS and bolted
to the supported beam. Except for seated connections, the bolting will be to the web of a
wide-flange or other open profile section. Coping is not required except for bottom-flange
copes that facilitate knifed erection with double-angle connections.
Double-Angle Connections to HSS
Table 10-1 is a design aid for double-angle connections. The table shows the compatible
sizes of W-shapes for the various connection configurations. Based on maximum beam web
thickness, maximum weld size, maximum HSS corner radius and 4-in. outstanding angle
legs, double-angle connections may be used with any HSS having a width greater than or
equal to 12 in. If 3-in. outstanding angle legs are used for connections with six bolts or less,
HSS with widths of 10 in. are acceptable for obtaining welds on the flat of the side. For
smaller web thicknesses, welds and corner radii, it may be possible to fit the connection on
widths of 10 in. if the outstanding angle legs are 4 in. and on widths of 8 in. for outstanding
angle legs of 3 in. However, these dimensions must be verified for a particular case. See the
tabulated workable flat dimensions for HSS in Part 1.
Single-Plate Connections to HSS
As long as the HSS wall is not classified as a slender element, the local distortion caused by
the single-plate connection will be insignificant in reducing the column strength of the HSS
(Sherman, 1996). Therefore, single-plate connections may be used with HSS when b/t≤
1.40(E/F
y)
0.5
or 35.1 for F y=46 ksi. Single-plate connections may also be used with round
HSS as long as they are nonslender under axial load (D/t≤0.11E/F
y).
Unstiffened Seated Connections to HSS
In order to properly attach seat angles to the flat of the HSS, the workable flat must be large
enough to accommodate both the width of the seat angle and the welds. Seat widths are
usually 6 in. or 8 in., but other widths may also be used. See the tabulated workable flat
dimensions for HSS in Part 1.
Table 10-6 may be used for unstiffened seated connections to HSS. The minimum HSS
thicknesses are established based on the weld strength. If the HSS thickness is less than the
minimum value, the weld strength must be reduced proportionally.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 167

10–168 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stiffened Seated Connections to HSS
Tables 10-8 and 10-14 are design aids for stiffened seated connections. Table 10-8 is appli-
cable to all member types, and Table 10-14 presents specific limits for HSS, based on the
yield-line mechanism limit state for HSS. Some values for small connection lengths, L,and
large HSS widths, B, have been reduced to meet the limit state for a line load with a width
of 0.4L across the HSS, per AISC Specification Section K1.
The design procedure for stiffened seated connections to W-shape column webs (Sputo
and Ellifritt, 1991) includes a yield line limit state based on an analysis by Abolitz and
Warner (1965). This has been applied to the HSS wall which is also supported on two edges.
However, since the HSS side supports are the same thickness rather than much heavier as in
the case of W-shape flanges, the equation (Abolitz and Warner, 1965) for rotationally free
edge supports has been used instead of fixed edge supports.
The strength of the connection is obtained by multiplying the tabulated value for a par-
ticular HSS width and stiffener length by the square of the HSS thickness and dividing by
the width of the seat. For combinations of B and L that are not listed in Table 10-14, the HSS
does not have sufficient flat width to accommodate a weld to the seat that is 0.2L on each
side of the stiffener. Because the required width also depends on the stiffener thickness and
the HSS corner radius, the HSS width must be checked even when the values are tabulated.
See the tabulated workable flat dimensions for HSS in Part 1.
The minimum HSS thicknesses associated with the weld strengths of Table 10-8 are given
in Table 10-14. If the HSS thickness is less than the minimum tabulated value, the weld
strength must be reduced proportionally.
Through-Plate Connections
In the through-plate connection shown in Figure 10-47, the front and rear faces of the HSS
are slotted so that the plate can be passed completely through the HSS and welded to both
faces. Through-plate connections should be used when the HSS wall is classified as a
slender element (b/t> 1.40(E/F
y)
0.5
or 35.1 for F y=46 ksi for rectangular HSS; D/t>
0.11E/F
yfor round HSS and Pipe) or does not satisfy the punching shear limit state. A
single-plate connection is more economical and should be used if the HSS is neither slender
nor inadequate for the punching shear rupture limit state.
Through-plate connections have the same limit states as single-plate connections and
Table 10-10 may be used to determine the size and number of bolts and the plate thickness.
The welds, however, are subject to direct shear and may not have to be as large as those for
single-plate connections. For equilibrium of the forces in Figure 10-47, the shear in
the welds on the front face should not exceed the strength of the pair of welds. The HSS
wall strength can be matched to the weld shear strength to determine the minimum
thickness, as illustrated in Part 9. If the thickness of the HSS is less than the minimum, the
weld strength must be reduced proportionally. Conservatively, the welds on the rear face
may be the same size.
When a connection is made on both sides of the HSS with an extended through-plate, the
portion of the plate inside the HSS is subject to a uniform bending moment. For long
connections, this portion of the plate may buckle in a lateral-torsional mode prior to
yielding, unless His very small. Using a thicker plate to prevent lateral-torsional buckling
would restrict the rotational flexibility of the connection. Therefore, it must be recognized
that the plate may buckle and that the moment will be shared with the HSS wall in a complex
AISC_PART 10C_14th Ed._February 25, 2013 14-12-04 3:10 PM Page 168

DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A, 10-14B, 10-14C AND 10-15) 10–169
AMERICANINSTITUTE OFSTEELCONSTRUCTION
manner. However, if the HSS would be satisfactory for a single-plate connection, the lateral-
torsional buckling limit state is not a critical concern involving loss of strength.
Single-Angle Connections
For fillet welding on the flat of the HSS side, while keeping the center of the beam web in
line with the center of the HSS, single-angle connections must be compatible with one-half
the workable flat dimension provided in Part 1. Generally, the following HSS widths and
thicknesses will work:
b=8 in. and t≤
1
/4in.
b=9 in. and t≤
3
/8in.
b≥10 in. and any nominal thickness
Alternatively, single angles can be welded to narrow HSS with a flare-bevel weld.
DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A,
10-14B, 10-14C AND 10-15)
Table 10-13. Minimum Inside Radius for Cold-Bending
Table 10-13 is a design aid providing generally accepted minimum inside-bending radius
for a given plate thickness, t, for various grades of steel. Values are for bend lines trans-
verse to the direction of final rolling (Brockenbrough, 2006). When bend lines are parallel
Fig. 10-47. Shear forces in a through-plate connection.
AISC_PART 10C_14th Ed._February 25, 2013 14-11-10 11:16 AM Page 169 (Black plate)

10–170 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to the direction of final rolling, the tabular values should be increased by 50%. When bend
lines are longer than 36 in., all radii may have to be increased if problems in bending are
encountered.
Table 10-14A. Clearances for All-Bolted Skewed
Connections
Table 10-14A is a design aid providing clearance dimensions for skewed bent double-angle
connections and double and single-bent plate all-bolted connections, and specifies beam set-
backs and gages. Since these dimensions are based on the maximum material thicknesses
and fastener sizes indicated, it is suggested that in cases where many duplicate connections
with less than maximum material or fasteners are required, savings can be realized if these
dimensions are developed from specific bevels, beam sizes and fitting thicknesses.
Table 10-14B. Clearances for Bolted/Welded Skewed
Connections
Table 10-14B is a design aid providing clearance dimensions, beam setbacks and gages for
skewed bent double-angle connections and double and single-bent plate bolted/welded con-
nections. Table 10-13B also specifies the dimension Awhich is added to the fillet weld size,
S, to compensate for the root opening for skewed end-plate connections. This table is based
conservatively on a gap of
1
/8in. For beam webs beveled to the appropriate skew, values of
H
1for the entire table are valid andA =0.
Table 10-14C. Welding Details for Skewed Single Plate
Shear Connections
Table 10-14C is a design aid providing weld information for skewed single-plate shear con-
nections. Additionally, this table provides clearances and dimensions for groove-welded
single-plate connections without backing bars for skews greater than 30°; refer to AWS
D1.1/D1.1M for prequalified welds for both types of joints.
Table 10-15. Required Length and Thickness for Stiffened
Seated Connections to HSS
Table 10-15 is a design aid for stiffened seated connections to HSS. Specific limits are based
on the yield-line mechanism limit state of the HSS wall. Some values for small connection
lengths, L, and large HSS widths, B, have been reduced to meet the limit state for a line load
with a width of 0.4Lacross the HSS, per AISC Specification Section K1.
The design procedure for stiffened seated connections to W-shape column webs (Sputo
and Ellifritt, 1991) includes a yield limit state based on an analysis by Abolitz and Warner
(1965). This has been applied to the HSS wall which is also supported on two edges.
However, since the HSS side supports are the same thickness rather than much heavier, as
in the case of W-shape column flanges compared to the column web, the equation for rota-
tionally free edge supports has been used instead of fixed edge supports (Abolitz and
Warner, 1965).
The strength of the connection is obtained by multiplying the tabulated value for a par-
ticular HSS width and stiffener length by the square of the HSS thickness and dividing by
the width of the seat. For combinations of Band Lthat are not listed in Table 10-15, the HSS
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 170

DESIGN TABLE DISCUSSION (TABLES 10-13, 10-14A, 10-14B, 10-14C AND 10-15) 10–171
AMERICANINSTITUTE OFSTEELCONSTRUCTION
does not have sufficient flat width to accommodate a weld to the seat that is 0.2Lon each
side of the stiffener. Since the required width also depends on the stiffener thickness and the
HSS corner radius, the HSS width must be checked even when the values are tabulated. See
the tabulated workable flat dimensions for HSS in Part 1.
Table 10-8 is applicable to all member types for stiffened seated connections. The mini-
mum HSS thicknesses associated with the weld strengths of Table 10-8 are given in Table
10-15. If the HSS thickness is less than the minimum tabulated value, the weld strength
must be reduced proportionally.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 171

10–172 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-13
Minimum Inside Radius
for Cold-Bending
1
1
Values are for bend lines perpendicular to direction of final rolling. If bend lines are parallel to final rolling direction, multiply val-
ues by 1.5.
2
The grade designation follows the dash; where no grade is shown, all grades and/or classes are included.
ASTM Designation
2
Thickness, t, in.
Up to
3
/4 Over
3
/4 to 1 Over 1 to 2 Over 2
1
1
/2t
1
1
/2t
1
1
/2t
1
3
/4t
1
1
/2t
1
1
/2t
2
1
/4t
2
1
/2t
3 t
4
1
/2t
3 t
3
1
/2t
5
1
/2t
1
1
/2t 1
1
/2t 2 t 2
1
/2t
A36, A572-42
A242, A529-50, A529-55,
A572-50, A588, A992
A572-55, A852
A572-60, A572-65
A514
1
1
/2t 1
1
/2t 2t
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 172

DESIGN TABLES 10–173
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-14A
Clearances for All-Bolted
Skewed Connections
AISC_PART 10C:14th Ed. 4/7/11 8:30 AM Page 173

Table 10-14B
Clearances for Bolted/Welded
Skewed Connections
10–174 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 10C:14th Ed. 4/7/11 8:41 AM Page 174

DESIGN TABLES 10–175
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-14B (continued)
Clearances for Bolted/Welded
Skewed Connections
AISC_PART 10C:14th Ed. 4/7/11 8:45 AM Page 175

10–176 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-14C
Weld Details for Skewed
Single-Plate Connections
5
/16- and
3
/8-in. Plate Thickness*
For θ≤ 17° from Perpendicular For 17°< θ≤ 30° from Perpendicular
For θ= 45° from PerpendicularFor 30°< θ< 45° from Perpendicular
*Satisfies single-plate weld requirements for these thicknesses.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 176

DESIGN TABLES 10–177
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 10-14C (continued)
Weld Details for Skewed
Single-Plate Connections
1
/2-in. Plate Thickness*
For θ≤ 17° from Perpendicular For 17°< θ≤ 22° from Perpendicular
For 22°< θ≤ 45° from Perpendicular For θ= 45° from Perpendicular
*Satisfies single-plate weld requirements for these thicknesses.
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 177

10–178 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASD LRFDASD LRFDASD LRFDASD LRFDASD LRFDASD LRFD
5L, in.
6
7
8
9
10
11
12
13
14
15
16
17
5.56789
Table 10-15
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor, RuW/t
2
or RaW/t
2
, kips/in.
HSS Width,
B, in.
558839545 819536805526791525789528793
6871030664 997646971625940615925612920
79812007711160735110071410707041060
9111370856129082312408041210
10701600990149094214209121370
114017101070161010301550
130019601210182011601740
1370206012901940
1540231014402170
1720258016002410
17002660
19602940
Weld Size, in. Min. HSS Thickness, in.
Required HSS Thickness
1
/4
5
/16
3
/8
7
/16
1
/2
5
/8
0.224
0.280
0.336
0.392
0.448
0.560
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 178

DESIGN TABLES 10–179
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.224
0.280
0.336
0.392
0.448
0.560
ASD LRFDASD LRFDASD LRFDASD LRFDASD LRFDASD LRFD
10
L, in.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
12 14 16 18 20
Table 10-15 (continued)
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor, RuW/t
2
or RaW/t
2
, kips/in.
HSS Width,
B, in.
534802552830561843491737437656393590
6149226259406449686671000594892535803
700105070410607171080736111075911406991050
793119078711807941190809122082812408511280
893134087613208761320885133090113509201380
1000150097114609621450965145097614709931490
112016801070161010501580105015801060159010701600
124018701180177011501730114017101140171011501720
137020701290194012501880123018501220184012301840
152022801410212013602040133019901310198013101970
167025101540232014702210143021501410212014002100
183027601680252015902390154023101510226014902240
201030201820274017102570165024701610242015902380
219033001970297018402770176026501710258016802530
239036002130321019802980188028301820274017902680
2300346021203190201030201940291018902840
2480373022803420214032202060309020003010
2670402024403660228034302180328021203180
2870431026003910243036502310348022303360
3080463027804170258038802450368023603540
29604450274041102590389024803730
31504730290043602730411026103930
33505030307046202880433027504130
35605340325048903040457028904340
37705660344051603200481030404560
363054503370507031904790
383057503540533033405020
Weld Size, in. Min. HSS Thickness, in.
Required HSS Thickness
1
/4
5
/16
3
/8
7
/16
1
/2
5
/8
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 179

10–180 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASD LRFDASD LRFDASD LRFDASD LRFDASD LRFDASD LRFD
22
L, in.
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
24 26 28 30 32
Table 10-15 (continued)
Required Length and Thickness for
Stiffened Seated Connections to HSS
HSS Wall Strength Factor, RuW/t
2
or RaW/t
2
, kips/in.
HSS Width,
B, in.
357536328492302454281421262393246369
486730446669412618382574357535334502
635953582874537807499749466699437656
804121073711106801020632948590885553830
943142091013708401260780117072810906821020
101015201030156010201530944142088113208261240
10801630110016601130169011201690105015709831470
116017401180177012001800122018301230185011501730
124018601250188012701910129019401310197013302010
132019801330200013402020136020401380207014002110
140021001410212014202130143021601450218014702210
149022301490224015002250151022701530229015402320
158023701570237015802370159023901600241016202430
167025101660250016602500167025101680252016902540
176026501750263017502630175026301760264017702660
186028001850277018402760184027601840277018502780
196029501940292019302900192028901920289019302900
207031102040307020203040201030302010302020103030
218032802140322021203190211031702100316021003150
229034502250338022203340220033102190329021903290
241036202360354023203490230034502280343022803420
253038002470371024303650240036002380357023703560
265039902590389025403810250037602480372024603700
278041802700406026503980261039202580387025603840
292043802830425027604150271040802680403026503990
305045902950444028804330282042502780418027604140
319048003080463030004510294044202890435028604300
Weld Size, in. Min. HSS Thickness, in.
Required HSS Thickness
1
/4
5
/16
3
/8
7
/16
1
/2
5
/8
0.224
0.280
0.336
0.392
0.448
0.560
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 180

PART 10 REFERENCES 10–181
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 10 REFERENCES
Abolitz, A.L. and Warner, M.E. (1965), “Bending Under Seated Connections,” Engineering
Journal, AISC, January, pp. 1–5.
Astaneh, A., Call, S.M. and McMullin, K.M. (1989), “Design of Single-Plate Shear
Connections,”Engineering Journal, AISC, Vol. 26, No. 1, 1st Quarter, pp. 21–32,
Chicago, IL.
AWS (2010), Structural Welding Code—Steel, AWS D1.1/D1.1M, American Welding
Society, Miami, FL.
Brockenbrough, R.L. (2006), Development of Fabrication Guidelines for Cold Bending of
Plates, Engineering Journal, AISC, 1st Quarter, pp. 49–56.
Carter, C.J., Thornton, W.A. and Murray, T.M. (1997), “Discussion—The Behavior and
Load-Carrying Capacity of Unstiffened Seated Beam Connections,” Engineering
Journal, AISC, Vol. 34, No. 4, 4th Quarter, pp. 151–156.
Roeder, C.W. and Dailey, R.H. (1989), “The Results of Experiments on Seated Beam
Connections,” Engineering Journal, AISC, Vol. 26, No. 3, 3rd Quarter, pp. 90–95.
Ellifritt, D.S. and Sputo, T. (1999), “Design Criteria for Stiffened Seated Connections to
Column Webs,” Engineering Journal, AISC, Vol. 36, No. 4, 4th Quarter, pp. 160–167.
Kulak, G.L. (2002), High Strength Bolts—A Primer For Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Kulak, G.L. and Green, D.L. (1990), “Design of Connectors in Web-Flange Beam or Girder
Splices,” Engineering Journal, AISC, Vol. 27, No. 2, 2nd Quarter, pp. 41–48.
Muir, L.S. and Hewitt, C.M. (2009), “Design of Unstiffened Extended Single-Plate Shear
Connections,” Engineering Journal, AISC, Vol. 46, No. 2, 2nd Quarter, pp. 67–79.
Muir, L.S. and Thornton, W.A. (2011), “The Development of a New Design Procedure
for Conventional Single-Plate Shear Connections,” Engineering Journal, AISC, Vol. 48,
No. 2, 2nd Quarter, pp. 141–152.
Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2009), Steel Structures: Design and Behavior,
5th Ed., Prentice Hall, Upper Saddle River, NJ.
Sputo, T. and Ellifritt, D.S. (1991), “Proposed Design Criteria for Stiffened Seated
Connections to Column Webs,” Proceedings of the 1991 National Steel Construction
Conference, AISC, pp. 8.1–8.26, Chicago, IL.
Sherman, D.R. (1996), “Designing With Structural Tubing,” Engineering Journal, AISC,
Vol. 33, No. 3, 3rd Quarter, pp. 101–109.
Sherman, D.R. and Ghorbanpoor, A. (2002), “Design of Extended Shear Tabs,” Final Report
to the American Institute of Steel Construction, AISC, Chicago, IL.
Sumner, E.A. (2003), “North Carolina State Research Report on Single Plate Shear
Connections,” Report to the American Institute of Steel Construction, AISC, Chicago, IL.
Thornton, W.A. and Fortney, P. (2011), “On the Need for Stiffeners for and the Effect of
Lap Eccentricity on Extended Shear Tabs,” Engineering Journal, AISC, Vol. 48, No. 2,
2nd Quarter.
AISC_PART 10C_14th Ed._February 25, 2013 14-11-10 11:19 AM Page 181 (Black plate)

10–182 DESIGN OF SIMPLE SHEAR CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 10C:14th Ed. 2/24/11 9:30 AM Page 182

11–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 11
DESIGN OF PARTIALLY RESTRAINED MOMENT
CONNECTIONS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
LOAD DETERMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11–3
FLANGE-ANGLE PR MOMENT CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 11–3
FLANGE-PLATED PR MOMENT CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . 11–5
PART 11 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–6
AISC_PART 11_:14Ed._ 4/1/11 9:02 AM Page 1

11–2 DESIGN OF PARTIALLY RESTRAINED MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of partially restrained moment connections. For the design of simple
shear connections, see Part 10. For the design of fully restrained moment connections, see
Part 12.
LOAD DETERMINATION
The behavior of partially restrained (PR) moment connections is intermediate in degree
between the flexibility of simple shear connections and the full rigidity of fully restrained
(FR) moment connections. AISC SpecificationSection B3.6b(b), Partially Restrained (PR)
Moment Connections, defines PR connections as ones that transfer moment but for which
the rotation between connected members is not negligible. When used, the analytical model
of the PR connection must include the force-deformation characteristics of the specific con-
nection. For further information on the use of PR moment connections, see Geschwindner
(1991), Nethercot and Chen (1988), Gerstle and Ackroyd (1989), Deierlein et al. (1990),
Goverdhan (1983), and Kishi and Chen (1986).
As an alternative, flexible moment connections (FMC) may be used as a simplified
approach to PR moment connection design (Geschwindner and Disque, 2005), particularly
for preliminary design. Using FMC, any end restraint that the connection may provide to the
girder is assumed zero for gravity load because of the uncertainty of that restraint after
repeated loading. The beam and its web connections are thus designed as simple, consider-
ing only the gravity loads. For lateral loads, the connection is assumed to behave as an FR
moment connection for analysis and the full lateral load is carried by the assigned lateral
frames. The resulting flexible moment connections are then designed as “fully restrained”
for the calculated required strength due to lateral loads only.
Strength
With PR moment connections, the full strength of the connection is accompanied by some
definite amount of rotation between the connected members. The AISC Specification
requires that the structural engineer have a reliable moment-rotation, M-θ, curve before a
Fig. 11-1. Partially restrained moment connection behavior.
(a) (b) (c)
AISC_PART 11_:14Ed._ 1/20/11 7:43 AM Page 2

FLANGE-ANGLE PR MOMENT CONNECTIONS 11–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
design can proceed. These M-θcurves are generally taken directly from the results of mul-
tiple connection tests as found in compilations such as those presented by Goverdhan (1983)
and Kishi and Chen (1986) or from normalized curves developed from these tests. For infor-
mation on PR composite connection see AISC Design Guide 8, Partially Restrained
Composite Connections(Leon et al., 1996).
Although the M-θcurves are generally quite nonlinear in nature, as the connections
undergo alternating cycles of loading and unloading, the connection “shakes down” so that
its behavior may be modeled essentially as a linear relationship. This “Shakedown” process
is fully described in Rex and Goverdhan (2002) and Geschwindner and Disque (2005). Both
the nonlinear behavior and the shakedown behavior of the connection must be included in
the determination of the connection strength and stiffness for design.
PR moment connections deliver concentrated forces to the flanges of columns that must
be accounted for in the design of the column and column panel-zone per AISC Specification
Section J10. Either the column size can be selected with adequate flange and web thick-
nesses to eliminate the need for column stiffening, or transverse stiffeners and/or web
doubler plates can be provided. For further information, refer to AISC Design Guide 13,
Stiffening of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications
(Carter, 1999).
Stability
Stability and second-order effects for frames that include PR moment connections are eval-
uated by the same methods as provided in the AISC Specificationfor frames with simple pin
connections and FR moment connections. These are the direct analysis method of Chapter
C and the effective length and the first-order analysis methods of Appendix 7. Although the
analysis and design of frames with PR moment connections may be more complex than
frames with simple or FR moment connections, there may be situations where using the
exact behavior of the connection will be advantageous to the designer.
For additional information on designing PR moment frames for stability, see the work of
Chen and Lui (1991) and Chen et al. (1996).
FLANGE-ANGLE PR MOMENT CONNECTIONS
Flange-angle PR moment connections are made with top and bottom angles and a simple
shear connection.
The available strength of a flange-angle PR moment connection is determined from the
applicable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements
(see Part 9). In all cases, the available strength, φR
nor Rn/Ω, must equal or exceed the
required strength, R
uor Ra.
The tensile force is carried to the angle by the flange bolts, with the angle assumed to
deform as illustrated in Figure 11-1. A point of inflection is assumed between the bolt gage
line and the face of the connection angle, for use in calculating the local bending moment
and the corresponding required angle thickness. The effect of prying action must also be
considered.
The strength of this type of connection is often limited by the available angle thickness
and the maximum number of fasteners that can be placed on a single gage line of the verti-
cal leg of the connection angle at the tension flange. Figure 11-2 illustrates the column
AISC_PART 11_:14Ed._ 1/20/11 7:43 AM Page 3

11–4 DESIGN OF PARTIALLY RESTRAINED MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
flange deformation and shows that only the fasteners closest to the column web are fully
effective in transferring forces.
Fig. 11-2. Illustration of deformations in partially restrained moment connections.
Fig. 11-3. Flange-plated partially restrained moment connections.
(a) (b)
AISC_PART 11_:14Ed._ 1/20/11 7:43 AM Page 4

FLANGE-PLATED PR MOMENT CONNECTIONS 11–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
FLANGE-PLATED PR MOMENT CONNECTIONS
Originally proposed by Blodgett (1966), and illustrated in Figure 11-3, a flange-plated PR
moment connection consists of a simple shear connection and top and bottom flange plates
that connect the flanges of the supported beam to the supporting column. These flange plates
are welded to the supporting column and may be bolted or welded to the flanges of the sup-
ported beam. An unwelded length of 1
1
/2times the flange-plate width, b A, is normally
assumed to permit the elongation of the plate necessary for PR moment connection behav-
ior. Other flange-plated details are illustrated in Figures 11-4a and 11-4b.
The available strength of a flange plated PR moment connection is determined from the
applicable limit states for the bolts (see Part 7), welds (see Part 8) and connecting elements
(see Part 9). In all cases, the available strength φR
nor Rn/Ω, must equal or exceed the
required strength, R
uor Ra.
The shop and field practices for flange-plated FR moment connections (see Part 12) are
equally applicable to flange-plated PR moment connections.
Fig. 11-4. Typical flange-plated partially restrained moment connections.
(a) (b)
AISC_PART 11_:14Ed._ 1/20/11 7:43 AM Page 5

11–6 DESIGN OF PARTIALLY RESTRAINED MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 11 REFERENCES
Blodgett, O.W. (1966), Design of Welded Structures, James F. Lincoln Arc Welding
Foundation, Cleveland, OH.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), “Stability Design of Semi-Rigid Frames,”
John Wiley and Sons Inc., New York, NY.
Chen, W.F. and Lui, E.M. (1991), “Stability Design of Steel Frames,” CRC Press, Boca
Raton, FL.
Deierlein, G.G, Hsieh, S.H. and Shen, Y.J. (1990), “Computer-Aided Design of Steel Structures
with Flexible Connections,” Proceedings of the 1990 National Steel Construction
Conference, AISC, pp. 9.1–9.21, Chicago, IL.
Gerstle, K.H. and Ackroyd, M.H. (1989), “Behavior and Design of Flexibly Connected
Building Frames,” Proceedings of the 1989 National Steel Construction Conference,
AISC, pp. 1.1–1.28, Chicago, IL.
Geschwindner, L.F. (1991), “A Simplified Look at Partially Restrained Connections,”
Engineering Journal, AISC, Vol. 28, No. 2, 2nd Quarter, pp. 73–78, Chicago, IL.
Geshwindner, L.F. and Disque, R.O. (2005), “Flexible Moment Connections for Unbraced
Frames—A Return to Simplicity,” Engineering Journal, AISC, Vol. 42, No. 2, 2nd
Quarter, Chicago, IL.
Goverdhan, A.V. (1983), “A Collection of Experimental Moment Rotation Curves and
Evaluation of Prediction Equations for Semi-Rigid Connections,” Master of Science
Thesis, Vanderbilt University, Nashville, TN.
Kishi, N. and Chen, W.F. (1986), “Database of Steel Beam-to-Column Connections,” CE-
STR-86-26, Purdue University, School of Engineering, West Lafayette, IN.
Leon, R.T., Hoffman, J.J. and Staeger, T. (1996), Partially Restrained Composite Connections,
Design Guide 8, AISC, Chicago, IL.
Nethercot, D.A. and Chen, W.F. (1988), “Effects of Connections on Columns,” Journal
of Constructional Steel Research, Elsevier Applied Science Publishers, pp. 201–239,
Essex, England.
Rex, C.O. and Goverdhan, A.V. (2002), “Design and Behavior of a Real PR Building,”
Connections in Steel Structures IV: Behavior Strength and Design, Proceedings of the
Fourth Workshop on Connections in Steel Structures, AISC, October 22-24, 2000,
pp. 94–105, Chicago, IL.
AISC_PART 11_:14Ed._ 1/20/11 7:43 AM Page 6

AMERICANINSTITUTE OFSTEELCONSTRUCTION
DIMENSIONS AND PROPERTIES 12–1
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
FR MOMENT CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
Load Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3
Temporary Support During Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–3
Welding Considerations for Fully Restrained Moment Connections . . . . . . . . . . . . 12–4
FR CONNECTIONS WITH WIDE-FLANGE COLUMNS . . . . . . . . . . . . . . . . . . . . . 12–4
Flange-Plated FR Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–4
Directly Welded FR Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–7
Extended End-Plate FR Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–8
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–9
Design Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–9
Design Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
FR MOMENT SPLICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
Location of Moment Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
Force Transfer in Moment Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
Flange-Plated FR Moment Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–11
Directly Welded Flange FR Moment Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13
Extended End-Plate FR Moment Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–13
SPECIAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
FR Moment Connections to Column Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
Recommended Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
Ductility Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
FR Moment Connections Across Girder Supports . . . . . . . . . . . . . . . . . . . . . . . . . 12–20
Top Flange Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–20
Bottom Flange Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–21
Web Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–21
FR CONNECTIONS WITH HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–21
HSS Through-Plate Flange-Plated FR Moment Connections . . . . . . . . . . . . . . . . 12–21
HSS Cut-out Plate Flange-Plated FR Moment Connections . . . . . . . . . . . . . . . . . 12–22
Design Considerations for HSS Directly Welded FR Moment Connections . . . . . 12–23
HSS Columns Above and Below Continuous Beams . . . . . . . . . . . . . . . . . . . . . . 12–24
HSS Welded Tee Flange Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–25
HSS Diaphragm Plate Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–26
Suggested Details for HSS to Wide-Flange Moment Connections . . . . . . . . . . . . 12–27
PART 12 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–29
PART 12
DESIGN OF FULLY RESTRAINED
MOMENT CONNECTIONS
AISC_PART 12:14th Ed._ 4/1/11 9:04 AM Page 1

12–2 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of fully restrained (FR) moment connections. For the design of simple
shear connections, see Part 10. For the design of partially restrained moment connections,
see Part 11.
FR MOMENT CONNECTIONS
Load Determination
As defined in AISC SpecificationSection B3.6b, FR moment connections possess sufficient
rigidity to maintain the angles between connected members at the strength limit states, as
illustrated in Figure 12-1. While connections considered to be fully restrained seldom actu-
ally provide for zero rotation between members, the small amount of rotation present is
usually neglected and the connection is idealized as one exhibiting zero end rotation.
End connections in FR construction are designed to carry the required forces and
moments, except that some inelastic but self-limiting deformation of a part of the connection
Fig. 12-1. FR moment connection behavior.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 2

FR MOMENT CONNECTIONS 12–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is permitted. Huang et al. (1973) showed that the moment can be resolved into an effective
tension-compression couple acting as axial forces at the beam flanges. The flange force, P
uf
orPaf, isdetermined as:
where
M
uorMa=required beam end moment, kip-in.
d
m =moment arm between the flange forces, in. (varies for all FR connections
and for stiffener design)
Shear is transferred through the beam-web shear connection. Since, by definition, the
angle between the beam and column in an FR moment connection remains unchanged under
loading, eccentricity can be neglected entirely in the shear connection. Additionally, it is
permissible to use bolts in bearing in either standard or slotted holes perpendicular to the
line of force. Axial forces, if present, are normally assumed to be distributed uniformly
across the beam flange cross-sectional area. However, if the beam-web connection has
sufficient stiffness, it can also be assumed to participate in the transfer of beam axial force.
Moment connections deliver concentrated forces to the flanges of columns that must be
accounted for in the design of the column and column panel-zone per AISC Specification
Section J10. Either the column size can be selected with adequate flange and web thickness
to eliminate the need for column stiffening, or transverse stiffeners and/or web doubler
plates can be provided. For further information, refer to AISC Design Guide 13, Stiffening
of Wide-Flange Columns at Moment Connections: Wind and Seismic Applications(Carter,
1999).
Design Checks
The available strength of an FR moment connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9). The
effect of eccentricity in the shear connection can be neglected. Additionally, the strength of
the supporting column (and thus the need for stiffening) must be checked. In all cases, the
available strength, φR
nor Rn/Ω, must equal or exceed the required strength, R uor Ra.
Temporary Support During Erection
Bolted construction provides a ready means to erect and temporarily connect members by
use of the bolt holes. In contrast, FR moment connections in welded construction must be
given special attention so that all pieces affecting the alignment of the welded joint may be
erected, fitted and supported until the necessary welds are made. Temporary support can be
provided in welded construction by furnishing holes for erection bolts, temporary seats,
special lugs or by other means.
LRFD ASD
P
M
daf
a
m=
P
M
duf
u
m=
(12-1a) (12-1b)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 3

12–4 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The effects of temporary erection aids on the finished structure should be considered,
particularly on members subjected to tension loading or fatigue. They should be permitted
to remain in place whenever possible since they seldom are reusable and the cost to remove
them can be significant. If left in place, erection aids should be located so as not to cause a
stress concentration. If, however, erection aids are to be removed, care should be taken so
that the base metal is not damaged.
Temporary supports should be sufficient to carry any loads imposed by the erection
process, such as the dead weight of the member, additional construction equipment, or
material storage. Additionally, they must be flexible enough to allow plumbing of the
structure, particularly in tier buildings.
Welding Considerations for Fully Restrained Moment
Connections
Field welding should be arranged for welding in the flat or horizontal position and
preference should be given to fillet welds over groove welds, whenever possible.
Additionally, the joint detail and welding procedure should be constructed to minimize
distortion and the possibility of lamellar tearing.
The typical complete-joint-penetration groove weld in a directly welded flange
connection for a rolled beam can be expected to shrink about
1
/16in. in the length dimension
of the beam when it cools and contracts. Thicker welds, such as for welded plate-girder
flanges, will shrink even more—up to
1
/8in. or
3
/16in. This amount of shrinkage can cause
erection problems in locating and plumbing the columns along lines of continuous beams.
A method of calculating weld shrinkage can be found in Lincoln Electric Company (1973).
Unnecessarily thick stiffeners with complete-joint-penetration groove welds should be
avoided since the accompanying weld shrinkage may contribute to lamellar tearing and
distortion.
Weld shrinkage can best be controlled by fabricating the beam longer than required by
the amount of the anticipated weld shrinkage. Alternatively, the weld-joint root opening can
be increased. For further information, refer to AWS D1.1.
FR CONNECTIONS WITH WIDE-FLANGE COLUMNS
Flange-Plated FR Moment Connections
As illustrated in Figure 12-2, a flange-plated FR moment connection consists of a shear
connection and top and bottom flange plates that connect the flanges of the supported beam
to the supporting column. These flange plates are welded to the supporting column and may
be bolted or welded to the flanges of the supported beam.
In a column-flange connection, the flange plates are usually located with respect to the
column web centerline. Because of the column-flange mill tolerance on out-of-squareness
with the web, it is desirable to shop-fit long flange plates from the theoretical column-web
centerline to assure good field fit-up with the beam. Misalignment on short connections, as
illustrated in Figure 12-3, can be accommodated by providing oversized holes in the plates.
Since mill tolerances in both the beam and the column may cause significant shop and/or
field assembly problems, it may be desirable to ship the flange plates loose for field
attachment to the column.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 4

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-2. Flange-plated FR moment connections.
(a) Column flange support, bolted flange plates
(b) Column web support, bolted flange plates
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 5

12–6 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-3. Effect of mill tolerances on flange-plated connections.
Fig. 12-2. (continued) Flange-plated FR moment connections.
(c) Column flange support, welded flange plates
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 6

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Directly Welded Flange FR Moment Connections
As illustrated in Figure 12-4, a directly welded flange FR moment connection consists
of a shear connection and complete-joint-penetration (CJP) groove welds, which directly
connect the top and bottom flanges of the supported beam to the supporting column. Note,
in Figure 12-4b, the stiffener extends beyond the toe of the column flange to eliminate the
effects of triaxial stresses.
Fig. 12-4. Directly welded flange FR moment connections.
(a) Column flange support
(b) Column web support
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 7

12–8 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Extended End-Plate FR Moment Connections
As illustrated in Figure 12-5, an extended end-plate moment connection consists of a plate
of length greater than the beam depth, perpendicular to the longitudinal axis of the supported
beam. The end-plate is always welded to the web and flanges of the supported beam and
bolted to the supporting member. The principal advantage of extended end-plate moment
connections is that all welding is done in the shop. Thus, the erection process is relatively
fast and economical.
Figure 12-6 illustrates three commonly used extended end-plate connections. The
connections are classified by the number of bolts at the tension flange and by the presence
of end-plate to beam flange stiffeners. The four-bolt unstiffened and stiffened extended
end-plate connections of Figure 12-6a and 12-6b are generally limited by bolt strength. The
Fig. 12-5. Extended end-plate FR moment connection.
Fig. 12–6. Configurations of extended end-plate FR moment connections.
(a) (b) (c)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 8

FR CONNECTIONS WITH WIDE-FLANGE COLUMNS 12–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connection is compatible for use with nearly one-half of the available beam sections.
Alternatively, the eight-bolt stiffened extended end-plate connection shown in Figure
12-6c is generally compatible with approximately 90% of the available beam sections.
Complete discussion of the design procedures, along with design examples, are found in
AISC Design Guide 4, Extended End-Plate Moment Connections—Seismic and Wind
Applications(Murray and Sumner, 2003). Design procedures and example calculations for
nine other end-plate connections, which are commonly used in the metal building industry,
are found in AISC Design Guide 16, Flush and Extended Multiple-Row Moment End-Plate
Connections(Murray and Shoemaker, 2002). Recommended shop and field erection
practices, basic design assumptions, and a brief overview of the design procedures follow.
Shop and Field Practices
End-plate moment connections require extra care in shop fabrication and field erection. The
fit-up of extended end-plate connections is sensitive to the column flange conditions and
may be affected by column flange-to-web squareness, beam camber, or squareness of the
beam end. The beam is frequently fabricated short to accommodate the column overrun
tolerances with shims furnished to fill any gaps which might result.
As reported by Meng and Murray (1997), use of weld access holes can result in beam
flange cracking. If CJP welds are used, the weld cannot be inspected over the web; however,
because this location is a relative “soft” spot in the connection, it is of no concern.
Design Assumptions
A summary of the assumptions made in the design guide procedures follows:
1. Group A or Group B high-strength bolts of diameter not greater than 1
1
/2in. must be
used.
2. The specified minimum yield stress of the end-plate material must be 50 ksi or less.
3. When the procedures in AISC Design Guide 16 are used, only static loading is
permitted (wind, snow, temperature and seismic loads as defined in the Scope located
at the front of this Manual are considered static loads).
4. The recommended minimum distance from the face of the beam flange to the nearest
bolt centerline (the vertical bolt pitch) is the bolt diameter, d
b, plus
1
/2in. if the bolt
diameter is not greater than 1 in., and plus
3
/4in. for larger diameter bolts. However,
many fabricators prefer to use a standard pitch dimension of 2 in. or 2
1
/2in. for all
bolt diameters.
5. All of the shear force at a connection is assumed to be resisted by the compression
side bolts. End-plate connections need not be designed as slip-critical connections
and it is noted that shear is rarely a major concern in the design of moment end-plate
connections.
6. The end-plate width effective in resisting the applied moment must be taken as not
greater than the beam flange width, b
f, plus 1 in.
7. The gage of the tension bolts (horizontal distance between vertical bolt lines) must
not exceed the beam tension flange width.
8. When CJP welds are used, weld access holes should not be used, and the weld
between beam flange-to-web fillets should be treated as a partial-joint-penetration
(PJP) weld.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 9

12–10 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9. For nonseismic connections, when the required moment is less than the available
flexural strength of the beam, the end-plate connection can be designed for the
required moment but it is recommended that the connection be designed for not less
than 60% of the available flexural strength of the beam.
10. Beam web-to-end-plate welds in the vicinity of the tension bolts should be designed
to develop the yield stress of the beam web unless the required moment is less than
60% of the available flexural strength of the beam.
11. Only the web-to-end-plate weld between the mid-depth of the beam and the inside
face of the beam compression flange or the weld between the inner row of tension
bolts plus 2d
band the inside face of the beam compression flange, whichever is
smaller, is considered effective in resisting the beam end shear.
Design Procedures
The design procedure in AISC Design Guide 4 and AISC Design Guide 16 differ from
those in previous AISC design methods. The new procedures are based on yield-line
analysis for determining end-plate thickness and modified tee-hanger analysis to determine
required bolt strength. The procedures in AISC Design Guide 4 are for pretensioned bolts
and “thick plates,” and result in connections with the smallest possible bolt diameter. For
these connections, prying forces are zero. The procedures in AISC Design Guide 16 allow
for both “thick plate” and “thin plate” designs. A thin plate design results in the smallest
possible end-plate thickness and the maximum bolt prying force. In addition, connections
can be designed using either pretensioned or snug-tight bolts.
Column side design procedures are included in AISC Design Guide 4. Both Design
Guides have complete examples for the various end-plate configurations.
FR MOMENT SPLICES
Beams and girders sometimes are spliced in locations where both shear and moment must
be transferred across the splice. Per AISC SpecificationSection J6, the nominal strength of
the smaller section being spliced must be developed in groove-welded butt splices. Other
types of beam or girder splices must develop the strength required by the actual forces at the
point of the splice.
Location of Moment Splices
A careful analysis is particularly important in continuous structures where a splice may be
located at or near the point of inflection. Since this inflection point can and does migrate
under service loading, actual forces and moments may differ significantly from those
assumed. Furthermore, since loading application and frequency can change in the lifetime
of the structure, it is prudent for the designer to specify some minimum strength requirement
at the splice. Hart and Milek (1965) propose that splices in fixed-ended beams be located at
the one-sixth point of the span and be adequate to resist a moment equal to one-sixth of the
flexural strength of the member, as a minimum.
Force Transfer in Moment Splices
Force transfer in moment splices can be assumed to occur in a manner similar to that
developed for FR moment connections. That is, the required shear, R
uorRa, is primarily
transferred through the beam-web connection and the moment can be resolved into an
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 10

FR MOMENT SPLICES 12–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
M
u orMa=required moment in the beam at the splice, kip-in.
d
m =moment arm, in. (varies based upon actual connection geometry)
Axial forces, if present, are normally assumed to be distributed uniformly across the
beam flange cross-sectional area. However, if the beam-web connection has sufficient
stiffness, it can also be assumed to participate in the transfer of beam axial force.
Flange-Plated FR Moment Splices
Moment splices can be designed as shown in Figure 12-7, to utilize flange plates and a web
connection. The flange plates and web connection may be bolted or welded.
The splice and spliced beams should be checked in a manner similar to that described
previously under “Flange-Plated FR Moment Connections,” except that the web connection
should be designed as illustrated previously for shear splices in Part 10 without
consideration of eccentricity.
Figure 12-7 illustrates two types of splices, bolted and welded. Figure 12-7a illustrates
the detail of a bolted flange-plated moment splice. For this case, the flange plates are
normally made approximately the same width as the beam flange as shown in Figure 12-7a.
Alternatively, Figure 12-7b illustrates the detail of a welded splice. As shown in Figure
12-7b, the top plate is narrower and the bottom plate is wider than the beam flange,
Fig. 12-7. Flange-plated moment splice.
LRFD ASD
P
M
duf
u
m=
P
M
daf
a
m=
(a) Bolted (b) Welded
(12-2a) (12-2b)
effective tension-compression couple where the required force at each flange, P
uforPaf, is
determined by:
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 11

12–12 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
permitting the deposition of weld metal in the downhand or horizontal position without
inverting the beam. While this is a benefit in shop fabrication (the beam does not have to be
turned over), it is of extreme importance in the field where the weld can be made in the
horizontal instead of the overhead position, since the beam cannot be turned over. This detail
also provides tolerance for field alignment, since the joint gap can be opened or closed.
When splices are field-welded, some means for temporary support must be provided as
discussed previously in “Temporary Support During Erection.”
If the beam or girder flange is thick and the flange forces are large, it may be desirable
to place additional plates on the insides of the flanges. In a bolted splice (Figure 12-7a),
the bolts are then loaded in double shear and a more compact joint may result. Note that
these additional plates must have sufficient area to develop their share of the double-shear
bolt load.
In a welded splice (Figure 12-7b), these additional plates must have sufficient area to
match the strength of the welds that connect them. Additionally, these plates must be set
away from the beam web a distance sufficient to permit deposition of weld metal as shown
in Figure 12-8a. This distance is a function of the beam depth and flange width, as well as
the welding equipment to be used. A distance of 2 to 2
1
/2in. or more may be required for
this access. One alternative is to bevel the bottom edge of the plate to clear the beam fillet
and place the plate tight to the beam web with a fillet weld as illustrated in Figure 12-8a.
The effects of this bevel on the area of the plate must be considered in determining the
required plate width and thickness. Another alternative would be to use unbeveled inclined
plates as shown in Figure 12-8b.
Fig. 12-8. Welding clearances for flange-plated moment splices.
(a)
(b)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 12

FR MOMENT SPLICES 12–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Directly Welded Flange FR Moment Splices
Moment splices can be designed, as shown in Figure 12-9, to utilize a complete-joint-
penetration groove weld connecting the flanges of the members being spliced. The web
connection may then be bolted or welded. The splice and spliced beams should be checked
in a manner similar to that described previously under “Directly Welded Flange FR Moment
Connections,” except that the web connection should be designed as illustrated previously
for shear splices in Part 10.
Although rare in occurrence, some spliced members must be level on top. Where the
depths of these spliced members differ, consideration should be given to the use of a flange
plate of uniform thickness for the full length of the shallower member. This avoids the
fabrication problems created by an inverted transition.
Frequently, the spliced shapes are different sizes, but of the same shape depth grouping.
Because rolled shapes from the same shape depth grouping have the same dimension
between the flanges, aligning the inside flange surfaces avoids a more difficult offset
transition. Eccentricity resulting from differing flange thicknesses is usually ignored in the
design. The web plates normally are aligned to their center lines.
The groove- (butt-) welded splice preparation shown in Figure 12-9 may be used for
either shop or field welding. Alternatively, for shop welding where the beam may be turned
over, the joint preparation of the bottom flange could be inverted.
Sloped transitions as shown in Figure 12-10 are only required for splices subject to
seismic and dynamic loads. In splices subjected to dynamic or fatigue loading, the backing
bar should be removed and the weld should be ground flush when it is normal to the applied
stress (AISC, 1977). The access holes should be free of notches and should provide a
smooth transition at the juncture of the web and flange.
Extended End-Plate FR Moment Splices
Moment splices can be designed as shown in Figure 12-11 where the tension force is in the
bottom flange, to utilize four-bolt unstiffened extended end-plates connecting the members
being spliced. If the end-plate and the bolts are designed properly, it is possible to load this
type of connection to reach the full plastic moment capacity of the beam, φ
bMporMp /Ωb.
The splice and spliced beams should be checked in a manner similar to that described
previously under “Extended End-Plate FR Moment Connections.”
The comments for “Extended End-Plate Connections” are equally applicable to extended
end-plate moment splices.
Fig. 12-9. Directly welded flange moment splice.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 13

12–14 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SPECIAL CONSIDERATIONS
FR Moment Connections to Column Webs
It is frequently required that FR moment connections be made to column webs. While the
mechanics of analysis and design do not differ from FR moment connections to column
flanges, the details of the connection design as well as the ductility considerations required
are significantly different.
Recommended Details
When an FR moment connection is made to a column web, it is normal practice to stop the
beam short and locate all bolts outside of the column flanges as illustrated in Figure 12-2b.
This simplifies the erection of the beam and permits the use of an impact wrench to tighten
all bolts. It is also preferable to locate welds outside the column flanges to provide adequate
clearance.
Ductility Considerations
Driscoll and Beedle (1982) discuss the testing and failure of two FR moment connections to
column webs: a directly welded flange connection and a bolted flange-plated connection,
shown respectively in Figures 12-12a and 12-12b. Although the connections in these tests
were proportioned to be “critical,” they were expected to provide inelastic rotations at full
plastic load. Failure occurred unexpectedly, however, on the first cycle of loading; brittle
fracture occurred in the tension connection plate at the load corresponding to the plastic
moment before significant inelastic rotation had occurred.
Fig. 12-10. Transitions at tension flange for directly welded flange moment splices,
for seismic and dynamic loaded splices.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 14

SPECIAL CONSIDERATIONS 12–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-11. Extended end-plate moment splice.
Fig. 12-12. Test specimens used by Driscoll and Beedle (1982).
Examination and testing after the unexpected failure revealed that the welds were of
proper size and quality and that the plate had normal strength and ductility. The following
is quoted, with minor editorial changes relative to figure numbers, directly from Driscoll
and Beedle (1982).
Calculations indicate that the failures occurred due to high strain concentrations.
These concentrations are: (1) at the junction of the connection plate and the
column flange tip and (2) at the edge of the butt weld joining the beam flange and
the connection plate.
Figure 4 (Figure 12-13 here) illustrates the distribution of longitudinal stress
across the width of the connection plate and the concentration of stress in the
plate at the column flange tips. It also illustrates the uniform longitudinal stress
(a) Directly welded flange
FR connection
(b) Bolted flange-plated
FR connection
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 15

12–16 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
distribution in the connection plate at some distance away from the connection.
The stress distribution shown represents schematically the values measured
during the load tests and those obtained from finite element analysis. (σ
ois a
nominal stress in the elastic range.) The results of the analyses are valid up to the
loading that causes the combined stress to equal the yield point. Furthermore, the
analyses indicate that localized yielding could begin when the applied uniform
stress is less than one-third of the yield point. Another contribution of the non-
uniformity is the fact that there is no back-up stiffener. This means that the welds
to the web near its center are not fully effective.
The longitudinal stresses in the moment connection plate introduce strains in the
transverse and the through-thickness directions (the Poisson effect). Because of
the attachment of the connection plate to the column flanges, restraint is
introduced; this causes tensile stresses in the transverse and the through-thickness
directions. Thus, referring to Figure 12-13, tri-axial tensile stresses are present
along Section A-A and they are at their maximum values at the intersections of
Sections A-A and C-C. In such a situation, and when the magnitudes of the stresses
are sufficiently high, materials that are otherwise ductile may fail by premature
brittle fracture.
The results of nine simulated weak-axis FR moment connection tests performed by
Driscoll et al. (1983) are summarized in Figure 12-14. In these tests, the beam flange was
simulated by a plate measuring either 1 in. × 10 in. or 1
1
/8in. × 9 in. The fracture strength
exceeds the yield strength in every case, and sufficient ductility is provided in all cases
except for that of Specimen D. Also, if the rolling direction in the first five specimens (A,
Fig. 12-13. Stress distributions in test specimens used by Driscoll and Beedle (1982).
(a) Longitudinal stress distribution
on Section A-A
(c) Shear stress distribution
on Section C-C
(b) Longitudinal stress distribution
on Section B-B
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 16

SPECIAL CONSIDERATIONS 12–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B, C, D and E) were parallel to the loading direction, which would more closely
approximate an actual beam flange, the ductility ratios for these would be higher. The
connections with extended connection plates (i.e., projection of 3 in.), with extensions either
rectangular or tapered, appeared equally suitable for the static loads of the tests.
Based on the tests, Driscoll et. al. (1983) report that those specimens with extended
connection plates have better toughness and ductility and are preferred in design for seismic
loads, even though the other connection types (except D) may be deemed adequate to meet
the requirements of many design situations.
In accordance with the preceding discussion, the following suggestions are made regarding
the design of this type of connection:
1. For directly welded (butt) flange-to-plate connections, the connection plate should be
thicker than the beam flange. This greater area accounts for shear lag and also provides
for misalignment tolerances.
AWS D1.1, Section 5.22.3 restricts the misalignment of abutting parts such as this
to 10% of the thickness, with
1
/8-in. maximum for a part restrained against bending due
to eccentricity of alignment. Considering the various tolerances in mill rolling (±
1
/8in.
for W-shapes), fabrication and erection, it is prudent design to call for the connection
plate thickness to be increased to accommodate these tolerances and avoid the subse-
quent problems encountered at erection. An increase of
1
/8in. to
1
/4in. generally is
used.
Frequently, this connection plate also serves as the stiffener for a strong axis FR or
PR moment connection. The welds that attach the plate/stiffener to the column flange
may then be subjected to combined tensile and shearing, or compression and shearing
forces. Vector analysis is commonly used to determine weld size and stress.
It is good practice to use fillet welds whenever possible. Welds should not be made
in the column k-area.
2. The connection plate should extend at least
3
/4in. beyond the column flange to avoid
intersecting welds and to provide for strain elongation of the plate. The extension
should also provide adequate room for runout bars when required.
3. Tapering an extended connection plate is only necessary when the connection plate is
not welded to the column web (Specimen E, Figure 12-14). Tapering is not necessary
if the flange force is always compressive (e.g., at the bottom flange of a cantilevered
beam).
4. To provide for increased ductility under seismic loading, a tapered connection plate
should extend 3 in. Alternatively, a backup stiffener and an untapered connection plate
with 3-in. extension could be used.
Normal and acceptable quality of workmanship for connections involving gravity and
wind loading in building construction would tolerate the following:
1. Runoff bars and backing bars may be left for beams with flange thicknesses greater
than 2 in. (subject to tensile stress only) where they are welded to columns or used as
tension members in a truss.
2. Welds need not be ground, except as required for nondestructive testing.
3. Connection plates that are made thicker or wider for control of tolerances, tensile stress
and shear lag need not be ground or cut to a transition thickness or width to match the
beam flange to which they connect.
AISC_PART 12:14th Ed._ 3/14/11 11:33 AM Page 17

4. Connection plate edges may be sheared, or plasma- or gas-cut.
5. Intersections and transitions may be made without fillets or radii.
6. Flame-cut edges may have reasonable roughness and notches within AWS tolerances.
If a structure is subjected to loads other than gravity and wind loads, such as seismic,
dynamic or fatigue loading, more stringent control of the quality of fabrication and erection
with regard to stress risers, notches, transition geometry, welding and testing may be
necessary; refer to the AISC Seismic Provisions.
12–18 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-14. Results of weak-axis FR moment connection ductility tests performed by
Driscoll et al. (1983).
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 18

SPECIAL CONSIDERATIONS 12–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-14. (continued)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 19

12–20 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
FR Moment Connections Across Girder Supports
Frequently, beam-to-girder-web connections must be made continuous across a girder-web
support, as with continuous beams and with cantilevered beams at wall, roof-canopy or
building lines. While the same principles of force transfer discussed previously for FR
moment connections may be applied, the designer must carefully investigate the relative
stiffness of the assembled members being subjected to moment or torsion and provide the
fabricator and erector with reliable camber ordinates.
Additionally, the design should still provide some means for final field adjustment to
accommodate the accumulated tolerances of mill production, fabrication and erection; it
is very desirable that the details of field connections provide for some adjustment during
erection. Figure 12-15 illustrates several details that have been used in this type of
connection and the designer may select the desirable components of one or more of the
sketches to suit a particular application. Therefore, these components are discussed here as
a top flange, bottom flange and web connection.
Top Flange Connection
As shown in Figure 12-15a, the top flange connection may be directly welded to the top
flange of the supporting girder. Figures 12-15b and 12-15c illustrate an independent splice
plate that ties the two beams together by use of a longitudinal fillet weld or bolts. This tie
plate does not require attachment to the girder flange, although it is sometimes so connected
to control noise if the connection is subjected to vibration.
Fig. 12-15. FR moment connections across girder-web supports.
(a)
(b)
(c)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 20

FR CONNECTIONS WITH HSS 12–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bottom Flange Connection
When the bottom flanges deliver a compressive force only, the flange forces are frequently
developed by directly welding these flanges to the girder web as illustrated in Figure 12-15a.
Figure 12-15b illustrates the use of an angle or channel below the beam flange to provide
for a horizontal fillet weld. The angle or channel should be wider than the beam flange to
allow for downhand welding. Figure 12-15c is similar, but uses bolts instead of welds to
develop the flange force.
Web Connection
While a single-plate connection is shown in Figure 12-15a and unstiffened seated
connections are shown in Figures 12-15b and 12-15c, any of the shear connections in Part 10
may be used. Note that the effect of eccentricity in the shear connection may be neglected.
FR CONNECTIONS WITH HSS
HSS Through-Plate Flange-Plated FR Moment Connections
If the required moment transfer to the column is larger than can be provided by the bolted
base plate or cap plate, or if the HSS width is larger than that of the wide flange beam, a
through-plate moment connection can be used as illustrated in Figure 12-16. It should be
noted that through-plate connections are more difficult to erect than the continuous beam
connected framing.
When moment connections are made using through-plates such as is shown in Figure
12-16, the fabricator must allow adequate clearance between the through-plates and the
structural section W-shape so as to allow for the combined effects of mill, fabrication
and erection tolerances. The permissible mill tolerances for W-shape variations in depth
and squareness are shown in Table 1-22. Shimming in the field during erection with
conventional shims or finger shims is the most commonly used method to fill the gap
between the W-shape and the through-plate.
Specific design considerations for through-plate moment connections are as follows:
1. In Figures 12-16a and 12-16b, the column moment transfer into the joint is limited by
the fillet weld of the HSS to the through-plates. If necessary, a partial-joint-penetration
(PJP) groove weld can be used to improve the connection strength or a complete-joint-
penetration (CJP) groove weld with backing bars can be used.
2. In Figure 12-16 an end plate (base plate) is employed to create a splice in the column.
Bolt tension with prying on the base plate will determine its thickness and thus limit
the moment that can be transferred to the upper HSS.
3. The cap plate, which is also a flange splice plate, should be at least the same thickness
as the base plate so that moment transfer between the HSS columns need not rely on
load transfer through the beam flanges. The cap plate may need to be thicker than the
HSS base plate due to the combined effect of plate bending from the bolted base plate
and plate tension or compression from the wide flange moment transfer.
4. The welding of the HSS to the cap and through-plate must be examined for both
the HSS normal forces and the shear produced from the moment transfer from the
W-shape.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 21

12–22 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
HSS Cut-out Plate Flange-Plated FR Moment Connections
An alternative to interrupting the HSS for the cover or through-plate is to use a wider plate
with a cut-out to slip around the HSS as illustrated in Figure 12-17. A shear plate can be
placed on the front and rear of the HSS faces to provide simple connections for
perpendicular beams. The cut-out plate can easily be extended on the near and far sides so
that a moment splice is created about both horizontal axes through the joint. The
perpendicular framing should ideally be of the same depth for this detail to work well or, in
the case of the simple connections, the perpendicular beams could be shallower than the
space between the horizontal plates. The cut-out plates are shown as shop-welded; however,
they could be field-welded.
For cut-out plate connections, the erection of the beams is more difficult than for
continuous beam connections. The beams must be slipped between the two plates and
Fig. 12-16. Through-plate moment connection.
(a) Between column splices
(b) At column splice
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 22

FR CONNECTIONS WITH HSS 12–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
against the single plate connection with shimming being required, unless the upper plate is
field-welded in place.
Design Considerations for HSS Directly Welded FR Moment
Connections
It may be possible to accomplish the moment transfer to the HSS without having to use a
WT splice plate, end-plates, or diaphragm plates. Significant moment transfer can be
achieved by attaching the W-shape directly to the face of the HSS either by welding or by
bolting. These connections are capable of developing the available flexural strength of the
HSS. The available flexural strength of the W-shape, however, is seldom achieved because
of the flexibility of the HSS wall.
Fig. 12-17. Exterior plate moment connection.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 23

The flexural strength for the welded W-shape is based on the strength of the respective
flanges in tension and compression acting against the face of the HSS. This flange force can
be considered to be the same as that of a plate with the dimensions of the flange.
Several limit states exist for the plate length (flange width) oriented perpendicular to the
length of the HSS (Packer and Henderson, 1997; Packer et al., 2010).
HSS Columns Above and Below Continuous Beams
Field connection to the flanges of the beam and of continuous beams can be used at joints
where there is an HSS above and below a continuous beam. This situation is illustrated in
Figures 12-18 and 12-19. If the column load is not high, stiffener plates may be used to
transfer the axial load across the beam as shown in Figure 12-18a. If the axial load is higher,
it may be necessary to use a split HSS instead of plate stiffeners, as shown in Figure 12-18b.
The width of the W-shape must be at least as wide as the HSS and should preferably be
12–24 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-18. HSS columns spliced to continuous beams.
Fig. 12-19. Roof beam continuous over HSS column.
(a) (b)
(a) (b)
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 24

FR CONNECTIONS WITH HSS 12–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
wider than the HSS for this detail to be used as shown. It may be necessary to use a
rectangular HSS column in order to fit the HSS base plate on the beam flange. The moment
transfer to the HSS is limited by the strength of the four bolts, the W-shape flange thickness,
and the base and cap plate thicknesses.
HSS Welded Tee Flange Connections
If the primary moment transfer is from a wide flange to an HSS, rather than through the
HSS to another wide flange, a number of other connection concepts will work well. One
of these is to use structural tee sections to transfer the force from the flanges of the wide
flange to the walls of the HSS as is illustrated in Figure 12-20. The tees should be long
enough so that a flare bevel-groove (or single J-groove) weld with weld reinforcement
can be used to connect the tee to the HSS. An alternative to using the tees to transfer the
Fig. 12-20. Tee splice plates to HSS column.
.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 25

beam shear would be to use a single plate connection, if a deep enough plate can be fitted
between the flanges of the tees.
HSS Diaphragm Plate Connections
If the moment delivered by the W-shape to the HSS cannot be transmitted by other means,
then use of diaphragm plates that transfer the flange loads to the sides of the HSS is
appropriate. This is illustrated in Figure 12-21. For this moment connection the limit states
are those indicated for the cut-out plate connection plus a check of the weld transferring
shear from the flange plate to the HSS wall.
12–26 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-21. Diaphragm plate splice to exterior HSS column.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 26

FR CONNECTIONS WITH HSS 12–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Suggested Details for HSS to Wide-Flange Moment
Connections
The details shown in Figures 12-22 and 12-23 are suggested details only and are not intended
to prohibit the use of other connection details.
Fig. 12-22. Suggested detail.
Through-Plate Diaphragm Interior Plate Diaphragm
HSS Column Reinforcement
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 27

12–28 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 12-23. Suggested detail.
.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 28

PART 12 REFERENCES 12–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 12 REFERENCES
AISC (1977), Bridge Fatigue Guide Design and Details, American Institute of Steel
Construction, Chicago, IL.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind and
Seismic Applications, Design Guide 13, AISC, Chicago, IL.
Driscoll, G.C., Pourbohloul, A. and Wang, X. (1983), “Fracture of Moment Connections—
Tests on Simulated Beam-to-Column Web Moment Connection Details,” Fritz
Engineering Laboratory Report No. 469.7, Lehigh University, Bethlehem, PA.
Driscoll, G.C. and Beedle, L.S. (1982), “Suggestions for Avoiding Beam-to-Column Web
Connection Failures,” Engineering Journal, AISC, Vol. 19, No. 1, 1st Quarter, pp. 16–19,
Chicago, IL.
Hart, W.H. and Milek, W.A. (1965), “Splices in Plastically Designed Continuous
Structures,” Engineering Journal, AISC, Vol. 2, No. 2, April, pp. 33–37, Chicago, IL.
Huang, J.S., Chen, W.F. and Beedle, L.S. (1973), “Behavior and Design of Steel Beam-to-
Column Moment Connections,” Bulletin 188, October, Welding Research Council, New
York, NY.
Lincoln Electric Company (1973), The Procedure Handbook of Arc Welding, Lincoln
Electric Company, Cleveland, OH.
Murray, T.M. and Sumner, E.A. (2003), Extended End-Plate Moment Connections—
Seismic and Wind Applications, 2nd Ed., Design Guide 4, AISC, Chicago, IL.
Murray, T.M. and Shoemaker, W.L. (2002), Flush and Extended Multiple-Row Moment
End-Plate Connections, Design Guide 16, AISC and MBMA, Chicago, IL.
Meng, R.L. and Murray, T.M. (1997), “Seismic Performance of Bolted End-Plate Moment
Connection,” Proceedings, AISC National Steel Construction Conference, Chicago, IL,
May 7–9, pages 30-1 to 30-14.
Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and
Trusses—A Design Guide, 2nd Ed., Canadian Institute of Steel Construction, Alliston,
Ontario, Canada.
Packer, J., Sherman, D. and Leece, M. (2010), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 29

12–30 DESIGN OF FULLY RESTRAINED (FR) MOMENT CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 12:14th Ed._ 1/20/11 7:48 AM Page 30

13–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 13
DESIGN OF BRACING CONNECTIONS
AND TRUSS CONNECTIONS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2
BRACING CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2
Diagonal Bracing Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2
Force Transfer in Diagonal Bracing Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3
The Uniform Force Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3
Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3
Special Case 1, Modified Working Point Location . . . . . . . . . . . . . . . . . . . . . . . 13–5
Special Case 2, Minimizing Shear in the Beam-to-Column Connection . . . . . . 13–7
Special Case 3, No Gusset-to-Column Web Connection . . . . . . . . . . . . . . . . . . . 13–7
Analysis of Existing Diagonal Bracing Connections . . . . . . . . . . . . . . . . . . . . . . . 13–10
Available Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–11
TRUSS CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–11
Members in Trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–11
Minimum Connection Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–12
Panel-Point Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–13
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–14
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–14
Support Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–14
Design Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–15
Shop and Field Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–16
Truss Chord Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–17
Design Considerations for HSS-to-HSS Truss Connections . . . . . . . . . . . . . . . . . 13–17
PART 13 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–18
AISC_PART 13:14th Ed. 4/1/11 9:06 AM Page 1

13–2 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of concentric bracing connections and truss connections.
BRACING CONNECTIONS
Diagonal Bracing Members
Diagonal bracing members can be rods, single angles, channels, double angles, tees, W-shapes
or HSS as required by the loads. Slender diagonal bracing members are relatively flexible
and, thus, vibration and sag may be considerations. In slender tension-only bracing com-
posed of light angles, these problems can be minimized with “draw” or pretension created
by shortening the fabricated length of the diagonal brace from the theoretical length, L,
between member working points. In general, the following deductions will be sufficient to
accomplish the required draw: no deduction for L ≤10 ft; deduct
1
/16in. for 10 ft <L ≤20 ft;
deduct
1
/8in. for 20 ft <L ≤35 ft; and, deduct
3
/16in. for L >35 ft. This approach is not appli-
cable to heavier diagonal bracing members, since it is difficult to stretch these members;
vibration and sag are not usually design considerations in heavier diagonal bracing members.
In any diagonal bracing member, however, it is permissible to deduct an additional
1
/32in.
when necessary to avoid dimensioning to thirty-seconds of an inch.
When double-angle diagonal bracing members are separated, as at “sandwiched” end
connections to gussets, intermittent connections should be provided if the unsupported
length of the diagonal brace exceeds the limits specified in the User Note in AISC
SpecificationSection D4 for tension members. For compression members, the provisions of
AISC SpecificationSection E6 must be satisfied. Either bolted or welded stitch-fillers may
be provided as stipulated in AISC SpecificationE6. Many fabricators prefer ring or rectan-
gular bolted stitch-fillers when the angles require other punching, as at the end connections.
In welded construction, a stitch-filler with protruding ends, as shown in Figure 13-1(a), is
preferred because it is easy to fit and weld. The short stitch-filler shown in Figure 13-1(b)
is used if a smooth appearance is desired.
When a full-length filler is provided, as in corrosive environments, the maximum spac-
ing of stitch bolts should be as specified in AISC SpecificationSection J3.5. Alternatively,
the edges of the filler may be seal welded.
a) Protruding b) Short
Fig. 13-1. Welded stitch-fillers.
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 2

BRACING CONNECTIONS 13–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Force Transfer in Diagonal Bracing Connections
There has been some discussion as to which of several available analysis methods provides
the best means for the safe and economical design and analysis of diagonal bracing con-
nections. To better understand the technical issues, starting in 1981, AISC sponsored
extensive computer studies of this connection by Richard (1986). Associated with Richard’s
work, full-scale tests were performed by Bjorhovde and Chakrabarti (1985), Gross and
Cheok (1988), and Gross (1990). Also, AISC and ASCE formed a task group to recommend
a design method for this connection. In 1990, this task group recommended three methods
for further study; refer to Appendix A of Thornton (1991).
Using the results of the aforementioned full scale tests, Thornton (1991) showed that
these three methods yield safe designs, and that of the three methods, the Uniform Force
Method [see model 3 of Thornton (1991)] best predicts both the available strength and crit-
ical limit state of the connection. Furthermore, Thornton (1992) showed that the Uniform
Force Method yields the most economical design through comparison of actual designs by
the different methods and through consideration of the efficiency of force transmission. For
the above reasons, and also because it is the most versatile method, the Uniform Force
Method has been adopted for use in this manual.
The Uniform Force Method
The essence of the Uniform Force Method is to select the geometry of the connection so that
moments do not exist on the three connection interfaces; i.e., gusset-to-beam, gusset-to-column,
and beam-to-column. In the absence of moment, these connections may then be designed
for shear and/or tension only, hence the origin of the name Uniform Force Method.
Required Strength
With the control points (c.p.) as illustrated in Figure 13-2 and the working point (w.p.) cho-
sen at the intersection of the centerlines of the beam, column and diagonal brace as shown
in Figure 13-2(a), four geometric parameters e
b, ec, αand βcan be identified, where
e
b= one-half the depth of the beam, in.
e
c= one-half the depth of the column, in. Note that, for a column web support, e c≈0.
α= distance from the face of the column flange or web to the centroid of the gusset-to-
beam connection, in.
β= distance from the face of the beam flange to the centroid of the gusset-to-column
connection, in.
For the force distribution shown in the free-body diagrams of Figures 13-2(b), 13-2(c) and
13-2(d) to remain free of moments on the connection interfaces, the following expression
must be satisfied:
α−βtanθ=e
btanθ−e c (13-1)
Since the variables on the right of the equal sign (e
b, ecand θ) are all defined by the mem-
bers being connected and the geometry of the structure, the designer may select values of α
and βfor which the equation is true, thereby locating the centroids of the gusset-to-beam
and gusset-to-column connections.
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 3

13–4 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) Diagonal bracing connection (b) Gusset free-body diagram
and external forces
(c) Column free-body diagram (d) Beam free-body diagram
Fig. 13-2. Force transfer by the Uniform Force Method, work point (w.p.)
and control points (c.p.) as indicated.
Rb=Rubor Rab, required end reaction of the beam
R
c=Rucor Rac, required column axial load above the connection
A
b=Aubor Aab, required transverse force from adjacent bay
H=horizontal component of the required axial force
H
b=Hubor Hab, required shear force on the gusset-to-beam connection
H
c=Hucor Hac, required axial force on the gusset-to-column connection
V
b=Vubor Vab, required axial force on the gusset-to-beam connection
V
c=Vucor Vac, required shear force on the gusset-to-column connection
P=P
uor Pa, required axial force
V=vertical component of the required axial force
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 4

BRACING CONNECTIONS 13–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Once αand βhave been determined, the required axial and shear forces for which these
connections must be designed can be determined from the following equations:
where
The gusset-to-beam connection must be designed for the required shear force, H
b, and the
required axial force, V
b, the gusset-to-column connection must be designed for the required
shear force, V
c, and the required axial force, H c, and the beam-to-column connection must
be designed for the required shear
R
b– Vb
and the required axial force
A
b±(H −H b)
Note that while the axial force, P
uorPa, is shown as a tensile force, it may also be a com-
pressive force; were this the case, the signs of the resulting gusset forces would change.
Special Case 1, Modified Working Point Location
As illustrated in Figure 13-3(a), the working point in Special Case 1 of the Uniform Force
Method is chosen at the corner of the gusset; this may be done to simplify layout or for a
column web connection. With this assumption, the terms in the gusset force equations
involving e
band e cdrop out and the interface forces, as shown in Figures 13-3(b), 13-3(c)
and 13-3(d), are:
V
c=P cosθ=V (13-7)
V
b=0 (13-8)
H
b=P sinθ=H (13-9)
H
c=0 (13-10)
The gusset-to-beam connection must be designed for the required shear force, H
b,and the
gusset-to-column connection must be designed for the required shear force, V
c. Note, how-
ever, that the change in working point requires that the beam be designed for the required
moment, M
b, where
M
b=Hbeb (13-11)
V
c=P
βő
r
H
c=P
e
c
ő
r
V
b=P
e
b
ő
r
H
b=P
αő
r
(13-2)
(13-3)
(13-4)
(13-5)
(13-6)
re e cb=+++()()αβ
22
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 5

13–6 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 13-3. Force transfer, Uniform Force Method special case 1.
(a) Diagonal bracing connection (b) Gusset free-body diagram
(c) Column free-body diagram (d) Beam free-body diagram
Rb=Rubor Rab, required end reaction of the beam
R
c=Rucor Rac, required column axial load above the connection
A
b=Aubor Aab, required transverse force from adjacent bay
H=horizontal component of the required axial force
H
b=Hubor Hab, required shear force on the gusset-to-beam connection
V
c=Vucor Vac, required shear force on the gusset-to-column connection
P=P
uor Pa, required axial force
V=vertical component of the required axial force
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 6

BRACING CONNECTIONS 13–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and the column must be designed for the required moment, M c. For an intermediate floor,
this is determined as:
An example demonstrating this eccentric special case is presented in AISC (1984). This
eccentric case was endorsed by the AISC/ASCE task group (Thornton, 1991) as a reduction
of the three recommended methods when the work point is located at the gusset corner. While
calculations are somewhat simplified, it should be noted that resolution of the required force,
P, into the shears, V
cand H b, may not result in the most economical connection.
Special Case 2, Minimizing Shear in the
Beam-to-Column Connection
If the brace force, as illustrated in Figure 13-4(a), were compressive instead of tensile and
the required beam reaction, R
b, were high, the addition of the extra shear force, V b, into the
beam might exceed the available strength of the beam and require doubler plates or a
haunched connection. Alternatively, the vertical force in the gusset-to-beam connection, V
b,
can be limited in a manner which is somewhat analogous to using the gusset itself as a haunch.
As illustrated in Figure 13-4(b), assume that V
bis reduced by an arbitrary amount, ΔV b.
By statics, the vertical force at the gusset-to-column interface will be increased to V
c+ΔV b,
and a moment M
bwill result on the gusset-to-beam connection, where
M
b=(ΔV b)α (13-13)
If ΔV
bis taken equal to V b, none of the vertical component of the brace force is transmitted
to the beam; the resulting procedure is that presented by AISC (1984) for concentric grav-
ity axes, extended to connections to column flanges. This method was also recommended
by the AISC/ASCE task group (Thornton, 1991).
Design by this method may be uneconomical. It is very punishing to the gusset and beam
because of the moment, M
b, induced on the gusset-to-beam connection. This moment will
require a larger connection and a thicker gusset. Additionally, the limit state of local web
yielding may limit the strength of the beam. This special case interrupts the natural flow
of forces assumed in the Uniform Force Method and thus is best used when the beam-to-
column interface is already highly loaded, independently of the brace, by a high shear, R
b,
in the beam-to-column connection.
Special Case 3, No Gusset-to-Column Web Connection
When the connection is to a column web and the brace is shallow (as for large θ) or the beam
is deep, it may be more economical to eliminate the gusset-to-column connection entirely
and connect the gusset to the beam only. The Uniform Force Method can be applied to this
situation by setting βand e
cequal to zero as illustrated in Figure 13-5. Since there is to be
no gusset-to-column connection, V
cand H calso equal zero. Thus, V b=Vand H b=H.
If

α=α=e
b tanθ, there is no moment on the gusset-to-beam interface and the gusset-to-
beam connection can be designed for the required shear force, H
b, and the required axial
force, V
b. If

α≠α=e b tanθ, the gusset-to-beam interface must be designed for the moment,
M
b, in addition to H band V b, where
M
b=Vb(α−

α) (13-14)
(13-12)
M
Vec
cc=
2
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 7

13–8 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 13-4. Force transfer, Uniform Force Method special case 2.
(a) Diagonal bracing connection (b) Gusset free-body diagram
(c) Column free-body diagram (d) Beam free-body diagram
Rb=Rubor Rua, required end reaction of the beam
R
c=Rucor Rac, required column axial load above the connection
A
b=Aubor Aab, required transverse force from adjacent bay
H=horizontal component of the required axial force
H
b=Hubor Hab, required shear force on the gusset-to-beam connection
H
c=Hucor Hac, required axial force on the gusset-to-column connection
V
b=Vubor Vab, required axial force on the gusset-to-beam connection
V
c=Vucor Vac, required shear force on the gusset-to-column connection
P=P
uor Pa, required axial force
V=vertical component of the required axial force
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 8

BRACING CONNECTIONS 13–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 13-5. Force transfer, Uniform Force Method special case 3.
(a) Diagonal bracing connection (b) Gusset free-body diagram
(c) Column free-body diagram (d) Beam free-body diagram
Rb=Rubor Rua, required end reaction of the beam
R
c=Rucor Rac, required column axial load above the connection
A
b=Aubor Aab, required transverse force from adjacent bay
H=horizontal component of the required axial force
H
b=Hubor Hab, required shear force on the gusset-to-beam connection
V
b=Vubor Vab, required axial force on the gusset-to-beam connection
P=P
uor Pa, required axial force
V=vertical component of the required axial force
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 9

The beam-to-column connection must be designed for the required shear force, R b+Vb.
Note that, since the connection is to a column web, e
cis zero and hence H cis also zero.
For a connection to a column flange, if the gusset-to-column-flange connection is eliminated,
the beam-to-column connection must be a moment connection designed for the moment, Ve
c,
in addition to the shear, V. Thus, uniform forces on all interfaces are no longer possible.
Analysis of Existing Diagonal Bracing Connections
A combination of αand βwhich provides for no moments on the three interfaces can usu-
ally be achieved when a connection is being designed. However, when analyzing an existing
connection or when other constraints exist on gusset dimensions, the values of αand βmay
not satisfy the basic relationship
α−βtanθ=e
btanθ−e c (13-1)
When this happens, uniform interface forces will not satisfy equilibrium and moments will
exist on one or both gusset edges or at the beam-to-column interface.
To illustrate this point, consider an existing design where the actual centroids of the gusset-
to-beam and gusset-to-column connections are at

αand

β, respectively. If the connection at
one edge of the gusset is more rigid than the other, it is logical to assume that the more rigid
edge takes all of the moment necessary for equilibrium. For instance, the gusset of Figure
13-2 is shown welded to the beam and bolted with double angles to the column. For this
configuration, the gusset-to-beam connection will be much more rigid than the gusset-to-
column connection.
Take αand βas the ideal centroids of the gusset-to-beam and gusset-to-column connec-
tions, respectively. Setting β=

β, the αrequired for no moment on the gusset-to-beam
connection may be calculated as
α=K +

β tanθ (13-15)
where
K =e
b tanθ−e c (13-16)
If α≠

α, a moment, M
b, will exist on the gusset-to-beam connection where
M
b=Vb(α−

α) (13-17)
Conversely, suppose the gusset-to-column connection were judged to be more rigid. Setting
α=

α, the βrequired for no moment on the gusset-to-column connection may be calculated
as
(13-18)
If β ≠

β, a moment, M
c, will exist on the gusset-to-column connection where
M
c=Hc(β−

β) (13-19)
If both connections were equally rigid and no obvious allocation of moment could be made,
the moment could be distributed based on minimized eccentricities α−

αand β−

βby min-
imizing the objective function, ξ, where
13–10 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
β=

α−K
ő
tanθ
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 10

TRUSS CONNECTIONS 13–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ξ
αα
α
ββ
β
λα β θ=
−⎛





+
−⎛





−− − ()
22
tanK
In the preceding equation, λis a Lagrange multiplier.
The values of αand βthat minimize ξare
and
where
Available Strength
The available strength of a diagonal bracing connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
In all cases, the available strength, φR
norRn/Ω, must equal or exceed the required strength,
R
uor Ra. Note that when the gusset is directly welded to the beam or column, the connec-
tion should be designed for the larger of the peak stress and 1.25 times the average stress,
but the weld size need not be larger than that required to develop the strength of the gusset.
This 25% increase is recommended to provide ductility to allow adequate force redistribu-
tion in the weld group (Hewitt and Thornton, 2004).
TRUSS CONNECTIONS
Members in Trusses
For light loads, trusses are commonly composed of tees for the top and bottom chords with
single-angle or double-angle web members. In welded construction, the single-angle and
double-angle web members may, in many cases, be welded to the stem of the tee, thus, elim-
inating the need for gussets. When single-angle web members are used, all web members
should be placed on the same side of the chord; staggering the web members causes a torque
on the chord, as illustrated in Figure 13-6. Also see “Design Considerations for HSS-to-HSS
Truss Connections” at the end of Part 13.
α
θ
α
β
=
′+






KK
D
tan
2
β
θ
=
′−KK
D
tan
′=+






Kαθ
α
β
tan
D=+






tan
2
2
θ
α
β
(13-20)
(13-21)
(13-22)
(13-23)
(13-24)
AISC_PART 13:14th Ed. 2/24/11 8:13 AM Page 11

13–12 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Double-angle truss members are usually designed to act as a unit. When unequal-leg
angles are used, long legs are normally assembled back-to-back. A simple notation for the
angle assembly is LLBB (long legs back-to-back) and SLBB (short legs back-to-back).
Alternatively, the notation might be graphical in nature as and . For large loads,
W-shapes may be used with the web vertical and gussets welded to the flange for the truss
connections. Web members may be single angles or double angles, although W-shapes are
sometimes used for both chord and web members as shown in Figure 13-7. Heavy shapes
in trusses must meet the design and fabrication restrictions and special requirements in
AISC SpecificationSections A3.1c and A3.1d. With member orientation as shown for the
field-welded truss joint in Figure 13-7(a), connections usually are made by groove welding
flanges to flanges and fillet welding webs directly or indirectly by the use of gussets. Fit-up
of joints in this type of construction are very sensitive to dimensional variations in the rolled
shapes; fabricators sometimes prefer to use built-up shapes in these cases.
The web connection plate in Figure 13-7(a) is a typical detail. While the diagonal mem-
ber could theoretically be cut so that the diagonal web would be extended into the web
of the chord for a direct connection, such a detail is difficult to fabricate. Additionally,
welding access becomes very limited; note the obvious difficulty of welding the gusset or
diagonal directly to the chord web. As illustrated, this weld is usually omitted.
When stiffeners and doubler plates are required for concentrated flange forces, the
designer should consider selecting a heavier section to eliminate the need for stiffening.
Although this will increase the material cost of the member, the heavier section will likely
provide a more economical solution due to the reduction in labor cost associated with the
elimination of stiffening (Ricker, 1992; Thornton, 1992).
Minimum Connection Strength
In the absence of defined design loads, a minimum required strength of 10 kips for LRFD
or 6 kips for ASD should be considered, as noted in AISC SpecificationCommentary
Fig. 13-6. Staggered web members result in a torque on the truss chord.
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 12

TRUSS CONNECTIONS 13–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Section J1.1. For smaller elements, a required strength more appropriate to the size and
use of the part should be used. Additionally, when trusses are shop-assembled or field-
assembled on the ground for subsequent erection, consideration should be given to loads
induced during handling, shipping and erection.
Panel-Point Connections
A panel-point connection connects diagonal and/or vertical web members to the chord mem-
ber of a truss. These web members deliver axial forces, tensile or compressive, to the truss
chord. In bolted construction, a gusset is usually required because of bolt spacing and edge
distance requirements. In welded construction, it is sometimes possible to eliminate the need
for a gusset.
Fig. 13-7. Truss panel-point connections for W-shape truss members.
(a) Shop and field welding
Note: Check vertical and chord for reinforcing requirements
(b) Shop welding
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 13

Design Checks
The available strength of a panel-point connection is determined from the applicable
limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see
Part 9). In all cases, the available strength, φR
nor Rn/Ω,must exceed the required
strength, R
uor Ra.
In the panel-point connection of Figure 13-8, the neutral axes of the vertical and diago-
nal truss members intersect on the neutral axis of the truss chord. As a result, the forces in
all members of the truss are axial. It is common practice, however, to modify working lines
slightly from the gravity axes to establish repetitive panels and avoid fractional dimensions
less than
1
/8in. or to accommodate a larger panel-point connection or a connection for bot-
tom-chord lateral bracing, a purlin, or a sway-frame. This eccentricity and the resulting
moment should be considered in the design of the truss chord.
In contrast, for the design of the truss web members, AISC SpecificationSection J1.7
permits that the center of gravity of the end connection of a statically loaded truss member
need not coincide with the gravity axis of the connected member. This is because tests have
shown that there is no appreciable difference in the available strength between balanced
and unbalanced connections subjected to static loading. Accordingly, the truss web mem-
bers and their end connections may be designed for the axial load, neglecting the effect of
this minor eccentricity.
Shop and Field Practices
In bolted construction, it is convenient to use standard gage lines of the angles as truss work-
ing lines; where wider angles with two gage lines are used, the gage line nearest the heel of
the angle is the one which is substituted for the gravity axis.
To provide for stiffness in the finished truss, the web members of the truss are extended
to near the edge of the fillet of the tee (k-distance). If welded, the required welds are then
applied along the heel and toe of each angle, beginning at their ends rather than at the edge
of the tee stem.
Support Connections
A truss support connection connects the ends of trusses to supporting members.
13–14 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 13-8. Truss panel-point connection.
AISC_PART 13:14th Ed. 2/17/12 10:49 AM Page 14

TRUSS CONNECTIONS 13–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Design Checks
The available strength of a support connection is determined from the applicable limit
states for the bolts (see Part 7), welds (see Part 8), and connecting elements (see Part 9).
Additionally, truss support connections produce tensile or compressive single concentrated
forces at the beam end; the limit states of the available flange strength in local bending and
the limit states of the available web strength in local yielding, crippling, and compression
buckling may have to be checked. In all cases, the available strength, φR
nor Rn/Ω,must
exceed the required strength, R
uor Ra.
At the end of a truss supported by a column, all member axes may not intersect at a com-
mon point. When this is the case, an eccentricity results. Typically, it is the neutral axis of
the column that does not meet at the working point.
If trusses with similar reactions line up on opposite sides of the column, consideration of
eccentricity would not be required since any moment would be transferred through the col-
umn and into the other truss. However, if there is little or no load on the opposite side of the
column, the resulting eccentricity must be considered.
In Figure 13-9, the truss chord and diagonal intersect at a common working point on the
face of the column flange. In this detail, there is no eccentricity in the gusset, gusset-to-
column connection, truss chord, or diagonal. However, the column must be designed for the
moment due to the eccentricity of the truss reaction from the neutral axis of the column.
For the truss support connection illustrated in Figure 13-10, this eccentricity results in a
moment. Assuming the connection between the members is adequate, joint rotation is resis-
ted by the combined flexural strength of the column, the truss top chord, and the truss
diagonal. However, the distribution of moment between these members will be proportional
to the stiffness of the members. Thus, when the stiffness of the column is much greater than
the stiffness of the other elements of the truss support connection, it is good practice to
design the column and gusset-to-column connection for the full eccentricity.
Fig. 13-9. Truss support connection, working point (w.p.) on column face.
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 15

Due to its importance, the truss support connection is frequently shown in detail on the
design drawing.
Shop and Field Practices
When a truss is erected in place and loaded, truss members in tension will lengthen and truss
members in compression will shorten. At the support connection, this may cause the tension
chord of a “square-ended” truss to encroach on its connection to the supporting column. When
the connection is shop-attached to the truss, erection clearance must be provided with shims
to fill out whatever space remains after the truss is erected and loaded. In field erected con-
nections, however, provision must be made for the necessary adjustment in the connection.
When the tension chord delivers no calculated force to the connection, adjustment can
usually be provided with slotted holes. For short spans with relatively light loads, the
comparatively small deflections can be absorbed by the normal hole clearances provided
for bolted construction. Slightly greater misalignment can be corrected in the field by
reaming the holes. If appreciable deflection is expected, the connection may be welded.
Alternatively, bolt holes may be field-drilled, but this is an expensive operation which
should be avoided if at all possible.
An approximation of the elongation, Δ, can be determined as
13–16 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 13-10. Truss-support connection, working point (w.p.) at column centerline.
Δ=
Pl
AE
(13-25)
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 16

TRUSS CONNECTIONS 13–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
Δ= elongation in inches
P=axial force due to service loads, kips
A=gross area of the truss chord, in.
2
l=length, in.
2
The total change in length of the truss chord is ΣΔ i, the sum of the changes in the lengths of
the individual panel segments of the truss chord. The misalignment at each support connec-
tion of the tension chord is one-half the total elongation.
Truss Chord Splices
Truss chord splices are expensive to fabricate and should be avoided whenever possible. In
general, chord splices in ordinary building trusses are confined to cases where:
1. the finished truss is too large to be shipped in one piece;
2. the truss chord exceeds the available material length;
3. the reduction in member size of the chord justifies the added cost of a splice; or
4. a sharp change in direction occurs in the working line of the chord and bending does
not provide a satisfactory alternative.
Splices at truss chord ends that are finished to bear should be designed in accordance with
AISC SpecificationSection J1.4.
Design Considerations for HSS-to-HSS Truss Connections
HSS member sizes are often critical in connection design. Connection design should be per-
formed during main member selection as the connection limit states may force an increase
in the member wall thickness over the main member design thickness. At initial design,
Packer, et al. (2010b) recommends that chords should have thick walls rather than thin
walls; web members should have thin walls rather than thick walls; web members should be
wide relative to the chord members, but still able to sit on the “flat” face of the chord sec-
tion if possible; and gap connections (for K and N situations) are preferred to overlap
connections because the members are easier to prepare, fit and weld.
The connection types covered in Chapter K of the AISCSpecificationand in AISC
Design Guide 24, Hollow Structural Section Connections (Packer et al., 2010a), are only
some of the potential configurations of HSS-to-HSS connections. For reinforced connec-
tions and connections not covered in these publications, refer to CIDECT Design Guide 3,
Design Guide for Rectangular Hollow Section (RHS) Joints under Predominantly Static
Loading(Packer et al., 2010b).
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 17

PART 13 REFERENCES
AISC (1984), Engineering for Steel Construction, pp. 7.55–7.62, AISC, Chicago, IL.
Bjorhovde, R. and Chakrabarti, S.K. (1985), “Tests of Full-Size Gusset Plate Connections,”
Journal of Structural Engineering, Vol. 111, No. 3, pp. 667–684, ASCE, New York, NY.
Gross, J.L. and Cheok, G. (1988), Experimental Study of Gusseted Connections for Laterally
Braced Steel Buildings, National Institute of Standards and Technology Report NISTIR
88-3849, NIST, Gaithersburg, MD.
Gross, J.L. (1990), “Experimental Study of Gusseted Connections,” Engineering Journal,
Vol. 27, No. 3, 3rd Quarter, pp. 89–97, AISC, Chicago, IL.
Hewitt, C.M. and Thornton, W.A. (2004), “Rationale Behind and Proper Application of the
Ductility Factor for Bracing Connections Subjected to Shear and Transverse Loading,”
Engineering Journal, Vol. 41, No. 1, 1st Quarter, pp. 3–6, AISC, Chicago, IL.
Packer, J., Sherman, D. and Leece, M. (2010a), Hollow Structural Section Connections,
Design Guide 24, AISC, Chicago, IL.
Packer, J.A., Wardenier, J., Zhao, X.-L., van der Vegte, G.J. and Y. Kurobane (2010b),
Design Guide for Rectangular Hollow Section (RHS) Joints Under Predominantly Static
Loading, Design Guide 3, CIDECT, 2nd Ed., LSS Verlag, Kőln, Germany.
Richard, R.M. (1986), “Analysis of Large Bracing Connection Designs for Heavy
Construction,” National Steel Construction Conference Proceedings, pp. 31.1–31.24,
AISC, Chicago, IL.
Ricker, D.T. (1992), “Value Engineering and Steel Economy,” Modern Steel Construction,
Vol. 32, No. 2 February, AISC, Chicago, IL.
Thornton, W.A. (1991), “On the Analysis and Design of Bracing Connections,” National
Steel Construction Conference Proceedings, pp. 26.1–26.33, AISC, Chicago, IL.
Thornton, W.A. (1992), “Designing for Cost Efficient Fabrication and Construction,”
Constructional Steel Design—An International Guide, Chapter 7, pp. 845–854, Elsevier,
London, UK.
13–18 DESIGN OF BRACING CONNECTIONS AND TRUSS CONNECTIONS
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 13:14th Ed. 2/24/11 8:14 AM Page 18

14–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 14
DESIGN OF BEAM BEARING PLATES,
COLUMN BASE PLATES, ANCHOR RODS AND
COLUMN SPLICES
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–3
BEAM BEARING PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–3
Force Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–3
Recommended Bearing Plate Dimensions and Thickness . . . . . . . . . . . . . . . . . . . . 14–3
Available Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
COLUMN BASE PLATES FOR AXIAL COMPRESSION . . . . . . . . . . . . . . . . . . . . . 14–4
Force Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
Recommended Base Plate Dimensions and Thickness . . . . . . . . . . . . . . . . . . . . . . . 14–5
Available Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
Finishing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
Holes for Anchor Rods and Grouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
Grouting and Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
COLUMN BASE PLATES FOR AXIAL TENSION, SHEAR OR MOMENT . . . . . . 14–8
ANCHOR RODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–9
Minimum Edge Distance and Embedment Length . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
Washer Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
Hooked Anchor Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
Headed or Threaded and Nutted Anchor Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
Anchor Rod Nut Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
COLUMN SPLICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
Fit-Up of Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
Lifting Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
Column Alignment and Stability During Erection . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
Force Transfer in Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
Flange-Plated Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–16
Directly Welded Flange Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–17
Butt-Plated Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
AISC_PART 14:14th Ed. 4/1/11 9:10 AM Page 1

14–2 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
DESIGN CONSIDERATIONS FOR HSS CAP PLATES . . . . . . . . . . . . . . . . . . . . . . 14–18
Flexural Strength of the Cap Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
Compression Yielding and Crippling of the HSS Wall . . . . . . . . . . . . . . . . . . . . . 14–19
PART 14 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–20
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
Table 14-1. Finish Allowances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
Table 14-2. Recommended Maximum Sizes for Anchor-Rod Holes in
Base Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
Table 14-3. Typical Column Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–22
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 2

BEAM BEARING PLATES 14–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SCOPE
The specification requirements and other design considerations summarized in this Part apply
to the design of beam bearing plates, column base plates, anchor rods and column splices. For
complete coverage of column base plate connections, see AISC Design Guide 1, Base Plate
and Anchor Rod Design(Fisher and Kloiber, 2006).
BEAM BEARING PLATES
A beam bearing plate is made with a plate as illustrated in Figure 14-1.
Force Transfer
The required strength (beam end reaction), R uor Ra, is distributed from the beam bottom
flange to the bearing plate over an area equal to l
b× 2k, where l bis the bearing length (length
of contact between the beam bottom flange and the bearing plate), in. The bearing plate is
then assumed to distribute the beam end reaction to the concrete or masonry as a uniform
bearing pressure by cantilevered bending of the plate. The bearing plate cantilever dimen-
sion is taken as
where Bis the bearing plate width, in.
In the rare case where a bearing plate is not required, the beam end reaction, R
uorRa, is
assumed to be uniformly distributed from the beam bottom flange to the concrete or
masonry as a uniform bearing pressure by cantilevered bending of the beam flanges. The
beam-flange cantilever dimension is calculated as for a bearing plate, but using the beam
flange width, b
f, in place of B.
Recommended Bearing Plate Dimensions and Thickness
The length of bearing, l b, may be established by available wall thickness, clearance require-
ments, or by the minimum requirements based on local web yielding or web crippling. The
Fig. 14-1. Beam bearing plate variables.
n
B
k=−
2
(14-1)
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 3

14–4 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
selected dimensions of the bearing plate, B and l b, should preferably be in full inches.
Bearing plate thickness should be specified in multiples of
1
/8in. up to 1
1
/4-in. thickness and
in multiples of
1
/4in. thereafter.
Available Strength
The available strength of a beam bearing plate is determined from the applicable limit states
for connecting elements (see Part 9). In all cases, the available strength, φR
nor Rn/Ω, must
exceed the required strength, R
uor Ra. The stability of the beam end must also be addressed
as discussed in “Stability Bracing” in Part 2.
COLUMN BASE PLATES FOR AXIAL COMPRESSION
A column base plate is made with a plate and a minimum of four anchor rods as illustrated
in Figure 14-2. The base plate is often attached to the bottom of the column in the shop.
Large heavy columns can be difficult to handle and set plumb with the base plate attached
in the shop. When the column is over a certain weight, it may be better to detail the base
plate loose for setting and leveling before the column is set. The weight where loose base
plates should be considered varies by field practice but it should be considered where the
assembly weighs more than 4 tons.
Force Transfer
In Figure 14-3, the required strength (column axial force), P uor Pa, is distributed from the
column end to the column base plate in direct bearing. The column base plate is then assumed
to distribute the column axial force to the concrete or masonry as a uniform bearing pressure
by cantilevered bending of the plate. The critical base plate cantilever dimension, l, is deter-
mined as the larger of m, nand λn
′where
Fig. 14-2. Typical column base for axial compressive loads.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 4

LRFD ASD
COLUMN BASE PLATES FOR AXIAL COMPRESSION 14–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Note that, because both the term in parentheses and the ratio of the required strength, P u
orPa, to the available strength,φ cPpor Pp/Ωc, are always less than or equal to 1, the value
of X will always be less than or equal to 1. Note also that λcan always be taken conserva-
tively as 1. For further information, see Thornton (1990a), Thornton (1990b), and AISC
Design Guide 1, Base Plate and Anchor Rod Design(Fisher and Kloiber, 2006).
Recommended Base Plate Dimensions and Thickness
The selected dimensions of the base plate, B and N, should preferably be in full inches. Base
plate thickness should be specified in multiples of
1
/8in. up to 1
1
/4-in. thickness and in mul-
tiples of
1
/4in. thereafter.
Fig. 14-3. Column base plate design variables.
m
Nd
=
−095
2
.
n
Bb
f
=
−08
2
.
′=n
db
f
4
λ=
+−

2
11
1
X
X
X
db
db
P
P
f
f
u
cp
=
+
( )








4
2
φ
X
db
db
P
P
f
f
ca
p
=
+
( )








4
2
Ω
(14-2)
(14-3)
(14-4)
(14-5)
(14-6b)(14-6a)
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 5

14–6 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Available Strength
The available strength of an axially loaded column base plate is determined from the appli-
cable limit states for connecting elements (see Part 9). From Thornton (1990a), the
minimum base plate thickness can be calculated as
The length, l, the critical base plate cantilever dimension, is determined as the larger of
m, nand λn′.
In all cases, the available strength, φR
nor Rn/Ω, must exceed the required strength, R u
or Ra.
Finishing Requirements
Base plate finishing requirements are given in AISC SpecificationSection M2.8. When fin-
ishing is required, the plate material must be ordered thicker than the specified base plate
thickness to allow for the material removed in finishing. Finishing allowances are given in
Table 14-1 per ASTM A6 flatness tolerances for steel base plates with F
uequal to or less
than 60 ksi based upon the width, thickness, and whether one or both sides are to be fin-
ished. Finishing allowances for steel base plates with F
ugreater than 60 ksi should be
increased by 50%.
The criteria for fit-up of column splices given in AISC SpecificationSection M4.4 are
also applicable to column base plates.
Holes for Anchor Rods and Grouting
Recommended maximum anchor rod hole sizes are given in Table 14-2. These hole sizes
will accommodate reasonable misalignments in the setting of the anchor rods and allow bet-
ter adjustment of the column base to the correct centerlines. It is normally unnecessary to
deduct the area of holes when determining the required base plate area. An adequate washer
should be provided for each anchor rod.
When base plates with large areas are used, at least one grout hole should be provided
near the center of the base plate through which grout may be placed. This will provide for
a more even distribution of the grout and also prevent air pockets. Note that a grout hole
may not be required when the grout is dry-packed. Grout holes do not require the same accu-
racy for size and location as anchor rod holes.
Holes in base plates for anchor rods and grouting often must be flame-cut, because drill
sizes and punching capabilities may be limited to smaller diameters. Flame-cut holes may
have a slight taper and should be inspected to assure proper clearances for anchor rods.
Grouting and Leveling
High-strength, non-shrink grout is placed between the column base plate and the supporting
foundation. When base plates are shipped attached to the column, three methods of column
support are:
LRFD ASD
tl
P
FBNmin
u
y=
2
09.
tl
P
FBNmin
a
y=
333.
(14-7b)(14-7a)
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 6

COLUMN BASE PLATES FOR AXIAL COMPRESSION 14–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. The use of leveling nuts and, in some cases, washers on the anchor rods beneath the
base plate, as illustrated in Figure 14-4.
2. The use of shim stacks between the base plate and the supporting foundation.
3. The use of a steel leveling plate (normally
1
/4in. thick), set to elevation and grouted
prior to the setting of the column. The leveling plate should meet the flatness tolerances
specified in ASTM A6. It may be larger than the base plate to accommodate anchor rod
placement tolerances and can be used as a setting template for the anchor rods.
For further information on grouting and leveling of column base plates, see AISC
Design Guide 10, Erection Bracing of Low-Rise Structural Steel Frames(Fisher and West,
1997).
When base plates are shipped loose, the base plates are usually grouted after the base
plate has been aligned and leveled with one of the preceding methods. For heavy loose base
plates, three-point leveling bolts, illustrated in Figure 14-5, are commonly used. These
threaded attachments may consist of a nut or an angle and nut welded to the base plate.
Leveling bolts must be of sufficient length to compensate for the space provided for grout-
ing. Rounding the point of the leveling bolt will prevent it from “walking” or moving
laterally as it is turned. Additionally, a small steel pad under the point reduces friction and
prevents damage to the concrete.
Heavy loose base plates should be provided with some means of handling at the erection
site. Lifting holes can be provided in the vertical legs of shop-attached connection angles.
Lifting lugs can also be used and can remain in place after erection, unless they create an
interference or removal is required in the contract documents.
Leveling bolts or nuts should not be used to support the column during erection. If grout-
ing is delayed until after steel erection, the base plate must be shimmed to properly distribute
loads to the foundation without overstressing either the base plate or the concrete. This dif-
ficulty of supporting columns while leveling and grouting their bases makes it advisable that
footings be finished to near the proper elevation (Ricker, 1989). The top of the rough foot-
ing should be set approximately 1 to 2 in. below the bottom of the base plate to provide for
adjustment. Alternatively, an angle frame as illustrated in Figure 14-6 could be constructed
to the proper elevation and filled with grout prior to erection.
Fig. 14-4. Leveling nuts and washers.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 7

14–8 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COLUMN BASE PLATES FOR AXIAL TENSION,
SHEAR OR MOMENT
For anchor rod diameters not greater than 1
1
/4in., angles bolted or welded to the column as
shown in Figure 14-7(a) are generally adequate to transfer uplift forces resulting from axial
loads and moments. When greater resistance is required, stiffeners may be used with hori-
zontal plates or angles as illustrated in Figure 14-7(b). These stiffeners are not usually
considered to be part of the column area in bearing on the base plate. The angles preferably
should be set back from the column end about
1
/8in. Stiffeners preferably should be set back
about 1 in. from the base plate to eliminate a pocket that might prevent drainage and, thus,
protect the column and column base plate from corrosion.
Fig. 14-6. Angle-frame leveling.
Fig. 14-5. Three-point leveling.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 8

ANCHOR RODS 14–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For further information, see AISC Design Guide 1, Base Plate and Anchor Rod Design
(Fisher and Kloiber, 2006).
ANCHOR RODS
Cast-in-place anchor rods, illustrated in Figure 14-8, are generally made from unheaded rod
material or headed bolt material. Drilled-in (post-set) anchors can be used for corrective
work or in new work as determined by the owner’s designated representative for design and
as permitted in the applicable building code. The design of post-set anchors is governed by
manufacturers’ specifications; see also ACI 349 Appendix D (ACI, 2006). Post-set anchors
that rely upon torque or tension to develop anchorage by wedging action should not be used
Fig. 14-8. Cast-in-place anchor rods.
Fig. 14-7. Typical column bases for uplift.
(a) (b)
(a) Hooked (b) Headed (c) Threaded with nut
AISC_PART 14_14th Ed._February 25, 2013 14-12-04 3:24 PM Page 9 (Black plate)

14–10 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
unless the stability of the column during erection is provided by means other than the post-
set anchors.
Minimum Edge Distance and Embedment Length
In general, minimum edge distances, embedment lengths, and the design of anchorages
into concrete are covered by ACI 318 (ACI, 2008). These provisions include methods to
account for edge distance and group action, as does ACI 349. AISC Design Guides 1, 7
and 10 provide additional material on the design of anchor rods in concrete (Fisher and
Kloiber, 2006; Fisher, 2004; Fisher and West, 1997).
In addition to providing the recommended minimum embedment length, anchor rods
must extend a distance above the foundation that is sufficient to permit adequate thread
engagement of the nut. Adequate thread engagement for anchor rods is identical to the con-
dition described in the RCSC Specificationas adequate for steel-to-steel structural joints
using high-strength bolts: having the end of the (anchor rod) flush with or outside the face
of the nut.
Washer Requirements
Because base plates typically have holes larger than oversized holes to allow for tolerances
on the location of the anchor rod, washers are usually furnished from ASTM A36 steel plate.
They may be round, square or rectangular, and generally have holes that are
1
/16in. larger
than the anchor rod diameter. The thickness must be suitable for the forces to be transferred.
Minimum washer sizes are given in Table 14-2.
Hooked Anchor Rods
Hooked anchor rods should be used only for axially loaded members subject to compression
only to locate and prevent the displacement or overturning of columns due to erection loads
or accidental collisions during erection. Additionally, high-strength steels are not recom-
mended for use in hooked rods since bending with heat may materially affect their strength.
Headed or Threaded and Nutted Anchor Rods
When anchor rods are required for a calculated tensile force, T, a more positive anchorage
is formed when headed anchor rods, illustrated in Figure 14-8(b), are used. With adequate
embedment and edge distance, the limit state is either a tensile failure of the anchor rod or
the pull-out of a cone of concrete radiating outward from the head (Marsh and Burdette,
1985a, 1985b) as illustrated in Figure 14-9. Marsh and Burdette (1985a, 1985b) showed that
the head of the anchor rod usually provides sufficient anchorage and the use of an additional
washer or plate does not add significantly to the anchorage. The nut and threading shown in
Figure 14-8(c) is acceptable in lieu of a bolt head. The nut should be welded to the rod to
prevent the rod from turning out when the top nut is tightened.
Anchor Rod Nut Installation
The majority of anchorage applications in buildings do not require special anchor rod nut
installation procedures or pretension in the anchor rod. The anchor rod nuts should be “drawn
down tight” as columns and bases are erected, per ANSI/ASSE A10.13 Section 9.6 (ASSE,
2001). This condition can be achieved by following the same practices as recommended for
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 10

ANCHOR RODS 14–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
snug-tightened installation in steel-to-steel bolted joints in the RCSC Specification. Snug-
tight is the condition that exists when all plies in a connection have been pulled into firm
contact by the bolts in the joint and all the bolts in the joint have been tightened sufficiently
to prevent the removal of the nuts without the use of a wrench.
When, in the judgment of the owner’s designated representative for design, the perform-
ance of the structure will be compromised by excessive elongation of the anchor rods under
tensile loads, pretension may be required. Some examples of applications that may require
pretension include structures that cantilever from concrete foundations, moment-resisting
column bases with significant tensile forces in the anchor rods, or where load reversal might
result in the progressive loosening of the nuts on the anchor rods.
When pretensioning of anchor rods is specified, care must be taken in the design of the
column base and the embedment of the anchor rod. The shaft of the anchor rod must be free
of bond to the encasing concrete so that the rod is free to elongate as it is pretensioned. Also,
loss of pretension due to creep in the concrete must be taken into account. Although the
design of pretensioned anchorage devices is beyond the scope of this Manual, it should be
noted that pretension should not be specified for anchorage devices that have not been prop-
erly designed and configured to be pretensioned.
Fig. 14-9. Concrete cone subject to pull-out.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 11

14–12 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COLUMN SPLICES
When the height of a building exceeds the available length of column sections, or when it
is economically advantageous to change the column size at a given floor level, it becomes
necessary to splice two columns together. Column splices at the final exterior and interior
perimeter and at interior openings must be located a minimum of 48 in. above the finished
floor to accommodate the attachment of safety cables, except when constructability does not
allow. For simplicity and uniformity, other column splices should be located at the same
height. Note that column splices placed significantly higher than this are impractical in
terms of field assembly.
Fit-Up of Column Splices
From AISC SpecificationSection M2.6, the ends of columns in a column splice which
depend upon contact bearing for the transfer of axial forces must be finished to a common
plane by milling, sawing, or other suitable means. In theory, if this were done and the pieces
were erected truly plumb, there would be full-contact bearing across the entire surface; this
is true in most cases. However, AISC SpecificationSection M4.4 recognizes that a perfect
fit on the entire available surface will not exist in all cases.
A
1
/16-in. gap is permissible with no requirements for repair or shimming. During erec-
tion, at the time of tightening the bolts or depositing the welds, columns will usually be
subjected to loads which are significantly less than the design loads. Full-scale tests (Popov
and Stephen, 1977) which progressed to column failure have demonstrated that subsequent
loading to the design loads does not result in distress in the bolts or welds of the splice.
If the gap exceeds
1
/16in. but is equal to or less than
1
/4in., and if an engineering investi-
gation shows that sufficient contact area does not exist, nontapered steel shims are required.
Mild steel shims are acceptable regardless of the steel grade of the column or bearing mate-
rial. If required, these shims must be contained, usually with a tack weld, so that they cannot
be worked out of the joint.
There is no provision in the AISC Specificationfor gaps larger than
1
/4in. When such a gap
exists, an engineering evaluation should be made of this condition based upon the type of
loading transferred by the column splice. Tightly driven tapered shims may be required or the
required strength may be developed through flange and web splice plates. Alternatively, the
gap may be ground or gouged to a suitable profile and filled with weld metal.
Lifting Devices
As illustrated in Figure 14-10, lifting devices are typically used to facilitate the handling and
erection of columns. When flange-plated or web-plated column splices are used for W-shape
columns, it is convenient to place lifting holes in these flange plates as illustrated in Figure
14-10(a). When butt-plated column splices are used, additional temporary plates with lift-
ing holes may be required as illustrated in Figure 14-10(b). W-shape column splices which
do not utilize web-plated or butt-plated column splices (i.e., groove-welded column splices)
may be provided with a lifting hole in the column web as illustrated in Figure 14-10(c).
While a hole in the column web reduces the cross-sectional area of the column, this reduc-
tion will seldom be critical since the column is sized for the loads at the floor below and the
splice is located above the floor. Alternatively, auxiliary plates with lifting holes may be
connected to the column so that they do not interfere with the welding. Typical column
splices for tubes and box-columns are illustrated in Figure 14-10(d). Holes in lifting devices
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 12

COLUMN SPLICES 14–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
may be drilled, reamed or flame-cut with a mechanically guided torch. In the latter case, the
bearing surface of the hole in the direction of the lift must be smooth.
The lifting device and its attachment to the column must be of sufficient strength to
support the weight of the column as it is brought from the horizontal position (as deliv-
ered) to the vertical position (as erected); the lifting device and its attachment to the
column must be adequate for the tensile forces, shear forces and moments induced during
handling and erection.
A suitable shackle and pin are connected to the lifting device while the column is on
the ground. The steel erector usually establishes the size and type of shackle and pin to be
used in erection and this information must be transmitted to the fabricator prior to detail-
ing. Except for excessively heavy lifting pieces, it is customary to select a single pin and
pinhole diameter to accommodate the majority of structural steel members, whether they
are columns or other heavy structural steel members. The pin is attached to the lifting
Fig. 14-10. Lifting devices for columns.
(a) W-shape columns, flange-plated (b) W-shape and box-shaped columns.
column splices with lifting holes butt-plated column splices with
auxiliary lifting plates
(c) W-shape columns, no splice plates, (d) Tubular and box-shape columns,
lifting hole in column web auxiliary lifting plates
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 13

14–14 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
hook and a lanyard trails to the ground or floor level. After the column is erected and con-
nected, the pin is removed from the device by means of the lanyard, eliminating the need
for an ironworker to climb the column. The shackle pin, as assembled with the column,
must be free and clear, so that it may be withdrawn laterally after the column has been
landed and stabilized.
The safety of the structure, equipment and personnel is of utmost importance during the
erection period. It is recommended that all welds that are used on the lifting devices and sta-
bility devices be inspected very carefully, both in the shop and later in the field, for any
damage that may have occurred in handling and shipping. Groove welds frequently are
inspected with ultrasonic methods (UT) and fillet welds are inspected with magnetic parti-
cle (MT) or liquid dye penetrant (PT) methods.
Column Alignment and Stability During Erection
Column splices should provide for safety and stability during erection when the columns
might be subjected to wind, construction, and/or accidental loading prior to the placing of
the floor system. The nominal flange-plated, web-plated, and butt-plated column splices
developed here consider this type of loading.
In other splices, column alignment and stability during erection are achieved by the addi-
tion of temporary lugs for field bolting as illustrated in Figure 14-11. The material thickness,
weld size, and bolt diameter required are a function of the loading. A conservative resisting
moment arm is normally taken as the distance from the compressive toe or flange face to the
gage line of the temporary lug. The overturning moment should be checked about both axes
of the column. The recommended minimum plate or angle thickness is
1
/2in.; the recom-
mended minimum weld size is
5
/16in.; additionally, high-strength bolts are normally used as
stability devices.
Temporary lugs are not normally used as lifting devices. Unless required to be removed
in the contract documents, these temporary lugs may remain.
Column alignment is provided with centerpunch marks that are useful in centering the
columns in two directions.
Force Transfer in Column Splices
As illustrated in Figure 14-12, for the W-shapes most frequently used as columns, the dis-
tance between the inner faces of the flanges is constant throughout any given nominal depth
group; as the nominal weight per foot increases for each nominal depth, the flange and web
thicknesses increase. From AISC SpecificationSection J7, the available bearing strength,
φR
nor Rn/Ω, of the contact area of a finished surface is determined with
R
n=1.8F yApb (14-8)
φ =0.75 Ω =2.00
where
A
pb= projected bearing area, in.
2
Fy= specified mimimum yield stress of the column, ksi
This bearing strength is much greater than the axial strength of the column and will sel-
dom prove critical in the member design. For column splices transferring only axial forces,
complete axial force transfer may be achieved through bearing on finished surfaces; bolts or
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 14

COLUMN SPLICES 14–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
welds are required by AISC SpecificationSection J1.4 to be sufficient to hold all parts
securely in place.
In addition to axial forces, from AISC SpecificationSection J1.4, column splices must be
proportioned to achieve the required strength in tension, due to the combination of dead load
and lateral loads. Note that it is not permissible to use forces due to live load to offset the
tensile forces from wind or seismic loads. Additional column splice requirements are pro-
vided in the AISC Seismic Provisions.
Fig. 14-11. Column stability and alignment devices.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 15

14–16 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For dead and wind loads, if the required strength due to the effect of the dead load is
greater than the required strength due to the wind load, the splice is not subjected to tension
and a nominal splice may be selected from those in Table 14-3. When the required strength
due to dead load is less than the required strength due to the wind load, the splice will be
subjected to tension and the nominal splices from Table 14-3 are acceptable if the available
tensile strength of the splice is greater than or equal to the required strength. Otherwise, a
splice must be designed with sufficient area and attachment.
When shear from lateral loads is divided among several columns, the force on any single
column is relatively small and can usually be resisted by friction on the contact bearing sur-
faces and/or by the flange plates, web plates or butt plates. If the required shear strength
exceeds the available shear strength of the column splice selected from Table 14-3, a col-
umn splice must be designed with sufficient area and attachment.
The column splices shown in Table 14-3 meet the OSHA requirement for 300 lb located
18 in. from the column face.
Flange-Plated Column Splices
Table 14-3 gives typical flange-plated column splice details for W-shape columns. These
details are not splice requirements, but rather, typical column splices in accordance with
AISC Specificationprovisions and typical erection requirements. Other splice designs may
also be developed. It is assumed in all cases that the lower shaft will be the heavier, although
not necessarily the deeper, section.
Full-contact bearing is always achieved when lighter sections are centered over heavier
sections of the same nominal depth group. If the upper column is not centered on the lower
column, or if columns of different nominal depths must bear on each other, some areas of
the upper column will not be in contact with the lower column. These areas are hatched in
Figure 14-13.
When additional bearing area is not required, unfinished fillers may be used. These fillers
are intended for “pack-out” of thickness and are usually set back
1
/4in. or more from the fin-
ished column end. Since no force is transferred by these fillers, only nominal attachment to
the column is required.
When additional bearing area is required, fillers finished to bear on the larger column
may be provided. Such fillers are proportioned to carry bearing loads at the bearing strength
calculated from AISC SpecificationSection J7 and must be connected to the column to
transfer this calculated force.
In Table 14-3, Cases I and II are for all-bolted flange-plated column splices for W-shape
columns. Bolts in column splices are usually the same size and type as for other bolts on the
Fig. 14-12. Distance between flanges for typical W-shape columns.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 16

COLUMN SPLICES 14–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
column. Bolt spacing, end distance and edge distances resulting from the plate sizes shown
permit the use of
3
/4-in.- and
7
/8-in.-diameter bolts in the splice details shown. Larger diam-
eter bolts may require an increase in edge or end distances. Refer to AISC Specification
Chapter J. The use of high-strength bolts in bearing-type connections is assumed in all field
and shop splices. However, when slotted or oversized holes are utilized, or in splices
employing undeveloped fillers over
1
/4in. thick, slip-critical connections may be required;
refer to AISC SpecificationSection J5.2. For ease of erection, field clearances for lap splices
fastened by bolts range from
1
/8 in. to
3
/16in. under each plate.
Cases IV and V are for all-welded flange-plated column splices for W-shape columns.
Splice welds are assumed to be made with E70XX electrodes and are proportioned as
required by the AISC Specificationprovisions. The GMAW and FCAW equivalents to
E70XX electrodes may be substituted if desired. Field clearance for welded splices are lim-
ited to
1
/16in. to control the expense of building up welds to close openings. Note that the
fillet weld lengths, Y, as compared to the lengths L/2, provide 2-in. unwelded distance below
and above the column shaft finish line. This provides a degree of flexibility in the splice
plates to assist the erector.
Cases VI and VII apply to combination bolted and welded column splices. Since the
available strength of the welds will, in most cases, exceed the strength of the bolts, the weld
and splice lengths shown may be reduced, if desired, to balance the strength of the fasten-
ers to the upper or lower column, provided that the available strength of the splice is still
greater than the required strength of the splice, including erection loading.
Directly Welded Flange Column Splices
Table 14-3 also includes typical directly welded flange column splice details for W-shape
and HSS or box-shaped columns. These details are not splice requirements, but rather, typ-
ical column splices in accordance with AISC Specificationprovisions and typical erection
requirements. Other splice designs may also be developed. It is assumed in all cases that the
lower shaft will be the heavier, although not necessarily the deeper, section.
Case VIII applies to W-shape columns spliced with either partial-joint-penetration or
complete-joint-penetration groove welds. Case X applies to HSS or box-shaped columns
spliced with partial-joint-penetration or complete-joint-penetration groove welds.
Fig. 14-13. Columns not centered or of different nominal depth.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 17

14–18 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Butt-Plated Column Splices
Table 14-3 further includes typical butt-plated column splice details for W-shape and HSS
or box-shaped columns. These details are not splice requirements, but rather, present typi-
cal column splices in accordance with AISC Specificationprovisions and typical erection
requirements. Other splice designs may also be developed. It is assumed in all cases that the
lower shaft will be the heavier, although not necessarily the deeper, section.
Butt plates are used frequently on welded splices where the upper and lower columns are
of different nominal depths, but may not be economical for bolted splices since fillers can-
not be eliminated. Typical butt plates are 1
1
/2in. thick for a W8 over W10 splice, and 2 in.
thick for other W-shape combinations such as W10 over W12 and W12 over W14. Butt
plates which are subjected to substantial bending stresses, such as required on boxed
columns, will require a more careful review and analysis. One common method is to assume
forces are transferred through the butt plate on a 45° angle and check the thickness obtained
for shear and bearing strength. Finishing requirements for butt plates are specified in AISC
SpecificationSection M2.8.
Case III is a combination flange-plated and butt-plated column splice for W-shape columns.
Case IX applies to welded butt-plated column splices for W-shape columns. Case XI applies
to welded butt-plated column splices for HSS or box-shaped columns. Case XII applies to
welded butt-plated column splices between W-shape and HSS or box-shaped columns.
DESIGN CONSIDERATIONS FOR HSS CAP PLATES
The simplest form of attachment to an HSS is to connect the framing member to the top of
an HSS. The cap plate serves as a bearing device to transfer the reactions from the framing
member into the HSS. The cap plate may also be used to transfer moment into the HSS col-
umn. The moment transfer is through a force couple that consists of both compressive and
tensile reactions delivered to the cap plate.
Flexural Strength of the Cap Plate
The available strength of the cap plate, in terms of reaction resistance, is determined as φR n
orRn/Ωwith
(14-9)
φ=0.90 Ω=1.67
where
B= HSS width, in.
F
yc= specified minimum yield stress of the cap plate, ksi
H= HSS depth, in.
a= distance from the HSS centroid to the end of the attached member, in.
l
br= required bearing length for the attached member, in.
t
1= cap plate thickness, in.
R
Bt
l
a
H
Fn
br
yc=
+−






1
2
4
22
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 18

DESIGN CONSIDERATIONS FOR HSS CAP PLATES 14–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
This equation applies only if the cap plate is subjected to cantilever bending, as shown in
Figure 14-14. This occurs when the beam or joist reaction point is outside of the HSS face.
If a stiffener is used in the beam and is positioned over the HSS wall, then the equation does
not apply, since the cap plate is not subjected to bending. Also if the denominator of the
equation results in a negative number, bending of the cap plate can be disregarded.
Compression Yielding and Crippling of the HSS Wall
The available strength of the HSS wall due to compression yielding and compression crip-
pling is determined in accordance with AISC SpecificationSection K1.
Fig. 14-14. Cap plate subject to cantilever bending.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 19

14–20 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 14 REFERENCES
ACI (2006), Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-
06, American Concrete Institute, Farmington Hills, MI.
ACI (2008), Building Code Requirements for Structural Concrete, ACI 318-08 and ACI
318M-08, American Concrete Institute, Farmington Hills, MI.
ASSE (2001), Safety Requirements for Steel Erection, ANSI/ASSE 10.13-01, American
Society of Safety Engineers, Des Plaines, IL.
Fisher, J.M. (2004), Industrial Buildings—Roofs to Anchor Rods, Design Guide 7, 2nd Ed.,
AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Ed., Design
Guide 1, AISC, Chicago, IL.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel Frames,
Design Guide 10, AISC, Chicago, IL.
Marsh, M.L. and Burdette, E.G. (1985a), “Anchorage of Steel Building Components to
Concrete,” Engineering Journal, Vol. 15, No. 4, 4th Quarter, pp. 33–39, AISC, Chicago,
IL.
Marsh, M.L. and Burdette, E.G. (1985b), “Multiple Bolt Anchorages: Method for Determin-
ing the Effective Projected Area of Overlapping Stress Cones,” Engineering Journal, Vol.
15, No. 4, 4th Quarter, pp. 29–32, AISC, Chicago, IL.
Popov, E.P. and Stephen, R.M. (1977), “Capacity of Columns with Splice Imperfections,”
Engineering Journal, Vol. 14, No. 1, 1st Quarter, pp. 16–23, AISC Chicago, IL.
Ricker, D.T. (1989), “Some Practical Aspects of Column Base Selection,” Engineering
Journal, Vol. 26, No. 3, 3rd Quarter, AISC, Chicago, IL.
Thornton, W.A. (1990a), “Design of Small Base Plates for Wide-Flange Columns,”
Engineering Journal, Vol. 27, No. 3, 3rd Quarter, pp. 108–110, AISC, Chicago, IL.
Thornton, W.A. (1990b), “Design of Small Base Plates for Wide-Flange Columns—A
Concatenation of Methods,” Engineering Journal, Vol. 27, No. 4, 4th Quarter, pp.
173–174, AISC, Chicago, IL.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 20

DESIGN TABLES 14–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-1
Finish Allowances
Notes: 1. Circular or square washers meeting the washer size are acceptible.
2. Clearance must be considered when choosing an appropriate anchor rod hole location, noting effects such as the
position of the rod in the hole with respect to the column, weld size and other interferences.
3. When base plates are less than 1
1
/4in. thick, punching of holes may be an economical option. In this case,
3
/4-in.
anchor rods and 1
1
/16-in.-diameter punched holes may be used with ASTM F844 (USS Standard) washers in place
of fabricated plate washers.
Table 14-2
Recommended Maximum Sizes for
Anchor-Rod Holes in Base Plates
Anchor Rod Max. Hole Min. Min. Anchor Rod Hole Min. Min.
Diameter, Diameter, Washer Washer Diameter, Diameter, Washer Washer
in. in. Size, in. Thickness in. in. Size, in. Thickness
3
/4 1
5
/16 2
1
/4 1
1
/2 2
5
/16 3
1
/2
1 /2
7
/8 1
9
/16 2
1
/2
5 /16 1
3
/4 2
3
/4 4
5
/8
11
13
/16 3
3
/8 23
1
/4 5
3
/4
1
1
/4 2
1
/16 3
1
/2 2
1
/2 3
3
/4 5
1
/2
7 /8
Note: These allowances apply for material with Fu≤ 60 ksi.
Size Thickness, in.
Add to Finish
One Side, in.
Add to Finish
Two Sides, in.
Maximum dimension 1
1
/4or less
1
/16
1 /8
24 in. or less over 1
1
/4to 2, incl.
1
/8
1 /4
Maximum dimension 1
1
/4or less
1
/8
1 /4
over 24 in. over 1
1
/4to 2, incl.
3
/16
3 /8
56 in. wide or less over 2 to 7
1
/2, incl.
1
/4
3 /8
over 7
1
/2to 10, incl.
1
/2
5 /8
over 10 to 15, incl.
3
/4
7 /8
Over 56 in. wide over 2 to 6, incl.
1
/4
3 /8
to 72 in. wide over 6 to 10, incl.
1
/2
5 /8
over 10 to 15, incl.
3
/4
7 /8
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 21

14–22 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3
Typical Column Splices
Case I:
All-bolted flange-plated column splices between columns with
depth d
uand d lnominally the same.
For lifting devices, see Figure 14 -10.
AISC_PART 14_14th Ed._February 25, 2013 14-12-04 3:29 PM Page 22 (Black plate)

DESIGN TABLES 14–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case I:
All-bolted flange-plated column splices between columns with
depth d
uand d lnominally the same.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 23

14–24 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case II:
All-bolted flange-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
Table 14-3 (continued)
Typical Column Splices
Case III:
All-bolted flange-plated and butt-plated column splices between
columns with depth d
unominally 2 in. less than depth d l.
For lifting devices, see Figure 14 -10.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 24

DESIGN TABLES 14–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case II and III:
All-bolted flange-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 25

14–26 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IV:
All-welded flange-plated column splices between columns with
depths d
uand d lnominally the same.
For lifting devices, see Figure 14 -10.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 26

DESIGN TABLES 14–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IV:
All-welded flange-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14_14th Ed._February 12, 2013 12/02/13 9:30 AM Page 27

14–28 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IV:
All-welded flange-plated column splices between columns with
depths d
uand d lnominally the same.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 28

DESIGN TABLES 14–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IV:
All-welded flange-plated column splices between columns with
depths d
uand d lnominally the same.
Placing this additional increment of (X+Y) can be done by making weld lengths Xcontinuous across
the end of the splice plate and by increasing Y(and therefore the plate Length) if required.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 29

14–30 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case V:
All-welded flange-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 30

DESIGN TABLES 14–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case V:
All-welded flange-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 31

14–32 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VI:
Combination bolted and welded column splices between columns
with depths d
uand d lnominally the same.
AISC_PART 14:14th Ed._ 2/17/12 11:01 AM Page 32

DESIGN TABLES 14–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VI:
Combination bolted and welded column splices between columns
with depths d
uand d lnominally the same.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 33

14–34 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VII:
Combination bolted and welded flange-plated column splices between
columns with depth d
unominally 2 in. less than depth d l.
Fillers developed for bearing.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 34

DESIGN TABLES 14–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VII:
Combination bolted and welded flange-plated column splices between
columns with depth d
unominally 2 in. less than depth d l.
Fillers developed for bearing.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 35

14–36 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths d
uand d lnominally the same.
(a) Partial-joint-penetration (b) Complete-joint-penetration
groove welds groove welds
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 36

DESIGN TABLES 14–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths d
uand d lnominally the same.
Note: User to verify
weld accessibility
of channel to lower
column shaft, or
consider the use
of a bolted-bolted
connection.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 37

14–38 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths d
uand d lnominally the same.
Note: User to verify
weld accessibility
of channel to lower
column shaft, or
consider the use
of a bolted-bolted
connection.
AISC_PART 14_14th Ed._February 25, 2013 14-11-10 11:35 AM Page 38 (Black plate)

DESIGN TABLES 14–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case VIII:
Directly welded flange column splices between columns
with depths d
uand d lnominally the same.
AISC_PART 14_14th Ed._February 25, 2013 14-12-04 3:34 PM Page 39 (Black plate)

14–40 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IX:
Butt-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 40

DESIGN TABLES 14–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Case IX:
Butt-plated column splices between columns with
depth d
unominally 2 in. less than depth d l.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 41

14–42 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Cases X, XI, XII
Special column splices.
lifting and alignment devices. For lifting devices see
Figure 14-10. For alignment devices see Figure 14-11.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 42

DESIGN TABLES 14–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 14-3 (continued)
Typical Column Splices
Cases X, XI, XII
Special column splices.
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 43

14–44 DESIGN OF BEAM BEARING PLATES, COLUMN BASE PLATES…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 14:14th Ed. 2/23/11 9:55 AM Page 44

15–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 15
DESIGN OF HANGER CONNECTIONS, BRACKET
PLATES, AND CRANE-RAIL CONNECTIONS
SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2
HANGER CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–2
BRACKET PLATES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–3
CRANE-RAIL CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6
Bolted Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6
Table 15-1. Crane Rail Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–7
Welded Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–7
Hook Bolt Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8
Rail Clip Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8
Rail Clamp Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8
Patented Rail Clip Fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–9
DESIGN TABLE DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–9
PART 15 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–11
DESIGN TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–12
Table 15-2. Preliminary Hanger Connection Selection Table . . . . . . . . . . . . . . . . 15–12
Table 15-3. Net Plastic Section Modulus, Z
net . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–14
Table 15-4. Dimensions and Weights of Clevises . . . . . . . . . . . . . . . . . . . . . . . . . 15–16
Table 15-5. Clevis Numbers Compatible with Various Rods and Pins . . . . . . . . . 15–17
Table 15-6. Dimensions and Weights of Turnbuckles . . . . . . . . . . . . . . . . . . . . . . 15–18
Table 15-7. Dimensions and Weights of Sleeve Nuts . . . . . . . . . . . . . . . . . . . . . . 15–19
Table 15-8. Dimensions and Weights of Recessed-Pin Nuts . . . . . . . . . . . . . . . . . 15–20
Table 15-9. Dimensions and Weights of Clevis and Cotter Pins . . . . . . . . . . . . . . 15–21
AISC_PART 15:14th Ed. 4/1/11 9:11 AM Page 1

SCOPE
The specification requirements and other design considerations summarized in this Part
apply to the design of hanger connections, bracket plates, and crane-rail connections. For
the design of similar connections for HSS and pipe, see the AISC SpecificationChapter K.
HANGER CONNECTIONS
Hanger connections, illustrated in Figure 15-1, are usually made with a plate, tee, angle, or
pair of angles. The available strength of a hanger connection is determined from the appli-
cable limit states for the bolts (see Part 7), welds (see Part 8), and connecting elements
(see Part 9). In all cases, the available strength, φR
nor Rn/Ω, must exceed the required
strength, R
uor Ra.
15–2 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 15-1. Typical hanger connections.
(a) Tee hanger
(b) Plate hanger
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 2

BRACKET PLATES 15–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
BRACKET PLATES
A bracket plate, illustrated in Figure 15-2, acts as a cantilevered beam. The available
strength of a bracket plate is determined from the applicable limit states for the bolts (see
Part 7), welds (see Part 8), and connecting elements (see Part 9). Additionally the following
checks must be considered: flexural yielding at Sections a-a in Figure 15-2; flexural rupture
through Sections a-a in Figure 15-2; and shear yielding, local yielding and local buckling
through Sections b-b in Figure 15-2 (Muir and Thornton, 2004). The following procedures
are for a single bracket plate with the applied load P
r, where P ris the required strength using
LRFD load combinations, P
u, or the required strength using ASD load combinations, P a. In
all cases, the available strength must equal or exceed the required strength. The seat plate of
Figure 15-2 should be attached to the column and to the bracket plate(s) to prevent sidesway.
The required flexural strength at Sections a-a in Figure 15-2 is
where
e=distance shown in Figure 15-2, in.
Fig. 15-2. Bracket-plate connections.
(a) bolted (b) welded
LRFD ASD
Mu=Pue (15-1a) M a=Pae (15-1b)
Nr=Prcosθ
V
r=Prsinθ
M
r=Pre − N r(b′/2)
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 3

For flexural yielding, the available strength, φM nor Mn/Ω, of the bracket plate is
M
n=FyZ (15-2)
φ=0.90 Ω=1.67
where
Z=gross plastic section modulus of the bracket plate at Sections a-a in Figure 15-2, in.
3
For flexural rupture, the available strength, φM nor Mn/Ω, of the bracket plate is
M
n=FuZnet (15-3)
φ=0.75 Ω=2.00
where
Z
net=net plastic section modulus of the bracket plate at Sections a-a in Figure 15-2, in.
3
See Table 15-3 for the determination of Z netfor standard holes. General equations
for determination of Z
netfollow (Mohr and Murray, 2008).
For an odd number of bolt rows
(15-4)
For an even number of bolt rows
(15-5)
where
d′
h=hole diameter +
1
/16, in.
n=number of bolt rows
s=vertical bolt row spacing, in.
In both cases, the vertical edge distances are assumed to be s/2 with plate depth of a= ns.
The required shear strength at Sections b-b in Figure 15-2 is
For shear yielding, the available strength, φV
nor Vn/Ω, of the bracket plate is
V
n=0.6F ytb′ (15-7)
φ = 1.00 Ω = 1.50
where
b′= asinθ, in.
a=depth of bracket plate, in.
t=thickness of bracket plate, in.
θ=angle shown in Figure 15-2, degrees
15–4 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ztsdnsdnet h h=− ′ +′
1
4
2
()( )
Ztsdnsnet h=− ′
1
4
2
()
LRFD ASD
Vu=Pusinθ (15-6a) V a=Pasinθ (15-6b)
AISC_PART 15:14th Ed. 2/17/12 11:04 AM Page 4

BRACKET PLATES 15–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For interaction of normal and flexural strengths, the following interaction equation must
be satisfied:
(15-10)
The nominal normal strength of the bracket plate for the limit states of local yielding and
local buckling is
N
n=Fcrtb′, kips (15-11)
and the nominal flexural strength of the bracket plate for the limit states of local yielding
and local buckling is
(15-12)
For design by LRFD
φ=0.90
For design by ASD
Ω=1.67
For the limit state of local yielding of the bracket plate,
F
cr=Fy (15-13)
For the limit state of local buckling of the bracket plate,
F
cr=QFy (15-14)
LRFD ASD
(15-8a) (15-8b)
N
u=Pucosθ (15-9a) N a=Pacosθ (15-9b)
MPeN
buu u=−
′⎛


⎠2 MPeN
baa a=−
′⎛


⎠2
N
N
M
Mr
c
r
c
+≤ 10.
M
Ftbn
cr=

2
4
, kip-in.
MM
MM
NN
NNcn
ru
cn
ru=
=
=
=
φ
φ
M
M
MM
N
N
NNc
n
ra
c
n
ra=
=
=
=
Ω
Ω
The required normal and flexural strength at Sections b-b in Figure 15-2 is
AISC_PART 15:14th Ed. 3/14/11 11:38 AM Page 5

When λ≤0.70, the limit state of local buckling need not be considered (that is, Q=1).
When 0.70 <λ≤1.41
Q=1.34 −0.486λ (15-15)
When 1.41< λ
(15-16)
where
λ (15-17)
(15-18)
CRANE-RAIL CONNECTIONS
Bolted Splices
It is desirable to use properly installed and maintained bolted splice bars in crane-rail con-
nections rather than welded splice bars, which are frequently subject to failure in service.
Standard rail drilling and joint-bar punching, as furnished by manufacturers of light stan-
dard rails for track work, include round holes in rail ends and slotted holes in joint bars to
receive standard oval-neck track bolts. Holes in rails are oversized and punching in joint
bars is spaced to allow
1
/16-in. to
1
/8-in. clearance between rail ends (see manufacturers’ cat-
alogs for spacing and dimensions of holes and slots). Although this construction is
satisfactory for track and light crane service, its use in general crane service may lead to high
maintenance and joint failure. Welded splices are therefore preferable.
For best service in bolted splices, it is recommended that tight joints be required for all
rails for crane service. This will require rail ends to be finished, and the special rail drilling
and joint-bar punching tabulated in Table 15-1 and shown in Figure 15-3. Special rail
drilling is accepted by some mills, or rails may be ordered blank for shop drilling. End
finishing of standard rails can be done at the mill. However, light rails often must be end-
finished in the shop or ground at the site prior to erection. In the crane rail range from 104
to 175 lb per yard, rails and joint bars are manufactured to obtain a tight fit and no further
special end finishing, drilling or punching is required. Because of cumulative tolerance vari-
ations in holes, bolt diameters and rail ends, a slight gap may sometimes occur. It may
sometimes be necessary to ream holes through joined bar and rail to permit entry of bolts.
Joint bars for crane service are provided in various sections to match the rails. Joint bars
for light and standard rails can be purchased blank for special shop punching to obtain tight
joints. See manufacturer data for dimensions, material specifications, and the identification
necessary to match the crane-rail section.
Joint-bar bolts, as distinguished from oval-neck track bolts, have straight shanks to the
head and are manufactured to ASTM A449 specifications. Nuts are manufactured to ASTM
A563 Grade B specifications. Alternatively, ASTM A325 bolts and compatible ASTM A563
nuts can be used. Bolt assembly includes an alloy steel spring washer, furnished to American
15–6 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Q=
130
2
.
λ
=

()
+

′ ()
′= =
b
t
F
b
a
a
a
y
5 475 1 120
2
,
cosθ
length of freee edge, in.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 6

CRANE-RAIL CONNECTIONS 15–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Railway Engineering and Maintenance of Way Association (AREMA) specifications. After
installation, bolts should be retightened within 30 days and every three months thereafter.
Welded Splices
When welded splices are specified, consult the manufacturer for recommended rail-end
preparation, welding procedure, and method of ordering. Although the joint continuity made
possible by this method of splicing is desirable, the careful control required in all stages of
the welding operation may be difficult to meet during crane-rail installation. Rails should
not be attached to structural supports by welding. Rails with holes for joint bar bolts should
not be used in making welded splices.
Table 15-1
Crane Rail Splices
Rail Joint Bar Bolt Washer Wt. 2 Bars
Bolts, Nuts,
Washers
Wt.
per
Yard
Drilling Punching
Thick-
ness
and
Width
In-
side
Dia.
With
Ftg.
W/O
Ftg.
LG Dia.Grip I Hg
Hole
Dia.
ABC
Hole
Dia.
DBC
lb in. in. in. in. in. in. in. in. in. in. in. in. in. in. in. in. in. lb lb
40 1
71
/128
13/16*2
1
/25–
13
/16*4
15
/16*5 – 202
3
/16
3/41
15
/163
1
/22
1
/2
13/16
7/16×
3
/820.0 16.5
60 1
115
/128
13/16*2
1
/25–
13
/16*4
15
/16*5 – 242
11
/16
3/42
19
/3242
11
/16
13/16
7/16×
3
/836.5 29.6
85 2
17
/64
15/16*2
1
/25–
15
/16*4
15
/16*5 – 243
11
/32
7/83
5
/324
3
/43
3
/16
15/16
7/16×
3
/856.6 45.3
104 2
7
/161
1
/164561
1
/167
15
/165 6 34 3
1
/213
1
/25
1
/43
1
/21
1
/16
7/16×
1
/273.5 55.4
135 2
15
/321
3
/164561
3
/167
15
/1656 34 – 1
1
/83
5
/85
1
/23
11
/161
3
/16
7/16×
1
/2– 75.3
171 2
5
/81
3
/164561
3
/167
15
/1656 34 – 1
1
/84
7
/166
1
/44
1
/161
3
/16
7/16×
1
/2– 90.8
175 2
21
/321
3
/164561
3
/167
15
/1656 34 – 1
1
/84
1
/86
1
/43
15
/161
3
/16
7/16×
1
/2– 87.7
*Special rail drilling and joint bar punching.
Ftg. =fitting
Fig. 15-3. Special rail drilling and joint-bar punching.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 7

Hook Bolt Fastenings
Hook bolts (Figure 15-4) are used primarily with light rails when attached to beams that are
too narrow for clamps. Rail adjustment to ±
1
/2in. is inherent in the threaded shank. Hook
bolts are paired alternately 3 to 4 in. apart, spaced at about 24 in. on center. The special rail
drilling required must be done in the fabricator’s shop. Hook bolts are not recommended for
use with heavy-duty cycle cranes [Crane Manufacturers Association of America (CMAA)
Classes, D, E, and F]. It is generally recommended that hook bolts should not be used in run-
way systems that are longer than 500 ft because the bolts do not allow for longitudinal
movement of the rail.
Rail Clip Fastenings
Rail clips are forged or cast devices that are shaped to match specific rail profiles. They are
usually bolted to the runway girder flange with one bolt or are sometimes welded. Rail clips
have been used satisfactorily with all classes of cranes. However, one drawback is that when
a single bolt is used, the clip can rotate in response to rail longitudinal movement. This clip
rotation can cause cam action that might force the rail out of alignment. Because of this lim-
itation, rail clips should only be used in crane systems subject to infrequent use, and for
runways less than 500 ft in length.
Rail Clamp Fastenings
Rail clamps are a common method of attachment for heavy-duty cycle cranes. Rail clamps
are detailed to provide two types: tight and floating (see Figure 15-5). Each clamp con-
sists of two plates: an upper clamp plate and a lower filler plate. Dimensions shown are
suggested. See manufacturers’ catalogs for recommended gages, bolt sizes and detail
dimensions not shown.
The lower plate is flat and nominally matches the height of the toe of the rail flange.
The upper plate covers the lower plate and extends over the top of the lower rail flange.
In the tight clamp, the upper plate is detailed to fit tightly to the lower tail flange top, thus
“clamping” it tightly in place when the fasteners are tightened. In the past, the tight clamp
had been illustrated with the filler plates fitted tightly against the rail flange toe. This tight
fit-up was rarely achieved in practice and is not considered to be necessary to achieve a
tight type clamp. In the floating type clamp, the pieces are detailed to provide a clearance
both alongside the rail flange toe and below the upper plate. The floating type does not,
in reality, clamp the rail but merely holds the rail within the limits of the clamp clearances.
15–8 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. 15-4. Hook bolts.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 8

DESIGN TABLE DISCUSSION 15–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
High-strength bolts are recommended for both clamp types. Both types should be spaced
3 ft or less apart.
Patented Rail Clip Fastenings
Each manufacturer’s literature presents in detail the desirable aspects of the various designs.
In general, patented rail clips are easy to install due to their range of adjustment and provide
both limitation of lateral movement and allowance for longitudinal movement. Patented
rail clips should be considered as a viable alternative to conventional hook bolts, clips or
clamps. Because of their desirable characteristics, patented rail clips can be used without
restriction except as limited by the specific manufacturer’s recommendations. Installations
using patented rail clips sometimes incorporate pads beneath the rail. When this is done, the
lateral float of the rail should be limited as in the case of the tight rail clamps.
DESIGN TABLE DISCUSSION
Table 15-2. Preliminary Hanger Connection Selection Table
Values are given for the available tensile strength per in. of fitting length in bending of a tee
fitting flange or angle leg with F
u=58 ksi and F u=65 ksi. The bending strength is calcu-
lated in terms of F
u, which provides good correlation with available test data (Thornton,
1992; Swanson, 2002). Table 15-2 can be used to select a trial fitting once the number and
size of bolts required is known. The number of bolts required must be selected such that the
available tensile strength of one bolt, φr
norrn/Ω,exceeds the required tensile force per bolt,
r
utorrat.
Fig. 15-5. Rail clamps.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 9

15–10 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In this table, it is assumed that equal moments exist at the face of the tee stem or angle
leg and at the bolt line. The available flexural strength of the tee flange,φ
bMnor Mn/Ωb, is
determined with
M
n=Mp=FuZ (15-19)
φ
b=0.90 Ω b=1.67
In the above equation, the plastic section modulus, Z, per unit length of the angle or tee
flange is
(15-20)
where t is the thickness of the angle or tee flange, in. Thus, for a unit length of the angle or
tee flange the available flexural strength, φ
bMnor Mn/Ωb, is determined with
(15-21)
φ
b= 0.90 Ω b= 1.67
The tensile force on the fitting per bolt row, 2r
utor 2r at, must be less than the appropriate
(LRFD or ASD) value shown in Table 15-2 times the tributary length per pair of bolts, p
(length perpendicular to the elevation shown in Table 15-2).
Table 15-3. Net Plastic Section Modulus, Znet
Values of the net plastic section modulus Z netare given in Table 15-3 for standard holes
and numbers of fasteners spaced 3 in. on center, the usual spacing for these connections.
The values are determined using Equations 15-4 and 15-5.
Forged Steel Structural Hardware
Table 15-4. Dimensions and Weights of Clevises
Dimensions, weights and available strengths of clevises are listed in Table 15-4.
Table 15-5. Clevis Numbers Compatible with Various
Rods and Pins
Compatibility of clevises with various rods and pins is given in Table 15-5.
Table 15-6. Dimensions and Weights of Turnbuckles
Dimensions, weights and available strengths of turnbuckles are listed in Table 15-6.
Z
t
=
2
4
M
Ftn
u=
2
4
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 10

PART 15 REFERENCES 15–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 15 REFERENCES
Mohr, B.A. and Murray, T.M. (2008), “Bending Strength of Steel Bracket and Splice
Plates,” Engineering Journal, AISC, Vol. 45, No. 2, 2nd Quarter, pp. 97–106.
Muir, L.S. and Thornton, W.A. (2004), “A Direct Method for Obtaining the Plate Buckling
Coefficient for Double Coped Beams,” Engineering Journal, AISC, Vol. 41, No. 3, 3rd
Quarter, pp. 133–134.
Swanson, J.A. (2002), “Ultimate Strength Prying Models for Bolted T-Stub Connections,”
Engineering Journal, Vol. 39, No. 3, 3rd Quarter, pp. 136–147, AISC, Chicago, IL.
Thornton, W.A. (1992), “Strength and Serviceability of Hanger Connections,” Engineering
Journal, AISC, Vol. 29, No. 4, 4th Quarter, pp. 145–149, Chicago, IL. See also ERRATA,
Engineering Journal, Vol. 33, No. 1, 1st Quarter, 1996, pp. 39, 40.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 11

5
/16 3.395.102.714.082.263.401.942.911.702.55
3
/8 4.887.343.915.873.264.892.794.192.443.67
7
/16 6.659.995.327.994.436.663.805.713.325.00
1
/2 8.6813.1 6.9510.4 5.798.704.967.464.346.53
9
/16 11.016.5 8.7913.2 7.3311.0 6.289.445.498.26
5
/8 13.620.410.916.3 9.0413.6 7.7511.7 6.7810.2
11
/16 16.424.713.119.710.916.4 9.3814.1 8.2112.3
3
/4 19.529.415.623.513.019.611.216.8 9.7714.7
13
/16 22.934.518.327.615.323.013.119.711.517.2
7
/8 26.640.021.332.017.726.615.222.813.320.0
15
/16 30.545.924.436.720.330.617.426.215.322.9
1 34.752.227.841.823.234.819.829.817.426.1
1
1
/16 39.258.931.447.126.139.322.433.719.629.5
1
1
/8 44.066.135.252.929.344.025.137.822.033.0
1
3
/16 49.073.639.258.932.649.128.042.124.536.8
1
1
/4 54.381.643.465.336.254.431.046.627.140.8
5
/16 1.512.271.362.041.231.851.131.701.041.57
3
/8 2.173.261.952.941.782.671.632.451.502.26
7
/16 2.954.442.664.002.423.632.223.332.053.07
1
/2 3.865.803.475.223.164.752.894.352.674.02
9
/16 4.887.344.406.614.006.013.665.513.385.08
5
/8 6.039.065.438.164.937.414.526.804.176.27
11
/16 7.3011.0 6.579.875.978.975.478.225.057.59
3
/4 8.6813.1 7.8111.7 7.1010.7 6.519.796.019.03
13
/16 10.215.3 9.1713.8 8.3412.5 7.6411.5 7.0510.6
7
/8 11.817.810.616.0 9.6714.5 8.8613.3 8.1812.3
15
/16 13.620.412.218.411.116.710.215.3 9.3914.1
1 15.423.213.920.912.619.011.617.410.716.1
1
1
/16 17.426.215.723.614.321.413.119.612.118.1
1
1
/8 19.529.417.626.416.024.014.722.013.520.3
1
3
/16 21.832.719.629.417.826.816.324.515.122.6
1
1
/4 24.136.321.732.619.729.718.127.216.725.1
15–12 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-2a
Preliminary Hanger
Connection Selection Table
Available tensile strength, kips per linear in.,
limited by bending of the flange
t, in.
LRFDASD
Fu= 58 ksi
b, in.
LRFDASD LRFDASD LRFDASD LRFDASD
2
1
/22
1
/4
2
3
/4 3 3
1
/4
1
1
/41 1
1
/2 1
3
/4 2
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 12

5
/16 3.805.713.044.572.533.812.173.261.902.86
3
/8 5.478.234.386.583.655.483.134.702.744.11
7
/16 7.4511.2 5.968.964.977.464.266.403.725.60
1
/2 9.7314.6 7.7811.7 6.499.755.568.364.877.31
9
/16 12.318.5 9.8514.8 8.2112.3 7.0410.6 6.169.25
5
/8 15.222.912.218.310.115.2 8.6913.1 7.6011.4
11
/16 18.427.714.722.112.318.410.515.8 9.2013.8
3
/4 21.932.917.526.314.621.912.518.810.916.5
13
/16 25.738.620.630.917.125.714.722.112.819.3
7
/8 29.844.823.835.819.929.917.025.614.922.4
15
/16 34.251.427.441.122.834.319.529.417.125.7
1 38.958.531.146.825.939.022.233.419.529.3
1
1
/16 43.966.035.252.829.344.025.137.722.033.0
1
1
/8 49.374.039.459.232.849.428.142.324.637.0
1
3
/16 54.982.543.966.036.655.031.447.127.441.2
1
1
/4 60.891.448.773.140.560.934.852.230.445.7
5
/16 1.692.541.522.291.382.081.271.901.171.76
3
/8 2.433.662.193.291.992.991.822.741.682.53
7
/16 3.314.982.984.482.714.072.483.732.293.45
1
/2 4.326.503.895.853.545.323.244.882.994.50
9
/16 5.478.234.937.404.486.734.116.173.795.70
5
/8 6.7610.2 6.089.145.538.315.077.624.687.03
11
/16 8.1812.3 7.3611.1 6.6910.1 6.139.225.668.51
3
/4 9.7314.6 8.7613.2 7.9612.0 7.3011.0 6.7410.1
13
/16 11.417.210.315.4 9.3414.0 8.5612.9 7.9111.9
7
/8 13.219.911.917.910.816.3 9.9314.9 9.1713.8
15
/16 15.222.913.720.612.418.711.417.110.515.8
1 17.326.015.623.414.221.313.019.512.018.0
1
1
/16 19.529.417.626.416.024.014.622.013.520.3
1
1
/8 21.932.919.729.617.926.916.424.715.222.8
1
3
/16 24.436.722.033.020.030.018.327.516.925.4
1
1
/4 27.040.624.336.622.133.220.330.518.728.1
DESIGN TABLES 15–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-2b
Preliminary Hanger
Connection Selection Table
Available tensile strength, kips per linear in.,
limited by bending of the flange
t, in. 1
1
/41
LRFDASD
Fu= 65 ksi
1
1
/2 1
3
/4
b, in.
LRFDASD LRFDASD
2
LRFDASD LRFDASD
2
1
/22
1
/4 2
3
/4 3 3
1
/4
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 13

15–14 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-3
Net Plastic Section Modulus, Z net, in.
3
(Standard Holes)
# Bolts in
One
Vertical
Row,
n
Bracket Plate Thickness, t, in.
Bracket
Plate
Depth, d,
in.
3
/8
1
/4
3
/4
7
/8
Nominal Bolt Diameter, d, in.
5
/8
1
/2
3
/8
3
/4
5
/8
1
/2
Notes:
The area reduction per hole is assumed to be
dh+
1
/16in.
Bolts spaced 3 in. vertically with 1
1
/2-in. edge distance at top and bottom.
Interpolate for intermediate plate thicknesses.
Values are based on Equations 15-4 and 15-5.
26 1.59 2.39 3.19 3.98 4.78 2.25 3.00 3.75
39 3.70 5.55 7.40 9.26 11.1 5.25 7.00 8.75
412 6.38 9.56 12.8 15.9 19.1 9.00 12.0 15.0
515 10.1 15.1 20.2 25.2 30.2 14.3 19.0 23.8
618 14.3 21.5 28.7 35.9 43.0 20.3 27.0 33.8
721 19.6 29.5 39.3 49.1 58.9 27.8 37.0 46.3
824 25.5 38.3 51.0 63.8 76.5 36.0 48.0 60.0
927 32.4 48.6 64.8 81.0 97.2 45.8 61.0 76.3
10 30 39.8 59.8 79.7 99.6 120 56.3 75.0 93.8
12 36 57.4 86.1 115 143 172 81.0 108 135
14 42 78.1 117 156 195 234 110 147 184
16 48 102 153 204 255 306 144 192 240
18 54 129 194 258 323 387 182 243 304
20 60 159 239 319 398 478 225 300 375
22 66 193 289 386 482 579 272 363 454
24 72 230 344 459 574 689 324 432 540
26 78 269 404 539 673 808 380 507 634
28 84 312 469 625 781 937 441 588 735
30 90 359 538 717 896 1080 506 675 844
32 96 408 612 816 1020 1220 576 768 960
34 102 461 691 921 1150 1380 650 867 1080
36 108 516 775 1030 1290 1550 729 972 1220
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 14

Table 15-3 (continued)
Net Plastic Section Modulus, Z net, in.
3
(Standard Holes)
# Bolts in
One
Vertical
Row,
n
Bracket Plate Thickness, t, in.
Bracket
Plate
Depth, d,
in.
7
/8
3
/4
1
Nominal Bolt Diameter,
d, in.
5
/8
1
/2
7
/8
3
/4 1
Notes:
The area reduction per hole is assumed to be
dh+
1
/16in.
Bolts spaced 3 in. vertically with 1
1
/2-in. edge distance at top and bottom.
Interpolate for intermediate plate thicknesses.
Values are based on Equations 15-4 and 15-5.
26 4.50 5.25 2.81 3.52 4.22 4.92 5.63
39 10.5 12.3 6.59 8.24 9.89 11.5 13.2
412 18.0 21.0 11.3 14.1 16.9 19.7 22.5
515 28.5 33.3 17.8 22.3 26.8 31.2 35.7
618 40.5 47.3 25.3 31.6 38.0 44.3 50.6
721 55.5 64.8 34.7 43.4 52.1 60.8 69.4
824 72.0 84.0 45.0 56.3 67.5 78.8 90.0
927 91.5 107 57.2 71.5 85.8 100 114
10 30 113 131 70.3 87.9 105 123 141
12 36 162 189 101 127 152 177 203
14 42 221 257 138 172 207 241 276
16 48 288 336 180 225 270 315 360
18 54 365 425 228 285 342 399 456
20 60 450 525 281 352 422 492 563
22 66 545 635 340 425 510 596 681
24 72 648 756 405 506 608 709 810
26 78 761 887 475 594 713 832 951
28 84 882 1030 551 689 827 965 1100
30 90 1010 1180 633 791 949 1110 1270
32 96 1150 1340 720 900 1080 1260 1440
34 102 1300 1520 813 1020 1220 1420 1630
36 108 1460 1700 911 1140 1370 1590 1820
DESIGN TABLES 15–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7
/8
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 15

15–16 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-4
Dimensions and Weights
of Clevises
Clevis
Number
Dimensions, in.
Max.
pMax.D
Weight,
lb
Available
Strength, kips*
nbw at
LRFDASD
2
5
/8
3 /4 1
7
/16
5 /8 3
9
/161
1
/16
5 /16(+
1
/32, -0) 1 5.83
8.75
2
1
/2
7 /8 1
1
/2 2
1
/2 141
1
/4
5 /16(+
1
/32, -0) 2.5 12.5
18.8
3 1
3
/8 1
3
/4 31
1
/4 5
1
/161
1
/2
1 /2(+
1
/16, -
1
/32) 4 25.0
37.5
3
1
/2 1
1
/2 23
1
/2 1
1
/2 61
3
/4
1 /2(+
1
/16, -
1
/16) 6 30.0
45.0
4 1
3
/4 2
1
/4 41
3
/4 5
15
/162
1
/2(+
1
/16, -
1
/16) 9 35.052.5
5 2
1
/8 2
1
/2 52
1
/4 72
1
/2
5 /8(+
3
/32, -0) 16 62.5
93.8
6 2
1
/2 36 2
3
/4 83
3
/4(+
3
/32, -0) 26 90.0135
7 33
3
/4 7393
1
/2
7 /8(+
1
/8, -
1
/16) 36 114
171
8 44
1
/4 8410
1
/8 41
1
/2(+
1
/8, -
1
/16) 90 225338
Notes:
Weights and dimensions of clevises are typical; products of all suppliers are essentially similar. User shall verify with the
manufacturer that product meets available strength specifications above.
* Tabulated available strengths are based on φ= 0.50, Ω= 3.00. Strength at service load corresponds to a 3:1 safety factor
using maximum pin diameter.
AISC_PART 15:14th Ed. 2/24/11 8:11 AM Page 16

3
/8222
1
/2222
5
/82222
1
/22
1
/22
1
/22
1
/2
3
/4 2
1
/22
1
/22
1
/22
1
/22
1
/2
7
/8 2
1
/22
1
/22
1
/22
1
/23
1 3333
1
1
/8 33333
1
/2
1
1
/4 33333
1
/2
1
3
/8 333
1
/23
1
/24
1
1
/2 3
1
/23
1
/2445
1
5
/8 444555
1
3
/4 45555
1
7
/8 55555
2 5555566
2
1
/8 556666
2
1
/4 6666677
2
3
/8 66667777
2
1
/2 66677777
2
5
/8 777778
2
3
/4 777788
2
7
/8 78888888
3 78888888
3
1
/8 8888888
3
1
/4 8888888
3
3
/8 8888888
3
1
/2 888888
3
5
/8 88888
3
3
/4 88888
3
7
/8 888
4 88
DESIGN TABLES 15–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-5
Clevis Numbers Compatible with
Various Rods and Pins
Dia. of
Tap, in. Diameter of Pin, in.
5
/8
1
/2
7
/8
3
/4 1
1
/41 1
1
/2 2
1
/421
3
/4 2
1
/22
3
/4 3
3
/43
1
/23
1
/43
Notes:
Tabular values assume that the net area of the clevis through the pin hole is greater than or equal to 125% of the net area of the
rod, and is applicable to round rods without upset ends. For other net area ratios, the required clevis size may be calculated by
referring to the dimensions tabulated in Tables 15-4 and 7-17.
4
1
/44
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 17

15–18 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Notes:
Weights and dimensions of turnbuckles are typical; products of all suppliers are essentially similar. Users shall verify with
the manufacturer that product meets strength specifications above.
* Tabulated available strengths are based on φ=0.50, Ω=3.00.
Table 15-6
Dimensions and Weights of Turnbuckles
Diameter D,
in.
Rn/Ω*
φRn*
6912
Available
Strength, kips
18 24anceg 26
LRFDASD
Weight (lb) for Length a, in.Dimensions, in.
3
/8 6
9
/167
1
/8
9/161
1
/320.42 2.00
3.00
1
/2 6
25
/327
9
/16
11/161
5
/160.65 0.90 1.20 3.67
5.50
5
/8 6
15
/167
7
/8
13/161
1
/20.98 1.35 1.58 2.43 5.83
8.75
3
/4 61
1
/168
1
/8
15/161
23
/321.45 1.84 2.35 3.06 4.25 8.67
13.0
7
/8 61
5
/168
5
/81
3
/321
7
/81.85 3.02 4.20 5.43 12.0 18.0
1 61
7
/168
7
/81
9
/322
1
/322.60 4.02 4.40 6.85 10.0 15.523.3
1
1
/8 61
9
/169
1
/81
13
/322
9
/324.06 4.70 6.10 19.3 29.0
1
1
/4 61
9
/169
1
/81
9
/162
17
/324.00 6.49 7.13 11.3 13.1 25.3 38.0
1
3
/8 61
13
/169
5
/81
11
/162
3
/46.15 29.0 43.5
1
1
/2 61
7
/89
3
/41
27
/323
1
/326.15 9.70 9.13 16.8 19.4 35.0 52.5
1
5
/8 62
1
/211 1
31
/323
9
/329.80 40.9 61.3
1
3
/4 62
1
/211 2
1
/83
9
/169.80 15.3 16.0 19.5 47.2 70.8
1
7
/8 62
13
/1611
5
/82
3
/84 14.0 15.3 62.0 93.0
2 62
13
/1611
5
/82
3
/84 14.0 15.3 27.5 62.0 93.0
2
1
/4 63
5
/1612
5
/82
11
/164
5
/819.6 30.9 43.5 80.0 120
2
1
/2 63
3
/413
1
/23 5 23.3 30.9 42.4 100 150
2
3
/4 64
3
/1614
3
/83
1
/45
5
/831.5 54.0 125 188
3 64
5
/1614
5
/83
5
/86
1
/839.5 161 242
3
1
/4 65
7
/1616
7
/83
7
/86
3
/460.5 79.5 203 305
3
1
/2 65
7
/1616
7
/83
7
/86
3
/460.5 70.0 79.5 203 305
3
3
/4 6 6 18 4
5
/88
1
/295.0 280 420
4 6 6 18 4
5
/88
1
/295.0 280 420
4
1
/4 96
3
/422
1
/25
1
/49
3
/4 152 390 585
4
1
/2 96
3
/422
1
/25
1
/49
3
/4 152 390 585
4
3
/4 96
3
/422
1
/25
1
/49
3
/4 152 390 585
5 97
1
/224 6 10 200 491 737
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 18

DESIGN TABLES 15–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-7
Dimensions and Weights of Sleeve Nuts
Screw
Dia.,
D, in.
Dimensions, in.
Short Dia.
Long Dia. Length l Nut n Clear c
Notes:
Weights and dimensions of sleeve nuts are typical; products of all suppliers are essentially similar. User shall verify with
the manufacturer that strengths of sleeve nut are greater than the corresponding connecting rod when the same
material is used.
Weight,
lb
3
/8
11 /16
25 /32 4 —— 0.27
7
/16
25 /32
7 /8 4 —— 0.34
1
/2
7 /8 14 —— 0.43
9
/16
15 /16 1
1
/16 5 —— 0.64
5
/8 1
1
/16 1
7
/32 5 —— 0.93
3
/4 1
1
/4 1
7
/16 5 —— 1.12
7
/8 1
7
/16 1
5
/8 71
7
/16 1 1.75
1 1
5
/8 1
13
/16 71
7
/16 1
1
/8 2.46
1
1
/8 1
13
/16 2
1
/16 7
1
/2 1
5
/8 1
1
/4 3.10
1
1
/4 22
1
/4 7
1
/2 1
5
/8 1
3
/8 4.04
1
3
/8 2
3
/16 2
1
/2 81
7
/8 1
1
/2 4.97
1
1
/2 2
3
/8 2
11
/16 81
7
/8 1
5
/8 6.16
1
5
/8 2
9
/16 2
15
/16 8
1
/2 2
1
/16 1
3
/4 7.36
1
3
/4 2
3
/4 3
1
/8 8
1
/2 2
1
/16 1
7
/8 8.87
1
7
/8 2
15
/16 3
5
/16 92
5
/16 2 10.4
2 3
1
/8 3
1
/2 92
5
/16 2
1
/8 12.2
2
1
/4 3
1
/2 3
15
/16 9
1
/2 2
1
/2 2
3
/8 16.2
2
1
/2 3
7
/8 4
3
/8 10 2
3
/4 2
5
/8 21.1
2
3
/4 4
1
/4 4
13
/16 10
1
/2 2
15
/16 2
7
/8 26.7
3 4
5
/8 5
1
/4 11 3
3
/16 3
1
/8 33.2
3
1
/4 55
5
/8 11
1
/2 3
3
/8 3
3
/8 40.6
3
1
/2 5
3
/8 6123
5
/8 3
5
/8 49.1
3
3
/4 5
3
/4 6
3
/8 12
1
/2 3
13
/16 3
7
/8 58.6
4 6
1
/8 6
7
/8 13 4
1
/16 4
1
/8 69.2
4
1
/4 6
1
/2 7
1
/2 13
1
/2 4
3
/4 4
3
/8 75.0
4
1
/2 6
7
/8 7
15
/16 14 5 4
3
/4 90.0
4
3
/4 7
1
/4 8
3
/8 14
1
/2 5
1
/4 5 98.0
5 7
5
/8 8
7
/8 15 5
1
/2 5
1
/4 110
5
1
/4 89
1
/4 15
1
/2 5
3
/4 5
1
/2 122
5
1
/2 8
3
/8 9
3
/4 16 6 5
3
/4 142
5
3
/4 8
3
/4 10
1
/8 16
1
/2 6
1
/4 6 157
6 9
1
/8 10
5
/8 17 6
1
/2 6
1
/4 176
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 19

15–20 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-8
Dimensions and Weights of
Recessed-Pin Nuts
Pin Dia.
d, in.
DiameterThread Recess
Dc T
Pin Dimensions, in. Nut Dimensions, in.
Short
Dia.
Thick-
ness
t
Rough
Dia.
Long
Dia.
Weight,
lb
s
Notes:
Although nuts may be used on all sizes of pins as
shown above, a detail similar to that shown at the left
is preferable for pin diameters over 10 in. In this detail,
the pin is held in place by a recessed cap at each end
and secured by a bolt passing completely through the
caps and pin. Suitable provisions must be made for
attaching pilots and driving nuts.
2, 2
1
/4 1
1
/2 1
1
/8
7 /8 33
3
/8 2
5
/8
1 /4 1
2
1
/2, 2
3
/4 21
1
/8
1 /8 13
5
/8 4
1
/8 3
1
/8
1 /4 2
3, 3
1
/4, 3
1
/2 2
1
/2 1
1
/4
1 /8 1
1
/8 4
3
/8 53
7
/8
3 /8 3
3
3
/4, 4 31
3
/8
1 /4 1
1
/4 4
7
/8 5
5
/8 4
3
/8
3 /8 4
4
1
/4, 4
1
/2, 4
3
/4 3
1
/2 1
1
/2
1 /4 1
3
/8 5
3
/4 6
5
/8 5
1
/4
1 /2 5
5, 5
1
/4 41
5
/8
1 /4 1
1
/2 6
1
/4 7
1
/4 5
3
/4
1 /2 6
5
1
/2, 5
3
/4, 6 4
1
/2 1
3
/4
1 /4 1
5
/8 78
1
/8 6
1
/2
5 /8 8
6
1
/4, 6
1
/2 51
7
/8
3 /8 1
3
/4 7
5
/8 8
7
/8 7
5
/8 10
6
3
/4, 7 5
1
/2 2
3
/8 1
7
/8 8
1
/8 9
3
/8 7
1
/2
3 /4 12
7
1
/4, 7
1
/2 5
1
/2 2
3
/8 1
7
/8 8
5
/8 10 8
3
/4 14
7
3
/4, 8, 8
1
/4 62
1
/4
3 /8 2
1
/8 9
3
/8 10
7
/8 8
3
/4
3 /4 19
8
1
/2, 8
3
/4, 9 62
1
/4
3 /8 2
1
/810
1
/4 11
7
/8 9
5
/8
3 /4 24
9
1
/4, 9
1
/2 62
3
/8
3 /8 2
1
/411
1
/4 13 10
5
/8
3 /4 32
9
3
/4, 10 62
3
/8
3 /8 2
1
/411
1
/4 13 10
5
/8
3 /4 32
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 20

DESIGN TABLES 15–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 15-9
Dimensions and Weights of Clevis and
Cotter Pins
Pin Diameter d,
in.
Pins with Heads Cotter
Head Diameter h,
in.
Weight of One,
lb
Length c,
in.
Diameter p,
in.
Weight per 100,
lb
c
1
1
/4 1
1
/2 0.19 +0.35l 2
1
/4 2.64
1
1
/2 1
3
/4 0.26 +0.50l 2
1
/2
1 /4 3.10
1
3
/4 2 0.33 +0.68l 2
3
/4
1 /4 3.50
2 2
3
/8 0.47 +0.89l 3
3
/8 9.00
2
1
/4 2
5
/8 0.58 +1.13l 3
1
/4
3 /8 9.40
2
1
/2 2
7
/8 0.70 +1.39l 3
3
/4
3 /8 10.9
2
3
/4 3
1
/8 0.82 +1.68l 4
3
/8 11.4
3 3
1
/2 1.02 +2.00l 5
1
/2 28.5
3
1
/4 3
3
/4 1.17 +2.35l 5
1
/2 28.5
3
1
/2 4 1.34 +2.73l 6
1
/2 33.8
3
3
/4 4
1
/4 1.51 +3.13l 6
1
/2 33.8
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 21

15–22 DESIGN OF HANGER CONNECTIONS, BRACKET PLATES, AND…
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 15:14th Ed. 2/24/11 8:12 AM Page 22

16–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 16
SPECIFICATIONS AND CODES
SPECIFICATION FOR STRUCTURAL STEEL BUILDINGS,
JUNE 22, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–i
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–v
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xxvii
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliii
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–1
Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–241
SPECIFICATION FOR STRUCTURAL JOINTS USING
HIGH-STRENGTH BOLTS, DECEMBER 31, 2009 . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–i
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.2–iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–v
Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–vii
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–ix
Specification and Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–1
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–80
CODE OF STANDARD PRACTICE FOR STEEL BUILDINGS
AND BRIDGES, APRIL 14, 2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–i
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–v
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–vii
Specification and Commentary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–1
AISC_PART 16_Spec.1_A:14th Ed. 4/1/11 9:15 AM Page 1

16.1–2 SPECIFICATIONS AND CODES
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 2

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Specification
for Structural Steel Buildings
June 22, 2010
Supersedes the
Specification for Structural Steel Buildings
dated March 9, 2005
and all previous versions of this specification
Approved by the AISC Committee on Specifications
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700
Chicago, Illinois 60601-1802
ANSI/AISC 360-10
An American National Standard
AISC_PART 16_Spec.1_A:14th Ed. 2/24/11 3:34 PM Page i

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC © 2010
by
American Institute of Steel Construction
All rights reserved. This book or any part thereof
must not be reproduced in any form without the
written permission of the publisher.
The AISC logo is a registered trademark of AISC.
The information presented in this publication has been prepared in accordance with recog-
nized engineering principles and is for general information only. While it is believed to be
accurate, this information should not be used or relied upon for any specific application
without competent professional examination and verification of its accuracy, suitability and
applicability by a licensed professional engineer, designer or architect. The publication of
the material contained herein is not intended as a representation or warranty on the part of
the American Institute of Steel Construction or of any other person named herein, that this
information is suitable for any general or particular use or of freedom from infringement of
any patent or patents. Anyone making use of this information assumes all liability arising
from such use.
Caution must be exercised when relying upon other specifications and codes developed by
other bodies and incorporated by reference herein since such material may be modified or
amended from time to time subsequent to the printing of this edition. The Institute bears no
responsibility for such material other than to refer to it and incorporate it by reference at the
time of the initial publication of this edition.
Printed in the United States of America
Second Printing: February 2012
Third Printing: February 2013
Fourth Printing: February 2015
AISC_PART 16_Spec.1_A_14th Ed._February 25, 2013 14-11-22 12:44 PM Page ii (Black plate)

16.1–iii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PREFACE
(This Preface is not part of ANSI/AISC 360-10, Specification for Structural Steel Buildings,
but is included for informational purposes only.)
This Specification is based upon past successful usage, advances in the state of knowledge,
and changes in design practice. The 2010 American Institute of Steel Construction’s
Specification for Structural Steel Buildingsprovides an integrated treatment of allowable
stress design (ASD) and load and resistance factor design (LRFD), and replaces earlier
Specifications. As indicated in Chapter B of the Specification, designs can be made accord-
ing to either ASD or LRFD provisions.
This Specification has been developed as a consensus document to provide a uniform
practice in the design of steel-framed buildings and other structures. The intention is to pro-
vide design criteria for routine use and not to provide specific criteria for infrequently
encountered problems, which occur in the full range of structural design.
This Specification is the result of the consensus deliberations of a committee of structural
engineers with wide experience and high professional standing, representing a wide geo-
graphical distribution throughout the United States. The committee includes approximately
equal numbers of engineers in private practice and code agencies, engineers involved in
research and teaching, and engineers employed by steel fabricating and producing compa-
nies. The contributions and assistance of more than 50 additional professional volunteers
working in ten task committees are also hereby acknowledged.
The Symbols, Glossary and Appendices to this Specification are an integral part of the
Specification. A non-mandatory Commentary has been prepared to provide background for
the Specification provisions and the user is encouraged to consult it. Additionally, non-
mandatory User Notes are interspersed throughout the Specification to provide concise and
practical guidance in the application of the provisions.
The reader is cautioned that professional judgment must be exercised when data or rec-
ommendations in the Specification are applied, as described more fully in the disclaimer
notice preceding this Preface.
This Specification was approved by the Committee on Specifications:
James M. Fisher, Chairman Louis F. Geschwindner
Edward E. Garvin, Vice Chairman Lawrence G. Griffis
Hansraj G. Ashar John L. Gross
William F. Baker Jerome F. Hajjar
John M. Barsom Patrick M. Hassett
William D. Bast Tony C. Hazel
Reidar Bjorhovde Mark V. Holland
Roger L. Brockenbrough Ronald J. Janowiak
Gregory G. Deierlein Richard C. Kaehler
Bruce R. Ellingwood Lawrence A. Kloiber
Michael D. Engelhardt Lawrence F. Kruth
Shu-Jin Fang Jay W. Larson
Steven J. Fenves Roberto T. Leon
John W. Fisher James O. Malley
Theodore V. Galambos Sanjeev R. Malushte
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page iii

16.1–iv PREFACE
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
David L. McKenzie Robert E. Shaw, Jr.
Duane K. Miller Donald R. Sherman
Larry S. Muir W. Lee Shoemaker
Thomas M. Murray William A. Thornton
R. Shankar Nair Raymond H. R. Tide
Jack E. Petersen Chia-Ming Uang
Douglas A. Rees-Evans Donald W. White
Thomas A. Sabol Cynthia J. Duncan, Secretary
The Committee gratefully acknowledges the following task committee members and staff
for their contribution to this document:
Allen Adams Brent Leu
Farid Alfawakhiri J. Walter Lewis
Susan Burmeister William Lindley
Bruce M. Butler Stanley Lindsey
Charles J. Carter LeRoy Lutz
Helen Chen Bonnie Manley
Bernard Cvijanovic Peter Marshall
Robert Disque Margaret Matthew
Carol Drucker Curtis L. Mayes
W. Samuel Easterling William McGuire
Duane Ellifritt Saul Mednick
Marshall T. Ferrell James Milke
Christopher M. Foley Heath Mitchell
Steven Freed Patrick Newman
Fernando Frias Jeffrey Packer
Nancy Gavlin Frederick Palmer
Amanuel Gebremeskel Dhiren Panda
Rodney D. Gibble Teoman Pekoz
Subhash Goel Clarkson Pinkham
Arvind Goverdhan Thomas Poulos
Kurt Gustafson Christopher Raebel
Tom Harrington Thomas D. Reed
Todd Helwig Clinton Rex
Richard Henige Benjamin Schafer
Stephen Herlache Thomas Schlafly
Steve Herth Monica Stockmann
Keith Hjelmstad James Swanson
Nestor Iwankiw Steven J. Thomas
William P. Jacobs, V Emile Troup
Matthew Johann Brian Uy
Daniel Kaufman Amit H. Varma
Keith Landwehr Sriramulu Vinnakota
Barbara Lane Ralph Vosters
Michael Lederle Robert Weber
Roberto Leon Michael A. West
Andres Lepage Ronald D. Ziemian
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page iv

16.1–v
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE OF CONTENTS
SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xliii
SPECIFICATION
A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1. Seismic Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Nuclear Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
A2. Referenced Specifications, Codes and Standards . . . . . . . . . . . . . . . . . . . . . . . 2
A3. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1. Structural Steel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1a. ASTM Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1b. Unidentified Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1c. Rolled Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1d. Built-Up Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Bolts, Washers and Nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4. Anchor Rods and Threaded Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5. Consumables for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6. Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
A4. Structural Design Drawings and Specifications . . . . . . . . . . . . . . . . . . . . . . . . 9
B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B2. Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B3. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1. Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2. Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3. Design for Strength Using Load and Resistance Factor Design
(LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4. Design for Strength Using Allowable Strength Design (ASD) . . . . . . . . 11
5. Design for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6. Design of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6a. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
6b. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7. Moment Redistribution in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
8. Diaphragms and Collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9. Design for Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10. Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
11. Design for Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
12. Design for Fire Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page v

16.1–vi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
13. Design for Corrosion Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
14. Anchorage to Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B4. Member Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1. Classification of Sections for Local Buckling . . . . . . . . . . . . . . . . . . . . . 14
1a. Unstiffened Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1b. Stiffened Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2. Design Wall Thickness for HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Gross and Net Area Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3a. Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3b. Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B5. Fabrication and Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B6. Quality Control and Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B7. Evaluation of Existing Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
C. DESIGN FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1. Direct Analysis Method of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2. Alternative Methods of Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
C2. Calculation of Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1. General Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2. Consideration of Initial Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2a. Direct Modeling of Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2b. Use of Notional Loads to Represent Imperfections . . . . . . . . . . . . . . . . . 22
3. Adjustments to Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
C3. Calculation of Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
D. DESIGN OF MEMBERS FOR TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D1. Slenderness Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D2. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
D3. Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D4. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
D5. Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
D6. Eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
E. DESIGN OF MEMBERS FOR COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . . 31
E1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
E2. Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
E3. Flexural Buckling of Members without Slender Elements . . . . . . . . . . . . . . . 33
E4. Torsional and Flexural-Torsional Buckling of Members Without
Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
E5. Single Angle Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page vi

TABLE OF CONTENTS 16.1–vii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
E6. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
E7. Members with Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1. Slender Unstiffened Elements, Q
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2. Slender Stiffened Elements, Q
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
F. DESIGN OF MEMBERS FOR FLEXURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
F1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
F3. Doubly Symmetric I-Shaped Members With Compact Webs and
Noncompact or Slender Flanges Bent About Their Major Axis . . . . . . . . . . . 49
1. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
F4. Other I-Shaped Members With Compact or Noncompact Webs Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1. Compression Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4. Tension Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members With
Slender Webs Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1. Compression Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3. Compression Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4. Tension Flange Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F6. I-Shaped Members and Channels Bent About Their Minor Axis . . . . . . . . . . 55
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2. Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
F7. Square and Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . 56
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2. Flange Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3. Web Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F8. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2. Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
F9. Tees and Double Angles Loaded in the Plane of Symmetry . . . . . . . . . . . . . . 58
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3. Flange Local Buckling of Tees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4. Local Buckling of Tee Stems in Flexural Compression . . . . . . . . . . . . . 59
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page vii

16.1–viii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F10. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3. Leg Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
F11. Rectangular Bars and Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
F12. Unsymmetrical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3. Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
F13. Proportions of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
1. Strength Reductions for Members With Holes in the
Tension Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2. Proportioning Limits for I-Shaped Members . . . . . . . . . . . . . . . . . . . . . . 64
3. Cover Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4. Built-Up Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5. Unbraced Length for Moment Redistribution . . . . . . . . . . . . . . . . . . . . . 66
G. DESIGN OF MEMBERS FOR SHEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
G1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
G2. Members With Unstiffened or Stiffened Webs . . . . . . . . . . . . . . . . . . . . . . . . 67
1. Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
G3. Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1. Limits on the Use of Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . 70
2. Shear Strength With Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . 70
3. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
G4. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
G5. Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . . . . . . . . . . .71
G6. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
G7. Weak Axis Shear in Doubly Symmetric and Singly
Symmetric Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
G8. Beams and Girders with Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
H. DESIGN OF MEMBERS FOR COMBINED FORCES
AND TORSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
H1. Doubly and Singly Symmetric Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2. Doubly and Singly Symmetric Members Subject to Flexure
and Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3. Doubly Symmetric Rolled Compact Members Subject to
Single Axis Flexure and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page viii

TABLE OF CONTENTS 16.1–ix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
H2. Unsymmetric and Other Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
H3. Members Subject to Torsion and Combined Torsion, Flexure,
Shear and/or Axial force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1. Round and Rectangular HSS Subject to Torsion . . . . . . . . . . . . . . . . . . . 77
2. HSS Subject to Combined Torsion, Shear, Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3. Non-HSS Members Subject to Torsion and Combined Stress . . . . . . . . 79
H4. Rupture of Flanges With Holes Subject to Tension . . . . . . . . . . . . . . . . . . . . . 79
I. DESIGN OF COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
I1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
1. Concrete and Steel Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2. Nominal Strength of Composite Sections . . . . . . . . . . . . . . . . . . . . . . . . 82
2a. Plastic Stress Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2b. Strain Compatibility Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3. Material Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4. Classification of Filled Composite Sections for Local Buckling . . . . . . 83
I2. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
1c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1d. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
1e. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2d. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
I3. Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1a. Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
1b. Strength During Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2. Composite Beams With Steel Headed Stud or Steel
Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2a. Positive Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2b. Negative Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2c. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . . 90
2d. Load Transfer Between Steel Beam and Concrete Slab . . . . . . . . . . . . . 90
3. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4b. Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page ix

16.1–x TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I4. Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1. Filled and Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . . 93
I5. Combined Flexure and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
I6. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2. Force Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2a. External Force Applied to Steel Section . . . . . . . . . . . . . . . . . . . . . . . . . 94
2b. External Force Applied to Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2c. External Force Applied Concurrently to Steel and Concrete . . . . . . . . . 94
3. Force Transfer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3a. Direct Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3b. Shear Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3c. Direct Bond Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4a. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4b. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
I7. Composite Diaphragms and Collector Beams . . . . . . . . . . . . . . . . . . . . . . . . . 96
I8. Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2. Steel Anchors in Composite Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2a. Strength of Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2b. Strength of Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2c. Required Number of Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2d. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3. Steel Anchors in Composite Components . . . . . . . . . . . . . . . . . . . . . . . .100
3a. Shear Strength of Steel Headed Stud Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3b. Tensile Strength of Steel Headed Stud Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3c. Strength of Steel Headed Stud Anchors for Interaction of Shear
and Tension in Composite Components . . . . . . . . . . . . . . . . . . . . . . . . 102
3d. Shear Strength of Steel Channel Anchors in
Composite Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3e. Detailing Requirements in Composite Components . . . . . . . . . . . . . . . 104
I9. Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
J. DESIGN OF CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
J1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
1. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4. Compression Members With Bearing Joints . . . . . . . . . . . . . . . . . . . . . 106
5. Splices in Heavy Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page x

TABLE OF CONTENTS 16.1–xi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6. Weld Access Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7. Placement of Welds and Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8. Bolts in Combination With Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9. High-Strength Bolts in Combination With Rivets . . . . . . . . . . . . . . . . . 108
10. Limitations on Bolted and Welded Connections . . . . . . . . . . . . . . . . . . 108
J2. Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1. Groove Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2. Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3. Plug and Slot Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4. Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5. Combination of Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6. Filler Metal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7. Mixed Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
J3. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
1. High-Strength Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
2. Size and Use of Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3. Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4. Minimum Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5. Maximum Spacing and Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . 122
6. Tensile and Shear Strength of Bolts and Threaded Parts . . . . . . . . . . . . 124
7. Combined Tension and Shear in Bearing-Type Connections . . . . . . . . 125
8. High-Strength Bolts in Slip-Critical Connections . . . . . . . . . . . . . . . . . 126
9. Combined Tension and Shear in Slip-Critical Connections . . . . . . . . . 127
10. Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11. Special Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
12. Tension Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
J4. Affected Elements of Members and Connecting Elements . . . . . . . . . . . . . . 128
1. Strength of Elements in Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2. Strength of Elements in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
3. Block Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
4. Strength of Elements in Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5. Strength of Elements in Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
J5. Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1. Fillers in Welded Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1a. Thin Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
1b. Thick Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
2. Fillers in Bolted Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
AISC_PART 16_Spec.1_A_14th Ed._February 25, 2013 14-11-26 1:41 PM Page xi (Black plate)

16.1–xii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
J6. Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
J7. Bearing Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
J8. Column Bases and Bearing on Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
J9. Anchor Rods and Embedments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
J10. Flanges and Webs with Concentrated Forces . . . . . . . . . . . . . . . . . . . . . . . . 133
1. Flange Local Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2. Web Local Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3. Web Local Crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4. Web Sidesway Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5. Web Compression Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6. Web Panel Zone Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7. Unframed Ends of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . 138
8. Additional Stiffener Requirements for Concentrated Forces . . . . . . . . . 138
9. Additional Doubler Plate Requirements for Concentrated Forces . . . . 138
K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS . . . . . . . . . . . . . . . 140
K1. Concentrated Forces on HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
K2. HSS-to-HSS Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
K3. HSS-to-HSS Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
K4. Welds of Plates and Branches to Rectangular HSS . . . . . . . . . . . . . . . . . . . . 154
L. DESIGN FOR SERVICEABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L2. Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L3. Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
L4. Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L5. Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L6. Wind-Induced Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L7. Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
L8. Connection Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
M. FABRICATION AND ERECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
M1. Shop and Erection Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
M2. Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1. Cambering, Curving and Straightening . . . . . . . . . . . . . . . . . . . . . . . . . 165
2. Thermal Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
AISC_PART 16_Spec.1_A_14th Ed._February 25, 2013 25/02/13 1:16 PM Page xii

TABLE OF CONTENTS 16.1–xiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Planing of Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4. Welded Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5. Bolted Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6. Compression Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7. Dimensional Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8. Finish of Column Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
9. Holes for Anchor Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
10. Drain Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
11. Requirements for Galvanized Members . . . . . . . . . . . . . . . . . . . . . . . . 168
M3. Shop Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2. Inaccessible Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
3. Contact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4. Finished Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
5. Surfaces Adjacent to Field Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
M4. Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
1. Column Base Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2. Stability and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
3. Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4. Fit of Column Compression Joints and Base Plates . . . . . . . . . . . . . . . 169
5. Field Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6. Field Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
N. QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . 170
N1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
N2. Fabricator and Erector Quality Control Program . . . . . . . . . . . . . . . . . . . . . 171
N3. Fabricator and Erector Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
1. Submittals for Steel Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
2. Available Documents for Steel Construction . . . . . . . . . . . . . . . . . . . . . 171
N4. Inspection and Nondestructive Testing Personnel . . . . . . . . . . . . . . . . . . . . . 172
1. Quality Control Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . . . 172
2. Quality Assurance Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . 173
3. NDT Personnel Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
N5. Minimum Requirements for Inspection of Structural Steel Buildings . . . . . 173
1. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
2. Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
3. Coordinated Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4. Inspection of Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5. Nondestructive Testing of Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . 177
5a. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5b. CJP Groove Weld NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5c. Access Hole NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5d. Welded Joints Subjected to Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5e. Reduction of Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . 178
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xiii

16.1–xiv TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5f. Increase in Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5g. Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6. Inspection of High-Strength Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7. Other Inspection Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
N6. Minimum Requirements for Inspection of Composite Construction . . . . . . 181
N7. Approved Fabricators and Erectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
N8. Nonconforming Material and Workmanship . . . . . . . . . . . . . . . . . . . . . . . . . 182
APPENDIX 1. DESIGN BY INELASTIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 183
1.1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
1.2. Ductility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
1. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
2. Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3. Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1.3. Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
1. Material Properties and Yield Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 186
2. Geometric Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
3. Residual Stress and Partial Yielding Effects . . . . . . . . . . . . . . . . . . . . . 187
APPENDIX 2. DESIGN FOR PONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2.1. Simplified Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
2.2. Improved Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
APPENDIX 3. DESIGN FOR FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.2. Calculation of Maximum Stresses and Stress Ranges . . . . . . . . . . . . . . . . . . 193
3.3. Plain Material and Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
3.4. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.5. Special Fabrication and Erection Requirements . . . . . . . . . . . . . . . . . . . . . . 197
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS . . . . . . . . . 214
4.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.1. Performance Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.2. Design by Engineering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.1.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.1.4. Load Combinations and Required Strength . . . . . . . . . . . . . . . . . . 215
4.2. Structural Design for Fire Conditions by Analysis . . . . . . . . . . . . . . . . . . . . 215
4.2.1. Design-Basis Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.2.1.1. Localized Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
4.2.1.2. Post-Flashover Compartment Fires . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.1.3. Exterior Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.1.4. Active Fire Protection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.2. Temperatures in Structural Systems under Fire Conditions . . . . . 216
4.2.3. Material Strengths at Elevated Temperatures . . . . . . . . . . . . . . . . 216AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xiv

TABLE OF CONTENTS 16.1–xv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.3.1. Thermal Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
4.2.3.2. Mechanical Properties at Elevated Temperatures . . . . . . . . . . . . . 217
4.2.4. Structural Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.2.4.1. General Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.2.4.2. Strength Requirements and Deformation Limits . . . . . . . . . . . . . . 218
4.2.4.3. Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.3a. Advanced Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.3b. Simple Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.2.4.4. Design Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3.1. Qualification Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.3.2. Restrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.3.3. Unrestrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES . . . . . . . . . . . . . . 223
5.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
5.2. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
1. Determination of Required Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
2. Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3. Chemical Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
4. Base Metal Notch Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5. Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6. Bolts and Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.3. Evaluation by Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
1. Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
2. Strength Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.4. Evaluation by Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
1. Determination of Load Rating by Testing . . . . . . . . . . . . . . . . . . . . . . . 225
2. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.5. Evaluation Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS . . . . . . 227
6.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.2. Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
1. Relative Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
2. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.3. Beam Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1. Lateral Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1a. Relative Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
1b. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2. Torsional Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2a. Nodal Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
2b. Continuous Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xv

16.1–xvi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.4 Beam-Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN
FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.2. Effective Length Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
2. Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
3. Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.3 First-Order Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2. Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
3. Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS . . . . . . . . . . . . . 237
8.1. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
8.2. Calculation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
1. Multiplier B
1for P-δEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
2. Multiplier B
2for P-ΔEffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
COMMENTARY
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
COMMENTARY SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
COMMENTARY GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A. GENERAL PROVISIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A2. Referenced Specifications, Codes and Standards . . . . . . . . . . . . . . . . . . . . . 247
A3. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1. Structural Steel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1a. ASTM Designations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
1c. Rolled Heavy Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
2. Steel Castings and Forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
3. Bolts, Washers and Nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
4. Anchor Rods and Threaded Rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
5. Consumables for Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
A4. Structural Design Drawings and Specifications . . . . . . . . . . . . . . . . . . . . . . 252
B. DESIGN REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
B2. Loads and Load Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
B3. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
1. Required Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
2. Limit States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xvi

TABLE OF CONTENTS 16.1–xvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Design for Strength Using Load and Resistance Factor Design
(LRFD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
4. Design for Strength Using Allowable Strength Design (ASD) . . . . . . . 260
5. Design for Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6. Design of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
7. Moment Redistribution in Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8. Diaphragms and Collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
10. Design for Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12. Design for Fire Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
13. Design for Corrosion Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
B4. Member Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
1. Classifications of Sections for Local Buckling . . . . . . . . . . . . . . . . . . . 268
2. Design Wall Thickness for HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3. Gross and Net Area Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3a. Gross Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
3b. Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
C. DESIGN FOR STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
C1. General Stability Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
C2. Calculation of Required Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
1. General Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
2. Consideration of Initial Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . 279
3. Adjustments to Stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
C3. Calculation of Available Strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
D. DESIGN OF MEMBERS FOR TENSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D1. Slenderness Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D2. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D3. Effective Net Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
D4. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
D5. Pin-Connected Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
D6. Eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
1. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
E. DESIGN OF MEMBERS FOR COMPRESSION . . . . . . . . . . . . . . . . . . . . . . . 290
E1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
E2. Effective Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
E3. Flexural Buckling of Members Without Slender Elements . . . . . . . . . . . . . . 292
E4. Torsional and Flexural-Torsional Buckling of Members
Without Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
E5. Single Angle Compression Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
E6. Built-Up Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xvii

16.1–xviii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
2. Dimensional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
E7. Members with Slender Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
1. Slender Unstiffened Elements, Q
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
2. Slender Stiffened Elements, Q
a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
F. DESIGN OF MEMBERS FOR FLEXURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
F1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
F2. Doubly Symmetric Compact I-Shaped Members and Channels
Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
F3. Doubly Symmetric I-Shaped Members With Compact Webs and
Noncompact or Slender Flanges Bent About Their Major Axis . . . . . . . . . . 310
F4. Other I-Shaped Members with Compact or Noncompact Webs Bent
About Their Major Axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members
with Slender Webs Bent About Their Major Axis . . . . . . . . . . . . . . . . . . . . . 312
F6. I-Shaped Members and Channels Bent About Their Minor Axis . . . . . . . . . 312
F7. Square and Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . 312
F8. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
F9. Tees and Double Angles Loaded in the Plane of Symmetry . . . . . . . . . . . . . 314
F10. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
1. Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
2. Lateral-Torsional Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
3. Leg Local Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
F11. Rectangular Bars and Rounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
F12. Unsymmetrical Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
F13. Proportions of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
1. Strength Reductions for Members With Holes in the
Tension Flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2. Proportioning Limits for I-Shaped Members . . . . . . . . . . . . . . . . . . . . . 323
3. Cover Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
5. Unbraced Length for Moment Redistribution . . . . . . . . . . . . . . . . . . . . 324
G. DESIGN OF MEMBERS FOR SHEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
G1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
G2. Members With Unstiffened or Stiffened Webs . . . . . . . . . . . . . . . . . . . . . . . 325
1. Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
2. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
G3. Tension Field Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
1. Limits on the Use of Tension Field Action . . . . . . . . . . . . . . . . . . . . . . 327
2. Shear Strength With Tension Field Action . . . . . . . . . . . . . . . . . . . . . . 328
3. Transverse Stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
G4. Single Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
G5. Rectangular HSS and Box-Shaped Members . . . . . . . . . . . . . . . . . . . . . . . . 329
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xviii

TABLE OF CONTENTS 16.1–xix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
G6. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
G7. Weak Axis Shear in Doubly and Singly Symmetric Shapes . . . . . . . . . . . . . 330
G8. Beams and Girders with Web Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION . . . . 331
H1. Doubly and Singly Symmetric Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
2. Doubly and Singly Symmetric Members in Flexure and Tension . . . . . 335
3. Doubly Symmetric Rolled Compact Members Subject to
Single Axis Flexure and Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 335
H2. Unsymmetric and Other Members Subject to Flexure
and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear
and/or Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
1. Round and Rectangular HSS Subject to Torsion . . . . . . . . . . . . . . . . . . 341
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force . . 342
3. Non-HSS Members Subject to Torsion and Combined Stress . . . . . . . 343
H4. Rupture of Flanges With Holes Subject to Tension . . . . . . . . . . . . . . . . . . . . 343
I. DESIGN OF COMPOSITE MEMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
I1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
1. Concrete and Steel Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
2. Nominal Strength of Composite Sections . . . . . . . . . . . . . . . . . . . . . . . 346
2a. Plastic Stress Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
2b. Strain-Compatibility Aproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
3. Material Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
4. Classification of Filled Composite Sections for Local Buckling . . . . . 348
I2. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
1. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2a. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2b. Compressive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
2c. Tensile Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
I3. Flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
1a. Effective Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
1b. Strength During Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
2. Composite Beams With Steel Headed Stud or
Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xix

16.1–xx TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2a. Positive Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
2b. Negative Flexural Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
2c. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . 360
2d. Load Transfer Between Steel Beam and Concrete Slab . . . . . . . . . . . . 360
3. Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
4. Filled Composite Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
I4. Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
1. Filled and Encased Composite Members . . . . . . . . . . . . . . . . . . . . . . . . 365
2. Composite Beams With Formed Steel Deck . . . . . . . . . . . . . . . . . . . . . 365
I5. Combined Flexure and Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
I6. Load Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
2. Force Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
3. Force Transfer Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3a. Direct Bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
3b. Shear Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
3c. Direct Bond Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
4. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
I7. Composite Diaphragms and Collector Beams . . . . . . . . . . . . . . . . . . . . . . . . 374
I8. Steel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
2. Steel Anchors in Composite Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
2a. Strength of Steel Headed Stud Anchors . . . . . . . . . . . . . . . . . . . . . . . . . 377
2b. Strength of Steel Channel Anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
2d. Detailing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
3. Steel Anchors in Composite Components . . . . . . . . . . . . . . . . . . . . . . . 380
I9. Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
J. DESIGN OF CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
J1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
1. Design Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
2. Simple Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
3. Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
4. Compression Members With Bearing Joints . . . . . . . . . . . . . . . . . . . . . 384
5. Splices in Heavy Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
6. Weld Access Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
7. Placement of Welds and Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
8. Bolts in Combination With Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
9. High-Strength Bolts in Combination With Rivets . . . . . . . . . . . . . . . . . 388
10. Limitations on Bolted and Welded Connections . . . . . . . . . . . . . . . . . . 388
J2. Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
1. Groove Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
1a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xx

TABLE OF CONTENTS 16.1–xxi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2. Fillet Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
2b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
3. Plug and Slot Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3a. Effective Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3b. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
4. Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
5. Combination of Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
6. Filler Metal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
7. Mixed Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
J3. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
1. High-Strength Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
2. Size and Use of Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
3. Minimum Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
4. Minimum Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
5. Maximum Spacing and Edge Distance . . . . . . . . . . . . . . . . . . . . . . . . . 402
6. Tension and Shear Strength of Bolts and Threaded Parts . . . . . . . . . . . 402
7. Combined Tension and Shear in Bearing-Type Connections . . . . . . . . 404
8. High-Strength Bolts in Slip-Critical Connections . . . . . . . . . . . . . . . . . 406
9. Combined Tension and Shear in Slip-Critical Connections . . . . . . . . . 410
10. Bearing Strength at Bolt Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
12. Tension Fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
J4. Affected Elements of Members and Connecting Elements . . . . . . . . . . . . . . 411
1. Strength of Elements in Tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
2. Strength of Elements in Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
3. Block Shear Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
4. Strength of Elements in Compression . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J5. Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J7. Bearing Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
J8. Column Bases and Bearing on Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
J9. Anchor Rods and Embedments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
J10. Flanges and Webs with Concentrated Forces . . . . . . . . . . . . . . . . . . . . . . . . 415
1. Flange Local Bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
2. Web Local Yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
3. Web Local Crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
4. Web Sidesway Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
5. Web Compression Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
6. Web Panel-Zone Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
7. Unframed Ends of Beams and Girders . . . . . . . . . . . . . . . . . . . . . . . . . 421
8. Additional Stiffener Requirements for Concentrated Forces . . . . . . . . 422
9. Additional Doubler Plate Requirements for Concentrated Forces . . . . 423
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxi

16.1–xxii TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS . . . . . . . . . . . . . . . 425
K1. Concentrated Forces on HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
K2. HSS-to-HSS Truss Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
1. Definitions of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
2. Round HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
3. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
K3. HSS-to-HSS Moment Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
K4. Welds of Plates and Branches to Rectangular HSS . . . . . . . . . . . . . . . . . . . . 437
L. DESIGN FOR SERVICEABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
L1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
L2. Camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
L3. Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
L4. Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
L5. Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
L6. Wind-Induced Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
L7. Expansion and Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
L8. Connection Slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
M. FABRICATION AND ERECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
M1. Shop and Erection Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
M2. Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
1. Cambering, Curving and Straightening . . . . . . . . . . . . . . . . . . . . . . . . . 445
2. Thermal Cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
4. Welded Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
5. Bolted Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
10. Drain Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
11. Requirements for Galvanized Members . . . . . . . . . . . . . . . . . . . . . . . . 447
M3. Shop Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
3. Contact Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
5. Surfaces Adjacent to Field Welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
M4. Erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
2. Stability and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
4. Fit of Column Compression Joints and Base Plates . . . . . . . . . . . . . . . 448
5. Field Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
N. QUALITY CONTROL AND QUALITY ASSURANCE . . . . . . . . . . . . . . . . . . 450
N1. Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
N2. Fabricator and Erector Quality Control Program . . . . . . . . . . . . . . . . . . . . . 451
N3. Fabricator and Erector Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
1. Submittals for Steel Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxii

TABLE OF CONTENTS 16.1–xxiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Available Documents for Steel Construction . . . . . . . . . . . . . . . . . . . . . 452
N4. Inspection and Nondestructive Testing Personnel . . . . . . . . . . . . . . . . . . . . . 453
1. Quality Control Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . . . 453
2. Quality Assurance Inspector Qualifications . . . . . . . . . . . . . . . . . . . . . . 453
3. NDT Personnel Qualifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
N5. Minimum Requirements for Inspection of Structural Steel Buildings . . . . . 454
1. Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
2. Quality Assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
3. Coordinated Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
4. Inspection of Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456
5. Nondestructive Testing of Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . 460
5a. Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
5b. CJP Groove Weld NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
5c. Access Hole NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
5d. Welded Joints Subjected to Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
5e. Reduction of Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . 462
5f. Increase in Rate of Ultrasonic Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 463
6. Inspection of High-Strength Bolting . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
7. Other Inspection Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
N6. Minimum Requirements for Inspection of Composite Construction . . . . . . 466
N7. Approved Fabricators and Erectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
APPENDIX 1. DESIGN BY INELASTIC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . 468
1.1. General Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
1.2. Ductility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
1. Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
2. Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
3. Unbraced Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
4. Axial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
1.3. Analysis Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
1. Material Properties and Yield Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 474
2. Geometric Imperfections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
3. Residual Stresses and Partial Yielding Effects . . . . . . . . . . . . . . . . . . . 474
APPENDIX 2. DESIGN FOR PONDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
APPENDIX 3. DESIGN FOR FATIGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.2. Calculation of Maximum Stresses and Stress Ranges . . . . . . . . . . . . . . 479
3.3. Plain Material and Welded Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.4. Bolts and Threaded Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
3.5. Special Fabrication and Erection Requirements . . . . . . . . . . . . . . . . . . 482
APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS . . . . . . . . . 483
4.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxiii

16.1–xxiv TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.1.1. Performance Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.1.2. Design by Engineering Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 483
4.1.4. Load Combinations and Required Strength . . . . . . . . . . . . . . . . . . 484
4.2. Structural Design for Fire Conditions by Analysis . . . . . . . . . . . . . . . . . . . . 485
4.2.1. Design-Basis Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.1. Localized Fire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.2. Post-Flashover Compartment Fires . . . . . . . . . . . . . . . . . . . . . . . . 485
4.2.1.3. Exterior Fires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.2.1.4. Active Fire Protection Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 486
4.2.2. Temperatures in Structural Systems Under Fire Conditions . . . . . 486
4.2.3. Material Strengths at Elevated Temperatures . . . . . . . . . . . . . . . . 490
4.2.4. Structural Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.1. General Structural Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.2. Strength Requirements and Deformation Limits . . . . . . . . . . . . . . 491
4.2.4.3. Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.3a. Advanced Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
4.2.4.3b. Simple Methods of Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
4.2.4.4. Design Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
4.3. Design by Qualification Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.1. Qualification Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.2. Restrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3.3. Unrestrained Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES . . . . . . . . . . . . . . 497
5.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
5.2. Material Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
1. Determination of Required Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
2. Tensile Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
4. Base Metal Notch Toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5. Weld Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6. Bolts and Rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.3. Evaluation by Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
2. Strength Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
5.4. Evaluation by Load Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
1. Determination of Load Rating by Testing . . . . . . . . . . . . . . . . . . . . . . . 499
2. Serviceability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
5.5. Evaluation Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS . . . . . . 501
6.1. General Provisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
6.2. Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
6.3. Beam Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
1. Lateral Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
2. Torsional Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxiv

TABLE OF CONTENTS 16.1–xxv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.4 Beam-Column Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
APPENDIX 7. ALTERNATIVE METHODS OF DESIGN FOR STABILITY . . 509
7.2. Effective Length Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
7.3. First-Order Analysis Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS . . . . . . . . . . . . . 520
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxv

16.1–xxvi TABLE OF CONTENTS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxvi

16.1–xxvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SYMBOLS
Some definitions in the list below have been simplified in the interest of brevity. In all cases,
the definitions given in the body of the Specificationgovern. Symbols without text defini-
tions, used only in one location and defined at that location are omitted in some cases. The
section or table number in the right-hand column refers to the Section where the symbol is
first used.
Symbol Definition Section
A
BM Cross-sectional area of the base metal, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . J2.4
A
b Nominal unthreaded body area of bolt or threaded part, in.
2
(mm
2
) . . . . . J3.6
A
bi Cross-sectional area of the overlapping branch, in.
2
(mm
2
) . . . . . . . . . . . K2.3
A
bj Cross-sectional area of the overlapped branch, in.
2
(mm
2
) . . . . . . . . . . . . K2.3
A
c Area of concrete, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
A
c Area of concrete slab within effective width, in.
2
(mm
2
) . . . . . . . . . . . . . I3.2d
A
e Effective net area, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
A
e Summation of the effective areas of the cross section based on
the reduced effective width, b
e, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . E7.2
A
fc Area of compression flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
A
fg Gross area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . F13.1
A
fn Net area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.1
A
ft Area of tension flange, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
A
g Gross cross-sectional area of member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . B3.7
A
g Gross area of composite member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . I2.1
A
gv Gross area subject to shear, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
n Net area of member, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
A
n Area of the directly connected elements, in.
2
(mm
2
) . . . . . . . . . . . . Table D3.1
A
nt Net area subject to tension, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
nv Net area subject to shear, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
A
pb Projected area in bearing, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
A
s Cross-sectional area of steel section, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . I2.1b
A
sa Cross-sectional area of steel headed stud anchor, in.
2
(mm
2
) . . . . . . . . . . I8.2a
A
sf Area on the shear failure path, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
A
sr Area of continuous reinforcing bars, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . I2.1
A
sr Area of adequately developed longitudinal reinforcing steel within
the effective width of the concrete slab, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . I3.2d
A
t Net area in tension, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
A
w Area of web, the overall depth times the web thickness, dt w,
in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
A
we Effective area of the weld, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
A
wei Effective area of weld throat of any ith weld element, in.
2
(mm
2
) . . . . . . . J2.4
A
1 Loaded area of concrete, in.
2
(mm
2
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3a
A
1 Area of steel concentrically bearing on a concrete support, in.
2
(mm
2
) . . . . J8
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxvii

16.1–xxviii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
A
2 Maximum area of the portion of the supporting surface that is
geometrically similar to and concentric with the loaded area, in.
2
(mm
2
) . . . J8
B Overall width of rectangular HSS member, measured 90 °to the
plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
B Overall width of rectangular steel section along face transferring
load, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3c
B
b Overall width of rectangular HSS branch member, measured 90 °
to the plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
B
bi Overall width of the overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
B
bj Overall width of the overlapped branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
B
p Width of plate, measured 90 °to the plane of the connection,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .K1.1
B
1 Multiplier to account for P-δeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . App.8.2
B
2 Multiplier to account for P-Δeffects . . . . . . . . . . . . . . . . . . . . . . . . . . App.8.2
C HSS torsional constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
C
b Lateral-torsional buckling modification factor for nonuniform
moment diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
C
d Coefficient accounting for increased required bracing stiffness
at inflection point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.1
C
f Constant from Table A-3.1 for the fatigue category . . . . . . . . . . . . . . App. 3.3
C
m Coefficient accounting for nonuniform moment . . . . . . . . . . . . . . . App. 8.2.1
C
p Ponding flexibility coefficient for primary member in a
flat roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
C
r Coefficient for web sidesway buckling . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
C
s Ponding flexibility coefficient for secondary member in a
flat roof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
C
v Web shear coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
C
w Warping constant, in.
6
(mm
6
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
C
2 Edge distance increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table J3.5
D Outside diameter of round HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . Table B4.1
D Outside diameter of round HSS main member, in. (mm) . . . . . . . . . . . . . K2.1
D Nominal dead load, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
D
b Outside diameter of round HSS branch member, in. (mm) . . . . . . . . . . . . K2.1
D
u In slip-critical connections, a multiplier that reflects the ratio of
the mean installed bolt pretension to the specified minimum
bolt pretension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
E Modulus of elasticity of steel=29,000 ksi (200 000 MPa) . . . . . .Table B4.1
E
c Modulus of elasticity of concrete = , ksi
MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
E
c(T) Modulus of elasticity of concrete at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.3.2
E
s Modulus of elasticity of steel=29,000 ksi (200 000 MPa) . . . . . . . . . . . I2.1b
E(T) Elastic modulus of elasticity of steel at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.4.3
wfcc
15.′
(. ,
.
0 043
15
wfcc′
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxviii

SYMBOLS 16.1–xxix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
EI
eff Effective stiffness of composite section, kip-in.
2
(N-mm
2
) . . . . . . . . . . . . I2.1b
F
c Available stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
F
ca Available axial stress at the point of consideration, ksi (MPa) . . . . . . . . . . H2
F
cbw, FcbzAvailable flexural stress at the point of consideration, ksi (MPa) . . . . . . . . H2
F
cr Critical stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3
F
cry Critical stress about the y-axis of symmetry, ksi (MPa) . . . . . . . . . . . . . . . . E4
F
crz Critical torsional buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
e Elastic buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E3
F
e(T) Critical elastic buckling stress with the elastic modulus E(T)
at elevated temperature, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.4.3
F
ex Flexural elastic buckling stress about the major principal axis,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
EXX Filler metal classification strength, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . J2.4
F
ey Flexural elastic buckling stress about the major principal axis,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
ez Torsional elastic buckling stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . E4
F
in Nominal bond stress, 0.06 ksi (0.40 MPa) . . . . . . . . . . . . . . . . . . . . . . . . I6.3c
F
L Magnitude of flexural stress in compression flange at which flange
local buckling or lateral-torsional buckling is influenced by
yielding, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
F
n Nominal stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.3
F
n Nominal tensile stress, F nt, or shear stress, F nv,from Table J3.2,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.6
F
nBM Nominal stress of the base metal, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nt Nominal tensile stress from Table J3.2, ksi (MPa) . . . . . . . . . . . . . . . . . . . J3.7
F′
nt Nominal tensile stress modified to include the effects of shear stress,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.7
F
nv Nominal shear stress from Table J3.2, ksi (MPa) . . . . . . . . . . . . . . . . . . . . J3.7
F
nw Nominal stress of the weld metal, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nw Nominal stress of the weld metal (Chapter J) with no increase in
strength due to directionality of load, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . K4
F
nwi Nominal stress in ith weld element, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . J2.4
F
nwix xcomponent of nominal stress, F nwi, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . J2.4
F
nwiy ycomponent of nominal stress, F nwi, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . J2.4
F
p(T) Proportional limit at elevated temperatures, ksi (MPa) . . . . . . . . . App. 4.2.3.2
F
SR Allowable stress range, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
F
TH Threshold allowable stress range, maximum stress range for
indefinite design life from Table A-3.1, ksi (MPa) . . . . . . . . . . . . . . . App. 3.1
F
u Specified minimum tensile strength, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . D2
F
u(T) Minimum tensile strength at elevated temperature, ksi (MPa) . . . App. 4.2.3.2
F
y Specified minimum yield stress, ksi (MPa). As used in this
Specification, “yield stress” denotes either the specified minimum
yield point (for those steels that have a yield point) or specified
yield strength (for those steels that do not have a yield point) . . . . . . . . . B3.7
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxix

16.1–xxx SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
F
yb Specified minimum yield stress of HSS branch member material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
F
ybi Specified minimum yield stress of the overlapping branch material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
F
ybj Specified minimum yield stress of the overlapped branch material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
F
yf Specified minimum yield stress of the flange, ksi (MPa) . . . . . . . . . . . . . J10.1
F
yp Specified minimum yield stress of plate, ksi (MPa) . . . . . . . . . . . . . . . . K1.1
F
ysr Specified minimum yield stress of reinforcing bars, ksi (MPa) . . . . . . . I2.1b
F
yst Specified minimum yield stress of the stiffener material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
F
y(T) Yield stress at elevated temperature, ksi (MPa) . . . . . . . . . . . . . . . App. 4.2.4.3
F
yw Specified minimum yield stress of the web material,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
G Shear modulus of elasticity of steel=11,200 ksi (77 200 MPa) . . . . . . . . . E4
G(T) Shear modulus of elasticity of steel at elevated temperature,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.2.3.2
H Flexural constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
H Story shear, in the direction of translation being considered,
produced by the lateral forces used to compute Δ
H, kips (N) . . . . . App. 8.2.2
H Overall height of rectangular HSS member, measured in the
plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . .Table D3.1
H
b Overall height of rectangular HSS branch member, measured
in the plane of the connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
H
bi Overall depth of the overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . K2.3
I Moment of inertia in the plane of bending, in.
4
(mm
4
) . . . . . . . . . . App. 8.2.1
I
c Moment of inertia of the concrete section about the elastic
neutral axis of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . I2.1b
I
d Moment of inertia of the steel deck supported on secondary
members, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
I
p Moment of inertia of primary members, in.
4
(mm
4
) . . . . . . . . . . . . . . App. 2.1
I
s Moment of inertia of secondary members, in.
4
(mm
4
) . . . . . . . . . . . . App. 2.1
I
s Moment of inertia of steel shape about the elastic neutral axis
of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
sr Moment of inertia of reinforcing bars about the elastic neutral axis
of the composite section, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
st Moment of inertia of transverse stiffeners about an axis in the
web center for stiffener pairs, or about the face in contact with
the web plate for single stiffeners, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . G3.3
I
st1 Minimum moment of inertia of transverse stiffeners required for
development of the web shear buckling resistance in Section G2.2,
in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
I
st2 Minimum moment of inertia of transverse stiffeners required for
development of the full web shear buckling plus the web
tension field resistance, V
r=Vc2, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . G3.3
I
x, Iy Moment of inertia about the principal axes, in.
4
(mm
4
) . . . . . . . . . . . . . . . . E4
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxx

SYMBOLS 16.1–xxxi
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
I
y Out-of-plane moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . App. 6.3.2a
I
yc Moment of inertia of the compression flange about the y-axis,
in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
I
z Minor principal axis moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . F10.2
J Torsional constant, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
K Effective length factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C3, E2
K
x Effective length factor for flexural buckling about x-axis . . . . . . . . . . . . . . E4
K
y Effective length factor for flexural buckling about y-axis . . . . . . . . . . . . . . E4
K
z Effective length factor for torsional buckling . . . . . . . . . . . . . . . . . . . . . . . . E4
K
1 Effective length factor in the plane of bending, calculated based on
the assumption of no lateral translation at the member ends, set
equal to 1.0 unless analysis justifies a smaller value . . . . . . . . . . . . App. 8.2.1
L Height of story, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
L Length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
L Nominal occupancy live load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
L Laterally unbraced length of member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . E2
L Length of span, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
L Length of member between work points at truss chord
centerlines, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
L
b Length between points that are either braced against lateral
displacement of compression flange or braced against twist
of the cross section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
b Distance between braces, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2
L
b Largest laterally unbraced length along either flange at the point
of load, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
L
m Limiting laterally unbraced length for eligibility for moment
redistribution in beams according to Section B3.7 . . . . . . . . . . . . . . . . . F13.5
L
p Limiting laterally unbraced length for the limit state of yielding,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
p Length of primary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
L
pd Limiting laterally unbraced length for plastic analysis,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.3
L
r Limiting laterally unbraced length for the limit state of inelastic
lateral-torsional buckling, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
L
s Length of secondary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
L
v Distance from maximum to zero shear force, in. (mm) . . . . . . . . . . . . . . . . G6
M
A Absolute value of moment at quarter point of the unbraced
segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
a Required flexural strength using ASD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
M
B Absolute value of moment at centerline of the unbraced segment,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
C Absolute value of moment at three-quarter point of the unbraced
segment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
cx, McyAvailable flexural strength determined in accordance with
Chapter F, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxi

16.1–xxxii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
M
cx Available lateral-torsional strength for strong axis flexure
determined in accordance with Chapter F using C
b= 1.0,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.3
M
cx Available flexural strength about the x-axis for the limit state of
tensile rupture of the flange, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . H4
M
e Elastic lateral-torsional buckling moment, kip-in. (N-mm) . . . . . . . . . . F10.2
M
lt First-order moment using LRFD or ASD load combinations,
due to lateral translation of the structure only, kip-in. (N-mm) . . . . . . App. 8.2
M
max Absolute value of maximum moment in the unbraced segment,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
mid Moment at the middle of the unbraced length, kip-in. (N-mm) . . . . App. 1.2.3
M
n Nominal flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . F1
M
nt First-order moment using LRFD or ASD load combinations,
with the structure restrained against lateral translation,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
M
p Plastic bending moment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . Table B4.1
M
p Moment corresponding to plastic stress distribution over the
composite cross section, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . I3.4b
M
r Required second-order flexural strength under LRFD or ASD
load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
M
r Required flexural strength using LRFD or ASD load
combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
M
rb Required bracing moment using LRFD or ASD load
combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2
M
r-ip Required in-plane flexural strength in branch using LRFD or
ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . K3.2
M
r-op Required out-of-plane flexural strength in branch using LRFD
or ASD load combinations, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . K3.2
M
rx,MryRequired flexural strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . H1.1
M
rx Required flexural strength at the location of the bolt holes;
positive for tension in the flange under consideration, negative
for compression, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H4
M
u Required flexural strength using LRFD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
M
y Moment at yielding of the extreme fiber, kip-in. (N-mm) . . . . . . . . Table B4.1
M
y Yield moment about the axis of bending, kip-in. (N-mm) . . . . . . . . . . . . F10.1
M
yc Moment at yielding of the extreme fiber in the compression
flange, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
M
yt Moment at yielding of the extreme fiber in the tension flange,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.4
M
1′ Effective moment at the end of the unbraced length opposite
from M
2, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.3
M
1 Smaller moment at end of unbraced length, kip-in.
(N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.5, App. 1.2.3
M
2 Larger moment at end of unbraced length, kip-in.
(N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.5, App. 1.2.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxii

SYMBOLS 16.1–xxxiii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
N
i Notional load applied at level i, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . C2.2b
N
i Additional lateral load, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3
O
v Overlap connection coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
P
c Available axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
P
cy Available compressive strength out of the plane of bending, kips (N) . . . H1.3
P
e Elastic critical buckling load determined in accordance with
Chapter C or Appendix 7, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
P
e storyElastic critical buckling strength for the story in the direction
of translation being considered, kips (N) . . . . . . . . . . . . . . . . . . . . . . App 8.2.2
P
ey Elastic critical buckling load for buckling about the weak axis,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.2
P
e1 Elastic critical buckling strength of the member in the plane of
bending, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.1
P
lt First-order axial force using LRFD or ASD load combinations,
due to lateral translation of the structure only, kips (N) . . . . . . . . . . . App. 8.2
P
mf Total vertical load in columns in the story that are part of moment
frames, if any, in the direction of translation being considered,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2.2
P
n Nominal axial strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
P
n Nominal compressive strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1
P
no Nominal compressive strength of zero length, doubly symmetric,
axially loaded composite member, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . I2
P
nt First-order axial force using LRFD and ASD load combinations,
with the structure restrained against lateral translation, kips (N) . . . . App. 8.2
P
p Nominal bearing strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J8
P
r Required second-order axial strength using LRFD or ASD load
combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8.2
P
r Required axial compressive strength using LRFD or ASD load
combinations, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
P
r Required axial strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H1.1
P
r Required axial strength of the member at the location of the bolt
holes; positive in tension, negative in compression, kips (N) . . . . . . . . . . . H4
P
r Required external force applied to the composite member, kips (N) . . . . I6.2a
P
rb Required brace strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.2
P
ro Required axial strength in chord at a joint, on the side of joint
with lower compression stress, kips (N) . . . . . . . . . . . . . . . . . . . . . Table K1.1
P
story Total vertical load supported by the story using LRFD or ASD
load combinations, as applicable, including loads in columns
that are not part of the lateral force resisting system, kips (N) . . . . App. 8.2.2
P
u Required axial strength in chord using LRFD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
P
u Required axial strength in compression, kips (N) . . . . . . . . . . . . . . App. 1.2.2
P
y Axial yield strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
Q Net reduction factor accounting for all slender compression elements . . . . E7
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxiii

16.1–xxxiv SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Q
a Reduction factor for slender stiffened elements . . . . . . . . . . . . . . . . . . . . . E7.2
Q
ct Available tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
cv Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
f Chord-stress interaction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
Q
n Nominal strength of one steel headed stud or steel channel anchor,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
Q
nt Nominal tensile strength of steel headed stud anchor, kips (N) . . . . . . . . I8.3b
Q
nv Nominal shear strength of steel headed stud anchor, kips (N) . . . . . . . . . I8.3a
Q
rt Required tensile strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
rv Required shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.3c
Q
s Reduction factor for slender unstiffened elements . . . . . . . . . . . . . . . . . . . E7.1
R Radius of joint surface, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . .Table J2.2
R Nominal load due to rainwater or snow, exclusive of the ponding
contribution, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
R Seismic response modification coefficient . . . . . . . . . . . . . . . . . . . . . . . .A1.1
R
a Required strength using ASD load combinations . . . . . . . . . . . . . . . . . . . B3.4
R
FIL Reduction factor for joints using a pair of transverse fillet
welds only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
R
g Coefficient to account for group effect . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
R
M Coefficient to account for influence of P-δon P-Δ . . . . . . . . . . . . .App. 8.2.2
R
n Nominal strength, specified in Chapters B through K . . . . . . . . . . . . . . . B3.3
R
n Nominal slip resistance, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
R
n Nominal strength of the applicable force transfer mechanism,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.3
R
nwl Total nominal strength of longitudinally loaded fillet welds,
as determined in accordance with Table J2.5, kips (N) . . . . . . . . . . . . . . . J2.4
R
nwt Total nominal strength of transversely loaded fillet welds,
as determined in accordance with Table J2.5 without the
alternate in Section J2.4(a), kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
nx Horizontal component of the nominal strength of a weld group,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
ny Vertical component of the nominal strength of a weld group,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
R
p Position effect factor for shear studs . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
R
pc Web plastification factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.1
R
pg Bending strength reduction factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F5.2
R
PJP Reduction factor for reinforced or nonreinforced transverse
partial-joint-penetration (PJP) groove welds . . . . . . . . . . . . . . . . . . . App. 3.3
R
pt Web plastification factor corresponding to the tension flange
yielding limit state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.4
R
u Required strength using LRFD load combinations . . . . . . . . . . . . . . . . . . B3.3
S Elastic section modulus, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F8.2
S Spacing of secondary members, ft (m) . . . . . . . . . . . . . . . . . . . . . . . . App. 2.1
S Nominal snow load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
S
c Elastic section modulus to the toe in compression relative to
the axis of bending, in.
3
(mm
3
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F10.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxiv

SYMBOLS 16–xxxv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
S
e Effective section modulus about major axis, in.
3
(mm
3
) . . . . . . . . . . . . . . F7.2
S
ip Effective elastic section modulus of welds for in-plane bending
(Table K4.1), in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
S
min Lowest elastic section modulus relative to the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F12
S
op Effective elastic section modulus of welds for out-of-plane bending
(Table K4.1), in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
S
xc, Sxt Elastic section modulus referred to compression and tension
flanges, respectively, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
S
x Elastic section modulus taken about the x-axis, in.
3
(mm
3
) . . . . . . . . . . . . F2.2
S
y Elastic section modulus taken about the y-axis. For a channel,
the minimum section modulus, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
T Nominal forces and deformations due to the design-basis fire
defined in Appendix Section 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . App. 4.1.4
T
a Required tension force using ASD load combinations, kips (N) . . . . . . . . J3.9
T
b Minimum fastener tension given in Table J3.1 or J3.1M, kips (N) . . . . . . J3.8
T
c Available torsional strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . .H3.2
T
n Nominal torsional strength, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . .H3.1
T
r Required torsional strength using LRFD or ASD load combinations,
kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .H3.2
T
u Required tension force using LRFD load combinations, kips (N) . . . . . . . J3.9
U Shear lag factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D3
U Utilization ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.2
U
bs Reduction coefficient, used in calculating block shear
rupture strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J4.3
U
p Stress index for primary members . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
U
s Stress index for secondary members . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
V′ Nominal shear force between the steel beam and the concrete
slab transferred by steel anchors, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . I3.2d
V
c Available shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.2
V
c1 Smaller of the available shear strengths in the adjacent web
panels with V
nas defined in Section G2.1, kips (N) . . . . . . . . . . . . . . . . . G3.3
V
c2 Smaller of the available shear strengths in the adjacent web panels
with V
nas defined in Section G3.2, kips (N) . . . . . . . . . . . . . . . . . . . . . . G3.3
V
n Nominal shear strength, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
V
r Larger of the required shear strengths in the adjacent web panels
using LRFD or ASD load combinations, kips (N) . . . . . . . . . . . . . . . . . . G3.3
V
r Required shear strength using LRFD or ASD load combinations,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.2
V′
r Required longitudinal shear force to be transferred to the steel
or concrete, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.2
Y
i Gravity load applied at level ifrom the LRFD load
combination or ASD load combination, as applicable,
kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.2b, App. 7.3.2
Z Plastic section modulus about the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F7.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxv

16.1–xxxvi SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Z
b Plastic section modulus of branch about the axis of bending,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K3.1
Z
x Plastic section modulus about the x-axis, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . F2.1
Z
y Plastic section modulus about the y-axis, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . F6.1
a Clear distance between transverse stiffeners, in. (mm) . . . . . . . . . . . . . .F13.2
a Distance between connectors, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . E6.1
a Shortest distance from edge of pin hole to edge of member
measured parallel to the direction of force, in. (mm) . . . . . . . . . . . . . . . . D5.1
a Half the length of the nonwelded root face in the direction
of the thickness of the tension-loaded plate, in. (mm) . . . . . . . . . . . . . App. 3.3
a′ Weld length along both edges of the cover plate termination
to the beam or girder, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.3
a
w Ratio of two times the web area in compression due to application
of major axis bending moment alone to the area of the compression
flange components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
b Full width of leg in compression, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . F10.3
b For flanges of I-shaped members, half the full-flange width, b
f;
for flanges of channels, the full nominal dimension of the
flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
b Full width of longest leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
b Width of unstiffened compression element; width of stiffened
compression element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.1
b Width of the leg resisting the shear force, in. (mm) . . . . . . . . . . . . . . . . . . . G4
b
cf Width of column flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
b
e Reduced effective width, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.2
b
e Effective edge distance for calculation of tensile rupture strength
of pin-connected member, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
b
eoi Effective width of the branch face welded to the chord, in. (mm) . . . . . . K2.3
b
eov Effective width of the branch face welded to the overlapped brace,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
b
f Width of flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.1
b
fc Width of compression flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . F4.2
b
ft Width of tension flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.1
b
l Length of longer leg of angle, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
b
s Length of shorter leg of angle, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
b
s Stiffener width for one-sided stiffeners, in. (mm) . . . . . . . . . . . . . . App. 6.3.2
d Nominal fastener diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.3
d Nominal bolt diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.10
d Full nominal depth of the section, in. (mm) . . . . . . . . . . . . . . . . . . B4.1, J10.3
d Depth of rectangular bar, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F11.2
d Diameter, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
d Diameter of pin, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
d
b Depth of beam, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
d
b Nominal diameter (body or shank diameter), in. (mm) . . . . . . . . . . . . App. 3.4
d
c Depth of column, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxvi

SYMBOLS 16–xxxvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
e Eccentricity in a truss connection, positive being away from
the branches, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
e
mid-ht Distance from the edge of steel headed stud anchor shank to
the steel deck web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
f
c′ Specified compressive strength of concrete, ksi (MPa) . . . . . . . . . . . . . . I1.2b
f
c′(T) Compressive strength of concrete at elevated temperature, ksi (MPa) . . . I1.2b
f
o Stress due to D+R(D=nominal dead load, R=nominal load
due to rainwater or snow exclusive of the ponding contribution),
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 2.2
f
ra Required axial stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2
f
rbw, frbzRequired flexural stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H2
f
rv Required shear stress using LRFD or ASD load combinations,
ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.7
g Transverse center-to-center spacing (gage) between fastener gage
lines, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
g Gap between toes of branch members in a gapped K-connection,
neglecting the welds, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
h Width of stiffened compression element, in. (mm) . . . . . . . . . . . . . . . . . . B4.1
h Height of shear element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1b
h Clear distance between flanges less the fillet or corner radius for
rolled shapes; distance between adjacent lines of fasteners or the
clear distance between flanges when welds are used for built-up
shapes, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.4
h
c Twice the distance from the center of gravity to the following:
the inside face of the compression flange less the fillet or corner
radius, for rolled shapes; the nearest line of fasteners at the
compression flange or the inside faces of the compression flange
when welds are used, for built-up sections, in. (mm) . . . . . . . . . . . . . . . . B4.1
h
o Distance between the flange centroids, in. (mm) . . . . . . . . . . . . . . . . . . . . F2.2
h
p Twice the distance from the plastic neutral axis to the nearest line
of fasteners at the compression flange or the inside face of the
compression flange when welds are used, in. (mm) . . . . . . . . . . . . . . . . . B4.1
h
r Nominal height of rib, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2a
k Distance from outer face of flange to the web toe of fillet, in. (mm) . . . J10.2
k
c Coefficient for slender unstiffened elements . . . . . . . . . . . . . . . . . . Table B4.1
k
sc Slip-critical combined tension and shear coefficient . . . . . . . . . . . . . . . . . J3.9
k
v Web plate shear buckling coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . G2.1
l Actual length of end-loaded weld, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . J2.2
l Length of connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
l
b Length of bearing, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J7
l
c Clear distance, in the direction of the force, between the edge
of the hole and the edge of the adjacent hole or edge of the
material, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.10
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxvii

16.1–xxxviii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
l
ca Length of channel anchor, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2b
l
e Total effective weld length of groove and fillet welds to
rectangular HSS for weld strength calculations, in. (mm) . . . . . . . . . . . . . . K4
l
ov Overlap length measured along the connecting face of the chord
beneath the two branches, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
l
p Projected length of the overlapping branch on the chord, in. (mm) . . . . . K2.1
n Number of nodal braced points within the span . . . . . . . . . . . . . . . . . App. 6.3
n Threads per inch (per mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
n
b Number of bolts carrying the applied tension . . . . . . . . . . . . . . . . . . . . . . . J3.9
n
s Number of slip planes required to permit the connection to slip . . . . . . . . J3.8
n
SR Number of stress range fluctuations in design life . . . . . . . . . . . . . . . App. 3.3
p Pitch, in. per thread (mm per thread) . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.4
p
i Ratio of element ideformation to its deformation at maximum
stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r Radius of gyration, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E2
r
cr Distance from instantaneous center of rotation to weld element
with minimum Δ
u/riratio, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r
i Minimum radius of gyration of individual component, in. (mm) . . . . . . . E6.1
r
i Distance from instantaneous center of rotation to ith weld element,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
r
o
— Polar radius of gyration about the shear center, in. (mm) . . . . . . . . . . . . . . . E4
r
t Radius of gyration of the flange components in flexural compression
plus one-third of the web area in compression due to application
of major axis bending moment alone, in. (mm) . . . . . . . . . . . . . . . . . . . . . F4.2
r
ts Effective radius of gyration, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . F2.2
r
x Radius of gyration about the x-axis, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . E4
r
x Radius of gyration about the geometric axis parallel to the
connected leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E5
r
y Radius of gyration about y-axis, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . E4
r
z Radius of gyration about the minor principal axis, in. (mm) . . . . . . . . . . . . E5
s Longitudinal center-to-center spacing (pitch) of any two
consecutive holes, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B4.3
t Thickness of element, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
t Thickness of wall, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.2
t Thickness of angle leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F10.2
t Width of rectangular bar parallel to axis of bending, in. (mm) . . . . . . . . F11.2
t Thickness of connected material, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . J3.10
t Thickness of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D5.1
t Total thickness of fillers, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J5.2
t Design wall thickness of HSS member, in. (mm) . . . . . . . . . . . . . . B4.1, K1.1
t
b Design wall thickness of HSS branch member, in. (mm) . . . . . . . . . . . . . K2.1
t
bi Thickness of overlapping branch, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . K2.3
t
bj Thickness of overlapped branch, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . K2.3
t
cf Thickness of column flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.6
t
f Thickness of flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F6.2
t
f Thickness of loaded flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . J10.1
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxviii

SYMBOLS 16–xxxix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
t
f Thickness of flange of channel anchor, in. (mm) . . . . . . . . . . . . . . . . . . . I8.2b
t
fc Thickness of compression flange, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . F4.2
t
p Thickness of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K1.1
t
p Thickness of tension loaded plate, in. (mm) . . . . . . . . . . . . . . . . . . . . App. 3.3
t
st Thickness of web stiffener, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
t
w Thickness of web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table B4.1
t
w Smallest effective weld throat thickness around the perimeter
of branch or plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K4
t
w Thickness of channel anchor web, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . I8.2b
w Width of cover plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F13.3
w Size of weld leg, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.2
w Subscript relating symbol to major principal axis bending . . . . . . . . . . . . . H2
w Width of plate, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
w Leg size of the reinforcing or contouring fillet, if any, in the
direction of the thickness of the tension-loaded plate, in. (mm) . . . . . App. 3.3
w
c Weight of concrete per unit volume (90 ≤w c≤155 lbs/ft
3
or 1500 ≤w c≤2500 kg/m
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2.1
w
r Average width of concrete rib or haunch, in. (mm) . . . . . . . . . . . . . . . . . . I3.2
x Subscript relating symbol to strong axis bending . . . . . . . . . . . . . . . . . . . .H1.1
x
i x component ofr i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
x
o, yo Coordinates of the shear center with respect to the centroid,
in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E4
x

Eccentricity of connection, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . Table D3.1
y Subscript relating symbol to weak axis bending . . . . . . . . . . . . . . . . . . . . H1.1
y
i y component ofr i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .J2.4
z Subscript relating symbol to minor principal axis bending . . . . . . . . . . . . . H2
α ASD/LRFD force level adjustment factor . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
β Reduction factor given by Equation J2-1 . . . . . . . . . . . . . . . . . . . . . . . . . . J2.2
β Width ratio; the ratio of branch diameter to chord diameter
for round HSS; the ratio of overall branch width to chord
width for rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
β
T Overall brace system stiffness, kip-in./rad (N-mm/rad) . . . . . . . . App. 6.3.2a
β
br Required brace stiffness, kips/in. (N/mm) . . . . . . . . . . . . . . . . . . . . .App. 6.2.1
β
eff Effective width ratio; the sum of the perimeters of the
two branch members in a K-connection divided by
eight times the chord width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
β
eop Effective outside punching parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.3
β
sec Web distortional stiffness, including the effect of web transverse
stiffeners, if any, kip-in./rad (N-mm/rad) . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
β
Tb Required torsional stiffness for nodal bracing, kip-in./rad
(N-mm/rad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.3.2a
β
w Section property for unequal leg angles, positive for short legs
in compression and negative for long legs in compression . . . . . . . . . . . F10.2
Δ First-order interstory drift due to the LRFD or ASD load
combinations, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 7.3.2
Δ
H First-order interstory drift due to lateral forces, in. (mm) . . . . . . . . App. 8.2.2
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xxxix

16.1–xl SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Δ
i Deformation of weld elements at intermediate stress levels,
linearly proportioned to the critical deformation based on
distance from the instantaneous center of rotation, r
i, in. (mm) . . . . . . . . . J2.4
Δ
mi Deformation of weld element at maximum stress, in. (mm) . . . . . . . . . . . J2.4
Δ
ui Deformation of weld element at ultimate stress (rupture),
usually in element furthest from instantaneous center of
rotation, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
ε
cu(T) Maximum concrete strain at elevated temperature, % . . . . . . . . . . App. 4.2.3.2
γ Chord slenderness ratio; the ratio of one-half the diameter
to the wall thickness for round HSS; the ratio of one-half
the width to wall thickness for rectangular HSS . . . . . . . . . . . . . . . . . . . K2.1
ζ Gap ratio; the ratio of the gap between the branches of a
gapped K-connection to the width of the chord for
rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K2.1
η Load length parameter, applicable only to rectangular HSS;
the ratio of the length of contact of the branch with the
chord in the plane of the connection to the chord width . . . . . . . . . . . . . K2.1
λ Slenderness parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F3.2
λ
p Limiting slenderness parameter for compact element . . . . . . . . . . . . . . . . . B4
λ
pd Limiting slenderness parameter for plastic design . . . . . . . . . . . . . . . App. 1.2
λ
pf Limiting slenderness parameter for compact flange . . . . . . . . . . . . . . . . . F3.2
λ
pw Limiting slenderness parameter for compact web . . . . . . . . . . . . . . . . . . . . . F4
λ
r Limiting slenderness parameter for noncompact element . . . . . . . . . . . . . . B4
λ
rf Limiting slenderness parameter for noncompact flange . . . . . . . . . . . . . . F3.2
λ
rw Limiting slenderness parameter for noncompact web . . . . . . . . . . . . . . . . F4.2
μ Mean slip coefficient for Class A or B surfaces, as applicable,
or as established by tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J3.8
φ Resistance factor, specified in Chapters B through K . . . . . . . . . . . . . . . . B3.3
φ
B Resistance factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . I6.3a
φ
b Resistance factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
φ
c Resistance factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.7
φ
c Resistance factor for axially loaded composite columns . . . . . . . . . . . . . I2.1b
φ
sf Resistance factor for shear on the failure path . . . . . . . . . . . . . . . . . . . . . D5.1
φ
T Resistance factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
φ
t Resistance factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
φ
t Resistance factor for steel headed stud anchor in tension . . . . . . . . . . . . . I8.3b
φ
v Resistance factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
φ
v Resistance factor for steel headed stud anchor in shear . . . . . . . . . . . . . . I8.3a
Ω Safety factor, specified in Chapters B through K . . . . . . . . . . . . . . . . . . . B3.4
Ω
B Safety factor for bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I6.1
Ω
b Safety factor for flexure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
Ω
c Safety factor for compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.7
Ω
c Safety factor for axially loaded composite columns . . . . . . . . . . . . . . . . . I2.1b
Ω
sf Safety factor for shear on the failure path . . . . . . . . . . . . . . . . . . . . . . . . D5.1
Ω
T Safety factor for torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H3.1
Ω
t Safety factor for tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D2
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xl

SYMBOLS 16–xli
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Symbol Definition Section
Ω
t Safety factor for steel headed stud anchor in tension . . . . . . . . . . . . . . . . I8.3b
Ω
v Safety factor for shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G1
Ω
v Safety factor for steel headed stud anchor in shear . . . . . . . . . . . . . . . . . I8.3a
ρ
sr Minimum reinforcement ratio for longitudinal reinforcing . . . . . . . . . . . . I2.1
ρ
st The larger of F yw/Fystand 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G3.3
θ Angle of loading measured from the weld longitudinal axis, degrees . . . . J2.4
θ Acute angle between the branch and chord, degrees . . . . . . . . . . . . . . . . . K2.1
θ
i Αngle of loading measured from the longitudinal axis of ith weld
element, degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J2.4
τ
b Stiffness reduction parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C2.3
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xli

16.1–xlii SYMBOLS
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlii

16.1–xliii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
GLOSSARY
Terms defined in this Glossary are italicizedin the Glossary and where they first appear
within a section or long paragraph throughout the Specification.
Notes:
(1) Terms designated with † are common AISI-AISC terms that are coordinated between the
two standards development organizations.
(2) Terms designated with * are usually qualified by the type of load effect; for example,
nominal tensile strength, available compressive strength, and design flexural strength.
(3) Terms designated with ** are usually qualified by the type of component; for example,
web local bucklingand flangelocal bending.
Active fire protection. Building materials and systems that are activated by a fire to mitigate
adverse effects or to notify people to take some action to mitigate adverse effects.
Allowable strength*†. Nominal strengthdivided by the safety factor, R
n/Ω.
Allowable stress*. Allowable strengthdivided by the appropriate section property, such as
section modulus or cross-section area.
Applicable building code†.Building code under which the structure is designed.
ASD (allowable strength design)†.Method of proportioning structural componentssuch
that the allowable strengthequals or exceeds therequired strengthof the component
under the action of the ASD load combinations.
ASD load combination†. Load combination in the applicable building codeintended for
allowable strength design (allowable stressdesign).
Authority having jurisdiction (AHJ).Organization, political subdivision, office or individual
charged with the responsibility of administering and enforcing the provisions of the appli-
cable building code.
Available strength*†.Design strengthor allowable strength,as appropriate.
Available stress*. Design stress or allowable stress, as appropriate.
Average rib width. In a formed steel deck,average width of the rib of a corrugation.
Batten plate.Plate rigidly connected to two parallel components of a built-up columnor
beamdesigned to transmit shear between the components.
Beam. Nominally horizontal structural member that has the primary function of resisting
bending moments.
Beam-column. Structural member that resists both axial force and bending moment.
Bearing†. In a connection,limit state of shear forces transmitted by the mechanical fastener
to the connection elements.
Bearing (local compressive yielding)†.Limit state oflocal compressive yielding due to the
action of a member bearing against another member or surface.
Bearing-type connection.Bolted connectionwhere shear forcesare transmitted by the bolt
bearing against the connection elements.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xliii

16.1–xliv GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Block shear rupture†. In a connection, limit state of tension rupture along one path and shear
yielding or shear rupture along another path.
Braced frame†. Essentially vertical truss system that provides resistance to lateral forces and
provides stability for the structural system.
Bracing.Member or system that provides stiffness and strength to limit the out-of-plane
movement of another member at a brace point.
Branch member.In an HSS connection, member that terminates at a chord memberor main
member.
Buckling†.Limit state of sudden change in the geometry of a structure or any of its elements
under a critical loading condition.
Buckling strength. Strength for instability limit states.
Built-up member, cross section, section, shape. Member, cross section, section or shape
fabricated from structural steel elements that are welded or bolted together.
Camber. Curvature fabricated into a beamor truss so as to compensate for deflection induced
by loads.
Charpy V-notch impact test. Standard dynamic test measuring notch toughness of a
specimen.
Chord member.In an HSS connection, primary member that extends through a truss
connection.
Cladding. Exterior covering of structure.
Cold-formed steel structural member†. Shape manufactured by press-braking blanks sheared
from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or
sheets; both forming operations being performed at ambient room temperature, that is,
without manifest addition of heat such as would be required for hot forming.
Collector. Also known as drag strut; member that serves to transfer loads between floor
diaphragms and the members of the lateral force resisting system.
Column. Nominally vertical structural member that has the primary function of resisting
axial compressive force.
Column base.Assemblage of structural shapes, plates, connectors, bolts and rods at the base
of a columnused to transmit forces between the steel superstructure and the foundation.
Compact section. Section capable of developing a fully plastic stress distribution and pos-
sessing a rotation capacityof approximately three before the onset of local buckling.
Compartmentation. Enclosure of a building space with elements that have a specific fire
endurance.
Complete-joint-penetration (CJP) groove weld. Groove weldin which weld metal extends
through thejointthickness, except as permitted for HSS connections.
Composite.Condition in which steel and concrete elements and members work as a unit in
the distribution of internal forces.
Composite beam.Structural steel beamin contact with and acting compositely with a rein-
forced concrete slab.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xliv

GLOSSARY 16.1–xlv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Composite component. Member, connecting element or assemblage in which steel and con-
crete elements work as a unit in the distribution of internal forces, with the exception of
the special case of composite beamswhere steel anchorsare embedded in a solid concrete
slab or in a slab cast on formed steel deck.
Concrete breakout surface.The surface delineating a volume of concrete surrounding a steel
headed stud anchor that separates from the remaining concrete.
Concrete crushing. Limit state of compressive failure in concrete having reached the ulti-
mate strain.
Concrete haunch. In a composite floor system constructed using a formed steel deck, the
section of solid concrete that results from stopping the deck on each side of the girder.
Concrete-encased beam. Beamtotally encased in concrete cast integrally with the slab.
Connection†. Combination of structural elements and jointsused to transmit forces between
two or more members.
Construction documents. Design drawings, specifications, shop drawings and erection
drawings.
Cope. Cutout made in a structural member to remove a flange and conform to the shape of
an intersecting member.
Cover plate. Plate welded or bolted to the flange of a member to increase cross-sectional
area, section modulus or moment of inertia.
Cross connection. HSS connectionin which forces in branch membersor connecting ele-
ments transverse to the main memberare primarily equilibrated by forces in other branch
members or connecting elements on the opposite side of the main member.
Design-basis fire. Set of conditions that define the development of a fireand the spread of
combustion products throughout a building or portion thereof.
Design drawings.Graphic and pictorial documents showing the design, location and dimen-
sions of the work. These documents generally include plans, elevations, sections, details,
schedules, diagrams and notes.
Design load†. Applied load determined in accordance with either LRFD load combinations
or ASD load combinations, whichever is applicable.
Design strength*†. Resistance factor multiplied by thenominal strength, φR
n.
Design wall thickness. HSSwall thickness assumed in the determination of section properties.
Diagonal stiffener. Web stiffener at column panel zoneoriented diagonally to the flanges,
on one or both sides of the web.
Diaphragm†. Roof, floor or other membrane or bracing system that transfers in-plane forces
to the lateral force resisting system.
Diaphragm plate.Plate possessing in-plane shear stiffness and strength, used to transfer
forces to the supporting elements.
Direct analysis method.Design method for stability that captures the effects of residual
stresses and initial out-of-plumbness of frames by reducing stiffness and applying
notional loadsin a second-order analysis.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlv

16.1–xlvi GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Direct bond interaction. In a composite section, mechanism by which force is transferred
between steel and concrete by bond stress.
Distortional failure. Limit state of anHSS truss connection based on distortion of a rectan-
gular HSS chord memberinto a rhomboidal shape.
Distortional stiffness. Out-of-plane flexural stiffness of web.
Double curvature. Deformed shape of a beamwith one or more inflection points within the span.
Double-concentrated forces. Two equal and opposite forces applied normal to the same
flange, forming a couple.
Doubler.Plate added to, and parallel with, a beamor columnweb to increase strength at
locations of concentrated forces.
Drift. Lateral deflection of structure.
Effective length. Length of an otherwise identical columnwith the same strength when
analyzed with pinned end conditions.
Effective length factor, K. Ratio between the effective lengthand the unbraced lengthof the
member.
Effective net area. Net area modified to account for the effect of shear lag.
Effective section modulus. Section modulus reduced to account for buckling of slender
compression elements.
Effective width. Reduced width of a plate or slab with an assumed uniform stress distribu-
tion which produces the same effect on the behavior of a structural member as the actual
plate or slab width with its nonuniform stress distribution.
Elastic analysis. Structural analysisbased on the assumption that the structure returns to its
original geometry on removal of the load.
Elevated temperatures. Heating conditions experienced by building elements or structures
as a result of firewhich are in excess of the anticipated ambient conditions.
Encased composite member.Composite member consisting of a structural concrete member
and one or more embedded steel shapes.
End panel. Web panel with an adjacent panel on one side only.
End return. Length of fillet weldthat continues around a corner in the same plane.
Engineer of record.Licensed professional responsible for sealing the design drawings and
specifications.
Expansion rocker.Support with curved surface on which a member bears that can tilt to
accommodate expansion.
Expansion roller.Round steel bar on which a member bears that can roll to accommodate
expansion.
Eyebar. Pin-connected tension member of uniform thickness, with forged or thermally cut
head of greater width than the body, proportioned to provide approximately equal
strength in the head and body.
Factored load†. Product of a load factorand the nominal load.
Fastener. Generic term for bolts, rivets or other connecting devices.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlvi

GLOSSARY 16.1–xlvii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fatigue†. Limit state of crack initiation and growth resulting from repeated application of
live loads.
Faying surface.Contact surface of connectionelements transmitting a shear force.
Filled composite member. Composite memberconsisting of a shell of HSSfilled with struc-
tural concrete.
Filler. Plate used to build up the thickness of one component.
Filler metal. Metal or alloy added in making a welded joint.
Fillet weld.Weld of generally triangular cross section made between intersecting surfaces
of elements.
Fillet weld reinforcement. Fillet weldsadded to groove welds.
Finished surface.Surfaces fabricated with a roughness height value measured in accordance
with ANSI/ASME B46.1 that is equal to or less than 500.
Fire. Destructive burning, as manifested by any or all of the following: light, flame, heat
or smoke.
Fire barrier. Element of construction formed of fire-resisting materials and tested in accor-
dance with an approved standard fire resistancetest, to demonstrate compliance with the
applicable building code.
Fire resistance. Property of assemblies that prevents or retards the passage of excessive heat,
hot gases or flames under conditions of use and enables them to continue to perform a
stipulated function.
First-order analysis. Structural analysisin which equilibrium conditions are formulated on
the undeformed structure; second-order effectsare neglected.
Fitted bearing stiffener. Stiffenerused at a support or concentrated loadthat fits tightly
against one or both flanges of a beamso as to transmit load through bearing.
Flare bevel groove weld. Weld in a groove formed by a member with a curved surface in
contact with a planar member.
Flare V-groove weld. Weld in a groove formed by two members with curved surfaces.
Flashover. Transition to a state of total surface involvement in a fire of combustible mate-
rials within an enclosure.
Flat width. Nominal width of rectangular HSS minus twice the outside corner radius. In the
absence of knowledge of the corner radius, the flat width may be taken as the total sec-
tion width minus three times the thickness.
Flexural buckling†. Bucklingmode in which a compression member deflects laterally with-
out twist or change in cross-sectional shape.
Flexural-torsional buckling†. Buckling mode in which a compression member bends and
twists simultaneously without change in cross-sectional shape.
Force. Resultant of distribution of stress over a prescribed area.
Formed section.See cold-formed steel structural member.
Formed steel deck. In compositeconstruction, steel cold formed into a decking profile used
as a permanent concrete form.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlvii

16.1–xlviii GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fully restrained moment connection. Connectioncapable of transferring moment with neg-
ligible rotation between connected members.
Gage.Transverse center-to-center spacing of fasteners.
Gapped connection. HSStruss connectionwith a gap or space on the chordface between
intersecting branch members.
Geometric axis. Axis parallel to web, flange or angle leg.
Girder. See Beam.
Girder filler. In a compositefloor system constructed using a formed steel deck,narrow
piece of sheet steelused as a fill between the edge of a deck sheet and the flange of
a girder.
Gouge.Relatively smooth surface groove or cavity resulting from plastic deformation or
removal of material.
Gravity load. Loadacting in the downward direction, such as dead and live loads.
Grip (of bolt).Thickness of material through which a bolt passes.
Groove weld. Weld in a groove between connectionelements. See also AWS D1.1/D1.1M.
Gusset plate. Plate element connecting truss members or a strut or brace to a beamor
column.
Heat flux. Radiant energy per unit surface area.
Heat release rate. Rate at which thermal energy is generated by a burning material.
High-strength bolt.Fastener in compliance with ASTM A325, A325M, A490, A490M,
F1852, F2280 or an alternate fastener as permitted in Section J3.1.
Horizontal shear. In a composite beam, forceat the interface between steel and concrete
surfaces.
HSS.Square, rectangular or round hollow structural steel section produced in accordance
with a pipeor tubing product specification.
Inelastic analysis. Structural analysisthat takes into account inelastic material behavior,
including plastic analysis.
In-plane instability†.Limit stateinvolving bucklingin the plane of the frame or the member.
Instability†. Limit state reached in the loading of a structural component, frame or structure
in which a slight disturbance in the loadsor geometry produces large displacements.
Introduction length.In an encased composite column, the length along which the column
forceis assumed to be transferred into or out of the steel shape.
Joint†. Area where two or more ends, surfaces or edges are attached. Categorized by type
of fasteneror weld used and method of force
transfer.
Joint eccentricity.In an HSStruss connection, perpendicular distance from chord member
center of gravity to intersection of branch memberwork points.
k-area. The region of the web that extends from the tangent point of the web and the flange-
web fillet (AISCkdimension) a distance 1
1
/2in. (38 mm) into the web beyond the k
dimension.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlviii

GLOSSARY 16.1–xlix
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K-connection. HSS connectionin which forces in branch membersor connecting elements
transverse to the main memberare primarily equilibriated by forcesin other branch mem-
bers or connecting elements on the same side of the main member.
Lacing. Plate, angle or other steel shape, in a lattice configuration, that connects two steel
shapes together.
Lap joint. Jointbetween two overlapping connectionelements in parallel planes.
Lateral bracing. Member or system that is designed to inhibit lateral buckling or lateral-
torsional bucklingof structural members.
Lateral force resisting system.Structural system designed to resist lateral loads and provide
stability for the structure as a whole.
Lateral load. Loadacting in a lateral direction, such as wind or earthquake effects.
Lateral-torsional buckling†.Bucklingmode of a flexural member involving deflection out
of the plane of bending occurring simultaneously with twist about the shear center of the
cross section.
Leaning column. Columndesigned to carry gravity loadsonly, with connectionsthat are not
intended to provide resistance to lateral loads.
Length effects.Consideration of the reduction in strength of a member based on its unbraced
length.
Lightweight concrete.Structural concrete with an equilibrium density of 115 lb/ft
3
(1840 kg/m
3
) or less as determined by ASTM C567.
Limit state†. Condition in which a structure or component becomes unfit for service and is
judged either to be no longer useful for its intended function (serviceability limit state) or
to have reached its ultimate load-carrying capacity (strength limit state).
Load†. Forceor other action that results from the weight of building materials, occupants
and their possessions, environmental effects, differential movement or restrained dimen-
sional changes.
Load effect†.Forces, stressesand deformations produced in a structural componentby the
applied loads.
Load factor†. Factor that accounts for deviations of the nominal loadfrom the actual load,
for uncertainties in the analysis that transforms the load into a load effectand for the prob-
ability that more than one extreme load will occur simultaneously.
Local bending**†. Limit state of large deformation of a flange under a concentrated trans-
verse force.
Local buckling**. Limit state of bucklingof a compression element within a cross section.
Local yielding**†. Yieldingthat occurs in a local area of an element.
LRFD (load and resistance factor design)†. Method of proportioning structural components
such that the design strengthequals or exceeds the required strengthof the component
under the action of the LRFD load combinations.
LRFD load combination†. Load combination in the applicable building codeintended for
strength design (load and resistance factor design).
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page xlix

16.1–l GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Main member.In an HSS connection, chord member, columnor other HSS member to which
branch membersor other connecting elements are attached.
Mechanism. Structural systemthat includes a sufficient number of real hinges, plastic
hingesor both, so as to be able to articulate in one or more rigid body modes.
Mill scale.Oxide surface coating on steel formed by the hot rolling process.
Moment connection. Connectionthat transmits bending moment between connected
members.
Moment frame†. Framing system that provides resistance to lateral loads and provides sta-
bility to the structural system, primarily by shear and flexure of the framing members and
their connections.
Negative flexural strength. Flexural strength of a composite beamin regions with tension
due to flexure on the top surface.
Net area.Gross area reduced to account for removed material.
Nodal brace. Brace that prevents lateral movement or twist independently of other braces at
adjacent brace points (see relative brace).
Nominal dimension. Designated or theoretical dimension, as in tables of section properties.
Nominal load†. Magnitude of the loadspecified by the applicable building code.
Nominal rib height. In aformed steel deck, height of deck measured from the underside of
the lowest point to the top of the highest point.
Nominal strength*†. Strength of a structure or component (without the resistance factoror
safety factorapplied) to resist load effects, as determined in accordance with this
Specification.
Noncompact section. Section that can develop the yield stressin its compression elements
before local bucklingoccurs, but cannot develop a rotation capacityof three.
Nondestructive testing.Inspection procedure wherein no material is destroyed and the
integrity of the material or component is not affected.
Notch toughness. Energy absorbed at a specified temperature as measured in the Charpy
V-notch impact test.
Notional load.Virtual loadapplied in a structural analysisto account for destabilizing
effects that are not otherwise accounted for in the design provisions.
Out-of-plane buckling†. Limit stateof a beam, column or beam-columninvolving lateral or
lateral-torsional buckling.
Overlapped connection. HSS
truss connectionin which intersectingbranch members
overlap.
Panel zone. Web area of beam-to-column connectiondelineated by the extension of
beam and column flanges through the connection, transmitting moment through a
shear panel.
Partial-joint-penetration (PJP) groove weld. Groove weldin which the penetration is inten-
tionally less than the complete thickness of the connected element.
Partially restrained moment connection. Connectioncapable of transferring moment with
rotation between connected members that is not negligible.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page l

GLOSSARY 16.1–li
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Percent elongation.Measure of ductility, determined in a tensile test as the maximum elon-
gation of the gage length divided by the original gage length expressed as a percentage.
Pipe.See HSS.
Pitch. Longitudinal center-to-center spacing of fasteners. Center-to-center spacing of bolt
threads along axis of bolt.
Plastic analysis. Structural analysisbased on the assumption of rigid-plastic behavior, that
is, that equilibrium is satisfied and the stressis at or below the yield stressthroughout the
structure.
Plastic hinge. Fully yielded zone that forms in a structural member when the plastic moment
is attained.
Plastic moment. Theoretical resisting moment developed within a fully yielded cross
section.
Plastic stress distribution method.In a compositemember, method for determining stresses
assuming that the steel section and the concrete in the cross section are fully plastic.
Plastification. In an HSS connection, limit statebased on an out-of-plane flexural yield line
mechanismin the chordat a branch memberconnection.
Plate girder. Built-up beam.
Plug weld.Weld made in a circular hole in one element of a joint fusing that element to
another element.
Ponding. Retention of water due solely to the deflection of flat roof framing.
Positive flexural strength. Flexural strength of a composite beamin regions with compres-
sion due to flexure on the top surface.
Pretensioned bolt. Bolt tightened to the specified minimum pretension.
Pretensioned joint. Jointwith high-strength bolts tightened to the specified minimum
pretension.
Properly developed.Reinforcing bars detailed to yield in a ductile manner before crushing
of the concrete occurs. Bars meeting the provisions of ACI 318, insofar as development
length, spacing and cover, are deemed to be properly developed.
Prying action. Amplification of the tension force in a bolt caused by leverage between the
point of applied load, the bolt and the reaction of the connected elements.
Punching load.In an HSS connection, component of branch memberforce perpendicular to
a chord.
P-δeffect. Effect of loadsacting on the deflected shape of a member between joints or
nodes.
P-Δeffect. Effect of loadsacting on the displaced location of joints or nodes in a structure.
In tiered building structures, this is the effect of loads acting on the laterally displaced
location of floors and roofs.
Quality assurance. Monitoring and inspection tasks performed by an agency or firm other
than the fabricator or erector to ensure that the material provided and work performed by
the fabricator and erector meet the requirements of the approved construction documents
and referenced standards. Quality assuranceincludes those tasks designated “special
inspection” by the applicable building code.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page li

16.1–lii GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Quality assurance inspector (QAI).Individual designated to provide quality assurance
inspection for the work being performed.
Quality assurance plan (QAP).Program in which the agency or firm responsible for
quality assurancemaintains detailed monitoring and inspection procedures to ensure
conformance with the approved construction documentsand referenced standards.
Quality control. Controls and inspections implemented by the fabricator or erector, as appli-
cable, to ensure that the material provided and work performed meet the requirements of
the approved construction documentsand referenced standards.
Quality control inspector (QCI).Individual designated to perform quality controlinspection
tasks for the work being performed.
Quality control program (QCP). Program in which the fabricator or erector, as applicable,
maintains detailed fabrication or erection and inspection procedures to ensure confor-
mance with the approved design drawings, specificationsand referenced standards.
Reentrant. In a copeor weld access hole, a cut at an abrupt change in direction in which the
exposed surface is concave.
Relative brace. Brace that controls the relative movement of two adjacent brace points along
the length of a beamor columnor the relative lateral displacement of two stories in a
frame (see nodal brace).
Required strength*†. Forces, stressesand deformations acting on a structural component,
determined by either structural analysis, for the LRFD or ASD load combinations, as
appropriate, or as specified by this Specificationor Standard.
Resistance factorφ†. Factor that accounts for unavoidable deviations of the nominal strength
from the actual strength and for the manner and consequences of failure.
Restrained construction. Floor and roof assemblies and individual beamsin buildings where
the surrounding or supporting structure is capable of resisting substantial thermal expan-
sion throughout the range of anticipated elevated temperatures.
Reverse curvature.See double curvature.
Root of joint.Portion of a jointto be welded where the members are closest to each other.
Rotation capacity. Incremental angular rotation that a given shape can accept prior to exces-
sive load shedding, defined as the ratio of the inelastic rotation attained to the idealized
elastic rotation at first yield.
.
Rupture strength†. Strength limited by breaking or tearing of members or connecting
elements.
Safety factor, Ω†. Factor that accounts for deviations of the actual strength from the nomi-
nal strength, deviations of the actual loadfrom the nominal load, uncertainties in the
analysis that transforms the load into a load effect, and for the manner and consequences
of failure.
Second-order effect.Effect of loadsacting on the deformed configuration of a structure;
includes P-δeffectand P-Δeffect.
Seismic response modification factor.Factor that reduces seismic load effectsto strength
level.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lii

GLOSSARY 16.1–liii
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Service load†.Loadunder which serviceability limit statesare evaluated.
Service load combination.Load combination under which serviceability limit statesare
evaluated.
Serviceability limit state†. Limiting condition affecting the ability of a structure to preserve
its appearance, maintainability, durability or the comfort of its occupants or function of
machinery, under normal usage.
Shear buckling†. Bucklingmode in which a plate element, such as the web of a beam,
deforms under pure shear applied in the plane of the plate.
Shear lag.Nonuniform tensile stress distribution in a member or connecting element in the-
vicinity of a connection.
Shear wall†. Wall that provides resistance to lateral loadsin the plane of the wall and
provides stability for the structural system.
Shear yielding (punching). In an HSS connection, limit statebased on out-of-plane shear
strength of the chordwall to whichbranch members are attached.
Sheet steel. In a compositefloor system, steel used for closure plates or miscellaneous trim-
ming in a formed steel deck.
Shim. Thin layer of material used to fill a space between faying or bearing surfaces.
Sidesway buckling (frame). Stability limit state involving lateral sidesway instabilityof a
frame.
Simple connection. Connectionthat transmits negligible bending moment between con-
nected members.
Single-concentrated force. Tensile or compressive force applied normal to the flange of a
member.
Single curvature. Deformed shape of a beamwith no inflection point within the span.
Slender-element section. Cross section possessing plate components of sufficient slender-
ness such that local bucklingin the elastic range will occur.
Slip. In a bolted connection, limit state of relative motion of connected parts prior to the
attainment of the available strengthof the connection.
Slip-critical connection. Bolted connectiondesigned to resist movement by friction on the
faying surface of the connection under the clamping force of the bolts.
Slot weld. Weld made in an elongated hole fusing an element to another element.
Snug-tightened joint. Jointwith the connected plies in firm contact as specified in Chapter J.
Specifications. Written documents containing the requirements for materials, standards and
workmanship.
Specified minimum tensile strength. Lower limit of tensile strengthspecified for a material
as defined by ASTM.
Specified minimum yield stress†. Lower limit of yield stressspecified for a material as
defined by ASTM.
Splice. Connectionbetween two structural elements joined at their ends to form a single,
longer element.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page liii

16.1–liv GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stability.Condition in the loading of a structural component, frame or structure in which a
slight disturbance in the loadsor geometry does not produce large displacements.
Statically loaded. Not subject to significant fatigue stresses. Gravity, wind and seismic load-
ings are considered to be static loadings.
Steel anchor. Headed stud or hot rolled channel welded to a steel member and embodied in
concrete of a composite memberto transmit shear, tension or a combination of shear and
tension at the interface of the two materials.
Stiffened element. Flat compression element with adjoining out-of-plane elements along
both edges parallel to the direction of loading.
Stiffener. Structural element, usually an angle or plate, attached to a member to distribute
load, transfer shear or prevent buckling.
Stiffness. Resistance to deformation of a member or structure, measured by the ratio of the
applied force(or moment) to the corresponding displacement (or rotation).
Strain compatibility method. In a compositemember, method for determining thestresses
considering the stress-strain relationships of each material and its location with respect to
the neutral axis of the cross section.
Strength limit state†. Limiting condition in which the maximum strength of a structure or its
components is reached.
Stress. Force per unit area caused by axial force, moment, shear or torsion.
Stress concentration. Localized stress considerably higher than average due to abrupt
changes in geometry or localized loading.
Strong axis. Major principal centroidal axis of a cross section.
Structural analysis†. Determination of load effectson members and connectionsbased on
principles of structural mechanics.
Structural component†. Member, connector, connecting element or assemblage.
Structural steel.Steel elements as defined in Section 2.1 of the AISC Code of Standard
Practice for Steel Buildings and Bridges.
Structural system. An assemblage of load-carrying components that are joined together to
provide interaction or interdependence.
T-connection. HSS connectionin which the branch memberor connecting element is per-
pendicular to the main memberand in which forces transverse to the main member are
primarily equilibriated by shear in the main member.
Tensile strength (of material)†. Maximum tensile stressthat a material is capable of sus-
taining as defined by ASTM.
Tensile strength (of member).Maximum tension forcethat a member is capable of
sustaining.
Tension and shear rupture†. In a bolt or other type of mechanical fastener, limit stateof rup-
ture due to simultaneous tension and shear force.
Tension field action. Behavior of a panel under shear in which diagonal tensile forces
develop in the web and compressive forces develop in the transverse stiffenersin a man-
ner similar to a Pratt truss.
Thermally cut. Cut with gas, plasma or laser.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page liv

GLOSSARY 16.1–lv
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tie plate. Plate element used to join two parallel components of a built-up column, girderor
strut rigidly connected to the parallel components and designed to transmit shear between
them.
Toe of fillet. Junction of a fillet weld face and base metal. Tangent point of a fillet in a rolled
shape.
Torsional bracing.Bracing resisting twist of a beamor column.
Torsional buckling†.Buckling mode in which a compression member twists about its shear
center axis.
Transverse reinforcement. In an encased composite column, steel reinforcement in the form
of closed ties or welded wire fabric providing confinement for the concrete surrounding
the steel shape.
Transverse stiffener. Web stiffeneroriented perpendicular to the flanges, attached to the
web.
Tubing.See HSS.
Turn-of-nut method. Procedure whereby the specified pretension in high-strength bolts is
controlled by rotating the fastenercomponent a predetermined amount after the bolt has
been snug tightened.
Unbraced length. Distance between braced points of a member, measured between the cen-
ters of gravity of the bracing members.
Uneven load distribution.In an HSS connection, condition in which the loadis not distrib-
uted through the cross section of connected elements in a manner that can be readily
determined.
Unframed end. The end of a member not restrained against rotation by stiffenersor connec-
tion elements.
Unrestrained construction. Floor and roof assemblies and individual beamsin buildings that
are assumed to be free to rotate and expand throughout the range of anticipated elevated
temperatures.
Unstiffened element. Flat compression element with an adjoining out-of-plane element
along one edge parallel to the direction of loading.
Weak axis. Minor principal centroidal axis of a cross section.
Weathering steel. High-strength, low-alloy steel that, with suitable precautions, can be used
in normal atmospheric exposures (not marine) without protective paint coating.
Web crippling†.Limit state of local failure of web plate in the immediate vicinity of a con-
centratedload or reaction.
Web sidesway buckling.Limit state of lateralbuckling of the tension flange opposite the
location of a concentrated compressionforce.
Weld metal. Portion of a fusion weld that has been completely melted during welding. Weld
metal has elements of filler metal and base metal melted in the weld thermal cycle.
Weld root.See root of joint.
Y-connection. HSS connectionin which the branch member
or connecting element is not
perpendicular to the main memberand in which forces transverse to the main member are
primarily equilibriated by shear in the main member.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lv

16.1–lvi GLOSSARY
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Yield moment†. In a member subjected to bending, the moment at which the extreme outer
fiber first attains the yield stress.
Yield point†. First stressin a material at which an increase in strain occurs without an
increase in stress as defined by ASTM.
Yield strength†. Stressat which a material exhibits a specified limiting deviation from the
proportionality of stress to strain as defined by ASTM.
Yield stress†. Generic term to denote either yield pointor yield strength, as appropriate for
the material.
Yielding†.Limit state of inelastic deformation that occurs when the yield stressis reached.
Yielding (plastic moment)†.Yieldingthroughout the cross section of a member as the bend-
ing moment reaches theplastic moment.
Yielding (yield moment)†.Yieldingat the extreme fiber on the cross section of a member
when the bending moment reaches the yield moment.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page lvi

16.1–1
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER A
GENERAL PROVISIONS
This chapter states the scope of the Specification, summarizes referenced specifications,
codes and standards, and provides requirements for materials and structural design
documents.
The chapter is organized as follows:
A1. Scope
A2. Referenced Specifications, Codes and Standards
A3. Material
A4. Structural Design Drawings and Specifications
A1. SCOPE
The Specification for Structural Steel Buildings(ANSI/AISC 360), hereafter referred
to as the Specification, shall apply to the design of the structural steelsystem or sys-
tems with structural steel acting compositely with reinforced concrete, where the
steel elements are defined in the AISCCode of Standard Practice for Steel Buildings
and Bridges, Section 2.1, hereafter referred to as the Code of Standard Practice.
This Specification includes the Symbols, the Glossary, Chapters A through N, and
Appendices 1 through 8. The Commentary and the User Notes interspersed through-
out are not part of the Specification.
User Note:User notes are intended to provide concise and practical guidance in
the application of the provisions.
This Specification sets forth criteria for the design, fabrication and erection of struc-
tural steel buildings and other structures, where other structures are defined as
structures designed, fabricated and erected in a manner similar to buildings, with
building-like vertical and lateral loadresisting-elements.
Wherever this Specification refers to the applicable building codeand there is none,
the loads, load combinations, system limitations, and general design requirements
shall be those in ASCE/SEI 7.
Where conditions are not covered by the Specification, designs are permitted to be
based on tests or analysis, subject to the approval of the authority having jurisdiction.
Alternative methods of analysis and design are permitted, provided such alternative
methods or criteria are acceptable to the authority having jurisdiction.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 1

User Note:For the design of structural members, other than hollow structural
sections (HSS) that are cold-formed to shapes with elements not more than 1 in.
(25 mm) in thickness, the provisions of the AISI North American Specification for
the Design of Cold-Formed Steel Structural Membersare recommended.
1. Seismic Applications
The Seismic Provisions for Structural Steel Buildings(ANSI/AISC 341) shall apply
to the design of seismic forceresisting systems of structural steelor of structural
steel acting compositely with reinforced concrete, unless specifically exempted by
the applicable building code.
User Note:ASCE/SEI 7 (Table 12.2-1, Item H) specifically exempts structural
steel systems, but not compositesystems, in seismic design categories B and C
if they are designed according to the Specificationand the seismicloads are
computed using a seismic response modification factor, R, of 3. For seismic
design category A, ASCE/SEI 7 does specify lateral forces to be used as the
seismic loads and effects, but these calculations do not involve the use of an R
factor. Thus for seismic design category A it is not necessary to define a seismic
force resisting system that meets any special requirements and the Seismic
Provisions for Structural Steel Buildingsdo not apply.
The provisions of Appendix 1 of this Specification shall not apply to the seismic
design of buildings and other structures.
2. Nuclear Applications
The design, fabrication and erection of nuclear structures shall comply with the
requirements of the Specification for Safety-Related Steel Structures for Nuclear
Facilities (ANSI/AISC N690), in addition to the provisions of this Specification.
A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS
The following specifications, codes and standards are referenced in this Specification:
ACI International (ACI)
ACI 318-08 Building Code Requirements for Structural Concrete and Commentary
ACI 318M-08 Metric Building Code Requirements for Structural Concrete and
Commentary
ACI 349-06 Code Requirements for Nuclear Safety-Related Concrete Structures and
Commentary
American Institute of Steel Construction (AISC)
AISC 303-10Code of Standard Practice for Steel Buildings and Bridges
ANSI/AISC 341-10 Seismic Provisions for Structural Steel Buildings
ANSI/AISC N690-06 Specification for Safety-Related Steel Structures for Nuclear
Facilities
16.1–2 SCOPE [Sect. A1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 2

American Society of Civil Engineers (ASCE)
ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures
ASCE/SEI/SFPE 29-05 Standard Calculation Methods for Structural Fire Protection
American Society of Mechanical Engineers (ASME)
ASME B18.2.6-06 Fasteners for Use in Structural Applications
ASME B46.1-02 Surface Texture, Surface Roughness, Waviness, and Lay
American Society for Nondestructive Testing (ASNT)
ANSI/ASNT CP-189-2006 Standard for Qualification and Certification of
Nondestructive Testing Personnel
Recommended Practice No. SNT-TC-1A-2006 Personnel Qualification and
Certification in Nondestructive Testing
ASTM International (ASTM)
A6/A6M-09 Standard Specification for General Requirements for Rolled Structural
Steel Bars, Plates, Shapes, and Sheet Piling
A36/A36M-08 Standard Specification for Carbon Structural Steel
A53/A53M-07Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-
Coated, Welded and Seamless
A193/A193M-08b Standard Specification for Alloy-Steel and Stainless Steel Bolting
Materials for High Temperature or High Pressure Service and Other Special
Purpose Applications
A194/A194M-09 Standard Specification for Carbon and Alloy Steel Nuts for Bolts
for High Pressure or High Temperature Service, or Both
A216/A216M-08 Standard Specification for Steel Castings, Carbon, Suitable for
Fusion Welding, for High Temperature Service
A242/A242M-04(2009)Standard Specification for High-Strength Low-Alloy
Structural Steel
A283/A283M-03(2007)Standard Specification for Low and Intermediate Tensile
Strength Carbon Steel Plates
A307-07bStandard Specification for Carbon Steel Bolts and Studs, 60,000 PSI
Tensile Strength
A325-09 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105
ksi Minimum Tensile Strength
A325M-09Standard Specification for Structural Bolts, Steel, Heat Treated 830 MPa
Minimum Tensile Strength (Metric)
A354-07a Standard Specification for Quenched and Tempered Alloy Steel Bolts,
Studs, and Other Externally Threaded Fasteners
A370-09Standard Test Methods and Definitions for Mechanical Testing of Steel
Products
A449-07bStandard Specification for Hex Cap Screws, Bolts and Studs, Steel, Heat
Treated, 120/105/90 ksi Minimum Tensile Strength, General Use
A490-08bStandard Specification for Heat-Treated Steel Structural Bolts, Alloy
Steel, Heat Treated, 150 ksi Minimum Tensile Strength
A490M-08Standard Specification for High-Strength Steel Bolts, Classes 10.9 and
10.9.3, for Structural Steel Joints (Metric)
Sect. A2.] REFERENCED SPECIFICATIONS, CODES AND STANDARDS 16.1–3
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 3

A500/A500M-07Standard Specification for Cold-Formed Welded and Seamless
Carbon Steel Structural Tubing in Rounds and Shapes
A501-07Standard Specification for Hot-Formed Welded and Seamless Carbon Steel
Structural Tubing
A502-03 Standard Specification for Steel Structural Rivets, Steel, Structural
A514/A514M-05 Standard Specification for High-Yield Strength, Quenched and
Tempered Alloy Steel Plate, Suitable for Welding
A529/A529M-05Standard Specification for High-Strength Carbon-Manganese
Steel of Structural Quality
A563-07aStandard Specification for Carbon and Alloy Steel Nuts
A563M-07 Standard Specification for Carbon and Alloy Steel Nuts [Metric]
A568/A568M-09Standard Specification for Steel, Sheet, Carbon, Structural, and
High-Strength, Low-Alloy, Hot-Rolled and Cold-Rolled, General Requirements for
A572/A572M-07Standard Specification for High-Strength Low-Alloy Columbium-
Vanadium Structural Steel
A588/A588M-05Standard Specification for High-Strength Low-Alloy Structural Steel,
up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance
A606/A606M-09Standard Specification for Steel, Sheet and Strip, High-Strength,
Low-Alloy, Hot-Rolled and Cold-Rolled, with Improved Atmospheric Corrosion
Resistance
A618/A618M-04Standard Specification for Hot-Formed Welded and Seamless
High-Strength Low-Alloy Structural Tubing
A668/A668M-04 Standard Specification for Steel Forgings, Carbon and Alloy, for
General Industrial Use
A673/A673M-04Standard Specification for Sampling Procedure for Impact Testing
of Structural Steel
A709/A709M-09 Standard Specification for Structural Steel for Bridges
A751-08 Standard Test Methods, Practices, and Terminology for Chemical Analysis
of Steel Products
A847/A847M-05 Standard Specification for Cold-Formed Welded and Seamless
High-Strength, Low-Alloy Structural Tubing with Improved Atmospheric
Corrosion Resistance
A852/A852M-03(2007)Standard Specification for Quenched and Tempered Low-
Alloy Structural Steel Plate with 70 ksi [485 MPa] Minimum Yield Strength to 4
in. [100 mm] Thick
A913/A913M-07Standard Specification for High-Strength Low-Alloy Steel Shapes
of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
A992/A992M-06aStandard Specification for Structural Steel Shapes
User Note:ASTM A992 is the most commonly referenced specification for
W-shapes.
A1011/A1011M-09aStandard Specification for Steel, Sheet and Strip, Hot-Rolled,
Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with
Improved Formability, and Ultra-High Strength
A1043/A1043M-05 Standard Specification for Structural Steel with Low Yield to
Tensile Ratio for Use in Buildings
16.1–4 REFERENCED SPECIFICATIONS, CODES AND STANDARDS [Sect. A2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 4

Sect. A2.] REFERENCED SPECIFICATIONS, CODES AND STANDARDS 16.1–5
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C567-05a Standard Test Method for Determining Density of Structural Lightweight
Concrete
E119-08a Standard Test Methods for Fire Tests of Building Construction and Materials
E165-02 Standard Test Method for Liquid Penetrant Examination
E709-08Standard Guide for Magnetic Particle Examination
F436-09Standard Specification for Hardened Steel Washers
F436M-09 Standard Specification for Hardened Steel Washers (Metric)
F606-07 Standard Test Methods for Determining the Mechanical Properties of
Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators,
and Rivets
F606M-07 Standard Test Methods for Determining the Mechanical Properties of
Externally and Internally Threaded Fasteners, Washers, and Rivets (Metric)
F844-07a Standard Specification for Washers, Steel, Plain (Flat), Unhardened for
General Use
F959-09Standard Specification for Compressible-Washer-Type Direct Tension
Indicators for Use with Structural Fasteners
F959M-07 Standard Specification for Compressible-Washer-Type Direct Tension
Indicators for Use with Structural Fasteners (Metric)
F1554-07aStandard Specification for Anchor Bolts, Steel, 36, 55, and 105 ksi Yield
Strength
User Note:ASTM F1554 is the most commonly referenced specification for
anchor rods. Grade and weldability must be specified.
F1852-08Standard Specification for “Twist-Off” Type Tension Control Structural
Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile
Strength
F2280-08 Standard Specification for “Twist Off” Type Tension Control Structural Bolt/
Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength
American Welding Society (AWS)
AWS A5.1/A5.1M-2004 Specification for Carbon Steel Electrodes for Shielded
Metal Arc Welding
AWS A5.5/A5.5M-2004 Specification for Low-Alloy Steel Electrodes for Shielded
Metal Arc Welding
AWS A5.17/A5.17M-1997 (R2007) Specification for Carbon Steel Electrodes and
Fluxes for Submerged Arc Welding
AWS A5.18/A5.18M-2005 Specification for Carbon Steel Electrodes and Rods for
Gas Shielded Arc Welding
AWS A5.20/A5.20M-2005 Specification for Carbon Steel Electrodes for Flux Cored
Arc Welding
AWS A5.23/A5.23M-2007 Specification for Low-Alloy Steel Electrodes and Fluxes
for Submerged Arc Welding
AWS A5.25/A5.25M-1997 (R2009) Specification for Carbon and Low-Alloy Steel
Electrodes and Fluxes for Electroslag Welding
AWS A5.26/A5.26M-1997 (R2009) Specification for Carbon and Low-Alloy Steel
Electrodes for Electrogas Welding
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 5

AWS A5.28/A5.28M-2005 Specification for Low-Alloy Steel Electrodes and Rods
for Gas Shielded Arc Welding
AWS A5.29/A5.29M-2005 Specification for Low-Alloy Steel Electrodes for Flux
Cored Arc Welding
AWS A5.32/A5.32M-1997 (R2007) Specification for Welding Shielding Gases
AWS B5.1-2003 Specification for the Qualification of Welding Inspectors
AWS D1.1/D1.1M-2010 Structural Welding Code—Steel
AWS D1.3 -2008 Structural Welding Code—Sheet Steel
Research Council on Structural Connections (RCSC)
Specification for Structural Joints Using High-Strength Bolts, 2009
A3. MATERIAL
1. Structural Steel Materials
Material test reports or reports of tests made by the fabricator or a testing laboratory
shall constitute sufficient evidence of conformity with one of the ASTM standards
listed in Section A3.1a. For hot-rolled structural shapes, plates, and bars, such tests
shall be made in accordance with ASTM A6/A6M; for sheets, such tests shall be
made in accordance with ASTM A568/A568M; for tubingand pipe, such tests shall
be made in accordance with the requirements of the applicable ASTM standards
listed above for those product forms.
1a. ASTM Designations
Structural steelmaterial conforming to one of the following ASTMspecificationsis
approved for use under this Specification:
(1) Hot-rolled structural shapes
ASTM A36/A36M ASTM A709/A709M
ASTM A529/A529M ASTM A913/A913M
ASTM A572/A572M ASTM A992/ A992M
ASTM A588/A588M ASTM A1043/A1043M
(2) Structural tubing
ASTM A500 ASTM A618/A618M
ASTM A501 ASTM A847/A847M
(3) Pipe
ASTM A53/A53M, Gr. B
(4) Plates
ASTM A36/A36M ASTM A588/A588M
ASTM A242/A242M ASTM A709/A709M
ASTM A283/A283M ASTM A852/A852M
ASTM A514/A514M ASTM A1011/A1011M
ASTM A529/A529M ASTM A1043/A1043M
ASTM A572/A572M
(5) Bars
ASTM A36/A36M ASTM A572/A572M
ASTM A529/A529M ASTM A709/A709M
16.1–6 REFERENCED SPECIFICATIONS, CODES AND STANDARDS [Sect. A2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 6

Sect. A3.] MATERIAL 16.1–7
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(6) Sheets
ASTM A606/A606M
ASTM A1011/A1011M SS, HSLAS, AND HSLAS-F
1b. Unidentified Steel
Unidentified steel, free of injurious defects, is permitted to be used only for members
or details whose failure will not reduce the strength of the structure, either locally or
overall. Such use shall be subject to the approval of the engineer of record.
User Note:Unidentified steel may be used for details where the precise mechan-
ical properties and weldability are not of concern. These are commonly curb
plates, shimsand other similar pieces.
1c. Rolled Heavy Shapes
ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm)
are considered to be rolled heavy shapes. Rolled heavy shapes used as members
subject to primary (computed) tensile forcesdue to tension or flexure and spliced
or connected using complete-joint-penetration groove weldsthat fuse through the
thickness of the flange or the flange and the web, shall be specified as follows.
The structural design documents shall require that such shapes be supplied with
Charpy V-notch (CVN) impact testresults in accordance with ASTM A6/A6M,
Supplementary Requirement S30, Charpy V-Notch Impact Test for Structural Shapes
– Alternate Core Location. The impact test shall meet a minimum average value of
20 ft-lb (27 J) absorbed energy at a maximum temperature of +70 °F (+21 °C).
The above requirements do not apply if the splicesand connectionsare made by
bolting. Where a rolled heavy shape is welded to the surface of another shape using
groove welds, the requirement above applies only to the shape that has weld metal
fused through the cross section.
User Note:Additional requirements for joints in heavy rolled members are given
in Sections J1.5, J1.6, J2.6 and M2.2.
1d. Built-Up Heavy Shapes
Built-up cross sectionsconsisting of plates with a thickness exceeding 2 in. (50 mm)
are considered built-up heavy shapes. Built-up heavy shapes used as members sub-
ject to primary (computed) tensile forces due to tension or flexure and spliced or
connected to other members using complete-joint-penetration groove weldsthat
fuse through the thickness of the plates, shall be specified as follows. The structural
design documents shall require that the steel be supplied with Charpy V-notch
impact testresults in accordance with ASTM A6/A6M, Supplementary
Requirement S5, Charpy V-Notch Impact Test. The impact test shall be conducted
in accordance with ASTM A673/A673M, Frequency P, and shall meet a minimum
average value of 20 ft-lb (27 J) absorbed energy at a maximum temperature of
+70 °F (+21 °C).
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 7

16.1–8 MATERIAL [Sect. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When a built-up heavy shape is welded to the face of another member using groove
welds, the requirement above applies only to the shape that has weld metal fused
through the cross section.
User Note:Additional requirements for joints in heavy built-up membersare
given in Sections J1.5, J1.6, J2.6 and M2.2.
2. Steel Castings and Forgings
Steel castings shall conform to ASTM A216/A216M, Grade WCB with Sup-
plementary Requirement S11. Steel forgings shall conform to ASTM A668/A668M.
Test reports produced in accordance with the above reference standards shall consti-
tute sufficient evidence of conformity with such standards.
3. Bolts, Washers and Nuts
Bolt, washer and nut material conforming to one of the following ASTMspecifica-
tionsis approved for use under this Specification:
(1) Bolts
ASTM A307 ASTM A490
ASTM A325 ASTM A490M
ASTM A325M ASTM F1852
ASTM A354 ASTM F2280
ASTM A449
(2) Nuts
ASTM A194/A194M ASTM A563M
ASTM A563
(3) Washers
ASTM F436 ASTM F844
ASTM F436M
(4) Compressible-Washer-Type Direct Tension Indicators
ASTM F959
ASTM F959M
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards.
4. Anchor Rods and Threaded Rods
Anchor rod and threaded rod material conforming to one of the following ASTM
specificationsis approved for use under this Specification:
ASTM A36/A36M ASTM A572/A572M
ASTM A193/A193M ASTM A588/A588M
ASTM A354 ASTM F1554
ASTM A449
User Note:ASTM F1554 is the preferred material specification for anchor rods.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 8

A449 material is acceptable for high-strength anchor rods and threaded rods of
any diameter.
Threads on anchor rods and threaded rods shall conform to the Unified Standard
Series of ASME B18.2.6 and shall have Class 2A tolerances.
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards.
5. Consumables for Welding
Filler metalsand fluxes shall conform to one of the following specificationsof the
American Welding Society:
AWS A5.1/A5.1M AWS A5.25/A5.25M
AWS A5.5/A5.5M AWS A5.26/A5.26M
AWS A5.17/A5.17M AWS A5.28/A5.28M
AWS A5.18/A5.18M AWS A5.29/A5.29M
AWS A5.20/A5.20M AWS A5.32/A5.32M
AWS A5.23/A5.23M
Manufacturer’s certification shall constitute sufficient evidence of conformity with
the standards. Filler metals and fluxes that are suitable for the intended application
shall be selected.
6. Headed Stud Anchors
Steel headed stud anchors shall conform to the requirements of the Structural
Welding Code—Steel(AWS D1.1/D1.1M).
Manufacturer’s certification shall constitute sufficient evidence of conformity with
AWS D1.1/D1.1M.
A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS
The structural design drawingsand specificationsshall meet the requirements in the
Code of Standard Practice.
User Note: Provisions in this Specification contain information that is to be
shown on design drawings. These include:
Section A3.1c Rolled heavy shapes where alternate core Charpy V-notch tough-
ness(CVN) is required
Section A3.1d Built-up heavy shapes where CVN toughness is required
Section J3.1 Locations of connections using pretensioned bolts
Other information is needed by the fabricator or erector and should be shown on
design drawings including:
Fatiguedetails requiring nondestructive testing(Appendix 3; e.g., Table A3.1,
Cases 5.1 to 5.4)
Risk category (Chapter N)
Indication of complete-joint-penetration (CJP) welds subject to tension (Chapter N)
Sect. A4.] STRUCTURAL DESIGN DRAWINGS ANS SPECIFICATIONS 16.1–9
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 9

CHAPTER B
DESIGN REQUIREMENTS
This chapter addresses general requirements for the analysis and design of steel structures
applicable to all chapters of the specification.
The chapter is organized as follows:
B1. General Provisions
B2. Loads and Load Combinations
B3. Design Basis
B4. Member Properties
B5. Fabrication and Erection
B6. Quality Control and Quality Assurance
B7. Evaluation of Existing Structures
B1. GENERAL PROVISIONS
The design of members and connectionsshall be consistent with the intended behav-
ior of the framing system and the assumptions made in the structural analysis.
Unless restricted by the applicable building code, lateral loadresistance and stabil-
itymay be provided by any combination of members and connections.
B2. LOADS AND LOAD COMBINATIONS
The loadsand load combinations shall be as stipulated by the applicable building
code. In the absence of a building code, the loads and load combinations shall be
those stipulated in Minimum Design Loads for Buildings and Other Structures
(ASCE/SEI 7). For design purposes, the nominal loadsshall be taken as the loads
stipulated by the applicable building code.
User Note: When using ASCE/SEI 7, for design according to Section B3.3
(LRFD), the load combinations in ASCE/SEI 7, Section 2.3 apply. For design
according to Section B3.4 (ASD), the load combinations in ASCE/SEI 7, Section
2.4 apply.
B3. DESIGN BASIS
Designs shall be made according to the provisions for load and resistance factor
design (LRFD)or to the provisions for allowable strength design (ASD).
1. Required Strength
The required strengthof structural members and connectionsshall be determined by
structural analysisfor the appropriate loadcombinations as stipulated in Section B2.
16.1–10
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 10

Design by elastic, inelastic or plastic analysisis permitted. Provisions for inelastic
and plastic analysis are as stipulated in Appendix 1, Design by Inelastic Analysis.
2. Limit States
Design shall be based on the principle that no applicable strength or serviceability
limit stateshall be exceeded when the structure is subjected to all appropriate load
combinations.
Design for structural integrity requirements of the applicable building codeshall be
based on nominal strengthrather than design strength(LRFD) or allowable strength
(ASD), unless specifically stated otherwise in the applicable building code. Limit
states for connections based on limiting deformations or yieldingof the connection
components need not be considered for meeting structural integrity requirements.
For the purpose of satisfying structural integrity provisions of the applicable building
code, bearingbolts in connections with short-slotted holes parallel to the direction of
the tension load are permitted, and shall be assumed to be located at the end of the slot.
3. Design for Strength Using Load and Resistance Factor Design (LRFD)
Design according to the provisions for load and resistance factor design (LRFD)
satisfies the requirements of this Specification when the design strengthof each
structural componentequals or exceeds the required strengthdetermined on the
basis of the LRFD load combinations. All provisions of this Specification, except
for those in Section B3.4, shall apply.
Design shall be performed in accordance with Equation B3-1:
R
u≤φRn (B3-1)
where
R
u=required strength using LRFD load combinations
R
n=nominal strength, specified in Chapters B through K
φ=resistance factor, specified in Chapters B through K
φR
n=design strength
4. Design for Strength Using Allowable Strength Design (ASD)
Design according to the provisions for allowable strength design (ASD)satisfies the
requirements of this Specification when the allowable strengthof each structural
componentequals or exceeds the required strengthdetermined on the basis of the
ASD load combinations. All provisions of this Specification, except those of Section
B3.3, shall apply.
Design shall be performed in accordance with Equation B3-2:
R
a≤Rn/Ω (B3-2)
where
R
a=required strength using ASD load combinations
R
n=nominal strength, specified in Chapters B through K
Ω= safety factor, specified in Chapters B through K
R
n/Ω=allowable strength
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sect. B3.] DESIGN BASIS 16.1–11
AISC_PART 16_Spec.1_A_14th Ed._February 12, 2013 12/02/13 9:37 AM Page 11

5. Design for Stability
Stabilityof the structure and its elements shall be determined in accordance with
Chapter C.
6. Design of Connections
Connectionelements shall be designed in accordance with the provisions of Chapters
J and K. The forcesand deformations used in design shall be consistent with the
intended performance of the connection and the assumptions used in the structural
analysis. Self-limiting inelastic deformations of the connections are permitted. At
points of support, beams, girdersand trusses shall be restrained against rotation about
their longitudinal axis unless it can be shown by analysis that the restraint is not
required.
User Note:Section 3.1.2 of the Code of Standard Practiceaddresses communi-
cation of necessary information for the design of connections.
6a. Simple Connections
A simple connection transmits a negligible moment. In the analysis of the structure,
simple connections may be assumed to allow unrestrained relative rotation between
the framing elements being connected. A simple connection shall have sufficient
rotation capacityto accommodate the required rotation determined by the analysis
of the structure.
6b. Moment Connections
Two types of moment connections, fully restrained and partially restrained, are per-
mitted, as specified below.
(a) Fully Restrained (FR) Moment Connections
A fully restrained (FR) moment connectiontransfers moment with a negligible
rotation between the connected members. In the analysis of the structure, the
connection may be assumed to allow no relative rotation. An FR connection shall
have sufficient strength and stiffnessto maintain the angle between the con-
nected members at the strength limit states.
(b) Partially Restrained (PR) Moment Connections
Partially restrained (PR) moment connectionstransfer moments, but the rotation
between connected members is not negligible. In the analysis of the structure, the
force-deformation response characteristics of the connection shall be included.
The response characteristics of a PR connection shall be documented in the
technical literature or established by analytical or experimental means. The com-
ponent elements of a PR connection shall have sufficient strength, stiffness and
deformation capacity at the strength limit states.
7. Moment Redistribution in Beams
The required flexural strengthof beamscomposed of compact sections, as defined
in Section B4.1, and satisfying the unbraced lengthrequirements of Section F13.5
16.1–12 DESIGN BASIS [Sect. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 12

may be taken as nine-tenths of the negative moments at the points of support, pro-
duced by the gravity loadingand determined by an elastic analysissatisfying the
requirements of Chapter C, provided that the maximum positive moment is
increased by one-tenth of the average negative moment determined by an elastic
analysis. This reduction is not permitted for moments in members with F
yexceed-
ing 65 ksi (450 MPa), for moments produced by loading on cantilevers, for design
using partially restrained (PR) moment connections, or for design by inelastic
analysis using the provisions of Appendix 1. This reduction is permitted for design
according to Section B3.3 (LRFD) and for design according to Section B3.4 (ASD).
The required axial strength shall not exceed 0.15φ
cFyAgfor LRFD or 0.15F yAg/Ωc
for ASD where φ c and Ω care determined from Section E1, and A g=gross area of
member, in.
2
(mm
2
), and F y =specified minimum yield stress, ksi (MPa).
8. Diaphragms and Collectors
Diaphragmsand collectorsshall be designed for forces that result from loadsas stip-
ulated in Section B2. They shall be designed in conformance with the provisions of
Chapters C through K, as applicable.
9. Design for Serviceability
The overall structure and the individual members and connections shall be checked
for serviceability. Requirements for serviceability design are given in Chapter L.
10. Design for Ponding
The roof system shall be investigated through structural analysisto assure adequate
strength and stabilityunder pondingconditions, unless the roof surface is provided
with a slope of
1
/4in. per ft (20 mm per meter) or greater toward points of free
drainage or an adequate system of drainage is provided to prevent the accumulation
of water.
Methods of checking ponding are provided in Appendix 2, Design for Ponding.
11. Design for Fatigue
Fatigueshall be considered in accordance with Appendix 3, Design for Fatigue, for
members and their connectionssubject to repeated loading. Fatigue need not be con-
sidered for seismic effects or for the effects of wind loading on normal building
lateral force resisting systemsand building enclosure components.
12. Design for Fire Conditions
Two methods of design for fireconditions are provided in Appendix 4, Structural
Design for Fire Conditions: by Analysis and by Qualification Testing. Compliance
with the fire protection requirements in the applicable building codeshall be
deemed to satisfy the requirements of this section and Appendix 4.
Nothing in this section is intended to create or imply a contractual requirement for the
engineer of recordresponsible for the structural design or any other member of the
design team.
Sect. B3.] DESIGN BASIS 16.1–13
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 13

16.1–14 DESIGN BASIS [Sect. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Design by qualification testing is the prescriptive method specified in
most building codes. Traditionally, on most projects where the architect is the
prime professional, the architect has been the responsible party to specify and
coordinate fire protection requirements. Design by analysis is a new engineering
approach to fire protection. Designation of the person(s) responsible for design-
ing for fire conditions is a contractual matter to be addressed on each project.
13. Design for Corrosion Effects
Where corrosion may impair the strength or serviceability of a structure, structural
componentsshall be designed to tolerate corrosion or shall be protected against
corrosion.
14. Anchorage to Concrete
Anchorage between steel and concrete acting compositely shall be designed in accor-
dance with Chapter I. The design of column basesand anchor rods shall be in
accordance with Chapter J.
B4. MEMBER PROPERTIES
1. Classification of Sections for Local Buckling
For compression, sections are classified as nonslender element or slender-element
sections. For a nonslender element section, the width-to-thickness ratios of its com-
pression elements shall not exceed λ
rfrom Table B4.1a. If the width-to-thickness
ratio of any compression element exceeds λ
r, the section is a slender-element section.
For flexure, sections are classified as compact, noncompactor slender-element sec-
tions. For a section to qualify as compact, its flanges must be continuously connected
to the web or webs and the width-to-thickness ratios of its compression elements
shall not exceed the limiting width-to-thickness ratios, λ
p, from Table B4.1b. If the
width-to-thickness ratio of one or more compression elements exceeds λ
p, but does
not exceed λ
rfrom Table B4.1b, the section is noncompact. If the width-to-thickness
ratio of any compression element exceeds λ
r, the section is a slender-element section.
1a. Unstiffened Elements
For unstiffened elementssupported along only one edge parallel to the direction of
the compression force, the width shall be taken as follows:
(a) For flanges of I-shaped members and tees, the width, b, is one-half the full-flange
width, b
f.
(b) For legs of angles and flanges of channels and zees, the width, b, is the full nom-
inal dimension.
(c) For plates, the width, b, is the distance from the free edge to the first row of fas-
tenersor line of welds.
(d) For stems of tees, d is taken as the full nominal depth of the section.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 14

Sect. B4.] MEMBER PROPERTIES 16.1–15
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Refer to Table B4.1 for the graphic representation of unstiffened ele-
ment dimensions.
1b. Stiffened Elements
For stiffened elementssupported along two edges parallel to the direction of the com-
pression force, the width shall be taken as follows:
(a) For webs of rolled or formed sections, h is the clear distance between flanges less
the fillet or corner radius at each flange; h
cis twice the distance from the center
of gravity to the inside face of the compression flange less the fillet or corner
radius.
(b) For webs of built-up sections, h is the distance between adjacent lines of fasten-
ersor the clear distance between flanges when welds are used, and h
cis twice the
distance from the center of gravity to the nearest line of fasteners at the com-
pression flange or the inside face of the compression flange when welds are used;
h
pis twice the distance from the plastic neutral axis to the nearest line of fasten-
ers at the compression flange or the inside face of the compression flange when
welds are used.
(c) For flange or diaphragm platesin built-up sections, the width, b, is the distance
between adjacent lines of fasteners or lines of welds.
(d) For flanges of rectangular hollow structural sections (HSS), the width, b, is the
clear distance between webs less the inside corner radius on each side. For webs
of rectangular HSS, h is the clear distance between the flanges less the inside cor-
ner radius on each side. If the corner radius is not known, band hshall be taken
as the corresponding outside dimension minus three times the thickness. The
thickness, t, shall be taken as the design wall thickness, per Section B4.2.
(e) For perforated cover plates, bis the transverse distance between the nearest line
of fasteners, and the net areaof the plate is taken at the widest hole.
User Note:Refer to Table B4.1 for the graphic representation of stiffened element
dimensions.
For tapered flanges of rolled sections, the thickness is the nominal value halfway
between the free edge and the corresponding face of the web.
2. Design Wall Thickness for HSS
The design wall thickness, t, shall be used in calculations involving the wall thick-
ness of hollow structural sections (HSS). The design wall thickness, t, shall be taken
equal to 0.93 times the nominal wall thickness for electric-resistance-welded (ERW)
HSS and equal to the nominal thickness for submerged-arc-welded (SAW) HSS.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 15

TABLE B4.1a
Width-to-Thickness Ratios: Compression Elements
Members Subject to Axial Compression
Examples
Limiting
Width-to-Thickness
Ratio
r
(nonslender/slender)
Width-to-
Thickness
Ratio
Description of
Element
Case
Flanges of rolled
I-shaped sections,
plates projecting
from rolled I-shaped
sections; outstanding
legs of pairs of
angles connected
with continuous
contact, flanges of
channels, and
flanges of tees
Flanges of built-up
I-shaped sections
and plates or angle
legs projecting from
built-up I-shaped
sections
Legs of single
angles, legs of
double angles with
separators, and all
other unstiffened
elements
Stems of tees
Webs of doubly-
symmetric I-shaped
sections and
channels
Walls of rectangular
HSS and boxes of
uniform thickness
Flange cover plates
and diaphragm
plates between lines
of fasteners or welds
All other stiffened
elements
Round HSS
b/t
b/t
b/t
d/t
h/t
w
b/t
b/t
b/t
D/t
Stiffened Elements Unstiffened Elements
075.
E
F
y
056.
E
F
y
064.
kE
F
c
y
045.
E
F
y
149.
E
F
y
140.
E
F
y
140.
E
F
y
149.
E
F
y
011.
E
F
y
1
2
3
4
5
6
7
8
9
[a]
16.1–16 MEMBER PROPERTIES [Sect. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed._ 2/17/12 2:34 PM Page 16

Sect. B4.] MEMBER PROPERTIES 16.1–17
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE B4.1b
Width-to-Thickness Ratios: Compression Elements
Members Subject to Flexure
Examples
Limiting
Width-to-Thickness Ratio

p ⎛r
(compact/ (noncompact/
noncompact) slender) Width-to-
Thickness
Ratio
Description of
Element
Case
Flanges of rolled
I-shaped sections,
channels, and tees
Flanges of doubly
and singly symmet-
ric I-shaped built-up
sections
Legs of single
angles
Flanges of all
I-shaped sections
and channels in
flexure about the
weak axis
Stems of tees
Webs of doubly-
symmetric I-shaped
sections and
channels
Webs of singly-
symmetric I-shaped
sections
Flanges of
rectangular HSS
and boxes of
uniform thickness
Flange cover plates
and diaphragm
plates between
lines of fasteners
or welds
Webs of rectangular
HSS and boxes
Round HSS
b/t
b/t
b/t
b/t
d/t
h/t
w
hc/tw
b/t
b/t
h/t
D/t
Stiffened Elements Unstiffened Elements
376.
E
F
y
038.
E
F
y
054.
E
F
y
084.
E
F
y
h
h
E
F
M
M
c
py
p
y
r
054 009
2
.. −






≤λ
112.
E
F
y
112.
E
F
y
242.
E
F
y
007.
E
F
y
10
11
12
13
14
15
16
17
18
19
20
[a] [b]
038.
E
F
y
038.
E
F
y
10.
E
F
y
095.
kE
F
c
L
091.
E
F
y
10.
E
F
y
570.
E
F
y
103.
E
F
y
140.
E
F
y
570.
E
F
y
140.
E
F
y
570.
E
F
y
031.
E
F
y
[c]
[a] kc=4⎛ but shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.
[b]
FL=0.7Fyfor major axis bending of compact and noncompact web built-up I-shaped members with Sxt/Sxc≥0.7;
FL=FySxt/Sxc≥0.5Fyfor major-axis bending of compact and noncompact web built-up I-shaped members with Sxt/Sxc<0.7.
[c]
Myis the moment at yielding of the extreme fiber. Mp=plastic bending moment, kip-in. (N-mm)
E=modulus of elasticity of steel =29,000 ksi (200 000 MPa)
Fy=specified minimum yield stress, ksi (MPa)
ht
w/
AISC_PART 16_Spec.1_A:14th Ed._ 2/17/12 2:18 PM Page 17

16.1–18 MEMBER PROPERTIES [Sect. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:A pipecan be designed using the provisions of the Specification for
round HSS sections as long as the pipe conforms to ASTM A53 Class B and the
appropriate limitations of the Specification are used.
ASTM A500 HSS and ASTM A53 Grade B pipe are produced by an ERW
process. An SAW process is used for cross sections that are larger than those per-
mitted by ASTM A500.
3. Gross and Net Area Determination
3a. Gross Area
The gross area, A g, of a member is the total cross-sectional area.
3b. Net Area
The net area, A n, of a member is the sum of the products of the thickness and the net
width of each element computed as follows:
In computing net area for tension and shear, the width of a bolt hole shall be taken
as
1
/16in. (2 mm) greater than the nominal dimensionof the hole.
For a chain of holes extending across a part in any diagonal or zigzag line, the net
width of the part shall be obtained by deducting from the gross width the sum of the
diameters or slot dimensions as provided in this section, of all holes in the chain, and
adding, for each gagespace in the chain, the quantity s
2
/4g,
where
s =longitudinal center-to-center spacing (pitch) of any two consecutive holes, in.
(mm)
g =transverse center-to-center spacing (gage) between fastenergage lines, in.
(mm)
For angles, the gage for holes in opposite adjacent legs shall be the sum of the gages
from the back of the angles less the thickness.
For slotted HSSwelded to a gusset plate, the net area, A
n, is the gross area minus the
product of the thickness and the total width of material that is removed to form the
slot.
In determining the net area across plug or slot welds, the weld metalshall not be con-
sidered as adding to the net area.
For members without holes, the net area, A
n, is equal to the gross area, A g.
User Note:Section J4.1(b) limits A
nto a maximum of 0.85A gfor spliceplates
with holes.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 18

B5. FABRICATION AND ERECTION
Shop drawings, fabrication, shop painting and erection shall satisfy the requirements
stipulated in Chapter M, Fabrication and Erection.
B6. QUALITY CONTROL AND QUALITY ASSURANCE
Quality controland quality assuranceactivities shall satisfy the requirements stipu-
lated in Chapter N, Quality Control and Quality Assurance.
B7. EVALUATION OF EXISTING STRUCTURES
The evaluation of existing structures shall satisfy the requirements stipulated in
Appendix 5, Evaluation of Existing Structures.
Sect. B7.] EVALUATION OF EXISTING STRUCTURES 16.1–19
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 19

CHAPTER C
DESIGN FOR STABILITY
This chapter addresses requirements for the design of structures for stability. The direct
analysis methodis presented herein; alternative methods are presented in Appendix 7.
The chapter is organized as follows:
C1. General Stability Requirements
C2. Calculation of Required Strengths
C3. Calculation of Available Strengths
C1. GENERAL STABILITY REQUIREMENTS
Stabilityshall be provided for the structure as a whole and for each of its elements.
The effects of all of the following on the stability of the structure and its elements
shall be considered: (1) flexural, shear and axial member deformations, and all other
deformations that contribute to displacements of the structure; (2) second-order
effects(both P-Δand P-δeffects); (3) geometric imperfections; (4) stiffnessreduc-
tions due to inelasticity; and (5) uncertainty in stiffness and strength. All
load-dependent effects shall be calculated at a level of loading corresponding to
LRFD load combinationsor 1.6 times ASD load combinations.
Any rational method of design for stability that considers all of the listed effects is
permitted; this includes the methods identified in Sections C1.1 and C1.2.
For structures designed by inelastic analysis, the provisions of Appendix 1 shall
be satisfied.
User Note:The term “design” as used in these provisions is the combination of
analysis to determine the required strengthsof components and the proportioning
of components to have adequate available strength.
See Commentary Section C1 and Table C-C1.1 for explanation of how require-
ments (1) through (5) of Section C1 are satisfied in the methods of design listed
in Sections C1.1 and C1.2.
1. Direct Analysis Method of Design
The direct analysis methodof design, which consists of the calculation of required
strengthsin accordance with Section C2 and the calculation of available strengthsin
accordance with Section C3, is permitted for all structures.
2. Alternative Methods of Design
The effective length method and the first-order analysis method, defined in Appendix
7, are permitted as alternatives to the direct analysis methodfor structures that sat-
isfy the constraints specified in that appendix.
16.1–20
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 20

C2. CALCULATION OF REQUIRED STRENGTHS
For the direct analysis methodof design, the required strengthsof components of the
structure shall be determined from an analysis conforming to Section C2.1. The
analysis shall include consideration of initial imperfections in accordance with
Section C2.2 and adjustments to stiffnessin accordance with Section C2.3.
1. General Analysis Requirements
The analysis of the structure shall conform to the following requirements:
(1) The analysis shall consider flexural, shear and axial member deformations, and
all other component and connectiondeformations that contribute to displace-
ments of the structure. The analysis shall incorporate reductions in all stiffnesses
that are considered to contribute to the stabilityof the structure, as specified in
Section C2.3.
(2) The analysis shall be a second-order analysisthat considers both P-Δand P-δ
effects, except that it is permissible to neglect the effect of P-δon the response of
the structure when the following conditions are satisfied: (a) The structure sup-
ports gravity loadsprimarily through nominally-vertical columns, walls or
frames; (b) the ratio of maximum second-order driftto maximum first-order drift
(both determined for LRFD load combinationsor 1.6 times ASD load combina-
tions, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal
to or less than 1.7; and (c) no more than one-third of the total gravity load on the
structure is supported by columns that are part of moment-resisting frames in the
direction of translation being considered. It is necessary in all cases to consider
P-δeffects in the evaluation of individual members subject to compression and
flexure.
User Note:A P-Δ-only second-order analysis (one that neglects the effects of
P-δon the response of the structure) is permitted under the conditions listed.
The requirement for considering P-δeffects in the evaluation of individual
members can be satisfied by applying the B
1multiplier defined in Appendix 8.
Use of the approximate method of second-order analysis provided in Appendix 8
is permitted as an alternative to a rigorous second-order analysis.
(3) The analysis shall consider all gravity and other applied loadsthat may influence
the stability of the structure.
User Note: It is important to include in the analysis all gravity loads, includ-
ing loads on leaning columnsand other elements that are not part of the
lateral force resisting system.
(4) For design by LRFD, the second-order analysis shall be carried out under LRFD
load combinations. For design by ASD, the second-order analysis shall be carried
out under 1.6 times the ASD load combinations, and the results shall be divided
by 1.6 to obtain the required strengthsof components.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Sect. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–21
AISC_PART 16_Spec.1_A_14th Ed._February 12, 2013 12/02/13 9:38 AM Page 21

16.1–22 CALCULATION OF REQUIRED STRENGTHS [Sect. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Consideration of Initial Imperfections
The effect of initial imperfections on the stabilityof the structure shall be taken into
account either by direct modeling of imperfections in the analysis as specified in
Section C2.2a or by the application of notional loadsas specified in Section C2.2b.
User Note:The imperfections considered in this section are imperfections in the
locations of points of intersection of members. In typical building structures, the
important imperfection of this type is the out-of-plumbness of columns. Initial
out-of-straightness of individual members is not addressed in this section; it is
accounted for in the compression member design provisions of Chapter E and
need not be considered explicitly in the analysis as long as it is within the limits
specified in the AISC Code of Standard Practice.
2a. Direct Modeling of Imperfections
In all cases, it is permissible to account for the effect of initial imperfections by
including the imperfections directly in the analysis. The structure shall be analyzed
with points of intersection of members displaced from their nominal locations. The
magnitude of the initial displacements shall be the maximum amount considered in
the design; the pattern of initial displacements shall be such that it provides the great-
est destabilizing effect.
User Note:Initial displacements similar in configuration to both displacements
due to loading and anticipated bucklingmodes should be considered in the mod-
eling of imperfections. The magnitude of the initial displacements should be
based on permissible construction tolerances, as specified in the AISC Code
of Standard Practiceor other governing requirements, or on actual imperfections
if known.
In the analysis of structures that support gravity loadsprimarily through nominally-
vertical columns, walls or frames, where the ratio of maximum second-order driftto
maximum first-order drift (both determined for LRFD load combinationsor 1.6
times ASD load combinations, with stiffnessesadjusted as specified in Section C2.3)
in all stories is equal to or less than 1.7, it is permissible to include initial imperfec-
tions only in the analysis for gravity-only load combinations and not in the analysis
for load combinations that include applied lateral loads.
2b. Use of Notional Loads to Represent Imperfections
For structures that support gravity loadsprimarily through nominally-vertical columns,
walls or frames, it is permissible to use notional loadsto represent the effects of initial
imperfections in accordance with the requirements of this section. The notional load
shall be applied to a model of the structure based on its nominal geometry.
User Note:The notional load concept is applicable to all types of structures, but
the specific requirements in Sections C2.2b(1) through C2.2b(4) are applicable
only for the particular class of structure identified above.
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 22

Sect. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–23
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Notional loads shall be applied as lateral loadsat all levels. The notional loads
shall be additive to other lateral loads and shall be applied in all load combina-
tions, except as indicated in (4), below. The magnitude of the notional loads shall
be:
N
i =0.002αY i (C2-1)
where
α=1.0 (LRFD); α=1.6 (ASD)
N
i=notional load applied at level i, kips (N)
Y
i=gravity load applied at level ifrom the LRFD load combinationor ASD
load combination, as applicable, kips (N)
User Note:The notional loads can lead to additional (generally small) ficti-
tious base shears in the structure. The correct horizontal reactions at the
foundation may be obtained by applying an additional horizontal force at the
base of the structure, equal and opposite in direction to the sum of all
notional loads, distributed among vertical load-carrying elements in the same
proportion as the gravity load supported by those elements. The notional
loads can also lead to additional overturning effects, which are not fictitious.
(2) The notional load at any level, N
i, shall be distributed over that level in the same
manner as the gravity load at the level. The notional loads shall be applied in the
direction that provides the greatest destabilizing effect.
User Note:For most building structures, the requirement regarding notional
load direction may be satisfied as follows: For load combinations that do not
include lateral loading, consider two alternative orthogonal directions of
notional load application, in a positive and a negative sense in each of the
two directions, in the same direction at all levels; for load combinations that
include lateral loading, apply all notional loads in the direction of the result-
ant of all lateral loads in the combination.
(3) The notional load coefficient of 0.002 in Equation C2-1 is based on a nominal ini-
tial story out-of-plumbness ratio of 1/500; where the use of a different maximum
out-of-plumbness is justified, it is permissible to adjust the notional load coefficient
proportionally.
User Note:An out-of-plumbness of 1/500 represents the maximum tolerance
on column plumbness specified in the AISC Code of Standard Practice. In
some cases, other specified tolerances such as those on plan location of
columns will govern and will require a tighter plumbness tolerance.
(4) For structures in which the ratio of maximum second-order driftto maximum
first-order drift (both determined for LRFD load combinations or 1.6 times ASD
load combinations, with stiffnesses adjusted as specified in Section C2.3) in all
stories is equal to or less than 1.7, it is permissible to apply the notional load,N
i,
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 23

only in gravity-only load combinations and not in combinations that include
other lateral loads.
3. Adjustments to Stiffness
The analysis of the structure to determine the required strengthsof components shall
use reduced stiffnesses,as follows:
(1) A factor of 0.80 shall be applied to all stiffnesses that are considered to contribute
to the stabilityof the structure. It is permissible to apply this reduction factor to
all stiffnesses in the structure.
User Note:Applying the stiffness reduction to some members and not others
can, in some cases, result in artificial distortion of the structure under load
and possible unintended redistribution of forces. This can be avoided by
applying the reduction to all members, including those that do not con-
tribute to the stability of the structure.
(2) An additional factor, τ
b, shall be applied to the flexural stiffnesses of all mem-
bers whose flexural stiffnesses are considered to contribute to the stability of the
structure.
(a) When αP
r/Py≤0.5
τ
b=1.0 (C2-2a)
(b) When αP
r/Py>0.5
τ
b=4(αP r/Py)[1−(αP r/Py)] (C2-2b)
where
α=1.0 (LRFD); α=1.6 (ASD)
P
r=required axial compressive strength using LRFD or ASD load combi-
nations, kips (N)
P
y=axial yield strength(=F yAg), kips (N)
User Note: Taken together, sections (1) and (2) require the use of 0.8τ
btimes
the nominal elastic flexural stiffness and 0.8 times other nominal elastic stiff-
nesses for structural steelmembers in the analysis.
(3) In structures to which Section C2.2b is applicable, in lieu of using τ
b<1.0 where
αP
r/Py>0.5, it is permissible to use τ b=1.0 for all members if a notional load
of 0.001αY
i[where Y iis as defined in Section C2.2b(1)] is applied at all levels,
in the direction specified in Section C2.2b(2), in all load combinations. These
notional loads shall be added to those, if any, used to account for imperfections
and shall not be subject to Section C2.2b(4).
(4) Where components comprised of materials other than structural steel are consid-
ered to contribute to the stability of the structure and the governing codes and
specificationsfor the other materials require greater reductions in stiffness, such
greater stiffness reductions shall be applied to those components.
16.1–24 CALCULATION OF REQUIRED STRENGTHS [Sect. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A_14th Ed._February 25, 2013 14-11-26 1:58 PM Page 24 (Black plate)

C3. CALCULATION OF AVAILABLE STRENGTHS
For the direct analysis methodof design, the available strengthsof members and
connections shall be calculated in accordance with the provisions of Chapters D, E,
F, G, H, I, J and K, as applicable, with no further consideration of overall structure
stability. The effective length factor, K, of all members shall be taken as unity unless
a smaller value can be justified by rational analysis.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffnessand strength to control member movement at the braced points.
Methods of satisfying bracing requirements for individual columns, beams and
beam-columns are provided in Appendix 6. The requirements of Appendix 6 are not
applicable to bracing that is included as part of the overall force-resisting system.
Sect. C3.] CALCULATION OF AVAILABLE STRENGTHS 16.1–25
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 25

CHAPTER D
DESIGN OF MEMBERS FOR TENSION
This chapter applies to members subject to axial tension caused by static forcesacting
through the centroidal axis.
The chapter is organized as follows:
D1. Slenderness Limitations
D2. Tensile Strength
D3. Effective Net Area
D4. Built-Up Members
D5. Pin-Connected Members
D6. Eyebars
User Note:For cases not included in this chapter the following sections apply:
• B3.11 Members subject to fatigue
• Chapter H Members subject to combined axial tension and flexure
• J3 Threaded rods
• J4.1 Connecting elements in tension
• J4.3 Block shear rupturestrength at end connections of tension
members
D1. SLENDERNESS LIMITATIONS
There is no maximum slenderness limit for members in tension.
User Note:For members designed on the basis of tension, the slenderness ratio
L/r preferably should not exceed 300. This suggestion does not apply to rods or
hangers in tension.
D2. TENSILE STRENGTH
The design tensile strength, φ tPn, and the allowable tensile strength, P n/Ωt, of tension
members shall be the lower value obtained according to the limit statesof tensile
yieldingin the gross section and tensile rupturein the net section.
(a) For tensile yielding in the gross section:
P
n=FyAg (D2-1)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
(b) For tensile rupture in the net section:
P
n=FuAe (D2-2)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
16.1–26
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 26

where
A
e=effective net area, in.
2
(mm
2
)
A
g=gross area of member, in.
2
(mm
2
)
F
y=specified minimum yield stress, ksi (MPa)
F
u=specified minimum tensile strength, ksi (MPa)
When members without holes are fully connected by welds, the effective net area
used in Equation D2-2 shall be as defined in Section D3. When holes are present in
a member with welded end connections, or at the welded connection in the case of
plug or slot welds, the effective net area through the holes shall be used in Equation
D2-2.
D3. EFFECTIVE NET AREA
The gross area, A g, and net area, A n, of tension members shall be determined in
accordance with the provisions of Section B4.3.
The effective net areaof tension members shall be determined as follows:
A
e=AnU (D3-1)
where U, the shear lagfactor, is determined as shown in Table D3.1.
For open cross sections such as W, M, S, C or HP shapes, WTs, STs, and single and
double angles, the shear lag factor, U, need not be less than the ratio of the gross area
of the connected element(s) to the member gross area. This provision does not apply
to closed sections, such as HSSsections, nor to plates.
User Note:For bolted splice plates A
e=An ≤0.85A g, according to Section J4.1.
D4. BUILT-UP MEMBERS
For limitations on the longitudinal spacing of connectors between elements in con-
tinuous contact consisting of a plate and a shape or two plates, see Section J3.5.
Either perforated cover platesor tie plateswithout lacingare permitted to be used on
the open sides of built-up tension members. Tie plates shall have a length not less
than two-thirds the distance between the lines of welds or fastenersconnecting them
to the components of the member. The thickness of such tie plates shall not be less
than one-fiftieth of the distance between these lines. The longitudinal spacing of
intermittent welds or fasteners at tie plates shall not exceed 6 in. (150 mm).
User Note:The longitudinal spacing of connectors between components should
preferably limit the slenderness ratio in any component between the connectors to
300.
Sect. D4.] BUILT-UP MEMBERS 16.1–27
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 27

16.1–28 BUILT-UP MEMBERS [Sect. D4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE D3.1
Shear Lag Factors for Connections
to Tension Members
Description of ElementCase Shear Lag Factor, U Example
1
2
3
4
5
6
7
8
All tension members where the tension
load is transmitted directly to each of the
cross-sectional elements by fasteners or
welds (except as in Cases 4, 5 and 6).
All tension members, except plates
and HSS, where the tension load is trans-
mitted to some but not all of the cross-
sectional elements by fasteners or longitu-
dinal welds or by longitudinal welds in
combination with transverse welds. (Alter-
natively, for W, M, S and HP, Case 7 may
be used. For angles, Case 8 may be used.)
All tension members where the tension
load is transmitted only by transverse
welds to some but not all of the
cross-sectional elements.
Plates where the tension load is
transmitted by longitudinal welds only.
Round HSS with a single concentric
gusset plate
Rectangular HSS with a single
concentric gusset
plate
with two side gusset
plates
W, M, S or HP
Shapes or Tees cut
from these shapes.
(If
Uis calculated
per Case 2, the
larger value is per-
mitted to be used.)
Single and double
angles (If
Uis
calculated per
Case 2, the larger
value is permitted
to be used.)
U=1.0
U=0.70
U=0.80
U=0.60
U x
l
=−1
U=1.0
and
An=area of the directly
connected elements
/ ≥2w…U=1.0
2
w> /≥1.5w…U=0.87
1.5
w> /≥w…U=0.75
bf≥2/3d…U=0.90
bf<2/3d…U=0.85
/ ≥1.3D…U=1.0
Dl DU x
l
≤< … =−13 1.
xD=
π
lHU x
l
≥…=− 1
lHU x
l
≥…=− 1
x
BBH
BH
=
+
+
2
2
4( )
x
B
BH
=
+
2
4( )
with flange con-
nected with 3 or
more fasteners per
line in the direction
of loading
with web connected
with 4 or more fas-
teners per line in the
direction of loading
with 4 or more fas-
teners per line in the
direction of loading
with 3 fasteners per
line in the direction
of loading (With
fewer than 3 fasten-
ers per line in the
direction of loading,
use Case 2.)
l=length of connection, in. (mm); w=plate width, in. (mm); x

=eccentricity of connection, in. (mm);
B=overall width
of rectangular HSS member, measured 90° to the plane of the connection, in. (mm);
H=overall height of rectangular
HSS member, measured in the plane of the connection, in. (mm)
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 28

D5. PIN-CONNECTED MEMBERS
1. Tensile Strength
The design tensile strength, φ tPn, and the allowable tensile strength, P n/Ωt, of pin-
connected members, shall be the lower value determined according to the limit states
of tensile rupture, shear rupture, bearingand yielding.
(a) For tensile rupture on the net effective area:
P
n=Fu(2tbe) (D5-1)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
(b) For shear rupture on the effective area:
P
n=0.6F uAsf (D5-2)
φ
sf=0.75 (LRFD) Ω sf=2.00 (ASD)
where
A
sf=area on the shear failure path =2t(a+d/ 2), in.
2
(mm
2
)
a=shortest distance from edge of the pin hole to the edge of the member
measured parallel to the direction of the force, in. (mm)
b
e=2t+0.63, in. (=2t+16, mm), but not more than the actual distance from
the edge of the hole to the edge of the part measured in the direction nor-
mal to the applied force, in. (mm)
d=diameter of pin, in. (mm)
t=thickness of plate, in. (mm)
(c) For bearing on the projected area of the pin, use Section J7.
(d) For yielding on the gross section, use Section D2(a).
2. Dimensional Requirements
The pin hole shall be located midway between the edges of the member in the direc-
tion normal to the applied force. When the pin is expected to provide for relative
movement between connected parts while under full load, the diameter of the pin
hole shall not be more than
1
/32in. (1 mm) greater than the diameter of the pin.
The width of the plate at the pin hole shall not be less than 2b
e+dand the minimum
extension, a, beyond the bearingend of the pin hole, parallel to the axis of the mem-
ber, shall not be less than 1.33b
e.
The corners beyond the pin hole are permitted to be cut at 45°to the axis of the
member, provided the net areabeyond the pin hole, on a plane perpendicular to the
cut, is not less than that required beyond the pin hole parallel to the axis of the
member.
D6. EYEBARS
1. Tensile Strength
The available tensile strengthof eyebarsshall be determined in accordance with
Section D2, with A
gtaken as the cross-sectional area of the body.
Sect. D6.] EYEBARS 16.1–29
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 29

For calculation purposes, the width of the body of the eyebars shall not exceed eight
times its thickness.
2. Dimensional Requirements
Eyebarsshall be of uniform thickness, without reinforcement at the pin holes, and
have circular heads with the periphery concentric with the pin hole.
The radius of transition between the circular head and the eyebar body shall not be
less than the head diameter.
The pin diameter shall not be less than seven-eighths times the eyebar body width,
and the pin hole diameter shall not be more than
1
/32in. (1 mm) greater than the pin
diameter.
For steels having F
ygreater than 70 ksi (485 MPa), the hole diameter shall not exceed
five times the plate thickness, and the width of the eyebar body shall be reduced
accordingly.
A thickness of less than
1
/2in. (13 mm) is permissible only if external nuts are pro-
vided to tighten pin plates and fillerplates into snug contact. The width from the hole
edge to the plate edge perpendicular to the direction of applied loadshall be greater
than two-thirds and, for the purpose of calculation, not more than three-fourths times
the eyebar body width.
16.1–30 EYEBARS [Sect. D6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.1_A:14th Ed. 1/20/11 7:56 AM Page 30

CHAPTER E
DESIGN OF MEMBERS FOR COMPRESSION
This chapter addresses members subject to axial compression through the centroidal axis.
The chapter is organized as follows:
E1. General Provisions
E2. Effective Length
E3. Flexural Buckling of Members without Slender Elements
E4. Torsional and Flexural-Torsional Buckling of Members without Slender
Elements
E5. Single Angle Compression Members
E6. Built-Up Members
E7. Members with Slender Elements
User Note:For cases not included in this chapter the following sections apply:
H1 – H2 Members subject to combined axial compression and flexure
H3 Members subject to axial compression and torsion
I2 Composite axially loaded members
J4.4 Compressive strength of connecting elements
E1. GENERAL PROVISIONS
The design compressive strength, φ cPn, and the allowable compressive strength,
P
n/Ωc, are determined as follows.
The nominal compressive strength, P
n, shall be the lowest value obtained based
on the applicable limit statesof flexural buckling, torsional buckling, and flexural-
torsional buckling.
φ
c=0.90 (LRFD) Ω c=1.67 (ASD)
16.1–31
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:39 AM Page 31

16.1–32 GENERAL PROVISIONS [Sect. E1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE USER NOTE E1.1
Selection Table for the Application of
Chapter E Sections
Sections in Limit Sections in Limit
Chapter E States Chapter E States
E3 FB E7 LB
E4 TB FB
TB
E3 FB E7 LB
E4 FTB FB
FTB
E3 FB E7 LB
FB
E3 FB E7 LB
FB
E3 FB E7 LB
E4 FTB FB
FTB
E6 E6
E3 FB E7 LB
E4 FTB FB
FTB
E5 E5
E3 FB N/A N/A
E4 FTB E7 LB
FTB
Unsymmetrical shapes
other than single angles
Cross Section
FB = flexural buckling, TB = torsional buckling, FTB = flexural-torsional buckling, LB = local buckling










Without Slender Elements With Slender Elements
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 32

E2. EFFECTIVE LENGTH
The effective length factor, K,for calculation of member slenderness, KL/r,shall be
determined in accordance with Chapter C or Appendix 7,
where
L=laterally unbraced lengthof the member, in. (mm)
r=radius of gyration, in. (mm)
User Note:For members designed on the basis of compression, the effective slen-
derness ratio KL/rpreferably should not exceed 200.
E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER
ELEMENTS
This section applies to nonslender element compression members as defined in
Section B4.1 for elements in uniform compression.
User Note:When the torsional unbraced lengthis larger than the lateral unbraced
length, Section E4 may control the design of wide flange and similarly shaped
columns.
The nominal compressive strength, P
n, shall be determined based on the limit stateof
flexural buckling.
P
n=FcrAg (E3-1)
The critical stress, F
cr, is determined as follows:
(a) When
(E3-2)
(b) When
F
cr=0.877F e (E3-3)
where
F
e=elastic bucklingstress determined according to Equation E3-4, as specified
in Appendix 7, Section 7.2.3(b), or through an elastic buckling analysis, as
applicable, ksi (MPa)
(E3-4)
Sect. E3.] FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 16.1–33
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
E
F
y
≤471.
(or )
F
F
y
e
≤225.
FFcr
F
F
y
y
e
=








0 658.
KL
r
E
F
y
>471.
(or )
F
F
y
e
>225.
F
E
KL
re=






π
2
2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 33

16.1–34 FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS [Sect. E3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:The two inequalities for calculating the limits and applicability of
Sections E3(a) and E3(b), one based on KL/r and one based on F
y/Fe, provide the
same result.
E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF
MEMBERS WITHOUT SLENDER ELEMENTS
This section applies to singly symmetric and unsymmetric members and certain dou-
bly symmetric members, such as cruciform or built-up columns without slender
elements, as defined in Section B4.1 for elements in uniform compression. In addi-
tion, this section applies to all doubly symmetric members without slender elements
when the torsional unbraced lengthexceeds the lateral unbraced length. These pro-
visions are required for single angles with b/t>20.
The nominal compressive strength, P
n, shall be determined based on the limit states
oftorsionaland flexural-torsional buckling, as follows:
P
n=FcrAg (E4-1)
The critical stress, F
cr, is determined as follows:
(a) For double angle and tee-shaped compression members:
(E4-2)
where F
cryis taken as F crfrom Equation E3-2 or E3-3 for flexural bucklingabout
the y-axis of symmetry, and for tee-shaped compression members,
and from Section E6 for double angle compression members, and
(E4-3)
(b) For all other cases, F
cr shall be determined according to Equation E3-2 or E3-3,
using the torsional or flexural-torsional elastic bucklingstress, F
e, determined as
follows:
(i) For doubly symmetric members:
(E4-4)
(ii) For singly symmetric members where yis the axis of symmetry:
F
FF
H
FFH
FFcr
cry crz cry crz
cry cr=
+⎛





−−
+
2
11
4
zz( )








2
KL
r
KL
r y
y
=
KL
r
KL
r
m
=()
F
GJ
Arcrz
go=
2
F
EC
KL
GJ
IIe
w
z xy=
()
+







⎥+
π
2
2
1
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 34

(E4-5)
(iii) For unsymmetric members, F
eis the lowest root of the cubic equation:
(E4-6)
where
A
g=gross cross-sectional area of member, in.
2
(mm
2
)
C
w=warping constant, in.
6
(mm
6
)
F
ex= (E4-7)
F
ey= (E4-8)
F
ez= (E4-9)
G=shear modulus of elasticity of steel = 11,200 ksi (77 200 MPa)
H (E4-10)
I
x, Iy=moment of inertia about the principal axes, in.
4
(mm
4
)
J=torsional constant, in.
4
(mm
4
)
K
x=effective length factorfor flexural buckling about x-axis
K
y=effective length factor for flexural buckling about y-axis
K
z=effective length factor for torsional buckling

r
o=polar radius of gyration about the shear center, in. (mm)

r
o
2
= (E4-11)
r
x=radius of gyration about x-axis, in. (mm)
r
y=radius of gyration about y-axis, in. (mm)
x
o, yo=coordinates of the shear center with respect to the centroid, in. (mm)
User Note:For doubly symmetric I-shaped sections, C
wmay be taken as I yho
2
/4,
where h
ois the distance between flange centroids, in lieu of a more precise analy-
sis. For tees and double angles, omit the term with C
wwhen computing F ezand
take x
oas 0.
Sect. E4.] TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF MEMBERS 16.1–35
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
FF
H
FFH
FFe
ey ez ey ez
ey ez=
+⎛





−−
+



2
11
4
2
()⎢⎢




()()()()FFFFFF FFF
x
reexeeyeez eeey
o
o−−−−−



2
⎞⎞


−−






=
2
2
2
0FF F
y
ree ex
o
o()
π
2
2
E
KL
r
x
x⎛





π
2
2
E
KL
r
y
y






π
2
22
1EC
KL
GJ
Arw
z go
()
+






=−
+
1
22
2
xy
roo
o
xy
II
Aoo
xy
g
22++
+
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 35

16.1–36 SINGLE ANGLE COMPRESSION MEMBERS [Sect. E5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
E5. SINGLE ANGLE COMPRESSION MEMBERS
The nominal compressive strength, P n, of single angle members shall be determined
in accordance with Section E3 or Section E7, as appropriate, for axially loaded mem-
bers. For single angles with b/t>20, Section E4 shall be used. Members meeting the
criteria imposed in Section E5(a) or E5(b) are permitted to be designed as axially
loaded members using the specified effective slenderness ratio, KL/r.
The effects of eccentricity on single angle members are permitted to be neglected
when evaluated as axially loaded compression members using one of the effective
slenderness ratios specified in Section E5(a) or E5(b), provided that:
(1) members are loaded at the ends in compression through the same one leg;
(2) members are attached by welding or by connectionswith a minimum of two
bolts; and
(3) there are no intermediate transverseloads.
Single angle members with different end conditions from those described in Section
E5(a) or (b), with the ratio of long leg width to short leg width greater than 1.7 or
with transverse loading, shall be evaluated for combined axial load and flexure using
the provisions of Chapter H.
(a) For equal-leg angles or unequal-leg angles connected through the longer leg that
are individual members or are web members of planar trusses with adjacent web
members attached to the same side of the gusset plateor chord:
(i) When
(E5-1)
(ii) When
(E5-2)
For unequal-leg angles with leg length ratios less than 1.7 and connected through
the shorter leg, KL/rfrom Equations E5-1 and E5-2 shall be increased by adding
4[(b
l/bs)
2
≤1], but KL/rof the members shall not be taken as less than 0.95L/r z.
(b) For equal-leg angles or unequal-leg angles connected through the longer leg that
are web members of box or space trusses with adjacent web members attached
to the same side of the gusset plate or chord:
(i) When
(E5-3)
(ii) When
L
r
x
≤80 :
KL
r
L
r
x
=+72 0 75.
L
r
x
>80 :
KL
r
L
r
x
=+ ≤32 1 25 200.
L
r
x
≤75 :
KL
r
L
r
x
=+60 0 8.
L
r
x
>75 :
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 36

(E5-4)
For unequal-leg angles with leg length ratios less than 1.7 and connected through
the shorter leg, KL/rfrom Equations E5-3 and E5-4 shall be increased by adding
6[(b
l/bs)
2
≤1], but KL/rof the member shall not be taken as less than 0.82L/r z
where
L=length of member between work points at truss chord centerlines, in. (mm)
b
l=length of longer leg of angle, in. (mm)
b
s=length of shorter leg of angle, in. (mm)
r
x=radius of gyration about the geometric axisparallel to the connected leg, in.
(mm)
r
z=radius of gyration about the minor principal axis, in. (mm)
E6. BUILT-UP MEMBERS
1. Compressive Strength
This section applies to built-up memberscomposed of two shapes either (a) inter-
connected by bolts or welds, or (b) with at least one open side interconnected by
perforated cover plates or lacing with tie plates. The end connectionshall be welded
or connected by means of pretensioned boltswith Class A or B faying surfaces.
User Note:It is acceptable to design a bolted end connection of a built-up com-
pression member for the full compressive loadwith bolts in bearingand bolt
design based on the shear strength; however, the bolts must be pretensioned. In
built-up compression members, such as double-angle struts in trusses, a small rel-
ative slipbetween the elements especially at the end connections can increase the
effective length of the combined cross section to that of the individual components
and significantly reduce the compressive strength of the strut. Therefore, the con-
nection between the elements at the ends of built-up members should be designed
to resist slip.
The nominal compressive strengthof built-up members composed of two shapes that
are interconnected by bolts or welds shall be determined in accordance with Sections
E3, E4 or E7 subject to the following modification. In lieu of more accurate analy-
sis, if the bucklingmode involves relative deformations that produce shear forcesin
the connectors between individual shapes, KL/ris replaced by (KL/r)
mdetermined as
follows:
(a) For intermediate connectors that are bolted snug-tight:
(E6-1)
(b) For intermediate connectors that are welded or are connected by means of pre-
tensioned bolts:
Sect. E6.] BUILT-UP MEMBERS 16.1–37
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
L
r
x
=+≤45 200
mo i
KL
r
KL
r
a
r


















=+
2 2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 37

16.1–38 BUILT-UP MEMBERS [Sect. E6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) When
(E6-2a)
(ii) When
(E6-2b)
where
= modified slenderness ratio of built-up member
= slenderness ratio of built-up member acting as a unit in the
buckling direction being considered
K
i = 0.50 for angles back-to-back
= 0.75 for channels back-to-back
= 0.86 for all other cases
a = distance between connectors, in. (mm)
r
i = minimum radius of gyration of individual component, in. (mm)
2. Dimensional Requirements
Individual components of compression members composed of two or more shapes
shall be connected to one another at intervals, a, such that the effective slenderness
ratio, Ka/r
i, of each of the component shapes between the fastenersdoes not exceed
three-fourths times the governing slenderness ratio of the built-up member. The least
radius of gyration, r
i, shall be used in computing the slenderness ratio of each com-
ponent part.
At the ends of built-up compression members bearingon base plates or finished sur-
faces, all components in contact with one another shall be connected by a weld
having a length not less than the maximum width of the member or by bolts spaced
longitudinally not more than four diameters apart for a distance equal to 1
1
/2times
the maximum width of the member.
Along the length of built-up compression members between the end connections
required above, longitudinal spacing for intermittent welds or bolts shall be adequate
to provide for the transfer of the required strength. For limitations on the longitudi-
nal spacing of fasteners between elements in continuous contact consisting of a
plate and a shape or two plates, see Section J3.5.Where a component of a built-up
compression member consists of an outside plate, the maximum spacing shall not
exceed the thickness of the thinner outside plate times nor 12 in. (305
mm), when intermittent welds are provided along the edges of the components or
when fasteners are provided on all gagelines at each section. When fasteners are
staggered, the maximum spacing of fasteners on each gage line shall not exceed the
thickness of the thinner outside plate times nor 18 in. (460 mm).
a
r
i
>40
KL
r
KL
r
Ka
r
mo
i
i⎛





=






+






2 2
m
KL
r






o
KL
r






075./EF y
112./EF y
a
r
i
≤40
KL
r
KL
r
mo





⎟=






AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 9:41 AM Page 38

Open sides of compression members built up from plates or shapes shall be provided
with continuous cover platesperforated with a succession of access holes. The
unsupported width of such plates at access holes, as defined in Section B4.1, is
assumed to contribute to the available strengthprovided the following requirements
are met:
(1) The width-to-thickness ratio shall conform to the limitations of Section B4.1.
User Note:It is conservative to use the limiting width-to-thickness ratio for Case
7 in Table B4.1a with the width, b, taken as the transverse distance between the
nearest lines of fasteners. The net areaof the plate is taken at the widest hole. In
lieu of this approach, the limiting width-to-thickness ratio may be determined
through analysis.
(2) The ratio of length (in direction of stress) to width of hole shall not exceed 2.
(3) The clear distance between holes in the direction of stress shall be not less than
the transverse distance between nearest lines of connecting fasteners or welds.
(4) The periphery of the holes at all points shall have a minimum radius of 1
1
/2in.
(38 mm).
As an alternative to perforated cover plates, lacingwith tie platesis permitted at each
end and at intermediate points if the lacing is interrupted. Tie plates shall be as near
the ends as practicable. In members providing available strength, the end tie plates
shall have a length of not less than the distance between the lines of fasteners or
welds connecting them to the components of the member. Intermediate tie plates
shall have a length not less than one-half of this distance. The thickness of tie plates
shall be not less than one-fiftieth of the distance between lines of welds or fasteners
connecting them to the segments of the members. In welded construction, the weld-
ing on each line connecting a tie plate shall total not less than one-third the length of
the plate. In bolted construction, the spacing in the direction of stress in tie plates
shall be not more than six diameters and the tie plates shall be connected to each seg-
ment by at least three fasteners.
Lacing, including flat bars, angles, channels or other shapes employed as lacing, shall
be so spaced that the L/rratio of the flange element included between their connections
shall not exceed three-fourths times the governing slenderness ratio for the member as
a whole. Lacing shall be proportioned to provide a shearing strength normal to the axis
of the member equal to 2% of the available compressive strengthof the member. The
L/rratio for lacing bars arranged in single systems shall not exceed 140. For double
lacing this ratio shall not exceed 200. Double lacing bars shall be joined at the inter-
sections. For lacing bars in compression, Lis permitted to be taken as the unsupported
length of the lacing bar between welds or fasteners connecting it to the components of
the built-up member for single lacing, and 70% of that distance for double lacing.
User Note: The inclination of lacing bars to the axis of the member shall prefer-
ably be not less than 60λfor single lacing and 45λfor double lacing. When the
distance between the lines of welds or fasteners in the flanges is more than 15 in.
(380 mm), the lacing shall preferably be double or be made of angles.
Sect. E6.] BUILT-UP MEMBERS 16.1–39
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 39

For additional spacing requirements, see Section J3.5.
E7. MEMBERS WITH SLENDER ELEMENTS
This section applies to slender-element compression members, as defined in Section
B4.1 for elements in uniform compression.
The nominal compressive strength, P
n, shall be the lowest value based on the applicable
limit statesof flexural buckling, torsional buckling, and flexural-torsional buckling.
P
n=FcrAg (E7-1)
The critical stress, F
cr, shall be determined as follows:
(a) When
(E7-2)
(b) When
F
cr=0.877F e (E7-3)
where
F
e=elastic buckling stress, calculated using Equations E3-4 and E4-4 for doubly
symmetric members, Equations E3-4 and E4-5 for singly symmetric mem-
bers, and Equation E4-6 for unsymmetric members, except for single angles
with b/t ≤20, where F
eis calculated using Equation E3-4, ksi (MPa)
Q=net reduction factor accounting for all slender compression elements;
=1.0 for members without slender elements, as defined in Section B4.1, for
elements in uniform compression
=Q
sQafor members with slender-element sections, as defined in Section
B4.1, for elements in uniform compression.
User Note:For cross sections composed of only unstiffened slender elements, Q
=Q
s(Qa=1.0). For cross sections composed of only stiffened slender elements,
Q=Q
a(Qs=1.0). For cross sections composed of both stiffened and unstiffened
slender elements, Q =Q
sQa. For cross sections composed of multiple unstiffened
slender elements, it is conservative to use the smaller Q
sfrom the more slender
element in determining the member strength for pure compression.
1. Slender Unstiffened Elements, Q s
The reduction factor, Q s, for slender unstiffened elementsis defined as follows:
(a) For flanges, angles and plates projecting from rolled columnsor other compres-
sion members:
16.1–40 BUILT-UP MEMBERS [Sect. E6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
KL
r
E
QF
y
≤471.
or
QF
F
y
e







225.
FQ Fcr
QF
F
y
y
e
=








0 658.
KL
r
E
QF
y
>471.
or
QF
F
y
e
>






225.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 40

Sect. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–41
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) When
Q
s=1.0 (E7-4)
(ii) When
(E7-5)
(iii) When
(E7-6)
(b) For flanges, angles and plates projecting from built-up I-shaped columns or other
compression members:
(i) When
Q
s=1.0 (E7-7)
(ii) When
(E7-8)
(iii) When
(E7-9)
where
b=width of unstiffened compression element, as defined in Section B4.1, in.
(mm)
, and shall not be taken less than 0.35 nor greater than 0.76 for
calculation purposes
t=thickness of element, in. (mm)
b
t
E
F
y
≤056.
056 103..
E
F
b
t
E
F
yy
<<
Q
b
t
F
Es
y=−





⎟1 415 0 74..
b
t
E
F
y
≥103.
Q
E
F
b
ts
y=






069
2
.
b
t
Ek
F c
y
≤064.
064 117..
Ek
F
b
t
Ek
F
c
y
c
y
<≤
Q
b
t
F
Eks
y
c=−






1 415 0 65..
b
t
Ek
F c
y
>117.
Q
Ek
F
b
ts
c
y=






090
2
.
k
htc
w=
4

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 41

(c) For single angles
(i) When
Q
s=1.0 (E7-10)
(ii) When
(E7-11)
(iii) When
(E7-12)
where
b=full width of longest leg, in. (mm)
(d) For stems of tees
(i) When
Q
s=1.0 (E7-13)
(ii) When
(E7-14)
(iii) When
(E7-15)
where
d=full nominal depth of tee, in. (mm)
16.1–42 MEMBERS WITH SLENDER ELEMENTS [Sect. E7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
045 091..
E
F
b
t
E
F
yy
<≤
Q
b
t
F
Es
y=−





⎟134 076..
b
t
E
F
y
>091.
Q
E
F
b
ts
y=






053
2
.
d
t
E
F
y
≤075.
075 103..
E
F
d
t
E
F
yy
<≤
Q
d
t
F
Es
y=−





⎟1 908 1 22..
d
t
E
F
y
>103.
Q
E
F
d
ts
y=






069
2
.
b
t
E
F
y
≤045.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 42

2. Slender Stiffened Elements, Q a
The reduction factor, Q a, for slender stiffened elementsis defined as follows:
(E7-16)
where
A
g= gross cross-sectional area of member, in.
2
(mm
2
)
A
e= summation of the effective areas of the cross section based on the reduced
effective width, b
e, in.
2
(mm
2
)
The reduced effective width, b
e, is determined as follows:
(a) For uniformly compressed slender elements, with , except flanges of
square and rectangular sections of uniform thickness:
(E7-17)
where
fis taken as F
crwith F crcalculated based on Q =1.0
(b) For flanges of square and rectangular slender-element sectionsof uniform thick-
ness with
(E7-18)
where
f =P
n/Ae
User Note:In lieu of calculating f =P n/Ae, which requires iteration, fmay be
taken equal to F
y. This will result in a slightly conservative estimate of column
available strength.
(c) For axially loaded circular sections:
When
(E7-19)
where
D=outside diameter of round HSS, in. (mm)
t=thickness of wall, in. (mm)
Sect. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–43
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Q
A
Aa
e
g=
b
t
E
f
≥149.
bt
E
fbt
E
f
be=−





⎥≤192 1
034
.
.
(/)
bt
E
fbt
E
f
be=−





⎥≤192 1
038
.
.
(/)
b
t
E
f
≥140.:
011 045..
E
F
D
t
E
F
yy
<<
QQ
E
FDta
y== +
0 038 2
3
.
(/)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 43

CHAPTER F
DESIGN OF MEMBERS FOR FLEXURE
This chapter applies to members subject to simple bending about one principal axis. For
simple bending, the member is loaded in a plane parallel to a principal axis that passes
through the shear center or is restrained against twisting at loadpoints and supports.
The chapter is organized as follows:
F1. General Provisions
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent About
Their Major Axis
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact
or Slender Flanges Bent About Their Major Axis
F4. Other I-Shaped Members With Compact or Noncompact Webs Bent About
Their Major Axis
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members With Slender
Webs Bent About Their Major Axis
F6. I-Shaped Members and Channels Bent About Their Minor Axis
F7. Square and Rectangular HSS and Box-Shaped Members
F8. Round HSS
F9. Tees and Double Angles Loaded in the Plane of Symmetry
F10. Single Angles
F11. Rectangular Bars and Rounds
F12. Unsymmetrical Shapes
F13. Proportions of Beams and Girders
User Note:For cases not included in this chapter the following sections apply:
• Chapter G Design provisions for shear
• H1–H3 Members subject to biaxial flexure or to combined flexure
and axial force
• H3 Members subject to flexure and torsion
• Appendix 3 Members subject to fatigue
For guidance in determining the appropriate sections of this chapter to apply, Table User
Note F1.1 may be used.
16.1–44
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 44

Section in Cross Flange Web Limit
Chapter F Section Slenderness Slenderness States
F2 C C Y, LTB
F3 NC, S C LTB, FLB
F4 C, NC, S C, NC Y, LTB,
FLB, TFY
F5 C, NC, S S Y, LTB,
FLB, TFY
F6 C, NC, S N/A Y, FLB
F7 C, NC, S C, NC Y, FLB, WLB
F8 N/A N/A Y, LB
F9 C, NC, S N/A Y, LTB, FLB
F10 N/A N/A Y, LTB, LLB
F11 N/A N/A Y, LTB
F12 Unsymmetrical shapes, All limit
other than single angles N/A N/A states
Y = yielding, LTB = lateral-torsional buckling, FLB = flange local buckling, WLB = web local buckling,
TFY = tension flange yielding, LLB = leg local buckling, LB = local buckling, C = compact, NC = noncompact,
S = slender
TABLE USER NOTE F1.1
Selection Table for the Application
of Chapter F Sections
Sect. F1.] GENERAL PROVISIONS 16.1–45
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION









AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 45

F1. GENERAL PROVISIONS
The design flexural strength, φ bMn,and the allowable flexural strength, M n/Ωb,shall
be determined as follows:
(1) For all provisions in this chapter
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
and the nominal flexural strength, M
n, shall be determined according to Sections
F2 through F13.
(2) The provisions in this chapter are based on the assumption that points of support
for beamsand girders are restrained against rotation about their longitudinal axis.
(3) For singly symmetric members in single curvatureand all doubly symmetric
members:
C
b, the lateral-torsional bucklingmodification factor for nonuniform moment
diagrams when both ends of the segment are braced is determined as follows:
(F1-1)
where
M
max=absolute value of maximum moment in the unbraced segment, kip-in.
(N-mm)
M
A=absolute value of moment at quarter point of the unbraced segment,
kip-in. (N-mm)
M
B=absolute value of moment at centerline of the unbraced segment, kip-
in. (N-mm)
M
C=absolute value of moment at three-quarter point of the unbraced seg-
ment, kip-in. (N-mm)
For cantilevers or overhangs where the free end is unbraced, C
b= 1.0.
User Note:For doubly symmetric members with no transverse loading between
brace points, Equation F1-1 reduces to 1.0 for the case of equal end moments of
opposite sign (uniform moment), 2.27 for the case of equal end moments of the
same sign (reverse curvaturebending), and to 1.67 when one end moment equals
zero. For singly symmetric members, a more detailed analysis for C
bis presented
in the Commentary.
(4) In singly symmetric members subject to reverse curvature bending, the lateral-
torsional buckling strengthshall be checked for both flanges. The available
flexural strength shall be greater than or equal to the maximum required moment
causing compression within the flange under consideration.
16.1–46 GENERAL PROVISIONS [Sect. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
C
M
MMMMb
max
max A B C=
+++
12 5
25 3 4 3
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 46

F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND
CHANNELS BENT ABOUT THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members and channels bent
about their major axis, having compact webs and compact flanges as defined in
Section B4.1 for flexure.
User Note:All current ASTM A6 W, S, M, C and MC shapes except W21×48,
W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9,
W6×8.5and M4×6 have compact flanges for F
y=50 ksi (345 MPa); all
current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at
F
y≤65 ksi (450 MPa).
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment)and lateral-torsional buckling.
1. Yielding
Mn=Mp = FyZx (F2-1)
where
F
y=specified minimum yield stressof the type of steel being used, ksi (MPa)
Z
x=plastic section modulus about the x-axis, in.
3
(mm
3
)
2. Lateral-Torsional Buckling
(a) When L b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p<Lb≤Lr
(F2-2)
(c) When L
b> Lr
Mn=FcrSx≤ Mp (F2-3)
where
L
b= length between points that are either braced against lateral displacement of
the compression flange or braced against twist of the cross section, in. (mm)
F
cr (F2-4)
and where
E=modulus of elasticity of steel =29,000 ksi (200 000 MPa)
J=torsional constant, in.
4
(mm
4
)
S
x=elastic section modulus taken about the x-axis, in.
3
(mm
3
)
h
o=distance between the flange centroids, in. (mm)
Sect. F2.] DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS 16.1–47
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MCM M FS
LL
LLnbp p yx
bp
rp=−− ( )














⎥07.
⎥⎥
≤M
p
=






+






CE
L
r
Jc
Sh
L
r
b
b
ts
xo
b
tsπ
2
2
2
1 0 078.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 47

User Note:The square root term in Equation F2-4 may be conservatively taken
equal to 1.0.
User Note:Equations F2-3 and F2-4 provide identical solutions to the following
expression for lateral-torsional buckling of doubly symmetric sections that has
been presented in past editions of the AISC LRFD Specification:
The advantage of Equations F2-3 and F2-4 is that the form is very similar to the
expression for lateral-torsional buckling of singly symmetric sections given in
Equations F4-4 and F4-5.
The limiting lengths L
pand L rare determined as follows:
(F2-5)
(F2-6)
where
(F2-7)
and the coefficient c is determined as follows:
(a) For doubly symmetric I-shapes: c =1 (F2-8a)
(b) For channels: (F2-8b)
User Note: For doubly symmetric I-shapes with rectangular flanges,
and thus Equation F2-7 becomes
r
tsmay be approximated accurately and conservatively as the radius of gyration
of the compression flange plus one-sixth of the web:
16.1–48 DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS [Sect. F2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MC
L
EI GJ
E
L
ICcr b
b
y
b
yw=+






ππ
2
Lr
E
Fpy
y=176.
Lr
E
F
Jc
Sh
Jc
Shrts
yxo xo=+






+195
07
676
0
2
.
.
.
.
77
2
F
Ey⎛





r
IC
Sts
yw
x
2=
c
hI
C
o y
w
=
2
C
Ihw
yo=
2
4
r
Ih
Sts
yo
x
2
2
=
r
b
ht
btts
f
w
ff=
+






12 1
1
6
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 48

F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT
WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT
THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members bent about their major
axis having compact webs and noncompact or slender flanges as defined in Section
B4.1 for flexure.
User Note:The following shapes have noncompact flanges for F
y=50 ksi (345
MPa): W21×48, W14×99, W14×90, W12×65, W10×12, W8×31, W8×10,
W6×15, W6×9, W6×8.5and M4×6. All other ASTM A6 W, S and M shapes
have compact flanges for F
y≤50 ksi (345 MPa).
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof lateral-torsional bucklingand compression flange local buckling.
1. Lateral-Torsional Buckling
For lateral-torsional buckling, the provisions of Section F2.2 shall apply.
2. Compression Flange Local Buckling
(a) For sections with noncompact flanges
(F3-1)
(b) For sections with slender flanges
(F3-2)
where
λ
λ
pf= λpis the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λris the limiting slenderness for a noncompact flange, Table B4.1b
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
h=distance as defined in Section B4.1b, in. (mm)
F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT
WEBS BENT ABOUT THEIR MAJOR AXIS
This section applies to doubly symmetric I-shaped members bent about their major
axis with noncompact webs and singly symmetric I-shaped members with webs
attached to the mid-width of the flanges, bent about their major axis, with compact
or noncompact webs, as defined in Section B4.1 for flexure.
Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–49
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM M FSnp p yx
pf
rf pf=− −( )








07.
λλ
λλ
M
Ek Sn
cx=
09
2
.
λ
=
b
t
f
f
2
=
4
ht
w

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 49

User Note:I-shaped members for which this section is applicable may be
designed conservatively using Section F5.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof compression flange yielding, lateral-torsional buckling, compres-
sion flange local buckling,and tension flange yielding.
1. Compression Flange Yielding
Mn=RpcMyc = RpcFySxc (F4-1)
where
M
yc=yield momentin the compression flange, kip-in. (N-mm)
2. Lateral-Torsional Buckling
(a) When L b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p <Lb≤Lr
(F4-2)
(c) When L
b>Lr
Mn=FcrSxc≤RpcMyc (F4-3)
where
M
yc= FySxc (F4-4)
(F4-5)
For , Jshall be taken as zero
where
I
yc= moment of inertia of the compression flange about the y-axis, in.
4
(mm
4
)
The stress, F
L, is determined as follows:
(i) When
F
L= 0.7F y (F4-6a)
(ii) When
(F4-6b)
16.1–50 OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS [Sect. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M C RM RM FS
LL
LLn b pc yc pc yc L xc
bp
rp=−− ( )









⎣⎣






≤RM
pc yc
F
CE
L
r
J
Sh
L
rcr
b
b
t
xc o
b
t=






+






π
2
2
1 0 078.
2 2
I
Iyc
y
≤0.23
S
Sxt
xc
≥07.
S
Sxt
xc
<07.
FF
S
S
FLy
xt
xc
y=≥ 05.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 50

Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–51
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The limiting laterally unbraced lengthfor the limit state of yielding, L p, is deter-
mined as:
(F4-7)
The limiting unbraced length for the limit state of inelastic lateral-torsional buck-
ling, L
r, is determined as:
(F4-8)
The web plastificationfactor, R
pc, shall be determined as follows:
(i) When I
yc/Iy>0.23
(a) When
(F4-9a)
(b) When
(F4-9b)
(ii) When I
yc/Iy≤0.23
R
pc=1.0 (F4-10)
where
M
p=FyZx≤1.6F ySxc
Sxc, Sxt=elastic section modulus referred to compression and tension flanges,
respectively, in.
3
(mm
3
)
λ=
λ
pw=λp, the limiting slenderness for a compact web, Table B4.1b
λ
rw=λr, the limiting slenderness for a noncompact web, Table B4.1b
h
c =twice the distance from the centroid to the following: the inside face of
the compression flange less the fillet or corner radius, for rolled shapes;
the nearest line of fastenersat the compression flange or the inside faces
of the compression flange when welds are used, for built-up sections, in.
(mm)
Lr
E
Fpt
y=11.
Lr
E
F
J
Sh
J
Sh
F
Ert
Lxco xco
L=+






+


⎜195 676
2
..
⎞⎞


2
h
tc
w
pw
≤λ
R
M
Mpc
p
yc=
h
tc
w
pw

R
M
M
M
Mpc
p
yc
p
yc
pw
rw pw=−−
















1
λλ
λλ
⎢⎢






M
M
p
yc
h
tc
w
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 51

The effective radius of gyration for lateral-torsional buckling, r t, is determined as fol-
lows:
(i) For I-shapes with a rectangular compression flange
(F4-11)
where
a
w (F4-12)
b
fc=width of compression flange, in. (mm)
t
fc=compression flange thickness, in. (mm)
(ii) For I-shapes with a channel cap or a cover plateattached to the compression
flange
r
t=radius of gyration of the flange components in flexural compression plus
one-third of the web area in compression due to application of major axis
bending moment alone, in. (mm)
a
w=the ratio of two times the web area in compression due to application of
major axis bending moment alone to the area of the compression flange
components
User Note:For I-shapes with a rectangular compression flange, r
tmay be approx-
imated accurately and conservatively as the radius of gyration of the compression
flange plus one-third of the compression portion of the web; in other words
3. Compression Flange Local Buckling
(a) For sections with compact flanges, the limit stateof local bucklingdoes not
apply.
(b) For sections with noncompact flanges
(F4-13)
(c) For sections with slender flanges
(F4-14)
16.1–52 OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS [Sect. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
r
b
h
d
a
h
hdt
fc
o
w
o=
+






12
1
6
2
=
ht
bt
cw
fc fc
r
b
at
fc
w=
+





⎟12 1
1
6
MRM RM FSn pcyc pcyc Lxc
pf
rf pf=− − ( )








λλ
λλ
M
Ek Sn
cxc=
09
2
.
λ
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 52

Sect. F4.] OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS 16.1–53
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
Lis defined in Equations F4-6a and F4-6b
R
pcis the web plastificationfactor, determined by Equations F4-9
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
λ
λ
pf= λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λr, the limiting slenderness for a noncompact flange, Table B4.1b
4. Tension Flange Yielding
(a) When S xt≥Sxc, the limit stateof tension flange yieldingdoes not apply.
(b) When S
xt<Sxc
Mn=RptMyt (F4-15)
where
M
yt=FySxt
The web plastificationfactor corresponding to the tension flange yielding limit
state, R
pt, is determined as follows:
(i) When
(F4-16a)
(ii) When
(F4-16b)
where
λ
λ
pw=λp, the limiting slenderness for a compact web, defined in Table
B4.1b
λ
rw=λr, the limiting slenderness for a noncompact web, defined in Table
B4.1b
=
4
ht
w

=
b
t
fc
fc
2
h
tc
w
pw
≤λ
R
M
Mpt
p
yt=
h
tc
w
pw

R
M
M
M
Mpt
p
yt
p
yt
pw
rw pw=−−
















1
λλ
λλ
⎢⎢






M
M
p
yt
=
h
t
c
w
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 53

16.1–54 DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED MEMBERS [Sect. F5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED
MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR
MAJOR AXIS
This section applies to doubly symmetric and singly symmetric I-shaped members
with slender webs attached to the mid-width of the flanges and bent about their major
axis as defined in Section B4.1 for flexure.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof compression flange yielding, lateral-torsional buckling, compres-
sion flange local buckling, and tension flange yielding.
1. Compression Flange Yielding
Mn=RpgFySxc (F5-1)
2. Lateral-Torsional Buckling
Mn=RpgFcrSxc (F5-2)
(a) When L
b≤Lp, the limit stateof lateral-torsional bucklingdoes not apply.
(b) When L
p<Lb≤Lr
(F5-3)
(c) When L
b>Lr
(F5-4)
where
L
pis defined by Equation F4-7
L
r (F5-5)
R
pg, the bending strength reduction factor is determined as follows:
(F5-6)
where
a
wis defined by Equation F4-12 but shall not exceed 10
r
tis the effective radius of gyration for lateral buckling as defined in Section F4
FCF F
LL
LL
Fcr b y y
bp
rp
y=− ( )
















≤03.
F
CE
L
r
Fcr
b
b
t
y=







π
2
2
=πr
E
Ft
y
07.
R
a
a
h
t
E
Fpg
w
w
c
wy=−
+







≤1
1 200 300
57 10
,
..
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 54

Sect. F6.] I-SHAPED MEMBERS AND CHANNELS 16.1–55
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Compression Flange Local Buckling
Mn=RpgFcrSxc (F5-7)
(a) For sections with compact flanges, the limit stateof compression flange local
bucklingdoes not apply.
(b) For sections with noncompact flanges
(F5-8)
(c) For sections with slender flanges
(F5-9)
where
k
c and shall not be taken less than 0.35 nor greater than 0.76 for calcu-
lation purposes
λ
λ
pf=λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf=λr, the limiting slenderness for a noncompact flange, Table B4.1b
4. Tension Flange Yielding
(a) When S xt≥Sxc, the limit stateof tension flange yieldingdoes not apply.
(b) When S
xt<Sxc
Mn=FySxt (F5-10)
F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR
MINOR AXIS
This section applies to I-shaped members and channels bent about their minor axis.
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment) and flange local buckling.
1. Yielding
Mn= Mp=FyZy≤1.6F ySy (F6-1)
2. Flange Local Buckling
(a) For sections with compact flanges the limit stateof flange local buckling does
not apply.
FF Fcr y y
pf
rf pf=− ( )
















03.
λλ
λλ
F
Ek
b
tcr
c
f
f=






09
2
2
.=
4
ht
w

=
b
t
fc
fc
2
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 55

User Note:All current ASTM A6 W, S, M, C and MC shapes except W21×48,
W14×99, W14×90, W12×65, W10×12, W8×31, W8×10, W6×15, W6×9, W6×8.5
and M4×6 have compact flanges at F
y=50 ksi (345 MPa).
(b) For sections with noncompact flanges
(F6-2)
(c) For sections with slender flanges
M
n=FcrSy (F6-3)
where
F
cr (F6-4)
λ
λ
pf= λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf= λr, the limiting slenderness for a noncompact flange, Table B4.1b
b= for flanges of I-shaped members, half the full-flange width, b
f; for flanges
of channels, the full nominal dimensionof the flange, in. (mm)
t
f= thickness of the flange, in. (mm)
S
y= elastic section modulus taken about the y-axis, in.
3
(mm
3
); for a
channel, the minimum section modulus
F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS
This section applies to square and rectangular HSS, and doubly symmetric box-
shaped members bent about either axis, having compact or noncompact webs and
compact, noncompact or slender flanges as defined in Section B4.1 for flexure.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), flange local bucklingand web local
buckling under pure flexure.
User Note: Very long rectangular HSS bent about the major axis are subject to
lateral-torsional buckling; however, the Specification provides no strength equa-
tion for this limit state since beamdeflection will control for all reasonable cases.
1. Yielding
Mn= Mp=FyZ (F7-1)
where
Z=plastic section modulus about the axis of bending, in.
3
(mm
3
)
16.1–56 I-SHAPED MEMBERS AND CHANNELS [Sect. F6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
=






069
2
.E
b
t
f=
b
t
f
MMM FSnpp yy
pf
rf pf=−− ( )














⎥07.
λλ
λλ ⎥⎥
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 56

Sect. F8.] ROUND HSS 16.1–57
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Flange Local Buckling
(a) For compact sections, the limit stateof flange local bucklingdoes not apply.
(b) For sections with noncompact flanges
(F7-2)
(c) For sections with slender flanges
M
n=FySe (F7-3)
where
S
e=effective section modulus determined with the effective width, b e, of the
compression flange taken as:
(F7-4)
3. Web Local Buckling
(a) Forcompact sections, the limit stateof web local bucklingdoes not apply.
(b) For sections with noncompact webs
(F7-5)
F8. ROUND HSS
This section applies to round HSShaving D/tratios of less than
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding (plastic moment)and local buckling.
1. Yielding
Mn= Mp=FyZ (F8-1)
2. Local Buckling
(a) For compact sections, the limit stateof flange local bucklingdoes not apply.
(b) For noncompact sections
(F8-2)
(c) For sections with slender walls
M
n=FcrS (F8-3)
MM MFS
b
t
F
E
Mnp py
f
y
p=− −( ) −






≤357 40..
bt
E
Fbt
E
F
bef
yfy=−








≤192 1
038
.
.
/
MM MFS
h
t
F
E
Mnp py
w
y
p=− −( ) −






≤0 305 0 738..
045.
.
E
F
y
M
E
D
t
FSny=






+










0 021.
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:42 AM Page 57

16.1–58 ROUND HSS [Sect. F8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
cr (F8-4)
S= elastic section modulus, in.
3
(mm
3
)
t= thickness of wall, in. (mm)
F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE
OF SYMMETRY
This section applies to tees and double angles loaded in the plane of symmetry.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), lateral-torsional buckling, flange local
buckling, and local buckling of tee stems.
1. Yielding
Mn= Mp (F9-1)
where
(a) For stems in tension
M
p= FyZx≤1.6M y (F9-2)
(b) For stems in compression
M
p= FyZx≤My (F9-3)
2. Lateral-Torsional Buckling
(F9-4)
where
(F9-5)
The plus sign for Bapplies when the stem is in tension and the minus sign applies
when the stem is in compression. If the tip of the stem is in compression anywhere
along the unbraced length, the negative value of Bshall be used.
3. Flange Local Buckling of Tees
(a) For sections with a compact flange in flexural compression, the limit state of
flangelocal bucklingdoes not apply.
(b) For sections with a noncompact flange in flexural compression
=






033.E
D
t
MM
EI GJ
L
BBncr
y
b== ++ ( )
π
1
2
B
d
L
I
J
b
y







23.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 58

(F9-6)
(c) For sections with a slender flange in flexural compression
(F9-7)
where
S
xc=elastic section modulus referred to the compression flange, in.
3
(mm
3
)
λ=
λ
pf=λp, the limiting slenderness for a compact flange, Table B4.1b
λ
rf=λr, the limiting slenderness for a noncompact flange, Table B4.1b
User Note: For double angles with flange legs in compression, M
nbased on local
buckling is to be determined using the provisions of Section F10.3 withb/tof the
flange legs and Equation F10-1 as an upper limit.
4. Local Buckling of Tee Stems in Flexural Compression
Mn=FcrSx (F9-8)
where
S
x=elastic section modulus, in.
3
(mm
3
)
The critical stress, F
cr, is determined as follows:
(a) When
F
cr=Fy (F9-9)
(b) When
(F9-10)
(c) When
(F9-11)
Sect. F9.] TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY 16.1–59
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM M FS Mnp p yxc
pf
rf pf
y=− −








≤(.) .07 16
λλ
λλ
M
ES
b
tn
xc
f
f=






07
2
2
.
b
tf
f
2
d
t
E
F
wy
≤084.
084 103..
E
F
d
t
E
F
yw y
<≤
F
d
t
F
E
Fcr
w
y
y=−





⎥255 184..
d
t
E
F
wy
>103.
F
E
d
tcr
w=






069
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 59

User note: For double angles with web legs in compression, M nbased on local
bucklingis to be determined using the provisions of Section F10.3 withb/tof the
web legs and Equation F10-1 as an upper limit.
F10. SINGLE ANGLES
This section applies to single angles with and without continuous lateral restraint
along their length.
Single angles with continuous lateral-torsional restraint along the length are permit-
ted to be designed on the basis of geometric axis (x, y) bending. Single angles without
continuous lateral-torsional restraint along the length shall be designed using the pro-
visions for principal axis bending except where the provision for bending about a
geometric axis is permitted.
If the moment resultant has components about both principal axes, with or without
axial load, or the moment is about one principal axis and there is axial load, the com-
bined stressratio shall be determined using the provisions of Section H2.
User Note:For geometric axis design, use section properties computed about the
x-and y-axis of the angle, parallel and perpendicular to the legs. For principal axis
design, use section properties computed about the major and minor principal axes
of the angle.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (plastic moment), lateral-torsional buckling, and leg local
buckling.
User Note:For bending about the minor axis, only the limit states of yielding and
leg local buckling apply.
1. Yielding
Mn= 1.5M y (F10-1)
where
M
y= yield momentabout the axis of bending, kip-in. (N-mm)
2. Lateral-Torsional Buckling
For single angles without continuous lateral-torsional restraint along the length
(a) When M
e≤My
(F10-2)
16.1–60 TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY [Sect. F9.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
M
M
Mn
e
y
e=−






092
017
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 60

(b) When M e>My
(F10-3)
where
M
e, the elastic lateral-torsional bucklingmoment, is determined as follows:
(i) For bending about the major principal axis of equal-leg angles:
(F10-4)
(ii) For bending about the major principal axis of unequal-leg angles:
(F10-5)
where
C
b is computed using Equation F1-1 with a maximum value of 1.5
L
b= laterally unbraced lengthof member, in. (mm)
I
z= minor principal axis moment of inertia, in.
4
(mm
4
)
r
z = radius of gyration about the minor principal axis, in. (mm)
t= thickness of angle leg, in. (mm)
β
w= section property for unequal leg angles, positive for short legs in com-
pression and negative for long legs in compression. If the long leg is in
compression anywhere along the unbraced length of the member, the neg-
ative value of β
wshall be used.
User Note:The equation for β
wand values for common angle sizes are listed in
the Commentary.
(iii) For bending moment about one of the geometric axesof an equal-leg angle
with no axial compression
(a) And with no lateral-torsional restraint:
(i) With maximum compression at the toe
(F10-6a)
(ii) With maximum tension at the toe
(F10-6b)
Sect. F10.] SINGLE ANGLES 16.1–61
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
M
M
MMn
y
e
yy=−






≤192 117 15.. .
M
Eb t C
Le
b
b=
046
22
.
M
EI C
L
Lt
re
zb
b
w
b
z
w=+






+








49
0 052
2
2
.
.ββ
2
M
Eb tC
L
Lt
be
b
b
b=+















066
1 0 78 1
4
22
2
.
.
M
Eb tC
L
Lt
be
b
b
b=+






+








066
1 0 78 1
4
22
2
.
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 61

Myshall be taken as 0.80 times the yield momentcalculated using the geo-
metric section modulus.
where
b =full width of leg in compression, in. (mm)
User Note:M
nmay be taken as M yfor single angles with their vertical leg toe in
compression, and having a span-to-depth ratio less than or equal to
(b) And with lateral-torsional restraint at the point of maximum moment only:
M
eshall be taken as 1.25 times M ecomputed using Equation F10-6a or
F10-6b.
M
yshall be taken as the yield moment calculated using the geometric sec-
tion modulus.
3. Leg Local Buckling
The limit stateof leg local bucklingapplies when the toe of the leg is in compres-
sion.
(a) For compact sections,the limit state of leg local buckling does not apply.
(b) For sections with noncompact legs:
(F10-7)
(c) For sections with slender legs:
M
n=FcrSc (F10-8)
where
(F10-9)
S
c= elastic section modulus to the toe in compression relative to the axis of
bending, in.
3
(mm
3
). For bending about one of the geometric axesof an
equal-leg angle with no lateral-torsional restraint, S
cshall be 0.80 of the
geometric axis section modulus.
F11. RECTANGULAR BARS AND ROUNDS
This section applies to rectangular bars bent about either geometric axisand rounds.
The nominal flexural strength, M
n, shall be the lower value obtained according to the
limit statesof yielding(plastic moment) and lateral-torsional buckling.
16.1–62 SINGLE ANGLES [Sect. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
164
14
2
.
.
E
F
t
b
F
E
y
y







MFS
b
t
F
Enyc
y=−












243 172..
F
E
b
tcr=






071
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:58 AM Page 62

Sect. F12.] UNSYMMETRICAL SHAPES 16.1–63
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Yielding
For rectangular bars with bent about their major axis, rectangular bars
bent about their minor axis and rounds:
M
n=Mp=FyZ ≤1.6M y (F11-1)
2. Lateral-Torsional Buckling
(a) For rectangular bars with bent about their major axis:
(F11-2)
(b) For rectangular bars with bent about their major axis:
M
n=FcrSx≤Mp (F11-3)
where
(F11-4)
L
b= length between points that are either braced against lateral displacement
of the compression region, or between points braced to prevent twist of
the cross section, in. (mm)
d= depth of rectangular bar, in. (mm)
t= width of rectangular bar parallel to axis of bending, in. (mm)
(c) For rounds and rectangular bars bent about their minor axis, the limit stateof lat-
eral-torsional bucklingneed not be considered.
F12. UNSYMMETRICAL SHAPES
This section applies to all unsymmetrical shapes, except single angles.
The nominal flexural strength, M
n, shall be the lowest value obtained according to
the limit statesof yielding (yield moment), lateral-torsional buckling,and local buck-
lingwhere
M
n=FnSmin (F12-1)
where
S
min=lowest elastic section modulus relative to the axis of bending, in.
3
(mm
3
)
1. Yielding
Fn=Fy (F12-2)
Ld
t
E
Fb
y
2008

.
008 19
2
..E
F
Ld
t
E
F
y
b
y
<≤
MC
Ld
t
F
E
MMnb
b y
yp=−












≤1 52 0 274
2
..
F
EC
Ld
tcr
b
b=
19
2
.
Ld
t
E
Fb
y
219
>
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 63

2. Lateral-Torsional Buckling
Fn=Fcr≤Fy (F12-3)
where
F
cr= lateral-torsional buckling stressfor the section as determined by analysis,
ksi (MPa)
User Note:In the case of Z-shaped members, it is recommended that F
crbe taken
as 0.5F
crof a channel with the same flange and web properties.
3. Local Buckling
Fn=Fcr≤Fy (F12-4)
where
F
cr= local buckling stressfor the section as determined by analysis, ksi (MPa)
F13. PROPORTIONS OF BEAMS AND GIRDERS
1. Strength Reductions for Members With Holes in the Tension Flange
This section applies to rolled or built-up shapesand cover-plated beams with holes,
proportioned on the basis of flexural strength of the gross section.
In addition to the limit statesspecified in other sections of this Chapter, the nominal
flexural strength, M
n, shall be limited according to the limit state of tensile rupture
of the tension flange.
(a) When F
uAfn≥YtFyAfg, the limit state of tensile rupture does not apply.
(b) When F
uAfn<YtFyAfg, the nominal flexural strength, M n, at the location of the
holes in the tension flange shall not be taken greater than
(F13-1)
where
A
fg=gross area of tension flange, calculated in accordance with the provisions of
Section B4.3a, in.
2
(mm
2
)
A
fn=net areaof tension flange, calculated in accordance with the provisions of
Section B4.3b, in.
2
(mm
2
)
Y
t =1.0 for F y/Fu≤0.8
=1.1 otherwise
2. Proportioning Limits for I-Shaped Members
Singly symmetric I-shaped members shall satisfy the following limit:
(F13-2)
16.1–64 UNSYMMETRICAL SHAPES [Sect. F12.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
M
FA
A
Sn
ufn
fg
x=
01 09..≤≤
I
I
yc
y
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 64

Sect. F13.] PROPORTIONS OF BEAMS AND GIRDERS 16.1–65
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I-shaped members with slender webs shall also satisfy the following limits:
(a) When
(F13-3)
(b) When
(F13-4)
where
a= clear distance between transverse stiffeners, in. (mm)
In unstiffened girders h/t
wshall not exceed 260. The ratio of the web area to the com-
pression flange area shall not exceed 10.
3. Cover Plates
Flanges of welded beamsor girders may be varied in thickness or width by splicing
a series of plates or by the use of cover plates.
The total cross-sectional area of cover plates of bolted girders shall not exceed 70%
of the total flange area.
High-strength bolts or welds connecting flange to web, or cover plate to flange, shall
be proportioned to resist the total horizontal shearresulting from the bending forces
on the girder. The longitudinal distribution of these bolts or intermittent welds shall
be in proportion to the intensity of the shear.
However, the longitudinal spacing shall not exceed the maximum specified for com-
pression or tension members in Section E6 or D4, respectively. Bolts or welds
connecting flange to web shall also be proportioned to transmit to the web any loads
applied directly to the flange, unless provision is made to transmit such loads by
direct bearing.
Partial-length cover plates shall be extended beyond the theoretical cutoff point
and the extended portion shall be attached to the beam or girder by high-strength
bolts in a slip-critical connectionor fillet welds. The attachment shall be adequate,
at the applicable strength given in Sections J2.2, J3.8 or B3.11 to develop the cover
plate’s portion of the flexural strength in the beam or girder at the theoretical cut-
off point.
For welded cover plates, the welds connecting the cover plate termination to the
beam or girder shall have continuous welds along both edges of the cover plate in the
length a′, defined below, and shall be adequate to develop the cover plate’s portion
of the available strengthof the beam or girder at the distance a′from the end of the
cover plate.
h
t
E
F
w
max
y






=12 0.
a
h
≤15.
a
h
>15.
h
t
E
F
w
max
y






=
040.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 65

16.1–66 PROPORTIONS OF BEAMS AND GIRDERS [Sect. F13.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) When there is a continuous weld equal to or larger than three-fourths of the plate
thickness across the end of the plate
a′=w (F13-5)
where
w =width of cover plate, in. (mm)
(b) When there is a continuous weld smaller than three-fourths of the plate thickness
across the end of the plate
a′=1.5w (F13-6)
(c) When there is no weld across the end of the plate
a′=2w (F13-7)
4. Built-Up Beams
Where two or more beams or channels are used side-by-side to form a flexural mem-
ber, they shall be connected together in compliance with Section E6.2. When
concentrated loadsare carried from one beam to another or distributed between the
beams, diaphragmshaving sufficient stiffnessto distribute the load shall be welded
or bolted between the beams.
5. Unbraced Length for Moment Redistribution
For moment redistribution in beamsaccording to Section B3.7, the laterally
unbraced length,L
b, of the compression flange adjacent to the redistributed end
moment locations shall not exceed L
mdetermined as follows.
(a) For doubly symmetric and singly symmetric I-shaped beams with the compres-
sion flange equal to or larger than the tension flange loaded in the plane of the
web:
(F13-8)
(b) For solid rectangular bars and symmetric box beams bent about their major axis:
(F13-9)
where
F
y= specified minimum yield stressof the compression flange, ksi (MPa)
M
1= smaller moment at end of unbraced length, kip-in. (N-mm)
M
2= larger moment at end of unbraced length, kip-in. (N-mm)
r
y= radius of gyration about y-axis, in. (mm)
(M
1/M2) is positive when moments cause reverse curvatureand negative for sin-
gle curvature
There is no limit on L
bfor members with round or square cross sections or for any
beam bent about its minor axis.
L
M
M
E
F
rm
y
y=+


















0 12 0 076
1
2
..
L
M
M
E
F
rm
y
y=+


















≥017 010 01
1
2
.. .
00
E
F
r
y
y






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 66

16.1–67
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER G
DESIGN OF MEMBERS FOR SHEAR
This chapter addresses webs of singly or doubly symmetric members subject to shear in the
plane of the web, single angles and HSSsections, and shear in the weak direction of singly
or doubly symmetric shapes.
The chapter is organized as follows:
G1. General Provisions
G2. Members with Unstiffened or Stiffened Webs
G3. Tension Field Action
G4. Single Angles
G5. Rectangular HSS and Box-Shaped Members
G6. Round HSS
G7. Weak Axis Shear in Doubly Symmetric and Singly Symmetric Shapes
G8. Beams and Girders with Web Openings
User Note:For cases not included in this chapter, the following sections apply:
• H3.3 Unsymmetric sections
• J4.2 Shear strength of connecting elements
• J10.6 Web panel zoneshear
G1. GENERAL PROVISIONS
Two methods of calculating shear strength are presented below. The method pre-
sented in Section G2 does not utilize the post buckling strengthof the member
(tension field action). The method presented in Section G3 utilizes tension field
action.
The design shear strength, φ
vVn, and the allowable shear strength, V n/Ωv, shall be
determined as follows:
For all provisions in this chapter except Section G2.1(a):
φ
v=0.90 (LRFD)Ω v=1.67 (ASD)
G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS
1. Shear Strength
This section applies to webs of singly or doubly symmetric members and channels
subject to shear in the plane of the web.
The nominal shear strength, V
n, of unstiffened or stiffened webs according to the
limit statesof shear yieldingand shear buckling, is
V
n=0.6F yAwCv (G2-1)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 67

(a) For webs of rolled I-shaped members with
φ
v=1.00 (LRFD)Ω v=1.50 (ASD)
and
C
v=1.0 (G2-2)
User Note:All current ASTM A6 W, S and HP shapes except W44×230,
W40×149, W36×135, W33×118, W30×90, W24×55, W16×26 and W12×14 meet
the criteria stated in Section G2.1(a) for F
y=50 ksi (345 MPa).
(b) For webs of all other doubly symmetric shapes and singly symmetric shapes
and channels, except round HSS, the web shear coefficient, C
v, is determined
as follows:
(i) When
C
v=1.0 (G2-3)
(ii) When
(G2-4)
(iii) When
(G2-5)
where
A
w=area of web, the overall depth times the web thickness, dt w, in.
2
(mm
2
)
h=for rolled shapes, the clear distance between flanges less the fillet or cor-
ner radii, in. (mm)
=for built-up welded sections, the clear distance between flanges,
in. (mm)
=for built-up bolted sections, the distance between fastenerlines,
in. (mm)
=for tees, the overall depth, in. (mm)
t
w=thickness of web, in. (mm)
The web plate shear bucklingcoefficient, k
v, is determined as follows:
(i) For webs without transverse stiffenersand with h/t
w<260:
k
v=5
except for the stem of tee shapes where k
v=1.2.
16.1–68 MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS [Sect. G2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht kEFwvy/. /≤110
110 137.//./kE F h t kE Fvy w vy<≤
C
kE F
htv
vy
w=
110./
/
ht kEFwvy/. />137
C
kE
ht Fv
v
wy=
( )
151
2
.
/
ht EFwy≤224.:
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 9:42 AM Page 68

(ii) For webs with transverse stiffeners:
(G2-6)
=5 when a/h>3.0 or a/h>
where
a=clear distance between transverse stiffeners, in. (mm)
User Note:For all ASTM A6 W, S, M and HP shapes except M12.5×12.4,
M12.5×11.6, M12×11.8, M12×10.8, M12×10, M10×8and M10×7.5, when
F
y=50 ksi (345 MPa), C v=1.0.
2. Transverse Stiffeners
Transverse stiffeners are not required where , or where the avail-
able shear strength provided in accordance with Section G2.1 for k
v=5 is greater
than the required shear strength.
The moment of inertia, I
st, of transverse stiffeners used to develop the available web
shear strength, as provided in Section G2.1, about an axis in the web center for stiff-
ener pairs or about the face in contact with the web plate for single stiffeners, shall
meet the following requirement
(G2-7)
where
(G2-8)
and b is the smaller of the dimensions a andh
Transverse stiffeners are permitted to be stopped short of the tension flange, provided
bearingis not needed to transmit a concentrated loador reaction. The weld by which
transverse stiffeners are attached to the web shall be terminated not less than four
times nor more than six times the web thickness from the near toe of the web-to-flange
weld. When single stiffeners are used, they shall be attached to the compression
flange, if it consists of a rectangular plate, to resist any uplift tendency due to torsion
in the flange.
Bolts connecting stiffeners to the girder web shall be spaced not more than 12 in.
(305 mm) on center. If intermittent fillet welds are used, the clear distance be-
tween welds shall not be more than 16 times the web thickness nor more than 10 in.
(250 mm).
Sect. G2.] MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS 16.1–69
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
k
ahv=+
()
5
5
2
/
260
2
htw/( )






Ibtjst w≥
3
j
ah
=
()
−≥
25
205
2
.
/
.
ht EFwy/./≤246
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:43 AM Page 69

G3. TENSION FIELD ACTION
1. Limits on the Use of Tension Field Action
Consideration of tension field actionis permitted for flanged members when the web
plate is supported on all four sides by flanges or stiffeners. Consideration of tension
field action is not permitted:
(a) for end panelsin all members with transverse stiffeners;
(b) when a
≤hexceeds 3.0 or λ260≤Ωh≤twΣμ
2
;
(c) when 2A
w≤ΩAfc+AftΣ>2.5; or
(d) when h
≤bfcor h≤bft>6.0.
where
A
fc= area of compression flange, in.
2
(mm
2
)
A
ft= area of tension flange, in.
2
(mm
2
)
b
fc= width of compression flange, in. (mm)
b
ft= width of tension flange, in. (mm)
In these cases, the nominal shear strength, V
n, shall be determined according to the
provisions of Section G2.
2. Shear Strength With Tension Field Action
When tension field actionis permitted according to Section G3.1, the nominal shear
strength, V
n, with tension field action, according to the limit stateof tension field
yielding, shall be
(a) When
V
n=0.6F yAw (G3-1)
(b) When
(G3-2)
where
k
vand C vare as defined in Section G2.1
3. Transverse Stiffeners
Transverse stiffenerssubject to tension field actionshall meet the requirements of
Section G2.2 and the following limitations:
(1) (G3-3)
(2) (G3-4)
16.1–70 TENSION FIELD ACTION [Sect. G3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht kEFwvy/. /≤110
ht kEFwvy/. />110
VFAC
C
ahnywv
v=+

+
()








06
1
115 1
2
.
./
bt
E
F
st
yst
()≤056.
II I I
VV
VVst st st st
rc
cc≥+ −( )








121
1
21
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 70

Sect. G5.] RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–71
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
⎢b≤t⎤
st=width-to-thickness ratio of the stiffener
F
yst=specified minimum yield stressof the stiffener material, ksi (MPa)
I
st=moment of inertia of the transverse stiffeners about an axis in the web
center for stiffener pairs, or about the face in contact with the web plate
for single stiffeners, in.
4
(mm
4
)
I
st1 =minimum moment of inertia of the transverse stiffeners required for
development of the web shear bucklingresistance in Section G2.2, in.
4
(mm
4
)
I
st2 =minimum moment of inertia of the transverse stiffeners required for
development of the full web shear buckling plus the web tension field
resistance, V
r= Vc2,in.
4
(mm
4
)
= (G3-5)
V
r=larger of therequired shear strengthsin the adjacent web panels using
LRFDor ASD load combinations, kips (N)
V
c1=smaller of the available shear strengths in the adjacent web panels with
V
nas defined in Section G2.1, kips (N)
V
c2=smaller of the available shear strengthsin the adjacent web panels with
V
nas defined in Section G3.2, kips (N)
ρ
st=the larger of F yw/Fystand 1.0
F
yw=specified minimum yield stress of the web material, ksi (MPa)
G4. SINGLE ANGLES
The nominal shear strength, V n, of a single angle leg shall be determined using
Equation G2-1 and Section G2.1(b) with A
w=bt
where
b=width of the leg resisting the shear force, in. (mm)
t=thickness of angle leg, in. (mm)
h/t
w=b/t
k
v=1.2
G5. RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The nominal shear strength, V n, of rectangular HSSand box members shall be deter-
mined using the provisions of Section G2.1 with A
w=2ht
where
h=width resisting the shear force,taken as the clear distance between the flanges
less the inside corner radius on each side, in. (mm)
t=design wall thickness, equal to 0.93 times the nominal wall thickness for elec-
tric-resistance-welded (ERW) HSS and equal to the nominal thickness for
submerged-arc-welded (SAW) HSS, in. (mm)
t
w=t, in. (mm)
k
v=5
h F
Est yw
413 15
40
ρ
. .






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 71

If the corner radius is not known, hshall be taken as the corresponding outside
dimension minus 3 times the thickness.
G6. ROUND HSS
The nominal shear strength, V n, of round HSS, according to the limit statesof shear
yieldingand shear buckling, shall be determined as:
V
n=FcrAg/2(G6-1)
where
F
crshall be the larger of
(G6-2a)
and
(G6-2b)
but shall not exceed 0.6F
y
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
D=outside diameter, in. (mm)
L
v=distance from maximum to zero shear force, in. (mm)
t=design wall thickness, equal to 0.93 times the nominal wall thickness for
ERW HSS and equal to the nominal thickness for SAW HSS, in. (mm)
User Note:The shear buckling equations, Equations G6-2a and G6-2b, will con-
trol for D/tover 100, high-strength steels, and long lengths. For standard sections,
shear yielding will usually control.
G7. WEAK AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY
SYMMETRIC SHAPES
For doubly and singly symmetric shapes loaded in the weak axiswithout torsion, the
nominal shear strength, V
n, for each shear resisting element shall be determined
using Equation G2-1 and Section G2.1(b) with A
w=bf tf, h/tw=b/tf, kv=1.2, and
b =for flanges of I-shaped members, half the full-flange width, b
f; for flanges of
channels, the full nominal dimensionof the flange, in. (mm)
User Note:For all ASTM A6 W, S, M and HP shapes, when F
y≤ 50 ksi (345
MPa), C
v=1.0.
G8. BEAMS AND GIRDERS WITH WEB OPENINGS
The effect of all web openings on the shear strength of steel and composite beams
shall be determined. Adequate reinforcement shall be provided when the required
strengthexceeds the available strengthof the member at the opening.
16.1–72 RECTANGULAR HSS AND BOX-SHAPED MEMBERS [Sect. G5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
E
L
D
D
tcr
v=






160
5
4
.
F
E
D
tcr=






078
3
2
.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 72

CHAPTER H
DESIGN OF MEMBERS FOR COMBINED
FORCES AND TORSION
This chapter addresses members subject to axial forceand flexure about one or both axes,
with or without torsion, and members subject to torsion only.
The chapter is organized as follows:
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear and/or
Axial Force
H4. Rupture of Flanges with Holes Subject to Tension
User Note:For compositemembers, see Chapter I.
H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO
FLEXURE AND AXIAL FORCE
1. Doubly and Singly Symmetric Members Subject to Flexure and
Compression
The interaction of flexure and compression in doubly symmetric members and singly
symmetric members for which 0.1 ≤ I
yc≤Iy≤0.9, constrained to bend about a geo-
metric axis(xand/or y) shall be limited by Equations H1-1a and H1-1b, where I
ycis
the moment of inertia of the compression flange about the y-axis, in.
4
(mm
4
).
User Note:Section H2 is permitted to be used in lieu of the provisions of this
section.
(a) When
(H1-1a)
(b) When
(H1-1b)
where
P
r=required axial strength using LRFDor ASD load combinations, kips (N)
P
c=available axial strength, kips (N)
16.1–73
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
P
Pr
c
≥02.
P
P
M
M
M
Mr
c
rx
cx
ry
cy
++







8
9
10.
P
Pr
c
<02.
P
P
M
M
M
Mr
c
rx
cx
ry
cy
2
10++






≤.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 73

16.1–74 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Sect. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Mr=required flexural strengthusing LRFD or ASD load combinations, kip-in.
(N-mm)
M
c=available flexural strength, kip-in. (N-mm)
x=subscript relating symbol to strong axisbending
y=subscript relating symbol to weak axisbending
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations, kips (N)
P
c=φcPn=design axial strength, determined in accordance with Chapter E,
kips (N)
M
r=required flexural strength using LRFD load coMbinations, kip-in. (N-mm)
M
c=φbMn=design flexural strengthdetermined in accordance with Chapter F,
kip-in. (N-mm)
φ
c=resistance factorfor compression =0.90
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c=Pn/Ωc=allowable axial strength, determined in accordance with Chapter
E, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthdetermined in accordance with
Chapter F, kip-in. (N-mm)
Ω
c=safety factorfor compression =1.67
Ω
b=safety factor for flexure =1.67
2. Doubly and Singly Symmetric Members Subject to Flexure and Tension
The interaction of flexure and tension in doubly symmetric members and singly sym-
metric members constrained to bend about a geometric axis(xand/or y) shall be
limited by Equations H1-1a and H1-1b
where
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations, kips (N)
P
c=φtPn=design axial strength, determined in accordance with Section D2,
kips (N)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
M
c=φbMn=design flexural strength determined in accordance with Chapter F,
kip-in. (N-mm)
φ
t=resistance factorfor tension (see Section D2)
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c=Pn/Ωt= allowable axial strength, determined in accordance with Section
D2, kips (N)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 74

Mr=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthdetermined in accordance with
Chapter F, kip-in. (N-mm)
Ω
t=safety factorfor tension (see Section D2)
Ω
b=safety factor for flexure =1.67
For doubly symmetric members, C
bin Chapter F may be multiplied by
for axial tension that acts concurrently with flexure
where
and
α=1.0 (LRFD); α=1.6 (ASD)
A more detailed analysis of the interaction of flexure and tension is permitted in lieu
of Equations H1-1a and H1-1b.
3. Doubly Symmetric Rolled Compact Members Subject to Single Axis
Flexure and Compression
For doubly symmetric rolled compact members with KL z≤ KL ysubjected to flex-
ure and compression with moments primarily about their major axis, it is permissible
to consider the two independent limit states, in-plane instabilityand out-of-plane
bucklingor lateral-torsional buckling, separately in lieu of the combined approach
provided in Section H1.1.
For members with M
ry≤Mcy≥0.05, the provisions of Section H1.1 shall be followed.
(a) For the limit state of in-plane instability, Equations H1-1 shall be used with P
c,
M
rxand M cxdetermined in the plane of bending.
(b) For the limit state of out-of-plane buckling and lateral-torsional buckling:
(H1-2)
where
P
cy=available compressive strengthout of the plane of bending, kips (N)
C
b=lateral-torsional buckling modification factor determined from Section F1
M
cx=available lateral-torsional strengthfor strong axisflexure determined in
accordance with Chapter F using C
b= 1.0, kip-in. (N-mm)
User Note:In Equation H1-2, C
bMcxmay be larger than φ bMpxin LRFD or
M
px/Ωbin ASD. The yielding resistance of the beam-columnis captured by
Equations H1-1.
Sect. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–75
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1+
αP
P
r
ey
P
EI
Ley
y
b=
π
2
2
P
P
P
P
M
CMr
cy
r
cy
rx
bcx
15 05 10
2
.. .−






+







AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 75

H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE
AND AXIAL FORCE
This section addresses the interaction of flexure and axial stressfor shapes not cov-
ered in Section H1. It is permitted to use the provisions of this Section for any shape
in lieu of the provisions of Section H1.
(H2-1)
where
f
ra =required axial stressat the point of consideration using LRFD
or ASD load combinations, ksi (MPa)
F
ca =available axial stressat the point of consideration, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD
or ASD load combinations, ksi (MPa)
F
cbw ,Fcbz=available flexural stressat the point of consideration, ksi (MPa)
w =subscript relating symbol to major principal axis bending
z =subscript relating symbol to minor principal axis bending
For design according to Section B3.3 (LRFD):
f
ra =required axial stress at the point of consideration using LRFD load
combinations, ksi (MPa)
F
ca =φcFcr=design axial stress, determined in accordance with Chapter
E for compression or Section D2 for tension, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD or
ASD load combinations, ksi (MPa)
F
cbw, Fcbz== design flexural stressdetermined in accordance with
Chapter F, ksi (MPa). Use the section modulus for the specific
location in the cross section and consider the sign of the stress.
φ
c =resistance factorfor compression =0.90
φ
t =resistance factor for tension (Section D2)
φ
b =resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
f
ra =required axial stress at the point of consideration using ASD load
combinations, ksi (MPa)
F
ca == allowable axial stressdetermined in accordance with Chapter E
for compression, or Section D2 for tension, ksi (MPa)
f
rbw, frbz=required flexural stress at the point of consideration using LRFD or
ASD load combinations, ksi (MPa)
F
cbw, Fcbz== allowable flexural stressdetermined in accordance with
Chapter F, ksi (MPa). Use the section modulus for the specific
location in the cross section and consider the sign of the stress.
Ω
c =safety factorfor compression =1.67
16.1–76 UNSYMMETRIC AND OTHER MEMBERS [Sect. H2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
f
F
f
F
f
Fra
ca
rbw
cbw
rbz
cbz
++≤ 10.
φbnM
S
M
Sn
b
Ω
Fcr
c
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 76

Sect. H3.] MEMBERS SUBJECT TO TORSION AND COMBINED TORSION 16.1–77
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ωt =safety factor for tension (see Section D2)
Ω
b =safety factor for flexure =1.67
Equation H2-1 shall be evaluated using the principal bending axes by considering the
sense of the flexural stresses at the critical points of the cross section. The flexural
terms are either added to or subtracted from the axial term as appropriate. When the
axial forceis compression, second order effectsshall be included according to the
provisions of Chapter C.
A more detailed analysis of the interaction of flexure and tension is permitted in lieu
of Equation H2-1.
H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/OR AXIAL FORCE
1. Round and Rectangular HSS Subject to Torsion
The design torsional strength, φ TTn, and the allowable torsional strength, T n/ΩT, for
round and rectangular HSSaccording to the limit statesof torsional yieldingand tor-
sional bucklingshall be determined as follows:
φ
T=0.90 (LRFD)Ω T=1.67 (ASD)
T
n= FcrC (H3-1)
where
C is the HSS torsional constant
The critical stress, F
cr, shall be determined as follows:
(a) For round HSS, F
crshall be the larger of
(i) (H3-2a)
and
(ii) (H3-2b)
but shall not exceed 0.6F
y,
where
L=length of the member, in. (mm)
D=outside diameter, in. (mm)
(b) For rectangular HSS
(i) When
F
E
L
D
D
tcr=






123
5
4
.
F
E
D
tcr=






060
3
2
.
ht EF y/. /≤245
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 77

Fcr=0.6F y (H3-3)
(ii) When
(H3-4)
(iii) When
(H3-5)
where
h=flat widthof longer side as defined in Section B4.1b(d), in. (mm)
t=design wall thicknessdefined in Section B4.2, in. (mm)
User Note:The torsional constant, C, may be conservatively taken as:
For round HSS:
For rectangular HSS: C =2 B≤t H≤tt≤4.5 4≤πt
3
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
When the required torsional strength, T r, is less than or equal to 20% of the avail-
able torsional strength, T
c, the interaction of torsion, shear, flexure and/or axial force
for HSSshall be determined by Section H1 and the torsional effects shall be neg-
lected. When T
rexceeds 20% of T c, the interaction of torsion, shear, flexure and/or
axial force shall be limited, at the point of consideration, by
(H3-6)
where
For design according to Section B3.3 (LRFD):
P
r=required axial strengthusing LRFD load combinations, kips (N)
P
c=φPn=design tensile or compressive strengthin accordance with Chapter
D or E, kips (N)
M
r=required flexural strengthusing LRFD load combinations, kip-in. (N-mm)
M
c=φbMn=design flexural strengthin accordance with Chapter F, kip-in.
(N-mm)
V
r=required shear strengthusing LRFD load combinations, kips (N)
16.1–78 MEMBERS SUBJECT TO TORSION AND COMBINED TORSION [Sect. H3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
245 307./.
E
F
ht
E
F
yy
<≤
F
FEF
h
tcr
yy=
( )






06 245../
3 07 260./
E
F
ht
y
<≤
C
Dtt
=

()π
2
2
P
P
M
M
V
V
T
Tr
c
r
c
r
c
r
c
+






++







2
10.
F
E
h
tcr=






0 458
2
2

AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 78

Sect. H4.] RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION 16.1–79
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Vc=φvVn=design shear strengthin accordance with Chapter G, kips (N)
T
r=required torsional strength using LRFD load combinations, kip-in.
(N-mm)
T
c=φTTn=design torsional strengthin accordance with Section H3.1, kip-in.
(N-mm)
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c=Pn/Ω =allowable tensile orcompressive strengthin accordance with
Chapter D or E, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
c=Mn/Ωb=allowable flexural strengthin accordance with Chapter F, kip-in.
(N-mm)
V
r=required shear strength using ASD load combinations, kips (N)
V
c=Vn/Ωv=allowable shear strengthin accordance with Chapter G, kips (N)
T
r=required torsional strength using ASD load combinations, kip-in. (N-mm)
T
c=Tn/ΩT=allowable torsional strengthin accordance with Section H3.1,
kip-in. (N-mm)
3. Non-HSS Members Subject to Torsion and Combined Stress
The available torsional strengthfor non-HSSmembers shall be the lowest value
obtained according to the limit statesof yielding under normal stress, shear yielding
under shear stress, or buckling, determined as follows:
φ
T=0.90 (LRFD) Ω T=1.67 (ASD)
(a) For the limit state of yielding under normal stress
F
n=Fy (H3-7)
(b) For the limit state of shear yielding under shear stress
F
n=0.6F y (H3-8)
(c) For the limit state of buckling
F
n=Fcr (H3-9)
where
F
cr=buckling stress for the section as determined by analysis, ksi (MPa)
Some constrained local yieldingis permitted adjacent to areas that remain elastic.
H4. RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION
At locations of bolt holes in flanges subject to tension under combined axial force
and major axis flexure, flange tensile rupture strengthshall be limited by Equation
H4-1. Each flange subject to tension due to axial force and flexure shall be checked
separately.
(H4-1)
P
P
M
Mr
c
rx
cx
+≤ 10.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 79

16.1–80 RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION [Sect. H4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
P
r=required axial strength of the member at the location of the bolt holes, pos-
itive in tension, negative in compression, kips (N)
P
c=available axial strength for the limit stateof tensile rupture of the net sec-
tion at the location of bolt holes, kips (N)
M
rx=required flexural strength at the location of the bolt holes; positive for
tension in the flange under consideration, negative for compression, kip-in.
(N-mm)
M
cx=available flexural strength about x-axis for the limit state of tensile rupture
of the flange, determined according to Section F13.1. When the limit state
of tensile rupture in flexure does not apply, use the plastic bending moment,
M
p, determined with bolt holes not taken into consideration, kip-in. (N-mm)
For design according to Section B3.3 (LRFD):
P
r=required axial strength using LRFD load combinations, kips (N)
P
c=φtPn=design axial strength for the limit state of tensile rupture, deter-
mined in accordance with Section D2(b), kips (N)
M
rx=required flexural strength using LRFD load combinations, kip-in. (N-
mm)
M
cx=φbMn =design flexural strength determined in accordance with Section
F13.1 or the plastic bending moment, M
p, determined with bolt holes not
taken into consideration, as applicable, kip-in. (N-mm)
φ
t=resistance factorfor tensile rupture =0.75
φ
b=resistance factor for flexure =0.90
For design according to Section B3.4 (ASD):
P
r=required axial strength using ASD load combinations, kips (N)
P
c== allowable axial strength for the limit state of tensile rupture, deter-
mined in accordance with Section D2(b), kips (N)
M
rx=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
cx== allowable flexural strength determined in accordance with Section
F13.1, or the plastic bending moment, M
p, determined with bolt holes
not taken into consideration, as applicable, kip-in. (N-mm)
Ω
t=safety factorfor tensile rupture =2.00
Ω
b=safety factor for flexure =1.67
Pn
t
Ω
Mn
b
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 80

16.1–81
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER I
DESIGN OF COMPOSITE MEMBERS
This chapter addresses compositemembers composed of rolled or built-up structural steel
shapes or HSSand structural concrete acting together, and steel beamssupporting a reinforced
concrete slab so interconnected that the beams and the slab act together to resist bending.
Simple and continuous composite beamswith steel headed stud anchors, concrete-encased,
and concrete filled beams, constructed with or without temporary shores, are included.
The chapter is organized as follows:
I1. General Provisions
I2. Axial Force
I3. Flexure
I4. Shear
I5. Combined Axial Force and Flexure
I6. Load Transfer
I7. Composite Diaphragms and Collector Beams
I8. Steel Anchors
I9. Special Cases
I1. GENERAL PROVISIONS
In determining load effectsin members and connectionsof a structure that includes
compositemembers, consideration shall be given to the effective sections at the time
each increment of loadis applied.
1. Concrete and Steel Reinforcement
The design, detailing and material properties related to the concrete and reinforcing
steel portions of composite construction shall comply with the reinforced concrete
and reinforcing bar design specificationsstipulated by the applicable building code.
Additionally, the provisions in ACI 318 shall apply with the following exceptions
and limitations:
(1) ACI 318 Sections 7.8.2 and 10.13, and Chapter 21 shall be excluded in their
entirety.
(2) Concrete and steel reinforcement material limitations shall be as specified in
Section I1.3.
(3)Transverse reinforcementlimitations shall be as specified in Section I2.1a(2), in
addition to those specified in ACI 318.
(4) The minimum longitudinal reinforcing ratio for encased composite members
shall be as specified in Section I2.1a(3).
Concrete and steel reinforcement components designed in accordance with ACI 318
shall be based on a level of loading corresponding to LRFD load combinations.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 81

User Note:It is the intent of the Specification that the concrete and reinforcing
steel portions of composite concrete members be detailed utilizing the noncom-
posite provisions of ACI 318 as modified by the Specification. All requirements
specific to composite members are covered in the Specification.
Note that the design basis for ACI 318 is strength design. Designers using ASD
for steel must be conscious of the different load factors.
2. Nominal Strength of Composite Sections
The nominal strengthof composite sections shall be determined in accordance with
the plastic stress distribution methodor the strain compatibility methodas defined in
this section.
The tensile strengthof the concrete shall be neglected in the determination of the
nominal strength of composite members.
Local bucklingeffects shall be considered for filled composite members as defined in
Section I1.4. Local buckling effects need not be considered for encased composite
members.
2a. Plastic Stress Distribution Method
For the plastic stress distribution method, the nominal strengthshall be computed
assuming that steel components have reached a stressof F
yin either tension or
compression and concrete components in compression due to axial force and/or
flexure have reached a stress of 0.85f′
c. For round HSSfilled with concrete, a stress
of 0.95f′
cis permitted to be used for concrete components in compression due to
axial force and/or flexure to account for the effects of concrete confinement.
2b. Strain Compatibility Method
For the strain compatibility method, a linear distribution of strains across the section
shall be assumed, with the maximum concrete compressive strain equal to 0.003
in./in. (mm/mm). The stress-strain relationships for steel and concrete shall be
obtained from tests or from published results for similar materials.
User Note: The strain compatibility method should be used to determine nominal
strengthfor irregular sections and for cases where the steel does not exhibit
elasto-plastic behavior. General guidelines for the strain compatibility method for
encased members subjected to axial load, flexure or both are given in AISC
Design Guide 6 and ACI 318.
3. Material Limitations
For concrete, structural steel, and steel reinforcing bars in composite systems, the
following limitations shall be met, unless justified by testing or analysis:
16.1–82 GENERAL PROVISIONS [Sect. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 9:43 AM Page 82

(1) For the determination of the available strength, concrete shall have a compres-
sive strength, f′
c, of not less than 3 ksi (21 MPa) nor more than 10 ksi (70 MPa)
for normal weight concrete and not less than 3 ksi (21 MPa) nor more than 6 ksi
(42 MPa) for lightweight concrete.
User Note:Higher strength concrete material properties may be used for stiff-
nesscalculations but may not be relied upon for strength calculations unless
justified by testing or analysis.
(2) The specified minimum yield stressof structural steel and reinforcing bars used
in calculating the strength of composite members shall not exceed 75 ksi (525
MPa).
4. Classification of Filled Composite Sections for Local Buckling
For compression, filled composite sections are classified as compact, noncompact or
slender. For a section to qualify as compact, the maximum width-to-thickness ratio
of its compression steel elements shall not exceed the limiting width-to-thickness
ratio, λ
p, from Table I1.1a. If the maximum width-to-thickness ratio of one or more
steel compression elements exceeds λ
p, but does not exceed λrfrom Table I1.1a, the
filled composite section is noncompact. If the maximum width-to-thickness ratio of
any compression steel element exceeds λ
r, the section is slender. The maximum per-
mitted width-to-thickness ratio shall be as specified in the table.
For flexure, filled composite sections are classified as compact, noncompact or slen-
der. For a section to qualify as compact, the maximum width-to-thickness ratio of its
compression steel elements shall not exceed the limiting width-to-thickness ratio, λ
p,
from Table I1.1b. If the maximum width-to-thickness ratio of one or more steel com-
pression elements exceeds λ
p, but does not exceed λrfrom Table I1.1b, the section is
noncompact. If the width-to-thickness ratio of any steel element exceeds λ
r, the sec-
tion is slender. The maximum permitted width-to-thickness ratio shall be as specified
in the table.
Refer to Table B4.1a and Table B4.1b for definitions of width (band D) and thick-
ness (t) for rectangular and round HSSsections.
User Note: All current ASTM A500 Grade B square HSS sections are compact
according to the limits of Table I1.1a and Table I1.1b except HSS7×7×
1
/8,
HSS8×8×
1
/8, HSS9×9×
1
/8and HSS12×12×
3
/16which are noncompact for both
axial compression and flexure.
All current ASTM A500 Grade B round HSS sections are compact according
to the limits of Table I1.1a and Table I1.1b for both axial compression and flex-
ure with the exception of HSS16.0×0.25, which is noncompact for flexure.
Sect. I1.] GENERAL PROVISIONS 16.1–83
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 83

16.1–84 GENERAL PROVISIONS [Sect. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE I1.1A
Limiting Width-to-Thickness Ratios for
Compression Steel Elements in Composite
Members Subject to Axial Compression
For Use with Section I2.2
Width-to- λ p λr
Description of Thickness Compact/ Noncompact/ Maximum
Element Ratio Noncompact Slender Permitted
Walls of Rectangular HSS
and Boxes of Uniform
Thickness
Round HSS
226.
E
F
y
300.
E
F
y
015.E
F
y
019.E
F
y
031.E
F
y
500.
E
F
y
TABLE I1.1B
Limiting Width-to-Thickness Ratios for
Compression Steel Elements in Composite
Members Subject to Flexure
For Use with Section I3.4
Width-to- λ p λr
Description of Thickness Compact/ Noncompact/ Maximum
Element Ratio Noncompact Slender Permitted
Flanges of Rectangular
HSS and Boxes of
Uniform Thickness
Webs of Rectangular HSS
and Boxes of Uniform
Thickness
Round HSS
226.
E
F
y
300.
E
F
y
300.
E
F
y
570.
E
F
y
570.
E
F
y
009.E
F
y
031.E
F
y
031.E
F
y
500.
E
F
y
b/t
b/t
h/t
D/t
D/t
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 84

I2. AXIAL FORCE
This section applies to two types of compositemembers subject to axial force:
encased composite membersand filled composite members.
1.
Encased Composite Members
1a. Limitations
For encased composite members, the following limitations shall be met:
(1) The cross-sectional area of the steel core shall comprise at least 1% of the total
composite cross section.
(2) Concrete encasement of the steel core shall be reinforced with continuous longi-
tudinal bars and lateral ties or spirals.
Where lateral ties are used, a minimum of either a No. 3 (10 mm) bar spaced
at a maximum of 12 in. (305 mm) on center, or a No. 4 (13 mm) bar or larger
spaced at a maximum of 16 in. (406 mm) on center shall be used. Deformed wire
or welded wire reinforcement of equivalent area are permitted.
Maximum spacing of lateral ties shall not exceed 0.5 times the least column
dimension.
(3) The minimum reinforcement ratio for continuous longitudinal reinforcing, ρ
sr,
shall be 0.004, where ρ
sris given by:
(I2-1)
where
A
g=gross area of composite member, in.
2
(mm
2
)
A
sr=area of continuous reinforcing bars, in.
2
(mm
2
)
User Note: Refer to Sections 7.10 and 10.9.3 of ACI 318 for additional tie and
spiral reinforcing provisions.
1b. Compressive Strength
The design compressive strength, φ cPn, and allowable compressive strength, Pn/Ωc,
of doubly symmetric axially loaded encased composite members shall be determined
for the limit stateof flexural bucklingbased on member slenderness as follows:
φ
c=0.75 (LRFD) Ω c=2.00 (ASD)
(a) When
(I2-2)
(b) When
Sect. I2.] AXIAL FORCE 16.1–85
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ρsr
sr
g
A
A
=
P
Pno
e
≤225.
PPnno
P
P
no
e
=








0 658.
P
Pno
e
>225.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 85

Pn=0.877P e
(I2-3)
where
P
no (I2-4)
P
e=elastic critical buckling loaddetermined in accordance with Chapter C or
Appendix 7, kips (N)

2
(EIeff)/(KL)
2
(I2-5)
A
c=area of concrete, in.
2
(mm
2
)
A
s=area of the steel section, in.
2
(mm
2
)
E
c=modulus of elasticity of concrete
EI
eff=effective stiffnessof composite section, kip-in.
2
(N-mm
2
)
=E
sIs+0.5E sIsr+C1EcIc (I2-6)
C
1=coefficient for calculation of effective rigidity of an
encased composite compression member
(I2-7)
E
s =modulus of elasticity of steel
=29,000 ksi (200 000 MPa)
F
y=specified minimum yield stressof steel section, ksi (MPa)
F
ysr=specified minimum yield stress of reinforcing bars, ksi (MPa)
I
c=moment of inertia of the concrete section about the elastic neutral axis of
the composite section, in.
4
(mm
4
)
I
s=moment of inertia of steel shape about the elastic neutral axis of the com-
posite section, in.
4
(mm
4
)
I
sr=moment of inertia of reinforcing bars about the elastic neutral axis of the
composite section, in.
4
(mm
4
)
K=effective length factor
L=laterally unbraced lengthof the member, in. (mm)
f
c′=specified compressive strength of concrete, ksi (MPa)
w
c=weight of concrete per unit volume (90 ≤w c≤155 lbs/ft
3
or 1500 ≤w c≤
2500 kg/m
3
)
The available compressive strength need not be less than that specified for the bare
steel member as required by Chapter E.
1c. Tensile Strength
The available tensile strength of axially loaded encased composite membersshall be
determined for the limit state of yieldingas follows:
P
n=FyAs+FysrAsr (I2-8)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
1d. Load Transfer
Loadtransfer requirements for encased composite membersshall be determined in
accordance with Section I6.
16.1–86 AXIAL FORCE [Sect. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
=+ + ′FA F A fAys ysrsr cc085.
= ′′ ( )wf wfcc cc
15 15 0 043
..
, ksi . , MPa
= 0 1 2 0 3..+
+







A
AA
s
cs
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 86

Sect. I2.] AXIAL FORCE 16.1–87
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1e. Detailing Requirements
Clear spacing between the steel core and longitudinal reinforcing shall be a minimum
of 1.5 reinforcing bar diameters, but not less than 1.5 in. (38 mm).
If the composite cross section is built up from two or more encased steel shapes, the
shapes shall be interconnected with lacing, tie plates, batten platesor similar com-
ponents to prevent bucklingof individual shapes due to loadsapplied prior to
hardening of the concrete.
2. Filled Composite Members
2a. Limitations
For filled composite members, the cross-sectional area of the steel section shall com-
prise at least 1% of the total composite cross section.
Filled composite members shall be classified for local bucklingaccording to Section
I1.4.
2b. Compressive Strength
The available compressive strengthof axially loaded doubly symmetric filled com-
posite membersshall be determined for the limit state of flexural bucklingin
accordance with Section I2.1b with the following modifications:
(a) For compact sections
P
no=Pp (I2-9a)
where
(I2-9b)
C
2=0.85 for rectangular sections and 0.95 for round sections
(b) For noncompact sections
(I2-9c)
where
λ, λ
pand λrare slenderness ratios determined from Table I1.1a
P
pis determined from Equation I2-9b
(I2-9d)
(c) For slender sections
(I2-9e)
PFACfAA
E
Epys ccsr
s
c=+ ′+





⎟ 2
PP
PPno p
py
rp
p=−


( )
−( )
λλ
λλ
2
2
PFA fAA
E
Eyys ccsr
s
c=+ ′+






07.
PFA fAA
E
Eno cr s c c sr
s
c=+ ′+






07.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 87

where
(i) For rectangular filled sections
(I2-10)
(ii) For round filled sections
(I2-11)
The effective stiffness of the composite section, EI
eff, for all sections shall be:
EI
eff=EsIs+EsIsr+ C3EcIc (I2-12)
where
C
3= coefficient for calculation of effective rigidity of filled composite compres-
sion member
= (I2-13)
The available compressivestrengthneed not be less than specified for the bare steel
member as required by Chapter E.
2c. Tensile Strength
The available tensile strengthof axially loaded filled composite members shall be
determined for the limit state of yieldingas follows:
P
n=AsFy+AsrFysr (I2-14)
φ
t=0.90 (LRFD) Ω t=1.67 (ASD)
2d. Load Transfer
Loadtransfer requirements for filled composite membersshall be determined in
accordance with Section I6.
I3. FLEXURE
This section applies to three types of compositemembers subject to flexure: com-
posite beamswith steel anchors consisting of steel headed stud anchors or steel
channel anchors, encased composite members, and filled composite members.
1. General
1a. Effective Width
The effective widthof the concrete slab shall be the sum of the effective widths for
each side of the beamcenterline, each of which shall not exceed:
16.1–88 AXIAL FORCE [Sect. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
E
b
tcr
s=






9
2
F
F
D
t
F
Ecr
y
y
s=












072
02
.
.
06 2 09..+
+







A
AA
s
cs
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:44 AM Page 88

(1) one-eighth of the beam span, center-to-center of supports;
(2) one-half the distance to the centerline of the adjacent beam; or
(3) the distance to the edge of the slab.
1b. Strength During Construction
When temporary shores are not used during construction, the steel section alone shall
have adequate strength to support all loadsapplied prior to the concrete attaining
75% of its specified strength f
c′. The available flexural strengthof the steel section
shall be determined in accordance with Chapter F.
2. Composite Beams With Steel Headed Stud or Steel Channel Anchors
2a. Positive Flexural Strength
The design positive flexural strength, φ bMn, andallowable positive flexural strength,
M
n/Ωb, shall be determined for thelimit state ofyielding as follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
(a) When
M
nshall be determined from the plastic stressdistribution on the composite sec-
tion for the limit state of yielding (plastic moment).
User Note: All current ASTM A6 W, S and HP shapes satisfy the limit given
in Section I3.2a(a) for F
y≤50 ksi (345 MPa).
(b) When
M
nshall be determined from the superposition of elastic stresses, considering the
effects of shoring, for the limit state of yielding (yield moment).
2b. Negative Flexural Strength
The available negative flexural strengthshall be determined for the steel section
alone, in accordance with the requirements of Chapter F.
Alternatively, the available negative flexural strength shall be determined from the
plastic stress distribution on the composite section, for the limit stateof yielding
(plastic moment),with
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
provided that the following limitations are met:
(1) The steel beamis compact and is adequately braced in accordance with Chapter F.
(2) Steel headed stud or steel channel anchors connect the slab to the steel beam in
the negative moment region.
(3) The slab reinforcement parallel to the steel beam, within the effective widthof the
slab, is properly developed.
Sect. I3.] FLEXURE 16.1–89
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht E Fwy≤376./
ht E Fwy>376./
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 89

2c. Composite Beams With Formed Steel Deck
(1) General
The available flexural strength of composite construction consisting of concrete
slabs on formed steel deckconnected to steel beamsshall be determined by the
applicable portions of Sections I3.2a and I3.2b, with the following requirements:
(1) The nominal rib heightshall not be greater than 3 in. (75 mm). The average
width of concrete rib or haunch, w
r, shall be not less than 2 in. (50 mm), but
shall not be taken in calculations as more than the minimum clear width near
the top of the steel deck.
(2) The concrete slab shall be connected to the steel beam with welded steel
headed stud anchors,
3
/4in. (19 mm) or less in diameter (AWS D1.1/D1.1M).
Steel headed stud anchors shall be welded either through the deck or directly
to the steel cross section. Steel headed stud anchors, after installation, shall
extend not less than 1
1
/2in. (38 mm) above the top of the steel deck and there
shall be at least
1
/2in. (13 mm) of specified concrete cover above the top of
the steel headed stud anchors.
(3) The slab thickness above the steel deck shall be not less than 2 in. (50 mm).
(4) Steel deck shall be anchored to all supporting members at a spacing not to
exceed 18 in. (460 mm). Such anchorage shall be provided by steel headed
stud anchors, a combination of steel headed stud anchors and arc spot (pud-
dle) welds, or other devices specified by the contract documents.
(2) Deck Ribs Oriented Perpendicular to Steel Beam
Concrete below the top of the steel deck shall be neglected in determining com-
posite section properties and in calculating A
cfor deck ribs oriented
perpendicular to the steel beams.
(3) Deck Ribs Oriented Parallel to Steel Beam
Concrete below the top of the steel deck is permitted to be included in determin-
ing composite section properties and shall be included in calculating A
c.
Formed steel deck ribs over supporting beams are permitted to be split longi-
tudinally and separated to form a concrete haunch.
When the nominal depth of steel deck is 1
1
/2in. (38 mm) or greater, the aver-
age width, w
r, of the supported haunch or rib shall be not less than 2 in. (50 mm)
for the first steel headed stud anchor in the transverse row plus four stud diame-
ters for each additional steel headed stud anchor.
2d. Load Transfer Between Steel Beam and Concrete Slab
(1) Load Transfer for Positive Flexural Strength
The entire horizontal shearat the interface between the steel beamand the con-
crete slab shall be assumed to be transferred by steel headed stud or steel channel
anchors, except for concrete-encased beamsas defined in Section I3.3. For com-
posite action with concrete subject to flexural compression, the nominal shear
force between the steel beam and the concrete slab transferred by steel anchors,
V′, between the point of maximum positive moment and the point of zero
moment shall be determined as the lowest value in accordance with the limit
16.1–90 FLEXURE [Sect. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 90

Sect. I3.] FLEXURE 16.1–91
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
statesof concrete crushing, tensile yielding of the steel section, or the shear
strength of the steel anchors:
(a) Concrete crushing
V′=0.85f
c′Ac (I3-1a)
(b) Tensile yielding of the steel section
V′=F
yAs (I3-1b)
(c) Shear strength of steel headed stud or steel channel anchors
V′=ΣQ
n (I3-1c)
where
A
c=area of concrete slab within effective width, in.
2
(mm
2
)
A
s=area of steel cross section, in.
2
(mm
2
)
ΣQ
n=sum of nominal shear strengthsof steel headed stud or steel
channel anchors between the point of maximum positive
moment and the point of zero moment, kips (N)
(2) Load Transfer for Negative Flexural Strength
In continuous composite beams where longitudinal reinforcing steel in the nega-
tive moment regions is considered to act compositely with the steel beam, the
total horizontal shear between the point of maximum negative moment and the
point of zero moment shall be determined as the lower value in accordance with
the following limit states:
(a) For the limit state of tensile yielding of the slab reinforcement
V′=F
ysrAsr (I3-2a)
where
A
sr= area of adequately developed longitudinal reinforcing steel within
the effective width of the concrete slab, in.
2
(mm
2
)
F
ysr= specified minimum yield stressof the reinforcing steel, ksi (MPa)
(b) For the limit state of shear strength of steel headed stud or steel channel
anchors
V′=ΣQ
n (I3-2b)
3. Encased Composite Members
The available flexural strengthof concrete-encased members shall be determined as
follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
The nominal flexural strength, M
n, shall be determined using one of the following
methods:
(a) The superposition of elastic stresseson the composite section, considering the
effects of shoring for the limit stateof yielding (yield moment).
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 91

(b) The plastic stress distribution on the steel section alone, for the limit state of
yielding (plastic moment) on the steel section.
(c) The plastic stress distribution on the composite section or the strain-compatibil-
ity method, for the limit state of yielding (plastic moment) on the composite
section. For concrete-encased members, steel anchorsshall be provided.
4. Filled Composite Members
4a. Limitations
Filled composite sections shall be classified for local bucklingaccording to Section
I1.4.
4b. Flexural Strength
The available flexural strength of filled composite membersshall be determined as
follows:
φ
b=0.90 (LRFD) Ω b=1.67 (ASD)
The nominal flexural strength, M
n, shall be determined as follows:
(a) For compact sections
M
n=Mp (I3-3a)
where
M
p=moment corresponding to plastic stressdistribution over the composite
cross section, kip-in. (N-mm)
(b) For noncompact sections
(I3-3b)
where
λ, λ
pand λrare slenderness ratios determined from Table I1.1b.
M
y=yield momentcorresponding to yielding of the tension flange and first
yield of the compression flange, kip-in. (N-mm). The capacity at first
yield shall be calculated assuming a linear elastic stress distribution with
the maximum concrete compressive stress limited to 0.7f′
cand the maxi-
mum steel stress limited to F
y.
(c) For slender sections, M
n, shall be determined as the first yield moment. The com-
pression flange stress shall be limited to the local bucklingstress, F
cr, determined
using Equation I2-10 or I2-11. The concrete stress distribution shall be linear
elastic with the maximum compressive stress limited to 0.70f′
c.
16.1–92 FLEXURE [Sect. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
MM MMnp py
p
rp=− −( )








λλ
λλ
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 92

Sect. I6.] LOAD TRANSFER 16.1–93
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I4. SHEAR
1. Filled and Encased Composite Members
The design shear strength, φ vVn,and allowable shear strength, Vn/Ωv,shall be deter-
mined based on one of the following:
(a) The available shear strengthof the steel section alone as specified in Chapter G
(b) The available shear strength of the reinforced concrete portion (concrete plus
steel reinforcement) alone as defined by ACI 318 with
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
(c) The nominal shear strengthof the steel section as defined in Chapter G plus the
nominal strength of the reinforcing steel as defined by ACI 318 with a combined
resistance or safety factorof
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
2. Composite Beams With Formed Steel Deck
The available shear strength of composite beamswith steel headed stud or steel chan-
nel anchors shall be determined based upon the properties of the steel section alone
in accordance with Chapter G.
I5. COMBINED FLEXURE AND AXIAL FORCE
The interaction between flexure and axial forces in composite members shall account
for stabilityas required by Chapter C. The available compressive strength and the
available flexural strengthshall be determined as defined in Sections I2 and I3,
respectively. To account for the influence of length effectson the axial strength of the
member, the nominal axial strength of the member shall be determined in accordance
with Section I2.
For encased composite membersand for filled composite memberswith compact sec-
tions, the interaction between axial force and flexure shall be based on the interaction
equations of Section H1.1 or one of the methods as defined in Section I1.2.
For filled composite members with noncompact or slender sections, the interaction
between axial forces and flexure shall be based on the interaction equations of
Section H1.1.
User Note: Methods for determining the capacity of composite beam-columns are
discussed in the Commentary.
I6. LOAD TRANSFER
1. General Requirements
When external forces are applied to an axially loaded encased or filled composite
member, the introduction of force to the member and the transfer of longitudinal
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 93

shears within the member shall be assessed in accordance with the requirements for
force allocation presented in this section.
The design strength, φR
n, or the allowable strength, R n/Ω, of the applicable force
transfer mechanisms as determined in accordance with Section I6.3 shall equal or
exceed the required longitudinal shear force to be transferred, V′
r, as determined in
accordance with Section I6.2.
2. Force Allocation
Force allocation shall be determined based upon the distribution of external force in
accordance with the following requirements:
User Note: Bearingstrength provisions for externally applied forces are provided
in Section J8. For filled composite members, the term in Equation J8-2
may be taken equal to 2.0 due to confinement effects.
2a. External Force Applied to Steel Section
When the entire external forceis applied directly to the steel section, the force
required to be transferred to the concrete, V′
r, shall be determined as follows:
V′
r=Pr(1 ≤F yAs/Pno) (I6-1)
where
P
no=nominal axial compressive strength without consideration of length
effects, determined by Equation I2-4 for encased composite members,
and Equation I2-9a for filled composite members, kips (N)
P
r=required external force applied to the composite member, kips (N)
2b. External Force Applied to Concrete
When the entire external force is applied directly to the concrete encasement or con-
crete fill, the force required to be transferred to the steel, V′
r, shall be determined as
follows:
V′
r=Pr(FyAs/Pno) (I6-2)
where
P
no= nominal axial compressive strength without consideration of length effects,
determined by Equation I2-4 for encased composite members, and Equation
I2-9a for filled composite members, kips (N)
P
r= required external force applied to the composite member, kips (N)
2c. External Force Applied Concurrently to Steel and Concrete
When the external force is applied concurrently to the steel section and concrete
encasement or concrete fill, V′
rshall be determined as the force required to establish
equilibrium of the cross section.
16.1–94 LOAD TRANSFER [Sect. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AA21
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 94

Sect. I6.] LOAD TRANSFER 16.1–95
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The Commentary provides an acceptable method of determining the
longitudinal shear force required for equilibrium of the cross section.
3. Force Transfer Mechanisms
The nominal strength, R n, of the force transfer mechanisms of direct bond interac-
tion, shear connection, and direct bearingshall be determined in accordance with this
section. Use of the force transfer mechanismproviding the largest nominal strength
is permitted. Force transfer mechanisms shall not be superimposed.
The force transfer mechanism of direct bond interaction shall not be used for encased
composite members.
3a. Direct Bearing
Where force is transferred in an encased or filled composite memberby direct bear-
ingfrom internal bearing mechanisms, the available bearing strengthof the concrete
for the limit stateof concrete crushingshall be determined as follows:
R
n=1.7f′ cA1 (I6-3)
φ
B= 0.65 (LRFD)Ω B=2.31 (ASD)
where
A
1=loaded area of concrete, in.
2
(mm
2
)
User Note: An example of force transfer via an internal bearing mechanism is the
use of internal steel plates within a filled composite member.
3b. Shear Connection
Where force is transferred in an encased or filled composite memberby shear con-
nection, the available shear strengthof steel headed stud or steel channel anchors
shall be determined as follows:
R
c=ΣQ cv (I6-4)
where
ΣQ
cv=sum of available shear strengths, φQ nvor Qnv/Ωas appropriate, of steel
headed stud or steel channel anchors, determined in accordance with
Section I8.3a or Section I8.3d, respectively, placed within the load intro-
duction lengthas defined in Section I6.4, kips (N)
3c. Direct Bond Interaction
Where force is transferred in a filled composite memberby direct bond interaction,
the available bond strengthbetween the steel and concrete shall be determined as
follows:
φ=0.45 (LRFD)Ω=3.33 (ASD)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 95

(a) For rectangular steel sections filled with concrete:
R
n=B
2
CinFin (I6-5)
(b) For round steel sections filled with concrete:
R
n=0.25πD
2
CinFin (I6-6)
where
C
in=2 if the filled composite member extends to one side of the point of force
transfer
=4 if the filled composite member extends on both sides of the point of force
transfer
R
n=nominal bond strength, kips (N)
F
in=nominal bond stress=0.06 ksi (0.40 MPa)
B=overall width of rectangular steel section along face transferring load, in.
(mm)
D=outside diameter of round HSS, in. (mm)
4. Detailing Requirements
4a. Encased Composite Members
Steel anchorsutilized to transfer longitudinal shear shall be distributed within the
load introduction length, which shall not exceed a distance of two times the mini-
mum transverse dimension of the encased composite memberabove and below the
loadtransfer region. Anchors utilized to transfer longitudinal shear shall be placed
on at least two faces of the steel shape in a generally symmetric configuration about
the steel shape axes.
Steel anchor spacing, both within and outside of the load introduction length, shall
conform to Section I8.3e.
4b. Filled Composite Members
Where required, steel anchors transferring the required longitudinal shear force shall
be distributed within the load introduction length, which shall not exceed a distance
of two times the minimum transverse dimension of a rectangular steel member or
two times the diameter of a round steel member both above and below the loadtrans-
fer region. Steel anchor spacing within the load introduction length shall conform to
Section I8.3e.
I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS
Compositeslab diaphragms and collector beamsshall be designed and detailed to
transfer loads between the diaphragm, the diaphragm’s boundary members and col-
lector elements, and elements of the lateral force resisting system.
User Note: Design guidelines for composite diaphragms and collector beams can
be found in the Commentary.
16.1–96 LOAD TRANSFER [Sect. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 96

Sect. I8.] STEEL ANCHORS 16.1–97
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I8. STEEL ANCHORS
1. General
The diameter of a steel headed stud anchor shall not be greater than 2.5 times the
thickness of the base metal to which it is welded, unless it is welded to a flange
directly over a web.
Section I8.2 applies to a compositeflexural member where steel anchors are embed-
ded in a solid concrete slab or in a slab cast on formed steel deck. Section I8.3 applies
to all other cases.
2. Steel Anchors in Composite Beams
The length of steel headed stud anchors shall not be less than four stud diameters
from the base of the steel headed stud anchor to the top of the stud head after instal-
lation.
2a. Strength of Steel Headed Stud Anchors
The nominal shear strengthof one steel headed stud anchor embedded in a solid con-
crete slab or in a composite slab with decking shall be determined as follows:
(I8-1)
where
A
sa=cross-sectional area of steel headed stud anchor, in.
2
(mm
2
)
E
c=modulus of elasticity of concrete
F
u=specified minimum tensile strengthof a steel headed stud anchor,
ksi (MPa)
R
g=1.0 for:
(a) one steel headed stud anchor welded in a steel deck rib with the deck
oriented perpendicular to the steel shape;
(b) any number of steel headed stud anchors welded in a row directly to
the steel shape;
(c) any number of steel headed stud anchors welded in a row through
steel deck with the deck oriented parallel to the steel shape and the
ratio of the average rib widthto rib depth ≥1.5
=0.85 for:
(a) two steel headed stud anchors welded in a steel deck rib with the deck
oriented perpendicular to the steel shape;
(b) one steel headed stud anchor welded through steel deck with the deck
oriented parallel to the steel shape and the ratio of the average rib
width to rib depth <1.5
=0.7 for three or more steel headed stud anchors welded in a steel deck rib
with the deck oriented perpendicular to the steel shape
QAfERRAFnsaccgpsau= ′≤05.
= ′′ ( )wf wfcc cc
15 15 0 043
..
, ksi . , MPa
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 97

Condition R g Rp
No decking 1.0 0.75
Decking oriented parallel to the
steel shape
1.0 0.75
0.85
**
0.75
Decking oriented perpendicular to
the steel shape
Number of steel headed stud anchors
occupying the same decking rib
1 1.0 0.6
+
2 0.85 0.6
+
3 or more 0.7 0.6
+
Rp=0.75 for:
(a) steel headed stud anchors welded directly to the steel shape;
(b) steel headed stud anchors welded in a composite slab with the deck
oriented perpendicular to the beamand e
mid-ht≥2 in. (50 mm);
(c) steel headed stud anchors welded through steel deck, or steel sheet
used as girder fillermaterial, and embedded in a composite slab with
the deck oriented parallel to the beam
=0.6 for steel headed stud anchors welded in a composite slab with deck
oriented perpendicular to the beam and e
mid-ht<2 in. (50 mm)
e
mid-ht=distance from the edge of steel headed stud anchor shank to the steel deck
web, measured at mid-height of the deck rib, and in the load bearing
direction of the steel headed stud anchor (in other words, in the direction
of maximum moment for a simply supported beam), in. (mm)
16.1–98 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
w
hr
r
≥15.
w
hr
r
<15.
hr=nominal rib height, in. (mm)
w
r=average width of concrete rib or haunch (as defined in Section I3.2c), in.
(mm)
**
for a single steel headed stud anchor
+
this value may be increased to 0.75 when e mid-ht≥2 in. (51 mm)
User Note:The table below presents values for R
gand R pfor several cases.
Capacities for steel headed stud anchors can be found in the Manual.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 98

Sect. I8.] STEEL ANCHORS 16.1–99
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2b. Strength of Steel Channel Anchors
The nominal shear strength of one hot-rolled channel anchor embedded in a solid
concrete slab shall be determined as follows:
(I8-2)
where
l
a= length of channel anchor, in. (mm)
t
f= thickness of flange of channel anchor, in. (mm)
t
w= thickness of channel anchor web, in. (mm)
The strength of the channel anchor shall be developed by welding the channel to the
beamflange for a force equal to Q
n, considering eccentricity on the anchor.
2c. Required Number of Steel Anchors
The number of anchors required between the section of maximum bending moment,
positive or negative, and the adjacent section of zero moment shall be equal to the
horizontal shearas determined in Sections I3.2d(1) and I3.2d(2) divided by the nom-
inal shear strength of one steel anchoras determined from Section I8.2a or Section
I8.2b. The number of steel anchors required between any concentrated loadand the
nearest point of zero moment shall be sufficient to develop the maximum moment
required at the concentrated load point.
2d. Detailing Requirements
Steel anchors required on each side of the point of maximum bending moment, pos-
itive or negative, shall be distributed uniformly between that point and the adjacent
points of zero moment, unless specified otherwise on the contract documents.
Steel anchors shall have at least 1 in. (25 mm) of lateral concrete cover in the direc-
tion perpendicular to the shear force, except for anchors installed in the ribs of
formed steel decks. The minimum distance from the center of an anchor to a free
edge in the direction of the shear force shall be 8 in. (203 mm) if normal weight con-
crete is used and 10 in. (250 mm) if lightweight concreteis used. The provisions of
ACI 318, Appendix D are permitted to be used in lieu of these values.
The minimum center-to-center spacing of steel headed stud anchors shall be six
diameters along the longitudinal axis of the supporting composite beamand four
diameters transverse to the longitudinal axis of the supporting composite beam,
except that within the ribs of formed steel decks oriented perpendicular to the steel
beam the minimum center-to-center spacing shall be four diameters in any direction.
The maximum center-to-center spacing of steel anchors shall not exceed eight times
the total slab thickness or 36 in. (900 mm).
QttlfEnfwacc=+ ′03 05.( . )
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 99

16.1–100 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Steel Anchors in Composite Components
This section shall apply to the design of cast-in-place steel headed stud anchors and
steel channel anchors in composite components.
The provisions of the applicable building codeor ACI 318, Appendix D may be used
in lieu of the provisions in this section.
User Note: The steel headed stud anchor strength provisions in this section are
applicable to anchors located primarily in the loadtransfer (connection) region of
composite columnsand beam-columns, concrete-encased and filled composite
beams, composite coupling beams, and composite walls, where the steel and con-
crete are working compositely within a member. They are not intended for hybrid
construction where the steel and concrete are not working compositely, such as
with embed plates.
Section I8.2 specifies the strength of steel anchorsembedded in a solid con-
crete slab or in a concrete slab with formed steel deck in a composite beam.
Limit statesfor the steel shank of the anchor and for concrete breakout in shear
are covered directly in this Section. Additionally, the spacing and dimensional
limitations provided in these provisions preclude the limit states of concrete pry-
out for anchors loaded in shear and concrete breakout for anchors loaded in
tension as defined by ACI 318, Appendix D.
For normal weight concrete: Steel headed stud anchors subjected to shear only shall
not be less than five stud diameters in length from the base of the steel headed stud
to the top of the stud head after installation. Steel headed stud anchors subjected to
tension or interaction of shear and tension shall not be less than eight stud diameters
in length from the base of the stud to the top of the stud head after installation.
For lightweight concrete: Steel headed stud anchors subjected to shear only shall not
be less than seven stud diameters in length from the base of the steel headed stud to
the top of the stud head after installation. Steel headed stud anchors subjected to ten-
sion shall not be less than ten stud diameters in length from the base of the stud to
the top of the stud head after installation. The nominal strengthof steel headed stud
anchors subjected to interaction of shear and tension for lightweight concrete shall
be determined as stipulated by the applicable building code or ACI 318 Appendix D.
Steel headed stud anchors subjected to tension or interaction of shear and tension
shall have a diameter of the head greater than or equal to 1.6 times the diameter of
the shank.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 100

Sect. I8.] STEEL ANCHORS 16.1–101
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Loading Normal Weight Lightweight
Condition Concrete Concrete
Shear h/d ≥5 h/d ≥7
Tension h/d ≥8 h/d ≥10
Shear and Tension h/d≥8N/A

h/d=ratio of steel headed stud anchor shank length to the top of the stud head,
to shank diameter

Refer to ACI 318, Appendix D for the calculation of interaction effects of
anchors embedded in lightweight concrete.
3a. Shear Strength of Steel Headed Stud Anchors in Composite Components
Where concrete breakout strength in shear is not an applicable limit state, the design
shear strength, φ
vQnv,and allowable shear strength, Qnv/Ωv,of one steel headed
stud anchor shall be determined as follows:
Q
nv=FuAsa (I8-3)
φ
v=0.65 (LRFD) Ω v=2.31 (ASD)
where
Q
nv=nominal shear strength of steel headed stud anchor, kips (N)
A
sa=cross-sectional area of steel headed stud anchor, in.
2
(mm
2
)
F
u=specified minimum tensile strengthof a steel headed stud anchor, ksi (MPa)
Where concrete breakout strength in shear is an applicable limit state, the available
shear strengthof one steel headed stud anchor shall be determined by one of the fol-
lowing:
(1) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
anchor, the minimum of the steel nominal shear strength from Equation I8-3 and
the nominal strengthof the anchor reinforcement shall be used for the nominal
shear strength, Q
nv, of the steel headed stud anchor.
(2) As stipulated by the applicable building codeor ACI 318, Appendix D.
User Note: The following table presents values of minimum steel headed stud
anchor h/dratios for each condition covered in the Specification:
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 101

User Note:If concrete breakout strength in shear is an applicable limit state (for
example, where the breakout prism is not restrained by an adjacent steel plate,
flange or web), appropriate anchor reinforcement is required for the provisions of
this Section to be used. Alternatively, the provisions of the applicable building
code or ACI 318, Appendix D may be used.
3b. Tensile Strength of Steel Headed Stud Anchors in
Composite Components
Where the distance from the center of an anchor to a free edge of concrete in the
direction perpendicular to the height of the steel headed stud anchor is greater than
or equal to 1.5 times the height of the steel headed stud anchor measured to the top
of the stud head, and where the center-to-center spacing of steel headed stud anchors
is greater than or equal to three times the height of the steel headed stud anchor meas-
ured to the top of the stud head, the available tensile strengthof one steel headed stud
anchor shall be determined as follows:
Q
nt=FuAsa (I8-4)
φ
t=0.75 (LRFD) Ω t=2.00 (ASD)
where
Q
nt=nominal tensile strengthof steel headed stud anchor, kips (N)
Where the distance from the center of an anchor to a free edge of concrete in the
direction perpendicular to the height of the steel headed stud anchor is less than 1.5
times the height of the steel headed stud anchor measured to the top of the stud head,
or where the center-to-center spacing of steel headed stud anchors is less than three
times the height of the steel headed stud anchor measured to the top of the stud head,
the nominal tensile strength of one steel headed stud anchor shall be determined by
one of the following:
(a) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
anchor, the minimum of the steel nominal tensile strength from Equation I8-4
and the nominal strengthof the anchor reinforcement shall be used for the nom-
inal tensile strength, Q
nt, of the steel headed stud anchor.
(b) As stipulated by the applicable building codeor ACI 318, Appendix D.
User Note:Supplemental confining reinforcement is recommended around the
anchors for steel headed stud anchors subjected to tension or interaction of shear
and tension to avoid edge effects or effects from closely spaced anchors. See the
Commentary and ACI 318, Section D5.2.9 for guidelines.
3c. Strength of Steel Headed Stud Anchors for Interaction of Shear and
Tension in Composite Components
Where concrete breakout strength in shear is not a governing limit state, and where
the distance from the center of an anchor to a free edge of concrete in the direction
16.1–102 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 102

perpendicular to the height of the steel headed stud anchor is greater than or equal to
1.5 times the height of the steel headed stud anchor measured to the top of the stud
head, and where the center-to-center spacing of steel headed stud anchors is greater
than or equal to three times the height of the steel headed stud anchor measured to
the top of the stud head, the nominal strengthfor interaction of shear and tension of
one steel headed stud anchor shall be determined as follows:
(I8-5)
where
Q
ct=available tensile strength, kips (N)
Q
rt=required tensile strength, kips (N)
Q
cv=available shear strength, kips (N)
Q
rv=required shear strength, kips (N)
For design in accordance with Section B3.3 (LRFD):
Q
rt=required tensile strength using LRFD load combinations, kips (N)
Q
ct=φtQnt=design tensile strength, determined in accordance with Section
I8.3b, kips (N)
Q
rv=required shear strength using LRFD load combinations, kips (N)
Q
cv=φvQnv=design shear strength, determined in accordance with Section
I8.3a, kips (N)
φ
t=resistance factorfor tension =0.75
φ
v=resistance factor for shear =0.65
For design in accordance with Section B3.4 (ASD):
Q
rt=required tensile strength using ASD load combinations, kips (N)
Q
ct== allowable tensile strength, determined in accordance with Section
I8.3b, kips (N)
Q
rv=required shear strength using ASD load combinations, kips (N)
Q
cv== allowable shear strength, determined in accordance with Section
I8.3a, kips (N)
Ω
t=safety factorfor tension =2.00
Ω
v=safety factor for shear =2.31
Where concrete breakout strength in shear is a governing limit state, or where the dis-
tance from the center of an anchor to a free edge of concrete in the direction
perpendicular to the height of the steel headed stud anchor is less than 1.5 times the
height of the steel headed stud anchor measured to the top of the stud head, or where
the center-to-center spacing of steel headed stud anchors is less than three times the
height of the steel headed stud anchor measured to the top of the stud head, the nom-
inal strength for interaction of shear and tension of one steel headed stud anchor shall
be determined by one of the following:
(a) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI
318 on both sides of the concrete breakout surfacefor the steel headed stud
Sect. I8.] STEEL ANCHORS 16.1–103
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Q
Q
Q
Qrt
ct
rv
cv⎛





+















53 53
10
//
.
Qnt
t
Ω
Qnv
v
Ω
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 103

anchor, the minimum of the steel nominal shear strength from Equation I8-3 and
the nominal strength of the anchor reinforcement shall be used for the nominal
shear strength, Q
nv, of the steel headed stud anchor, and the minimum of the steel
nominal tensile strength from Equation I8-4 and the nominal strength of the
anchor reinforcement shall be used for the nominal tensile strength, Q
nt, of the
steel headed stud anchor for use in Equation I8-5.
(b) As stipulated by the applicable building codeor ACI 318, Appendix D.
3d. Shear Strength of Steel Channel Anchors in Composite Components
The available shear strength of steel channel anchors shall be based on the provisions
of Section I8.2b with the resistance factor and safety factor as specified below.
φ
v=0.75 (LRFD) Ω v=2.00 (ASD)
3e. Detailing Requirements in Composite Components
Steel anchors shall have at least 1 in. (25 mm) of lateral clear concrete cover. The
minimum center-to-center spacing of steel headed stud anchors shall be four diame-
ters in any direction. The maximum center-to-center spacing of steel headed stud
anchors shall not exceed 32 times the shank diameter. The maximum center-to-cen-
ter spacing of steel channel anchors shall be 24 in. (600 mm).
User Note:Detailing requirements provided in this section are absolute limits.
See Sections I8.3a, I8.3b and I8.3c for additional limitations required to preclude
edge and group effect considerations.
I9. SPECIAL CASES
When compositeconstruction does not conform to the requirements of Section I1
through Section I8, the strength of steel anchorsand details of construction shall be
established by testing.
16.1–104 STEEL ANCHORS [Sect. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 104

16.1–105
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER J
DESIGN OF CONNECTIONS
This chapter addresses connecting elements, connectors and the affected elements of con-
nected members not subject to fatigue loads.
The chapter is organized as follows:
J1. General Provisions
J2. Welds
J3. Bolts and Threaded Parts
J4. Affected Elements of Members and Connecting Elements
J5. Fillers
J6. Splices
J7. Bearing Strength
J8. Column Bases and Bearing on Concrete
J9. Anchor Rods and Embedments
J10. Flanges and Webs with Concentrated Forces
User Note:For cases not included in this chapter, the following sections apply:
• Chapter K Design of HSS and Box Member Connections
• Appendix 3 Design for Fatigue
J1. GENERAL PROVISIONS
1. Design Basis
The design strength, φR n, and the allowable strength R n/Ω, of connectionsshall be
determined in accordance with the provisions of this chapter and the provisions of
Chapter B.
The required strengthof the connections shall be determined by structural analysis
for the specified design loads, consistent with the type of construction specified, or
shall be a proportion of the required strength of the connected members when so
specified herein.
Where the gravity axes of intersecting axially loaded members do not intersect at one
point, the effects of eccentricity shall be considered.
2. Simple Connections
Simple connectionsof beams, girders and trusses shall be designed as flexible and
are permitted to be proportioned for the reaction shears only, except as otherwise
indicated in the design documents. Flexible beam connections shall accommodate
end rotations of simple beams. Some inelastic but self-limiting deformation in the
connection is permitted to accommodate the end rotation of a simple beam.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 105

16.1–106 GENERAL PROVISIONS [Sect. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Moment Connections
End connections of restrained beams, girders and trusses shall be designed for the com-
bined effect of forces resulting from moment and shear induced by the rigidity of the
connections. Response criteria for moment connections are provided in Section B3.6b.
User Note:See Chapter C and Appendix 7 for analysis requirements to establish
the required strengthfor the design of connections.
4. Compression Members With Bearing Joints
Compression members relying on bearingfor loadtransfer shall meet the following
requirements:
(1) When columnsbear on bearing plates or are finished to bear at splices, there shall
be sufficient connectors to hold all parts securely in place.
(2) When compression members other than columns are finished to bear, the splice
material and its connectors shall be arranged to hold all parts in line and their
required strength shall be the lesser of:
(i) An axial tensile force of 50% of the required compressive strength of the
member; or
(ii) The moment and shear resulting from a transverse load equal to 2% of the
required compressive strength of the member. The transverse load shall be
applied at the location of the splice exclusive of other loads that act on the
member. The member shall be taken as pinned for the determination of the
shears and moments at the splice.
User Note:All compression joints should also be proportioned to resist any ten-
sion developed by theload combinations stipulated in Section B2.
5. Splices in Heavy Sections
When tensile forces due to applied tension or flexure are to be transmitted through
splicesin heavy sections, as defined in Sections A3.1c and A3.1d, by complete-joint-
penetration groove (CJP) welds, the following provisions apply: (1) material
notch-toughness requirements as given in Sections A3.1c and A3.1d; (2) weld access
hole details as given in Section J1.6; (3) filler metalrequirements as given in Section
J2.6; and (4) thermal cut surface preparation and inspection requirements as given in
Section M2.2. The foregoing provision is not applicable to splices of elements of
built-up shapesthat are welded prior to assembling the shape.
User Note:CJP groove welded splices of heavy sections can exhibit detrimental
effects of weld shrinkage. Members that are sized for compression that are also
subject to tensile forces may be less susceptible to damage from shrinkage if they
are spliced using partial-joint-penetration PJP groove welds on the flanges and fil-
let-welded web plates, or using bolts for some or all of the splice.
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 9:44 AM Page 106

Sect. J1.] GENERAL PROVISIONS 16.1–107
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6. Weld Access Holes
All weld access holes required to facilitate welding operations shall be detailed to
provide room for weld backing as needed. The access hole shall have a length from
the toe of the weld preparation not less than 1
1
/2times the thickness of the material
in which the hole is made, nor less than 1
1
/2in. (38 mm). The access hole shall have
a height not less than the thickness of the material with the access hole, nor less than
3
/4in. (19 mm), nor does it need to exceed 2 in. (50 mm).
For sections that are rolled or welded prior to cutting, the edge of the web shall be
sloped or curved from the surface of the flange to the reentrantsurface of the access
hole. In hot-rolled shapes, and built-up shapes with CJP groove weldsthat join the
web-to-flange, weld access holes shall be free of notches and sharp reentrant corners.
No arc of the weld access hole shall have a radius less than
3
/8in. (10 mm).
In built-up shapes with fillet or partial-joint-penetration groove welds that join the
web-to-flange, weld access holes shall be free of notches and sharp reentrant cor-
ners. The access hole shall be permitted to terminate perpendicular to the flange,
providing the weld is terminated at least a distance equal to the weld size away from
the access hole.
For heavy sections as defined in Sections A3.1c and A3.1d, the thermally cutsurfaces
of weld access holes shall be ground to bright metal and inspected by either magnetic
particle or dye penetrant methods prior to deposition of splicewelds. If the curved
transition portion of weld access holes is formed by predrilled or sawed holes, that
portion of the access hole need not be ground. Weld access holes in other shapes need
not be ground nor inspected by dye penetrant or magnetic particle methods.
7. Placement of Welds and Bolts
Groups of welds or bolts at the ends of any member which transmit axial force into
that member shall be sized so that the center of gravity of the group coincides with
the center of gravity of the member, unless provision is made for the eccentricity. The
foregoing provision is not applicable to end connections of single angle, double
angle and similar members.
8. Bolts in Combination With Welds
Bolts shall not be considered as sharing the loadin combination with welds, except
that shear connections with any grade of bolts permitted by Section A3.3, installed
in standard holes or short slots transverse to the direction of the load, are permitted
to be considered to share the load with longitudinally loaded fillet welds. In such con-
nections the available strengthof the bolts shall not be taken as greater than 50% of
the available strength of bearing-type bolts in the connection.
In making welded alterations to structures, existing rivets and high-strength bolts
tightened to the requirements for slip-critical connections are permitted to be utilized
for carrying loads present at the time of alteration and the welding need only provide
the additional required strength.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 107

9. High-Strength Bolts in Combination With Rivets
In both new work and alterations, in connections designed as slip-critical connec-
tionsin accordance with the provisions of Section J3, high-strength bolts are
permitted to be considered as sharing the loadwith existing rivets.
10. Limitations on Bolted and Welded Connections
Joints with pretensioned boltsor welds shall be used for the following connections:
(1)Column splicesin all multi-story structures over 125 ft (38 m) in height
(2) Connections of all beamsand girdersto columns and any other beams and gird-
ers on which the bracingof columns is dependent in structures over 125 ft (38
m) in height
(3) In all structures carrying cranes of over 5 ton (50 kN) capacity: roof truss splices
and connections of trusses to columns; column splices; column bracing; knee
braces; and crane supports
(4) Connections for the support of machinery and other live loadsthat produce
impact or reversal of load
Snug-tightened jointsor joints with ASTM A307 bolts shall be permitted except
where otherwise specified.
J2. WELDS
All provisions of AWS D1.1/D1.1M apply under this Specification, with the excep-
tion that the provisions of the listed AISC Specification Sections apply under this
Specification in lieu of the cited AWS provisions as follows:
(1) Section J1.6 in lieu of AWS D1.1/D1.1M, Section 5.17.1
(2) Section J2.2a in lieu of AWS D1.1/D1.1M, Section 2.4.2.10
(3) Table J2.2 in lieu of AWS D1.1/D1.1M, Table 2.1
(4) Table J2.5 in lieu of AWS D1.1/D1.1M, Table 2.3
(5) Appendix 3, Table A-3.1 in lieu of AWS D1.1/D1.1M, Table 2.5
(6) Section B3.11 and Appendix 3 in lieu of AWS D1.1/D1.1M, Section 2, Part C
(7) Section M2.2 in lieu of AWS D1.1/D1.1M, Sections 5.15.4.3 and 5.15.4.4
1. Groove Welds
1a. Effective Area
The effective area of groove weldsshall be considered as the length of the weld times
the effective throat.
The effective throat of a complete-joint-penetration (CJP) groove weldshall be the
thickness of the thinner part joined.
The effective throat of a partial-joint-penetration (PJP) groove weldshall be as
shown in Table J2.1.
16.1–108 GENERAL PROVISIONS [Sect. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:45 AM Page 108

Sect. J2.] WELDS 16.1–109
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.1
Effective Throat of
Partial-Joint-Penetration Groove Welds
Welding Position
F (flat),
H (horizontal), Groove Type
V (vertical), (AWS D1.1/D1.1M,
Welding Process OH (overhead) Figure 3.3) Effective Throat
Shielded metal arc (SMAW) J or U groove
Gas metal arc (GMAW) All
Flux cored arc (FCAW) 60 °V
J or U groove
Submerged arc (SAW) F
60°bevel or V
Gas metal arc (GMAW)
45°bevel
Flux cored arc (FCAW)
F, H
Shielded metal arc (SMAW) All
45°bevel
Gas metal arc (GMAW)
Flux cored arc (FCAW)
V, OH
depth of groove
depth of groove
depth of groove
minus
1
/8in.
(3 mm)
User Note:The effective throat of a partial-joint-penetration groove weld
is dependent on the process used and the weld position. The design drawings
should either indicate the effective throat required or the weld strength required,
and the fabricator should detail the jointbased on the weld process and position
to be used to weld the joint.
The effective weld throat for flare groove welds when filled flush to the surface of a
round bar or a 90°bend in a formed sectionor rectangular HSS, shall be as shown in
Table J2.2, unless other effective throats are demonstrated by tests. The effective
throat of flare groove welds filled less than flush shall be as shown in Table J2.2, less
the greatest perpendicular dimension measured from a line flush to the base metal
surface to the weld surface.
Larger effective throats than those in Table J2.2 are permitted for a given welding
procedure specification (WPS), provided the fabricator can establish by qualification
the consistent production of such larger effective throat. Qualification shall consist
of sectioning the weld normal to its axis, at mid-length and terminal ends. Such sec-
tioning shall be made on a number of combinations of material sizes representative
of the range to be used in the fabrication.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 109

16.1–110 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.2
Effective Weld Throats of Flare
Groove Welds
Welding Process Flare Bevel Groove
[a]
Flare V-Groove
GMAW and FCAW-G
5
/8R
3
/4R
SMAW and FCAW-S
5
/16R
5
/8R
SAW
5
/16R
1
/2R
[a]
For flare bevel groove with R<3/8 in. (10 mm), use only reinforcing fillet weld on filled flush joint.
General note:
R=radius of joint surface (can be assumed to be 2tfor HSS), in. (mm)
TABLE J2.3
Minimum Effective Throat of
Partial-Joint-Penetration Groove Welds
Material Thickness of Minimum Effective
Thinner Part Joined, in. (mm) Throat,
[a]
in. (mm)
To
1
/4(6) inclusive
1
/8(3)
Over
1
/4(6) to
1
/2(13)
3
/16(5)
Over
1
/2(13) to
3
/4(19)
1
/4(6)
Over
3
/4(19) to 1
1
/2(38)
5
/16(8)
Over 1
1
/2(38) to 2
1
/4(57)
3
/8(10)
Over 2
1
/4(57) to 6 (150)
1
/2(13)
Over 6 (150)
5
/8(16)
[a]
See Table J2.1.
1b. Limitations
The minimum effective throat of a partial-joint-penetration groove weldshall not be
less than the size required to transmit calculated forcesnor the size shown in Table
J2.3. Minimum weld size is determined by the thinner of the two parts joined.
2. Fillet Welds
2a. Effective Area
The effective area of a fillet weldshall be the effective length multiplied by the
effective throat. The effective throat of a fillet weld shall be the shortest distance
from the root to the face of the diagrammatic weld. An increase in effective throat
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:47 AM Page 110

Sect. J2.] WELDS 16.1–111
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is permitted if consistent penetration beyond the root of the diagrammatic weld is
demonstrated by tests using the production process and procedure variables.
For fillet welds in holes and slots, the effective length shall be the length of the cen-
terline of the weld along the center of the plane through the throat. In the case of
overlapping fillets, the effective area shall not exceed the nominal cross-sectional
area of the hole or slot, in the plane of the faying surface.
2b. Limitations
The minimum size of fillet welds shall be not less than the size required to transmit
calculated forces, nor the size as shown in Table J2.4. These provisions do not apply
to fillet weld reinforcementsof partial- or complete-joint-penetration groove welds.
The maximum size offillet weldsof connected parts shall be:
(a) Along edges of material less than
1
/4-in. (6 mm) thick; not greater than the thick-
ness of the material.
(b) Along edges of material
1
/4in. (6 mm) or more in thickness; not greater than the
thickness of the material minus
1
/16in. (2 mm), unless the weld is especially des-
ignated on the drawings to be built out to obtain full-throat thickness. In the
as-welded condition, the distance between the edge of the base metal and the toe
of the weld is permitted to be less than
1
/16in. (2 mm) provided the weld size is
clearly verifiable.
The minimum length of fillet welds designed on the basis of strength shall be not less
than four times the nominal weld size, or else the effective size of the weld shall be
considered not to exceed one quarter of its length. If longitudinal fillet welds are used
alone in end connections of flat-bar tension members, the length of each fillet weld
shall be not less than the perpendicular distance between them. For the effect of lon-
gitudinal fillet weld length in end connections upon the effective area of the
connected member, see Section D3.
TABLE J2.4
Minimum Size of Fillet Welds
Material Thickness of Minimum Size of
Thinner Part Joined, in. (mm) Fillet Weld,
[a]
in. (mm)
To
1
/4(6) inclusive
1
/8(3)
Over
1
/4(6) to
1
/2(13)
3
/16(5)
Over
1
/2(13) to
3
/4(19)
1
/4(6)
Over
3
/4(19)
5
/16(8)
[a]
Leg dimension of fillet welds. Single pass welds must be used.
Note: See Section J2.2b for maximum size of fillet welds.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 111

16.1–112 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For end-loaded fillet welds with a length up to 100 times the weld size, it is permit-
ted to take the effective length equal to the actual length. When the length of the
end-loaded fillet weld exceeds 100 times the weld size, the effective length shall be
determined by multiplying the actual length by the reduction factor, β, determined as
follows:
β=1.2 β0.002(l/w) ≤1.0 (J2-1)
where
l=actual length of end-loaded weld, in. (mm)
w=size of weld leg, in. (mm)
When the length of the weld exceeds 300 times the leg size, w, the effective length
shall be taken as 180w.
Intermittent fillet welds are permitted to be used to transfer calculated stressacross
a jointor faying surfacesand to join components of built-up members. The length of
any segment of intermittent fillet welding shall be not less than four times the weld
size, with a minimum of 1
1
/2in. (38 mm).
Inlap joints, the minimum amount of lap shall be five times the thickness of the thin-
ner part joined, but not less than 1 in. (25 mm). Lap joints joining plates or bars
subjected to axial stress that utilize transverse fillet welds only shall be fillet welded
along the end of both lapped parts, except where the deflection of the lapped parts is
sufficiently restrained to prevent opening of the joint under maximum loading.
Fillet weld terminations are permitted to be stopped short or extend to the ends or
sides of parts or be boxed except as limited by the following:
(1) For overlapping elements of members in which one connected part extends
beyond an edge of another connected part that is subject to calculated tensile
stress, fillet welds shall terminate not less than the size of the weld from that
edge.
(2) For connectionswhere flexibility of the outstanding elements is required, when
end returnsare used the length of the return shall not exceed four times the nom-
inal size of the weld nor half the width of the part.
(3) Fillet welds joining transverse stiffenersto plate girderwebs
3
/4-in. (19 mm)
thick or less shall end not less than four times nor more than six times the thick-
ness of the web from the web toe of the web-to-flange welds, except where the
ends of stiffenersare welded to the flange.
(4) Fillet welds that occur on opposite sides of a common plane shall be interrupted
at the corner common to both welds.
User Note:Fillet weld terminations should be located approximately one weld
size from the edge of the connection to minimize notches in the base metal. Fillet
welds terminated at the end of the joint, other than those connecting stiffeners to
girder webs, are not a cause for correction.
Fillet welds in holes or slots are permitted to be used to transmit shear and resist
loadsperpendicular to the faying surface in lap joints or to prevent the bucklingor
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:47 AM Page 112

Sect. J2.] WELDS 16.1–113
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
separation of lapped parts and to join components of built-up members. Such fillet
welds may overlap, subject to the provisions of Section J2. Fillet welds in holes or
slots are not to be considered plug or slot welds.
3. Plug and Slot Welds
3a. Effective Area
The effective shearing area of plugand slot weldsshall be considered as the nominal
cross-sectional area of the hole or slot in the plane of the faying surface.
3b. Limitations
Plug or slot welds are permitted to be used to transmit shear in lap jointsor to pre-
vent bucklingor separation of lapped parts and to join component parts of built-up
members.
The diameter of the holes for a plug weldshall not be less than the thickness of the
part containing it plus
5
/16in. (8 mm), rounded to the next larger odd
1
/16in. (even
mm), nor greater than the minimum diameter plus
1
/8in. (3 mm) or 2
1
/4times the
thickness of the weld.
The minimum center-to-center spacing of plug welds shall be four times the diame-
ter of the hole.
The length of slot for a slot weld shall not exceed 10 times the thickness of the weld.
The width of the slot shall be not less than the thickness of the part containing it plus
5
/16in. (8 mm) rounded to the next larger odd
1
/16in. (even mm), nor shall it be larger
than 2
1
/4times the thickness of the weld. The ends of the slot shall be semicircular
or shall have the corners rounded to a radius of not less than the thickness of the part
containing it, except those ends which extend to the edge of the part.
The minimum spacing of lines of slot welds in a direction transverse to their length
shall be four times the width of the slot. The minimum center-to-center spacing in a
longitudinal direction on any line shall be two times the length of the slot.
The thickness of plug or slot welds in material
5
/8in. (16 mm) or less in thickness
shall be equal to the thickness of the material. In material over
5
/8-in. (16 mm) thick,
the thickness of the weld shall be at least one-half the thickness of the material but
not less than
5
/8in. (16 mm).
4. Strength
The design strength, φR nand the allowable strength, R n/Ω, of welded joints shall be
the lower value of the base material strength determined according to thelimit states
of tensile ruptureand shear ruptureand the weld metalstrength determined accord-
ing to the limit state of rupture as follows:
For the base metal
R
n=FnBMABM (J2-2)
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 113

Nominal Effective
Stress Area
Load Type and (
FnBMor (ABMor Required Filler
Direction Relative Pertinent
Fnw) Awe) Metal Strength
to Weld Axis Metal φand Ωksi (MPa) in.
2
(mm
2
) Level
[a][b]
COMPLETE-JOINT-PENETRATION GROOVE WELDS
Matching filler metal shall
be used. For T- and
Tension corner joints with backing
Normal to weld axis left in place, notch tough
filler metal is required.
See Section J2.6.
Filler metal with a
strength level equal to
Compression
or one strength level
Normal to weld axis
less than matching
filler metal is permitted.
Tension or
Filler metal with a
compression
strength level equal to
Parallel to weld axis
or less than matching
filler metal is permitted.
Shear Strength of the joint is controlled Matching filler metal
by the base metal shall be used.
[c]
PARTIAL-JOINT-PENETRATION GROOVE WELDS INCLUDING FLARE V-GROOVE
AND FLARE BEVEL GROOVE WELDS
φ=0.75
Base
Ω=2.00
Fu See J4
φ=0.80
Weld
Ω=1.88
0.60
FEXXSee J2.1a
Compression
Column to base plate
and column splices
designed per
Section J1.4(1)
φ=0.90
Base
Ω=1.67
Fy See J4
φ=0.80
Weld
Ω=1.88
0.60
FEXXSee J2.1a
φ=0.90
Base
Ω=1.67
Fy See J4
φ=0.80
Weld
Ω=1.88
0.90
FEXXSee J2.1a
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXXSee J2.1a
16.1–114 WELDS [Sect. J2.
Specification for Structural Steel Building, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J2.5
Available Strength of Welded Joints,
ksi (MPa)
Tension
Normal to weld axis
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Strength of the joint is controlled
by the base metal
Strength of the joint is controlled
by the base metal
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
Compressive stress need not be considered
in design of welds joining the parts.
Compression
Connections of
members designed
to bear other than
columns as described
in Section J1.4(2)
Compression
Connections not
finished-to-bear
Tension or
compression
Parallel to weld axis
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
Shear
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 114

Nominal Effective
Stress Area
Load Type and (
FnBMor (ABMor Required Filler
Direction Relative Pertinent
Fnw) Awe) Metal Strength
to Weld Axis Metal φand Ωksi (MPa) in.
2
(mm
2
) Level
[a][b]
FILLET WELDS INCLUDING FILLETS IN HOLES AND SLOTS AND SKEWED T–JOINTS
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXX
[d]
See J2.2a
PLUG AND SLOT WELDS
Base Governed by J4
φ=0.75
Weld
Ω=2.00
0.60
FEXXSee J2.3a
Sect. J2.] WELDS 16.1–115
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Shear
Shear
Parallel to faying
surface on the
effective area
Tension or
compression
Parallel to weld axis
TABLE J2.5 (continued)
Available Strength of Welded Joints,
ksi (MPa)
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Filler metal with a
strength level equal
to or less than
matching filler metal
is permitted.
Tension or compression in parts joined parallel
to a weld need not be considered in design
of welds joining the parts.
[a]
For matching weld metal see AWS D1.1/D1.1M, Section 3.3.
[b]
Filler metal with a strength level one strength level greater than matching is permitted.
[c]
Filler metals with a strength level less than matching may be used for groove welds between the webs and
flanges of built-up sections transferring shear loads, or in applications where high restraint is a concern. In
these applications, the weld joint shall be detailed and the weld shall be designed using the thickness of
the material as the effective throat, where φ=0.80, Ω=1.88 and 0.60
FEXXis the nominal strength.
[d]
Alternatively, the provisions of Section J2.4(a) are permitted provided the deformation compatibility of the
various weld elements is considered. Sections J2.4(b) and (c) are special applications of Section J2.4(a)
that provide for deformation compatibility.
For the weld metal
R
n=FnwAwe (J2-3)
where
F
nBM= nominal stressof the base metal, ksi (MPa)
F
nw= nominal stress of the weld metal, ksi (MPa)
A
BM= cross-sectional area of the base metal, in.
2
(mm
2
)
A
we= effective area of the weld, in.
2
(mm
2
)
The values of φ, Ω, F
nBMand F nwand limitations thereon are given in Table J2.5.
Alternatively, for fillet weldsthe available strengthis permitted to be determined as
follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
(a) For a linear weld group with a uniform leg size, loaded through the center of
gravity
R
n=FnwAwe (J2-4)
where
F
nw=0.60F EXXφ1.0 +0.50 sin
1.5
θΩ (J2-5)
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:49 AM Page 115

16.1–116 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and
F
EXX=filler metalclassification strength, ksi (MPa)
θ= angle of loading measured from the weld longitudinal axis, degrees
User Note:A linear weld group is one in which all elements are in a line or are
parallel.
(b) For weld elements within a weld group that are analyzed using an instantaneous
center of rotation method, the components of the nominal strength, R
nxand R ny,
and thenominal moment capacity, M
n, are permitted to be determined as follows:
R
nx=∑F nwixAwei (J2-6a)
R
ny=∑FnwiyAwei (J2-6b)
M
n=∑λFnwiyAwei(xi)≤F nwixAwei(yi)μ (J2-7)
where
A
wei=effective area of weld throat of the ith weld element, in.
2
(mm
2
)
F
nwi=0.60F EXX 1.0 +0.50sin
1.5
θif pi (J2-8)
f p
i=λp i 1.9≤0.9p i)μ
0.3
(J2-9)
F
nwi=nominal stress in the ith weld element, ksi (MPa)
F
nwix=x-component of nominal stress, F nwi, ksi (MPa)
F
nwiy=y-component of nominal stress, F nwi, ksi (MPa)
p
i= Δi/Δmi, ratio of element i deformation to its deformation at maximum
stress
r
cr=distance from instantaneous center of rotation to weld element with
minimum Δ
ui/ri ratio, in. (mm)
r
i=distance from instantaneous center of rotation to ith weld element, in.
(mm)
x
i=x component ofr i
yi=y component ofr i
Δi=riΔucr/rcr=deformation of the ith weld element at an intermediate
stress level, linearly proportioned to the critical deformation based on
distance from the instantaneous center of rotation, r
i, in. (mm)
Δ
mi=0.209(θ i+2)
≤0.32
w, deformation of the ith weld element at maximum
stress, in. (mm)
Δ
ucr=deformation of the weld element with minimum Δ ui/ri ratio at ultimate
stress (rupture), usually in the element furthest from instantaneous cen-
ter of rotation, in. (mm)
Δ
ui=1.087(θ i+6)
≤0.65
w ≤0.17w, deformation of the ith weld element at
ultimate stress (rupture), in. (mm)
θ
i=angle between the longitudinal axis of ith weld element and the direc-
tion of the resultant force acting on the element, degrees
(c) For fillet weld groups concentrically loaded and consisting of elements with a
uniform leg size that are oriented both longitudinally and transversely to the
direction of applied load, the combined strength, R
n, of the fillet weld group shall
be determined as the greater of
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 116

Base Metal Matching Filler Metal
A36 ≤
3
/4in. thick 60 & 70 ksi filler metal
A36 >¾ in. A572 (Gr. 50 & 55)
A588* A913 (Gr. 50) SMAW: E7015, E7016, E7018, E7028
A1011 A992 Other processes: 70 ksi filler metal
A1018
A913 (Gr. 60 & 65) 80 ksi filler metal
*For corrosion resistance and color similar to the base metal, see AWS D1.1/D1.1M, subclause
3.7.3.
Notes:
Filler metals shall meet the requirements of AWS A5.1, A5.5, A5.17, A5.18, A5.20, A5.23, A5.28
or A5.29.
In joints with base metals of different strengths, use either a filler metal that matches the higher
strength base metal or a filler metal that matches the lower strength and produces a low hydro-
gen deposit.
User Note: The following User Note Table summarizes the AWS D1.1/D1.1M
provisions for matching filler metals. Other restrictions exist. For a complete list
of base metals and prequalified matching filler metals see AWS D1.1/D1.1M,
Table 3.1.
Sect. J2.] WELDS 16.1–117
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i)R n=Rnwl +Rnwt (J2-10a)
or
(ii)R
n=0.85 R nwl+1.5 R nwt (J2-10b)
where
R
nwl=total nominal strength of longitudinally loaded fillet welds, as deter-
mined in accordance with Table J2.5, kips (N)
R
nwt=total nominal strength of transversely loaded fillet welds, as determined
in accordance with Table J2.5 without the alternate in Section J2.4(a),
kips (N)
5. Combination of Welds
If two or more of the general types of welds (groove, fillet, plug, slot) are combined
in a single joint, the strength of each shall be separately computed with reference to
the axis of the group in order to determine the strength of the combination.
6. Filler Metal Requirements
The choice of filler metalfor use with complete-joint-penetration groove weldssub-
ject to tension normal to the effective area shall comply with the requirements for
matching filler metals given in AWS D1.1/D1.1M.
Filler metal with a specified minimum Charpy V-notch toughnessof 20 ft-lb (27 J)
at 40 °F (4 °C) or lower shall be used in the following joints:
(1) Complete-joint-penetration groove welded T- and corner joints with steel back-
ing left in place, subject to tension normal to the effective area, unless the joints
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 117

are designed using the nominal strengthand resistance factoror safety factoras
applicable for a partial-joint-penetration groove weld
(2) Complete-joint-penetration groove welded splicessubject to tension normal to
the effective area in heavy sections as defined in Sections A3.1c and A3.1d
The manufacturer’s Certificate of Conformance shall be sufficient evidence of com-
pliance.
7. Mixed Weld Metal
When Charpy V-notch toughnessis specified, the process consumables for all weld
metal, tack welds, root pass and subsequent passes deposited in a jointshall be com-
patible to ensure notch-tough composite weld metal.
J3. BOLTS AND THREADED PARTS
1. High-Strength Bolts
Use of high-strength boltsshall conform to the provisions of the Specification for
Structural Joints Using High-Strength Bolts, hereafter referred to as the RCSC
Specification, as approved by the Research Council on Structural Connections,
except as otherwise provided in this Specification. High-strength bolts in this
Specification are grouped according to material strength as follows:
Group A—ASTM A325, A325M, F1852, A354 Grade BC, and A449
Group B—ASTM A490, A490M, F2280, and A354 Grade BD
When assembled, all joint surfaces, including those adjacent to the washers, shall be
free of scale, except tight mill scale.
Bolts are permitted to be installed to the snug-tight condition when used in:
(a)bearing-type connections except as noted in Section E6 or Section J1.10
(b) tension or combined shear and tension applications, for Group A bolts only,
where loosening or fatiguedue to vibration or loadfluctuations are not design
considerations
The snug-tight condition is defined as the tightness required to bring the connected
plies into firm contact. Bolts to be tightened to a condition other than snug tight shall
be clearly identified on the design drawings.
All high-strength bolts specified on the design drawings to be used in pretensioned
or slip-critical joints shall be tightened to a bolt tension not less than that given in
Table J3.1 or J3.1M. Installation shall be by any of the following methods: turn-of-
nut method, a direct-tension-indicator, twist-off-type tension-control bolt, calibrated
wrench, or alternative design bolt.
User Note: There are no specific minimum or maximum tension requirements for
snug-tight bolts. Fully pretensioned boltssuch as ASTM F1852 or F2280 are per-
mitted unless specifically prohibited on design drawings.
16.1–118 WELDS [Sect. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 118

Sect. J3.] BOLTS AND THREADED PARTS 16.1–119
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J3.1
Minimum Bolt Pretension, kips*
Bolt Size, in. Group A (e.g., A325 Bolts) Group B ( e.g., A490 Bolts)
1
/2 12 15
5
/8 19 24
3
/4 28 35
7
/8 39 49
15164
1
1
/8 56 80
1
1
/4 71 102
1
3
/8 85 121
1
1
/2 103 148
*Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kip, as specified in ASTM
specifications for A325 and A490 bolts with UNC threads.
TABLE J3.1M
Minimum Bolt Pretension, kN*
Bolt Size, mm Group A ( e.g., A325M Bolts) Group B ( e.g., A490M Bolts)
M16 91 114
M20 142 179
M22 176 221
M24 205 257
M27 267 334
M30 326 408
M36 475 595
*Equal to 0.70 times the minimum tensile strength of bolts, rounded off to nearest kN, as specified in ASTM
specifications for A325M and A490M bolts with UNC threads.
When bolt requirements cannot be provided within the RCSC Specificationlimita-
tions because of requirements for lengths exceeding 12 diameters or diameters
exceeding 1
1
/2in. (38 mm), bolts or threaded rods conforming to Group A or Group
B materials are permitted to be used in accordance with the provisions for threaded
parts in Table J3.2.
When ASTM A354 Grade BC, A354 Grade BD, or A449 bolts and threaded rods are
used in slip-critical connections, the bolt geometry including the thread pitch, thread
length, head and nut(s) shall be equal to or (if larger in diameter) proportional to that
required by the RCSC Specification. Installation shall comply with all applicable
requirements of the RCSC Specificationwith modifications as required for the
increased diameter and/or length to provide the design pretension.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 119

2. Size and Use of Holes
The maximum sizes of holes for bolts are given in Table J3.3 or Table J3.3M, except
that larger holes, required for tolerance on location of anchor rods in concrete foun-
dations, are permitted in columnbase details.
Standard holes orshort-slotted holes transverse to the direction of the loadshall be
provided in accordance with the provisions of this specification, unless oversized
holes, short-slotted holes parallel to the load, or long-slotted holesare approved
16.1–120 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE J3.2
Nominal Strength of Fasteners and
Threaded Parts, ksi (MPa)
Nominal Shear Strength in
Nominal Tensile Strength, Bearing-Type Connections,
Description of Fasteners
Fnt, ksi (MPa)
[a]
Fnv, ksi (MPa)
[b]
A307 bolts 45 (310) 27 (188)
[c] [d]
Group A (e.g., A325) bolts,
when threads are not excluded 90 (620) 54 (372)
from shear planes
Group A (e.g., A325) bolts,
when threads are excluded 90 (620) 68 (469)
from shear planes
Group B (e.g., A490) bolts,
when threads are not excluded 113 (780) 68 (469)
from shear planes
Group B (e.g., A490) bolts,
when threads are excluded 113 (780) 84 (579)
from shear planes
Threaded parts meeting the
requirements of Section A3.4,
when threads are not excluded 0.75
Fu 0.450Fu
from shear planes
Threaded parts meeting the
requirements of Section A3.4,
when threads are excluded 0.75
Fu 0.563Fu
from shear planes
[a]
For high-strength bolts subject to tensile fatigue loading, see Appendix 3.
[b]
For end loaded connections with a fastener pattern length greater than 38 in. (965 mm), Fnvshall be
reduced to 83.3% of the tabulated values. Fastener pattern length is the maximum distance parallel to the
line of force between the centerline of the bolts connecting two parts with one faying surface.
[c]
For A307 bolts the tabulated values shall be reduced by 1% for each
1
/16in. (2 mm) over 5 diameters of
length in the grip.
[d]
Threads permitted in shear planes.
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 9:46 AM Page 120

Sect. J3.] BOLTS AND THREADED PARTS 16.1–121
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Hole Dimensions
Standard Oversize Short-Slot Long-Slot
(Dia.) (Dia.) (Width ≤Length) (Width ≤Length)
1
/2
9 /16
5 /8
9 /16×
11
/16
9 /16×1
1
/4
5
/8
11 /16
13 /16
11 /16×
7
/8
11 /16×1
9
/16
3
/4
13 /16
15 /16
13 /16×1
13
/16×1
7
/8
7
/8
15 /16 1
1
/16
15 /16×1
1
/8
15 /16×2
3
/16
11
1
/16 1
1
/4 1
1
/16×1
5
/16 1
1
/16×2½
≥1
1
/8 d+
1
/16 d+
5
/16 (d+
1
/16) ×(d+
3
/8)(d+
1
/16) ×(2.5 × d)
TABLE J3.3
Nominal Hole Dimensions, in.
Bolt
Diameter, in.
Hole Dimensions
Standard Oversize Short-Slot Long-Slot
(Dia.) (Dia.) (Width ≤Length) (Width ≤Length)
M16 18 20 18 ×22 18 ×40
M20 22 24 22 ×26 22 ×50
M22 24 28 24 ×30 24 ×55
M24 27
[a]
30 27 ×32 27 ×60
M27 30 35 30 ×37 30 ×67
M30 33 38 33 ×40 33 ×75
≥M36
d+3 d+8( d+3) ×( d+10) (d+3) ×2.5 d
[a]
Clearance provided allows the use of a 1-in. bolt if desirable.
TABLE J3.3M
Nominal Hole Dimensions, mm
Bolt
Diameter, mm
by the engineer of record. Finger shimsup to
1
/4in. (6 mm) are permitted in slip-
critical connectionsdesigned on the basis of standard holes without reducing the
nominal shear strength of the fastenerto that specified for slotted holes.
Oversized holes are permitted in any or all plies of slip-critical connections, but they
shall not be used in bearing-type connections. Hardened washers shall be installed
over oversized holes in an outer ply.
Short-slotted holes are permitted in any or all plies of slip-critical or bearing-type
connections. The slots are permitted without regard to direction of loading in slip-
critical connections, but the length shall be normal to the direction of the load in
bearing-type connections. Washers shall be installed over short-slotted holes in an
outer ply; when high-strength bolts are used, such washers shall be hardened wash-
ers conforming to ASTM F436.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 121

16.1–122 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When Group B bolts over 1 in. (25 mm) in diameter are used in slotted or oversized
holes in external plies, a single hardened washer conforming to ASTM F436, except
with
5
/16-in. (8 mm) minimum thickness, shall be used in lieu of the standard washer.
User Note: Washer requirements are provided in the RCSC Specification, Section 6.
Long-slotted holes are permitted in only one of the connected parts of either a slip-
critical or bearing-type connection at an individual faying surface. Long-slotted
holes are permitted without regard to direction of loading in slip-critical connec-
tions, but shall be normal to the direction of load in bearing-type connections.
Where long-slotted holes are used in an outer ply, plate washers, or a continuous bar
with standard holes, having a size sufficient to completely cover the slot after instal-
lation, shall be provided. In high-strength bolted connections, such plate washers or
continuous bars shall be not less than
5
/16-in. (8 mm) thick and shall be of structural
grade material, but need not be hardened. If hardened washers are required for use
of high-strength bolts, the hardened washers shall be placed over the outer surface
of the plate washer or bar.
3. Minimum Spacing
The distance between centers of standard, oversized or slotted holes shall not be less
than 2
2
/3times the nominal diameter, d, of the fastener; a distance of 3d is preferred.
4. Minimum Edge Distance
The distance from the center of a standard hole to an edge of a connected part in any
direction shall not be less than either the applicable value from Table J3.4 or Table
J3.4M, or as required in Section J3.10. The distance from the center of an oversized
or slotted hole to an edge of a connected part shall be not less than that required for
a standard hole to an edge of a connected part plus the applicable increment, C
2, from
Table J3.5 or Table J3.5M.
User Note:The edge distances in Tables J3.4 and J3.4M are minimum edge dis-
tances based on standard fabrication practices and workmanship tolerances. The
appropriate provisions of Sections J3.10 and J4 must be satisfied.
5. Maximum Spacing and Edge Distance
The maximum distance from the center of any bolt to the nearest edge of parts in
contact shall be 12 times the thickness of the connected part under consideration,
but shall not exceed 6 in. (150 mm). The longitudinal spacing of fastenersbetween
elements consisting of a plate and a shape or two plates in continuous contact shall
be as follows:
(a) For painted members or unpainted members not subject to corrosion, the spacing
shall not exceed 24 times the thickness of the thinner part or 12 in. (305 mm).
(b) For unpainted members of weathering steelsubject to atmospheric corrosion,
the spacing shall not exceed 14 times the thickness of the thinner part or 7 in.
(180 mm).
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 122

Sect. J3.] BOLTS AND THREADED PARTS 16.1–123
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bolt Diameter, in. Minimum Edge Distance
1
/2
3 /4
5
/8
7 /8
3
/4 1
7
/8 1
1
/8
11
1
/4
1
1
/8 1
1
/2
1
1
/4 1
5
/8
Over 1
1
/4 1
1
/4 ×d
[a]
If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10
and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval
from the engineer of record.
[b]
For oversized or slotted holes, see Table J3.5.
TABLE J3.4
Minimum Edge Distance
[a]
from
Center of Standard Hole
[b]
to Edge of
Connected Part, in.
Bolt Diameter, mm Minimum Edge Distance
16 22
20 26
22 28
24 30
27 34
30 38
36 46
Over 36 1.25
d
[a]
If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10
and J4 are satisfied, but edge distances less than one bolt diameter are not permitted without approval
from the engineer of record.
[b]
For oversized or slotted holes, see Table J3.5M.
TABLE J3.4M
Minimum Edge Distance
[a]
from
Center of Standard Hole
[b]
to Edge of
Connected Part, mm
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 123

16.1–124 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Slotted Holes
Long Axis Perpendicular to Edge
Short Slots Long Slots
[a]

7
/8
1 /16
1 /8
1
1
/8
1 /8
≥ 1
1
/8
1 /8
3 /16
[a]
When length of slot is less than maximum allowable (see Table J3.3), C2is permitted to be reduced by
one-half the difference between the maximum and actual slot lengths.
TABLE J3.5
Values of Edge Distance Increment
C2, in.
Nominal
Diameter
of Fastener,
in.
Oversized
Holes
Long Axis
Parallel to Edge
3
/4d0
Slotted Holes
Long Axis Perpendicular to Edge
Short Slots Long Slots
[a]
≤ 22 2 3
24 3 3
≥27 3 5
[a]
When length of slot is less than maximum allowable (see Table J3.3M), C2is permitted to be reduced by
one-half the difference between the maximum and actual slot lengths.
TABLE J3.5M
Values of Edge Distance Increment
C2, mm
Nominal
Diameter
of Fastener,
mm
Oversized
Holes
Long Axis
Parallel to Edge
0.75
d 0
User Note: Dimensions in (a) and (b) do not apply to elements consisting of two
shapes in continuous contact.
6. Tensile and Shear Strength of Bolts and Threaded Parts
The design tensileor shear strength, φR n, and the allowable tensileor shear
strength, R
n/Ω, of a snug-tightened or pretensioned high-strength bolt or threaded
part shall be determined according to the limit statesof tension rupture andshear
ruptureas follows:
R
n=FnAb (J3-1)
φ=0.75 (LRFD) Ω=2.00 (ASD)
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 124

where
A
b= nominal unthreaded body area of bolt or threaded part, in.
2
(mm
2
)
F
n= nominal tensile stress, F nt, or shear stress, F nv, from Table J3.2, ksi (MPa)
The required tensile strengthshall include any tension resulting from prying action
produced by deformation of the connected parts.
User Note:The force that can be resisted by a snug-tightened or pretensioned
high-strength bolt or threaded part may be limited by the bearingstrength at the
bolt hole per Section J3.10. The effective strength of an individual fastenermay
be taken as the lesser of the fastener shear strength per Section J3.6 or the bear-
ing strength at the bolt hole per Section J3.10. The strength of the bolt group is
taken as the sum of the effective strengths of the individual fasteners.
7. Combined Tension and Shear in Bearing-Type Connections
The available tensile strengthof a bolt subjected to combined tension and shear
shall be determined according to the limit statesof tension and shear ruptureas
follows:
R
n=F′ntAb (J3-2)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
F′
nt= nominal tensile stressmodified to include the effects of shear stress,
ksi (MPa)
F′
nt (J3-3a)
F′
nt (J3-3b)
F
nt= nominal tensile stress from Table J3.2, ksi (MPa)
F
nv= nominal shear stress from Table J3.2, ksi (MPa)
f
rv= required shear stress using LRFD or ASD load combinations, ksi (MPa)
The available shear stress of the fastenershall equal or exceed the required shear
stress, f
rv.
User Note:Note that when the required stress,f, in either shear or tension, is less
than or equal to 30% of the corresponding available stress, the effects of com-
bined stressneed not be investigated. Also note that Equations J3-3a and J3-3b
can be rewritten so as to find a nominal shear stress, F′
nv, as a function of the
required tensile stress, f
t.
Sect. J3.] BOLTS AND THREADED PARTS 16.1–125
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F
F
F
fFnt
nt
nv
rv nt=− ≤13.(LRFD)
φ

F
F
F
fFnt
nt
nv
rv nt=− ≤13. (ASD)
Ω

AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 125

8. High-Strength Bolts in Slip-Critical Connections
Slip-critical connectionsshall be designed to prevent slipand for the limit statesof
bearing-type connections. When slip-critical bolts pass through fillers, all surfaces
subject to slip shall be prepared to achieve design slip resistance.
The available slip resistance for the limit state of slip shall be determined as follows:
R
n=μD uhfTbns (J3-4)
(a) For standard size and short-slotted holes perpendicular to the direction of the
load
φ=1.00 (LRFD) Ω=1.50 (ASD)
(b) For oversized and short-slotted holes parallel to the direction of the load
φ=0.85 (LRFD) Ω=1.76 (ASD)
(c) For long-slotted holes
φ=0.70 (LRFD) Ω=2.14 (ASD)
where
μ=mean slip coefficient for Class A or B surfaces, as applicable, and deter-
mined as follows, or as established by tests:
(i) For Class A surfaces (unpainted clean mill scalesteel surfaces or sur-
faces with Class A coatings on blast-cleaned steel or hot-dipped
galvanized and roughened surfaces)
μ=0.30
(ii) For Class B surfaces (unpainted blast-cleaned steel surfaces or sur-
faces with Class B coatings on blast-cleaned steel)
μ=0.50
D
u=1.13, a multiplier that reflects the ratio of the mean installed bolt preten-
sion to the specified minimum bolt pretension. The use of other values
may be approved by the engineer of record.
T
b=minimum fastenertension given in Table J3.1, kips, or Table J3.1M, kN
h
f=factor for fillers, determined as follows:
(i) Where there are no fillers or where bolts have been added to distrib-
ute loads in the filler
h
f=1.0
(ii) Where bolts have not been added to distribute the loadin the filler:
(a) For one filler between connected parts
h
f=1.0
(b) For two or more fillers between connected parts
h
f=0.85
n
s=number of slip planes required to permit the connection to slip
16.1–126 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B_14th Ed._February 25, 2013 14-11-10 11:48 AM Page 126 (Black plate)

Sect. J3.] BOLTS AND THREADED PARTS 16.1–127
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9. Combined Tension and Shear in Slip-Critical Connections
When a slip-critical connectionis subjected to an applied tension that reduces the net
clamping force, the available slipresistance per bolt, from Section J3.8, shall be mul-
tiplied by the factor, k
sc, as follows:
(J3-5a)
(J3-5b)
where
T
a=required tension force using ASD load combinations, kips (kN)
T
u=required tension force using LRFD load combinations, kips (kN)
n
b=number of bolts carrying the applied tension
10. Bearing Strength at Bolt Holes
The available bearing strength, φR nand R n/Ω, at bolt holes shall be determined for
the limit state ofbearingas follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal bearing strength of the connected material, R
n, is determined as
follows:
(a) For a bolt in a connectionwith standard, oversized and short-slotted holes, inde-
pendent of the direction of loading, or a long-slotted hole with the slot parallel to
the direction of the bearing force
(i) When deformation at the bolt hole at service loadis a design consideration
R
n =1.2l ctFu≤2.4dtF u (J3-6a)
(ii) When deformation at the bolt hole at service load is not a design considera-
tion
R
n=1.5l ctFu≤3.0dtF u (J3-6b)
(b) For a bolt in a connection with long-slotted holes with the slot perpendicular to
the direction of force
R
n=1.0l ctFu≤2.0dtF u (J3-6c)
(c) For connections made using bolts that pass completely through an unstiffened
box member or HSS, see Section J7 and Equation J7-1;
where
F
u= specified minimum tensile strengthof the connected material, ksi (MPa)
d= nominal bolt diameter, in. (mm)
l
c= clear distance, in the direction of the force, between the edge of the hole and
the edge of the adjacent hole or edge of the material, in. (mm)
t= thickness of connected material, in. (mm)
k
T
DTnsc
u
ubb=−1 (LRFD)
k
T
DTnsc
a
ubb=−1
15.
(ASD)
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 127

16.1–128 BOLTS AND THREADED PARTS [Sect. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For connections, the bearing resistance shall be taken as the sum of the bearing resist-
ances of the individual bolts.
Bearing strength shall be checked for both bearing-type and slip-critical connections.
The use of oversized holes and short- and long-slotted holes parallel to the line of
force is restricted to slip-critical connections per Section J3.2.
User Note:The effective strength of an individual fasteneris the lesser of the fas-
tener shear strength per Section J3.6 or the bearing strength at the bolt hole per
Section J3.10. The strength of the bolt group is the sum of the effective strengths
of the individual fasteners.
11. Special Fasteners
The nominal strengthof special fasteners other than the bolts presented in Table J3.2
shall be verified by tests.
12. Tension Fasteners
When bolts or other fastenersin tension are attached to an unstiffened box or HSS
wall, the strength of the wall shall be determined by rational analysis.
J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING
ELEMENTS
This section applies to elements of members at connectionsand connecting elements,
such as plates, gussets, angles and brackets.
1. Strength of Elements in Tension
The design strength, φR n, and the allowable strength, R n/Ω, of affected and con-
necting elements loaded in tension shall be the lower value obtained according to the
limit statesof tensile yieldingand tensile rupture.
(a) For tensile yielding of connecting elements
R
n=FyAg (J4-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
(b) For tensile rupture of connecting elements
R
n=FuAe (J4-2)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
e=effective net areaas defined in Section D3, in.
2
(mm
2
); for bolted splice
plates, A
e=An≤0.85A g.
User Note: The effective net area of the connection plate may be limited due to
stressdistribution as calculated by methods such as the Whitmore section.
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 128

Sect. J4.] AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS 16.1–129
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Strength of Elements in Shear
The available shear strength of affected and connecting elements in shear shall be the
lower value obtained according to the limit statesof shear yieldingand shear rup-
ture:
(a) For shear yielding of the element:
R
n=0.60F yAgv (J4-3)
φ=1.00 (LRFD) Ω=1.50 (ASD)
where
A
gv=gross area subject to shear, in.
2
(mm
2
)
(b) For shear rupture of the element:
R
n=0.60F uAnv (J4-4)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
nv =net areasubject to shear, in.
2
(mm
2
)
3. Block Shear Strength
The available strengthfor the limit stateof block shear rupturealong a shear failure
path or paths and a perpendicular tension failure path shall be taken as
R
n=0.60F uAnv+UbsFuAnt≤0.60F yAgv+UbsFuAnt (J4-5)
φ=0.75 (LRFD) Ω=2.00 (ASD)
where
A
nt=net areasubject to tension, in.
2
(mm
2
)
Where the tension stressis uniform, U
bs=1; where the tension stress is nonuniform,
U
bs=0.5.
User Note:Typical cases where U
bsshould be taken equal to 0.5 are illustrated in
the Commentary.
4. Strength of Elements in Compression
The available strengthof connecting elements in compression for the limit statesof
yieldingand bucklingshall be determined as follows:
(a) When KL/r≤25
P
n=FyAg (J4-6)
φ=0.90 (LRFD) Ω=1.67 (ASD)
(b) When KL/r >25, the provisions of Chapter E apply.
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 129

5. Strength of Elements in Flexure
The available flexural strength of affected elements shall be the lower value obtained
according to the limit states of flexuralyielding, local buckling, flexurallateral-
torsional buckling and flexural rupture.
J5. FILLERS
1. Fillers in Welded Connections
Whenever it is necessary to use fillersin joints required to transfer applied force, the
fillers and the connecting welds shall conform to the requirements of Section J5.1a
or Section J5.1b, as applicable.
1a. Thin Fillers
Fillers less than
1
/4in. (6 mm) thick shall not be used to transfer stress. When the
thickness of the fillers is less than
1
/4in. (6 mm), or when the thickness of the filler
is
1
/4in. (6 mm) or greater but not adequate to transfer the applied force between the
connected parts, the filler shall be kept flush with the edge of the outside connected
part, and the size of the weld shall be increased over the required size by an amount
equal to the thickness of the filler.
1b. Thick Fillers
When the thickness of the fillersis adequate to transfer the applied force between
the connected parts, the filler shall extend beyond the edges of the outside con-
nected base metal. The welds joining the outside connected base metal to the filler
shall be sufficient to transmit the force to the filler and the area subjected to the
applied force in the filler shall be adequate to avoid overstressing the filler. The
welds joining the filler to the inside connected base metal shall be adequate to
transmit the applied force.
2. Fillers in Bolted Connections
When a bolt that carries loadpasses through fillersthat are equal to or less than
1
/4
in. (6 mm) thick, the shear strength shall be used without reduction. When a bolt that
carries load passes through fillers that are greater than
1
/4in. (6 mm) thick, one of the
following requirements shall apply:
(a) The shear strength of the bolts shall be multiplied by the factor
1 0.4(t 0.25)
[S.I.: 1 0.0154(t 6)]
but not less than 0.85, where t is the total thickness of the fillers;
(b) The fillers shall be extended beyond the jointand the filler extension shall be
secured with enough bolts to uniformly distribute the total forcein the connected
element over the combined cross section of the connected element and the fillers;
(c) The size of the joint shall be increased to accommodate a number of bolts that is
equivalent to the total number required in (b) above; or
16.1–130 AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS [Sect. J4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B_14th Ed._February 12, 2013 12/02/13 11:26 AM Page 130

Sect. J8.] COLUMN BASES AND BEARING ON CONCRETE 16.1–131
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(d) The joint shall be designed to prevent slipin accordance with Section J3.8 using
either Class B surfaces or Class A surfaces with turn-of-nut tightening.
J6. SPLICES
Groove-welded splices in plate girdersand beamsshall develop the nominal strength
of the smaller spliced section. Other types of splices in cross sections of plate gird-
ers and beams shall develop the strength required by the forces at the point of the
splice.
J7. BEARING STRENGTH
The design bearing strength, φR n, and the allowable bearing strength, Rn/Ω, of sur-
faces in contact shall be determined for the limit stateof bearing (local compressive
yielding) as follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal bearing strength, R
n, shall be determined as follows:
(a) For finished surfaces, pins in reamed, drilled, or bored holes, and ends of fitted
bearing stiffeners
R
n=1.8F yApb (J7-1)
where
A
pb=projected area in bearing, in.
2
(mm
2
)
F
y=specified minimum yield stress, ksi (MPa)
(b) For expansion rollersand rockers
(i) When d ≤25 in. (635 mm)
R
n=1.2(F yφ13)l bd/20 (J7-2)
(S.I.: R
n=1.2(F yφ90)l bd/20) (J7-2M)
(ii) When d >25 in. (635 mm)
(J7-3)
(J7-3M)
where
d=diameter, in. (mm)
l
b=length of bearing, in. (mm)
J8. COLUMN BASES AND BEARING ON CONCRETE
Proper provision shall be made to transfer the column loadsand moments to the foot-
ings and foundations.
RFldnyb=−6 0 13 20.( ) /
S.I.: . ( ) /RFldnyb=−( )30 2 90 20
AISC_PART 16_Spec.2_B_14th Ed._February 25, 2013 25/02/13 2:18 PM Page 131

16.1–132 COLUMN BASES AND BEARING ON CONCRETE [Sect. J8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PfAAAfApc c= ′ ≤ ′085 17121 1./.
In the absence of code regulations, the design bearing strength, φ cPp, and the allow-
able bearing strength, P
p/Ωc, for the limit stateof concrete crushingare permitted to
be taken as follows:
φ
c=0.65 (LRFD) Ω c=2.31 (ASD)
The nominal bearing strength, P
p, is determined as follows:
(a) On the full area of a concrete support:
P
p=0.85f c′A1 (J8-1)
(b) On less than the full area of a concrete support:
(J8-2)
where
A
1= area of steel concentrically bearing on a concrete support, in.
2
(mm
2
)
A
2= maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in.
2
(mm
2
)
f′
c= specified compressive strength of concrete, ksi (MPa)
J9. ANCHOR RODS AND EMBEDMENTS
Anchor rods shall be designed to provide the required resistance to loadson the com-
pleted structure at the base of columns including the net tensile components of any
bending moment that may result from load combinations stipulated in Section B2.
The anchor rods shall be designed in accordance with the requirements for threaded
parts in Table J3.2.
User Note:ASTM F1554 anchor rods may be furnished in accordance to prod-
uct specifications with a body diameter less than the nominal diameter. Load
effects such as bending and elongation should be calculated based on minimum
diameters permitted by the product specification. See ASTM F1554 and the
table, “Applicable ASTM Specifications for Various Types of Structural
Fasteners,” in Part 2 of the AISC Steel Construction Manual.
Design of column bases and anchor rods for the transfer of forces to the concrete
foundation including bearingagainst the concrete elements shall satisfy the require-
ments of ACI 318 or ACI 349.
User Note: When columns are required to resist a horizontal force at the base
plate, bearing against the concrete elements should be considered.
When anchor rods are used to resist horizontal forces, hole size, anchor rod setting tol-
erance, and the horizontal movement of the column shall be considered in the design.
Larger oversized holes and slotted holes are permitted in base plates when adequate
bearing is provided for the nut by using ASTM F844 washers or plate washers to
bridge the hole.
AISC_PART 16_Spec.2_B_14th Ed._February 25, 2013 25/02/13 2:19 PM Page 132

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–133
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The permitted hole sizes, corresponding washer dimensions and nuts
are given in the AISC Steel Construction Manualand ASTM F1554.
User Note: See ACI 318 for embedment design and for shear friction design. See
OSHA for special erection requirements for anchor rods.
J10. FLANGES AND WEBS WITH CONCENTRATED FORCES
This section applies to single-and double-concentrated forcesapplied normal to the
flange(s) of wide flange sections and similar built-up shapes. A single-concentrated
force can be either tensile or compressive. Double-concentrated forces are one ten-
sile and one compressive and form a couple on the same side of the loaded member.
When the required strengthexceeds the available strengthas determined for the limit
stateslisted in this section, stiffenersand/or doublersshall be provided and shall be
sized for the difference between the required strength and the available strength for
the applicable limit state. Stiffeners shall also meet the design requirements in
Section J10.8. Doublers shall also meet the design requirement in Section J10.9.
User Note: See Appendix 6.3 for requirements for the ends of cantilever
members.
Stiffeners are required at unframed endsof beamsin accordance with the require-
ments of Section J10.7.
1. Flange Local Bending
This section applies to tensile single-concentrated forcesand the tensile component
of double-concentrated forces.
The design strength, φR
n, and the allowable strength, R n/Ω, for the limit stateof
flange local bendingshall be determined as follows:
R
n=6.25F yftf
2
(J10-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
where
F
yf=specified minimum yield stressof the flange, ksi (MPa)
t
f=thickness of the loaded flange, in. (mm)
If the length of loading across the member flange is less than 0.15b
f, where b fis the
member flange width, Equation J10-1 need not be checked.
When the concentrated force to be resisted is applied at a distance from the member
end that is less than 10t
f, Rnshall be reduced by 50%.
When required, a pair of transverse stiffenersshall be provided.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 133

2. Web Local Yielding
This section applies to single-concentrated forcesand both components of double-
concentrated forces.
The available strengthfor the limit stateof web local yieldingshall be determined as
follows:
φ=1.00 (LRFD) Ω=1.50 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the concentrated forceto be resisted is applied at a distance from the mem-
ber end that is greater than the depth of the member, d,
R
n=Fywtw(5k +l b) (J10-2)
(b) When the concentrated force to be resisted is applied at a distance from the mem-
ber end that is less than or equal to the depth of the member, d,
R
n=Fywtw(2.5k +l b) (J10-3)
where
F
yw=specified minimum yield stressof the web material, ksi (MPa)
k=distance from outer face of the flange to the web toe of the fillet, in. (mm)
l
b=length of bearing (not less than k for end beamreactions), in. (mm)
t
w=thickness of web, in. (mm)
When required, a pair of transverse stiffenersor a doublerplate shall be provided.
3. Web Local Crippling
This section applies to compressive single-concentrated forcesor the compressive
component of double-concentrated forces.
The available strength for the limit stateof web local cripplingshall be determined
as follows:
φ=0.75 (LRFD) Ω=2.00 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the concentrated compressive forceto be resisted is applied at a distance
from the member end that is greater than or equal to d/2:
(J10-4)
(b) When the concentrated compressive force to be resisted is applied at a distance
from the member end that is less than d/2:
16.1–134 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Rt
l
d
t
t
EFnw
bw
f
y=+




















0.80
2
15
13
.
wwf
wt
t
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 134

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–135
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(i) For l b/d ≤0.2
(J10-5a)
(ii) For l
b/d >0.2
(J10-5b)
where
d =full nominal depth of the section, in. (mm)
When required, a transverse stiffener, a pair of transverse stiffeners, or a doubler
plate extending at least one-half the depth of the web shall be provided.
4. Web Sidesway Buckling
This section applies only to compressive single-concentrated forcesapplied to mem-
bers where relative lateral movement between the loaded compression flange and the
tension flange is not restrained at the point of application of the concentrated force.
The available strengthof the web for the limit stateof sidesway bucklingshall be
determined as follows:
φ=0.85 (LRFD) Ω=1.76 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) If the compression flange is restrained against rotation
(i) When (h/t
w)/(Lb/bf) ≤2.3
(J10-6)
(ii) When (h/t
w)/(Lb/bf) >2.3, the limit state of web sidesway bucklingdoes not
apply.
When the required strengthof the web exceeds the available strength, local lateral
bracingshall be provided at the tension flange or either a pair of transverse stiffen-
ersor a doublerplate shall be provided.
(b) If the compression flange is not restrained against rotation
(i) When (h/t
w)/(Lb/bf) ≤1.7
(J10-7)
Rt
l
d
t
t
EFnw
bw
f
y=+




















0.40
2
15
13
.
wwf
wt
t
Rt
l
d
t
tnw
bw
f=+−


















⎥ 0.40
2
15
1
4
02.
.
⎥ ⎥
EF t
t
yw f
w
R
Ct t
h
ht
Lbn
rw f w
bf=+














3
2
3
104.
/
/
R
Ct t
h
ht
Lbn
rw f w
bf=














3
2
3
04.
/
/
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 135

(ii) When (h/t w)/(Lb/bf) >1.7, the limit state of web sidesway buckling does not
apply.
When the required strength of the web exceeds the available strength, local lateral
bracing shall be provided at both flanges at the point of application of the concen-
trated forces.
In Equations J10-6 and J10-7, the following definitions apply:
C
r=960,000 ksi (6.62 Ω10
6
MPa) when M u<My(LRFD) or 1.5M a<My(ASD)
at the location of the force
=480,000 ksi (3.31 Ω10
6
MPa) when M u≥My(LRFD) or 1.5M a≥My(ASD)
at the location of the force
L
b=largest laterally unbraced lengthalong either flange at the point of load, in.
(mm)
M
a=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
u=required flexural strength using LRFD load combinations, kip-in. (N-mm)
b
f=width of flange, in. (mm)
h=clear distance between flanges less the fillet or corner radius for rolled
shapes; distance between adjacent lines of fastenersor the clear distance
between flanges when welds are used for built-up shapes, in. (mm)
User Note: For determination of adequate restraint, refer to Appendix 6.
5. Web Compression Buckling
This section applies to a pair of compressive single-concentrated forcesor the com-
pressive components in a pair of double-concentrated forces, applied at both flanges
of a member at the same location.
The available strengthfor the limit stateof web local bucklingshall be determined
as follows:
(J10-8)
φ=0.90 (LRFD) Ω=1.67 (ASD)
When the pair of concentrated compressive forcesto be resisted is applied at a dis-
tance from the member end that is less than d/2, R
nshall be reduced by 50%.
When required, a single transverse stiffener, a pair of transverse stiffeners, or a dou-
blerplate extending the full depth of the web shall be provided.
6. Web Panel Zone Shear
This section applies to double-concentrated forcesapplied to one or both flanges of
a member at the same location.
The available strengthof the web panel zonefor the limit stateof shear yieldingshall
be determined as follows:
16.1–136 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R
tEF
hn
wyw=
24
3
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 136

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–137
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
φ=0.90 (LRFD) Ω=1.67 (ASD)
The nominal strength, R
n, shall be determined as follows:
(a) When the effect of panel-zone deformation on frame stabilityis not considered
in the analysis:
(i) For P
r≤0.4P c
Rn=0.60F ydctw (J10-9)
(ii) For P
r>0.4P c
(J10-10)
(b) When frame stability, including plastic panel-zone deformation, is considered in
the analysis:
(i) For P
r≤0.75P c
(J10-11)
(ii) For P
r>0.75P c
(J10-12)
In Equations J10-9 through J10-12, the following definitions apply:
A
g=gross cross-sectional area of member, in.
2
(mm
2
)
b
cf=width of columnflange, in. (mm)
d
b=depth of beam, in. (mm)
d
c=depth of column, in. (mm)
F
y=specified minimum yield stress of the column web, ksi (MPa)
P
c=Py, kips (N) (LRFD)
P
c=0.60P y, kips (N) (ASD)
P
r=required axial strength usingLRFD orASD load combinations, kips (N)
P
y=FyAg, axialyield strength of the column, kips (N)
t
cf=thickness of column flange, in. (mm)
t
w=thickness of column web, in. (mm)
When required, doublerplate(s) or a pair of diagonal stiffenersshall be provided
within the boundaries of the rigid connection whose webs lie in a common plane.
See Section J10.9 for doubler plate design requirements.
RFdt
P
Pnycw
r
c=−






060 14..
RFdt
bt
ddtnycw
cf cf
bcw=+






060 1
3
2
.
RFdt
bt
ddt
Pnycw
cf cf
bcw=+






−060 1
3
19
12
2
..
.
rr
c
P






AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 137

7. Unframed Ends of Beams and Girders
At unframed endsof beamsand girdersnot otherwise restrained against rotation
about their longitudinal axes, a pair of transverse stiffeners, extending the full depth
of the web, shall be provided.
8. Additional Stiffener Requirements for Concentrated Forces
Stiffenersrequired to resist tensile concentrated forcesshall be designed in accor-
dance with the requirements of Section J4.1 and welded to the loaded flange and the
web. The welds to the flange shall be sized for the difference between the required
strengthand available strength. The stiffener to web welds shall be sized to transfer
to the web the algebraic difference in tensile force at the ends of the stiffener.
Stiffeners required to resist compressive concentrated forces shall be designed in
accordance with the requirements in Section J4.4 and shall either bear on or be
welded to the loaded flange and welded to the web. The welds to the flange shall be
sized for the difference between the required strength and the applicable limit state
strength. The weld to the web shall be sized to transfer to the web the algebraic dif-
ference in compression force at the ends of the stiffener. For fitted bearing stiffeners,
see Section J7.
Transverse full depth bearing stiffeners for compressive forces applied to a beamor
plate girderflange(s) shall be designed as axially compressed members (columns) in
accordance with the requirements of Section E6.2 and Section J4.4. The member
properties shall be determined using an effective length of 0.75h and a cross section
composed of two stiffeners, and a strip of the web having a width of 25t
wat interior
stiffeners and 12t
wat the ends of members. The weld connecting full depth bearing
stiffeners to the web shall be sized to transmit the difference in compressive force at
each of the stiffeners to the web.
Transverseand diagonal stiffenersshall comply with the following additional
requirements:
(1) The width of each stiffener plus one-half the thickness of the column web shall
not be less than one-third of the flange or moment connection plate width deliv-
ering the concentrated force.
(2) The thickness of a stiffener shall not be less than one-half the thickness of the
flange or moment connection plate delivering the concentrated load, nor less than
the width divided by 16.
(3) Transverse stiffeners shall extend a minimum of one-half the depth of the mem-
ber except as required in Section J10.5 and Section J10.7.
9. Additional Doubler Plate Requirements for Concentrated Forces
Doublerplates required for compression strength shall be designed in accordance
with the requirements of Chapter E.
Doubler plates required for tensile strengthshall be designed in accordance with the
requirements of Chapter D.
16.1–138 FLANGES AND WEBS WITH CONCENTRATED FORCES [Sect. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.2_B:14th Ed._ 2/17/12 11:51 AM Page 138

Sect. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–139
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Doubler plates required for shear strength (see Section J10.6) shall be designed in
accordance with the provisions of Chapter G.
Doubler plates shall comply with the following additional requirements:
(1) The thickness and extent of the doubler plate shall provide the additional mate-
rial necessary to equal or exceed the strength requirements.
(2) The doubler plate shall be welded to develop the proportion of the total force
transmitted to the doubler plate.
AISC_PART 16_Spec.2_B:14th Ed. 1/20/11 7:59 AM Page 139

CHAPTER K
DESIGN OF HSS AND BOX MEMBER
CONNECTIONS
This chapter addresses connections to HSSmembers and box sections of uniform wall
thickness.
User Note: Connection strength is often governed by the size of HSS members, espe-
cially the wall thickness of truss chords, and this must be considered in the initial design.
The chapter is organized as follows:
K1. Concentrated Forces on HSS
K2. HSS-to-HSS Truss Connections
K3. HSS-to-HSS Moment Connections
K4. Welds of Plates and Branches to Rectangular HSS
User Note:See also Chapter J for additional requirements for bolting to HSS. See
Section J3.10(c) for through-bolts.
User Note: Connection parameters must be within the limits of applicability. Limit states
need only be checked when connection geometry or loading is within the parameters
given in the description of the limit state.
K1. CONCENTRATED FORCES ON HSS
The design strength, φR n, and the allowable strength, R n/Ω, of connectionsshall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSSmember, measured 90°to the plane of the
connection, in. (mm)
B
p=width of plate, measured 90°to the plane of the connection, in. (mm)
D=outside diameter of round HSS, in. (mm)
F
c=available stress, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS member material, ksi (MPa)
F
yp=specified minimum yield stress of plate material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS member material, ksi (MPa)
H=overall height of rectangular HSS member, measured in the plane of the con-
nection, in. (mm)
16.1–140
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 140

S=elastic section modulus of member, in.
3
(mm
3
)
l
b=bearing length of the load, measured parallel to the axis of the HSS member
(or measured across the width of the HSS in the case of loaded cap plates), in.
(mm)
t=design wall thicknessof HSS member, in. (mm)
t
p=thickness of plate, in. (mm)
2. Round HSS
The available strengthof connections with concentrated loads and within the limits
in Table K1.1A shall be taken as shown in Table K1.1.
3. Rectangular HSS
The available strengthof connections with concentrated loadsand within the limits
in Table K1.2A shall be taken as the lowest value of the applicable limit statesshown
in Table K1.2.
K2. HSS-TO-HSS TRUSS CONNECTIONS
The design strength, φP n, and the allowable strength, P n/Ω, of connectionsshall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
HSS-to-HSS truss connections are defined as connections that consist of one or more
branch membersthat are directly welded to a continuous chord that passes through
the connection and shall be classified as follows:
(a) When the punching load, P
r sinθ, in a branch member is equilibrated by beam
shear in the chord member, the connection shall be classified as a T-connection
when the branch is perpendicular to the chord, and a Y-connectionotherwise.
(b) When the punching load, P
r sinθ, in a branch member is essentially equilibrated
(within 20%) by loadsin other branch member(s) on the same side of the con-
nection, the connection shall be classified as a K-connection. The relevant gap is
between the primary branch members whose loads equilibrate. An N-connection
can be considered as a type of K-connection.
User Note:A K-connection with one branch perpendicular to the chord is often
called an N-connection.
(c) When the punching load, P
rsinθ, is transmitted through the chord member and
is equilibrated by branch member(s) on the opposite side, the connection shall be
classified as a cross-connection.
(d) When a connection has more than two primary branch members, or branch mem-
bers in more than one plane, the connection shall be classified as a general or
multiplanar connection.
When branch members transmit part of their load as K-connections and part of their
load as T-, Y- or cross-connections, the adequacy of the connections shall be deter-
mined by interpolation on the proportion of the available strength of each in total.
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–141
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 141

Plate Bending
Out-
Connection Type Connection Available Strength In-Plane of-Plane
Transverse Plate T- and Limit State: HSS Local Yielding
Cross-Connections Plate Axial Load
(K1-1) —
Mn=0.5BpRn
φ=0.90 (LRFD) Ω=1.67 (ASD)
Longitudinal Plate T-, Y- Limit State: HSS Plastification
and Cross-Connections Plate Axial Load
(K1-2)
Mn=0.8IbRn —
φ=0.90 (LRFD) Ω=1.67 (ASD)
Longitudinal Plate Limit States: Plate Limit States
T-Connections and HSS Punching Shear
Plate Shear Load
(K1-3)
——
Cap Plate Connections Limit State: Local Yielding
of HSS
Axial Load
(K1-4) — —
φ=1.00 (LRFD) Ω=1.50 (ASD)
TABLE K1.1
Available Strengths of
Plate-to-Round HSS Connections
RFt
B
D
Q
ny
p
fsinθ=













2 55
1081
.
.
RFt
l
D
Q
ny
b
fsinθ= +






55 1 025
2
..
For Rn, see Chapter J.
Additionally, the following
relationship shall be met:
t
F
F
t
p
u
yp≤
RFttlFA
nypby=+( )≤25
FUNCTIONS
Q
f
=1 for HSS (connecting surface) in tension
=1.0 −0.3
U(1 +U) for HSS (connecting surface) in compression (K1-5)
where
Proand Mroare determined on the side of the joint that
has the lower compression stress.
Proand Mrorefer to required (K1-6)
strengths in the HSS.
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
U
P
FA
M
FS
ro
cg
ro
c
=+
16.1–142 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 2/17/12 11:57 AM Page 142

Connection Type Connection Available Strength
Transverse Plate T- and Limit State: Local Yielding of Plate, For All β
Cross-Connections, Under
Plate Axial Load
(K1-7)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: HSS Shear Yielding (Punching),
When 0.85
B≤Bp≤Bβ2t
(K1-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Local Yielding of HSS Sidewalls,
When β=1.0
(K1-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Crippling of HSS Sidewalls,
When β=1.0 and Plate is in Compression,
for T-Connections
(K1-10)
φ=0.75 (LRFD) Ω=2.00 (ASD)
Limit State: Local Crippling of HSS Sidewalls,
When β=1.0 and Plate is in Compression,
for Cross-Connections
(K1-11)
φ=0.90 (LRFD) Ω=1.67 (ASD)
TABLE K1.2
Available Strengths of
Plate-to-Rectangular HSS Connections
R
Bt
FtB F t B
nypyppp=≤
10
RFttB
nypep=+ ( )06 2 2.
RFtkl
ny b=+( )25
Rt
l
Ht
EF Q
n
b
yf=+







16 1
3
3
2
.
R
t
Ht
EF Q
nyf=







48
3
3
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–143
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.1A
Limits of Applicability of Table K1.1
Plate load angle:θ≥ 30°
HSS wall
D/t≤50 for T-connections under branch plate axial load or bending
slenderness:
D/t≤40 for cross-connections under branch plate axial load or bending
D/t≤0.11E/Fyunder branch plate shear loading
D/t≤0.11E/Fyfor cap plate connections in compression
Width ratio: 0.2 <
Bp/D≤1.0 for transverse branch plate connections
Material strength:
Fy≤52 ksi (360 MPa)
Ductility:
Fy/Fu≤0.8 Note: ASTM A500 Grade C is acceptable.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 143

16.1–144 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2. (continued)
Available Strengths of
Plate-to-Rectangular HSS Connections
Connection Type Connection Available Strength
Longitudinal Plate T-, Y- and Cross- Limit State: HSS Plastification
Connections, Under Plate Axial Load
(K1-12)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Longitudinal Through Plate T- and Limit State: HSS Wall Plastification
Y-Connections, Under Plate Axial Load
(K1-13)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Longitudinal Plate T-Connections, Limit States: Plate Limit States and
Under Plate Shear Load HSS Punching Shear
For
Rn, see Chapter J.
Additionally, the following relationship
shall be met:
(K1-3)
R
Ft
t
B
l
B
t
B
Q
n
y
p
b p
fsinθ=

+−








2
1
2
41
R
Ft
t
B
l
B
t
B
Q
n
y
p
b p
fsinθ=

+−








2
1
2
41
2
t
F
F
t
p
u
yp≤
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 144

FUNCTIONS
Q
f
=1 for HSS (connecting surface) in tension
for HSS (connecting surface) in compression, for transverse
plate connections (K1-16)
for HSS (connecting surface) in compression, for longitudinal plate
and longitudinal through plate connections (K1-17)
where
Proand Mroare determined on the side of the joint that has
U the lower compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
(K1-18)
k=outside corner radius of HSS ≥1.5 t
=− ≤13 04 10.. .
U
β
=−1
2
U
P
FA
M
FS
ro
cg
ro
c
=+ ,
B
B
Bt
B
ep
p
p=≤
10
Sect. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–145
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2 (continued)
Available Strengths of
Plate-to-Rectangular HSS Connections
Connection Type Connection Available Strength
Cap Plate Connections, Limit State: Local Yielding
under Axial Load of Sidewalls
(K1-14a)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Crippling of Sidewalls,
When Plate is in Compression
(K1-15)
φ=0.75 (LRFD) Ω=2.00 (ASD)
RFttl tlB
n y pb pb=+( ) +( )<25 5 , when
RF tl B
ny pb=+ ( )≥A, when 5
Rt
l
B
t
t
EF
t
t
n
b
p
y
p=+














16 1
6
2
15
.
.
,whhen 5tl B
pb+( )<
(K1-14b)
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:09 PM Page 145

For the purposes of this Specification, the centerlines of branch members and
chord members shall lie in a common plane. Rectangular HSS connections are fur-
ther limited to have all members oriented with walls parallel to the plane. For trusses
that are made with HSS that are connected by welding branch members to chord
members, eccentricities within the limits of applicability are permitted without con-
sideration of the resulting moments for the design of the connection.
1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSS main member, measured 90°to the plane of
the connection, in. (mm)
B
b=overall width of rectangular HSS branch member, measured 90°to the plane
of the connection, in. (mm)
D=outside diameter of round HSS main member, in. (mm)
D
b=outside diameter of round HSS branch member, in. (mm)
F
c=available stressin chord, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS main member material, ksi (MPa)
F
yb=specified minimum yield stress of HSS branch member material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS material, ksi (MPa)
H=overall height of rectangular HSS main member, measured in the plane of the
connection, in. (mm)
H
b=overall height of rectangular HSS branch member, measured in the plane of the
connection, in. (mm)
O
v=lov/lp×100, %
S=elastic section modulus of member, in.
3
(mm
3
)
e=eccentricity in a truss connection, positive being away from the branches, in.
(mm)
g=gap between toes of branch members in a gapped K-connection, neglecting the
welds, in. (mm)
l
b=Hb/sinθ, in. (mm)
l
ov=overlap length measured along the connecting face of the chord beneath the
two branches, in. (mm)
16.1–146 HSS-TO-HSS TRUSS CONNECTIONS [Sect. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K1.2A
Limits of Applicability of Table K1.2
Plate load angle: θ≥ 30°
HSS wall slenderness:
B/tor H/t ≤35 for loaded wall, for transverse branch plate
connections
B/tor H/t ≤40 for loaded wall, for longitudinal branch
plate and through plate connections
for loaded wall, for branch plate
shear loading
Width ratio: 0.25 ≤
Bp/B ≤1.0 for transverse branch plate connections
Material strength:
Fy ≤52 ksi (360 MPa)
Ductility:
Fy/Fu ≤0.8 Note: ASTM A500 Grade C is acceptable.
Btt Htt EF
y−( ) −( )≤33140or .
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 146

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–147
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
lp=projected length of the overlapping branch on the chord, in. (mm)
t=design wall thicknessof HSS main member, in. (mm)
t
b=design wall thickness of HSS branch member, in. (mm)
β=width ratio; the ratio of branch diameter to chord diameter =D
b/Dfor round
HSS; the ratio of overall branch width to chord width =B
b/Bfor rectangular
HSS
β
eff=effective widthratio; the sum of the perimeters of the two branch members in
a K-connection divided by eight times the chord width
γ=chord slenderness ratio; the ratio of one-half the diameter to the wall thickness
=D/2tfor round HSS; the ratio of one-half the width to wall thickness =B/2t
for rectangular HSS
η=loadlength parameter, applicable only to rectangular HSS; the ratio of the
length of contact of the branch with the chord in the plane of the connection to
the chord width =l
b/B
θ=acute angle between the branch and chord (degrees)
ζ=gap ratio; the ratio of the gap between the branches of a gapped K-connection
to the width of the chord =g/Bfor rectangular HSS
2. Round HSS
The available strengthof HSS-to-HSS truss connections within the limits in Table
K2.1A shall be taken as the lowest value of the applicable limit states shown in Table
K2.1.
3. Rectangular HSS
The available strengthof HSS-to-HSS truss connections within the limits in Table
K2.2A shall be taken as the lowest value of the applicable limit states shown in
Table K2.2.
K3. HSS-TO-HSS MOMENT CONNECTIONS
The design strength, φM n, and the allowable strength, M n/Ω, of connectionsshall be
determined in accordance with the provisions of this chapter and the provisions of
Section B3.6.
HSS-to-HSS moment connectionsare defined as connections that consist of one or
two branch membersthat are directly welded to a continuous chord that passes
through the connection, with the branch or branches loaded by bending moments.
A connection shall be classified as:
(a) A T-connectionwhen there is one branch and it is perpendicular to the chord and
as a Y-connectionwhen there is one branch but not perpendicular to the chord
(b) A cross-connectionwhen there is a branch on each (opposite) side of the chord
For the purposes of this Specification, the centerlines of the branch member(s) and
the chord membershall lie in a common plane.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 147

Connection Type Connection Available Axial Strength
General Check Limit State: Shear Yielding
For T-, Y-, Cross- and (Punching)
K-Connections With Gap,
When
Db(tens/comp)<(Dβ2t)
(K2-1)
φ=0.95 (LRFD) Ω=1.58 (ASD)
T- and Y-Connections Limit State: Chord Plastification
(K2-2)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Cross-Connections Limit State: Chord Plastification
(K2-3)
φ=0.90 (LRFD) Ω=1.67 (ASD)
K-Connections With Gap or Overlap Limit State: Chord Plastification
(K2-4)
(K2-5)
φ=0.90 (LRFD) Ω=1.67 (ASD)
16.1–148 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.1
Available Strengths of Round
HSS-to-HSS Truss Connections
PFtD
nyb=
+⎛





06
1
2
2

θ
θ
sin
sin
PFt Q
ny fsinθβγ=+ ( )
2202
31 156..
.
PFt Q
ny fsinθ
β
=







257
1081
.
.
PFt
D
ny
bsin
compression branch
co
θ( ) =+
2
2 0 11 33..
m mp
D
QQ
gf






PP
nnsin sin
tension branch compression br
θθ( ) =( )
aanch
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 148

FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-5a)
1.0 ⎝0.3U(1 ⎜U) for HSS (connecting surface) in compression (K1-5b)
where P
roand M roare determined on the side of the joint that has
U the lower compression stress. P
roand M rorefer to required (K1-6)
strengths in the HSS.
P
ro=Pufor LRFD; P afor ASD. M ro=Mufor LRFD; M afor ASD.
(K2-6)
[a]
Note that exp(x) is equal to e
x
, where e =2.71828 is the base of the natural logarithm.
Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–149
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.1 (continued)
Available Strengths of Round
HSS-to-HSS Truss Connections
P
FA
M
FS
ro
cg
ro
c
=+ ,
Q
g
t
g=+







+




γ
γ
02
12
1
0 024
05
133 1
.
. .
.
.exp
⎢⎢









[a ]
Joint eccentricity: -0.55 ≤e/D≤0.25 for K-connections
Branch angle: θ≥ 30°
Chord wall slenderness:D/t ≤50 for T-, Y- and K-connections
D/t ≤40 for cross-connections
Branch wall slenderness:D
b/tb ≤50 for tension branch
D
b/tb ≤0.05E/F ybfor compression branch
Width ratio: 0.2 <D
b/D≤1.0 for T-, Y-, cross- and overlapped
K-connections
0.4 ≤D
b/D≤1.0 for gapped K-connections
Gap: g ≥t
bcomp+tbtensfor gapped K-connections
Overlap: 25% ≤O
v≤100% for overlapped K-connections
Branch thickness: t
boverlapping ≤tboverlappedfor branches in overlapped
K-connections
Material strength: F
yand F yb ≤52 ksi (360 MPa)
Ductility: F
y/Fuand F yb/Fub ≤0.8 Note: ASTM A500 Grade C is acceptable.
TABLE K2.1A
Limits of Applicability of Table K2.1
AISC_PART 16_Spec.3_C_14th Ed._February 25, 2013 14-11-10 11:51 AM Page 149 (Black plate)

Connection Type Connection Available Axial Strength
T-, Y- and Cross-Connections Limit State: Chord Wall Plastification, When β≤0.85
(K2-7)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Shear Yielding (Punching), When
(K2-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Local Yielding of Chord Sidewalls,
When β=1.0
(K2-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Case for checking limit state of shear Limit State: Local Crippling of Chord Sidewalls,
of chord side walls When β=1.0 and Branch is in Compression,
for T- or Y-Connections
(K2-10)
φ=0.75 (LRFD) Ω=2.00 (ASD)
Limit State: Local Crippling of Chord Sidewalls,
When β=1.0 and Branches are in Compression,
for Cross-Connections
(K2-11)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K2-12)
φ=0.95 (LRFD) Ω=1.58 (ASD)
16.1–150 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.2
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt Q
ny fsinθ
η
β β
=

()
+









22
1
4
1
085 1 1 10.<≤− <βγ orBt
PFtB
n y eopsinθηβ=+ ( )06 2 2.
PFtkl
nybsinθ= + ( )25
Pt
l
Ht
EF Q
n
b
yfsinθ= +







16 1
3
3
2
.
P
t
Ht
EF Q
nyfsinθ=







48
3
3
PFt H b t
n yb b b eoi b=+−( )22 4
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
(K2-13)
where
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 150

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–151
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Available Axial Strength
Limit State: Shear of Chord Sidewalls
For Cross-Connections With θ<90°and Where
a Projected Gap is Created (See Figure).
Determine
Pnsinθin accordance with Section G5.
Gapped K-Connections Limit State: Chord Wall Plastification, for All β
(K2-14)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
when
Bb<Bβ2t
Do not check for square branches.
(K2-15)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Limit State: Shear of Chord Sidewalls,
in the Gap Region
Determine
Pnsinθin accordance
with Section G5.
Do not check for square chords.
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution.
Do not check for square branches or if
B/t≥15.
(K2-16)
φ=0.95 (LRFD) Ω=1.58 (ASD)
(K2-13)
TABLE K2.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt Q
nyefffsinθβγ= ( )
205
98.
.
PFtB
n y eopsinθηββ=++ ( )06 2.
PFt HBb t
n yb b b b eoi b=++−( )24
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
T-, Y- and Cross-Connections
where
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 151

Connection Type Connection Available Axial Strength
Overlapped K-Connections Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution
φ=0.95 (LRFD) Ω=1.58 (ASD)
When 25% ≤
Ov<50%:
(K2-17)
When 50% ≤
Ov<80%:
(K2-18)
When 80% ≤
Ov<100%:
(K2-19)
(K2-20)
(K2-21)
Subscript
irefers to the overlapping branch
Subscript
jrefers to the overlapped branch
(K2-22)
16.1–152 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K2.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Truss Connections
PFt
O
Htbb
n i ybi bi
v
bi bi eoi eov,=− ( )++






50
24
PFtH tb b
n i ybi bi bi bi eoi eov,=−++( )24
PFt H tBb
n,i ybi bi bi bi bi eov=−++( )24
PP
FA
FA
n, j n,i
ybj bj
ybi bi=






b
Bt
Ft
Ft
BB
eoi
y
ybi bi
bi bi=





⎟≤
10
b
Bt
Ft
Ft
BB
eov
bj bj
ybj bj
ybi bi
bi bi=





⎟≤
10
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-5a)
for chord (connecting surface) in compression, for T-, Y- and
cross-connections (K1-16)
for chord (connecting surface) in compression, for gapped
K-connections (K2-23)
where
Proand Mroare determined on the side of the joint that has
U the higher compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
(K2-24)
(K2-25)
=− ≤13 04 1..
U
β
=− ≤13 04 10.. .
U
effβ
P
FA
M
FS
ro
cg
ro
c
=+ ,
β
eff b b b bBH BH=+( ) ++( )
compression branch tensi o on branch

⎣⎢

⎦⎥
4B
β
β
γ
β
eop=≤
5
Note that the force arrows shown for
overlapped K-connections may be
reversed;
iand jcontrol member identification.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 152

Sect. K3.] HSS-TO-HSS MOMENT CONNECTIONS 16.1–153
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Joint eccentricity: -0.55 ≤ e/H≤0.25 for K-connections
Branch angle: θ≥ 30°
Chord wall slenderness:
B/tand H/t ≤35 for gapped K-connections and T-, Y-
and cross-connections
B/t ≤30 for overlapped K-connections
H/t ≤35 for overlapped K-connections
Branch wall slenderness:
Bb/tband Hb/tb≤35 for tension branch
for compression branch of gapped
K-, T-, Y- and cross-connections
≤35 for compression branch of gapped K-, T-, Y-
and cross-connections
for compression branch of
overlapped K-connections
Width ratio:
Bb/Band Hb/B≥0.25 for T-, Y- cross- and overlapped
K-connections
Aspect ratio: 0.5 ≤
Hb/Bb≤2.0 and 0.5 ≤ H/B≤2.0
Overlap: 25% ≤
Ov≤100% for overlapped K-connections
Branch width ratio:
Bbi/Bbj ≥0.75 for overlapped K-connections, where
subscript
irefers to the overlapping branch and
subscript
jrefers to the overlapped branch
Branch thickness ratio:
tbi/tbj ≤1.0 for overlapped K-connections, where
subscript
irefers to the overlapping branch and
subscript
jrefers to the overlapped branch
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
ADDITIONAL LIMITS FOR GAPPED K-CONNECTIONS
Width ratio:
β
eff ≥0.35
Gap ratio: ζ=
g/B≥0.5 (1 ≤β eff)
Gap:
g ≥tbcompression branch+tbtension branch
Branch size: smaller Bb≥0.63 (larger Bb), if both branches are square
Note: Maximum gap size will be controlled by the e/Hlimit. If gap is large, treat as two Y-connections.
TABLE K2.2A
Limits of Applicability of Table K2.2
≤125.
E
F
yb
≤11.
E
F
yb
B
B
H
B
bb
and
≥+01
50
.
γ
AISC_PART 16_Spec.3_C_14th Ed._ 22/02/12 2:54 PM Page 153

1. Definitions of Parameters
Ag=gross cross-sectional area of member, in.
2
(mm
2
)
B=overall width of rectangular HSS main member, measured 90 °to the plane of
the connection, in. (mm)
B
b=overall width of rectangular HSS branch member, measured 90 °to the plane
of the connection, in. (mm)
D=outside diameter of round HSS main member, in. (mm)
D
b=outside diameter of round HSS branch member, in. (mm)
F
c=available stress, ksi (MPa)
=F
yfor LRFD; 0.60F yfor ASD
F
y=specified minimum yield stressof HSS main member material, ksi (MPa)
F
yb=specified minimum yield stress of HSS branch member material, ksi (MPa)
F
u=specified minimum tensile strengthof HSS member material, ksi (MPa)
H=overall height of rectangular HSS main member, measured in the plane of the
connection, in. (mm)
H
b=overall height of rectangular HSS branch member, measured in the plane of the
connection, in. (mm)
S=elastic section modulus of member, in.
3
(mm
3
)
Z
b=Plastic section modulus of branch about the axis of bending, in.
3
(mm
3
)
t=design wall thicknessof HSS main member, in. (mm)
t
b=design wall thickness of HSS branch member, in. (mm)
β=width ratio
=D
b/Dfor round HSS; ratio of branch diameter to chord diameter
=B
b/Bfor rectangular HSS; ratio of overall branch width to chord width
γ=chord slenderness ratio
=D/2tfor round HSS; ratio of one-half the diameter to the wall thickness
=B/2tfor rectangular HSS; ratio of one-half the width to the wall thickness
η=loadlength parameter, applicable only to rectangular HSS
=l
b/B; the ratio of the length of contact of the branch with the chord in the plane
of the connection to the chord width, where l
b=Hb /sin θ
θ=acute angle between the branch and chord (degrees)
2. Round HSS
The available strengthof moment connections within the limits of Table K3.1A shall
be taken as the lowest value of the applicable limit statesshown in Table K3.1.
3. Rectangular HSS
The available strengthof moment connections within the limits of Table K3.2A shall
be taken as the lowest value of the applicable limit statesshown in Table K3.2.
K4. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS
The design strength, φR n, φMnandφP n, and the allowable strength, R n/Ω, M n/Ωand
P
n/Ω, of connectionsshall be determined in accordance with the provisions of this
chapter and the provisions of Section B3.6.
16.1–154 HSS-TO-HSS MOMENT CONNECTIONS [Sect. K3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 154

Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–155
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Available Flexural Strength
Branch(es) under In-Plane Bending Limit State: Chord Plastification
T-, Y- and Cross-Connections
(K3-1)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
When
Db<(D β2 t)
(K3-2)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Branch(es) under Out-of-Plane Bending Limit State: Chord Plastification
T-, Y- and Cross-Connections
(K3-3)
φ=0.90 (LRFD) Ω=1.67 (ASD)
Limit State: Shear Yielding (Punching),
When
Db<(D β2 t)
(K3-4)
φ=0.95 (LRFD) Ω=1.58 (ASD)
For T-, Y- and cross-connections, with branch(es) under combined axial load, in-plane bending
and out-of-plane bending, or any combination of these load effects:
(K3-5)
Mc-ip= φMn= design flexural strength for in-plane bending from Table K3.1, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for in-plane bending from Table K3.1, kip-in. (N-mm)
Mc-op= φMn= design flexural strength for out-of-plane bending from Table K3.1, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for out-of-plane bending from Table K3.1, kip-in. (N-mm)
Mr-ip= required flexural strength for in-plane bending, using LRFD or ASD load combinations,
as applicable, kip-in. (N-mm)
Mr-op= required flexural strength for out-of-plane bending, using LRFD or ASD load
combinations, as applicable, kip-in. (N-mm)
Pc= φPn= design axial strength from Table K2.1, kips (N)
=
Pn/Ω= allowable axial strength from Table K2.1, kips (N)
Pr= required axial strength using LRFD or ASD load combinations, as applicable, kips (N)
TABLE K3.1
Available Strengths of Round
HSS-to-HSS Moment Connections
MFtDQ
nybfsinθγβ=539
205
.
.
MFtD
nyb=
+⎛





06
13
4
2
2
.
sin
sin
θ
θ
MFtD Q
nyb fsinθ
β
=







2 30
1081
.
.
MFtD
nyb=
+⎛





06
3
4
2
2
.
sin
sin
θ
θ
P
P
M
M
M
M
r
c
rip
c-ip
rop
c-op
+





⎟+





⎟≤
−−
2
10.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 155

16.1–156 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.1 (continued)
Available Strengths of Round
HSS-to-HSS Moment Connections
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension
=1.0 θ0.3
U(1 +U) for HSS (connecting surface) in compression (K1-5)
where
Proand Mroare determined on the side of the joint that has
U the lower compression stress. Proand Mrorefer to required
strengths in the HSS. (K1-6)
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
P
FA
M
FS
ro
cg
ro
c
=+ ,
TABLE K3.1A
Limits of Applicability of Table K3.1
Branch angle: θ≥ 30°
Chord wall slenderness:
D/t ≤50 for T- and Y-connections
D/t ≤40 for cross-connections
Branch wall slenderness:
Db/tb ≤50
Db/tb ≤0.05E/Fyb
Width ratio: 0.2 < Db/D≤1.0
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
AISC_PART 16_Spec.3_C_14th Ed._February 12, 2013 12/02/13 9:48 AM Page 156

Connection Type Connection Available Flexural Strength
Branch(es) under In-Plane Bending Limit State: Chord Wall Plastification, When β≤0.85
T- and Cross-Connections
(K3-6)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Sidewall Local Yielding, When β>0.85
(K3-7)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K3-8)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Branch(es) under Out-of-Plane Bending Limit State: Chord Wall Plastification, When β≤0.85
T- and Cross-Connections
(K3-9)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Sidewall Local Yielding, When β>0.85
(K3-10)
φ=1.00 (LRFD) Ω=1.50 (ASD)
Limit State: Local Yielding of Branch/Branches Due
to Uneven Load Distribution, When β>0.85
(K3-11)
φ=0.95 (LRFD) Ω=1.58 (ASD)
Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–157
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.2
Available Strengths of Rectangular
HSS-to-HSS Moment Connections
MFtH Q
nyb f=+

+

()








2 1
2
2
1 1η β
η
β
MFZ
b
B
BHt
nybb
eoi
b
bbb=−−














1
MFt
HBB
ny
bb=
+
()
−()
+
+
()
−()






2
05 1
1
21
1
. β
β
β
β
⎥⎥

Q
f
MFZ
b
B
Bt
nybb
eoi
b
bb=−−














05 1
2
2
.
Mn=0.5 F*yt(Hb+5t)
2
Mn=F*yt(B−t)(Hb+5t)
AISC_PART 16_Spec.3_C_14th Ed._February 12, 2013 12/02/13 9:57 AM Page 157

Connection Type Connection Available Flexural Strength
Branch(es) under Out-of-Plane Bending Limit State: Chord Distortional Failure, for
T- and Cross-Connections (continued) T-Connections and Unbalanced Cross-Connections
(K3-12)
φ=1.00 (LRFD) Ω=1.50 (ASD)
For T- and cross-connections, with branch(es) under combined axial load, in-plane bending
and out-of-plane bending, or any combination of these load effects:
(K3-13)
Mc-ip= φMn= design flexural strength for in-plane bending from Table K3.2, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for in-plane bending from Table K3.2, kip-in. (N-mm)
Mc-op= φMn= design flexural strength for out-of-plane bending from Table K3.2, kip-in. (N-mm)
=
Mn/Ω= allowable flexural strength for out-of-plane bending from Table K3.2, kip-in. (N-mm)
Mr-ip= required flexural strength for in-plane bending, using LRFD or ASD load combinations,
as applicable, kip-in. (N-mm)
Mr-op= required flexural strength for out-of-plane bending, using LRFD or ASD load
combinations, as applicable, kip-in. (N-mm)
Pc= φPn= design axial strength from Table K2.2, kips (N)
=
Pn/Ω= allowable axial strength from Table K2.2, kips (N)
Pr= required axial strength using LRFD or ASD load combinations, as applicable, kips (N)
FUNCTIONS
Q
f
=1 for chord (connecting surface) in tension (K1-15)
for chord (connecting surface) in compression (K1-16)
where
Proand Mroare determined on the side of the joint that
U has the lower compression stress. Proand Mrorefer to required (K1-6)
strengths in the HSS.
Pro=Pufor LRFD; Pafor ASD. Mro=Mufor LRFD; Mafor ASD.
F*y=Fyfor T-connections and =0.8 Fyfor cross-connections
(K2-13)
16.1–158 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K3.2 (continued)
Available Strengths of Rectangular
HSS-to-HSS Moment Connections
MFtHtBHtBH
nyb=++ ( )

⎣⎢

⎦⎥
2
P
P
M
M
M
M
r
c
r-ip
c-ip
r-op
c-op
+





⎟+





⎟≤10.
=− ≤13 04 10.. .
U
β
=+
P
FA
M
FS
ro
cg
ro
c
,
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
/
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 158

Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–159
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The available strength of branch connections shall be determined for the limit state
of nonuniformity of load transfer along the line of weld, due to differences in rela-
tive stiffnessof HSSwalls in HSS-to-HSS connections and between elements in
transverse plate-to-HSS connections, as follows:
R
norPn= Fnwtwle (K4-1)
M
n-ip= FnwSip (K4-2)
M
n-op= FnwSop (K4-3)
For interaction, see Equation K3-13.
(a) For fillet welds
φ=0.75 (LRFD) Ω=2.00 (ASD)
(b) For partial-joint-penetration groove welds
φ=0.80 (LRFD) Ω=1.88 (ASD)
where
F
nw= nominal stressof weld metal(Chapter J) with no increase in strength due to
directionality of load, ksi (MPa)
S
ip= effective elastic section modulus of welds for in-plane bending (Table
K4.1), in.
3
(mm
3
)
S
op= effective elastic section modulus of welds for out-of-plane bending (Table
K4.1), in.
3
(mm
3
)
l
e= total effective weld length of groove and fillet welds to rectangular HSS for
weld strength calculations, in. (mm)
t
w= smallest effective weld throat around the perimeter of branch or plate, in.
(mm)
TABLE K3.2A
Limits of Applicability of Table K3.2
Branch angle: θ≅ 90°
Chord wall slenderness:
B/tand H/t ≤35
Branch wall slenderness:
Bb/tband Hb/tb ≤35
Width ratio:
Bb/B ≥0.25
Aspect ratio: 0.5 ≤
Hb/Bb≤2.0 and 0.5 ≤ H/B≤2.0
Material strength:
Fyand Fyb ≤52 ksi (360 MPa)
Ductility:
Fy/Fuand Fyb/Fub≤0.8 Note: ASTM A500 Grade C is acceptable.
≤125.
E
F
yb
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 159

16.1–160 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Type Connection Weld Strength
Transverse Plate T- and Cross- Effective Weld Properties
Connections Under Plate Axial Load
(K4-4)
where
le=total effective weld length for
welds on both sides of the transverse plate
T-, Y- and Cross-Connections Under Effective Weld Properties
Branch Axial Load or Bending
(K4-5)
(K4-6)
(K4-7)
(K2-13)
When β>0.85 or θ>50°,
beoi/2 shall not
exceed 2
t.
Gapped K-Connections Under Effective Weld Properties
Branch Axial Load
When θ≤50°:
(K4-8)
When θ≥60°:
(K4-9)
When 50° <θ<60°, linear interpolation shall be
used to determine
le.
TABLE K4.1
Effective Weld Properties for
Connections to Rectangular HSS
l
Bt
Ft
Ft
BB
e
y
yp p
pp=











⎟≤2
10
2
l
H
b
e
b
eoi=+
2
2
sinθ
S
tH
tb
H
ip
wb
w eoi
b=






+






3
2
sin sinθθ
St
H
B
t
B
tBb
op w
b
b
w
b
w b eoi=






+ ()−
()−(
sinθ 3
3
2
))
3
B
b
b
Bt
Ft
Ft
BB
eoi
y
yb b
bb=





⎟≤
10
l
Ht
Bt
e
bb
bb=

( )
+−( )
212
212
.
.
sinθ
l
Ht
Bt
e
bb
bb=

( )
+−( )
212
12
.
.
sinθ
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 160

Connection Type Connection Weld Strength
Overlapped K-Connections Overlapping Member Effective Weld Properties
under Branch Axial Load (all dimensions are for the overlapping branch,
i)
When 25% ≤
Ov<50%:
(K4-10)
When 50% ≤
Ov<80%:
(K4-11)
When 80% ≤
Ov≤100%:
(K4-12)
(K2-20)
(K2-21)
when
Bbi/Bb> 0.85 or θ i>50°, beoi/2 shall not
exceed 2
tand when Bbi/Bbj> 0.85 or
(180 βθ
iβθj) > 50°, beov/2 shall not exceed 2tbj
Subscript irefers to the overlapping branch
Subscript
jrefers to the overlapped branch
(K4-13)
(K4-14)
When
Bbj/B> 0.85 or θ j>50°,
le, j=2 (Hbjβ1.2tbj)/sinθ j
Sect. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–161
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE K4.1 (continued)
Effective Weld Properties for
Connections to Rectangular HSS
l
OOHO
e,i
vvbi
i
v=−












+
2
50
1
100 100sinθH H
bb
bi
ij
eoi eov
sinθθ+( )
















++
l
OH O H
e,i
vbi
i
vbi=−












+21
100 100sinθ
s sinθθ
ij
eoi eov
bb
+
( )
















++
b
Bt
Ft
Ft
BB
eoi
y
ybi bi
bi bi=





⎟≤
10
b
Bt
Ft
Ft
BB
eov
bj bj
ybj bj
ybi bi
bi bi=





⎟≤
10
Note that the force arrows shown for
overlapped K-connections may be
reversed;
iand jcontrol member identification
l
OH O H
e,i
vbi
i
vbi=−












+21
100 100sinθ
s sinθθ
ij
bi eov
Bb
+
( )
















++
l
H
b
ej
bj
j
eoj,=+
2
2
sinθ
b
Bt
Ft
Ft
BB
eoj
y
ybj bj
bj bj=





⎟≤
10
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 161

When an overlapped K-connection has been designed in accordance with Table K2.2
of this chapter, and the branch membercomponent forces normal to the chord are
80% “balanced” (i.e., the branch member forces normal to the chord face differ by
no more than 20%), the “hidden” weld under an overlapping branch may be omitted
if the remaining welds to the overlapped branch everywhere develop the full capac-
ity of the overlapped branch member walls.
The weld checks in Table K4.1 are not required if the welds are capable of develop-
ing the full strength of the branch member wall along its entire perimeter (or a plate
along its entire length).
User Note:The approach used here to allow down-sizing of welds assumes a con-
stant weld size around the full perimeter of the HSS branch. Special attention
is required for equal width (or near-equal width) connections which combine
partial-joint-penetration groove welds along the matched edges of the connection,
with fillet welds generally across the main memberface.
16.1–162 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Sect. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 162

CHAPTER L
DESIGN FOR SERVICEABILITY
This chapter addresses serviceability design requirements.
The chapter is organized as follows:
L1. General Provisions
L2. Camber
L3. Deflections
L4. Drift
L5. Vibration
L6. Wind-Induced Motion
L7. Expansion and Contraction
L8. Connection Slip
L1. GENERAL PROVISIONS
Serviceabilityis a state in which the function of a building, its appearance, main-
tainability, durability and comfort of its occupants are preserved under normal usage.
Limiting values of structural behavior for serviceability (such as maximum deflec-
tions and accelerations) shall be chosen with due regard to the intended function of
the structure. Serviceability shall be evaluated using appropriate load combinations
for the serviceability limit statesidentified.
User Note: Serviceability limit states, service loads, and appropriate load combi-
nations for serviceabilityrequirements can be found in ASCE/SEI 7, Appendix C
and Commentary to Appendix C. The performance requirements for serviceabil-
ity in this chapter are consistent with those requirements. Service loads, as
stipulated herein, are those that act on the structure at an arbitrary point in time
and are not usually taken as the nominal loads.
L2. CAMBER
Where camberis used to achieve proper position and location of the structure, the
magnitude, direction and location of camber shall be specified in the structural
drawings.
L3. DEFLECTIONS
Deflections in structural members and structural systemsunder appropriate service
load combinationsshall not impair the serviceabilityof the structure.
16.1–163
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 163

16.1–164 DEFLECTIONS [Sect. L3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Conditions to be considered include levelness of floors, alignment of
structural members, integrity of building finishes, and other factors that affect the
normal usage and function of the structure. For compositemembers, the addi-
tional deflections due to the shrinkage and creep of the concrete should be
considered.
L4. DRIFT
Driftof a structure shall be evaluated under service loadsto provide for serviceabil-
ityof the structure, including the integrity of interior partitions and exterior cladding.
Drift under strength load combinations shall not cause collision with adjacent struc-
tures or exceed the limiting values of such drifts that may be specified by the
applicable building code.
L5. VIBRATION
The effect of vibration on the comfort of the occupants and the function of the struc-
ture shall be considered. The sources of vibration to be considered include pedestrian
loading, vibrating machinery and others identified for the structure.
L6. WIND-INDUCED MOTION
The effect of wind-induced motion of buildings on the comfort of occupants shall be
considered.
L7. EXPANSION AND CONTRACTION
The effects of thermal expansion and contraction of a building shall be considered.
Damage to building claddingcan cause water penetration and may lead to corrosion.
L8. CONNECTION SLIP
The effects of connection slipshall be included in the design where slip at bolted
connections may cause deformations that impair the serviceabilityof the structure.
Where appropriate, the connection shall be designed to preclude slip.
User Note:For the design of slip-critical connections, see Sections J3.8 and J3.9.
For more information on connection slip, refer to the RCSC Specification for
Structural Joints Using High-Strength Bolts.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 164

16.1–165
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER M
FABRICATION AND ERECTION
This chapter addresses requirements for shop drawings, fabrication, shop painting and
erection.
The chapter is organized as follows:
M1. Shop and Erection Drawings
M2. Fabrication
M3. Shop Painting
M4. Erection
M1. SHOP AND ERECTION DRAWINGS
Shop and erection drawings are permitted to be prepared in stages. Shop drawings
shall be prepared in advance of fabrication and give complete information necessary
for the fabrication of the component parts of the structure, including the location,
type and size of welds and bolts. Erection drawings shall be prepared in advance of
erection and give information necessary for erection of the structure. Shop and erec-
tion drawings shall clearly distinguish between shop and field welds and bolts and
shall clearly identify pretensioned and slip-critical high-strength bolted connections.
Shop and erection drawings shall be made with due regard to speed and economy in
fabrication and erection.
M2. FABRICATION
1. Cambering, Curving and Straightening
Local application of heat or mechanical means is permitted to be used to introduce
or correct camber, curvature and straightness. The temperature of heated areas shall
not exceed 1,100 °F (593 °C) for ASTM A514/A514M and ASTM A852/A852M
steel nor 1,200 °F (649 °C) for other steels.
2. Thermal Cutting
Thermally cutedges shall meet the requirements of AWS D1.1/D1.1M, subclauses
5.15.1.2, 5.15.4.3 and 5.15.4.4 with the exception that thermally cut free edges that
will not be subject to fatigueshall be free of round-bottom gougesgreater than
3
/16
in. (5 mm) deep and sharp V-shaped notches. Gouges deeper than
3
/16in. (5 mm) and
notches shall be removed by grinding or repaired by welding.
Reentrantcorners shall be formed with a curved transition. The radius need not
exceed that required to fit the connection. The surface resulting from two straight
torch cuts meeting at a point is not considered to be curved. Discontinuous corners
are permitted where the material on both sides of the discontinuous reentrant corner
are connected to a mating piece to prevent deformation and associated stress con-
centrationat the corner.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 165

16.1–166 FABRICATION [Sect. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: Reentrant corners with a radius of
1
/2to
3
/8in. (13 to 10 mm) are
acceptable for statically loadedwork. Where pieces need to fit tightly together, a
discontinuous reentrant corner is acceptable if the pieces are connected close to
the corner on both sides of the discontinuous corner. Slots in HSSfor gussets may
be made with semicircular ends or with curved corners. Square ends are accept-
able provided the edge of the gusset is welded to the HSS.
Weld access holes shall meet the geometrical requirements of Section J1.6. Beam
copesand weld access holes in shapes that are to be galvanized shall be ground to
bright metal. For shapes with a flange thickness not exceeding 2 in. (50 mm), the
roughness of thermally cut surfaces of copes shall be no greater than a surface rough-
ness value of 2,000 μin. (50 μm) as defined in ASME B46.1. For beam copes and
weld access holes in which the curved part of the access hole is thermally cut in
ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm)
and welded built-up shapeswith material thickness greater than 2 in. (50 mm), a pre-
heat temperature of not less than 150 °F (66 °C) shall be applied prior to thermal
cutting. The thermally cut surface of access holes in ASTM A6/A6M hot-rolled
shapes with a flange thickness exceeding 2 in. (50 mm) and built-up shapes with a
material thickness greater than 2 in. (50 mm) shall be ground.
User Note:The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-
77) sample 2 may be used as a guide for evaluating the surface roughness of copes
in shapes with flanges not exceeding 2 in. (50 mm) thick.
3. Planing of Edges
Planing or finishing of sheared or thermally cutedges of plates or shapes is not
required unless specifically called for in the construction documentsor included in a
stipulated edge preparation for welding.
4. Welded Construction
The technique of welding, the workmanship, appearance, and quality of welds, and
the methods used in correcting nonconforming work shall be in accordance with
AWS D1.1/D1.1M except as modified in Section J2.
5. Bolted Construction
Parts of bolted members shall be pinned or bolted and rigidly held together during
assembly. Use of a driftpin in bolt holes during assembly shall not distort the metal
or enlarge the holes. Poor matching of holes shall be cause for rejection.
Bolt holes shall comply with the provisions of the RCSC Specification for Structural
Joints Using High-Strength Bolts, hereafter referred to as the RCSC Specification,
Section 3.3 except that thermally cutholes are permitted with a surface roughness
profile not exceeding 1,000 μin. (25 μm) as defined in ASME B46.1. Gougesshall not
exceed a depth of
1
/16in. (2 mm). Water jet cut holes are also permitted.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 166

Sect. M2.] FABRICATION 16.1–167
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-
77) sample 3 may be used as a guide for evaluating the surface roughness of
thermally cut holes.
Fully inserted finger shims, with a total thickness of not more than
1
/4in. (6 mm)
within a joint, are permitted without changing the strength (based upon hole type) for
the design of connections. The orientation of such shims is independent of the direc-
tion of application of the load.
The use of high-strength bolts shall conform to the requirements of the RCSC
Specification, except as modified in Section J3.
6. Compression Joints
Compression joints that depend on contact bearingas part of the splicestrength shall
have the bearing surfaces of individual fabricated pieces prepared by milling, sawing
or other suitable means.
7. Dimensional Tolerances
Dimensional tolerances shall be in accordance with Chapter 6 of the AISC Code of
Standard Practice for Steel Buildings and Bridges, hereafter referred to as the Code
of Standard Practice.
8. Finish of Column Bases
Columnbases and base plates shall be finished in accordance with the following
requirements:
(1) Steel bearing plates 2 in. (50 mm) or less in thickness are permitted without
milling provided a satisfactory contact bearing is obtained. Steel bearing plates
over 2 in. (50 mm) but not over 4 in. (100 mm) in thickness are permitted to be
straightened by pressing or, if presses are not available, by milling for bearing sur-
faces, except as noted in subparagraphs 2 and 3 of this section, to obtain a
satisfactory contact bearing. Steel bearing plates over 4 in. (100 mm) in thickness
shall be milled for bearing surfaces, except as noted in subparagraphs 2 and 3 of
this section.
(2) Bottom surfaces of bearing plates and column bases that are grouted to ensure
full bearing contact on foundations need not be milled.
(3) Top surfaces of bearing plates need not be milled when complete-joint-penetra-
tion groove weldsare provided between the column and the bearing plate.
9. Holes for Anchor Rods
Holes for anchor rods are permitted to be thermally cutin accordance with the pro-
visions of Section M2.2.
10. Drain Holes
When water can collect inside HSSor box members, either during construction or
during service, the member shall be sealed, provided with a drain hole at the base, or
protected by other suitable means.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 167

11. Requirements for Galvanized Members
Members and parts to be galvanized shall be designed, detailed and fabricated to pro-
vide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup
in enclosed parts.
User Note:See The Design of Products to be Hot-Dip Galvanized After Fabrication,
American Galvanizer’s Association, and ASTM A123, A153, A384 and A780 for
useful information on design and detailing of galvanized members. See Section
M2.2 for requirements for copesof members to be galvanized.
M3. SHOP PAINTING
1. General Requirements
Shop painting and surface preparation shall be in accordance with the provisions in
Chapter 6 of the Code of Standard Practice.
Shop paint is not required unless specified by the contract documents.
2. Inaccessible Surfaces
Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned
and painted prior to assembly, if required by the construction documents.
3. Contact Surfaces
Paint is permitted in bearing-type connections. For slip-critical connections, the fay-
ing surfacerequirements shall be in accordance with the RCSC Specification,
Section 3.2.2(b).
4. Finished Surfaces
Machine-finished surfaces shall be protected against corrosion by a rust inhibitive
coating that can be removed prior to erection, or which has characteristics that make
removal prior to erection unnecessary.
5. Surfaces Adjacent to Field Welds
Unless otherwise specified in the design documents, surfaces within 2 in. (50 mm)
of any field weld location shall be free of materials that would prevent proper weld-
ing or produce objectionable fumes during welding.
M4. ERECTION
1. Column Base Setting
Columnbases shall be set level and to correct elevation with full bearing on concrete
or masonry as defined in Chapter 7 of the Code of Standard Practice.
16.1–168 FABRICATION [Sect. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 168

Sect. M4.] ERECTION 16.1–169
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Stability and Connections
The frame of structural steelbuildings shall be carried up true and plumb within the
limits defined in Chapter 7 of the Code of Standard Practice. As erection progresses,
the structure shall be secured to support dead, erection and other loads anticipated
to occur during the period of erection. Temporary bracingshall be provided, in
accordance with the requirements of the Code of Standard Practice, wherever nec-
essary to support the loads to which the structure may be subjected, including
equipment and the operation of same. Such bracing shall be left in place as long as
required for safety.
3. Alignment
No permanent bolting or welding shall be performed until the adjacent affected por-
tions of the structure have been properly aligned.
4. Fit of Column Compression Joints and Base Plates
Lack of contact bearing not exceeding a gap of
1
/16in. (2 mm), regardless of the type
of spliceused (partial-joint-penetration groove weldedor bolted), is permitted. If the
gap exceeds
1
/16in. (2 mm), but is equal to or less than
1
/4in. (6 mm), and if an engi-
neering investigation shows that sufficient contact area does not exist, the gap shall
be packed out with nontapered steel shims. Shims need not be other than mild steel,
regardless of the grade of the main material.
5. Field Welding
Surfaces in and adjacent to jointsto be field welded shall be prepared as necessary
to assure weld quality. This preparation shall include surface preparation necessary
to correct for damage or contamination occurring subsequent to fabrication.
6. Field Painting
Responsibility for touch-up painting, cleaning and field painting shall be allocated in
accordance with accepted local practices, and this allocation shall be set forth explic-
itly in the contract documents.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 169

16.1–170
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER N
QUALITY CONTROL AND QUALITY ASSURANCE
This chapter addresses minimum requirements for quality control, quality assuranceand
nondestructive testingfor structural steelsystems and steel elements of composite members
for buildings and other structures.
User Note: This chapter does not address quality control or quality assurance for con-
crete reinforcing bars, concrete materials or placement of concrete for composite
members. This chapter does not address quality control or quality assurance for surface
preparation or coatings.
User Note:The inspection of steel (open-web) joists and joist girders, tanks, pressure
vessels, cables, cold-formed steel products, or gage metal products is not addressed in
this Specification.
The Chapter is organized as follows:
N1. Scope
N2. Fabricator and Erector Quality Control Program
N3. Fabricator and Erector Documents
N4. Inspection and Nondestructive Testing Personnel
N5. Minimum Requirements for Inspection of Structural Steel Buildings
N6. Minimum Requirements for Inspection of Composite Construction
N7. Approved Fabricators and Erectors
N8. Nonconforming Material and Workmanship
N1. SCOPE
Quality control(QC) as specified in this chapter shall be provided by the fabricator
and erector. Quality assurance(QA) as specified in this chapter shall be provided by
others when required by the authority having jurisdiction(AHJ), applicable building
code (ABC), purchaser, owner, or engineer of record(EOR). Nondestructive testing
(NDT) shall be performed by the agency or firm responsible for quality assurance,
except as permitted in accordance with Section N7.
User Note:The QA/QC requirements in Chapter N are considered adequate and
effective for most steel structures and are strongly encouraged without modifica-
tion. When the ABC and AHJ requires the use of a quality assurance plan, this
chapter outlines the minimum requirements deemed effective to provide satisfac-
tory results in steel building construction. There may be cases where supplemental
inspections are advisable. Additionally, where the contractor’s quality control pro-
gramhas demonstrated the capability to perform some tasks this plan has assigned
to quality assurance, modification of the plan could be considered.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 170

Sect. N3.] FABRICATOR AND ERECTOR DOCUMENTS 16.1–171
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:The producers of materials manufactured in accordance with standard
specificationsreferenced in Section A3 in this Specification, and steel deck man-
ufacturers, are not considered to be fabricators or erectors.
N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM
The fabricator and erector shall establish and maintain quality controlprocedures and
perform inspections to ensure that their work is performed in accordance with this
Specification and the construction documents.
Material identification procedures shall comply with the requirements of Section 6.1
of the Code of Standard Practice, and shall be monitored by the fabricator’s quality
control inspector(QCI).
The fabricator’s QCI shall inspect the following as a minimum, as applicable:
(1) Shop welding, high-strength bolting, and details in accordance with Section N5
(2) Shop cut and finished surfacesin accordance with Section M2
(3) Shop heating for straightening, cambering and curving in accordance with
Section M2.1
(4) Tolerances for shop fabrication in accordance with Section 6 of the Code of
Standard Practice
The erector’s QCI shall inspect the following as a minimum, as applicable:
(1) Field welding, high-strength bolting, and details in accordance with Section N5
(2) Steel deck and headed steel stud anchor placement and attachment in accordance
with Section N6
(3) Field cut surfaces in accordance with Section M2.2
(4) Field heating for straightening in accordance with Section M2.1
(5) Tolerances for field erection in accordance with Section 7.13 of the Code of
Standard Practice.
N3. FABRICATOR AND ERECTOR DOCUMENTS
1. Submittals for Steel Construction
The fabricator or erector shall submit the following documents for review by the
engineer of record(EOR) or the EOR’s designee, in accordance with Section 4 or
A4.4 of the Code of Standard Practice, prior to fabrication or erection, as applicable:
(1) Shop drawings, unless shop drawings have been furnished by others
(2) Erection drawings, unless erection drawings have been furnished by others
2. Available Documents for Steel Construction
The following documents shall be available in electronic or printed form for review
by the EOR or the EOR’s designee prior to fabrication or erection, as applicable,
unless otherwise required in the contract documents to be submitted:
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 171

16.1–172 FABRICATOR AND ERECTOR DOCUMENTS [Sect. N3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) For main structural steelelements, copies of material test reports in accordance
with Section A3.1.
(2) For steel castings and forgings, copies of material test reports in accordance with
Section A3.2.
(3) For fasteners, copies of manufacturer’s certifications in accordance with Section
A3.3.
(4) For deck fasteners, copies of manufacturer’s product data sheets or catalog data.
The data sheets shall describe the product, limitations of use, and recommended
or typical installation instructions.
(5) For anchor rods and threaded rods, copies of material test reports in accordance
with Section A3.4.
(6) For welding consumables, copies of manufacturer’s certifications in accordance
with Section A3.5.
(7) For headed stud anchors, copies of manufacturer’s certifications in accordance
with Section A3.6.
(8) Manufacturer’s product data sheets or catalog data for welding filler metalsand
fluxes to be used. The data sheets shall describe the product, limitations of use,
recommended or typical welding parameters, and storage and exposure require-
ments, including baking, if applicable.
(9) Welding procedure specifications (WPSs).
(10) Procedure qualification records (PQRs) for WPSs that are not prequalified in
accordance with AWS D1.1/D1.1M or AWS D1.3/D1.3M, as applicable.
(11) Welding personnel performance qualification records (WPQR) and continuity
records.
(12) Fabricator’s or erector’s, as applicable, written quality control manual that shall
include, as a minimum:
(i) Material control procedures
(ii) Inspection procedures
(iii) Nonconformance procedures
(13) Fabricator’s or erector’s, as applicable, QC inspector qualifications.
N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL
1. Quality Control Inspector Qualifications
Quality control(QC) welding inspection personnel shall be qualified to the satisfac-
tion of the fabricator’s or erector’s QC program, as applicable, and in accordance
with either of the following:
(a) Associate welding inspectors (AWI) or higher as defined in AWS B5.1, Standard
for the Qualification of Welding Inspectors, or
(b) Qualified under the provisions of AWS D1.1/D1.1M subclause 6.1.4
QC bolting inspection personnel shall be qualified on the basis of documented train-
ing and experience in structural bolting inspection.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 172

2. Quality Assurance Inspector Qualifications
Quality assurance(QA) welding inspectors shall be qualified to the satisfaction of
the QA agency’s written practice, and in accordance with either of the following:
(a) Welding inspectors (WIs) or senior welding inspectors (SWIs), as defined in AWS
B5.1, Standard for the Qualification of Welding Inspectors, except associate weld-
ing inspectors (AWIs) are permitted to be used under the direct supervision of
WIs, who are on the premises and available when weld inspection is being con-
ducted, or
(b) Qualified under the provisions of AWS D1.1/D1.1M, subclause 6.1.4
QA bolting inspection personnel shall be qualified on the basis of documented train-
ing and experience in structural bolting inspection.
3. NDT Personnel Qualifications
Nondestructive testingpersonnel, for NDT other than visual, shall be qualified in
accordance with their employer’s written practice, which shall meet or exceed the
criteria of AWS D1.1/D1.1M Structural Welding Code—Steel,subclause 6.14.6, and:
(a) American Society for Nondestructive Testing (ASNT) SNT-TC-1A, Recommended
Practice for the Qualification and Certification of Nondestructive Testing Personnel,
or
(b) ASNT CP-189, Standard for the Qualification and Certification of Nondestructive
Testing Personnel.
N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL
STEEL BUILDINGS
1. Quality Control
QC inspection tasks shall be performed by the fabricator’s or erector’s quality con-
trol inspector(QCI), as applicable, in accordance with Sections N5.4, N5.6 and
N5.7.
Tasks in Tables N5.4-1 through N5.4-3 and Tables N5.6-1 through N5.6-3 listed for
QC are those inspections performed by the QCI to ensure that the work is performed
in accordance with the construction documents.
For QC inspection, the applicable construction documents are the shop drawingsand
the erection drawings, and the applicable referenced specifications, codes and stan-
dards.
User Note:The QCI need not refer to the design drawingsand project specifica-
tions. The Code of Standard Practice, Section 4.2(a), requires the transfer of
information from the Contract Documents (design drawings and project specifi-
cation) into accurate and complete shop and erection drawings, allowing QC
inspection to be based upon shop and erection drawings alone.
Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–173
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 173

2. Quality Assurance
Quality assurance(QA) inspection of fabricated items shall be made at the fabrica-
tor’s plant. The quality assurance inspector(QAI) shall schedule this work to
minimize interruption to the work of the fabricator.
QA inspection of the erected steel system shall be made at the project site. The QAI
shall schedule this work to minimize interruption to the work of the erector.
The QAI shall review the material test reports and certifications as listed in Section
N3.2 for compliance with the construction documents.
QA inspection tasks shall be performed by the QAI, in accordance with Sections
N5.4, N5.6 and N5.7.
Tasks in Tables N5.4-1 through N5.4-3 and N5.6-1 through N5.6-3 listed for QA are
those inspections performed by the QAI to ensure that the work is performed in
accordance with the construction documents.
Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA
agency shall submit to the fabricator and erector:
(1) Inspection reports
(2)Nondestructive testingreports
3. Coordinated Inspection
Where a task is noted to be performed by both QC and QA, it is permitted to coor-
dinate the inspection function between the QCI and QAI so that the inspection
functions are performed by only one party. Where QA relies upon inspection func-
tions performed by QC, the approval of the engineer of recordand the authority
having jurisdictionis required.
4. Inspection of Welding
Observation of welding operations and visual inspection of in-process and completed
welds shall be the primary method to confirm that the materials, procedures and
workmanship are in conformance with the construction documents. For structural
steel, all provisions of AWS D1.1/D1.1M Structural Welding Code—Steelfor stati-
cally loadedstructures shall apply.
User Note:Section J2 of this Specification contains exceptions to AWS
D1.1/D1.1M.
As a minimum, welding inspection tasks shall be in accordance with Tables N5.4-
1, N5.4-2 and N5.4-3. In these tables, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each welded joint or member.
16.1–174 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 174

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–175
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.4-1
Inspection Tasks Prior to Welding
Inspection Tasks Prior to Welding QC QA
Welding procedure specifications (WPSs) available P P
Manufacturer certifications for welding consumables available P P
Material identification (type/grade) O O
Welder identification system
1
OO
Fit-up of groove welds (including joint geometry)
• Joint preparation
• Dimensions (alignment, root opening, root face, bevel)
• Cleanliness (condition of steel surfaces)
OO
• Tacking (tack weld quality and location)
• Backing type and fit (if applicable)
Configuration and finish of access holes O O
Fit-up of fillet welds
• Dimensions (alignment, gaps at root)
• Cleanliness (condition of steel surfaces)
OO
• Tacking (tack weld quality and location)
Check welding equipment O —
1
The fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint
or member can be identified. Stamps, if used, shall be the low-stress type.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 175

16.1–176 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.4-2
Inspection Tasks During Welding
Inspection Tasks During Welding QC QA
Use of qualified welders O O
Control and handling of welding consumables
• Packaging O O
• Exposure control
No welding over cracked tack welds O O
Environmental conditions
• Wind speed within limits O O
• Precipitation and temperature
WPS followed
• Settings on welding equipment
• Travel speed
• Selected welding materials
OO
• Shielding gas type/flow rate
• Preheat applied
• Interpass temperature maintained (min./max.)
• Proper position (F, V, H, OH)
Welding techniques
• Interpass and final cleaning
OO
• Each pass within profile limitations
• Each pass meets quality requirements
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 176

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–177
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5. Nondestructive Testing of Welded Joints
5a. Procedures
Ultrasonic testing (UT), magnetic particle testing (MT), penetrant testing (PT) and
radiographic testing (RT), where required, shall be performed by QA in accordance
with AWS D1.1/D1.1M. Acceptance criteria shall be in accordance with AWS
D1.1/D1.1M for statically loadedstructures, unless otherwise designated in the
design drawingsor project specifications.
5b. CJP Groove Weld NDT
For structures in Risk Category III or IV of Table 1.5-1, Risk Category of Buildings
and Other Structures for Flood, Wind, Snow, Earthquake and Ice Loads, of ASCE/
SEI 7, Minimum Design Loads for Buildings and Other Structures, UT shall be per-
formed by QA on all CJP groove welds subject to transversely applied tension
loading in butt, T- and corner joints, in materials
5
/16in. (8 mm) thick or greater. For
structures in Risk Category II, UT shall be performed by QA on 10% of CJP groove
welds in butt, T- and corner joints subject to transversely applied tension loading, in
materials
5
/16in. (8 mm) thick or greater.
TABLE N5.4-3
Inspection Tasks After Welding
Inspection Tasks After Welding QC QA
Welds cleaned O O
Size, length and location of welds P P
Welds meet visual acceptance criteria
Crack prohibition
Weld/base-metal fusion
Crater cross section
PP
Weld profiles
Weld size
Undercut
Porosity
Arc strikes P P
k-area
1
PP
Backing removed and weld tabs removed (if required) P P
Repair activities P P
Document acceptance or rejection of welded joint or member P P
1
When welding of doubler plates, continuity plates or stiffeners has been performed in the k-area, visually
inspect the web
k-area for cracks within 3 in. (75 mm) of the weld.
AISC_PART 16_Spec.3_C:14th Ed._ 2/17/12 12:14 PM Page 177

16.1–178 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note: For structures in Risk Category I, NDT of CJP groove welds is not
required. For all structures in all Risk Categories, NDT of CJP groove welds in
materials less than
5
/16in. (8 mm) thick is not required.
5c. Access Hole NDT
Thermally cutsurfaces of access holes shall be tested by QA using MT or PT, when
the flange thickness exceeds 2 in. (50 mm) for rolled shapes, or when the web thick-
ness exceeds 2 in. (50 mm) for built-up shapes. Any crack shall be deemed
unacceptable regardless of size or location.
User Note:See Section M2.2.
5d. Welded Joints Subjected to Fatigue
When required by Appendix 3, Table A-3.1, welded joints requiring weld soundness
to be established by radiographic or ultrasonic inspection shall be tested by QA as
prescribed. Reduction in the rate of UT is prohibited.
5e. Reduction of Rate of Ultrasonic Testing
The rate of UT is permitted to be reduced if approved by the EOR and the AHJ.
Where the initial rate for UT is 100%, the NDT rate for an individual welder or weld-
ing operator is permitted to be reduced to 25%, provided the reject rate, the number
of welds containing unacceptable defects divided by the number of welds completed,
is demonstrated to be 5% or less of the welds tested for the welder or welding
operator. A sampling of at least 40 completed welds for a job shall be made for
such reduction evaluation. For evaluating the reject rate of continuous welds over
3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less, each 12 in.
(300 mm) increment or fraction thereof shall be considered as one weld. For evalu-
ating the reject rate on continuous welds over 3 ft (1 m) in length where the effective
throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or fraction thereof
shall be considered one weld.
5f. Increase in Rate of Ultrasonic Testing
For structures in Risk Category II, where the initial rate for UT is 10%, the NDT rate
for an individual welder or welding operator shall be increased to 100% should the
reject rate, the number of welds containing unacceptable defects divided by the num-
ber of welds completed, exceeds 5% of the welds tested for the welder or welding
operator. A sampling of at least 20 completed welds for a job shall be made prior
to implementing such an increase. When the reject rate for the welder or welding
operator, after a sampling of at least 40 completed welds, has fallen to 5% or less, the
rate of UT shall be returned to 10%. For evaluating the reject rate of continuous
welds over 3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less,
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 178

Sect. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–179
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
each 12-in. (300 mm) increment or fraction thereof shall be considered as one weld.
For evaluating the reject rate on continuous welds over 3 ft (1 m) in length where the
effective throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or frac-
tion thereof shall be considered one weld.
5g. Documentation
All NDT performed shall be documented. For shop fabrication, the NDT report shall
identify the tested weld by piece mark and location in the piece. For field work, the
NDT report shall identify the tested weld by location in the structure, piece mark, and
location in the piece.
When a weld is rejected on the basis of NDT, the NDT record shall indicate the loca-
tion of the defect and the basis of rejection.
6. Inspection of High-Strength Bolting
Observation of bolting operations shall be the primary method used to confirm
that the materials, procedures and workmanship incorporated in construction are in
conformance with the construction documentsand the provisions of the RCSC
Specification.
(1) For snug-tight joints, pre-installation verification testing as specified in Table
N5.6-1 and monitoring of the installation procedures as specified in Table
N5.6-2 are not applicable. The QCI and QAI need not be present during the
installation of fastenersin snug-tight joints.
(2) For pretensioned jointsand slip-critical joints, when the installer is using the
turn-of-nut methodwith matchmarking techniques, the direct-tension-indicator
method, or the twist-off-type tension control bolt method, monitoring of bolt pre-
tensioning procedures shall be as specified in Table N5.6-2. The QCI and QAI
need not be present during the installation of fasteners when these methods are
used by the installer.
(3) For pretensioned joints and slip-critical joints, when the installer is using the
calibrated wrench method or the turn-of-nut method without matchmarking,
monitoring of bolt pretensioning procedures shall be as specified in Table
N5.6-2. The QCI and QAI shall be engaged in their assigned inspection duties
during installation of fasteners when these methods are used by the installer.
As a minimum, bolting inspection tasks shall be in accordance with Tables
N5.6-1, N5.6-2 and N5.6-3. In these tables, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each bolted connection.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 179

16.1–180 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE N5.6-1
Inspection Tasks Prior to Bolting
Inspection Tasks Prior to Bolting QC QA
Manufacturer’s certifications available for fastener materials O P
Fasteners marked in accordance with ASTM requirements O O
Proper fasteners selected for the joint detail (grade, type, bolt length
if threads are to be excluded from shear plane)
OO
Proper bolting procedure selected for joint detail O O
Connecting elements, including the appropriate faying surface condition
and hole preparation, if specified, meet applicable requirements
OO
Pre-installation verification testing by installation personnel observed and
documented for fastener assemblies and methods used
PO
Proper storage provided for bolts, nuts, washers and other fastener
components
OO
TABLE N5.6-2
Inspection Tasks During Bolting
Inspection Tasks During Bolting QC QA
Fastener assemblies, of suitable condition, placed in all holes and
washers (if required) are positioned as required
OO
Joint brought to the snug-tight condition prior to the pretensioning
operation
OO
Fastener component not turned by the wrench prevented from rotating O O
Fasteners are pretensioned in accordance with the RCSC
Specification,
progressing systematically from the most rigid point toward the O O
free edges
TABLE N5.6-3
Inspection Tasks After Bolting
Inspection Tasks After Bolting QC QA
Document acceptance or rejection of bolted connections P P
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 180

Sect. N6.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–181
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7. Other Inspection Tasks
The fabricator’s QCI shall inspect the fabricated steel to verify compliance with the
details shown on the shop drawings, such as proper application of joint details at each
connection. The erector’s QCI shall inspect the erected steel frame to verify compli-
ance with the details shown on the erection drawings, such as braces, stiffeners,
member locations and proper application of joint details at each connection.
The QAI shall be on the premises for inspection during the placement of anchor rods
and other embedments supporting structural steel for compliance with the construc-
tion documents. As a minimum, the diameter, grade, type and length of the anchor
rod or embedded item, and the extent or depth of embedment into the concrete, shall
be verified prior to placement of concrete.
The QAI shall inspect the fabricated steel or erected steel frame, as appropriate, to
verify compliance with the details shown on the construction documents, such as
braces, stiffeners, member locations and proper application of joint details at each
connection.
N6. MINIMUM REQUIREMENTS FOR INSPECTION OF
COMPOSITE CONSTRUCTION
Inspection of structural steel and steel deck used in composite construction shall
comply with the requirements of this Chapter.
For welding of steel headed stud anchors, the provisions of AWS D1.1/D1.1M,
Structural Welding Code—Steel,apply.
For welding of steel deck, observation of welding operations and visual inspection
of in-process and completed welds shall be the primary method to confirm that the
materials, procedures and workmanship are in conformance with the construction
documents. All applicable provisions of AWS D1.3/D1.3M, Structural Welding
Code—Sheet Steel,shall apply. Deck welding inspection shall include verification of
the welding consumables, welding procedure specificationsand qualifications of
welding personnel prior to the start of the work, observations of the work in progress,
and a visual inspection of all completed welds. For steel deck attached by fastening
systems other than welding, inspection shall include verification of the fastenersto
be used prior to the start of the work, observations of the work in progress to confirm
installation in conformance with the manufacturer’s recommendations, and a visual
inspection of the completed installation.
For those items for quality control(QC) in Table N6.1 that contain an observe des-
ignation, the QC inspection shall be performed by the erector’s quality control
inspector (QCI). In Table N6.1, the inspection tasks are as follows:
O – Observe these items on a random basis. Operations need not be delayed pending
these inspections.
P – Perform these tasks for each steel element.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 181

16.1–182 MINIMUM REQUIREMENTS FOR INSPECTION [Sect. N6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
N7. APPROVED FABRICATORS AND ERECTORS
Quality assurance(QA) inspections, except nondestructive testing(NDT), may be
waived when the work is performed in a fabricating shop or by an erector approved
by the authority having jurisdiction(AHJ) to perform the work without QA. NDT of
welds completed in an approved fabricator’s shop may be performed by that fabri-
cator when approved by the AHJ. When the fabricator performs the NDT, the QA
agency shall review the fabricator’s NDT reports.
At completion of fabrication, the approved fabricator shall submit a certificate of
compliance to the AHJ stating that the materials supplied and work performed by the
fabricator are in accordance with the construction documents. At completion of erec-
tion, the approved erector shall submit a certificate of compliance to the AHJ stating
that the materials supplied and work performed by the erector are in accordance with
the construction documents.
N8. NONCONFORMING MATERIAL AND WORKMANSHIP
Identification and rejection of material or workmanship that is not in conformance
with the construction documentsshall be permitted at any time during the progress
of the work. However, this provision shall not relieve the owner or the inspector of
the obligation for timely, in-sequence inspections. Nonconforming material and
workmanship shall be brought to the immediate attention of the fabricator or erec-
tor, as applicable.
Nonconforming material or workmanship shall be brought into conformance, or
made suitable for its intended purpose as determined by the engineer of record.
Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA
agency shall submit to the fabricator and erector:
(1) Nonconformance reports
(2) Reports of repair, replacement or acceptance of nonconforming items
TABLE N6.1
Inspection of Steel Elements of Composite
Construction Prior to Concrete Placement
Inspection of Steel Elements of Composite Construction
Prior to Concrete Placement QC QA
Placement and installation of steel deck P P
Placement and installation of steel headed stud anchors P P
Document acceptance or rejection of steel elements P P
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 182

16.1–183
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 1
DESIGN BY INELASTIC ANALYSIS
This appendix addresses design by inelastic analysis, in which consideration of the redistri-
bution of member and connection forces and moments as a result of localized yielding is
permitted.
The appendix is organized as follows:
1.1. General Requirements
1.2. Ductility Requirements
1.3. Analysis Requirements
1.1. GENERAL REQUIREMENTS
Design by inelastic analysisshall be conducted in accordance with Section B3.3,
using load and resistance factor design(LRFD). The design strength of the struc-
tural systemand its members and connections shall equal or exceed the required
strengthas determined by the inelastic analysis. The provisions of this Appendix do
not apply to seismic design.
The inelastic analysis shall take into account: (1) flexural, shear and axial member
deformations, and all other component and connectiondeformations that contribute
to the displacements of the structure; (2) second-order effects (including P-Δand
P-δeffects); (3) geometric imperfections; (4) stiffnessreductions due to inelasticity,
including the effect of residual stressesand partial yielding of the cross section; and
(5) uncertainty in system, member, and connection strength and stiffness.
Strength limit statesdetected by an inelastic analysis that incorporates all of the
above requirements are not subject to the corresponding provisions of the
Specification when a comparable or higher level of reliability is provided by the
analysis. Strength limit states not detected by the inelastic analysis shall be evaluated
using the corresponding provisions of Chapters D, E, F, G, H, I, J and K.
Connections shall meet the requirements of Section B3.6.
Members and connections subject to inelastic deformations shall be shown to have
adequate ductility consistent with the intended behavior of the structural system.
Force redistribution due to rupture of a member or connection is not permitted.
Any method that uses inelastic analysis to proportion members and connections to
satisfy these general requirements is permitted. A design method based on inelastic
analysis that meets the above strength requirements, the ductility requirements of
Section 1.2, and the analysis requirements of Section 1.3 satisfies these general
requirements.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 183

16.1–184 DUCTILITY REQUIREMENTS [App. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1.2. DUCTILITY REQUIREMENTS
Members and connections with elements subject to yielding shall be proportioned
such that all inelastic deformation demands are less than or equal to their inelastic
deformation capacities. In lieu of explicitly ensuring that the inelastic deformation
demands are less than or equal to their inelastic deformation capacities, the follow-
ing requirements shall be satisfied for steel members subject to plastic hinging.
1. Material
The specified minimum yield stress, Fy, of members subject to plastic hinging shall
not exceed 65 ksi (450 MPa).
2. Cross Section
The cross section of members at plastic hingelocations shall be doubly symmetric
with width-to-thickness ratios of their compression elements not exceeding λ
p d,
where λ
p dis equal to λ p from Table B4.1b except as modified below:
(a) For the width-to-thickness ratio, h/t
w, of webs of I-shaped sections, rectangular
HSS, and box-shaped sections subject to combined flexure and compression
(i) When P
u/φcPy≤0.125
(A-1-1)
(ii) When P
u/φcPy>0.125
(A-1-2)
where
h=as defined in Section B4.1, in. (mm)
t
w=web thickness, in. (mm)
P
u=required axial strengthin compression, kips (N)
P
y=FyAg=axial yield strength, kips (N)
φ
c=resistance factorfor compression =0.90
(b) For the width-to-thickness ratio, b/t, of flanges of rectangular HSS and box-
shaped sections, and for flange cover plates, and diaphragm platesbetween lines
of fastenersor welds
(A-1-3)
where
b=as defined in Section B4.1, in. (mm)
t=as defined in Section B4.1, in. (mm)
λ
φpd
y
u
cy
E
F
P
P
=−






376 1
275
.
.
λ
φpd
y
u
cy y
E
F
P
P
E
F
=−






≥112 233 149.. .
λpd y EF=094./
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 184

App. 1.2.] DUCTILITY REQUIREMENTS 16.1–185
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(c) For the diameter-to-thickness ratio, D/t, of circular HSS in flexure
λ
p d =0.045E/F y (A-1-4)
where
D=outside diameter of round HSS, in. (mm)
3. Unbraced Length
In prismatic member segments that contain plastic hinges, the laterally unbraced
length, L
b, shall not exceed L pd, determined as follows. For members subject to flex-
ure only, or to flexure and axial tension, L
bshall be taken as the length between
points braced against lateral displacement of the compression flange, or between
points braced to prevent twist of the cross section. For members subject to flexure
and axial compression, L
bshall be taken as the length between points braced against
both lateral displacement in the minor axis direction and twist of the cross section.
(a) For I-shaped members bent about their major axis:
(A-1-5)
where
r
y=radius of gyration about minor axis, in. (mm)
(i) When the magnitude of the bending moment at any location within the
unbraced length exceeds M
2
(A-1-6a)
Otherwise:
(ii) When M
mid≤(M1+M2)/2
(A-1-6b)
(iii) When M
mid>(M1+M2)/2
(A-1-6c)
where
M
1= smaller moment at end of unbraced length, kip-in. (N-mm)
M
2= larger moment at end of unbraced length, kip-in. (N-mm). M 2shall be
taken as positive in all cases.
M
mid= moment at middle of unbraced length, kip-in. (N-mm)
= effective moment at end of unbraced length opposite from M
2, kip-in.
(N-mm)
The moments M
1and M midare individually taken as positive when they cause
compression in the same flange as the moment M
2and negative otherwise.
L
M
M
E
F
rpd
y
y=−
′⎡







0 12 0 076
1
2
..
MM12 1′=+/
MM11
′=
MMMM mid1222′=−<
M1

AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 185

(b) For solid rectangular bars and for rectangular HSS and box-shaped members bent
about their major axis
(A-1-7)
For all types of members subject to axial compression and containing plastic hinges,
the laterally unbraced lengths about the cross section major and minor axes shall not
exceed and , respectively.
There is no L
pdlimit for member segments containing plastic hinges in the following
cases:
(1) Members with circular or square cross sections subject only to flexure or to com-
bined flexure and tension
(2) Members subject only to flexure about their minor axis or combined tension and
flexure about their minor axis
(3) Members subject only to tension
4. Axial Force
To assure adequate ductility in compression members with plastic hinges, the
design strengthin compression shall not exceed 0.75F
yAg.
1.3. ANALYSIS REQUIREMENTS
The structural analysisshall satisfy the general requirements of Section 1.1. These
requirements are permitted to be satisfied by a second-order inelastic analysismeet-
ing the requirements of this Section.
Exception:
For continuous beamsnot subject to axial compression, a first-order inelastic or plas-
tic analysisis permitted and the requirements of Sections 1.3.2 and 1.3.3 are waived.
User Note: Refer to the Commentary for guidance in conducting a traditional
plastic analysis and design in conformance with these provisions.
1. Material Properties and Yield Criteria
The specified minimum yield stress, F y, and the stiffnessof all steel members and con-
nections shall be reduced by a factor of 0.90 for the analysis, except as noted below
in Section 1.3.3.
The influence of axial force, major axis bending moment, and minor axis bending
moment shall be included in the calculation of the inelastic response.
The plastic strength of the member cross section shall be represented in the analysis
either by an elastic-perfectly-plastic yield criterion expressed in terms of the axial
16.1–186 DUCTILITY REQUIREMENTS [App. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
471.rEFxy 471.rEFyy
L
M
M
E
F
r
E
F
rpd
y
y
y
y=−
′⎡







≥017 010 010
1
2
.. .
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 186

App. 1.3.] ANALYSIS REQUIREMENTS 16.1–187
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
force, major axis bending moment, and minor axis bending moment, or by explicit
modeling of the material stress-strain response as elastic-perfectly-plastic.
2. Geometric Imperfections
The analysis shall include the effects of initial geometric imperfections. This shall be
done by explicitly modeling the imperfections as specified in Section C2.2a or by the
application of equivalent notional loads as specified in Section C2.2b.
3. Residual Stress and Partial Yielding Effects
The analysis shall include the influence of residual stresses and partial yielding. This
shall be done by explicitly modeling these effects in the analysis or by reducing the
stiffnessof all structural componentsas specified in Section C2.3.
If the provisions of Section C2.3 are used, then:
(1) The 0.9 stiffness reduction factor specified in Section 1.3.1 shall be replaced by
the reduction of the elastic modulus Eby 0.8 as specified in Section C2.3, and
(2) The elastic-perfectly-plastic yield criterion, expressed in terms of the axial
force, major axis bending moment, and minor axis bending moment, shall sat-
isfy the cross section strength limit defined by Equations H1-1a and H1-1b
using P
c=0.9P y, Mcx=0.9M pxand M cy=0.9M py.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 187

16.1–188
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 2
DESIGN FOR PONDING
This appendix provides methods for determining whether a roof system has adequate
strength and stiffnessto resist ponding.
The appendix is organized as follows:
2.1. Simplified Design for Ponding
2.2. Improved Design for Ponding
2.1. SIMPLIFIED DESIGN FOR PONDING
The roof system shall be considered stable for pondingand no further investigation
is needed if both of the following two conditions are met:
C
p+0.9C s≤0.25 (A-2-1)
I
d≥25(S
4
)10
–6
(A-2-2)
(S.I.: I
d≥3 940 S
4
) (A-2-2M)
where
(A-2-3)
(A-2-3M)
(A-2-4)
(A-2-4M)
I
d= moment of inertia of the steel deck supported on secondary members, in.
4
per
ft (mm
4
per m)
I
p= moment of inertia of primary members, in.
4
(mm
4
)
I
s= moment of inertia of secondary members, in.
4
(mm
4
)
L
p= length of primary members, ft (m)
L
s= length of secondary members, ft (m)
S= spacing of secondary members, ft (m)
C
LL
Ip
sp
p=
32
10
4
7
C
LL
Ip
sp
p=
504
4
(S.I.)
C
SL
Is
s
s=
32
10
4
7
C
SL
Is
s
s=
504
4
(S.I.)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 188

For trusses and steel joists, the calculation of the moments of inertia, I pandI s, shall
include the effects of web member strain when used in the above equation.
User Note: When the moment of inertia is calculated using only the truss or joist
chord areas, the reduction in the moment of inertia due to web strain can typically
be taken as 15%.
A steel deck shall be considered a secondary member when it is directly supported
by the primary members.
2.2. IMPROVED DESIGN FOR PONDING
The provisions given below are to be used when a more accurate evaluation of fram-
ing stiffnessis needed than that given by Equations A-2-1 and A-2-2.
Define the stressindexes
(A-2-5)
(A-2-6)
where
f
o=stress due to D+R(D =nominal dead load, R=nominal loaddue to rainwa-
ter or snow exclusive of the pondingcontribution), ksi (MPa)
For roof framing consisting of primary and secondary members, evaluate the com-
bined stiffness as follows. Enter Figure A-2.1 at the level of the computed stress
index, U
p, determined for the primary beam; move horizontally to the computed C s
value of the secondary beams and then downward to the abscissa scale. The com-
bined stiffness of the primary and secondary framing is sufficient to prevent ponding
if the flexibility coefficient read from this latter scale is more than the value of C
p
computed for the given primary member; if not, a stiffer primary or secondary beam,
or combination of both, is required.
A similar procedure must be followed using Figure A-2.2.
App. 2.2.] IMPROVED DESIGN FOR PONDING 16.1–189
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
U
Ff
fp
yo
o
p=
−⎛





08.
for the primary member
for the secondary meU
Ff
fs
yo
o
s=
−⎛





08.
mmber
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 189

For roof framing consisting of a series of equally spaced wall bearing beams, evalu-
ate the stiffness as follows. The beams are considered as secondary members
supported on an infinitely stiff primary member. For this case, enter Figure A-2.2
with the computed stress index, U
s. The limiting value of C sis determined by the
intercept of a horizontal line representing the U
svalue and the curve for C p=0.
User Note:The ponding deflection contributed by a metal deck is usually such a
small part of the total ponding deflection of a roof panel that it is sufficient merely
to limit its moment of inertia [per foot (meter) of width normal to its span] to
0.000025 (3 940) times the fourth power of its span length.
16.1–190 IMPROVED DESIGN FOR PONDING [App. 2.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. A-2.1. Limiting flexibility coefficient for the primary systems.
Upper Limit of Flexibility Coefficient Cp
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 190

App. 2.2.] IMPROVED DESIGN FOR PONDING 16.1–191
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Evaluate the stabilityagainst ponding of a roof consisting of a metal roof deck of rel-
atively slender depth-to-span ratio, spanning between beams supported directly on
columns, as follows. Use Figure A-2.1 or A-2.2, using as C
sthe flexibility coefficient
for a one-foot (one-meter) width of the roof deck (S=1.0).
Fig. A-2.2. Limiting flexibility coefficient for the secondary systems.
Upper Limit of Flexibility Coefficient Cs
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 191

APPENDIX 3
DESIGN FOR FATIGUE
This appendix applies to members and connectionssubject to high cycle loading within the
elastic range of stresses of frequency and magnitude sufficient to initiate cracking and pro-
gressive failure, which defines the limit stateof fatigue.
User Note:See AISC Seismic Provisions for Structural Steel Buildingsfor structures
subject to seismic loads.
The appendix is organized as follows:
3.1. General Provisions
3.2. Calculation of Maximum Stresses and Allowable Stress Ranges
3.3. Plain Material and Welded Joints
3.4. Bolts and Threaded Parts
3.5. Special Fabrication and Erection Requirements
3.1. GENERAL PROVISIONS
The provisions of this Appendix apply to stressescalculated on the basis of service
loads. The maximum permitted stress due to service loads is 0.66F
y.
Stress range is defined as the magnitude of the change in stress due to the applica-
tion or removal of the service live load. In the case of a stress reversal, the stress
range shall be computed as the numerical sum of maximum repeated tensile and
compressive stresses or the numerical sum of maximum shearing stresses of oppo-
site direction at the point of probable crack initiation.
In the case of complete-joint-penetration groove welds, the maximum allowable
stress range calculated by Equation A-3-1 applies only to welds that have been
ultrasonically or radiographically tested and meet the acceptance requirements of
Sections 6.12.2 or 6.13.2 of AWS D1.1/D1.1M.
No evaluation of fatigueresistance is required if the live load stress range is less than
the threshold allowable stress range, F
TH. See Table A-3.1.
No evaluation of fatigue resistance of members consisting of shapes or plate is
required if the number of cycles of application of live load is less than 20,000. No
evaluation of fatigue resistance of members consisting of HSSin building-type struc-
tures subject to code mandated wind loads is required.
The cyclic load resistance determined by the provisions of this Appendix is appli-
cable to structures with suitable corrosion protection or subject only to mildly
corrosive atmospheres, such as normal atmospheric conditions.
16.1–192
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 192

App. 3.3.] PLAIN MATERIAL AND WELDED JOINTS 16.1–193
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The cyclic loadresistance determined by the provisions of this Appendix is applica-
ble only to structures subject to temperatures not exceeding 300 °F (150 °C).
The engineer of recordshall provide either complete details including weld sizes or
shall specify the planned cycle life and the maximum range of moments, shears and
reactions for the connections.
3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES
Calculated stressesshall be based upon elastic analysis. Stresses shall not be ampli-
fied by stress concentrationfactors for geometrical discontinuities.
For bolts and threaded rods subject to axial tension, the calculated stresses shall
include the effects of prying action, if any. In the case of axial stress combined with
bending, the maximum stresses, of each kind, shall be those determined for concur-
rent arrangements of the applied load.
For members having symmetric cross sections, the fastenersand welds shall be
arranged symmetrically about the axis of the member, or the total stresses including
those due to eccentricity shall be included in the calculation of the stress range.
For axially loaded angle members where the center of gravity of the connecting
welds lies between the line of the center of gravity of the angle cross section and the
center of the connected leg, the effects of eccentricity shall be ignored. If the center
of gravity of the connecting welds lies outside this zone, the total stresses, including
those due to joint eccentricity, shall be included in the calculation of stress range.
3.3. PLAIN MATERIAL AND WELDED JOINTS
In plain material and welded joints the range of stressat service loadsshall not
exceed the allowable stress range computed as follows.
(a) For stress categories A, B, B′, C, D, E and E′the allowable stress range, F
SR, shall
be determined by Equation A-3-1 or A-3-1M, as follows:
(A-3-1)
(A-3-1M)
where
C
f= constant from Table A-3.1 for the fatiguecategory
F
SR= allowable stress range, ksi (MPa)
F
TH= threshold allowable stress range, maximum stress range for
indefinite design life from Table A-3.1, ksi (MPa)
n
SR= number of stress range fluctuations in design life
= number of stress range fluctuations per day ×365 ×years
of design life
F
C
n
FSR
f
SR
TH=







0 333.
F
C
n
FSR
f
SR
TH=
×⎛





≥ ()
329
0 333.
S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 193

16.1–194 PLAIN MATERIAL AND WELDED JOINTS [App. 3.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(b) For stress category F, the allowable stress range, F SR, shall be determined by
Equation A-3-2 or A-3-2M as follows:
(A-3-2)
(A-3-2M)
(c) For tension-loaded plate elements connected at their end by cruciform, T or
corner details with complete-joint-penetration(CJP) groove weldsor partial-
joint-penetration(PJP) groove welds, fillet welds, or combinations of the
preceding, transverse to the direction of stress, the allowable stress range on
the cross section of the tension-loaded plate element at the toe of the weld shall
be determined as follows:
(i) Based upon crack initiation from the toe of the weld on the tension loaded
plate element the allowable stress range, F
SR, shall be determined by
Equation A-3-3 or A-3-3M, for stress category C as follows:
(A-3-3)
(A-3-3M)
(ii) Based upon crack initiation from the root of the weld the allowable stress
range, F
SR, on the tension loaded plate element using transverse PJP groove
welds, with or without reinforcing or contouring fillet welds, the allowable
stress range on the cross section at the toe of the weld shall be determined
by Equation A-3-4 or A-3-4M, for stress category C′as follows:
(A-3-4)
(A-3-4M)
where
R
PJP, the reduction factor for reinforced or nonreinforced transverse PJP
groove welds, is determined as follows:
F
C
n
FSR
f
SR
TH=







0 167.
F
C
n
FSR
f
SR
TH=
×
( )









()
11 10
4
0 167.
S.I.
F
nSR
SR=
×⎛






44 10
10
8
0 333.
F
nSR
SR=
×⎛





≥ ()
14 4 10
11
0 333
.
.
68.9 S.I.
FR
nSR PJP
SR=
×⎛





44 10
8
0 333.
FR
nSR PJP
SR=
×⎛




⎟ ()
14 4 10
11
0 333
.
.
S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 194

(A-3-5)
(A-3-5M)
If R
PJP=1.0, use stress category C.
2a= length of the nonwelded root face in the direction of the thickness of
the tension-loaded plate, in. (mm)
w= leg size of the reinforcing or contouring fillet, if any, in the direction
of the thickness of the tension-loaded plate, in. (mm)
t
p= thickness of tension loaded plate, in. (mm)
(iii) Based upon crack initiation from the roots of a pair of transverse fillet welds
on opposite sides of the tension loaded plate element, the allowable stress
range, F
SR, on the cross section at the toe of the welds shall be determined
by Equation A-3-6 or A-3-6M, for stress category C′′as follows:
(A-3-6)
(A-3-6M)
where
R
FIL is the reduction factor for joints using a pair of transverse fillet welds only.
(A-3-7)
(A-3-7M)
If R
FIL= 1.0, use stress category C.
App. 3.3.] PLAIN MATERIAL AND WELDED JOINTS 16.1–195
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R
a
t
w
t
tPJP
pp
p=







+






065 059
2
072
01
.. .
.667
10












≤.
R
a
t
w
t
tPJP
pp
p=







+






112 101
2
124
01
.. .
.667
10












≤(). S.I.
FR
nSR FIL
SR=
×⎛





44 10
8
0 333.
FR
nSR FIL
SR=
×⎛




⎟ ()
14 4 10
11
0 333
.
.
S.I.
R
wt
tFIL
p
p=
+
( )⎛






006 072
10
0 167
../
.
.
R
wt
tFIL
p
p=
+⎛






010 124
10
0 167
..(/)
.
.
S.I..()
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 195

16.1–196 BOLTS AND THREADED PARTS [App. 3.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3.4. BOLTS AND THREADED PARTS
In bolts and threaded parts, the range of stressat service loadsshall not exceed the
allowable stressrange computed as follows.
(a) For mechanically fastened connectionsloaded in shear, the maximum range of
stress in the connected material at service loads shall not exceed the allowable
stress range computed using Equation A-3-1 where C
fand F THare taken from
Section 2 of Table A-3.1.
(b) For high-strength bolts, common bolts and threaded anchor rods with cut, ground
or rolled threads, the maximum range of tensile stress on the net tensile area from
applied axial loadand moment plus load due to prying actionshall not exceed
the allowable stress range computed using Equation A-3-8 or A-3-8M (stress cat-
egory G). The net areain tension, A
t, is given by Equation A-3-9 or A-3-9M.
(A-3-8)
(A-3-8M)
(A-3-9)
(A-3-9M)
where
d
b= the nominal diameter (body or shank diameter), in. (mm)
n= threads per in. (threads per mm)
p= pitch, in. per thread (mm per thread)
For jointsin which the material within the gripis not limited to steel or joints which
are not tensioned to the requirements of Table J3.1 or J3.1M, all axial load and
moment applied to the jointplus effects of any prying action shall be assumed to be
carried exclusively by the bolts or rods.
For joints in which the material within the grip is limited to steel and which are
pretensioned to the requirements of Table J3.1 or J3.1M, an analysis of the relative
stiffnessof the connected parts and bolts shall be permitted to be used to determine
the tensile stress range in the pretensioned boltsdue to the total service live load
and moment plus effects of any prying action. Alternatively, the stress range in the
bolts shall be assumed to be equal to the stress on the net tensile area due to 20%
of the absolute value of the service load axial load and moment from dead, live and
other loads.
F
nSR
SR=
×⎛






39 10
7
8
0 333
.
.
F
nSR
SR=
×⎛






128 10
48
11
0 333
.
()
.
S.I.
Ad
ntb=−






π
4
0 9743
2
.
Ad ptb=−( )()
π
4
0 9382 2
. S.I.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 196

3.5. SPECIAL FABRICATION AND ERECTION REQUIREMENTS
Longitudinal backing bars are permitted to remain in place, and if used, shall be con-
tinuous. If splicing is necessary for long joints, the bar shall be joined with complete
penetration butt joints and the reinforcement ground prior to assembly in the joint.
Longitudinal backing, if left in place, shall be attached with continuous fillet welds.
In transverse joints subject to tension, backing bars, if used, shall be removed and the
joint back gouged and welded.
In transverse complete-joint-penetration T and corner joints, a reinforcing fillet weld,
not less than
1
/4in. (6 mm) in size shall be added at reentrantcorners.
The surface roughness of thermally cutedges subject to cyclic stressranges, that
include tension, shall not exceed 1,000 μin. (25 μm), where ASME B46.1 is the ref-
erence standard.
User Note: AWS C4.1 Sample 3 may be used to evaluate compliance with this
requirement.
Reentrant corners at cuts, copesand weld access holes shall form a radius of not less
than
3
/8in. (10 mm) by predrilling or subpunching and reaming a hole, or by thermal
cutting to form the radius of the cut. If the radius portion is formed by thermal cut-
ting, the cut surface shall be ground to a bright metal surface.
For transverse butt joints in regions of tensile stress, weld tabs shall be used to pro-
vide for cascading the weld termination outside the finished joint. End dams shall not
be used. Run-off tabs shall be removed and the end of the weld finished flush with
the edge of the member.
See Section J2.2b for requirements for end returns on certain fillet welds subject to
cyclic service loading.
App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–197
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 197

A 250 x 10
8
24
(165)
1.1 Base metal, except noncoated
weathering steel, with rolled or cleaned
surface. Flame-cut edges with surface
roughness value of 1,000 μin. (25 μm)
or less, but without reentrant corners.
1.2 Noncoated weathering steel base
metal with rolled or cleaned surface.
Flame-cut edges with surface rough-
ness value of 1,000 μin. (25 μm) or less,
but without reentrant corners.
1.3 Member with drilled or reamed
holes. Member with re-entrant corners
at copes, cuts, block-outs or other
geometrical discontinuities made to
requirements of Appendix 3, Section
3.5, except weld access holes.
1.4 Rolled cross sections with weld
access holes made to requirements
of Section J1.6 and Appendix 3, Section
3.5. Members with drilled or reamed
holes containing bolts for attachment of
light bracing where there is a small lon-
gitudinal com ponent of brace force.
Away from all
welds or structural
connections
B 120 x 10
8
16
(110)
Away from all
welds or structural
connections
B 120 x 10
8
16
(110)
Through gross sec-
tion near hole
B 120 x 10
8
16
(110)
In net section origi-
nating at side of
hole
D 22 x 10
8
7
(48)
In net section origi-
nating at side of
hole
E 11 x 10
8
4.5
(31)
In net section origi-
nating at side of
hole
B 120 x 10
8
16
(110)
At any external
edge or at hole
perimeter
C 44 x 10
8
10
(69)
At reentrant cor ner
of weld access
hole or at any small
hole (may contain
bolt for minor con-
nections)
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1
Fatigue Design Parameters
SECTION 1 – PLAIN MATERIAL AWAY FROM ANY WELDING
SECTION 2 – CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS
16.1–198 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2.1 Gross area of base metal in lap
joints connected by high-strength bolts
in joints satisfying all requirements for
slip-critical connections.
2.2 Base metal at net section of high-
strength bolted joints, designed on the
basis of bearing resistance, but fabri-
cated and installed to all requirements
for slip-critical connections.
2.3 Base metal at the net section of
other mechanically fastened joints
except eye bars and pin plates.
2.4 Base metal at net section of
eyebar
head or pin plate.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 198

SECTION 1 – PLAIN MATERIAL AWAY FROM ANY WELDING
SECTION 2 – CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS
App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–199
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE A-3.1 (continued)
Fatigue Design Parameters
1.1 and 1.2
1.3
1.4
2.1
2.2
2.3
2.4
(Note: figures are for slip-critical bolted connections)
(Note: figures are for snug-tightened bolts, rivets, or other mechanical fasteners)
(Note: figures are for bolted connections designed to bear, meeting the
requirements of slip-critical connections)
Illustrative Typical Examples
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 199

16.1–200 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)
3.1 Base metal and weld metal in
members without attachments built up
of plates or shapes connected by con-
tinuous longitudinal complete-joint-pen-
etration groove welds, back gouged and
welded from second side, or by continu-
ous fillet welds.
3.2 Base metal and weld metal in
members without attachments built up of
plates or shapes, connected by con-
tinuous longitudinal complete-joint-pen-
etration groove welds with backing bars
not removed, or by continuous partial-
joint-penetration groove welds.
3.3 Base metal at weld metal termina-
tions of longitudinal welds at weld
access holes in connected built-up
members.
3.4 Base metal at ends of longitudinal
intermittent fillet weld segments.
3.5 Base metal at ends of partial length
welded coverplates narrower than the
flange having square or tapered ends,
with or without welds across the ends;
and coverplates wider than the flange
with welds across the ends.
Flange thickness (
tf) ≤0.8 in. (20 mm)
Flange thickness (
tf) >0.8 in. (20 mm)
3.6 Base metal at ends of partial length
welded coverplates wider than the
flange without welds across the ends.
From surface or
internal discontinu-
ities in weld away
from end of weld
B′ 61 x 10
8
12
(83)
From surface or
internal discontinu-
ities in weld, includ-
ing weld attaching
backing bars
E′ 3.9 x 10
8
2.6
(18)
In edge of flange
at end of cover-
plate weld
D 22 x 10
8
7
(48)
From the weld ter-
mination into the
web or flange
E 11 x 10
8
4.5
(31)
In connected mate-
rial at start and
stop locations of
any weld deposit
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
In flange at toe
of end weld or in
flange at termina-
tion of longitudinal
weld or in edge of
flange with wide
coverplates
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 3 – WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS
SECTION 4 – LONGITUDINAL FILLET WELDED END CONNECTIONS
Initiating from end
of any weld termi-
nation extending
into the base metal
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
4.1 Base metal at junction of axially
loaded members with longitudinally
welded end connections. Welds shall be
on each side of the axis of the member
to balance weld stresses.
t≤0.5 in. (12 mm)
t>0.5 in. (12 mm)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 200

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–201
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
SECTION 3 – WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS
TABLE A-3.1 (continued)
Fatigue Design Parameters
3.1
3.2
3.3
3.4
3.5
3.6
Illustrative Typical Examples
SECTION 4 – LONGITUDINAL FILLET WELDED END CONNECTIONS
4.1
(a) (b)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 201

16.1–202 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)5.1 Weld metal and base metal in or adja-
cent to complete-joint-penetration groove
welded splices in rolled or welded cross
sections with welds ground essentially
parallel to the direction of stress and with
soundness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
5.2 Weld metal and base metal in or adja-
cent to complete-joint-penetration groove
welded splices with welds ground essen-
tially parallel to the direction of stress at
transitions in thickness or width made on
a slope no greater than 1:2
1
/2and with
weld soundness established by radi-
ographic or ultrasonic inspection in acc-
ordance with the requirements of sub-
clauses 6.12 or 6.13 of AWS D1.1/D1.1M.
Fy<90 ksi (620 MPa)
Fy≥90 ksi (620 MPa)
5.3 Base metal with Fyequal to or
greater than 90 ksi (620 MPa) and weld
metal in or adjacent to complete-joint-
penetration groove welded splices with
welds ground essentially parallel to the
direction of stress at transitions in width
made on a radius of not less than 2 ft (600
mm) with the point of tangency at the end
of the groove weld and with weld sound-
ness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
5.4 Weld metal and base metal in or
adjacent to the toe of complete-joint-
penetration groove welds in T or corner
joints or splices, with or without transi-
tions in thickness having slopes no
greater than 1:2
1
/2, when weld reinforce-
ment is not removed and with weld
soundness established by radiographic or
ultrasonic inspection in accordance with
the requirements of subclauses 6.12 or
6.13 of AWS D1.1/D1.1M.
From internal dis-
continuities in weld
metal or along the
fusion boundary
B 120 x 10
8
16
(110)
B′ 61 x 10
8
12
(83)
From internal dis-
continuities in filler
metal or along
fusion boundary or
at start of transition
when
Fy≥90 ksi
(620 MPa)
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
B 120 x 10
8
16
(110)
From internal dis-
continuities in filler
metal or disconti-
nuities along the
fusion boundary
C 44 x 10
8
10
(69)
From surface dis-
continuity at toe of
weld extending into
base metal or into
weld metal.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 202

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–203
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.1
5.2
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
5.3
5.4
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 203

C 44 x 10
8
10
(69)
C′ Eqn. None
A-3-4 or provided
A-3-4M
5.5 Base metal and weld metal at trans-
verse end connections of tension-loaded
plate elements using partial-joint-penetra-
tion groove welds in butt or T- or corner
joints, with reinforcing or contouring fillets,
FSRshall be the smaller of the toe crack
or root crack allowable stress range.
Crack initiating from weld toe:
Crack initiating from weld root:
5.6 Base metal and weld metal at trans-
verse end connections of tension-
loaded plate elements using a pair of fil-
let welds on opposite sides of the plate.
FSRshall be the smaller of the toe crack
or root crack allowable stress range.
Crack initiating from weld toe:
Crack initiating from weld root:
5.7 Base metal of tension loaded plate
elements and on girders and rolled
beam webs or flanges at toe of trans-
verse fillet welds adjacent to welded
transverse stiffeners.
Initiating from geo-
metrical discontin-
uity at toe of weld
extending into base
metal.
Initiating at weld
root subject to ten-
sion extending into
and through weld
C 44 x 10
8
10
(69)
C′′ Eqn. None
A-3-6 or provided
A-3-6M
Initiating from geo-
metrical discontin-
uity at toe of weld
extending into base
metal.
Initiating at weld
root subject to ten-
sion extending into
and through weld
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS (continued)
C 44 x 10
8
10
(69)
From geometrical
discontinuity at toe
of fillet extending
into base metal
16.1–204 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C_14th Ed._February 12, 2013 12/02/13 9:52 AM Page 204

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–205
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.5
SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
5.6
5.7
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 205

16.1–206 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B 120 x 10
8
16
(110)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
6.1 Base metal at details attached by
complete-joint-penetration groove welds
subject to longitudinal loading only when
the detail embodies a transition radius,
R, with the weld termination ground
smooth and with weld soundness estab-
lished by radiographic or ultrasonic
inspection in accordance with the
requirements of subclauses 6.12 or 6.13
of AWS D1.1/D1.1M.
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
6.2 Base metal at details of equal
thickness attached by complete-joint-
penetration groove welds subject to
transverse loading with or without longi-
tudinal loading when the detail embodies
a transition radius,
R, with the weld ter-
mination ground smooth and with weld
soundness established by radiographic
or ultrasonic inspection in accordance
with the requirements of subclauses
6.12 or 6.13 of AWS D1.1/D1.1M:
When weld reinforcement is removed:
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
When weld reinforcement is not removed:
R≥24 in. (600 mm)
24 in. >
R≥6 in.
(600 mm >
R≥150 mm)
6 in. >
R≥2 in.
(150 mm >
R≥50 mm)
2 in. (50 mm) >
R
Near point of tan-
gency of radius at
edge of member
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS
B 120 x 10
8
16
(110)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
C 44 x 10
8
10
(69)
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Near points of tan-
gency of radius or
in the weld or at
fusion boundary or
member or attach-
ment
At toe of the weld
either along edge
of member or the
attachment
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 206

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–207
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.1
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
6.2
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 207

D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
E 11 x 10
8
4.5
(31)
6.3 Base metal at details of unequal
thickness attached by complete-joint-
penetration groove welds subject to
transverse loading with or without longi-
tudinal loading when the detail embodies
a transition radius,
R, with the weld ter-
mination ground smooth and with weld
soundness established by radiographic
or ultrasonic inspection in accordance
with the requirements of subclauses
6.12 or 6.13 of AWS D1.1/D1.1M.
When weld reinforcement is removed:
R>2 in. (50 mm)
R≤2 in. (50 mm)
When reinforcement is not removed:
Any radius
6.4 Base metal subject to longitudinal
stress at transverse members, with or
without transverse stress, attached by
fillet or partial-joint-penetration groove
welds parallel to direction of stress when
the detail embodies a transition radius,
R, with weld termination ground smooth:
R>2 in. (50 mm)
R≤2 in. (50 mm)
At toe of weld
along edge of thin-
ner material
In weld termination
in small radius
At toe of weld
along edge of thin-
ner material
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Initiating in base
metal at the weld
termination or at
the toe of the weld
extending into the
base metal
16.1–208 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:01 AM Page 208

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–209
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
6.3
SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
6.4
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 209

16.1–210 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1
“Attachment” as used herein is defined as any steel detail welded to a member which, by its mere pres-
ence and independent of its loading, causes a discontinuity in the stress flow in the member and thus
reduces the fatigue resistance.
C 44 x 10
8
10
(69)
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
E′ 3.9 x 10
8
2.6
(18)
7.1 Base metal subject to longitudinal
loading at details with welds parallel or
transverse to the direction of stress
where the detail embodies no transition
radius and with detail length in direction
of stress,
a, and thickness of the attach-
ment,
b:
a<2 in. (50 mm)
2 in. (50 mm) ≤
a≤lesser of 12b
or 4 in. (100 mm)
a>4 in. (100 mm)
when
b>0.8 in. (20 mm)
a> lesser of 12bor 4 in. (100 mm)
when
b≤0.8 in. (20 mm)
7.2 Base metal subject to longitudinal
stress at details attached by fillet or par-
tial-joint-penetration groove welds, with
or without transverse load on detail,
when the detail embodies a transition
radius,
R, with weld termination ground
smooth:
R >2 in. (50 mm)
R ≤2 in. (50 mm)
Initiating in base
metal at the weld
termination or at
the toe of the weld
extending into the
base metal
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 7 – BASE METAL AT SHORT ATTACHMENTS
1
D 22 x 10
8
7
(48)
E 11 x 10
8
4.5
(31)
Initiating in base
metal at the weld
termination, extend-
ing into the base
metal
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 210

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–211
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
7.1
SECTION 7 – BASE METAL AT SHORT ATTACHMENTS
1
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
7.2
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 211

16.1–212 SPECIAL FABRICATION AND ERECTION REQUIREMENTS [App. 3.5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Initiating in the
weld at the faying
surface, extending
into the weld
E 11 x 10
8
4.5
(31)
Initiating in the
base metal at the
end of the plug or
slot weld, extend-
ing into the base
metal
F 150 x 10
10
8
(Eqn. (55)
A-3-2 or
A-3-2M)
G3.9 x 10
8
7
(48)
Initiating at the root
of the threads,
extending into the
fastener
C 44 x 10
8
10
(69)
8.1 Base metal at steel headed stud
anchors attached by fillet or automatic
stud welding.
8.2 Shear on throat of continuous or
intermittent longitudinal or transverse fil-
let welds.
8.3 Base metal at plug or slot welds.
8.4 Shear on plug or slot welds.
8.5 Snug-tightened high-strength bolts,
common bolts, threaded anchor rods,
and hanger rods with cut, ground or
rolled threads. Stress range on tensile
stress area due to live load plus prying
action when applicable.
At toe of weld in
base metal
Threshold
FTH
Stress Constant ksi Potential Crack
Description Category
Cf (MPa) Initiation Point
TABLE A-3.1 (continued)
Fatigue Design Parameters
SECTION 8 - MISCELLANEOUS
F 150 x 10
10
8
(Eqn. (55)
A-3-2 or
A-3-2M)
Initiating at the root
of the fillet weld,
extending into the
weld
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 212

App. 3.5.] SPECIAL FABRICATION AND ERECTION REQUIREMENTS 16.1–213
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
8.1
8.2
8.4
8.5
8.3
SECTION 8 - MISCELLANEOUS
TABLE A-3.1 (continued)
Fatigue Design Parameters
Illustrative Typical Examples
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 213

16.1–214
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 4
STRUCTURAL DESIGN FOR FIRE CONDITIONS
This appendix provides criteria for the design and evaluation of structural steelcomponents,
systems and frames for fireconditions. These criteria provide for the determination of the
heat input, thermal expansion and degradation in mechanical properties of materials at ele-
vated temperaturesthat cause progressive decrease in strength and stiffnessof structural
componentsand systems at elevated temperatures.
The appendix is organized as follows:
4.1. General Provisions
4.2. Structural Design for Fire Conditions by Analysis
4.3. Design by Qualification Testing
4.1. GENERAL PROVISIONS
The methods contained in this appendix provide regulatory evidence of compli-
ance in accordance with the design applications outlined in this section.
4.1.1. Performance Objective
Structural components, members and building frame systems shall be designed so
as to maintain their load-bearing function during the design-basis fireand to sat-
isfy other performance requirements specified for the building occupancy.
Deformation criteria shall be applied where the means of providing structural fire
resistance, or the design criteria for fire barriers, requires consideration of the
deformation of the load-carrying structure.
Within the compartment of fireorigin,forcesand deformations from the design-
basis fire shall not cause a breach of horizontal or vertical compartmentation.
4.1.2. Design by Engineering Analysis
The analysis methods in Section 4.2 are permitted to be used to document the
anticipated performance of steel framing when subjected to design-basis firesce-
narios. Methods in Section 4.2 provide evidence of compliance with performance
objectives established in Section 4.1.1.
The analysis methods in Section 4.2 are permitted to be used to demonstrate an
equivalency for an alternative material or method, as permitted by the applicable
building code.
Structural design for fireconditions using Appendix 4.2 shall be performed using
the load and resistance factor designmethod in accordance with the provisions of
Section B3.3 (LRFD).
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 214

App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–215
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.1.3. Design by Qualification Testing
The qualification testing methods in Section 4.3 are permitted to be used to doc-
ument the fire resistanceof steel framing subject to the standardized firetesting
protocols required by the applicable building code.
4.1.4. Load Combinations and Required Strength
The required strengthof the structure and its elements shall be determined from
the gravity load combination as follows:
[0.9 or 1.2] D+T+0.5L+0.2S (A-4-1)
where
D=nominal dead load
L=nominal occupancy live load
S=nominal snow load
T=nominal forces and deformations due to the design-basis fire
defined in Section 4.2.1
A notional load, N
i=0.002Y i, as defined in Section C2.2, where N i =notional load
applied at framing level iand Y
i=gravity load from combination A-4-1 acting on
framing level i, shall be applied in combination with the loadsstipulated in
Equation A-4-1. Unless otherwise stipulated by the applicable building code, D,
Land S shall be the nominal loadsspecified in ASCE/SEI 7.
4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS
It is permitted to design structural members, components and building frames for
elevated temperaturesin accordance with the requirements of this section.
4.2.1. Design-Basis Fire
A design-basis fireshall be identified to describe the heating conditions for the
structure. These heating conditions shall relate to the fuel commodities and com-
partment characteristics present in the assumed firearea. The fuel loaddensity
based on the occupancy of the space shall be considered when determining the
total fuel load. Heating conditions shall be specified either in terms of a heat flux
or temperature of the upper gas layer created by the fire. The variation of the
heating conditions with time shall be determined for the duration of the fire.
When the analysis methods in Section 4.2 are used to demonstrate an equivalency
as an alternative material or method as permitted by the applicable building code,
the design-basis fire shall be determined in accordance with ASTM E119.
4.2.1.1. Localized Fire
Where the heat release ratefrom the fireis insufficient to cause flashover, a local-
ized fire exposure shall be assumed. In such cases, the fuel composition,
arrangement of the fuel array and floor area occupied by the fuel shall be used to
determine the radiant heat flux from the flame and smoke plume to the structure.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 215

16.1–216 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.1.2. Post-Flashover Compartment Fires
Where the heat release rate from the fireis sufficient to cause flashover, a
post-flashover compartment fire shall be assumed. The determination of the tem-
perature versus time profile resulting from the fire shall include fuel load,
ventilation characteristics of the space (natural and mechanical), compartment
dimensions and thermal characteristics of the compartment boundary.
The fire duration in a particular area shall be determined by considering the total
combustible mass, or fuel load available in the space. In the case of either a local-
ized fire or a post-flashover compartment fire, the fire duration shall be
determined as the total combustible mass divided by the mass loss rate.
4.2.1.3. Exterior Fires
The exposure of exterior structure to flames projecting from windows or other
wall openings as a result of a post-flashovercompartment fireshall be considered
along with the radiation from the interior fire through the opening. The shape and
length of the flame projection shall be used along with the distance between the
flame and the exterior steelwork to determine the heat flux to the steel. The
method identified in Section 4.2.1.2 shall be used for describing the characteris-
tics of the interior compartment fire.
4.2.1.4. Active Fire Protection Systems
The effects of active fire protectionsystems shall be considered when describing
the design-basis fire.
Where automatic smoke and heat vents are installed in nonsprinklered spaces, the
resulting smoke temperature shall be determined from calculation.
4.2.2. Temperatures in Structural Systems under Fire Conditions
Temperatures within structural members, components and frames due to the heat-
ing conditions posed by the design-basis fireshall be determined by a heat
transfer analysis.
4.2.3. Material Strengths at Elevated Temperatures
Material properties at elevated temperaturesshall be determined from test data. In
the absence of such data, it is permitted to use the material properties stipulated
in this section. These relationships do not apply for steels with yield strengthsin
excess of 65 ksi (448 MPa) or concretes with specified compression strength in
excess of 8,000 psi (55 MPa).
4.2.3.1. Thermal Elongation
The coefficients of expansion shall be taken as follows:
(a) For structural and reinforcing steels: For calculations at temperatures above
150 °F (65 °C), the coefficient of thermal expansion shall be 7.8 ×10
−6
/°F
(1.4 ×10
−5
/
o
C).
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 216

App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–217
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(b) For normal weight concrete: For calculations at temperatures above 150 °F
(65 °C), the coefficient of thermal expansion shall be 1.0 ×10
−5
/°F (1.8 ×
10
−5
/
o
C).
(c) For lightweight concrete: For calculations at temperatures above 150 °F
(65 °C), the coefficient of thermal expansion shall be 4.4 ×10
−6
/°F (7.9 ×
10
−6
/
o
C).
4.2.3.2. Mechanical Properties at Elevated Temperatures
The deterioration in strength and stiffnessof structural members, components and
systems shall be taken into account in the structural analysisof the frame. The
values F
y(T), Fp(T),F u(T), E(T), G(T) , f′c(T),E c(T) andε cu(T) at elevated tem-
perature to be used in structural analysis, expressed as the ratio with respect to the
property at ambient, assumed to be 68 °F (20 °C), shall be defined as in Tables
A-4.2.1 and A-4.2.2. F
p(T) is the proportional limit at elevated temperatures,
which is calculated as a ratio to yield strengthas specified in Table A-4.2.1. It is
permitted to interpolate between these values.
For lightweight concrete, values of ε
cushall be obtained from tests.
TABLE A-4.2.1
Properties of Steel at Elevated
Temperatures
Steel Temperature, kEβE(T)/E
°F (°C) β G(T)/GkpβFp(T)/FykyβFy(T)/FykuβFu(T)/Fy
68 (20) 1.00 1.00 1.00 1.00
200 (93) 1.00 1.00 1.00 1.00
400 (204) 0.90 0.80 1.00 1.00
600 (316) 0.78 0.58 1.00 1.00
750 (399) 0.70 0.42 1.00 1.00
800 (427) 0.67 0.40 0.94 0.94
1000 (538) 0.49 0.29 0.66 0.66
1200 (649) 0.22 0.13 0.35 0.35
1400 (760) 0.11 0.06 0.16 0.16
1600 (871) 0.07 0.04 0.07 0.07
1800 (982) 0.05 0.03 0.04 0.04
2000 (1093) 0.02 0.01 0.02 0.02
2200 (1204) 0.00 0.00 0.00 0.00
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 217

16.1–218 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.4. Structural Design Requirements
4.2.4.1. General Structural Integrity
The structural frame shall be capable of providing adequate strength and defor-
mation capacity to withstand, as a system, the structural actions developed
during the firewithin the prescribed limits of deformation. The structural system
shall be designed to sustain local damage with the structural system as a whole
remaining stable.
Continuous loadpaths shall be provided to transfer all forcesfrom the exposed
region to the final point of resistance. The foundation shall be designed to resist
the forces and to accommodate the deformations developed during the design-
basis fire.
4.2.4.2. Strength Requirements and Deformation Limits
Conformance of the structural systemto these requirements shall be demonstrated
by constructing a mathematical model of the structure based on principles of
structural mechanics and evaluating this model for the internal forces and defor-
mations in the members of the structure developed by the temperatures from the
design-basis fire.
TABLE A-4.2.2
Properties of Concrete at Elevated Temperatures
68 (20) 1.00 1.00 1.00 0.25
200 (93) 0.95 1.00 0.93 0.34
400 (204) 0.90 1.00 0.75 0.46
550 (288) 0.86 1.00 0.61 0.58
600 (316) 0.83 0.98 0.57 0.62
800 (427) 0.71 0.85 0.38 0.80
1000 (538) 0.54 0.71 0.20 1.06
1200 (649) 0.38 0.58 0.092 1.32
1400 (760) 0.21 0.45 0.073 1.43
1600 (871) 0.10 0.31 0.055 1.49
1800 (982) 0.05 0.18 0.036 1.50
2000 (1093) 0.01 0.05 0.018 1.50
2200 (1204) 0.00 0.00 0.000 0.00
Concrete
Temperature
°F (°C)
kcβf′c(T)/f′c
Ec(T)/Ec
Normal weight
concrete
ε
cu(T), %
Normal weight
concrete
Lightweight
concrete
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 218

Individual members shall be provided with adequate strength to resist the shears,
axial forces and moments determined in accordance with these provisions.
Connectionsshall develop the strength of the connected members or the
forces indicated above. Where the means of providing fire resistancerequires the
consideration of deformation criteria, the deformation of the structural system, or
members thereof, under the design-basis fire shall not exceed the prescribed limits.
4.2.4.3. Methods of Analysis
4.2.4.3a. Advanced Methods of Analysis
The methods of analysis in this section are permitted for the design of all steel
building structures for fireconditions. The design-basis fireexposure shall be that
determined in Section 4.2.1. The analysis shall include both a thermal response
and the mechanical response to the design-basis fire.
The thermal response shall produce a temperature field in each structural
element as a result of the design-basis fire and shall incorporate temperature-
dependent thermal properties of the structural elements and fire-resistive materi-
als, as per Section 4.2.2.
The mechanical response results in forces and deformations in the structural sys-
temsubjected to the thermal response calculated from the design-basis fire. The
mechanical response shall take into account explicitly the deterioration in strength
and stiffnesswith increasing temperature, the effects of thermal expansions, and
large deformations. Boundary conditions and connection fixity must represent the
proposed structural design. Material properties shall be defined as per Section
4.2.3.
The resulting analysis shall consider all relevant limit states, such as excessive
deflections, connection fractures, and overall or local buckling.
4.2.4.3b. Simple Methods of Analysis
The methods of analysis in this section are permitted to be used for the evaluation
of the performance of individual members at elevated temperaturesduring expo-
sure to fire.
The support and restraint conditions (forces, moments and boundary conditions)
applicable at normal temperatures are permitted to be assumed to remain
unchanged throughout the fire exposure.
For steel temperatures less than or equal to 400 °F (204 °C), the member and con-
nection design strengthsshall be determined without consideration of temperature
effects.
User Note:At temperatures below 400 °F (204 °C), the degradation in steel
properties need not be considered in calculating member strengths for the
simple method of analysis; however, forces and deformations induced by ele-
vated temperatures must be considered.
App. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–219
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 219

16.1–220 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [App. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Tension Members
It is permitted to model the thermal response of a tension element using a one-
dimensional heat transfer equation with heat input as determined by the
design-basis firedefined in Section 4.2.1.
The design strength of a tension member shall be determined using the provi-
sions of Chapter D, with steel properties as stipulated in Section 4.2.3 and
assuming a uniform temperature over the cross section using the temperature
equal to the maximum steel temperature.
(2) Compression Members
It is permitted to model the thermal response of a compression element using
a one-dimensional heat transfer equation with heat input as determined by the
design-basis fire defined in Section 4.2.1.
The design strength of a compression member shall be determined using
the provisions of Chapter E with steel properties as stipulated in Section 4.2.3
and Equation A-4-2 used in lieu of Equations E3-2 and E3-3 to calculate the
nominal compressive strength for flexural buckling:
(A-4-2)
where F
y(T) is the yield stressat elevated temperature and F e(T) is the criti-
cal elastic buckling stress calculated from Equation E3-4 with the elastic
modulus E(T) at elevated temperature. F
y(T) and E(T) are obtained using
coefficients from Table A-4.2.1.
(3) Flexural Members
It is permitted to model the thermal response of flexural elements using a
one-dimensional heat transfer equation to calculate bottom flange tempera-
ture and to assume that this bottom flange temperature is constant over the
depth of the member.
The design strength of a flexural member shall be determined using the pro-
visions of Chapter F with steel properties as stipulated in Section 4.2.3 and
Equations A-4-3 through A-4-10 used in lieu of Equations F2-2 through F2-
6 to calculate the nominal flexural strength for lateral-torsional bucklingof
laterally unbraced doubly symmetric members:
(a) When L
b≤Lr(T)
(A-4-3)
(b) When L
b>Lr(T)
(A-4-4)
FT FTcr
FT
FT
y
y
e
() . ()
()
()
=








042
MT C MT MT MT
L
LTnbr p r
b
r
c
x
() () () ()
()
=+− ⎡











1
⎣⎣






MT FTSncrx() ()=
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 220

App. 4.3.] DESIGN BY QUALIFICATION TESTING 16.1–221
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
F
cr(T) (A-4-5)
L
r(T) (A-4-6)
M
r(T) (A-4-7)
F
L(T) (A-4-8)
M
p(T) (A-4-9)
c
x where Tis in °F (A-4-10)
c
x where Tis in °C (S.I.) (A-4-10M)
The material properties at elevated temperatures, E(T) and F
y(T), and the k p
and k ycoefficients are calculated in accordance with Table A-4.2.1, and other
terms are as defined in Chapter F.
(4) Composite Floor Members
It is permitted to model the thermal response of flexural elements supporting
a concrete slab using a one-dimensional heat transfer equation to calculate
bottom flange temperature. That temperature shall be taken as constant
between the bottom flange and mid-depth of the web and shall decrease lin-
early by no more than 25% from the mid-depth of the web to the top flange
of the beam.
The design strength of a compositeflexural member shall be determined using
the provisions of Chapter I, with reduced yield stresses in the steel consistent
with the temperature variation described under thermal response.
4.2.4.4. Design Strength
The design strength shall be determined as in Section B3.3. The nominal strength,
R
n, shall be calculated using material properties, as provided in Section 4.2.3, at
the temperature developed by the design-basis fire, and as stipulated in this
appendix.
4.3. DESIGN BY QUALIFICATION TESTING
4.3.1. Qualification Standards
Structural members and components in steel buildings shall be qualified for the
rating period in conformance with ASTM E119. Demonstration of compliance
CET
L
r
Jc
Sh
L
rb
b
ts
xo
b
ts()
.=






+


π
2
2
1 0 078
⎜⎜



2
r
ET
FT
Jc
Sh
Jc
Shts
Lxoxo.
()
()
.=+






+195 676
2
F FT
ETL()
()






2
SF TxL()=
Fk kyp y.=−( )03
ZF Txy()=
T
=+≤053
450
30..
T
=+ ≤06
250
30..
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 221

16.1–222 DESIGN BY QUALIFICATION TESTING [App. 4.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with these requirements using the procedures specified for steel construction in
Section 5 of SEI/ASCE/SFPE Standard 29-05, Standard Calculation Methods for
Structural Fire Protection, is permitted.
4.3.2. Restrained Construction
For floor and roof assemblies and individual beamsin buildings, a restrained con-
dition exists when the surrounding or supporting structure is capable of resisting
forces and accommodating deformations caused by thermal expansion throughout
the range of anticipated elevated temperatures.
Steel beams, girders and frames supporting concrete slabs that are welded or
bolted to integral framing members shall be considered restrained construction.
4.3.3. Unrestrained Construction
Steel beams, girders and frames that do not support a concrete slab shall be con-
sidered unrestrained unless the members are bolted or welded to surrounding
construction that has been specifically designed and detailed to resist effects of
elevated temperatures.
A steel member bearing on a wall in a single span or at the end span of multiple
spans shall be considered unrestrained unless the wall has been designed and
detailed to resist effects of thermal expansion.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 222

16.1–223
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 5
EVALUATION OF EXISTING STRUCTURES
This appendix applies to the evaluation of the strength and stiffnessunder static vertical
(gravity) loadsof existing structures by structural analysis, by load tests or by a combina-
tion of structural analysis and load tests when specified by the engineer of recordor in the
contract documents. For such evaluation, the steel grades are not limited to those listed in
Section A3.1. This appendix does not address load testing for the effects of seismic loads or
moving loads (vibrations).
The Appendix is organized as follows:
5.1. General Provisions
5.2. Material Properties
5.3. Evaluation by Structural Analysis
5.4. Evaluation by Load Tests
5.5. Evaluation Report
5.1. GENERAL PROVISIONS
These provisions shall be applicable when the evaluation of an existing steel struc-
ture is specified for (a) verification of a specific set of design loadings or (b)
determination of the available strengthof a forceresisting member or system. The
evaluation shall be performed by structural analysis(Section 5.3), by loadtests
(Section 5.4), or by a combination of structural analysis and load tests, as specified
in the contract documents. Where load tests are used, the engineer of recordshall
first analyze the applicable parts of the structure, prepare a testing plan, and develop
a written procedure to prevent excessive permanent deformation or catastrophic col-
lapse during testing.
5.2. MATERIAL PROPERTIES
1. Determination of Required Tests
The engineer of recordshall determine the specific tests that are required from
Sections 5.2.2 through 5.2.6 and specify the locations where they are required.
Where available, the use of applicable project records shall be permitted to reduce or
eliminate the need for testing.
2. Tensile Properties
Tensile properties of members shall be considered in evaluation by structural analy-
sis(Section 5.3) or loadtests (Section 5.4). Such properties shall include the yield
stress, tensile strengthand percent elongation. Where available, certified material
test reports or certified reports of tests made by the fabricator or a testing laboratory
in accordance with ASTM A6/A6M or A568/A568M, as applicable, shall be permit-
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 223

16.1–224 MATERIAL PROPERTIES [App. 5.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ted for this purpose. Otherwise, tensile tests shall be conducted in accordance with
ASTM A370 from samples cut from components of the structure.
3. Chemical Composition
Where welding is anticipated for repair or modification of existing structures, the
chemical composition of the steel shall be determined for use in preparing a weld-
ing procedure specification (WPS). Where available, results from certified material
test reports or certified reports of tests made by the fabricator or a testing labora-
tory in accordance with ASTM procedures shall be permitted for this purpose.
Otherwise, analyses shall be conducted in accordance with ASTM A751 from the
samples used to determine tensile properties, or from samples taken from the same
locations.
4. Base Metal Notch Toughness
Where welded tension splicesin heavy shapes and plates as defined in Section A3.1d
are critical to the performance of the structure, the Charpy V-notch toughnessshall
be determined in accordance with the provisions of Section A3.1d. If the notch
toughness so determined does not meet the provisions of Section A3.1d, the engineer
of recordshall determine if remedial actions are required.
5. Weld Metal
Where structural performance is dependent on existing welded connections, repre-
sentative samples of weld metalshall be obtained. Chemical analysis and mechanical
tests shall be made to characterize the weld metal. A determination shall be made of
the magnitude and consequences of imperfections. If the requirements of AWS
D1.1/D1.1M are not met, the engineer of recordshall determine if remedial actions
are required.
6. Bolts and Rivets
Representative samples of bolts shall be inspected to determine markings and clas-
sifications. Where bolts cannot be properly identified visually, representative
samples shall be removed and tested to determine tensile strengthin accordance
with ASTM F606 or ASTM F606M and the bolt classified accordingly.
Alternatively, the assumption that the bolts are ASTM A307 shall be permitted.
Rivets shall be assumed to be ASTM A502, Grade 1, unless a higher grade is estab-
lished through documentation or testing.
5.3. EVALUATION BY STRUCTURAL ANALYSIS
1. Dimensional Data
All dimensions used in the evaluation, such as spans, columnheights, member spac-
ings, bracinglocations, cross section dimensions, thicknesses, and connection
details, shall be determined from a field survey. Alternatively, when available, it shall
be permitted to determine such dimensions from applicable project design or shop
drawings with field verification of critical values.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 224

App. 5.4.] EVALUATION BY LOAD TESTS 16.1–225
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Strength Evaluation
Forces(load effects) in members and connections shall be determined by structural
analysisapplicable to the type of structure evaluated. The load effects shall be deter-
mined for the static vertical (gravity) loadsand factored load combinations
stipulated in Section B2.
The available strengthof members and connections shall be determined from appli-
cable provisions of Chapters B through K of this Specification.
3. Serviceability Evaluation
Where required, the deformations at service loadsshall be calculated and reported.
5.4. EVALUATION BY LOAD TESTS
1. Determination of Load Rating by Testing
To determine the loadrating of an existing floor or roof structure by testing, a test
load shall be applied incrementally in accordance with the engineer of record’splan.
The structure shall be visually inspected for signs of distress or imminent failure at
each load level. Appropriate measures shall be taken if these or any other unusual
conditions are encountered.
The tested strength of the structure shall be taken as the maximum applied test load
plus the in-situ dead load. The live load rating of a floor structure shall be deter-
mined by setting the tested strength equal to 1.2D+1.6L, where Dis the nominal
dead load and Lis the nominal live load rating for the structure. The nominal live
load rating of the floor structure shall not exceed that which can be calculated using
applicable provisions of the specification. For roof structures, L
r, Sor Ras defined
in ASCE/SEI 7, shall be substituted for L.More severe load combinationsshall be
used where required by applicable building codes.
Periodic unloading shall be considered once the service loadlevel is attained and
after the onset of inelastic structural behavior is identified to document the amount
of permanent set and the magnitude of the inelastic deformations. Deformations of
the structure, such as member deflections, shall be monitored at critical locations
during the test, referenced to the initial position before loading. It shall be demon-
strated that the deformation of the structure does not increase by more than 10%
during a one-hour holding period under sustained, maximum test load. It is permis-
sible to repeat the sequence if necessary to demonstrate compliance.
Deformations of the structure shall also be recorded 24 hours after the test loading is
removed to determine the amount of permanent set. Because the amount of accept-
able permanent deformation depends on the specific structure, no limit is specified
for permanent deformation at maximum loading. Where it is not feasible to load test
the entire structure, a segment or zone of not less than one complete bay, representa-
tive of the most critical conditions, shall be selected.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 225

16.1–226 EVALUATION BY LOAD TESTS [App. 5.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Serviceability Evaluation
When loadtests are prescribed, the structure shall be loaded incrementally to the
service loadlevel. Deformations shall be monitored during a one hour holding period
under sustained service test load. The structure shall then be unloaded and the defor-
mation recorded.
5.5. EVALUATION REPORT
After the evaluation of an existing structure has been completed, the engineer of
recordshall prepare a report documenting the evaluation. The report shall indicate
whether the evaluation was performed by structural analysis, by loadtesting, or by
a combination of structural analysis and load testing. Furthermore, when testing is
performed, the report shall include the loads and load combination used and the load-
deformation and time-deformation relationships observed. All relevant information
obtained from design drawings, material test reports, and auxiliary material testing
shall also be reported. Finally, the report shall indicate whether the structure, includ-
ing all members and connections, is adequate to withstand the load effects.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 226

16.1–227
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 6
STABILITY BRACING FOR COLUMNS AND BEAMS
This appendix addresses the minimum strength and stiffnessnecessary to provide a braced
point in a column, beamor beam-column.
The appendix is organized as follows:
6.1. General Provisions
6.2. Column Bracing
6.3. Beam Bracing
6.4. Beam-Column Bracing
User Note: The stabilityrequirements for braced-frame systems are provided in Chapter
C. The provisions in this appendix apply to bracingthat is provided to stabilize individ-
ual columns, beams and beam-columns.
6.1. GENERAL PROVISIONS
Columnswith end and intermediate braced points designed to meet the requirements
in Section 6.2 are permitted to be designed based on the unbraced length, L, between
the braced points with an effective length factor, K=1.0. Beams with intermediate
braced points designed to meet the requirements in Section 6.3 are permitted to be
designed based on the unbraced length, L
b, between the braced points.
When bracingis perpendicular to the members to be braced, the equations in
Sections 6.2 and 6.3 shall be used directly. When bracing is oriented at an angle to
the member to be braced, these equations shall be adjusted for the angle of inclina-
tion. The evaluation of the stiffnessfurnished by a brace shall include its member and
geometric properties, as well as the effects of connectionsand anchoring details.
User Note:In this appendix, relative and nodal bracing systems are addressed for
columns and for beams with lateral bracing. For beams with torsional bracing,
nodal and continuous bracing systems are addressed.
A relative bracecontrols the movement of the braced point with respect to
adjacent braced points. A nodal bracecontrols the movement at the braced point
without direct interaction with adjacent braced points. A continuous bracing sys-
tem consists of bracing that is attached along the entire member length; however,
nodal bracing systems with a regular spacing can also be modeled as a continu-
ous system.
The available strengthand stiffness of the bracing members and connections shall
equal or exceed the required strengthand stiffness, respectively, unless analysis indi-
cates that smaller values are justified. A second-order analysisthat includes the
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 227

initial out-of-straightness of the member to obtain brace strength and stiffness
requirements is permitted in lieu of the requirements of this appendix.
6.2. COLUMN BRACING
It is permitted to brace an individual columnat end and intermediate points along the
length using either relative or nodal bracing.
1. Relative Bracing
The required strengthis
P
rb=0.004P r (A-6-1)
The required stiffnessis
(A-6-2)
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
L
b=unbraced length, in. (mm)
For design according to Section B3.3 (LRFD)
P
r=required strength in axial compression using LRFD load combinations, kips
(N)
For design according to Section B3.4 (ASD)
P
r=required strength in axial compression using ASD load combinations, kips
(N)
2. Nodal Bracing
The required strengthis
P
rb=0.01P r (A-6-3)
The required stiffnessis
(A-6-4)
User Note:These equations correspond to the assumption that nodal bracesare
equally spaced along the column.
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
For design according to Section B3.3 (LRFD)
P
r=required strength in axial compression using LRFD load combinations, kips
(N)
16.1–228 GENERAL PROVISIONS [App. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
β
φbr
r
b
P
L
=






12
(LRFD)
βbr
r
b
P
L
=






Ω
2
(ASD)
β
φbr
r
b
P
L
=






18
(LRFD)
βbr
r
b
P
L
=






Ω
8
(ASD)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 228

App. 6.3.] BEAM BRACING 16.1–229
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For design according to Section B3.4 (ASD)
P
r=required strength in axial compression using ASD load combinations, kips
(N)
In Equation A-6-4, L
bneed not be taken less than the maximum effective length, KL,
permitted for the column based upon the required axial strength, P
r.
6.3. BEAM BRACING
Beamsand trusses shall be restrained against rotation about their longitudinal axis at
points of support. When a braced point is assumed in the design between points of
support, lateral bracing, torsional bracing, or a combination of the two shall be pro-
vided to prevent the relative displacement of the top and bottom flanges (i.e., to
prevent twist). In members subject to double curvaturebending, the inflection point
shall not be considered a braced point unless bracingis provided at that location.
1. Lateral Bracing
Lateral bracingshall be attached at or near the beamcompression flange, except as
follows:
(1) At the free end of a cantilevered beam, lateral bracing shall be attached at or near
the top (tension) flange.
(2) For braced beams subject to double curvaturebending, lateral bracing shall be
attached to both flanges at the braced point nearest the inflection point.
1a. Relative Bracing
The required strengthis
P
rb=0.008M rCd/ho (A-6-5)
The required stiffnessis
(A-6-6)
where
φ=0.75 (LRFD) Ω=2.00 (ASD)
C
d=1.0 except in the following case;
=2.0 for the brace closest to the inflection point in a beamsubject to double
curvaturebending
h
o=distance between flange centroids, in. (mm)
For design according to Section B3.3 (LRFD)
M
r=required flexural strengthusing LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
β
φbr
rd
bo
MC
Lh
=






14
(LRFD)
βbr
rd
bo
MC
Lh
=






Ω
4
(ASD)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 229

1b. Nodal Bracing
The required strength is
P
rb=0.02M rCd/ho (A-6-7)
The required stiffness is
(A-6-8)
where
φ=0.75 (LRFD) Ω =2.00 (ASD)
For design according to Section B3.3 (LRFD)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
In Equation A-6-8, L
bneed not be taken less than the maximum unbraced lengthper-
mitted for the beambased upon the flexural required strength, M
r.
2. Torsional Bracing
It is permitted to attach torsional bracingat any cross-sectional location, and it need
not be attached near the compression flange.
User Note:Torsional bracing can be provided with a moment-connected beam,
cross-frame, or other diaphragm element.
2a. Nodal Bracing
The required strengthis
(A-6-9)
The required stiffnessof the brace is
(A-6-10)
where
(A-6-11)
16.1–230 BEAM BRACING [App. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
β
φbr
rd
bo
MC
Lh
=






110
LRFD()
βbr
rd
bo
MC
Lh
=






Ω
10
ASD()
β
φT
r
yb
LM
nEI C
=






124
2
2
.
() LRFD
βT
r
yb
LM
nEI C
=






Ω
24
2
2
.
() ASD
M
ML
nC Lrb
r
bb=
0 024.
β
β
β
βTb
T
T
sec=







1
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 230

(A-6-12)
where
φ=0.75 (LRFD) Ω=3.00 (ASD)
User Note: Ω=1.5
2
/φ=3.00 in Equation A-6-11 because the moment term is
squared.
C
b=modification factor defined in Chapter F
E=modulus of elasticity of steel =29,000 ksi (200 000 MPa)
I
y=out-of-plane moment of inertia, in.
4
(mm
4
)
L=length of span, in. (mm)
b
s=stiffenerwidth for one-sided stiffeners, in. (mm)
=twice the individual stiffener width for pairs of stiffeners, in. (mm)
n=number of nodal braced points within the span
t
w=thickness of beamweb, in. (mm)
t
st=thickness of web stiffener, in. (mm)
β
T=overall brace system stiffness, kip-in./rad (N-mm/rad)
β
sec=web distortional stiffness, including the effect of web transverse stiffeners,
if any, kip-in./rad (N-mm/rad)
User Note: If β
sec<βT, Equation A-6-10 is negative, which indicates that tor-
sional beam bracingwill not be effective due to inadequate web distortional
stiffness.
For design according to Section B3.3 (LRFD)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
For design according to Section B3.4 (ASD)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
When required, the web stiffener shall extend the full depth of the braced member
and shall be attached to the flange if the torsional brace is also attached to the flange.
Alternatively, it shall be permissible to stop the stiffener short by a distance equal to
4t
wfrom any beam flange that is not directly attached to the torsional brace.
In Equation A-6-9, L
bneed not be taken less than the maximum unbraced lengthper-
mitted for the beam based upon the required flexural strength, M
r.
2b. Continuous Bracing
For continuous bracing, Equations A-6-9 and A-6-10 shall be used with the follow-
ing modifications:
(1)L/n=1.0
(2)L
bshall be taken equal to the maximum unbraced lengthpermitted for the beam
based upon the required flexural strength, M
r
App. 6.3.] BEAM BRACING 16.1–231
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
βsec
o
ow st s
E
h
ht t b
=+






33 15
12 12
33
..
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 231

16.1–232 BEAM BRACING [App. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(3) The web distortional stiffnessshall be taken as:
(A-6-13)
6.4. BEAM-COLUMN BRACING
For bracingof beam-columns, the required strengthand stiffnessfor the axial force
shall be determined as specified in Section 6.2, and the required strength and stiff-
ness for the flexure shall be determined as specified in Section 6.3. The values so
determined shall be combined as follows:
(a) When relative lateral bracingis used, the required strength shall be taken as the
sum of the values determined using Equations A-6-1 and A-6-5, and the
required stiffness shall be taken as the sum of the values determined using
Equations A-6-2 and A-6-6.
(b) When nodal lateral bracing is used, the required strength shall be taken as the
sum of the values determined using Equations A-6-3 and A-6-7, and the
required stiffness shall be taken as the sum of the values determined using
Equations A-6-4 and A-6-8. In Equations A-6-4 and A-6-8, L
bfor beam-
columns shall be taken as the actual unbraced length; the provisions in Sections
6.2.2 and 6.3.1b that L
bneed not be taken less than the maximum permitted
effective length based upon P
rand M rshall not be applied.
(c) When torsional bracingis provided for flexure in combination with relative or
nodal bracingfor the axial force, the required strength and stiffness shall be com-
bined or distributed in a manner that is consistent with the resistance provided by
the element(s) of the actual bracing details.
βsec
w
o
Et
h
=
33
12
3
.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 232

APPENDIX 7
ALTERNATIVE METHODS OF DESIGN FOR STABILITY
This appendix presents alternatives to the direct analysis methodof design for stability
defined in Chapter C. The two alternative methods covered are the effective lengthmethod
and the first-order analysismethod.
The appendix is organized as follows:
7.1. General Stability Requirements
7.2. Effective Length Method
7.3. First-Order Analysis Method
7.1. GENERAL STABILITY REQUIREMENTS
The general requirements of Section C1 shall apply. As an alternative to the direct
analysis method(defined in Sections C1 and C2), it is permissible to design struc-
tures for stabilityin accordance with either the effective length method, specified in
Section 7.2, or the first-order analysis method, specified in Section 7.3, subject to the
limitations indicated in those sections.
7.2. EFFECTIVE LENGTH METHOD
1. Limitations
The use of the effective length method shall be limited to the following conditions:
(1) The structure supports gravity loadsprimarily through nominally vertical columns,
walls or frames.
(2) The ratio of maximum second-order driftto maximum first-order drift (both
determined for LRFD load combinationsor 1.6 times ASD load combinations) in
all stories is equal to or less than 1.5.
User Note:The ratio of second-order drift to first-order drift in a story may be
taken as the B
2multiplier, calculated as specified in Appendix 8.
2. Required Strengths
The required strengthsof components shall be determined from analysis conforming
to the requirements of Section C2.1, except that the stiffnessreduction indicated in
Section C2.3 shall not be applied; the nominal stiffnesses of all structural steelcom-
ponents shall be used. Notional loadsshall be applied in the analysis in accordance
with Section C2.2b.
16.1–233
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 233

16.1–234 EFFECTIVE LENGTH METHOD [App. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
User Note:Since the condition specified in Section C2.2b(4) will be satisfied in
all cases where the effective length method is applicable, the notional load need
only be applied in gravity-only load cases.
3. Available Strengths
The available strengthsof members and connections shall be calculated in accor-
dance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable.
The effective length factor, K, of members subject to compression shall be taken as
specified in (a) or (b), below, as applicable.
(a) In braced framesystems, shear wallsystems, and other structural systems
where lateral stabilityand resistance to lateral loadsdoes not rely on the flex-
ural stiffnessof columns, the effective length factor, K, of members subject to
compression shall be taken as 1.0, unless rational analysis indicates that a lower
value is appropriate.
(b) In moment framesystems and other structural systems in which the flexural stiff-
nesses of columns are considered to contribute to lateral stability and resistance
to lateral loads, the effective length factor, K, or elastic critical bucklingstress,
F
e, of those columns whose flexural stiffnesses are considered to contribute to
lateral stability and resistance to lateral loads shall be determined from a side-
sway bucklinganalysis of the structure; Kshall be taken as 1.0 for columns
whose flexural stiffnesses are not considered to contribute to lateral stability and
resistance to lateral loads.
Exception: It is permitted to use K =1.0 in the design of all columns if the ratio
of maximum second-order driftto maximum first-order drift (both determined
for LRFD load combinationsor 1.6 times ASD load combinations) in all stories
is equal to or less than 1.1.
User Note:Methods of calculating the effective length factor, K, are discussed in
the Commentary.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffness and strength to control member movement at the braced points.
User Note:Methods of satisfying the bracing requirement are provided in
Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is
included in the analysis of the overall structure as part of the overall force-resist-
ing system.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 234

7.3. FIRST-ORDER ANALYSIS METHOD
1. Limitations
The use of the first-order analysis method shall be limited to the following condi-
tions:
(1) The structure supports gravity loadsprimarily through nominally vertical columns,
walls or frames.
(2) The ratio of maximum second-order driftto maximum first-order drift (both
determined for LRFD load combinationsor 1.6 times ASD load combinations) in
all stories is equal to or less than 1.5.
User Note:The ratio of second-order drift to first-order drift in a story may be
taken as the B
2multiplier, calculated as specified in Appendix 8.
(3) The required axial compressive strengthsof all members whose flexural stiff-
nessesare considered to contribute to the lateral stabilityof the structure satisfy
the limitation:
αP
r≤0.5P y (A-7-1)
where
α=1.0 (LRFD); α =1.6 (ASD)
P
r=required axial compressive strength under LRFD or ASD load combina-
tions, kips (N)
P
y=FyA =axial yield strength, kips (N)
2. Required Strengths
The required strengthsof components shall be determined from a first-order analy-
sis, with additional requirements (1) and (2) below. The analysis shall consider
flexural, shear and axial member deformations, and all other deformations that con-
tribute to displacements of the structure.
(1) All load combinations shall include an additional lateral load, N
i, applied in
combination with other loads at each level of the structure:
N
i =2.1α(Δ/L)Y i≥0.0042Y i (A-7-2)
where
α=1.0 (LRFD); α =1.6 (ASD)
Y
i=gravity loadapplied at level ifrom the LRFD load combination
or ASD load combination, as applicable, kips (N)
Δ/L=maximum ratio of Δto Lfor all stories in the structure
Δ=first-order interstory driftdue to the LRFD or ASD load combination, as
applicable, in. (mm). Where Δvaries over the plan area of the
structure, Δshall be the average drift weighted in proportion to vertical
loador, alternatively, the maximum drift.
L=height of story, in. (mm)
App. 7.3.] FIRST-ORDER ANALYSIS METHOD 16.1–235
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 235

16.1–236 FIRST-ORDER ANALYSIS METHOD [App. 7.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The additional lateral load at any level, N i, shall be distributed over that level in
the same manner as the gravity load at the level. The additional lateral loads shall
be applied in the direction that provides the greatest destabilizing effect.
User Note:For most building structures, the requirement regarding the direc-
tion of N
imay be satisfied as follows: For load combinations that do not
include lateral loading, consider two alternative orthogonal directions for the
additional lateral load, in a positive and a negative sense in each of the two
directions, same direction at all levels; for load combinations that include lat-
eral loading, apply all the additional lateral loads in the direction of the
resultant of all lateral loads in the combination.
(2) The nonsway amplification of beam-columnmoments shall be considered by
applying the B
1amplifier of Appendix 8 to the total member moments.
User Note:Since there is no second-order analysis involved in the first-order
analysis method for design by ASD, it is not necessary to amplify ASD load com-
binations by 1.6 before performing the analysis, as required in the direct analysis
methodand the effective length method.
3. Available Strengths
The available strengthsof members and connections shall be calculated in accor-
dance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable.
The effective length factor, K, of all members shall be taken as unity.
Bracingintended to define the unbraced lengthsof members shall have sufficient
stiffnessand strength to control member movement at the braced points.
User Note:Methods of satisfying this requirement are provided in Appendix 6.
The requirements of Appendix 6 are not applicable to bracing that is included in
the analysis of the overall structure as part of the overall force-resisting system.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 236

16.1–237
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 8
APPROXIMATE SECOND-ORDER ANALYSIS
This appendix provides, as an alternative to a rigorous second-order analysis, a procedure to
account for second-order effects in structures by amplifying the required strengthsindicated
by a first-order analysis.
The appendix is organized as follows:
8.1. Limitations
8.2. Calculation Procedure
8.1. LIMITATIONS
The use of this procedure is limited to structures that support gravity loadsprimarily
through nominally vertical columns, walls or frames, except that it is permissible to
use the procedure specified for determining P-δeffectsfor any individual compres-
sion member.
8.2. CALCULATION PROCEDURE
The required second-order flexural strength, M r, and axial strength, P r, of all mem-
bers shall be determined as follows:
M
r=B1Mnt+B2Mlt (A-8-1)
P
r=Pnt+B2Plt (A-8-2)
where
B
1= multiplier to account for P-δeffects, determined for each member subject to
compression and flexure, and each direction of bending of the member in
accordance with Section 8.2.1. B
1shall be taken as 1.0 for members not sub-
ject to compression.
B
2= multiplier to account for P-Δ effects, determined for each story of the struc-
ture and each direction of lateral translation of the story in accordance with
Section 8.2.2
M
lt= first-order moment using LRFD or ASD load combinations, due to lateral
translation of the structure only, kip-in. (N-mm)
M
nt= first-order moment using LRFD or ASD load combinations, with the struc-
ture restrained against lateral translation, kip-in. (N-mm)
M
r= required second-order flexural strength using LRFDor ASD load combina-
tions, kip-in. (N-mm)
P
lt= first-order axial force using LRFD or ASD load combinations, due to lateral
translation of the structure only, kips (N)
P
nt= first-order axial force using LRFD or ASD load combinations, with the
structure restrained against lateral translation, kips (N)
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 237

16.1–238 CALCULATION PROCEDURE [App. 8.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pr= required second-order axial strength using LRFD or ASD load combina-
tions, kips (N)
User Note:Equations A-8-1 and A-8-2 are applicable to all members in all struc-
tures. Note, however, that B
1values other than unity apply only to moments in
beam-columns; B
2applies to moments and axial forces in components of the lat-
eral force resisting system(including columns, beams, bracingmembers and
shear walls). See Commentary for more on the application of Equations A-8-
1and A-8-2.
1. Multiplier B 1for P-δEffects
The B 1multiplier for each member subject to compression and each direction of
bending of the member is calculated as follows:
(A-8-3)
where
α=1.00 (LRFD); α=1.60 (ASD)
C
m=coefficient assuming no lateral translation of the frame determined
as follows:
(a) For beam-columnsnot subject to transverse loading between supports in
the plane of bending
C
m=0.6 β0.4(M 1/M2) (A-8-4)
where M
1andM 2, calculated from a first-order analysis, are the smaller
and larger moments, respectively, at the ends of that portion of the mem-
ber unbraced in the plane of bending under consideration. M
1/M2is
positive when the member is bent in reverse curvature, negative when
bent in single curvature.
(b) For beam-columns subject to transverse loading between supports, the
value of C
mshall be determined either by analysis or conservatively
taken as 1.0 for all cases.
P
e1= elastic critical buckling strengthof the member in the plane of bending, cal-
culated based on the assumption of no lateral translation at the member ends,
kips (N)
(A-8-5)
where
EI*=flexural rigidity required to be used in the analysis (=0.8τ
bEIwhen
used in the direct analysis methodwhere τ
bis as defined in Chapter C;
=EIfor the effective length and first-order analysis methods)
E=modulus of elasticity of steel =29,000 ksi (200 000 MPa)
B
C
PP
m
re
1
1
1
1=


α/
P
EI
KLe1
2
1
2=
()
π*
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 238

App. 8.2.] CALCULATION PROCEDURE 16.1–239
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
B
P
P
story
estory
2
1
1
1=


α

PR
HLestory M
H
=
Δ
I=moment of inertia in the plane of bending, in.
4
(mm
4
)
L=length of member, in. (mm)
K
1=effective length factorin the plane of bending, calculated based on the
assumption of no lateral translation at the member ends, set equal to 1.0
unless analysis justifies a smaller value
It is permitted to use the first-order estimate of P
r(i.e., P r=Pnt+Plt) in Equation
A-8-3.
2. Multiplier B 2for P-ΔEffects
The B 2multiplier for each story and each direction of lateral translation is calculated
as follows:
(A-8-6)
where
α= 1.00 (LRFD); α=1.60 (ASD)
P
story= total vertical loadsupported by the story using LRFDor ASD load com-
binations, as applicable, including loads in columnsthat are not part of
the lateral force resisting system, kips (N)
P
e story= elastic critical buckling strengthfor the story in the direction of transla-
tion being considered, kips (N), determined by sidesway buckling
analysis or as:
(A-8-7)
where
R
M=1 β0.15 (P mf/Pstory) (A-8-8)
L=height of story, in. (mm)
P
mf=total vertical load in columns in the story that are part of moment frames, if
any, in the direction of translation being considered (= 0 for braced frame
systems), kips (N)
Δ
H=first-order interstory drift, in the direction of translation being considered,
due to lateral forces, in. (mm), computed using the stiffnessrequired to be
used in the analysis (stiffness reduced as provided in Section C2.3 when the
direct analysis methodis used). Where Δ
Hvaries over the plan area of the
structure, it shall be the average drift weighted in proportion to vertical load
or, alternatively, the maximum drift.
H=story shear, in the direction of translation being considered, produced by the
lateral forces used to compute Δ
H, kips (N)
User Note: Hand Δ
Hin Equation A-8-7 may be based on any lateral loading that
provides a representative value of story lateral stiffness, H/Δ
H.
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 239

16.1–240 CALCULATION PROCEDURE [App. 8.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Spec.3_C:14th Ed. 1/20/11 8:02 AM Page 240

16.1–241
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY
on the Specification for Structural
Steel Buildings
June 22, 2010
(The Commentary is not a part of ANSI/AISC 360-10, Specification for Structural Steel
Buildings, but is included for informational purposes only.)
INTRODUCTION
The Specification is intended to be complete for normal design usage.
The Commentary furnishes background information and references for the benefit of the
design professional seeking further understanding of the basis, derivations and limits of the
Specification.
The Specification and Commentary are intended for use by design professionals with
demonstrated engineering competence.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 241

16.1–242
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY SYMBOLS
The Commentary uses the following symbols in addition to the symbols defined in the
Specification. The section number in the right-hand column refers to the Commentary sec-
tion where the symbol is first used.
Symbol Definition Section
A Angle cross-sectional area, in.
2(mm
2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
B Overall width of rectangular HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . I3
C
f Compression force in concrete slab for fully composite beam;
smaller of F
yAsand 0.85f′ cAc,kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
F
y Reported yield stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.2.2
F
ys Static yield stress, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 5.2.2
H Overall height of rectangular HSS, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . I3
H Anchor height, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I8.2b
I
g Moment of inertia of gross concrete section about centroidal
axis, neglecting reinforcement, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . I2.1b
I
LB Lower bound moment of inertia, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . I3.2
I
pos Effective moment of inertia for positive moment, in.
4
(mm
4
) . . . . . . . . . . . I3.2
I
neg Effective moment of inertia for negative moment, in.
4
(mm
4
) . . . . . . . . . . I3.2
I
s Moment of inertia for the structural steel section, in.
4(mm
4) . . . . . . . . . . . I3.2
I
tr Moment of inertia for the fully composite uncracked
transformed section, in.
4(mm
4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I3.2
I
y Top Moment of inertia of the top flange about an axis through
the web, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
I
y Moment of inertia of the entire section about an axis through
the web, in.
4
(mm
4
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . F1
K
S Secant stiffness, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
M
CL Moment at the middle of the unbraced length, kip-in. (N-mm) . . . . . . . . . . . F1
M
S Moment at service loads, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
M
T Torsional moment, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
M
o Maximum first-order moment within the member due to the
transverse loading, kip-in. (N-mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 8
N Number of cycles to failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
Q
m Mean value of the load effect Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B3.3
R
cap Minimum rotation capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 1.2.2
R
m Mean value of the resistance R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .B3.3
S
r Stress range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 3.3
S
s Section modulus for the structural steel section, referred to
the tension flange, in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
S
tr Section modulus for the fully composite uncracked transformed
section, referred to the tension flange of the steel section,
in.
3
(mm
3
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3.2
V
Q Coefficient of variation of the load effect Q . . . . . . . . . . . . . . . . . . . . . . . . B3.3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 242

COMMENTARY SYMBOLS 16.1–243
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
VR Coefficient of variation of the resistance R . . . . . . . . . . . . . . . . . . . . . . . . . B3.3
V
b Component of the shear force parallel to the angle leg with
width band thickness t, kips (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
a
cr Distance from the compression face to the neutral axis for
a slender section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
a
p Distance from the compression face to the neutral axis for
a compact section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
a
y Distance from the compression face to the neutral axis for
a noncompact section, in. (mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I3
f
v Shear stress in angle, ksi (MPa) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G4
k Plate buckling coefficient characteristic of the type of plate
edge-restraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
β Reliability index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.3
β
act Actual bracing stiffness provided . . . . . . . . . . . . . . . . . . . . . . . . . . . . . App. 6.1
δ
o Maximum deflection due to transverse loading, in. (mm) . . . . . . . . . . . . App. 8
ν Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E7.1
θ
S Rotation at service loads, rad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B3.6
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 243

16.1–244
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
COMMENTARY GLOSSARY
The Commentary uses the following terms in addition to the terms defined in the Glossary
of the Specification. The terms listed below are italicizedwhere they first appear in a chap-
ter in the Commentary text.
Alignment chart. Nomograph for determining the effective length factor, K, for some types
of columns.
Biaxial bending. Simultaneous bending of a member about two perpendicular axes.
Brittle fracture. Abrupt cleavage with little or no prior ductile deformation.
Column curve. Curve expressing the relationship between axial column strength and slen-
derness ratio.
Critical load. Load at which a perfectly straight member under compression may either
assume a deflected position or may remain undeflected, or a beam under flexure may
either deflect and twist out of plane or remain in its in-plane deflected position, as deter-
mined by a theoretical stability analysis.
Cyclic load.Repeatedly applied external load that may subject the structure to fatigue.
Drift damage index. Parameter used to measure the potential damage caused by interstory
drift.
Effective moment of inertia. Moment of inertia of the cross section of a member that remains
elastic when partial plastification of the cross section takes place, usually under the com-
bination of residual stressand applied stress; also, the moment of inertia based on
effective widths of elements that buckle locally; also, the moment of inertia used in the
design of partially composite members.
Effective stiffness. Stiffness of a member computed using the effective moment of inertiaof
its cross section.
Fatigue threshold.Stress range at which fatigue cracking will not initiate regardless of the
number of cycles of loading.
First-order plastic analysis. Structural analysisbased on the assumption of rigid-plastic
behavior—in other words, that equilibrium is satisfied throughout the structure and the
stress is at or below the yield stress—and in which equilibrium conditions are formulated
on the undeformed structure.
Flexible connection. Connection permitting a portion, but not all, of the simple beam rota-
tion of a member end.
Inelastic action. Material deformation that does not disappear on removal of the force that
produced it.
Interstory drift. Lateral deflection of a floor relative to the lateral deflection of the floor
immediately below, divided by the distance between floors, (δ
n– δn-1)/h.
Permanent load. Loadin which variations over time are rare or of small magnitude. All
other loadsare variable loads.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 244

COMMENTARY GLOSSARY 16.1–245
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Plastic plateau. Portion of the stress-strain curve for uniaxial tension or compression in
which the stress remains essentially constant during a period of substantially increased
strain.
Primary member.For ponding analysis, beam or girder that supports the concentrated reac-
tions from the secondary membersframing into it.
Residual stress. Stress that remains in an unloaded member after it has been formed into a
finished product. (Examples of such stresses include, but are not limited to, those induced
by cold bending, cooling after rolling, or welding).
Rigid frame. Structure in which connections maintain the angular relationship between
beam and column members under load.
Secondary member. For ponding analysis, beam or joist that directly supports the distributed
ponding loads on the roof of the structure.
Sidesway. Lateral movement of a structure under the action of lateral loads, unsymmetrical
vertical loads or unsymmetrical properties of the structure.
Sidesway buckling. Buckling mode of a multistory frame precipitated by the relative lateral
displacements of joints, leading to failure by sideswayof the frame.
St. Venant torsion. Portion of the torsion in a member that induces only shear stresses in the
member.
Strain hardening. Phenomenon wherein ductile steel, after undergoing considerable defor-
mation at or just above yield point, exhibits the capacity to resist substantially higher
loading than that which caused initial yielding.
Stub-column.A short compression test specimen utilizing the complete cross section, suffi-
ciently long to provide a valid measure of the stress-strain relationship as averaged over
the cross section, but short enough so that it will not buckle as a column in the elastic or
plastic range.
Total building drift.Lateral frame deflection at the top of the most occupied floor divided
by the height of the building to that level, Δ/H.
Undercut. Notch resulting from the melting and removal of base metal at the edge of a weld.
Variable load. Load with substantial variation over time.
Warping torsion. Portion of the total resistance to torsion that is provided by resistance to
warping of the cross section.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 245

16.1–246
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER A
GENERAL PROVISIONS
A1. SCOPE
The scope of this Specification is essentially the same as the 2005 Specification for
Structural Steel Buildingsthat it replaces, with the exception of a new Chapter N,
Quality Control and Quality Assurance.
The basic purpose of the provisions in this Specification is the determination of the
nominal and available strengths of the members, connections and other components
of steel building structures.
This Specification provides two methods of design:
(1)Load and Resistance Factor Design (LRFD): The nominal strength is multi-
plied by a resistance factor, φ,and the resulting design strength is then required
to equal or exceed the required strength determined by structural analysis for the
appropriate LRFD load combinations specified by the applicable building code.
(2)Allowable Strength Design (ASD): The nominal strength is divided by a safety
factor, Ω,and the resulting allowable strength is then required to equal or exceed
the required strength determined by structural analysis for the appropriate ASD
load combinations specified by the applicable building code.
This Specification gives provisions for determining the values of the nominal
strengths according to the applicable limit states and lists the corresponding values
of the resistance factor, φ, and the safety factor, Ω. Nominal strength is usually
defined in terms of resistance to a load effect, such as axial force, bending moment,
shear or torque, but in some instances it is expressed in terms of a stress. The ASD
safety factors are calibrated to give the same structural reliability and the same
component size as the LRFD method at a live-to-dead load ratio of 3. The term
available strength is used throughout the Specification to denote design strength
and allowable strength, as applicable.
This Specification is applicable to both buildings and other structures. Many struc-
tures found in petrochemical plants, power plants, and other industrial applications
are designed, fabricated and erected in a manner similar to buildings. It is not
intended that this Specification address steel structures with vertical and lateral
load-resisting systems that are not similar to buildings, such as those constructed of
shells or catenary cables.
The Specification may be used for the design of structural steel elements, as defined
in the AISC Code of Standard Practice for Steel Buildings and Bridges (AISC,
2010a), hereafter referred to as the Code of Standard Practice, when used
as components of nonbuilding structures or other structures. Engineering judgment
must be applied to the Specification requirements when the structural steel elements
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 246

Comm. A3.] MATERIAL 16.1–247
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
are exposed to environmental or service conditions and/or loads not usually applica-
ble to building structures.
The Code of Standard Practice defines the practices that are the commonly accepted
standards of custom and usage for structural steel fabrication and erection. As such,
the Code of Standard Practiceis primarily intended to serve as a contractual docu-
ment to be incorporated into the contract between the buyer and seller of fabricated
structural steel. Some parts of the Code of Standard Practice, however, form the
basis for some of the provisions in this Specification. Therefore, the Code of
Standard Practice is referenced in selected locations in this Specification to maintain
the ties between these documents, where appropriate.
The Specification disallows seismic design of buildings and other structures using
the provisions of Appendix 1. The R-factor specified in ASCE/SEI 7-10 (ASCE,
2010) used to determine the seismic loads is based on a nominal value of system
overstrength and ductility that is inherent in steel structures designed by elastic
analysis using this Specification. Therefore, it would be inappropriate to take advan-
tage of the additional strength afforded by the inelastic design approach presented
in Appendix 1 while simultaneously using the code specified R-factor. In addition,
the provisions for ductility in Appendix 1 are not fully consistent with the intended
levels for seismic design.
A2. REFERENCED SPECIFICATIONS, CODES AND STANDARDS
Section A2 provides references to documents cited in this Specification. Note that not
all grades of a particular material specification are necessarily approved for use
according to this Specification. For a list of approved materials and grades, see
Section A3.
A3. MATERIAL
1. Structural Steel Materials
1a. ASTM Designations
There are hundreds of steel materials and products. This Specification lists those
products/materials that are commonly useful to structural engineers and those that
have a history of satisfactory performance. Other materials may be suitable for spe-
cific applications, but the evaluation of those materials is the responsibility of the
engineer specifying them. In addition to typical strength properties, considerations
for materials may include but are not limited to strength properties in transverse
directions, ductility, formability, soundness, weldability including sensitivity to ther-
mal cycles, notch toughness, and other forms of crack sensitivity, coatings, and
corrosivity. Consideration for product form may include material considerations in
addition to effects of production, tolerances, testing, reporting and surface profiles.
Hot-Rolled Structural Shapes. The grades of steel approved for use under this
Specification, covered by ASTM specifications, extend to a yield stress of 100 ksi
(690 MPa). Some of the ASTM specifications specify a minimum yield point, while
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 247

16.1–248 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
others specify a minimum yield strength. The term “yield stress” is used in this
Specification as a generic term to denote either the yield point or the yield strength.
It is important to be aware of limitations of availability that may exist for some com-
binations of strength and size. Not all structural section sizes are included in the
various material specifications. For example, the 60 ksi (415 MPa) yield stress steel
in the A572/A572M specification includes plate only up to 1
1
/4in. (32 mm) in thick-
ness. Another limitation on availability is that even when a product is included in
this Specification, it may be infrequently produced by the mills. Specifying these
products may result in procurement delays or require ordering large quantities
directly from the producing mills. Consequently, it is prudent to check availability
before completing the details of a design. The AISC web site provides this infor-
mation (www.aisc.org).
Properties in the direction of rolling are of principal interest in the design of steel
structures. Hence, yield stress as determined by the standard tensile test is the prin-
cipal mechanical property recognized in the selection of the steels approved for use
under this Specification. It must be recognized that other mechanical and physical
properties of rolled steel, such as anisotropy, ductility, notch toughness, formability,
corrosion resistance, etc., may also be important to the satisfactory performance of
a structure.
It is not possible to incorporate in the Commentary adequate information to impart
full understanding of all factors that might merit consideration in the selection and
specification of materials for unique or especially demanding applications. In such a
situation the user of the Specification is advised to make use of reference material
contained in the literature on the specific properties of concern and to specify sup-
plementary material production or quality requirements as provided for in ASTM
material specifications. One such case is the design of highly restrained welded con-
nections (AISC, 1973). Rolled steel is anisotropic, especially insofar as ductility is
concerned; therefore, weld contraction strains in the region of highly restrained
welded connections may exceed the strength of the material if special attention is not
given to material selection, details, workmanship and inspection.
Another special situation is that of fracture control design for certain types of serv-
ice conditions (AASHTO, 2010). For especially demanding service conditions such
as structures exposed to low temperatures, particularly those with impact loading,
the specification of steels with superior notch toughness may be warranted.
However, for most buildings, the steel is relatively warm, strain rates are essentially
static, and the stress intensity and number of cycles of full design stress are low.
Accordingly, the probability of fracture in most building structures is low. Good
workmanship and good design details incorporating joint geometry that avoids
severe stress concentrations are generally the most effective means of providing
fracture-resistant construction.
Hollow Structural Sections (HSS). Specified minimum tensile properties are sum-
marized in Table C-A3.1 for various HSS and pipe material specifications and
grades. ASTM A53 Grade B is included as an approved pipe material specification
because it is the most readily available round product in the United States. Other
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 248

Comm. A3.] MATERIAL 16.1–249
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
North American HSS products that have properties and characteristics that are sim-
ilar to the approved ASTM products are produced in Canada under the General
Requirements for Rolled or Welded Structural Quality Steel(CSA, 2004). In addi-
tion, pipe is produced to other specifications that meet the strength, ductility and
weldability requirements of the materials in Section A3, but may have additional
requirements for notch toughness or pressure testing.
Pipe can be readily obtained in ASTM A53 material and round HSS in ASTM A500
Grade B is also common. For rectangular HSS, ASTM A500 Grade B is the most
commonly available material and a special order would be required for any other
material. Depending upon size, either welded or seamless round HSS can be
obtained. In North America, however, all ASTM A500 rectangular HSS for structural
purposes are welded. Rectangular HSS differ from box sections in that they have uni-
form thickness except for some thickening in the rounded corners.
Nominal strengths of direct welded (T, Y & K) connections of HSS have been devel-
oped analytically and empirically. Connection deformation is anticipated and is an
acceptance limit for connection tests. Ductility is necessary to achieve the expected
deformations. The ratio of the specified yield strength to the specified tensile strength
(yield/tensile ratio) is one measure of material ductility. Materials in HSS used in
connection tests have had a yield/tensile ratio of up to 0.80 and therefore that ratio
has been adopted as a limit of applicability for direct welded HSS connections.
ASTM A500 Grade A material does not meet this ductility “limit of applicability” for
direct connections in Chapter K. ASTM A500 Grade C has a yield/tensile ratio of
0.807 but it is reasonable to use the rounding method described in ASTM E29 and
find this material acceptable for use.
TABLE C-A3.1
Minimum Tensile Properties of HSS
and Pipe Steels
Specification Grade Fy, ksi (MPa) Fu, ksi (MPa)
ASTM A53 B 35 (240) 60 (415)
ASTM A500 B 42 (290) 58 (400)
(round) C 46 (315) 62 (425)
ASTM A500 B 46 (315) 58 (400)
(rectangular) C 50 (345) 62 (425)
ASTM A501 A 36 (250) 58 (400)
B 50 (345) 70 (485)
ASTM A618 I and II 50 (345) 70 (485)
(round) (
t ≤
3
/4in.)
III 50 (345) 65 (450)
ASTM A847 — 50 (345) 70 (485)
CAN/CSA-G40.20/G40.21 350W 51 (350) 65 (450)
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 249

16.1–250 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Even though ASTM A501 includes rectangular HSS, hot-formed rectangular HSS
are not currently produced in the United States. The General Requirements for Rolled
or Welded Structural Quality Steel(CSA, 2004) includes Class C (cold-formed) and
Class H (cold-formed and stress relieved) HSS. Class H HSS have relatively low lev-
els of residual stress, which enhances their performance in compression and may
provide better ductility in the corners of rectangular HSS.
1c. Rolled Heavy Shapes
The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well
as the interior portions of heavy plates, may contain a more coarse grain structure
and/or lower notch toughness material than other areas of these products. This is
probably caused by ingot segregation, the somewhat lesser deformation during hot
rolling, higher finishing temperature, and the slower cooling rate after rolling for
these heavy sections. This characteristic is not detrimental to suitability for com-
pression members or for nonwelded members. However, when heavy cross sections
are joined by splices or connections using complete-joint-penetration groove welds
that extend through the coarser and/or lower notch-tough interior portions, tensile
strains induced by weld shrinkage may result in cracking. An example is a complete-
joint-penetration groove welded connection of a heavy cross section beam to any
column section. When members of lesser thickness are joined by complete-joint-pen-
etration groove welds, which induce smaller weld shrinkage strains, to the finer
grained and/or more notch-tough surface material of ASTM A6/A6M shapes and
heavy built-up cross sections, the potential for cracking is significantly lower. An
example is a complete-joint-penetration groove welded connection of a nonheavy
cross section beam to a heavy cross section column.
For critical applications such as primary tension members, material should be spec-
ified to provide adequate notch toughness at service temperatures. Because of
differences in the strain rate between the Charpy V-notch (CVN) impact test and the
strain rate experienced in actual structures, the CVN test is conducted at a tempera-
ture higher than the anticipated service temperature for the structure. The location of
the CVN test specimens (“alternate core location”) is specified in ASTM A6/A6M,
Supplemental Requirement S30.
The notch toughness requirements of Section A3.1c are intended only to provide
material of reasonable notch toughness for ordinary service applications. For unusual
applications and/or low temperature service, more restrictive requirements and/or
notch toughness requirements for other section sizes and thicknesses may be appro-
priate. To minimize the potential for fracture, the notch toughness requirements of
Section A3.1c must be used in conjunction with good design and fabrication proce-
dures. Specific requirements are given in Sections J1.5, J1.6, J2.6 and J2.7.
For rotary-straightened W-shapes, an area of reduced notch toughness has been doc-
umented in a limited region of the web immediately adjacent to the flange. This
region may exist in W-shapes of all weights, not just heavy shapes. Considerations
in design and detailing that recognize this situation are presented in Chapter J.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 250

Comm. A3.] MATERIAL 16.1–251
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Steel Castings and Forgings
There are a number of ASTM specifications for steel castings. The SFSA Steel
Castings Handbook (SFSA, 1995) recommends ASTM A216 as a product useful for
steel structures. In addition to the requirements of this Specification, SFSA recom-
mends that various other requirements be considered for cast steel products. It may
be appropriate to inspect the first piece cast using magnetic particle inspection in
accordance with ASTM E125, degree 1a, b or c. Radiographic inspection level III
may be desirable for critical sections of the first piece cast. Ultrasonic testing (UT)
in compliance with ASTM A609/A609M (ASTM, 2007b) may be appropriate for
the first cast piece over 6 in. thick. Design approval, sample approval, periodic non-
destructive testing of the mechanical properties, chemical testing, and selection of
the correct welding specification should be among the issues defined in the selec-
tion and procurement of cast steel products. Refer to SFSA (1995) for design
information about cast steel products.
3. Bolts, Washers and Nuts
The ASTM standard specification for A307 bolts covers two grades of fasteners
(ASTM, 2007c). Either grade may be used under this Specification; however, it
should be noted that Grade B is intended for pipe flange bolting and Grade A is the
grade long in use for structural applications.
4. Anchor Rods and Threaded Rods
ASTM F1554 is the primary specification for anchor rods. Since there is a limit
on the maximum available length of ASTM A325/A325M and ASTM A490/
A490M bolts, the attempt to use these bolts for anchor rods with design lengths
longer than the maximum available lengths has presented problems in the past. The
inclusion of ASTM A449 and A354 materials in this Specification allows the use
of higher strength material for bolts longer than ASTM A325/A325M and ASTM
A490/A490M bolts.
The engineer of record should specify the required strength for threaded rods used as
load-carrying members.
5. Consumables for Welding
The AWS filler metal specifications listed in Section A3.5 are general specifications
that include filler metal classifications suitable for building construction, as well
as classifications that may not be suitable for building construction. The AWS
D1.1/D1.1M,Structural Welding Code—Steel(AWS, 2010) lists in Table 3.1 various
electrodes that may be used for prequalified welding procedure specifications, for the
various steels that are to be joined. This list specifically does not include various
classifications of filler metals that are not suitable for structural steel applications.
Filler metals listed under the various AWS A5 specifications may or may not have
specified notch toughness properties, depending on the specific electrode classifica-
tion. Section J2.6 identifies certain welded joints where notch toughness of filler
metal is needed in building construction. There may be other situations where the
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 251

16.1–252 MATERIAL [Comm. A3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
engineer of record may elect to specify the use of filler metals with specified notch
toughness properties, such as for structures subject to high loading rate, cyclic load-
ing,or seismic loading. Since AWS D1.1/D1.1M does not automatically require that
the filler metal used have specified notch toughness properties, it is important that
filler metals used for such applications be of an AWS classification where such prop-
erties are required. This information can be found in the AWS Filler Metal
Specifications and is often contained on the filler metal manufacturer’s certificate of
conformance or product specification sheets.
When specifying filler metal and/or flux by AWS designation, the applicable stan-
dard specifications should be carefully reviewed to assure a complete understanding
of the designation reference. This is necessary because the AWS designation systems
are not consistent. For example, in the case of electrodes for shielded metal arc weld-
ing (AWS A5.1), the first two or three digits indicate the nominal tensile strength
classification, in ksi, of the filler metal and the final two digits indicate the type of
coating. For metric designations, the first two digits times 10 indicate the nominal
tensile strength classification in MPa. In the case of mild steel electrodes for sub-
merged arc welding (AWS A5.17/A5.17M), the first one or two digits times 10
indicate the nominal tensile strength classification for both U.S. customary and met-
ric units, while the final digit or digits times 10 indicate the testing temperature in °F,
for filler metal impact tests. In the case of low-alloy steel covered arc welding elec-
trodes (AWS A5.5), certain portions of the designation indicate a requirement for
stress relief, while others indicate no stress relief requirement.
Engineers do not, in general, specify the exact filler metal to be employed on a par-
ticular structure. Rather, the decision as to which welding process and which filler
metal is to be utilized is usually left with the fabricator or erector. Codes restrict the
usage of certain filler materials, or impose qualification testing to prove the suitabil-
ity of the specific electrode, so as to make certain that the proper filler metals are used.
A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS
The abbreviated list of requirements in this Specification is intended to be compati-
ble with and a summary of the more extensive requirements in Section 3 of the Code
of Standard Practice. The user should refer to Section 3 of the Code of Standard
Practice for further information.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 252

16.1–253
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER B
DESIGN REQUIREMENTS
B1. GENERAL PROVISIONS
Previous to the 2005 edition, the Specification contained a section entitled “Types of
Construction”; for example, Section A2 in the 1999 Load and Resistance Factor
Design Specification for Structural Steel Buildings(AISC, 2000b), hereafter referred
to as the 1999 LRFD Specification. In this Specification there is no such section and
the requirements related to “types of construction” have been divided between
Section B1, Section B3.6 and Section J1.
Historically, “Types of Construction” was the section that established what type
of structures the Specification covers. The preface to the 1999 LRFD
Specification suggested that the purpose of the Specification was “to provide
design criteria for routine use and not to provide specific criteria for infrequently
encountered problems.” The preface to the 1978 Specification for the Design,
Fabrication, and Erection of Structural Steel for Buildings(AISC, 1978) con-
tained similar language. While “routine use” may be difficult to describe, the
contents of “Types of Construction” have been clearly directed at ordinary build-
ing frames with beams, columns and connections.
The 1969 Specification for the Design, Fabrication, and Erection of Structural Steel
for Buildings(AISC, 1969) classified “types of construction” as Type 1, 2 or 3. The
primary distinction among these three types of construction was the nature of the
connections of the beams to the columns. Type 1 construction referred to “rigid
frames,” now called moment-resisting frames, which had connections capable of
transmitting moment. Type 2 construction referred to “simple frames” with no
moment transfer between beams and columns. Type 3 construction utilized “semi-
rigid frames” with partially restrained connections. This system was allowed if a
predictable and reliable amount of connection flexibility and moment transfer could
be documented.
The 1986 Load and Resistance Factor Design Specification for Structural Steel
Buildings(AISC, 1986) changed the designations from Type 1, 2 or 3 to the desig-
nations FR (fully restrained) and PR (partially restrained). In these designations, the
term “restraint” refers to the degree of moment transfer and the associated deforma-
tion in the connections. The 1986 LRFD Specification also used the term “simple
framing” to refer to structures with “simple connections,” that is, connections with
negligible moment transfer. In essence, FR was equivalent to Type 1, “simple fram-
ing” was equivalent to Type 2, and PR was equivalent to Type 3 construction.
Type 2 construction of earlier Specifications and “simple framing” of the 1986 LRFD
Specificationhad additional provisions that allowed the wind loads to be carried by
moment resistance of selected joints of the frame, provided that:
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 253

16.1–254 GENERAL PROVISIONS [Comm. B1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) The connections and connected members have capacity to resist the wind
moments.
(2) The girders are adequate to carry the full gravity load as “simple beams.”
(3) The connections have adequate inelastic rotation capacity to avoid overstress of
the fasteners or welds under combined gravity and wind loading.
The concept of “wind connections” as both simple (for gravity loads) and moment
resisting (for wind loads) was proposed by Sourochnikoff (1950) and further exam-
ined by Disque (1964). The basic proposal asserted that such connections have some
moment resistance but that this resistance is low enough under wind load such that
the connections would sustain inelastic deformations. Under repeated (cyclic) wind
loads, the connection response would appear to reach a condition where the gravity
load moments would be very small. The proposal postulated that the elastic resist-
ance of the connections to wind moments would remain the same as the initial
resistance, although it is known that many connections do not exhibit a linear elastic
initial response. Additional recommendations have been provided by Geschwindner
and Disque (2005). More recent research has shown that the AISC direct analysis
method,as defined in the 2005 Specification for Structural Steel Buildings (AISC,
2005a) and this Specification, is the best approach to cover all relevant response
effects (White and Goverdhan, 2008).
Section B1 widens the purview of this Specification to a broader class of construc-
tion types. It recognizes that a structural system is a combination of members
connected in such a way that the structure can respond in different ways to meet dif-
ferent design objectives under different loads. Even within the purview of ordinary
buildings, there can be enormous variety in the design details.
This Specification is meant to be primarily applicable to the common types of build-
ing frames with gravity loads carried by beams and girders and lateral loads carried
by moment frames, braced frames or shear walls. However, there are many unusual
buildings or building-like structures for which this Specification is also applicable.
Rather than attempt to establish the purview of the Specification with an exhaustive
classification of construction types, Section B1 requires that the design of members
and their connections be consistent with the intended use of the structure and the
assumptions made in the analysis of the structure.
B2. LOADS AND LOAD COMBINATIONS
The loads and load combinations for use with this Specification are given in the
applicable building code. In the absence of an applicable specific local, regional or
national building code, the nominal loads (for example, D, L, L
r, S, R, Wand E), load
factors and load combinations are as specified in ASCE/SEI 7,Minimum Design
Loads for Buildings and Other Structures(ASCE, 2010). This edition of ASCE/SEI
7 has adopted the seismic design provisions of the NEHRP Recommended Seismic
Provisions for New Buildings and Other Structures(BSSC, 2009), as have the AISC
Seismic Provisions for Structural Steel Buildings (AISC, 2010b). The reader is
referred to the commentaries of these documents for an expanded discussion on
loads, load factors and seismic design.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 254

Comm. B2.] LOADS AND LOAD COMBINATIONS 16.1–255
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
This Specification is based on strength limit states that apply to structural steel
design in general. The Specification permits design for strength using either load
and resistance factor design (LRFD) or allowable strength design (ASD). It should
be noted that the terms strength and stress reflect whether the appropriate section
property has been applied in the calculation of the limit state available strength. In
most instances, the Specification uses strength rather than stress in the safety check.
In all cases it is a simple matter to recast the provisions in a stress format. The ter-
minology used to describe load combinations in ASCE/SEI 7 is somewhat different
from that used by this Specification. Section 2.3 of ASCE/SEI 7 defines Combining
Factored Loads Using Strength Design; these combinations are applicable to design
using the LRFD approach. Section 2.4 of ASCE/SEI 7 defines Combining Nominal
Loads Using Allowable Stress Design; these combinations are applicable to design
using the ASD load approach. Both the LRFD and ASD load combinations in the cur-
rent edition of ASCE/SEI 7 (ASCE, 2010) have been changed from those of previous
editions as has the overall treatment of wind loads.
LRFD load combinations. If the LRFD approach is selected, the load combination
requirements are defined in Section 2.3 of ASCE/SEI 7.
The load combinations in Section 2.3 of ASCE/SEI 7 are based on modern proba-
bilistic load modeling and a comprehensive survey of reliabilities inherent in
traditional design practice (Galambos et al., 1982; Ellingwood et al., 1982). These
load combinations utilize a “principal action-companion action format,” which is
based on the notion that the maximum combined load effect occurs when one of the
time-varying loads takes on its maximum lifetime value (principal action) while the
other variable loadsare at “arbitrary point-in-time” values (companion actions), the
latter being loads that would be measured in a load survey at any arbitrary time. The
dead load, which is considered to be permanent, is the same for all combinations in
which the load effects are additive. Research has shown that this approach to load
combination analysis is consistent with the manner in which loads actually combine
on structural elements and systems in situations in which strength limit states may be
approached. The load factors reflect uncertainty in individual load magnitudes and in
the analysis that transforms load to load effect. The nominal loads in ASCE/SEI 7 are
substantially in excess of the arbitrary point-in-time values. The nominal live, wind
and snow loads historically have been associated with mean return periods of
approximately 50 years. Wind loads historically have been adjusted upward by a high
load factor in previous editions to approximate a longer return period; in the 2010
edition of ASCE/SEI 7 the load factor is 1.0 and the wind-speed maps correspond to
return periods deemed appropriate for the design of each occupancy type (approxi-
mately 700 years for common occupancies).
The return period associated with earthquake loads has been more complex histori-
cally and the approach has been revised in both the 2003 and 2009 editions of the
NEHRP Recommended Seismic Provisions for New Buildings and Other Structures
(BSSC, 2003, 2009). In the 2009 edition, adopted as the basis for ASCE/SEI 7-10,
the earthquake loads calculated at most locations are intended to produce a uniform
maximum collapse probability of 1% in a 50 year period by integrating the collapse
probability (a product of hazard amplitude and an assumed structural fragility) across
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 255

16.1–256 LOADS AND LOAD COMBINATIONS [Comm. B2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
all return periods. At some sites in regions of high seismic activity, where high inten-
sity events occur frequently, deterministic limits on the ground motion result in
somewhat higher collapse probabilities. Commentary to Chapter 1 of ASCE/SEI 7-
10 provides information on the intended maximum probability of structural failure
under earthquake and other loads.
Load combinations of ASCE/SEI 7, Section 2.3, which apply specifically to cases in
which the structural actions due to lateral forces and gravity loads counteract one
another and the dead load stabilizes the structure, incorporate a load factor on dead
load of 0.9.
ASD Load Combinations.If the ASD approach is selected, the load combination
requirements are defined in Section 2.4 of ASCE/SEI 7.
The load combinations in Section 2.4 of ASCE/SEI 7 are similar to those tradition-
ally used in allowable stress design. In ASD, safety is provided by the safety factor,
Ω, and the nominal loads in the basic combinations involving gravity loads, earth
pressure or fluid pressure are not factored. The reduction in the combined time-vary-
ing load effect in combinations incorporating wind or earthquake load is achieved by
the load combination factor 0.75. This load combination factor dates back to the 1972
edition of ANSI Standard A58.1, the predecessor of ASCE/SEI 7. It should be noted
that in ASCE/SEI 7, the 0.75 factor applies only to combinations of variable loads;
it is irrational to reduce the dead load because it is always present and does not fluc-
tuate in time. It should also be noted that certain ASD load combinations may
actually result in a higher required strength than similar load combinations for
LRFD. Load combinations that apply specifically to cases in which the structural
actions due to lateral forces and gravity loads counteract one another, where the dead
load stabilizes the structure, incorporate a load factor on dead load of 0.6. This elim-
inates a deficiency in the traditional treatment of counteracting loads in allowable
stress design and emphasizes the importance of checking stability. The earthquake
load effect is multiplied by 0.7 in applicable combinations involving that load to
align allowable strength design for earthquake effects with the definition of Ein the
sections of ASCE/SEI 7 defining Seismic Load Effects and Combinations.
The load combinations in Sections 2.3 and 2.4 of ASCE/SEI 7 apply to design for
strength limit states. They do not account for gross error or negligence. Loads and
load combinations for nonbuilding structures and other structures may be defined in
ASCE/SEI 7 or other applicable industry standards and practices.
B3. DESIGN BASIS
Load and resistance factor design (LRFD) and allowable strength design (ASD) are
distinct methods. They are equally acceptable by this Specification, but their provi-
sions are not identical and not interchangeable. Indiscriminate use of combinations
of the two methods could result in unpredictable performance or unsafe design. Thus,
the LRFD and ASD methods are specified as alternatives. There are, however, cir-
cumstances in which the two methods could be used in the design, modification or
renovation of a structural system without conflict, such as providing modifications to
a structural floor system of an older building after assessing the as-built conditions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 256

Comm. B3.] DESIGN BASIS 16.1–257
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Required Strength
This Specification permits the use of elastic, inelastic or plastic structural analysis.
Generally, design is performed by elastic analysis. Provisions for inelastic and plas-
tic analysis are given in Appendix 1. The required strength is determined by the
appropriate methods of structural analysis.
In some circumstances, as in the proportioning of stability bracing members that
carry no calculated forces (see, for example, Appendix 6), the required strength is
explicitly stated in this Specification.
2. Limit States
A limit state is a condition in which a structural system or component becomes unfit
for its intended purpose (serviceability limit state), or has reached its ultimate load-
carrying capacity (strength limit state). Limit states may be dictated by functional
requirements, such as maximum deflections or drift; they may be related to structural
behavior, such as the formation of a plastic hinge or mechanism; or they may repre-
sent the collapse of the whole or part of the structure, such as by instability or
fracture. The design provisions in the Specification ensure that the probability of
exceeding a limit state is acceptably small by stipulating the combination of load fac-
tors, resistance or safety factors, nominal loads and nominal strengths consistent with
the design assumptions.
Two kinds of limit states apply to structures: (1) strength limit states, which define
safety against local or overall failure conditions during the intended life of the struc-
ture; and (2) serviceability limit states, which define functional requirements. This
Specification, like other structural design codes, focuses primarily on strength limit
states because of overriding considerations of public safety. This does not mean that
limit states of serviceability (see Chapter L) are not important to the designer, who
must provide for functional performance and economy of design. However, service-
ability considerations permit more exercise of judgment on the part of the designer.
Strength limit states vary from element to element, and several limit states may apply
to a given element. The most common strength limit states are yielding, buckling and
rupture. The most common serviceability limit states include deflections or drift, and
vibrations.
Structural integrity provisions that establish minimum requirements for connectivity
have been introduced into various building codes. The intent of those provisions is
to provide a minimum level of robustness for the structure to enhance its perform-
ance under an extraordinary event. The requirements are prescriptive in nature, as the
forces generated by the undefined extraordinary event may exceed those due to the
minimum nominal loads stipulated by the building code. Unless specifically prohib-
ited by the applicable building code, the full ductile load-deformation (stress-strain)
response of steel may be used to calculate the nominal capacity to satisfy nominal
strength requirements prescribed for structural integrity.
The performance criteria for structural integrity are different from the traditional
design methodology where serviceability and strength limit states, such as limiting
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 257

16.1–258 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
deformation and preventing yielding, often control connection design. Thus, Section
B3.2 establishes that limit states checked during design for traditional loads and load
combinations involving limiting deformations or yielding of connection components
are not necessary for the structural integrity checks. Thus, as examples of the appli-
cation of these provisions, this section removes the limitation on inelastic yielding of
double angles in a beam connection as they tend to straighten when subjected to high
axial tension forces or the substantial deformation of bolt holes that might be
restricted in traditional connection design.
In addition, this section permits the use of short-slots parallel to the direction of the
specified tension force without triggering the slip-critical requirements, contrary to
traditional connection design, since movement of the bolt in the slot during an extraor-
dinary event is not detrimental to overall structural performance. In this case, bolts are
assumed to be located at the critical end of the slot for all applicable limit states.
Single-plate shear connection design to meet structural integrity requirements is dis-
cussed in Geschwindner and Gustafson (2010).
3. Design for Strength Using Load and Resistance Factor Design (LRFD)
Design for strength by LRFD is performed in accordance with Equation B3-1. The
left side of Equation B3-1, R
u, represents the required strength computed by struc-
tural analysis based on load combinations stipulated in ASCE/SEI 7 (ASCE, 2010),
Section 2.3 (or their equivalent),while the right side, φR
n, represents the limiting
structural resistance, or design strength, provided by the member or element.
The resistance factor, φ, in this Specification is equal to or less than 1.0. When com-
pared to the nominal strength, R
n, computed according to the methods given in
Chapters D through K, a φof less than 1.0 accounts for approximations in the theory
and variations in mechanical properties and dimensions of members and frames. For
limit states where φ=1.00, the nominal strength is judged to be sufficiently conser-
vative when compared to the actual strength that no reduction is needed.
The LRFD provisions are based on: (1) probabilistic models of loads and resistance;
(2) a calibration of the LRFD provisions to the 1978 edition of the ASD Specification
for selected members; and (3) the evaluation of the resulting provisions by judgment
and past experience aided by comparative design office studies of representative
structures.
In the probabilistic basis for LRFD (Ravindra and Galambos, 1978; Ellingwood et
al., 1982), the load effects, Q, and the resistances, R, are modeled as statistically
independent random variables. In Figure C-B3.1, relative frequency distributions for
Q and R are portrayed as separate curves on a common plot for a hypothetical case.
As long as the resistance, R, is greater than (to the right of) the effects of the loads,
Q, a margin of safety for the particular limit state exists. However, because Q and R
are random variables, there is a small probability that R may be less than Q. The
probability of this limit state is related to the degree of overlap of the frequency dis-
tributions in Figure C-B3.1, which depends on the positioning of their mean values
(R
mversus Q m) and their dispersions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 258

Comm. B3.] DESIGN BASIS 16.1–259
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The probability that Ris less than Qdepends on the distributions of the many vari-
ables (material, loads, etc.) that determine resistance and total load effect. Often, only
the means and the standard deviations or coefficients of variation of the variables
involved in the determination of Rand Qcan be estimated. However, this informa-
tion is sufficient to build an approximate design provision that is independent of the
knowledge of these distributions, by stipulating the following design condition:
(C-B3-1)
where
R
m=mean value of the resistance R
Q
m=mean value of the load effect Q
V
R=coefficient of variation of the resistance R
V
Q=coefficient of variation of the load effect Q
For structural elements and the usual loading, R
m, Qm, and the coefficients of varia-
tion, V
Rand V Q, can be estimated, so a calculation of
(C-B3-2)
will give a comparative measure of reliability of a structure or component. The
parameter βis denoted the reliability index. Extensions to the determination of βin
Equation C-B3-2 to accommodate additional probabilistic information and more
complex design situations are described in Ellingwood et al. (1982) and have been
used in the development of the recommended load combinations in ASCE/SEI 7.
The original studies that determined the statistical properties (mean values and coef-
ficients of variation) for the basic material properties and for steel beams, columns,
composite beams, plate girders, beam-columns and connection elements that were
Fig. C-B3.1. Frequency distribution of load effect Q and resistance R.
βVV RQRQ mm
22+≤ ( )ln
β=
( )
+
1
22
nRQ
VVmm
RQ/
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 259

16.1–260 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
used to develop the LRFD provisions are presented in a series of eight articles in the
September 1978 issue of the Journal of the Structural Division(ASCE, Vol. 104,
ST9). The corresponding load statistics are given in Galambos et al. (1982). Based
on these statistics, the values of βinherent in the 1978 Specification for the Design,
Fabrication, and Erection of Structural Steel for Buildings(AISC, 1978) were eval-
uated under different load combinations (live/dead, wind/dead, etc.) and for various
tributary areas for typical members (beams, columns, beam-columns, structural
components, etc.). As might be expected, there was a considerable variation in the
range of β-values. For example, compact rolled beams (flexure) and tension mem-
bers (yielding) had β-values that decreased from about 3.1 at L/D=0.50 to 2.4 at
L/D =4. This decrease is a result of ASD applying the same factor to dead load,
which is relatively predictable, and live load, which is more variable. For bolted or
welded connections, β was in the range of 4 to 5.
The variation in βthat was inherent to ASD is reduced substantially in LRFD by
specifying several target β-values and selecting load and resistance factors to meet
these targets. The Committee on Specifications set the point at which LRFD is cali-
brated to ASD at L/D =3.0 for braced compact beams in flexure and tension
members at yield. The resistance factor, φ, for these limit states is 0.90, and the
implied βis approximately 2.6 for members and 4.0 for connections. The larger β-
value for connections reflects the complexity in modeling their behavior, effects of
workmanship, and the benefit provided by additional strength. Limit states for other
members are handled similarly.
The databases on steel strength used in previous editions of the LRFD Specification
for Structural Steel Buildingswere based mainly on research conducted prior to
1970. An important recent study of the material properties of structural shapes
(Bartlett et al., 2003) reflected changes in steel production methods and steel mate-
rials that have occurred over the past 15 years. This study indicated that the new steel
material characteristics did not warrant changes in the φ-values.
4. Design for Strength Using Allowable Strength Design (ASD)
The ASD method is provided in this Specification as an alternative to LRFD for use
by engineers who prefer to deal with ASD load combinations and allowable stresses
in the traditional ASD format. The term “allowable strength” has been introduced to
emphasize that the basic equations of structural mechanics that underlie the provi-
sions are the same for LRFD and ASD.
Traditional ASD is based on the concept that the maximum stress in a component
shall not exceed a specified allowable stress under normal service conditions. The
load effects are determined on the basis of an elastic analysis of the structure, while
the allowable stress is the limiting stress (at yielding, instability, rupture, etc.)
divided by a safety factor. The magnitude of the safety factor and the resulting allow-
able stress depend on the particular governing limit state against which the design
must produce a certain margin of safety. For any single element, there may be a num-
ber of different allowable stresses that must be checked.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 260

Comm. B3.] DESIGN BASIS 16.1–261
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The safety factor in traditional ASD provisions was a function of both the material
and the component being considered. It may have been influenced by factors such as
member length, member behavior, load source and anticipated quality of workman-
ship. The traditional safety factors were based solely on experience and have
remained unchanged for over 50 years. Although ASD-designed structures have per-
formed adequately over the years, the actual level of safety provided was never
known. This was a principal drawback of the traditional ASD approach. An illustra-
tion of typical performance data is provided in Bjorhovde (1978), where theoretical
and actual safety factors for columns are examined.
Design for strength by ASD is performed in accordance with Equation B3-2. The
ASD method provided in the Specification recognizes that the controlling modes of
failure are the same for structures designed by ASD and LRFD. Thus, the nominal
strength that forms the foundation of LRFD is the same nominal strength that
provides the foundation for ASD. When considering available strength, the only dif-
ference between the two methods is the resistance factor in LRFD, φ, and the safety
factor in ASD, Ω.
In developing appropriate values of Ωfor use in this Specification, the aim was to
ensure similar levels of safety and reliability for the two methods. A straightforward
approach for relating the resistance factor and the safety factor was developed. As
already mentioned, the original LRFD Specification was calibrated to the 1978 ASD
Specificationat a live load to dead load ratio of 3. Thus, by equating the designs for
the two methods at a ratio of live-to-dead load of 3, the relationship between φand
Ωcan be determined. Using the live plus dead load combinations, with L =3D,
yields the following relationships.
For design according to Section B3.3 (LRFD):
(C-B3-3)
For design according to Section B3.4 (ASD):
(C-B3-4)
R
n=Ω(4D)
Equating R
nfrom the LRFD and ASD formulations and solving for Ωyields
(C-B3-5)
Throughout the Specification, the values of Ωwere obtained from the values of φby
Equation C-B3-5.
φRDLD DDn=+=+ =12 16 12 16 3 6....()
R
Dn=
6
φ
R
DL D D Dn
Ω
=+=+ = 34
Ω=





⎟=
61
4
15D
Dφφ
.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 261

16.1–262 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5. Design for Stability
Section B3.5 provides the charging language for Chapter C on design for stability.
6. Design of Connections
Section B3.6 provides the charging language for Chapter J and Chapter K on the
design of connections. Chapter J covers the proportioning of the individual elements
of a connection (angles, welds, bolts, etc.) once the load effects on the connection are
known. Section B3.6 establishes that the modeling assumptions associated with the
structural analysis must be consistent with the conditions used in Chapter J to pro-
portion the connecting elements.
In many situations, it is not necessary to include the connection elements as part of
the analysis of the structural system. For example, simple and FR connections may
often be idealized as pinned or fixed, respectively, for the purposes of structural
analysis. Once the analysis has been completed, the deformations or forces computed
at the joints may be used to proportion the connection elements. The classifications
of FR (fully restrained) and simple connections are meant to justify these idealiza-
tions for analysis with the provision that if, for example, one assumes a connection
to be FR for the purposes of analysis, the actual connection must meet the FR con-
ditions. In other words, it must have adequate strength and stiffness, as described in
the provisions and discussed below.
In certain cases, the deformation of the connection elements affects the way the
structure resists load and hence the connections must be included in the analysis of
the structural system. These connections are referred to as partially restrained (PR)
moment connections. For structures with PR connections, the connection flexibility
must be estimated and included in the structural analysis, as described in the fol-
lowing sections. Once the analysis is complete, the load effects and deformations
computed for the connection can be used to check the adequacy of the connecting
elements.
For simple and FR connections, the connection proportions are established after the
final analysis of the structural design is completed, thereby greatly simplifying the
design cycle. In contrast, the design of PR connections (like member selection) is
inherently iterative because one must assume values of the connection proportions in
order to establish the force-deformation characteristics of the connection needed to
perform the structural analysis. The life-cycle performance characteristics must also
be considered. The adequacy of the assumed proportions of the connection elements
can be verified once the outcome of the structural analysis is known. If the connec-
tion elements are inadequate, then the values must be revised and the structural
analysis repeated. The potential benefits of using PR connections for various types
of framing systems are discussed in the literature.
Connection Classification. The basic assumption made in classifying connections is
that the most important behavioral characteristics of the connection can be modeled
by a moment-rotation (M-θ) curve. Figure C-B3.2 shows a typical M-θcurve.
Implicit in the moment-rotation curve is the definition of the connection as being a
region of the column and beam along with the connecting elements. The connection
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 262

Comm. B3.] DESIGN BASIS 16.1–263
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
response is defined this way because the rotation of the member in a physical test is
generally measured over a length that incorporates the contributions of not only the
connecting elements, but also the ends of the members being connected and the col-
umn panel zone.
Examples of connection classification schemes include those in Bjorhovde et al.
(1990) and Eurocode 3 (CEN, 2005). These classifications account directly for the
stiffness, strength and ductility of the connections.
Connection Stiffness.Because the nonlinear behavior of the connection manifests
itself even at low moment-rotation levels, the initial stiffness of the connection (shown
in Figure C-B3.2) does not adequately characterize connection response at service
levels. Furthermore, many connection types do not exhibit a reliable initial stiffness,
or it exists only for a very small moment-rotation range. The secant stiffness, K
S,at
service loads is taken as an index property of connection stiffness. Specifically,
K
S=MS/θS (C-B3-6)
where
M
S=moment at service loads, kip-in. (N-mm)
θ
S=rotation at service loads, rad
In the discussion below, Land EIare the length and bending rigidity, respectively, of
the beam.
IfK
SL /EI ≥ 20, it is acceptable to consider the connection to be fully restrained (in
other words, able to maintain the angles between members). IfK
SL/EI ≤2, it is
acceptable to consider the connection to be simple (in other words, it rotates without
developing moment). Connections with stiffnesses between these two limits are
partially restrained and the stiffness, strength and ductility of the connection must be
Fig. C-B3.2. Definition of stiffness, strength and ductility characteristics of the
moment-rotation response of a partially restrained connection.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 263

16.1–264 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
considered in the design (Leon, 1994). Examples of FR, PR and simple connection
response curves are shown in Figure C-B3.3. The points markedθ
Sindicate the serv-
ice load states for the example connections and thereby define the secant stiffnesses
for those connections.
Connection Strength.The strength of a connection is the maximum moment that it
is capable of carrying, M
n, as shown in Figure C-B3.2. The strength of a connection
can be determined on the basis of an ultimate limit-state model of the connection, or
from a physical test. If the moment-rotation response does not exhibit a peak load
then the strength can be taken as the moment at a rotation of 0.02 rad (Hsieh and
Deierlein, 1991; Leon et al., 1996).
It is also useful to define a lower limit on strength below which the connection may
be treated as a simple connection. Connections that transmit less than 20% of the
fully plastic moment of the beam at a rotation of 0.02 rad may be considered to have
no flexural strength for design. However, it should be recognized that the aggregate
strength of many weak connections can be important when compared to that of a few
strong connections (FEMA, 1997).
In Figure C-B3.3, the points marked M
nindicate the maximum strength states of the
example connections. The points marked θ
uindicate the maximum rotation states of
the example connections. Note that it is possible for an FR connection to have a
strength less than the strength of the beam. It is also possible for a PR connection to
have a strength greater than the strength of the beam.
The strength of the connection must be adequate to resist the moment demands
implied by the design loads.
Fig. C-B3.3. Classification of moment-rotation response of fully restrained (FR),
partially restrained (PR) and simple connections.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 264

Comm. B3.] DESIGN BASIS 16.1–265
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Connection Ductility.If the connection strength substantially exceeds the fully plas-
tic moment of the beam, then the ductility of the structural system is controlled by
the beam and the connection can be considered elastic. If the connection strength
only marginally exceeds the fully plastic moment of the beam, then the connection
may experience substantial inelastic deformation before the beam reaches its full
strength. If the beam strength exceeds the connection strength, then deformations can
concentrate in the connection. The ductility required of a connection will depend
upon the particular application. For example, the ductility requirement for a braced
frame in a nonseismic area will generally be less than the ductility required in a high
seismic area. The rotation ductility requirements for seismic design depend upon the
structural system (AISC, 2010b).
In Figure C-B3.2, the rotation capacity, θ
u, can be defined as the value of the connec-
tion rotation at the point where either (a) the resisting strength of the connection has
dropped to 0.8M
nor (b) the connection has deformed beyond 0.03 rad. This second
criterion is intended to apply to connections where there is no loss in strength until
very large rotations occur. It is not prudent to rely on these large rotations in design.
The available rotation capacity, θ
u, should be compared with the rotation required at
the strength limit state, as determined by an analysis that takes into account the non-
linear behavior of the connection. (Note that for design by ASD, the rotation required
at the strength limit state should be assessed using analyses conducted at 1.6 times
the ASD load combinations.) In the absence of an accurate analysis, a rotation capac-
ity of 0.03 rad is considered adequate. This rotation is equal to the minimum
beam-to-column connection capacity as specified in the seismic provisions for spe-
cial moment frames (AISC, 2010b). Many types of PR connections, such as top and
seat-angle connections, meet this criterion.
Structural Analysis and Design. When a connection is classified as PR, the relevant
response characteristics of the connection must be included in the analysis of the
structure to determine the member and connection forces, displacements and the
frame stability. Therefore, PR construction requires, first, that the moment-rotation
characteristics of the connection be known and, second, that these characteristics be
incorporated in the analysis and member design.
Typical moment-rotation curves for many PR connections are available from one of
several databases [for example, Goverdhan (1983); Ang and Morris (1984);
Nethercot (1985); and Kishi and Chen (1986)]. Care should be exercised when uti-
lizing tabulated moment-rotation curves not to extrapolate to sizes or conditions
beyond those used to develop the database since other failure modes may control
(ASCE Task Committee on Effective Length, 1997). When the connections to be
modeled do not fall within the range of the databases, it may be possible to deter-
mine the response characteristics from tests, simple component modeling, or finite
element studies (FEMA, 1995). Examples of procedures to model connection
behavior are given in the literature (Bjorhovde et al., 1988; Chen and Lui, 1991;
Bjorhovde et al., 1992; Lorenz et al., 1993; Chen and Toma, 1994; Chen et al., 1995;
Bjorhovde et al., 1996; Leon et al., 1996; Leon and Easterling, 2002; Bijlaard et al.,
2005; Bjorhovde et al., 2008).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 265

16.1–266 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The degree of sophistication of the analysis depends on the problem at hand. Design
for PR construction usually requires separate analyses for the serviceability and
strength limit states. For serviceability, an analysis using linear springs with a stiff-
ness given by K
s(see Figure C-B3.2) is sufficient if the resistance demanded of the
connection is well below the strength. When subjected to strength load combinations,
a procedure is needed whereby the characteristics assumed in the analysis are con-
sistent with those of the connection response. The response is especially nonlinear as
the applied moment approaches the connection strength. In particular, the effect of
the connection nonlinearity on second-order moments and other stability checks
needs to be considered (ASCE Task Committee on Effective Length, 1997).
7. Moment Redistribution in Beams
A beam that is reliably restrained at one or both ends (either by connection to other
members or by a support) will have reserve capacity past yielding at the point with
the greatest moment predicted by an elastic analysis. The additional capacity is the
result of inelastic redistribution of moments. This Specification bases the design of
the member on providing a resisting moment greater than the demand represented by
the greatest moment predicted by the elastic analysis. This approach ignores the
reserve capacity associated with inelastic redistribution. The 10% reduction of the
greatest moment predicted by elastic analysis (with the accompanying 10% increase
in the moment on the reverse side of the moment diagram) is an attempt to account
approximately for the reserve capacity.
This adjustment is appropriate only for cases where the inelastic redistribution of
moments is possible. For statically determinate spans (e.g., beams that are simply
supported at both ends or for cantilevers), redistribution is not possible. Therefore the
adjustment is not allowable in these cases. Members with fixed ends or beams con-
tinuous over a support can sustain redistribution. Member sections that are unable to
accommodate the inelastic rotation associated with the redistribution (e.g., because
of local buckling) are also not permitted the reduction. Thus, only compact sections
qualify for redistribution in this Specification.
An inelastic analysis will automatically account for any redistribution. Therefore, the
redistribution of moments only applies to moments computed from an elastic analysis.
The 10% reduction rule applies only to beams. Inelastic redistribution is possible in
more complicated structures, but the 10% amount is only verified, at present, for
beams. For other structures, the provisions of Appendix 1 should be used.
8. Diaphragms and Collectors
This section provides charging language for the design of structural steel components
(members and their connections) of diaphragms and collector systems.
Diaphragms transfer in-plane lateral loads to the lateral force resisting system.
Typical diaphragm elements in a building structure are the floor and roof systems
which accumulate lateral forces due to gravity, wind and/or seismic loads and dis-
tribute these forces to individual elements (braced frames, moment frames, shear
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 266

Comm. B3.] DESIGN BASIS 16.1–267
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
walls, etc.) of the vertically oriented lateral force resisting system of the building
structure. Collectors (also known as drag struts) are often used to collect and deliver
diaphragm forces to the lateral force resisting system.
Diaphragms are classified into one of three categories: rigid, semi-rigid or flexible.
Rigid diaphragms distribute the in-plane forces to the lateral load resisting system
with negligible in-plane deformation of the diaphragm. A rigid diaphragm may be
assumed to distribute the lateral loads in proportion to the relative stiffness of the
individual elements of the lateral force resisting system. A semi-rigid diaphragm dis-
tributes the lateral loads in proportion to the in-plane stiffness of the diaphragm and
the relative stiffness of the individual elements of the lateral force resisting system.
The in-plane stiffness of a flexible diaphragm is negligible compared to the stiffness
of the lateral load resisting system and, therefore, the distribution of lateral forces is
independent of the relative stiffness of the individual elements of the lateral force
resisting system. In this case, the distribution of lateral forces may be computed in a
manner analogous to a series of simple beams spanning between the lateral force
resisting system elements.
Diaphragms should be designed for the shear, moment and axial forces resulting
from the design loads. The diaphragm response may be considered analogous to a
deep beam where the flanges (often referred to as chords of the diaphragm) develop
tension and compression forces, and the web resists the shear. The component ele-
ments of the diaphragm need to have strength and deformation capacity consistent
with assumptions and intended behavior.
10. Design for Ponding
As used in this Specification, ponding refers to the retention of water due solely to
the deflection of flat roof framing. The amount of this water is dependent on the flex-
ibility of the framing. Lacking sufficient framing stiffness, the accumulated weight
of the water can result in the collapse of the roof. The problem becomes catastrophic
when more water causes more deflection, resulting in more room for more water
until the roof collapses. Detailed provisions for determining ponding stability and
strength are given in Appendix 2.
12. Design for Fire Conditions
Section B3.12 provides the charging language for Appendix 4 on structural design
for fire resistance. Qualification testing is an acceptable alternative to design by
analysis for providing fire resistance. Qualification testing is addressed in
ASCE/SFPE Standard 29 (ASCE, 2008), ASTM E119, and similar documents.
13. Design for Corrosion Effects
Steel members may deteriorate in some service environments. This deterioration
may appear either as external corrosion, which would be visible upon inspection,
or in undetected changes that would reduce member strength. The designer should
recognize these problems by either factoring a specific amount of tolerance for
damage into the design or providing adequate protection (for example, coatings or
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 267

16.1–268 DESIGN BASIS [Comm. B3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
cathodic protection) and/or planned maintenance programs so that such problems
do not occur.
Because the interior of an HSS is difficult to inspect, some concern has been
expressed regarding internal corrosion. However, good design practice can eliminate
the concern and the need for expensive protection. Corrosion occurs in the presence
of oxygen and water. In an enclosed building, it is improbable that there would be
sufficient reintroduction of moisture to cause severe corrosion. Therefore, internal
corrosion protection is a consideration only in HSS exposed to weather.
In a sealed HSS, internal corrosion cannot progress beyond the point where the oxy-
gen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The
oxidation depth is insignificant when the corrosion process must stop, even when a
corrosive atmosphere exists at the time of sealing. If fine openings exist at connec-
tions, moisture and air can enter the HSS through capillary action or by aspiration
due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett,
1967). This can be prevented by providing pressure-equalizing holes in locations that
make it impossible for water to flow into the HSS by gravity.
Situations where conservative practice would recommend an internal protective coat-
ing include: (1) open HSS where changes in the air volume by ventilation or direct
flow of water is possible; and (2) open HSS subject to a temperature gradient that
would cause condensation.
HSS that are filled or partially filled with concrete should not be sealed. In the event
of fire, water in the concrete will vaporize and may create pressure sufficient to burst
a sealed HSS. Care should be taken to keep water from remaining in the HSS during
or after construction, since the expansion caused by freezing can create pressure that
is sufficient to burst an HSS.
Galvanized HSS assemblies should not be completely sealed because rapid pressure
changes during the galvanizing process tend to burst sealed assemblies.
B4. MEMBER PROPERTIES
1. Classification of Sections for Local Buckling
Cross sections with a limiting width-to-thickness ratio, λ,greater than those provided
in Table B4.1 are subject to local buckling limit states. For the 2010 Specification for
Structural Steel Buildings, Table B4.1 was separated into two parts: B4.1a for com-
pression members and B4.1b for flexural members. Separation of Table B4.1 into
two parts reflects the fact that compression members are only categorized as either
slender or nonslender, while flexural members may be slender, noncompact or com-
pact. In addition, separation of Table B4.1 into two parts clarifies ambiguities in λ
r.
The width-to-thickness ratio, λ
r, may be different for columns and beams, even for
the same element in a cross section, reflecting both the underlying stress state of the
connected elements, and the different design methodologies between columns
(Chapter E and Appendix 1) and beams (Chapter F and Appendix 1).
Limiting Width-to-Thickness Ratios for Compression Elements in Members
Subject to Axial Compression. Compression members containing any elements
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 268

with width-to-thickness ratios greater than λ rprovided in Table B4.1a are desig-
nated as slender and are subject to the local buckling reductions detailed in Section
E7 of the Specification. Nonslender compression members (all elements having
width-to-thickness ratio ≤ λ
r) are not subject to local buckling reductions.
Flanges of Built-Up I-Shaped Sections.In the 1993 LRFD Specification for
Structural Steel Buildings(AISC, 1993) , for built-up I-shaped sections under axial
compression (Case 2 in Table B4.1a), modifications were made to the flange local
buckling criterion to include web-flange interaction. Thek
c in the λ rlimit is the same
as that used for flexural members. Theory indicates that the web-flange interaction
in axial compression is at least as severe as in flexure. Rolled shapes are excluded
from this provision because there are no standard sections with proportions where the
interaction would occur at commonly available yield stresses. In built-up sections
where the interaction causes a reduction in the flange local buckling strength, it is
likely that the web is also a thin stiffened element. The k
cfactor accounts for the
interaction of flange and web local buckling demonstrated in experiments reported
in Johnson (1985). The maximum limit of 0.76 corresponds to F
cr=0.69E/λ
2
which
was used as the local buckling strength in earlier editions of both the ASD and LRFD
Specifications. An h/t
w=27.5 is required to reach k c=0.76. Fully fixed restraint for
an unstiffened compression element corresponds to k
c=1.3 while zero restraint gives
k
c=0.42. Because of web-flange interactions it is possible to get k c <0.42 from the
k
c formula. If , use h/t w= in the k cequation, which
corresponds to the 0.35 limit.
Rectangular HSS in Compression.The limits for rectangular HSS walls in uniform
compression (Case 6 in Table B4.1a) have been used in AISC Specifications since
1969. They are based on Winter (1968), where adjacent stiffened compression ele-
ments in box sections of uniform thickness were observed to provide negligible
torsional restraint for one another along their corner edges.
Round HSS in Compression.The λ
rlimit for round HSS in compression (Case 9 in
Table B4.1a) was first used in the 1978 Specification for the Design, Fabrication, and
Erection of Structural Steel for Buildings(AISC, 1978). It was recommended in
Schilling (1965) based upon research reported in Winter (1968). The same limit was
also used to define a compact shape in bending in the 1978 Specification. Excluding
the use of round HSS with D/t>0.45E/F
ywas also recommended in Schilling
(1965). However, following the SSRC recommendations (Ziemian, 2010) and the
approach used for other shapes with slender compression elements, a Q factor is used
in Section E7 for round sections to account for interaction between local and column
buckling. The Q factor is the ratio between the local buckling stress and the yield
stress. The local buckling stress for the round section is taken from AISI provisions
based on inelastic action(Winter, 1970) and is based on tests conducted on fabri-
cated and manufactured cylinders. Subsequent tests on fabricated cylinders
(Ziemian, 2010) confirm that this equation is conservative.
Limiting Width-to-Thickness Ratios for Compression Elements in Members
Subject to Flexure. Flexural members containing compression elements, all with
width-to-thickness ratios less than or equal to λ
pas provided in Table B4.1b, are des-
ignated as compact. Compact sections are capable of developing a fully plastic stress
Comm. B4.] MEMBER PROPERTIES 16.1–269
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ht EFwy>570. 570./EF y
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 269

16.1–270 MEMBER PROPERTIES [Comm. B4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
distribution and they possess a rotation capacity of approximately 3 before the onset
of local buckling (Yura et al., 1978). Flexural members containing any compression
element with width-to-thickness ratios greater than λ
p, but still with all compression
elements having width-to-thickness ratios less than or equal to λ
r, are designated as
noncompact. Noncompact sections can develop partial yielding in compression ele-
ments before local buckling occurs, but will not resist inelastic local buckling at the
strain levels required for a fully plastic stress distribution. Flexural members con-
taining any compression elements with width-to-thickness ratios greater than λ
rare
designated as slender. Slender-element sections have one or more compression ele-
ments that will buckle elastically before the yield stress is achieved. Noncompact and
slender-element sections are subject to flange local buckling and/or web local buck-
ling reductions as provided in Chapter F and summarized in Table User Note F1.1,
or in Appendix 1.
The values of the limiting ratios, λ
pand λ r, specified in Table B4.1b are similar to
those in the 1989 Specification for Structural Steel Buildings—Allowable Stress
Design and Plastic Design(AISC, 1989) and Table 2.3.3.3 of Galambos (1978),
except that , limited in Galambos (1978) to determinate beams and
to indeterminate beams when moments are determined by elastic analysis, was
adopted for all conditions on the basis of Yura et al. (1978). For greater inelastic rota-
tion capacities than provided by the limiting value of λ
pgiven in Table B4.1b, and/or
for structures in areas of high seismicity, see Chapter D and Table D1.1 of the AISC
Seismic Provisions for Structural Steel Buildings(AISC, 2010b).
Webs in Flexure.In the 2010 Specification for Structural Steel Buildings, formulas
forλ
pwere added as Case 16 in Table B4.1b for I-shaped beams with unequal flanges
based on White (2003).
Rectangular HSS in Flexure.The λ
plimit for compact sections is adopted from the
Limit States Design of Steel Structures(CSA, 2009). Lower values of λ
pare speci-
fied for high-seismic design in the Seismic Provisions for Structural Steel Buildings
based upon tests (Lui and Goel, 1987) that have shown that rectangular HSS braces
subjected to reversed axial load fracture catastrophically under relatively few cycles
if a local buckle forms. This was confirmed in tests (Sherman, 1995a) where rectan-
gular HSS braces sustained over 500 cycles when a local buckle did not form, even
though general column buckling had occurred, but failed in less than 40 cycles when
a local buckle developed. Since 2005, the λ
plimit for webs in rectangular HSS flex-
ural members (Case 19 in Table B4.1b) has been reduced from λ
p= to
λ
p= based on the work of Wilkinson and Hancock (1998, 2002).
Round HSS in Flexure.The λ
pvalues for round HSS in flexure (Case 20, Table
B4.1b) are based on Sherman (1976), Sherman and Tanavde (1984) and Ziemian
(2010). Section F8 also limits the D/tratio for any round section to 0.45E/F
y.Beyond
this, the local buckling strength decreases rapidly, making it impractical to use these
sections in building construction.
376./EF y
242./EF y
λpy EF=038./
AISC_PART 16_Comm.1A_14Ed._ 22/02/12 2:56 PM Page 270

Comm. B4.] MEMBER PROPERTIES 16.1–271
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Design Wall Thickness for HSS
ASTM A500/A500M (ASTM, 2007d) tolerances allow for a wall thickness that is
not greater than ±10% of the nominal value. Because the plate and strip from which
electric-resistance-welded (ERW) HSS are made are produced to a much smaller
thickness tolerance, manufacturers in the United States consistently produce ERW
HSS with a wall thickness that is near the lower-bound wall thickness limit.
Consequently, AISC and the Steel Tube Institute of North America (STI) recom-
mend that 0.93 times the nominal wall thickness be used for calculations involving
engineering design properties of ERW HSS. This results in a weight (mass) varia-
tion that is similar to that found in other structural shapes. Submerged-arc-welded
(SAW) HSS are produced with a wall thickness that is near the nominal thickness
and require no such reduction. The design wall thickness and section properties
based upon this reduced thickness have been tabulated in AISC and STI publica-
tions since 1997.
3. Gross and Net Area Determination
3a. Gross Area
Gross area is the total area of the cross section without deductions for holes or inef-
fective portions of elements subject to local buckling.
3b. Net Area
The net area is based on net width and load transfer at a particular chain. Because
of possible damage around a hole during drilling or punching operations,
1
/16in.
(1.5 mm) is added to the nominal hole diameter when computing the net area.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 271

16.1–272
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER C
DESIGN FOR STABILITY
Design for stability is the combination of analysis to determine the required strengths of
components and proportioning of components to have adequate available strengths. Various
methods are available to provide for stability (Ziemian, 2010).
Chapter C addresses the stability design requirements for steel buildings and other struc-
tures. It is based upon the direct analysis method, which can be used in all cases. The
effective length method and first-order analysis method are addressed in Appendix 7 as
alternative methods of design for stability, and can be used when the limits in Appendix
Sections 7.2.1 and 7.3.1, respectively, are satisfied. Other approaches, including design
using second-order inelastic or plastic analysis are permitted provided the general require-
ments in Section C1 are met. Additional provisions for design by inelastic analysis are
provided in Appendix 1. Elastic structural analysis by itself is not sufficient to assess sta-
bility because the analysis and the equations for component strengths are inextricably
interdependent.
C1. GENERAL STABILITY REQUIREMENTS
There are many parameters and behavioral effects that influence the stability of steel-
framed structures (Birnstiel and Iffland, 1980; McGuire, 1992; White and Chen,
1993; ASCE Task Committee on Effective Length, 1997; Ziemian, 2010). The sta-
bility of structures and individual elements must be considered from the standpoint
of the structure as a whole, including not only the compression members, but also the
beams, bracing systems and connections.
Stiffness requirements for control of seismic drift are included in many building
codes that prohibit sidesway amplification (Δ
2nd-order/Δ1st-orderor B2), calculated with
nominal stiffness, from exceeding approximately 1.5 to 1.6 (ICC, 2009). This limit
usually is well within the more general recommendation that sidesway amplification,
calculated with reduced stiffness, should be equal to or less than 2.5.The latter rec-
ommendation is made because at larger levels of amplification, small changes in
gravity loads and/or structural stiffness can result in relatively larger changes in side-
sway deflections and second-order effects, due to large geometric nonlinearities.
Table C-C1.1 shows how the five general requirements provided in Section C1 are
addressed in the direct analysis method (Sections C2 and C3) and the effective length
method (Appendix 7, Section 7.2). The first-order analysis method (Appendix 7,
Section 7.3) is not included in Table C-C1.1 because it addresses these requirements
in an indirect manner using a mathematical manipulation of the direct analysis
method. The additional lateral load required in Appendix 7, Section 7.3.2(1) is cali-
brated to achieve roughly the same result as the collective effects of the notional load
required in Section C2.2b, a B
2multiplier for P-Δeffects required in Section C2.1(2),
and the stiffness reduction required in Section C2.3. Additionally, a B
1multiplier
addresses P-δeffects as required in Appendix 7, Section 7.3.2(2).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 272

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–273
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-C1.1
Comparison of Basic Stability Requirements
with Specific Provisions
Basic Requirement in Section C1
Provision in Direct
Analysis Method
(DM)
Provision in Effective
Length Method
(ELM)
(1) Consider all deformations C2.1(1). Consider all
deformations
Same as DM
(by reference to C2.1)
(2) Consider second-order effects (both
P-Δand
P-δ)
C2.1(2). Consider
second-order effects
(
P-Δand P-δ)**
Same as DM
(by reference to C2.1)
(3) Consider geometric
imperfections
This includes joint-
position imper-
fections* (which
affect structure
response) and mem-
ber imperfections
(which affect struc-
ture response and
member strength)
Effect of joint-position
imperfections* on
structure response
Effect of member
imperfections on
structure response
Effect of member
imperfections on
member strength
C2.2a. Direct modeling
or C2.2b. Notional
loads
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Effect of stiffness
reduction on structure
response
Effect of stiffness
reduction on member
strength
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Effect of stiffness/
strength uncertainty on
structure response
Effect of stiffness/
strength uncertainty on
member strength
Included in the stiffness
reduction specified in
C2.3
Included in member
strength formulas,
with
KL=L
Same as DM, second
option only (by refer-
ence to C2.2b)
(4) Consider stiffness
reduction due to
inelasticity
This affects struc-
ture response and
member strength
All these effects are
considered by using
KLfrom a sidesway
buckling analysis in the
member strength
check. Note that the
only difference between
DM and ELM is that:
DM uses reduced
stiffness in the
analysis;
KL=Lin
the member strength
check
ELM uses full
stiffness in the
analysis;
KLfrom
sidesway buckling
analysis in the
member strength
check for frame
members
(5) Consider uncertainty
in strength and
stiffness
This affects struc-
ture response and
member strength
* In typical building structures, the “joint-position imperfections” refers to column out-of-plumbness.
** Second-order effects may be considered either by rigorous second-order analysis or by the approximate
technique (using
B1and B2) specified in Appendix 8.
C2. CALCULATION OF REQUIRED STRENGTHS
Analysis to determine required strengths in accordance with this Section and the
assessment of member and connection available strengths in accordance with
Section C3 form the basis of the direct analysis method of design for stability. This
method is useful for the stability design of all structural steel systems, including
moment frames, braced frames, shear walls, and combinations of these and similar
systems (AISC-SSRC, 2003b). While the precise formulation of this method is
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 273

16.1–274 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
unique to the AISC Specification, some of its features have similarities to other
major design specifications around the world, including the Eurocodes, the
Australian standard, the Canadian standard, and ACI 318 (ACI, 2008).
The direct analysis method allows a more accurate determination of the load effects
in the structure through the inclusion of the effects of geometric imperfections and
stiffness reductions directly within the structural analysis. This also allows the use of
K =1.0 in calculating the in-plane column strength, P
c, within the beam-column
interaction equations of Chapter H. This is a significant simplification in the design
of steel moment frames and combined systems.
1. General Analysis Requirements
Deformations to be Considered in the Analysis. It is required that the analysis
consider flexural, shear and axial deformations, and all other component and con-
nection deformations that contribute to the displacement of the structure. However,
it is important to note that “consider” is not synonymous with “include,” and some
deformations can be neglected after rational consideration of their likely effect. For
example, the in-plane deformation of a concrete-on-steel deck floor diaphragm in
an office building usually can be neglected, but that of a cold-formed steel roof
deck in a large warehouse with widely spaced lateral-load-resisting elements usu-
ally cannot. As another example, shear deformations in beams and columns in a
low-rise moment frame usually can be neglected, but this may not be true in a high-
rise framed-tube system.
Second-Order Effects. The direct analysis method includes the basic requirement to
calculate the internal load effects using a second-order analysis that accounts for both
P-Δand P-δeffects (see Figure C-C2.1). P-Δeffects are the effects of loads acting
on the displaced location of joints or nodes in a structure. P-δeffects are the effect
of loads acting on the deflected shape of a member between joints or nodes.
Fig. C-C2.1. P-Δand P-δeffects in beam-columns.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 274

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–275
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Rigorous second-order analyses are those that accurately model all significant sec-
ond-order effects. One such approach is the solution of the governing differential
equation, either through stability functions or computer frame analysis programs that
model these effects (McGuire et al., 2000; Ziemian, 2010). Some—but not all, and
possibly not even most—modern commercial computer programs are capable of per-
forming a rigorous second-order analysis, although this should be verified by the user
for each particular program. The effect of neglecting P-δin the analysis of the struc-
ture, a common approximation that is permitted under certain conditions, is
discussed at the end of this section.
Methods that modify first-order analysis results through second-order amplifiers are
permitted as an alternative to a rigorous analysis. The use of the B
1and B 2amplifiers
provided in Appendix 8 is one such method. The accuracy of other methods should
be verified.
Analysis Benchmark Problems. The following benchmark problems are recom-
mended as a first-level check to determine whether an analysis procedure meets the
requirements of a rigorous second-order analysis adequate for use in the direct analy-
sis method (and the effective length method in Appendix 7). Some second-order
analysis procedures may not include the effects of P-δ on the overall response of the
structure. These benchmark problems are intended to reveal whether or not these
effects are included in the analysis. It should be noted that per the requirements of
Section C2.1(2), it is not always necessary to include P-δeffects in the second-order
analysis (additional discussion of the consequences of neglecting these effects
appears below).
The benchmark problem descriptions and solutions are shown in Figures C-C2.2
and C-C2.3. Case 1 is a simply supported beam-column subjected to an axial load
concurrent with a uniformly distributed transverse load between supports. This
problem contains only P-δeffects because there is no translation of one end of the
member relative to the other. Case 2 is a fixed-base cantilevered beam-column sub-
jected to an axial load concurrent with a lateral load at its top. This problem contains
both P-Δand P-δeffects. In confirming the accuracy of the analysis method, both
moments and deflections should be checked at the locations shown for the various
levels of axial load on the member and in all cases should agree within 3% and 5%,
respectively.
Given that there are many attributes that must be studied to confirm the accuracy of
a given analysis method for routine use in the design of general framing systems, a
wide range of benchmark problems should be employed. Several other targeted
analysis benchmark problems can be found in Kaehler et al. (2010), Chen and Lui
(1987), and McGuire et al. (2000). When using benchmark problems to assess the
correctness of a second-order procedure, the details of the analysis used in the bench-
mark study, such as the number of elements used to represent the member and the
numerical solution scheme employed, should be replicated in the analysis used to
design the actual structure. Because the ratio of design load to elastic buckling load
is a strong indicator of the influence of second-order effects, benchmark problems
with such ratios on the order of 0.6 to 0.7 should be included.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 275

16.1–276 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Effect of Neglecting P-δ. A common type of approximate analysis is one that cap-
tures only P-Δeffects due to member end translations (for example, interstory drift)
but fails to capture P-δeffects due to curvature of the member relative to its chord.
This type of analysis is referred to as a P-Δanalysis. Where P-δeffects are signifi-
cant, errors arise in approximate methods that do not accurately account for the effect
of P-δmoments on amplification of both local (δ) and global (Δ) displacements and
corresponding internal moments. These errors can occur both with second-order
computer analysis programs and with the B
1and B 2amplifiers. For instance, the R M
modifier in Equation A-8-7 is an adjustment factor that approximates the effects of
P-δ(due to column curvature) on the overall sidesway displacements, Δ, and the cor-
responding moments. For regular rectangular moment frames, a single-element-
per-member P-Δanalysis is equivalent to using the B
2 amplifier of Equation A-8-6
with R
M=1, and hence, such an analysis neglects the effect of P-δon the response
of the structure.
Fig. C-C2.2. Benchmark problem Case 1.
Fig. C-C2.3. Benchmark problem Case 2.
$[LDO)RUFH3NLSV
0EDVHNLSLQ

>@

>@

>@

>@
'WLSLQ

>@

>@

>@

>@


$[LDO)RUFH3N1
0EDVHN1P

>@

>@

>@

>@
'WLSPP

>@

>@

>@

>@
$QDO\VHVLQFOXGHD[LDOIOH[XUDODQGVKHDUGHIRUPDWLRQV
>9DOXHVLQEUDFNHWV@H[FOXGHVKHDUGHIRUPDWLRQV
AISC_PART 16_Comm.1A_14Ed._February 25, 2013 14-11-26 1:33 PM Page 276 (Black plate)

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–277
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Section C2.1(2) indicates that a P-Δ-only analysis (one that neglects the effect of
P-δdeformations on the response of the structure) is permissible for typical building
structures when the ratio of second-order drift to first-order drift is less than 1.7 and
no more than one-third of the total gravity load on the building is on columns that are
part of moment-resisting frames. The latter condition is equivalent to an R
Mvalue of
0.95 or greater. When these conditions are satisfied, the error in lateral displacement
from a P-Δ-only analysis typically will be less than 3%. However, when the P-δ
effect in one or more members is large (corresponding to a B
1multiplier of more than
about 1.2), use of a P-Δ-only analysis may lead to larger errors in the nonsway
moments in components connected to the high-P-δmembers.
The engineer should be aware of this possible error before using a P-Δ-only analysis
in such cases. For example, consider the evaluation of the fixed-base cantilevered
beam-column shown in Figure C-C2.4 using the direct analysis method. The side-
sway displacement amplification factor is 3.83 and the base moment amplifier is
3.32, giving M
u=1,394 kip-in.
For the loads shown, the beam-column strength interaction according to Equation
H1-1a is equal to 1.0. The sidesway displacement and base moment amplification
determined by a single-element P-Δanalysis, which ignores the effect of P-δon the
response of the structure, is 2.55, resulting in an estimated M
u=1,070 kip-in.—an
error of 23.2% relative to the more accurate value of M
u—and a beam-column inter-
action value of 0.91.
P-δeffects can be captured in some (but not all) P-Δ-only analysis methods by sub-
dividing the members into multiple elements. For this example, three equal-length
P-Δanalysis elements are required to reduce the errors in the second-order base
moment and sidesway displacement to less than 3% and 5%, respectively.
It should be noted that in this case the unconservative error that results from ignor-
ing the effect of P-δon the response of the structure is removed through the use of
Equation A-8-8. For the loads shown in Figure C-C2.4, Equations A-8-6 and A-8-7
Fig. C-C2.4. Illustration of potential errors associated with
the use of a single-element-per-member P-Δanalysis.
AISC_PART 16_Comm.1A_14Ed._February 25, 2013 14-11-26 1:33 PM Page 277 (Black plate)

16.1–278 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with R M=0.85 gives a B 2amplifier of 3.52. This corresponds to M u=1,476 kip-in.
(166 ×10
6
N-mm) in the preceding example, approximately 6% over that determined
from a rigorous second order analysis.
For sway columns with nominally simply supported base conditions, the errors in the
second-order internal moment and in the second-order displacements from a
P-Δ-only analysis are generally smaller than 3% and 5%, respectively, when αP
r/PeL
≤0.05,
where
α=1.00 (LRFD)
=1.60 (ASD)
P
r=required axial force, ASD or LRFD, kips (N)
P
eL=π
2
EI/L
2
if the analysis uses nominal stiffness, kips (N)
P
eL=0.8τ bπ
2
EI/L
2
, kips (N), if the analysis uses a flexural stiffness reduction of
0.8τ
b
For sway columns with rotational restraint at both ends of at least 1.5(EI/L) if the
analysis uses nominal stiffness or 1.5(0.8τ
bEI/L) if the analysis uses a flexural stiff-
ness reduction of 0.8τ
b, the errors in the second-order internal moments and
displacements from a P-Δ-only analysis are generally smaller than 3% and 5%,
respectively, when αP
r/PeL≤0.12.
For members subjected predominantly to nonsway end conditions, the errors in the
second-order internal moments and displacements from a P-Δ-only analysis are gen-
erally smaller than 3% and 5%, respectively, when αP
r/PeL≤0.05.
In meeting the above limitations for use of a P-Δ-only analysis, it is important to note
that per Section C2.1(2) the moments along the length of member (i.e., the moments
between the member-end nodal locations) should be amplified as necessary to
include P-δeffects. One device for achieving this is the use of a B
1factor.
Kaehler et al. (2010) provide further guidelines for the appropriate number of P-Δ
analysis elements in cases where the above limits are exceeded, as well as guidelines
for calculating internal element second-order moments. They also provide relaxed
guidelines for the number of elements required per member when using typical sec-
ond-order analysis capabilities that include both P-Δand P-δeffects.
As previously indicated, the engineer should verify the accuracy of second-order
analysis software by comparisons to known solutions for a range of representative
loadings. In addition to the examples presented in Chen and Lui (1987) and McGuire
et al. (2000), Kaehler et al. (2010) provides five useful benchmark problems for test-
ing second-order analysis of frames composed of prismatic members. In addition,
they provide benchmarks for evaluation of second-order analysis capabilities for
web-tapered members.
Analysis at Strength Level.It is essential that the analysis of the frame be made at
the strength level because of the nonlinearity associated with second-order effects.
For design by ASD, this load level is estimated as 1.6 times the ASD load combina-
tions, and the analysis must be conducted at this elevated load to capture
second-order effects at the strength level.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 278

Comm. C2.] CALCULATION OF REQUIRED STRENGTHS 16.1–279
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2. Consideration of Initial Imperfections
Modern stability design provisions are based on the premise that the member forces
are calculated by second-order elastic analysis, where equilibrium is satisfied on the
deformed geometry of the structure. Initial imperfections in the structure, such as out-
of-plumbness and material and fabrication tolerances, create destabilizing effects.
In the development and calibration of the direct analysis method, initial geometric
imperfections are conservatively assumed equal to the maximum material, fabrica-
tion and erection tolerances permitted in the AISC Code of Standard Practice for
Steel Buildings and Bridges (AISC, 2010a): a member out-of-straightness equal to
L/1000, where Lis the member length between brace or framing points, and a frame
out-of-plumbness equal to H/500, where His the story height. The permitted out-
of-plumbness may be smaller in some cases, as specified in the AISC Code of
Standard Practice for Steel Buildings and Bridges.
Initial imperfections can be accounted for in the direct analysis method through
direct modeling (Section C2.2a) or the inclusion of notional loads (Section C2.2b).
When second-order effects are such that the maximum sidesway amplification
Δ
2nd order/Δ1st orderor B2≤1.7 using the reduced elastic stiffness (or 1.5 using the
unreduced elastic stiffness) for all lateral load combinations, it is permitted to apply
the notional loads only in the gravity load-only combinations and not in combination
with other lateral loads. At this low range of sidesway amplification or B
2,the errors
in internal forces caused by not applying the notional loads in combination with other
lateral loads are relatively small. When B
2is above the threshold, the notional loads
must also be applied in combination with other lateral loads.
The Specification requirements for consideration of initial imperfections are
intended to apply only to analyses for strength limit states. It is not necessary, in most
cases, to consider initial imperfections in analyses for serviceability conditions such
as drift, deflection and vibration.
3. Adjustments to Stiffness
Partial yielding accentuated by residual stressesin members can produce a general
softening of the structure at the strength limit state that further creates destabilizing
effects. The direct analysis method is also calibrated against inelastic distributed-
plasticity analyses that account for the spread of plasticity through the member cross
section and along the member length. The residual stresses in W-shapes are assumed
to have a maximum value of 0.3F
yin compression at the flange tips, and a distribu-
tion matching the so-called Lehigh pattern—a linear variation across the flanges and
uniform tension in the web (Ziemian, 2010).
Reduced stiffness (EI* =0.8τ
bEIand EA* =0.8EA) is used in the direct analysis
method for two reasons. First, for frames with slender members, where the limit state
is governed by elastic stability, the 0.8 factor on stiffness results in a system avail-
able strength equal to 0.8 times the elastic stability limit. This is roughly equivalent
to the margin of safety implied in the design provisions for slender columns by the
effective length procedure where from Equation E3-3, φP
n=0.9(0.877P e) =0.79P e.
Second, for frames with intermediate or stocky columns, the 0.8τ
bfactor reduces the
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 279

16.1–280 CALCULATION OF REQUIRED STRENGTHS [Comm. C2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stiffness to account for inelastic softening prior to the members reaching their design
strength. The τ
b factor is similar to the inelastic stiffness reduction factor implied in
the column curveto account for loss of stiffness under high compression loads (αP
r
>0.5P y), and the 0.8 factor accounts for additional softening under combined axial
compression and bending. It is a fortuitous coincidence that the reduction coeffi-
cients for both slender and stocky columns are close enough, such that the single
reduction factor of 0.8τ
bworks over the full range of slenderness.
The use of reduced stiffness only pertains to analyses for strength and stability limit
states. It does not apply to analyses for other stiffness-based conditions and criteria,
such as for drift, deflection, vibration and period determination.
For ease of application in design practice, where τ
b=1, the reduction on EIand EA
can be applied by modifying Ein the analysis. However, for computer programs that
do semi-automated design, one should ensure that the reduced Eis applied only for
the second-order analysis. The elastic modulus should not be reduced in nominal
strength equations that include E(for example, M
nfor lateral-torsional buckling in
an unbraced beam).
As shown in Figure C-C2.5, the net effect of modifying the analysis in the manner
just described is to amplify the second-order forces such that they are closer to the
(a) Effective length method
Fig. C-C2.5. Comparison of in-plane beam-column interaction checks for (a) the effective
length method and (b) the direct analysis method.
(b) Direct analysis method
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 280

Comm. C3.] CALCULATION OF AVAILABLE STRENGTHS 16.1–281
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
actual internal forces in the structure. It is for this reason that the beam-column
interaction for in-plane flexural buckling is checked using an axial strength, P
nL,
calculated from the column curveusing the actual unbraced member length, L, in
other words, with K =1.0.
In cases where the flexibility of other structural components (connections, column
base details, horizontal trusses acting as diaphragms) is modeled explicitly in the
analysis, the stiffness of these components also should be reduced. The stiffness
reduction may be taken conservatively as EA*=0.8EAand/or EI*=0.8EIfor all
cases. Surovek-Maleck et al. (2004) discusses the appropriate reduction of connec-
tion stiffness in the analysis of PR frames.
Where concrete shear walls or other nonsteel components contribute to the stability
of the structure and the governing codes or standards for those elements specify a
greater stiffness reduction, the greater reduction should be applied.
C3. CALCULATION OF AVAILABLE STRENGTHS
Section C3 provides that when the analysis meets the requirements in Section C2,
the member provisions for available strength in Chapters E through I and connection
provisions in Chapters J and K complete the process of design by the direct analysis
method. The effective length factor, K, can be taken as unity for all members in the
strength checks.
Where beams and columns rely upon braces that are not part of the lateral-load-
resisting system to define their unbraced length, the braces themselves must have
sufficient strength and stiffness to control member movement at the brace points (see
Appendix 6). Design requirements for braces that are part of the lateral-load-resist-
ing system (that is, braces that are included within the analysis of the structure) are
addressed within Chapter C.
For beam-columns in single-axis flexure and compression, the analysis results from
the direct analysis method may be used directly with the interaction equations in
Section H1.3, which address in-plane flexural buckling and out-of-plane lateral-tor-
sional instability separately. These separated interaction equations reduce the
conservatism of the Section H1.1 provisions, which combine the two limit state
checks into one equation that uses the most severe combination of in-plane and out-
of-plane limits for P
r/Pcand M r/Mc. A significant advantage of the direct analysis
method is that the in-plane check with P
cin the interaction equation is determined
using K =1.0.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 281

16.1–282
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER D
DESIGN OF MEMBERS FOR TENSION
The provisions of Chapter D do not account for eccentricities between the lines of action of
connected assemblies.
D1. SLENDERNESS LIMITATIONS
The advisory upper limit on slenderness in the User Note is based on professional
judgment and practical considerations of economics, ease of handling, and care
required so as to minimize inadvertent damage during fabrication, transport and erec-
tion. This slenderness limit is not essential to the structural integrity of tension
members; it merely assures a degree of stiffness such that undesirable lateral move-
ment (“slapping” or vibration) will be unlikely. Out-of-straightness within
reasonable tolerances does not affect the strength of tension members. Applied ten-
sion tends to reduce, whereas compression tends to amplify, out-of-straightness.
For single angles, the radius of gyration about the z-axis produces the maximum L/r
and, except for very unusual support conditions, the maximum KL/r.
D2. TENSILE STRENGTH
Because of strain hardening, a ductile steel bar loaded in axial tension can resist
without rupture a force greater than the product of its gross area and its specified
minimum yield stress. However, excessive elongation of a tension member due to
uncontrolled yielding of its gross area not only marks the limit of its usefulness but
can precipitate failure of the structural system of which it is a part. On the other hand,
depending upon the reduction of area and other mechanical properties of the steel,
the member can fail by rupture of the net area at a load smaller than required to yield
the gross area. Hence, general yielding of the gross area and rupture of the net area
both constitute limit states.
The length of the member in the net area is generally negligible relative to the total
length of the member. Strain hardening is easily reached in the vicinity of holes and
yielding of the net area at fastener holes does not constitute a limit state of practical
significance.
Except for HSS that are subjected to cyclic loadreversals, there is no information
that the factors governing the strength of HSS in tension differ from those for other
structural shapes, and the provisions in Section D2 apply. Because the number of dif-
ferent end connection types that are practical for HSS is limited, the determination
of the effective net area, A
e, can be simplified using the provisions in Chapter K.
D3. EFFECTIVE NET AREA
Section D3 deals with the effect of shear lag, applicable to both welded and bolted
tension members. Shear lag is a concept used to account for uneven stress distribu-
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 282

Comm. D3.] EFFECTIVE NET AREA 16.1–283
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
tion in connected members where some but not all of their elements (flange, web,
leg, etc.) are connected. The reduction coefficient, U, is applied to the net area, A
n,
of bolted members and to the gross area, A
g, of welded members. As the length of
the connection, l, is increased, the shear lag effect diminishes. This concept is
expressed empirically by the equation for U. Using this expression to compute the
effective area, the estimated strength of some 1,000 bolted and riveted connection
test specimens, with few exceptions, correlated with observed test results within a
scatterband of ±10% (Munse and Chesson, 1963). Newer research provides further
justification for the current provisions (Easterling and Gonzales, 1993).
For any given profile and configuration of connected elements, x

is the perpendicu-
lar distance from the connection plane, or face of the member, to the centroid of the
member section resisting the connection force, as shown in Figure C-D3.1. The
length, l, is a function of the number of rows of fasteners or the length of weld. The
length, l, is illustrated as the distance, parallel to the line of force, between the first
and last row of fasteners in a line for bolted connections. The number of bolts in a
line, for the purpose of the determination of l, is determined by the line with the max-
imum number of bolts in the connection. For staggered bolts, the out-to-out
dimension is used for l,as shown in Figure C-D3.2.
Fig. C-D3.1. Determination of x

for U.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 283

16.1–284 EFFECTIVE NET AREA [Comm. D3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
From the definition of the plastic section modulus, Z=∑|A idi|, where A iis the area
of a cross-sectional element and d
iis the perpendicular distance from the plastic neu-
tral axis to the center of gravity of the element; x

for cases like that shown on the
right hand side of Figure C-D3.1(c) is Z
y/A. Because the section shown is symmet-
ric about the vertical axis and that axis is also the plastic neutral axis, the first
moment of the area to the left is Z
y/2, where Z yis the plastic section modulus of the
entire section. The area of the left side is A/2; therefore, by definition x

=Z
y/A. For
the case shown on the right hand side of Figure C-D3.1(b), x

=d/2 ≤Z
x/A. Note that
the plastic neutral axis must be an axis of symmetry for this relationship to apply.
There is insufficient data for establishing a value of U if all lines have only one bolt,
but it is probably conservative to useA
eequal to the net area of the connected ele-
ment. The limit states of block shear (Section J4.3) and bearing (Section J3.10),
which must be checked, will probably control the design.
The ratio of the area of the connected element to the gross area is a reasonable lower
bound for U and allows for cases where the calculated Ubased on (1–x

/l)
is very small, or nonexistent, such as when a single bolt per gage line is used and
l =0. This lower bound is similar to other design specifications, for example the
AASHTO Standard Specifications for Highway Bridges(AASHTO, 2002), which
allow a U based on the area of the connected portion plus half the gross area of the
unconnected portion.
The effect of connection eccentricity is a function of connection and member stiff-
ness and may sometimes need to be considered in the design of the tension
connection or member. Historically, engineers have neglected the effect of eccen-
tricity in both the member and the connection when designing tension-only bracing.
In Cases 1a and 1b shown in Figure C-D3.3, the length of the connection required
to resist the axial loads will usually reduce the applied axial load on the bolts to a
negligible value. For Case 2, the flexibility of the member and the connections will
allow the member to deform such that the resulting eccentricity is relieved to a con-
siderable extent.
Fig. C-D3.2. Determination oflfor Uof bolted connections
with staggered holes.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 284

Comm. D3.] EFFECTIVE NET AREA 16.1–285
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-D3.3. The effect of connection restraint on eccentricity.
Case 1a. End Rotation Restrained by Connection to Rigid Abutments
Case 1b. End Rotation Restrained by Symmetry
Case 2. End Rotation Not Restrained—Connection to Thin Plate
For welded connections, l is the length of the weld parallel to the line of force as
shown in Figure C-D3.4 for longitudinal and longitudinal plus transverse welds. For
welds with unequal lengths, use the average length.
End connections for HSS in tension are commonly made by welding around the
perimeter of the HSS; in this case, there is no shear lag or reduction in the gross area.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 285

16.1–286 EFFECTIVE NET AREA [Comm. D3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Alternatively, an end connection with gusset plates can be used. Single gusset plates
may be welded in longitudinal slots that are located at the centerline of the cross sec-
tion. Welding around the end of the gusset plate may be omitted for statically loaded
connections to prevent possible undercuttingof the gusset and having to bridge the
gap at the end of the slot. In such cases, the net area at the end of the slot is the crit-
ical area as illustrated in Figure C-D3.5. Alternatively, a pair of gusset plates can be
welded to opposite sides of a rectangular HSS with flare bevel groove welds with no
reduction in the gross area.
For end connections with gusset plates, the general provisions for shear lag in Case
2 of Table D3.1 can be simplified and the connection eccentricity can be explicitly
defined as in Cases 5 and 6. In Cases 5 and 6 it is implied that the weld length, l,
should not be less than the depth of the HSS. This is consistent with the weld length
requirements in Case 4. In Case 5, the use of U=1 when l ≥1.3Dis based on
research (Cheng and Kulak, 2000) that shows rupture occurs only in short connec-
tions and in long connections the round HSS tension member necks within its length
and failure is by member yielding and eventual rupture.
The shear lag factors given in Cases 7 and 8 of Table D3.1 are given as alternate U
values to the value determined from 1 ≤x

/lgiven for Case 2 in Table D3.1. It is per-
missible to use the larger of the two values.
Fig. C-D3.5. Net area through slot for a single gusset plate.
Fig. C-D3.4. Determination oflfor calculation ofUfor connections
with longitudinal and transverse welds.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 286

Comm. D5.] PIN-CONNECTED MEMBERS 16.1–287
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
D4. BUILT-UP MEMBERS
Although not commonly used, built-up member configurations using lacing, tie
plates and perforated cover plates are permitted by this Specification. The length and
thickness of tie plates are limited by the distance between the lines of fasteners, h,
which may be either bolts or welds.
D5. PIN-CONNECTED MEMBERS
Pin-connected members are occasionally used as tension members with very large
dead loads. Pin-connected members are not recommended when there is sufficient
variation in live loading to cause wearing of the pins in the holes. The dimensional
requirements presented in Specification Section D5.2 must be met to provide for the
proper functioning of the pin.
1. Tensile Strength
The tensile strength requirements for pin-connected members use the same φand
Ωvalues as elsewhere in this Specification for similar limit states. However, the
definitions of effective net area for tension and shear are different.
2. Dimensional Requirements
Dimensional requirements for pin-connected members are illustrated in Figure
C-D5.1.
Fig. C-D5.1. Dimensional requirements for pin-connected members.
Dimensional Requirements
1.a≥1.33 be
2.w≥2be +d
3.c≥a
where
be=2t+0.63 in. (16 mm) ≤ b
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 287

16.1–288 EYEBARS [Comm. D6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
D6. EYEBARS
Forged eyebars have generally been replaced by pin-connected plates or eyebars
thermally cut from plates. Provisions for the proportioning of eyebars contained in
this Specification are based upon standards evolved from long experience with
forged eyebars. Through extensive destructive testing, eyebars have been found to
provide balanced designs when they are thermally cut instead of forged. The more
conservative rules for pin-connected members of nonuniform cross section and for
members not having enlarged “circular” heads are likewise based on the results of
experimental research (Johnston, 1939).
Stockier proportions are required for eyebars fabricated from steel having a yield
stress greater than 70 ksi (485 MPa) to eliminate any possibility of their “dishing”
under the higher design stress.
1. Tensile Strength
The tensile strength of eyebars is determined as for general tension members, except
that, for calculation purposes, the width of the body of the eyebar is limited to eight
times its thickness.
2. Dimensional Requirements
Dimensional limitations for eyebars are illustrated in Figure C-D6.1. Adherence to
these limits assures that the controlling limit state will be tensile yielding of the body;
thus, additional limit state checks are unnecessary.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 288

Comm. D6.] EYEBARS 16.1–289
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Dimensional Requirements
t≥
1
/2in. (13 mm) (Exception is provided
in Section D6.2)
w≤8t
d

7
/8w
d
h≤d+
1
/32in. (1 mm)
R≥dh+2b
2
/3w≤b≤
3
/4w(Upper limit is for
calculation purposes only)
Fig. C-D6.1. Dimensional limitations for eyebars.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 289

16.1–290
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER E
DESIGN OF MEMBERS FOR COMPRESSION
E1. GENERAL PROVISIONS
The column equations in Section E3 are based on a conversion of the research data
into strength equations (Ziemian, 2010; Tide, 1985, 2001). These equations are the
same as those in the 2005 AISC Specification for Structural Steel Buildings(AISC,
2005a) and are essentially the same as those in the previous editions of the LRFD
Specification (AISC, 1986, 1993, 2000b). The resistance factor, φ,was increased
from 0.85 to 0.90 in the 2005 Specification, recognizing substantial numbers of addi-
tional column strength analyses and test results, combined with the changes in
industry practice that had taken place since the original calibrations were performed
in the 1970s and 1980s.
In the original research on the probability-based strength of steel columns
(Bjorhovde, 1972, 1978, 1988), three column curveswere recommended. The three
column curves were the approximate means of bands of strength curves for columns
of similar manufacture, based on extensive analyses and confirmed by full-scale
tests (Bjorhovde, 1972). For example, hot-formed and cold-formed heat treated
HSS columns fell into the data band of highest strength [SSRC Column Category
1P (Bjorhovde, 1972, 1988; Bjorhovde and Birkemoe, 1979; Ziemian, 2010)], while
welded built-up wide-flange columns made from universal mill plates were
included in the data band of lowest strength (SSRC Column Category 3P). The
largest group of data clustered around SSRC Column Category 2P. Had the original
LRFD Specification opted for using all three column curves for the respective col-
umn categories, probabilistic analysis would have resulted in a resistance factor φ=
0.90 or even slightly higher (Galambos, 1983; Bjorhovde, 1988; Ziemian, 2010).
However, it was decided to use only one column curve, SSRC Column Category 2P,
for all column types. This resulted in a larger data spread and thus a larger coeffi-
cient of variation, and so a resistance factor φ=0.85 was adopted for the column
equations to achieve a level of reliability comparable to that of beams. Since that
time, significant additional analyses and tests, as well as changes in practice, have
demonstrated that the increase to 0.90 was warranted, indeed even somewhat con-
servative (Bjorhovde, 1988).
The single column curve and the resistance factor of 0.85 were selected by the AISC
Committee on Specifications in 1981 when the first draft of the LRFD Specification
was developed (AISC, 1986). Since then a number of changes in industry practice
have taken place: (1) welded built-up shapes are no longer manufactured from uni-
versal mill plates; (2) the most commonly used structural steel is now ASTM A992,
with a specified minimum yield stress of 50 ksi (345 MPa); and (3) changes in steel-
making practice have resulted in materials of higher quality and much better defined
properties. The level and variability of the yield stress thus have led to a reduced
coefficient of variation for the relevant material properties (Bartlett et al., 2003).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 290

Comm. E1.] GENERAL PROVISIONS 16.1–291
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
An examination of the SSRC Column Curve Selection Table (Bjorhovde, 1988;
Ziemian, 2010) shows that the SSRC 3P Column Curve Category is no longer
needed. It is now possible to use only the statistical data for SSRC Column Category
2P for the probabilistic determination of the reliability of columns. The curves in
Figures C-E1.1 and C-E1.2 show the variation of the reliability index βwith the live-
to-dead load ratio, L/D, in the range of 1 to 5 for LRFD with φ=0.90 and ASD with
Fig. C-E1.2. Reliability of columns (ASD).
Fig. C-E1.1. Reliability of columns (LRFD).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 291

16.1–292 GENERAL PROVISIONS [Comm. E1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ω=1.67, respectively, for F y=50 ksi (345 MPa). The reliability index does not fall
below β=2.6. This is comparable to the reliability of beams.
E2. EFFECTIVE LENGTH
The concept of a maximum limiting slenderness ratio has experienced an evolu-
tionary change from a mandatory “…The slenderness ratio, KL/r, of compression
members shall not exceed 200…” in the 1978 Specification to no restriction at all
in the 2005 Specification (AISC, 2005a). The 1978 ASDand the 1999 LRFD
Specifications (AISC, 1978; AISC, 2000b) provided a transition from the manda-
tory limit to a limit that was defined in the 2005 Specification by a User Note, with
the observation that “…the slenderness ratio, KL/r, preferably should not exceed
200….” However, the designer should keep in mind that columns with a slender-
ness ratio of more than 200 will have an elastic buckling stress (Equation E3-4)
less than 6.3 ksi (43.5 MPa). The traditional upper limit of 200 was based on pro-
fessional judgment and practical construction economics, ease of handling, and
care required to minimize inadvertent damage during fabrication, transport and
erection. These criteria are still valid and it is not recommended to exceed this limit
for compression members except for cases where special care is exercised by the
fabricator and erector.
E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT
SLENDER ELEMENTS
Section E3 applies to compression members with all nonslender elements, as defined
in Section B4.
The column strength equations in Section E3 are the same as those in the previous
editions of the LRFD Specification, with the exception of the cosmetic replacement
in
2005 of the slenderness term, , by the more familiar slenderness ratio,
. For the convenience of those calculating the elastic buckling stress directly,
without first calculating K, the limits on the use of Equations E3-2 and E3-3 are also
provided in terms of the ratio F
y/Fe, as shown in the following discussion.
Comparisons between the previous column design curves and those introduced
in the 2005 Specification and continued in this Specification are shown in Figures
C-E3.1 and C-E3.2 for the case of F
y=50 ksi (345 MPa). The curves show the vari-
ation of the available column strength with the slenderness ratio for LRFD and
ASD, respectively. The LRFD curves reflect the change of the resistance factor, φ,
from 0.85 to 0.90, as was explained in Commentary Section E1. These column
equations provide improved economy in comparison with the previous editions of
the Specification.
The limit between elastic and inelastic buckling is defined to be
. These are the same as F
e=0.44F ythat was used in the 2005 Specification.
λ
πc
y
KL
r
F
E
=
KL
r
KL
r
E
F
y
=471. or F
Fy
e
=225.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 292

Comm. E3.] FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 16.1–293
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-E3.1. LRFD column curves compared.
Fig. C-E3.2. ASD column curves compared.
For convenience, these limits are defined in Table C-E3.1 for the common values
of F
y.
One of the key parameters in the column strength equations is the elastic critical
stress, F
e. Equation E3-4 presents the familiar Euler form for F e. However, F ecan
also be determined by other means, including a direct frame buckling analysis or a
torsional or flexural-torsional buckling analysis as addressed in Section E4.
The column strength equations of Section E3 can also be used for frame buckling and
for torsional or flexural-torsional buckling (Section E4); they can also be entered
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 293

16.1–294 FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS [Comm. E3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
with a modified slenderness ratio for single-angle members (Section E5); and they
can be modified by the Q-factor for columns with slender elements (Section E7).
E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF
MEMBERS WITHOUT SLENDER ELEMENTS
Section E4 applies to singly symmetric and unsymmetric members, and certain dou-
bly symmetric members, such as cruciform or built-up columns, with all nonslender
elements, as defined in Section B4 for uniformly compressed elements. It also
applies to doubly symmetric members when the torsional buckling length is greater
than the flexural buckling length of the member.
The equations in Section E4 for determining the torsional and flexural-torsional elas-
tic buckling loads of columns are derived in textbooks and monographs on structural
stability [for example, Bleich (1952); Timoshenko and Gere (1961); Galambos
(1968a); Chen and Atsuta (1977); Galambos and Surovek (2008), Ziemian (2010)].
Since these equations apply only to elastic buckling, they must be modified for
inelastic buckling by using the torsional and flexural-torsional critical stress, F
cr, in
the column equations of Section E3.
Torsional buckling of symmetric shapes and flexural-torsional buckling of unsym-
metrical shapes are failure modes usually not considered in the design of hot-rolled
columns. They generally do not govern, or the critical loaddiffers very little from
the weak-axis flexural buckling load. Torsional and flexural-torsional buckling
modes may, however, control the strength of symmetric columns manufactured
from relatively thin plate elements and unsymmetric columns and symmetric
columns having torsional unbraced lengths significantly larger than the weak-axis
flexural unbraced lengths. Equations for determining the elastic critical stress for
such columns are given in Section E4. Table C-E4.1 serves as a guide for selecting
the appropriate equations.
The simpler method of calculating the buckling strength of double-angle and tee-
shaped members (Equation E4-2) uses directly the y-axis flexural strength from the
column equations of Section E3 (Galambos, 1991).
TABLE C-E3.1
Limiting values of
KL/rand Fe
Fy
Limiting
Fe
ksi (MPa) ksi (MPa)
36 (250) 134 16.0 (111)
50 (345) 113 22.2 (153)
60 (415) 104 26.7 (184)
70 (485) 96 31.1 (215)
KL
r
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 294

Comm. E4.] TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING 16.1–295
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-E4.1
Selection of Equations for Torsional and Flexural-
Torsional Buckling
Applicable Equations
Type of Cross Section in Section E4
Double angle and tee-shaped members
Case (a) in Section E4
All doubly symmetric shapes and Z-shapes
Case (b) (i) in Section E4
Singly symmetric members except double angles
and tee-shaped members
Case (b)(ii) in Section E4
Unsymmetric shapes
Case (b)(iii) in Section E4
E4-2
E4-4
E4-6
E4-5
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 295

16.1–296 TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING [Comm. E4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equations E4-4 and E4-9 contain a torsional buckling effective length factor, K z. This
factor may be conservatively taken as K
z=1.0. For greater accuracy, K z =0.5 if both
ends of the column have a connection that restrains warping, say by boxing the end
over a length at least equal to the depth of the member. If one end of the member is
restrained from warping and the other end is free to warp, then K
z=0.7.
At points of bracing both lateral and/or torsional bracing shall be provided, as
required in Appendix 6. AISC Design Guide 9 (Seaburg and Carter, 1997) provides
an overview of the fundamentals of torsional loading for structural steel members.
Design examples are also included.
E5. SINGLE ANGLE COMPRESSION MEMBERS
The axial load capacity of single angles is to be determined in accordance with
Section E3 or E7. However, as noted in Section E4 and E7, single angles with
b/t≤20 do not require the computation of F
eusing Equations E4-5 or E4-6. This
applies to all currently produced hot rolled angles; use Section E4 to compute F
efor
fabricated angles with b/t>20.
Section E5 also provides a simplified procedure for the design of single angles sub-
jected to an axial compressive load introduced through one connected leg. The angle
is treated as an axially loaded member by adjusting the member slenderness. The
attached leg is to be fixed to a gusset plate or the projecting leg of another member
by welding or by a bolted connection with at least two bolts. The equivalent slen-
derness expressions in this section presume significant restraint about they-axis,
which is perpendicular to the connected leg. This leads to the angle member tend-
ing to bend and buckle primarily about the x-axis. For this reason, L/r
xis the
slenderness parameter used. The modified slenderness ratios indirectly account for
bending in the angles due to the eccentricity of loading and for the effects of end
restraint from the truss chords.
The equivalent slenderness expressions also presume a degree of rotational restraint.
Equations E5-3 and E5-4 [Case (b)] assume a higher degree of x-axis rotational
restraint than do Equations E5-1 and E5-2 [Case (a)]. Equations E5-3 and E5-4 are
essentially equivalent to those employed for equal-leg angles as web members in
latticed transmission towers in ASCE 10-97 (ASCE, 2000).
In space trusses, the web members framing in from one face typically restrain the
twist of the chord at the panel points and thus provide significant x-axis restraint
of the angles under consideration. It is possible that the chords of a planar truss
well restrained against twist justify use of Case (b), in other words, Equations E5-
3 and E5-4. Similarly, simple single-angle diagonal braces in braced frames could be
considered to have enough end restraint such that Case (a), in other words, Equations
E5-1 and E5-2, could be employed for their design. This procedure, however, is not
intended for the evaluation of the compressive strength of x-braced single angles.
The procedure in Section E5 permits use of unequal-leg angles attached by the
smaller leg provided that the equivalent slenderness is increased by an amount that
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 296

Comm. E6.] BUILT-UP MEMBERS 16.1–297
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is a function of the ratio of the longer to the shorter leg lengths, and has an upper
limit on L/r
z.
If the single-angle compression members cannot be evaluated using the procedures
in this section, use the provisions of Section H2. In evaluating P
n, the effective length
due to end restraint should be considered. With values of effective length factors
about the geometric axes, one can use the procedure in Lutz (1992) to compute an
effective radius of gyration for the column. To obtain results that are not too conser-
vative, one must also consider that end restraint reduces the eccentricity of the axial
load of single-angle struts and thus the value of f
rbwor frbzused in the flexural term(s)
in Equation H2-1.
E6. BUILT-UP MEMBERS
Section E6 addresses the strength and dimensional requirements of built-up members
composed of two or more shapes interconnected by stitch bolts or welds.
1. Compressive Strength
This section applies to built-up members such as double-angle or double-channel
members with closely spaced individual components. The longitudinal spacing of
connectors connecting components of built-up compression members must be such
that the slenderness ratio, L/r, of individual shapes does not exceed three-fourths of
the slenderness ratio of the entire member. However, this requirement does not nec-
essarily ensure that the effective slenderness ratio of the built-up member is equal to
that of a built-up member acting as a single unit.
For a built-up member to be effective as a structural member, the end connection
must be welded or pretensioned bolted with Class A or B faying surfaces. Even so,
the compressive strength will be affected by the shearing deformation of the inter-
mediate connectors. The Specification uses the effective slenderness ratio to
consider this effect. Based mainly on the test data of Zandonini (1985), Zahn and
Haaijer (1987) developed an empirical formulation of the effective slenderness ratio
for the 1986 AISC Load and Resistance Factor Design Specification for Structural
Steel Buildings(AISC, 1986). When pretensioned bolted or welded intermediate
connectors are used, Aslani and Goel (1991) developed a semi-analytical formula
for use in the 1993, 1999 and 2005 AISC Specifications (AISC, 1993, 2000b,
2005a). As more test data became available, a statistical evaluation (Sato and Uang,
2007) showed that the simplified expressions used in this Specification achieve the
same level of accuracy.
Fastener spacing less than the maximum required for strength may be needed to
ensure a close fit over the entire faying surface of components in continuous contact.
Special requirements for weathering steel members exposed to atmospheric corro-
sion are given in Brockenbrough (1983).
2. Dimensional Requirements
Section E6.2 provides additional requirements on connector spacing and end con-
nection for built-up member design. Design requirements for laced built-up members
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 297

16.1–298 BUILT-UP MEMBERS [Comm. E6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the individual components are widely spaced are also provided. Some dimen-
sioning requirements are based upon judgment and experience. The provisions
governing the proportioning of perforated cover plates are based upon extensive
experimental research (Stang and Jaffe, 1948).
E7. MEMBERS WITH SLENDER ELEMENTS
The structural engineer designing with hot-rolled shapes will seldom find an occa-
sion to turn to Section E7 of the Specification. Among rolled shapes, the most
frequently encountered cases requiring the application of this section are beam
shapes used as columns, columns containing angles with thin legs, and tee-shaped
columns having slender stems. Special attention to the determination of Qmust be
given when columns are made by welding or bolting thin plates together.
The provisions of Section E7 address the modifications to be made when one or more
plate elements in the column cross section are slender. A plate element is considered
to be slender if its width-to-thickness ratio exceeds the limiting value, λ
r, defined in
Table B4.1a. As long as the plate element is not slender, it can support the full yield
stress without local buckling. When the cross section contains slender elements, the
slenderness reduction factor, Q, defines the ratio of the stress at local buckling to the
yield stress, F
y. The yield stress,F y, is replaced by the value QF yin the column equa-
tions of Section E3. These modified equations are repeated as Equations E7-2 and
E7-3. This approach to dealing with columns with slender elements has been used
since the 1969 AISC Specification for the Design, Fabrication, and Erection of
Structural Steel for Buildings(AISC, 1969),emulating the 1969 AISI Specification
for the Design of Cold-Formed Steel Structural Members(AISI, 1969). Prior to 1969,
the AISC practice was to remove the width of the plate that exceeded the λ
rlimit and
check the remaining cross section for conformance with the allowable stress, which
proved inefficient and uneconomical. The equations in Section E7 are almost identi-
cal to the original 1969 equations.
This Specification makes a distinction between columns having unstiffened and
stiffened elements. Two separate philosophies are used: Unstiffened elements are
considered to have attained their limit state when they reach the theoretical local
buckling stress. Stiffened elements, on the other hand, make use of the post-buck-
ling strength inherent in a plate that is supported on both of its longitudinal edges,
such as in HSS columns. The effective width concept is used to obtain the added
post-buckling strength. This dual philosophy reflects the 1969 practice in the design
of cold-formed columns. Subsequent editions of the AISI Specifications, in partic-
ular, the North American Specification for the Design of Cold-Formed Steel
Structural Members(AISI, 2001, 2007), hereafter referred to as the AISI North
American Specification,adopted the effective width concept for both stiffened and
unstiffened elements. Subsequent editions of the AISC Specification (including this
Specification) did not follow the example set by AISI for unstiffened plates because
the advantages of the post-buckling strength do not become available unless the
plate elements are very slender. Such dimensions are common for cold-formed
columns, but are rarely encountered in structures made from hot-rolled plates.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 298

Comm. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–299
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Slender Unstiffened Elements, Q s
Equations for the slender element reduction factor, Q s, are given in Section E7.1 for
outstanding elements in rolled shapes (Case a), built-up shapes (Case b), single
angles (Case c), and stems of tees (Case d). The underlying scheme for these provi-
sions is illustrated in Figure C-E7.1. The curves show the relationship between the
Q-factor and a nondimensional slenderness ratio . The width, b,
and thickness,t, are defined for the applicable cross sections in Section B4; v=0.3
(Poisson’s ratio), and kis the plate buckling coefficient characteristic of the type of
plate edge-restraint. For single angles, k=0.425 (no restraint is assumed from the
other leg), and for outstanding flange elements and stems of tees, kequals approxi-
mately 0.7, reflecting an estimated restraint from the part of the cross section to
which the plate is attached on one of its edges, the other edge being free.
The curve relating Qto the plate slenderness ratio has three components: (i) a part
where Q=1 when the slenderness factor is less than or equal to 0.7 (the plate can be
stressed up to its yield stress), (ii) the elastic plate buckling portion when buckling
is governed by , and (iii) a transition range that empirically
accountsfor the effect of early yielding due to residual stressesin the shape.
Generally this transition range is taken as a straight line. The development of the
provisions for unstiffened elements is due to the research of Winter and his co-work-
b
t
F
E
v
k y12 1
2
2
(– )
π
F=
Ek

b
tcr
π
2
12 1v
2
2
( )






Fig. C-E7.1. Definition of Q sfor unstiffened slender elements.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 299

16.1–300 MEMBERS WITH SLENDER ELEMENTS [Comm. E7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ers, and a full listing of references is provided in the Commentary to the AISI North
American Specification(AISI, 2001, 2007). The slenderness provisions are illus-
trated for the example of slender flanges of rolled shapes in Figure C-E7.2.
The equations for the unstiffened projecting flanges, angles and plates in built-up
cross sections (Equations E7-7 through E7-9) have a history that starts with the
research reported in Johnson (1985). It was noted in tests of beams with slender
flanges and slender webs that there was an interaction between the buckling of the
flanges and the distortions in the web causing an unconservative prediction of
strength. A modification based on the equations recommended in Johnson (1985)
appeared first in the 1989 Specification for Structural Steel Buildings—Allowable
Stress Design and Plastic Design(AISC, 1989).
Modifications to simplify the original equations were introduced in the 1993 Load
and Resistance Factor Design Specification for Structural Steel Buildings (AISC,
1993), and these equations have remained unchanged in the present Specification.
The influence of web slenderness is accounted for by the introduction of the factor
(C-E7-1)
into the equations for λ
rand Q, where k cis not taken as less than 0.35 nor greater
than 0.76 for calculation purposes.
2. Slender Stiffened Elements, Q a
While for slender unstiffened elements the Specification for local buckling is based
on the limit state of the onset of plate buckling, an improved approach based on the
k=
h
t
c
w
4
Fig. C-E7.2. Qfor rolled wide-flange columns with F y= 50 ksi (345 MPa).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 300

Comm. E7.] MEMBERS WITH SLENDER ELEMENTS 16.1–301
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
effective width concept is used for the compressive strength of stiffened elements in
columns. This method was first proposed in von Kármán et al. (1932). It was later
modified by Winter (1947) to provide a transition between very slender elements and
stockier elements shown by tests to be fully effective. As modified for the AISI North
American Specification(AISI, 2001, 2007), the ratio of effective width to actual
width increases as the level of compressive stress applied to a stiffened element in a
member is decreased, and takes the form
(C-E7-2)
where fis taken as F
crof the column based on Q=1.0, and Cis a constant based on
test results (Winter, 1947).
The basis for cold-formed steel columns in the AISI North American Specification
editions since the 1970s is C=0.415. The original AISI coefficient 1.9 in Equation
C-E7-2 is changed to 1.92 in the Specification to reflect the fact that the modulus of
elasticity Eis taken as 29,500 ksi (203 400 MPa) for cold-formed steel, and 29,000
ksi (200 000 MPa) for hot-rolled steel.
For the case of square and rectangular box-sections of uniform thickness, where the
sides provide negligible rotational restraint to one another, the value of C=0.38 in
Equation E7-18 is higher than the value of C=0.34 in Equation E7-17. Equation
E7-17 applies to the general case of stiffened plates in uniform compression where
there is substantial restraint from the adjacent flange or web elements. The coeffi-
cients C=0.38 and C=0.34 are smaller than the corresponding value of C=0.415
in the AISI North American Specification (AISI, 2001, 2007), reflecting the fact that
hot-rolled steel sections have stiffer connections between plates due to welding or fil-
lets in rolled shapes than do cold-formed shapes.
The classical theory of longitudinally compressed cylinders overestimates the actual
buckling strength, often by 200% or more. Inevitable imperfections of shape and the
eccentricity of the load are responsible for the reduction in actual strength below
the theoretical strength. The limits in Section E7.2(c) are based upon test evidence
(Sherman, 1976), rather than theoretical calculations, that local buckling will not
occur if . When D/texceeds this value but is less than , Equation
E7-19 provides a reduction in the local buckling reduction factor Q. This Specification
does not recommend the use of round HSS or pipe columns with .
b
t
=
E
f

C
b/t
E
fe
1.9 1
()






D
t
E

0.11
F
y
0.45E
F
y
D
t
E
F
y
>
0.45
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 301

16.1–302
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER F
DESIGN OF MEMBERS FOR FLEXURE
F1. GENERAL PROVISIONS
Chapter F applies to members subject to simple bending about one principal axis of
the cross section. Section F2 gives the provisions for the flexural strength of doubly
symmetric compact I-shaped and channel members subject to bending about their
major axis. For most designers, the provisions in this section will be sufficient to per-
form their everyday designs. The remaining sections of Chapter F address less
frequently occurring cases encountered by structural engineers. Since there are many
such cases, many equations and many pages in the Specification, the table in User
Note F1.1 is provided as a map for navigating through the cases considered in
Chapter F. The coverage of the chapter is extensive and there are many equations that
appear formidable; however, it is stressed again that for most designs, the engineer
need seldom go beyond Section F2.
For all sections covered in Chapter F, the highest possible nominal flexural strength
is the plastic moment, M
n=Mp. Being able to use this value in design represents the
optimum use of the steel. In order to attain M
pthe beam cross section must be com-
pact and the member must be laterally braced. Compactness depends on the flange
and web width-to-thickness ratios, as defined in Section B4. When these conditions
are not met, the nominal flexural strength diminishes. All sections in Chapter F treat
this reduction in the same way. For laterally braced beams, the plastic moment region
extends over the range of width-to-thickness ratios, λ,terminating at λ
p. This is the
compact condition. Beyond these limits the nominal flexural strength reduces lin-
early untilλreaches λ
r. This is the range where the section is noncompact. Beyond
λ
rthe section is a slender-element section.
These three ranges are illustrated in Figure C-F1.1 for the case of rolled wide-flange
members for the limit state of flange local buckling. AISC Design Guide 25, Frame
Design Using Web-Tapered Members (Kaehler et al., 2010), addresses flexural
strength for web-tapered members. The curve in Figure C-F1.1 shows the relation-
ship between the flange width-to-thickness ratio, b
f/2tf, and the nominal flexural
strength, M
n.
The basic relationship between the nominal flexural strength, M
n, and the unbraced
length, L
b, for the limit state of lateral-torsional buckling is shown in Figure C-F1.2
for a compact section that is simply supported and subjected to uniform bending with
C
b= 1.0.
There are four principal zones defined on the basic curve by the lengths L
pd,Lpand
L
r. Equation F2-5 defines the maximum unbraced length, L p, to reach M pwith uni-
form moment. Elastic lateral-torsional buckling will occur when the unbraced
length is greater than L
rgiven by Equation F2-6. Equation F2-2 defines the range
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 302

Comm. F1.] GENERAL PROVISIONS 16.1–303
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
of inelastic lateral-torsional buckling as a straight line between the defined limits
M
patLpand 0.7F ySxatLr. Buckling strength in the elastic region is given by
Equation F2-3. The length L
pdis defined in Appendix 1 as the limiting unbraced
length needed for plastic design. Although plastic design methods generally require
more stringent limits on the unbraced length compared to elastic design, the magni-
tude of L
pdis often larger than L p. The reason for this is because the L pdexpression
Fig. C-F1.1. Nominal flexural strength as a function of the flange
width-to-thickness ratio of rolled I-shapes.
Fig. C-F1.2. Nominal flexural strength as a function of unbraced length
and moment gradient.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 303

16.1–304 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
accounts for moment gradient directly, while designs based upon an elastic analysis
rely on C
bfactors to account for the benefits of moment gradient as outlined in the
following paragraphs.
For moment along the member other than uniform moment, the lateral buckling
strength is obtained by multiplying the basic strength in the elastic and inelastic
region by C
bas shown in Figure C-F1.2. However, in no case can the maximum
moment capacity exceed the plastic moment, M
p. Note that L pgiven by Equation
F2-5 is merely a definition that has physical meaning only when C
b=1.0. For C b
greater than 1.0, members with larger unbraced lengths can reach M p,as shown by
the curve for C
b>1.0 in Figure C-F1.2. This length is calculated by setting Equation
F2-2 equal to M
pand solving for L busing the actual value of C b.
Since 1961, the following equation has been used in AISC Specifications to adjust
the lateral-torsional buckling equations for variations in the moment diagram within
the unbraced length.
(C-F1-1)
where
M
1=smaller moment at end of unbraced length, kip-in. (N-mm)
M
2=larger moment at end of unbraced length, kip-in. (N-mm)
(M
1/M2) is positive when moments cause reverse curvature and negative for sin-
gle curvature
This equation is only applicable to moment diagrams that consist of straight lines
between braced points—a condition that is rare in beam design. The equation pro-
vides a lower bound to the solutions developed in Salvadori (1956). Equation C-F1-1
can be easily misinterpreted and misapplied to moment diagrams that are not linear
within the unbraced segment. Kirby and Nethercot (1979) present an equation that
applies to various shapes of moment diagrams within the unbraced segment. Their
original equation has been slightly adjusted to give Equation C-F1-2 (Equation F1-1
in the body of the Specification):
(C-F1-2)
This equation gives a more accurate solution for a fixed-end beam, and gives approx-
imately the same answers as Equation C-F1-1 for moment diagrams with straight lines
between points of bracing. C
bcomputed by Equation C-F1-2 for moment diagrams
with other shapes shows good comparison with the more precise but also more com-
plex equations (Ziemian, 2010). The absolute values of the three quarter-point
moments and the maximum moment regardless of its location are used in Equation C-
F1-2. The maximum moment in the unbraced segment is always used for comparison
with the nominal moment, M
n. The length between braces, not the distance to inflec-
tion points is used. It is still satisfactory to use C
bfrom Equation C-F1-1 for
straight-line moment diagrams within the unbraced length.
C= +
M
M
+
M
Mb1.75 1.05 0.3
1
2
1
2⎛











2
C=
M
M +M+M+Mb
max
max A B C
12.5
2.5 3 4 3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 304

Comm. F1.] GENERAL PROVISIONS 16.1–305
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The lateral-torsional buckling modification factor given by Equation C-F1-2 is appli-
cable for doubly symmetric sections and should be modified for application with
singly symmetric sections. Previous work considered the behavior of singly-sym-
metric I-shaped beams subjected to gravity loading (Helwig et al., 1997). The study
resulted in the following expression:
(C-F1-3)
For single curvature bending: R
m=1.0
For reverse curvature bending:
(C-F1-4)
where
I
y Top=moment of inertia of the top flange about an axis through the web, in.
4
(mm
4
)
I
y=moment of inertia of the entire section about an axis through the web, in.
4
(mm
4
)
Since Equation C-F1-3 was developed for gravity loading on beams with a horizon-
tal orientation of the longitudinal axis, the top flange is defined as the flange above
the geometric centroid of the section. The term in the brackets of Equation C-F1-3 is
identical to Equation C-F1-2 while the factor R
mis a modifier for singly-symmetric
sections that is greater than unity when the top flange is the larger flange and less
than unity when the top flange is the smaller flange. For singly-symmetric sections
subjected to reverse curvature bending, the lateral-torsional buckling strength should
be evaluated by separately treating each flange as the compression flange and com-
paring the available flexural strength with the required moment that causes
compression in the flange under consideration.
TheC
bfactors discussed above are defined as a function of the spacing between
braced points. However, many situations arise where a beam may be subjected to
reverse curvature bending and have one of the flanges continuously braced laterally
by closely spaced joists and/or light gauge decking normally used for roofing or
flooring systems. Although the lateral bracing provides significant restraint to one of
the flanges, the other flange can still buckle laterally due to the compression caused
by the reverse curvature bending. A variety of C
bexpressions have been developed
that are a function of the type of loading, distribution of the moment, and the support
conditions. For gravity loaded beams with the top flange laterally restrained, the fol-
lowing expression is applicable (Yura, 1995; Yura and Helwig, 2009):
(C-F1-5)
C
M
MMMM
Rb
max
max A B C
m=
+++







12 5
25 3 4 3
30
.
.
.
R
I
Im
yTop
y=+






05 2
2
.
C
M
M
M
MMb
o
CL
o=−







+
( )








30
2
3
8
3
1
1
.
*
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 305

16.1–306 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
M
o =moment at the end of the unbraced length that gives the largest com-
pressive stress in the bottom flange, kip-in. (N-mm)
M
1 =moment at other end of the unbraced length, kip-in. (N-mm)
M
CL =moment at the middle of the unbraced length, kip-in. (N-mm)
(M
o+M1)*=M oif M1is positive
The unbraced length is defined as the spacing between locations where twist is
restrained. The sign convention for the moments are shown in Figure C-F1.3. M
oand
M
1are negative as shown in the figure, while M CLis positive. The asterisk on the last
term in Equation C-F1-5 indicates that M
1is taken as zero in the last term if it is pos-
itive. For example, considering the distribution of moment shown in Figure C-F1.4,
the C
bvalue would be:
Cb=−
+






⎟−
+






⎟=30
2
3
200
100
8
3
50
100
56..7 7
Fig. C-F1.3. Sign convention for moments in Equation C-F1-5.
Fig. C-F1.4. Moment diagram for numerical example of application of Equation C-F1-5.
AISC_PART 16_Comm.1A_14Ed._ 29/02/12 1:19 PM Page 306

Comm. F1.] GENERAL PROVISIONS 16.1–307
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Note that (M o+M1)* is taken as M osince M 1is positive.
In this case, theC
b=5.67 would be used with the lateral-torsional buckling strength
for the beam using an unbraced length of 20 ft which is defined by locations where
twist or lateral movement of both flanges is restrained.
A similar buckling problem occurs with roofing beams subjected to uplift from
wind loading. The light gauge metal decking that is used for the roofing system
usually provides continuous restraint to the top flange of the beam; however, the
uplift can be large enough to cause the bottom flange to be in compression. The
sign convention for the moment is the same as indicated in Figure C-F1.3. The
moment must cause compression in the bottom flange (M
CLnegative) for the beam
to buckle. Three different expressions are given in Figure C-F1.5 depending on
whether the end moments are positive or negative (Yura and Helwig, 2009). As
outlined above, the unbraced length is defined as the spacing between points where
both the top and bottom flange are restrained from lateral movement or between
points restrained from twist.
The equations for the limit state of lateral-torsional buckling in Chapter F assume
that the loads are applied along the beam centroidal axis. C
bmay be conservatively
Fig. C-F1.5. C bfactors for uplift loading on beams with
the top flange continuously restrained laterally.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 307

16.1–308 GENERAL PROVISIONS [Comm. F1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
taken equal to 1.0, with the exception of some cases involving unbraced overhangs
or members with no bracing within the span and with significant loading applied to
the top flange. If the load is placed on the top flange and the flange is not braced,
there is a tipping effect that reduces the critical moment; conversely, if the load is
suspended from an unbraced bottom flange, there is a stabilizing effect that increases
the critical moment (Ziemian, 2010). For unbraced top flange loading on compact I-
shaped members, the reduced critical moment may be conservatively approximated
by setting the square root expression in Equation F2-4 equal to unity.
An effective length factor of unity is implied in the critical moment equations to rep-
resent the worst-case simply supported unbraced segment. Consideration of any end
restraint due to adjacent unbuckled segments on the critical segment can increase its
strength. The effects of beam continuity on lateral-torsional buckling have been stud-
ied, and a simple conservative design method, based on the analogy to end-restrained
nonsway columns with an effective length less than unity, has been proposed
(Ziemian, 2010).
F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND
CHANNELS BENT ABOUT THEIR MAJOR AXIS
Section F2 applies to members with compact I-shaped or channel cross sections sub-
ject to bending about their major axis; hence, the only limit state to consider is
lateral-torsional buckling. Almost all rolled wide-flange shapes listed in the AISC
Steel Construction Manual(AISC, 2005b) are eligible to be designed by the provi-
sions of this section, as indicated in the User Note in the Specification.
The equations in Section F2 are identical to the corresponding equations in Section
F1 of the 1999 Specification for Structural Steel Buildings—Load and Resistance
Factor Design, hereafter referred to as the 1999 LRFD Specification, (AISC, 2000b)
and to the provisions in the 2005 Specification for Structural Steel Buildings(AISC,
2005a), hereafter referred to as the 2005 Specification, although they are presented
in different form. Table C-F2.1 gives the list of equivalent equations.
The only difference between the 1999 LRFD Specification (AISC, 2000b) and this
Specification is that the stress at the interface between inelastic and elastic buckling
has been changed from F
y≤Frin the 1999 edition to 0.7F y. In the specifications
prior to the 2005 Specification the residual stress,F
r, for rolled and welded shapes
was different, namely 10 ksi (69 MPa) and 16.5 ksi (114 MPa), respectively, while
in the 2005 Specification and in this Specification the residual stress is taken as 0.3F
y
so that the value of F y≤Fr=0.7F yis adopted. This change was made in the interest
of simplicity with negligible effect on economy.
The elastic lateral-torsional buckling stress, F
cr, of Equation F2-4:
(C-F2-1)
F=
Cπ E
L
r
+
Jc
Sh
L
rcr
b
b
ts
xo
b
ts
2
2 1 0.078










⎠⎠

2
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 308

Comm. F2.] DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS 16.1–309
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is identical to Equation F1-13 in the 1999 LRFD Specification:
(C-F2-2)
if c=1 (see Section F2 for definition):
Equation F2-5 is the same as Equation F1-4 in the 1999 LRFD Specification, and
Equation F2-6 corresponds to Equation F1-6. It is obtained by setting F
cr=0.7F yin
Equation F2-4 and solving for L
b. The format of Equation F2-6 has changed in the
2010 Specification so that it is not undefined at the limit when J=0; otherwise it
gives identical results. The term r
tscan conservatively be calculated as the radius of
gyration of the compression flange plus one-sixth of the web.
These provisions have been simplified when compared to the previous ASD provi-
sions based on a more informed understanding of beam limit states behavior. The
maximum allowable stress obtained in these provisions may be slightly higher than
the previous limit of 0.66F
y, since the true plastic strength of the member is reflected
by use of the plastic section modulus in Equation F2-1. The Section F2 provisions
for unbraced length are satisfied through the use of two equations, one for inelastic
lateral-torsional buckling (Equation F2-2), and one for elastic lateral-torsional buck-
ling (Equation F2-3). Previous ASD provisions placed an arbitrary stress limit of
0.6F
ywhen a beam was not fully braced and required that three equations be checked
with the selection of the largest stress to determine the strength of a laterally
unbraced beam. With the current provisions, once the unbraced length is determined,
the member strength can be obtained directly from these equations.
TABLE C-F2.1
Comparison of Equations for
Nominal Flexural Strength
1999 AISC LRFD Specification 2005 and 2010 Specification
Equations Equations
F1-1 F2-1
F1-2 F2-2
F1-13 F2-3
F
M
S
C
LS
EI GJ
E
L
ICcr
cr
x
b
bx
y
b
yw== +






ππ
2
r=
IC
S
; h = d – t ;
G
E
=ts
yw
x
of
2
2 and
2
0.0779
π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 309

16.1–310 DOUBLY SYMMETRIC I-SHAPED MEMBERS [Comm. F3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT
WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT
THEIR MAJOR AXIS
Section F3 is a supplement to Section F2 for the case where the flange of the section
is noncompact or slender (see Figure C-F1.1, linear variation of M
nbetween λ pfand
λ
rf). As pointed out in the User Note of Section F2, very few rolled wide-flange
shapes are subject to this criterion.
F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT
WEBS BENT ABOUT THEIR MAJOR AXIS
The provisions of Section F4 are applicable to doubly symmetric I-shaped beams
with noncompact webs and to singly symmetric I-shaped members with compact or
noncompact webs (see the Table in User Note F1.1). This section deals with welded
I-shaped beams where the webs are not slender. Flanges may be compact, noncom-
pact or slender. The following section, F5, considers welded I-shapes with slender
webs. The contents of Section F4 are based on White (2004).
Four limit states are considered: (a) compression flange yielding; (b) lateral-
torsional buckling (LTB); (c) flange local buckling (FLB); and (d) tension flange
yielding (TFY). The effect of inelastic buckling of the web is taken care of indirectly
by multiplying the moment causing yielding in the compression flange by a factor,
R
pc, and the moment causing yielding in the tension flange by a factor, R pt. These
two factors can vary from unity to as high as 1.6. Conservatively, they can be
assumed to equal 1.0. The following steps are provided as a guide to the determina-
tion of R
pcand R pt.
Step 1.Calculate h
pand h c, as defined in Figure C-F4.1.
Step 2.Determine web slenderness and yield moments in compression and tension:
Fig. C-F4.1. Elastic and plastic stress distributions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 310

Comm. F4.] OTHER I-SHAPED MEMBERS 16.1–311
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F4-1)
Step 3.Determine λ
pwand λ rw:
(C-F4-2)
If λ> λ
rw, then the web is slender and the design is governed by Section F5.
Step 4.Calculate R
pcand R ptusing Section F4.
The basic maximum nominal moment is R
pcMyc=RpcFySxcif the flange is in com-
pression, and R
ptMyt=RptFySxt if it is in tension. Thereafter, the provisions are the
same as for doubly symmetric members in Sections F2 and F3. For the limit state of
lateral-torsional buckling, I-shaped members with cross sections that have unequal
flanges are treated as if they were doubly symmetric I-shapes. That is, Equations
F2-4 and F2-6 are the same as Equations F4-5 and F4-8, except the former use S
x
and the latter use S xc, the elastic section moduli of the entire section and of the com-
pression side, respectively. This is a simplification that tends to be somewhat
conservative if the compression flange is smaller than the tension flange, and it is
somewhat unconservative when the reverse is true. It is also required to check for
tension flange yielding if the tension flange is smaller than the compression flange
(Section F4.4).
For a more accurate solution, especially when the loads are not applied at the cen-
troid of the member, the designer is directed to Chapter 5 of the SSRC Guide and
other references (Galambos, 2001; White and Jung, 2003; Ziemian, 2010). The fol-
lowing alternative equations in lieu of Equations F4-4, F4-5 and F4-8 are provided
by White and Jung:
(C-F4-3)
(C-F4-4)
λ=
h
t
S=
I
y
; S =
I
d–y
M =FS M =FS
c
w
xc
x
xt
x
yc y xc yt y x
; tt


















λ
λpw
rw=
h
h
E
F
M
M

E
F
=
c
py
p
y
y
0.54
0.09
5.70
5.70







2
EE
F
y






















M=C
EI
++
C
I
+
J
C
Lnb
y w
yw
b
π ββ
2
2
2
Lb
xx22
1 0.0390
2⎛






⎣⎣














L=
EIJ
SF
FS
EJ
++
FS
EJ
+r
y
xc L
Lxc Lxc
1.38 2.6
1
2.6
1
ββ
xx ⎡
⎣⎢⎢









22
+
C
I
FS
EJ
w
y
Lxc27.0
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 311

16.1–312 OTHER I-SHAPED MEMBERS [Comm. F4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the coefficient of monosymmetry,
the warping constant, C
w=h
2
Iycα, and
F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED
MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR
MAJOR AXIS
This section applies to doubly and singly symmetric I-shaped welded plate girders
with a slender web, that is, . The applicable limit states are com-
pression flange yielding, lateral-torsional buckling, compression flange local buckling,
and tension flange yielding. The provisions in this section have changed little since
1963. The provisions for plate girders are based on research reported in Basler and
Thürlimann (1963).
There is no seamless transition between the equations in Section F4 and F5. Thus
the bending strength of a girder with F
y=50 ksi (345 MPa) and a web slenderness
h/t
w=137 is not close to that of a girder withh/t w=138. These two slenderness ratios
are on either side of the limiting ratio. This gap is caused by the discontinuity
between the lateral-torsional buckling resistances predicted by Section F4 and those
predicted by Section F5 due to the implicit use of J=0 in Section F5. However, for
typical noncompact web section members close to the noncompact web limit, the
influence of Jon the lateral-torsional buckling resistance is relatively small (for
example, the calculated L
rvalues including Jversus using J=0 typically differ by
less than 10%). The implicit use of J=0 in Section F5 is intended to account for the
influence of web distortional flexibility on the lateral-torsional buckling resistance
for slender-web I-section members.
F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR
MINOR AXIS
I-shaped members and channels bent about their minor axis do not experience lat-
eral-torsional buckling or web buckling. The only limit states to consider are yielding
and flange local buckling. The user note informs the designer of the few rolled
shapes that need to be checked for flange local buckling.
F7. SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The provisions for the nominal flexural strength of HSS include the limit states of
yielding and local buckling. Square and rectangular HSS are typically not subject to
lateral-torsional buckling.
h
t
>=
E
Fc
wy
λr5.70
βαx
yc
yt h
I
I
=−






09 1.,
α=
I
I
+
yc
yt
1
1
.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 312

Comm. F7.] SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–313
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Because of the high torsional resistance of the closed cross section, the critical
unbraced lengths, L
pand L r, that correspond to the development of the plastic
moment and the yield moment, respectively, are very large. For example, as shown
in Figure C-F7.1, an HSS20×4×
5
/16(HSS508×101.6×7.9), which has one of the
largest depth-to-width ratios among standard HSS, has L
pof 6.7 ft (2.0 m) and L rof
137 ft (42 m) as determined in accordance with the 1993 Load and Resistance Factor
Design Specification for Structural Steel Buildings(AISC, 1993). An extreme deflec-
tion limit might correspond to a length-to-depth ratio of 24 or a length of 40 ft (12
m) for this member. Using the specified linear reduction between the plastic moment
and the yield moment for lateral-torsional buckling, the plastic moment is reduced by
only 7% for the 40-ft (12-m) length. In most practical designs where there is a
moment gradient and the lateral-torsional buckling modification factor, C
b, is larger
than unity, the reduction will be nonexistent or insignificant.
The provisions for local buckling of noncompact rectangular HSS are also the same
as those in the previous sections of this chapter: M
n=Mpfor b/t≤λ p, and a linear
transition from M
pto FySxwhen λ p<b/t≤λ r. The equation for the effective width
of the compression flange when b/texceeds λ
ris the same as that used for rectangu-
lar HSS in axial compression except that the stress is taken as the yield stress. This
implies that the stress in the corners of the compression flange is at yield when the
ultimate post-buckling strength of the flange is reached. When using the effective
width, the nominal flexural strength is determined from the effective section modu-
lus to the compression flange using the distance from the shifted neutral axis. A
slightly conservative estimate of the nominal flexural strength can be obtained by
using the effective width for both the compression and tension flange, thereby main-
taining the symmetry of the cross section and simplifying the calculations.
Fig. C-F7.1. Lateral-torsional buckling of rectangular HSS.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 313

16.1–314 ROUND HSS [Comm. F8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F8. ROUND HSS
Round HSS are not subject to lateral-torsional buckling. The failure modes and post-
buckling behavior of round HSS can be grouped into three categories (Sherman,
1992; Ziemian, 2010):
(a) For low values of D/t, a long plastic plateauoccurs in the moment-rotation
curve. The cross section gradually ovalizes, local wave buckles eventually form,
and the moment resistance subsequently decays slowly. Flexural strength may
exceed the theoretical plastic moment due to strain hardening.
(b) For intermediate values of D/t, the plastic moment is nearly achieved but a sin-
gle local buckle develops and the flexural strength decays slowly with little or no
plastic plateau region.
(c) For high values of D/t, multiple buckles form suddenly with very little ovaliza-
tion and the flexural strength drops quickly.
The flexural strength provisions for round HSS reflect these three regions of behav-
ior and are based upon five experimental programs involving hot-formed seamless
pipe, electric-resistance-welded pipe, and fabricated tubing (Ziemian, 2010).
F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE
OF SYMMETRY
The lateral-torsional buckling (LTB) strength of singly symmetric tee beams is given
by a fairly complex formula (Ziemian, 2010). Equation F9-4 is a simplified formu-
lation based on Kitipornchai and Trahair (1980). See also Ellifritt et al. (1992).
The C
bfactor used for I-shaped beams is unconservative for tee beams with the stem
in compression. For such cases, C
b =1.0 is appropriate. When beams are bent in
reverse curvature, the portion with the stem in compression may control the LTB
resistance even though the moments may be small relative to other portions of the
unbraced length with C
b≈1.0. This is because the LTB strength of a tee with the
stem in compression may be only about one-fourth of the strength for the stem in ten-
sion. Since the buckling strength is sensitive to the moment diagram,C
bhas been
conservatively taken as 1.0. In cases where the stem is in tension, connection details
should be designed to minimize any end restraining moments that might cause the
stem to be in compression.
The 2005 Specification did not have provisions for the local buckling strength of the
stems of tee sections and the legs of double angle sections under flexural compres-
sive stress gradient. The Commentary to this Section in the 2005 Specification
explained that the local buckling strength was accounted for in the equation for the
lateral-torsional buckling limit state, Equation F9-4, when the unbraced length, L
b,
approached zero. While this is a correct procedure, it led to confusion and to many
questions by users of the Specification. For this reason, Section F9.4, “Local
Buckling of Tee Stems in Flexural Compression,” was added to provide an explicit
set of formulas for the 2010 Specification.
The derivation of the formulas is provided here to explain the changes. The classical
formula for the elastic buckling of a rectangular plate is (Ziemian, 2010):
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 314

Comm. F9.] TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY 16.1–315
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F9-1)
where
ν=0.3 (Poisson’s ratio)
b/t=plate width-to-thickness ratio
k=plate buckling coefficient
For the stem of tee sections, the width-to-thickness ratio is equal to d/t
w. The two
rectangular plates in Figure C-F9.1 are fixed at the top, free at the bottom and
loaded, respectively, with a uniform and a linearly varying compressive stress. The
corresponding plate buckling coefficients, k, are 1.33 and 1.61 (Figure 4.4, Ziemian,
2010). The graph in Figure C-F9.2 shows the general scheme used historically in
developing the local buckling criteria in AISC Specifications. The ordinate is the
critical stress divided by the yield stress, and the abscissa is a nondimensional
width-to-thickness ratio,
(C-F9-2)
In the traditional scheme it is assumed the critical stress is the yield stress, F
y,
as long as λ

≤0.7. Elastic buckling, governed by Equation C-F9-1 commences when
F
Ek
b
tcr=

( )






π
ν
2
2
2
12 1
λ
ν
π
=

( )b
t
F
E k y
12 1
2
2
Fig.C-F9.1 Plate buckling coefficients for uniform compression
and for linearly varying compressive stresses.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 315

16.1–316 TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY [Comm. F9.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-F9.2. General scheme for plate local buckling limit states.
Fig. C-F9.3. Local buckling of tee stem in flexural compression.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 316

Comm. F10.] SINGLE ANGLES 16.1–317
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
λ

=1.24 and F cr= 0.65F y. Between these two points the transition is assumed linear
to account for initial deflections and residual stresses. While these assumptions are
arbitrary empirical values, they have proven satisfactory. The curve in Figure C-F9.3
shows the graph of the formulas adopted for the stem of tee sections and the legs of
double angle sections when these elements are subject to flexural compression. The
limiting width-to-thickness ratio up to which F
cr= Fyis (using v=0.3 and k= 1.61):
The elastic buckling range was assumed to be governed by the same equation as the
local buckling of the flanges of a wide-flange beam bent about its minor axis
(Equation F6-4):
The underlying plate buckling coefficient for this equation is k=0.76, which is a
conservative assumption for tee stems in flexural compression. The straight-line tran-
sition between the end of the yield limit and the onset of the elastic buckling range
is also indicated in Figure C-F9.3.
Flexure about the y-axis of tees and double angles does not occur frequently and is
not covered in this Specification. However, guidance is given here to address this
condition. The yield limit state and the local buckling limit state of the flange can
be checked by using Equations F6-1 through F6-3. Lateral-torsional buckling can
conservatively be calculated by assuming the flange acts alone as a rectangular
beam, using Equations F11-2 through F11-4. Alternately, an elastic critical moment
given as
(C-F9-3)
may be used in Equations F10-2 or F10-3 to obtain the nominal flexural strength.
F10. SINGLE ANGLES
Flexural strength limits are established for the limit states of yielding, lateral-
torsional buckling, and leg local buckling of single-angle beams. In addition to
addressing the general case of unequal-leg single angles, the equal-leg angle is
treated as a special case. Furthermore, bending of equal-leg angles about a geo-
metric axis, an axis parallel to one of the legs, is addressed separately as it is a
common case of angle bending.
The tips of an angle refer to the free edges of the two legs. In most cases of unre-
strained bending, the flexural stresses at the two tips will have the same sign (tension
or compression). For constrained bending about a geometric axis, the tip stresses will
λ
ν
π
==

( )
→= =07
12 1
084
2
2
..
b
t
F
E k
b
t
d
t
E
F
y
wy
F
E
d
tcr
w=






069
2
.
M
L
EI GJe
b
x=
π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 317

16.1–318 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
differ in sign. Provisions for both tension and compression at the tip should be
checked as appropriate, but in most cases it will be evident which controls.
Appropriate serviceability limits for single-angle beams need also to be considered.
In particular, for longer members subjected to unrestrained bending, deflections are
likely to control rather than lateral-torsional buckling or leg local buckling strength.
The provisions in this section follow the general format for nominal flexural resist-
ance (see Figure C-F1.2). There is a region of full plastification, a linear transition to
the yield moment, and a region of local buckling.
1. Yielding
The strength at full yielding is limited to a shape factor of 1.50 applied to the yield
moment. This leads to a lower bound plastic moment for an angle that could be bent
about any axis, inasmuch as these provisions are applicable to all flexural conditions.
The 1.25 factor originally used was known to be a conservative value. Research work
(Earls and Galambos, 1997) has indicated that the 1.50 factor represents a better
lower bound value. Since the shape factor for angles is in excess of 1.50, the nomi-
nal design strength, M
n=1.5M y, for compact members is justified provided that
instability does not control.
2. Lateral-Torsional Buckling
Lateral-torsional buckling may limit the flexural strength of an unbraced single-angle
beam. As illustrated in Figure C-F10.1, Equation F10-2 represents the elastic buck-
ling portion with the maximum nominal flexural strength, M
n, equal to 75% of
the theoretical buckling moment, M
e. Equation F10-3 represents the inelastic buck-
ling transition expression between 0.75M
yand 1.5M y. The maximum beam flexural
strength M
n=1.5M ywill occur when the theoretical buckling moment, M e, reaches
or exceeds 7.7M
y. Myis the moment at first yield in Equations F10-2 and F10-3, the
Fig. C-F10.1. Lateral-torsional buckling limits of a single-angle beam.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 318

Comm. F10.] SINGLE ANGLES 16.1–319
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
same as the M yin Equation F10-1. These equations are modifications of those devel-
oped from the results of Australian research on single angles in flexure and on an
analytical model consisting of two rectangular elements of length equal to the actual
angle leg width minus one-half the thickness (AISC, 1975; Leigh and Lay, 1978,
1984; Madugula and Kennedy, 1985).
When bending is applied about one leg of a laterally unrestrained single angle, the
angle will deflect laterally as well as in the bending direction. Its behavior can be
evaluated by resolving the load and/or moments into principal axis components and
determining the sum of these principal axis flexural effects. Subsection (a) of Section
F10.2(iii) is provided to simplify and expedite the calculations for this common sit-
uation with equal-leg angles. For such unrestrained bending of an equal-leg angle,
the resulting maximum normal stress at the angle tip (in the direction of bending)
will be approximately 25% greater than the calculated stress using the geometric axis
section modulus. The value of M
egiven by Equations F10-6a and F10-6b and the
evaluation of M
yusing 0.80 of the geometric axis section modulus reflect bending
about the inclined axis shown in Figure C-F10.2.
The deflection calculated using the geometric axis moment of inertia has to be
increased 82% to approximate the total deflection. Deflection has two components:
a vertical component (in the direction of applied load) of 1.56 times the calculated
value and a horizontal component of 0.94 times the calculated value. The resultant
total deflection is in the general direction of the weak principal axis bending of the
angle (see Figure C-F10.2). These unrestrained bending deflections should be con-
sidered in evaluating serviceability and will often control the design over lateral-
torsional buckling.
The horizontal component of deflection being approximately 60% of the vertical
deflection means that the lateral restraining force required to achieve purely vertical
Fig. C-F10.2. Geometric axis bending of laterally unrestrained equal-leg angles.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 319

16.1–320 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
deflection must be 60% of the applied load value (or produce a moment 60% of the
applied value), which is very significant.
Lateral-torsional buckling is limited by M
e (Leigh and Lay, 1978, 1984) as defined
in Equation F10-6a, which is based on
(C-F10-1)
(the general expression for the critical moment of an equal-leg angle) with θ = ≤45°
for the condition where the angle tip stress is compressive (see Figure C-F10.3).
Lateral-torsional buckling can also limit the flexural strength of the cross section
when the maximum angle tip stress is tensile from geometric axis flexure, especially
with use of the flexural strength limits in Section F10.2. Using θ=45°in Equation
C-F10-1, the resulting expression is Equation F10-6b with a +1 instead of −1 as the
last term.
Stress at the tip of the angle leg parallel to the applied bending axis is of the same
sign as the maximum stress at the tip of the other leg when the single angle is unre-
strained. For an equal-leg angle this stress is about one-third of the maximum stress.
It is only necessary to check the nominal bending strength based on the tip of the
angle leg with the maximum stress when evaluating such an angle. If an angle is sub-
jected to an axial compressive load, the flexural limits obtained from Section
F10.2(iii) cannot be used due to the inability to calculate a proper moment magnifi-
cation factor for use in the interaction equations.
For unequal-leg angles and for equal-leg angles in compression without lateral-tor-
sional restraint, the applied load or moment must be resolved into components along
the two principal axes in all cases and design must be for biaxial bendingusing the
interaction equations in Chapter H.
Fig. C-F10.3. Equal-leg angle with general moment loading.
M
Eb t
KLcr=
+
+
+233
13
0 156 1 3
4
22
2
2
.
( cos )( )
sin
.( cos
θ
θ
θ))( )
sin
KL t
b
22
4
+








θ
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 320

Comm. F10.] SINGLE ANGLES 16.1–321
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Under major axis bending of equal-leg angles, Equation F10-4 in combination with
Equations F10-2 and F10-3 controls the available moment against overall lateral-
torsional buckling of the angle. This is based on M
crgiven in Equation C-F10-1 with
θ=0°.
Lateral-torsional buckling for this case will reduce the stress below 1.5M
yonly for
L/t ≥3,675C
b/Fy(Me=7.7M y). If the Lt/b
2
parameter is small (less than approxi-
mately 0.87C
bfor this case), local buckling will control the available moment and
M
nbased on lateral-torsional buckling need not be evaluated. Local buckling must
be checked using Section F10.3.
Lateral-torsional buckling about the major principal w-axis of an unequal-leg angle
is controlled by M
ein Equation F10-5. The section property, β w, reflects the location
of the shear center relative to the principal axis of the section and the bending direc-
tion under uniform bending. Positive β
wand maximum M eoccur when the shear
center is in flexural compression while negative β
w and minimum M e occur when the
shear center is in flexural tension (see Figure C-F10.4). This β
weffect is consistent
with behavior of singly symmetric I-shaped beams, which are more stable when the
compression flange is larger than the tension flange. For principal w-axis bending of
equal-leg angles, β
w is equal to zero due to symmetry and Equation F10-5 reduces to
Equation F10-4 for this special case.
For reverse curvature bending, part of the unbraced length has positive β
w, while the
remainder has negative β
w; conservatively, the negative value is assigned for that
entire unbraced segment.
The factor β
wis essentially independent of angle thickness (less than 1% variation
from mean value) and is primarily a function of the leg widths. The average values
shown in Table C-F10.1 may be used for design.
3. Leg Local Buckling
The b/tlimits have been modified to be more representative of flexural limits rather
than using those for single angles under uniform compression. Typically the flexural
Fig. C-F10.4. Unequal-leg angle in bending.
(b) −β w(a) +βw
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 321

TABLE C-F10.1
β
wValues for Angles
Angle size β w
in. (mm) in. (mm)*
8 λ6 (203 λ152) 3.31 (84.1)
8 λ4 (203 λ102) 5.48 (139)
7 λ4 (178 λ102) 4.37 (111)
6 λ4 (152 λ102) 3.14 (79.8)
6 λ3
1
/2(152 λ89) 3.69 (93.7)
5 λ3
1
/2(127 λ89) 2.40 (61.0)
5 λ3 (127 λ76) 2.99 (75.9)
4 λ3
1
/2(102 λ89) 0.87 (22.1)
4 λ3 (102 λ76) 1.65 (41.9)
3
1
/2λ3 (89 λ76) 0.87 (22.1)
3
1
/2λ2
1
/2(89 λ64) 1.62 (41.1)
3 λ2
1
/2(76 λ64) 0.86 (21.8)
3 λ2 (76 λ51) 1.56 (39.6)
2
1
/2λ2 (64 λ51) 0.85 (21.6)
2
1
/2λ1
1
/2(64 λ38) 1.49 (37.8)
Equal legs 0.00

w
w
o
A
I
zw z dA z=+−
( )∫
1
2
22
where
z o= coordinate along the z-axis of the shear center with respect to the centroid, in. (mm)
Iw= moment of inertia for the major principal axis, in.
4
(mm
4
)
β
whas a positive or negative value depending on the direction of bending (see Figure C-F10.4).
16.1–322 SINGLE ANGLES [Comm. F10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stresses will vary along the leg length permitting the use of the stress limits given.
Even for the geometric axis flexure case, which produces uniform compression along
one leg, use of these limits will provide a conservative value when compared to the
results reported in Earls and Galambos (1997).
F11. RECTANGULAR BARS AND ROUNDS
The provisions in Section F11 apply to solid bars with round and rectangular cross
section. The prevalent limit state for such members is the attainment of the full plas-
tic moment, M
p. The exception is the lateral-torsional buckling of rectangular bars
where the depth is larger than the width. The requirements for design are identical to
those given previously in Table A-F1.1 in the 1999 LRFD Specification and the same
as those given in the 2005 Specification for Structural Steel Buildings(AISC, 2005a).
Since the shape factor for a rectangular cross section is 1.5 and for a round section is
1.7, consideration must be given to serviceability issues such as excessive deflection
or permanent deformation under service-load conditions.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 322

Comm. F13.] PROPORTIONS OF BEAMS AND GIRDERS 16.1–323
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
F12. UNSYMMETRICAL SHAPES
When the design engineer encounters beams that do not contain an axis of symme-
try, or any other shape for which there are no provisions in the other sections of
Chapter F, the stresses are to be limited by the yield stress or the elastic buckling
stress. The stress distribution and/or the elastic buckling stress must be determined
from principles of structural mechanics, textbooks or handbooks, such as the SSRC
Guide (Ziemian, 2010), papers in journals, or finite element analyses. Alternatively,
the designer can avoid the problem by selecting cross sections from among the many
choices given in the previous sections of Chapter F.
F13. PROPORTIONS OF BEAMS AND GIRDERS
1. Strength Reductions for Members with Holes in the Tension Flange
Historically, provisions for proportions of rolled beams and girders with holes in the
tension flange were based upon either a percentage reduction independent of mate-
rial strength or a calculated relationship between the tension rupture and tension
yield strengths of the flange, with resistance factors or safety factors included in the
calculation. In both cases, the provisions were developed based upon tests of steel
with a specified minimum yield stress of 36 ksi (250 MPa) or less.
More recent tests (Dexter and Altstadt, 2004; Yuan et al., 2004) indicate that the flex-
ural strength on the net section is better predicted by comparison of the quantities
F
yAfgand F uAfn, with slight adjustment when the ratio of F yto Fuexceeds 0.8. If the
holes remove enough material to affect the member strength, the critical stress is
adjusted from F
yto (FuAfn/Afg) and this value is conservatively applied to the elastic
section modulus, S
x.
The resistance factor and safety factor used throughout this chapter, φ=0.90 and
Ω=1.67, are those normally applied for the limit state of yielding. In the case of
rupture of the tension flange due to the presence of holes, the provisions of this
chapter continue to apply the same resistance and safety factors. Since the effect of
Equation F13-1 is to multiply the elastic section modulus by a stress that is always
less than the yield stress, it can be shown that this resistance and safety factor
always give conservative results when Z/S≤1.2. It can also be shown to be conser-
vative when Z/S>1.2 and a more accurate model for the rupture strength is used
(Geschwindner, 2010a).
2. Proportioning Limits for I-Shaped Members
The provisions of this section were taken directly from Appendix G Section G1 of
the 1999 LRFD Specification and are the same as the 2005 Specification for
Structural Steel Buildings(AISC, 2005a). They have been part of the plate-girder
design requirements since 1963 and are derived from Basler and Thürlimann (1963).
The web depth-to-thickness limitations are provided so as to prevent the flange from
buckling into the web. Equation F13-4 was slightly modified from the corresponding
Equation A-G1-2 in the 1999 LRFD Specification to recognize the change in the def-
inition of residual stress from a constant 16.5 ksi (114 MPa) to 30% of the yield stress
in the 2005 Specification, as shown by the following derivation:
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 323

16.1–324 PROPORTIONS OF BEAMS AND GIRDERS [Comm. F13.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-F13-1)
3. Cover Plates
Cover plates need not extend the entire length of the beam or girder. The end con-
nection between the cover plate and beam must be designed to resist the full force in
the cover plate at the theoretical cutoff point. The end force in a cover plate on a
beam whose required strength exceeds the available yield strength, φM
y=φF ySx
(LFRD) or M y/Ω=F ySx/Ω(ASD), of the combined shape can be determined by an
elastic-plastic analysis of the cross section but can conservatively be taken as the full
yield strength of the cover plate for LRFD or the full yield strength of the cover plate
divided by 1.5 for ASD. The forces in a cover plate on a beam whose required
strength does not exceed the available yield strength of the combined section can be
determined using the elastic distribution, MQ/I.
The requirements for minimum weld lengths on the sides of cover plates at each end
reflect uneven stress distribution in the welds due to shear lag in short connections.
5. Unbraced Length for Moment Redistribution
The moment redistribution provisions of Section B3.7 refer to this section for set-
ting the maximum unbraced length when moments are to be redistributed. These
provisions have been a part of the Specification since the 1949 edition. Portions
of members that would be required to rotate inelastically while the moments are
redistributed need more closely spaced bracing than similar parts of a continuous
beam. Equations F13-8 and F13-9 define the maximum permitted unbraced length
in the vicinity of redistributed moment for doubly symmetric and singly symmet-
ric I-shaped members with a compression flange equal to or larger than the tension
flange bent about their major axis, and for solid rectangular bars and symmetric
box beams bent about their major axis, respectively. These equations are identical
to those in Appendix 1 of the 2005 Specification for Structural Steel Buildings
(AISC, 2005a) and the 1999 LRFD Specification, and are based on research
reported in Yura et al. (1978). They are different from the corresponding equations
in Chapter N of the 1989 Specification for Structural Steel Buildings—Allowable
Stress Design and Plastic Design (AISC, 1989).
0.48
16.5
0.48
0.3
0.42E
FF+
E
FF+ F
=
E
F
yy yy y
y( )

( )
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 324

16.1–325
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER G
DESIGN OF MEMBERS FOR SHEAR
G1. GENERAL PROVISIONS
Chapter G applies to webs of singly or doubly symmetric members subject to shear
in the plane of the web, single angles and HSS, and shear in the weak direction of
singly or doubly symmetric shapes.
Two methods for determining the shear strength of singly or doubly symmetric
I-shaped beams and built-up sections are presented. The method of Section G2 does
not utilize the post-buckling strength of the web, while the method of Section G3 uti-
lizes the post-buckling strength.
G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS
Section G2 deals with the shear strength of webs of wide-flange or I-shaped mem-
bers, as well as webs of tee-shapes, that are subject to shear and bending in the plane
of the web. The provisions in Section G2 apply to the general case when an increase
of strength due to tension field action is not permitted. Conservatively, these provi-
sions may be applied also when it is not desired to use the tension field action
enhancement for convenience in design. Consideration of the effect of bending on
the shear strength is not required because the effect is deemed negligible.
1. Shear Strength
The nominal shear strength of a web is defined by Equation G2-1, a product of the
shear yield force, 0.6F
yAw, and the shear-buckling reduction factor, C v.
The provisions of Case (a) in Section G2.1 for rolled I-shaped members with
are similar to the 1999 and earlier LRFD provisions, with the excep-
tion that φhas been increased from 0.90 to 1.00 (with a corresponding decrease of
the safety factor from 1.67 to 1.50), thus making these provisions consistent with
the 1989 provisions for allowable stress design (AISC, 1989). The value of φof 1.00
is justified by comparison with experimental test data and recognizes the minor
consequences of shear yielding, as compared to those associated with tension
and compression yielding, on the overall performance of rolled I-shaped members.
This increase is applicable only to the shear yielding limit state of rolled I-shaped
members.
Case (b) in Section G2.1 uses the shear buckling reduction factor, C
v, shown in
Figure C-G2.1.The curve for C
vhas three segments.
For webs with , the nominal shear strength, V
n, is based
on shear yielding of the web, with C
vgiven by Equation G2-3. This h/t wlimit was
EFy≤224.
htw
ht kEFwvyw/. /≤110
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 325

16.1–326 MEMBERS WITH UNSTIFFENED OR STIFFENED WEB [Comm. G2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
determined by setting the critical stress causing shear buckling, F cr, equal to the yield
stress of the web, F
yw=Fy, in Equation 35 of Cooper et al. (1978).
When , the web shear strength is based on buckling. It has
been suggested to take the proportional limit as 80% of the yield stress of the web
(Basler, 1961). This corresponds to .
When , the web strength is determined from the elastic
buckling stress given by Equation 6 of Cooper at al. (1978) and Equation 9-7 in
Timoshenko and Gere (1961):
(C-G2-1)
C
vin Equation G2-5 was obtained by dividing F crfrom Equation C-G2-1 by 0.6F y
and using v=0.3.
The inelastic buckling transition for C
v(Equation G2-4) is used between the limits
given by .
The plate buckling coefficient, k
v, for panels subject to pure shear having simple sup-
ports on all four sides is given by Equation 4.3 in Ziemian (2010).
(C-G2-2)
ht kEFwvyw/. />110
ht kEFwvyw/./. /=( )( )110 08
ht kEFwvyw/. />137
F
Ek
vhtcr
v
w=

( )()
π
2
2 2
12 1 /
110 137.//./kE F h t kE Fvy w vy<≤
Fig. C-G2.1. Shear buckling coefficient C vfor
F
y=50 ksi (345 MPa) and k v=5.0.
k
ah
ah
ahv=
+
()

+
()
400
534
1
2
2
.
.
/
/ for
5.34
4.00
/
for ah/>














1
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 326

Comm. G3.] TENSION FIELD ACTION 16.1–327
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For practical purposes and without loss of accuracy, these equations have been sim-
plified herein and in AASHTO (2010) to
(C-G2-3)
When the panel ratio, a/h, becomes large, as in the case of webs without transverse
stiffeners, then k
v=5. Equation C-G2-3 applies as long as there are flanges on both
edges of the web. For tee-shaped beams, the free edge is unrestrained and for this sit-
uation k
v=1.2 (JCRC, 1971).
The provisions of Section G2.1 assume monotonically increasing loads. If a flexural
member is subjected to load reversals causing cyclic yielding over large portions of
a web, such as may occur during a major earthquake, special design considerations
may apply (Popov, 1980).
2. Transverse Stiffeners
When transverse stiffeners are needed, they must be rigid enough to cause a buck-
ling node line to form at the stiffener. This requirement applies whether or not tension
field action is counted upon. The required moment of inertia of the stiffener is the
same as in AASHTO (2010), but it is different from the formula in the 1989
Specification for Structural Steel Buildings—Allowable Stress Design(AISC, 1989).
Equation G2-7 is derived in Chapter 11 of Salmon and Johnson (1996). The origin
of the formula can be traced to Bleich (1952).
G3. TENSION FIELD ACTION
The provisions of Section G3 apply when it is intended to account for the enhanced
strength of webs of built-up members due to tension field action.
1. Limits on the Use of Tension Field Action
The panels of the web of a built-up member, bounded on the top and bottom by the
flanges and on each side by the transverse stiffeners, are capable of carrying loads
far in excess of their “web buckling” load. Upon reaching the theoretical web buck-
ling limit, slight lateral web displacements will have developed. These deformations
are of no structural significance, because other means are still present to provide
further strength.
When transverse stiffeners are properly spaced and are stiff enough to resist out-of-
plane movement of the postbuckled web, significant diagonal tension fields form in
the web panels prior to the shear resistance limit. The web in effect acts like a Pratt
truss composed of tension diagonals and compresson verticals that are stabilized by
the transverse stiffeners. This effective Pratt truss furnishes the strength to resist
applied shear forces unaccounted for by the linear buckling theory.
The key requirement in the development of tension field action in the web of plate
girders is the ability of the stiffeners to provide sufficient flexural rigidity to stabilize
the web along their length. In the case of end panels there is a panel only on one side.
The anchorage of the tension field is limited in many situations at these locations and
k
ahv=+
()
5
5
2
/
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 327

16.1–328 TENSION FIELD ACTION [Comm. G3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is thus neglected. In addition, the enhanced resistance due to tension field forces is
reduced when the panel aspect ratio becomes large. For this reason the inclusion of
tension field action is not permitted when a/h exceeds 3.0 or [260/(h/t
w)]
2
.
AISC Specifications prior to 2005 have required explicit consideration of the inter-
action between the flexural and shear strengths when the web is designed using
tension field action. White et al. (2008) show that the interaction between the shear
and flexural resistances is negligible when the requirements 2A
w/(Afc+Aft) ≤2.5
and h/b
f≤6 are satisfied. Section G3.1 disallows the use of tension field action for
I-section members with relatively small flange-to-web proportions identified by
these limits. Similar limits are specified in AASHTO (2010); furthermore, AASHTO
(2010) allows the use of a reduced “true Basler” tension field resistance for cases
where these limits are violated.
2. Shear Strength with Tension Field Action
Analytical methods based on tension field action have been developed (Basler and
Thürlimann, 1963; Basler, 1961) and corroborated in an extensive program of tests
(Basler et al., 1960). Equation G3-2 is based on this research. The second term in the
bracket represents the relative increase of the panel shear strength due to tension field
action. The merits of Equation G3-2 relative to various alternative representations of
web shear resistance are evaluated and Equation G3-2 is recommended in White and
Barker (2008).
3. Transverse Stiffeners
The vertical component of the tension field force that is developed in the web panel
must be resisted by the transverse stiffener. In addition to the rigidity required to keep
the line of the stiffener as a nonmoving point for the buckled panel, as provided for
in Section G2.2, the stiffener must also have a large enough area to resist the tension
field reaction.
Numerous studies (Horne and Grayson, 1983; Rahal and Harding, 1990a, 1990b,
1991; Stanway et al., 1993, 1996; Lee et al., 2002b; Xie and Chapman, 2003; Kim et
al., 2007) have shown that transverse stiffeners in I-girders designed for tension field
action are loaded predominantly in bending due to the restraint they provide to lat-
eral deflection of the web. Generally, there is evidence of some axial compression in
the transverse stiffeners due to the tension field, but even in the most slender web
plates permitted by this Specification; the effect of the axial compression transmitted
from the postbuckled web plate is typically minor compared to the lateral loading
effect. Therefore, the transverse stiffener area requirement from prior Specifications
is no longer specified. Rather, the demands on the stiffener flexural rigidity are
increased in situations where the tension field action of the web is developed.
Equation G3-4 is the same requirement as specified in AASHTO (2010).
G4. SINGLE ANGLES
Shear stresses in single-angle members are the result of the gradient of the bending
moment along the length (flexural shear) and the torsional moment.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 328

Comm. G5.] RECTANGULAR HSS AND BOX-SHAPED MEMBERS 16.1–329
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The maximum elastic stress due to flexural shear is
(C-G4-1)
where V
bis the component of the shear force parallel to the angle leg with width b
and thickness t. The stress is constant throughout the thickness, and it should be cal-
culated for both legs to determine the maximum. The coefficient 1.5 is the calculated
value for equal leg angles loaded along one of the principal axes. For equal leg angles
loaded along one of the geometric axes, this factor is 1.35. Factors between these
limits may be calculated conservatively from V
bQ/Itto determine the maximum
stress at the neutral axis. Alternatively, if only flexural shear is considered, a uniform
flexural shear stress in the leg of V
b/btmay be used due to inelastic material behav-
ior and stress redistribution.
If the angle is not laterally braced against twist, a torsional moment is produced equal
to the applied transverse load times the perpendicular distance, e, to the shear center,
which is at the point of intersection of the centerlines of the two legs. Torsional
moments are resisted by two types of shear behavior: pure torsion (St. Venant tor-
sion) and warping torsion[see Seaburg and Carter (1997)]. The shear stresses due to
restrained warping are small compared to the St. Venant torsion (typically less than
20%) and they can be neglected for practical purposes. The applied torsional moment
is then resisted by pure shear stresses that are constant along the width of the leg
(except for localized regions at the toe of the leg), and the maximum value can be
approximated by
(C-G4-2)
where
A=angle cross-sectional area, in.
2
(mm
2
)
J=torsional constant [approximated by Σ(bt
3
/3) when precomputed value is
unavailable], in.
4
(mm
4
)
M
T=torsional moment, kip-in. (N-mm)
For a study of the effects of warping, see Gjelsvik (1981). Torsional moments from
laterally unrestrained transverse loads also produce warping normal stresses that are
superimposed on the bending stresses. However, since the warping strength of single
angles is relatively small, this additional bending effect, just like the warping shear
effect, can be neglected for practical purposes.
G5. RECTANGULAR HSS AND BOX-SHAPED MEMBERS
The two webs of a closed rectangular cross section resist shear the same way as the
single web of an I-shaped plate girder or wide-flange beam, and therefore, the pro-
visions of Section G2 apply.
f
V
btv
b=
15.
f
Mt
J
M
Atv
TT==
3
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 329

16.1–330 ROUND HSS [Comm. G6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
G6. ROUND HSS
Little information is available on round HSS subjected to transverse shear and the
recommendations are based on provisions for local buckling of cylinders due to tor-
sion. However, since torsion is generally constant along the member length and
transverse shear usually has a gradient; it is recommended to take the critical stress
for transverse shear as 1.3 times the critical stress for torsion (Brockenbrough and
Johnston, 1981; Ziemian, 2010). The torsion equations apply over the full length of
the member, but for transverse shear it is reasonable to use the length between the
points of maximum and zero shear force. Only thin HSS may require a reduction in
the shear strength based upon first shear yield. Even in this case, shear will only gov-
ern the design of round HSS for the case of thin sections with short spans.
In the equation for the nominal shear strength, V
n, of round HSS, it is assumed that
the shear stress at the neutral axis, calculated as VQ/lb, is at F
cr. For a thin round
section with radius Rand thickness t, I=πR
3
t, Q=2R
2
tand b =2t. This gives the
stress at the centroid as V/πRt, in which the denominator is recognized as half the
area of the round HSS.
G7. WEAK AXIS SHEAR IN DOUBLY SYMMETRIC AND SINGLY
SYMMETRIC SHAPES
The nominal weak axis shear strength of doubly and singly symmetric I-shapes is
governed by the equations of Section G2 with the plate buckling coefficient equal
to k
v=1.2, the same as the web of a tee-shape. The maximum plate slenderness of
all rolled shapes is b/t
f=bf/2tf=13.8, and for F y=100 ksi (690 MPa) the value of
. Thus C
v=1.0, except for built-
up shapes with very slender flanges.
G8. BEAMS AND GIRDERS WITH WEB OPENINGS
Web openings in structural floor members may be used to accommodate various
mechanical, electrical and other systems. Strength limit states, including local buck-
ling of the compression flange or of the web, local buckling or yielding of the
tee-shaped compression zone above or below the opening, lateral buckling and
moment-shear interaction, or serviceability may control the design of a flexural
member with web openings. The location, size and number of openings are impor-
tant and empirical limits for them have been identified. One general procedure for
assessing these effects and the design of any needed reinforcement for both steel and
composite beams is given in the ASCE Specification for Structural Steel Beams with
Web Openings(ASCE, 1999), with background information provided in AISC
Design Guide 2 by Darwin (1990) and in ASCE Task Committee on Design Criteria
for Composite Structures in Steel and Concrete (1992a, 1992b).
1 10 1 10 1 2 29 000 100 20 5./..,/ .kE Fvy = ()( ) =ksi
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 330

16.1–331
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER H
DESIGN OF MEMBERS FOR COMBINED
FORCES AND TORSION
Chapters D, E, F and G of this Specification address members subject to only one type of
force: axial tension, axial compression, flexure and shear, respectively. Chapter H addresses
members subject to a combination of two or more of the individual forces defined above, as
well as possibly by additional forces due to torsion. The provisions fall into two categories:
(a) the majority of the cases that can be handled by an interaction equation involving sums
of ratios of required strengths to the available strengths; and (b) cases where the stresses due
to the applied forces are added and compared to limiting buckling or yield stresses.
Designers will have to consult the provisions of Sections H2 and H3 only in rarely occur-
ring cases.
H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO
FLEXURE AND AXIAL FORCE
1. Doubly and Singly Symmetric Members Subject to Flexure
and Compression
Section H1 contains design provisions for doubly symmetric and singly symmetric
members under combined flexure and compression and under combined flexure and
tension. The provisions of Section H1 apply typically to rolled wide-flange shapes,
channels, tee-shapes, round, square and rectangular HSS, solid rounds, squares, rec-
tangles or diamonds, and any of the many possible combinations of doubly or singly
symmetric shapes fabricated from plates and/or shapes by welding or bolting. The
interaction equations accommodate flexure about one or both principal axes as well
as axial compression or tension.
In 1923, the first AISC Specification required that the stresses due to flexure and
compression be added and that the sum not exceed the allowable value. An interac-
tion equation appeared first in the 1936 Specification, stating “Members subject to
both axial and bending stresses shall be so proportioned that the quantity
shall not exceed unity,” in which F
aand F bare, respectively, the axial and flex-
ural allowable stresses permitted by this Specification, andf
aandf bare the
corresponding stresses due to the axial force and the bending moment, respectively.
This linear interaction equation was in force until the 1961 Specification, when it was
modified to account for frame stability and for the P-δeffect, that is, the secondary
bending between the ends of the members (Equation C-H1-1). The P-Δeffect, that
is, the second-order bending moment due to story sway, was not accommodated.
(C-H1-1)
f
F
f
Fa
a
b
b
+
f
F
+
Cf

f
F
Fa
a
mb
a
b
1
1.0
e








AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 331

16.1–332 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The allowable axial stress, F a, was determined for an effective length that is larger
than unity for moment frames. The term is the amplification of the interspan
moment due to member deflection multiplied by the axial force (the P-δ effect). C
m
accounts for the effect of the moment gradient. This interaction equation was part of
all the subsequent editions of the AISC ASD Specifications from 1961 through 1989.
A new approach to the interaction of flexural and axial forces was introduced in the
1986 AISC Load and Resistance Factor Design Specification for Structural Steel
Buildings(AISC, 1986). The following is an explanation of the thinking behind the
interaction curves used. The equations
(C-H1-2a)
(C-H1-2b)
define the lower-bound curve for the interaction of the nondimensional axial strength,
P/P
y, and flexural strength, M pc/Mp, for compact wide-flange stub-columnsbent about
their x-axis. The cross section is assumed to be fully yielded in tension and compres-
sion. The symbol M
pcis the plastic moment strength of the cross section in the
presence of an axial force, P.The curve representing Equations C-H1-2 almost over-
laps the analytically exact curve for the major-axis bending of a W8×31 cross section
(see Figure C-H1.1). The equations for the exact yield capacity of a wide-flange shape
are (ASCE, 1971):
(C-H1-3a)
(C-H1-3b)
The equation approximating the average yield strength of wide-flange shapes is
1
1–
f
F
a
e

P
P
+
M
M
=
P
P

y
pc
py
8
9
1 for 0.2≥
P
P
+
M
M
=
P
P
<
y
pc
py2
1 for 0.2
For 0≤≤

( )P
P
td t
A
y
wf
2
M
M
A
P
P
tZpc
p
y
wx
=−






1
4
2
2
For
td t
A
P
P
wf
y−( )
<≤
2
1
M
M
A
P
P
Z
d
A
P
P
bpc
p
y
x
y
f
=
























1
2
1
2
⎥⎥




AISC_PART 16_Comm.1A_14Ed._February 25, 2013 14-11-22 12:32 PM Page 332 (Black plate)

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–333
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-H1-4)
The curves in Figure C-H1.2 show the exact and approximate yield interaction
curves for wide-flange shapes bent about the y-axis, and the exact curves for the solid
M
M
=
P
P
pc
py
1.18 1– 1







Fig. C-H1.1. Stub-column interaction curves: plastic moment versus
axial force for wide-flange shapes, major-axis flexure
[
W8×31, F y=50 ksi (345 MPa)].
Fig. C-H1.2. Stub-column interaction curves: plastic moment versus axial force for
solid round and rectangular sections and for wide-flange shapes, minor-axis flexure.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 333

16.1–334 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
rectangular and round shapes. It is evident that the lower-bound AISC interaction
curves are very conservative for these shapes.
The idea of portraying the strength of stub beam-columns was extended to actual
beam-columns with actual lengths by normalizing the required flexural strength, M
u,
of the beam by the nominal strength of a beam without axial force, M
n, and the
required axial strength, P
u, by the nominal strength of a column without bending
moment, P
n. This rearrangement results in a translation and rotation of the original
stub-column interaction curve, as seen in Figure C-H1.3.
The normalized equations corresponding to the beam-column with length effects
included are shown as Equation C-H1-5:
(C-H1-5a)
(C-H1-5b)
The interaction equations are designed to be very versatile. The terms in the denom-
inator fix the endpoints of the interaction curve. The nominal flexural strength, M
n,
is determined by the appropriate provisions from Chapter F. It encompasses the limit
states of yielding, lateral-torsional buckling, flange local buckling, and web local
buckling.
The axial term, P
n, is governed by the provisions of Chapter E, and it can accommo-
date nonslender or slender element columns, as well as the limit states of major and
minor axis buckling, and torsional and flexural-torsional buckling. Furthermore, P
n
is calculated for the applicable effective length of the column to take care of frame
Fig. C-H1.3. Interaction curve for stub beam-column and beam-column.
P
P
M
M
P
Pu
n
u
n
u
n
+= ≥
8
9
102 for .
P
P
M
M
P
Pu
n
u
n
u
n
2
102+= < for .
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 334

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–335
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stability effects, if the procedures of Appendix 7, Section 7.2 are used to determine
the required moments and axial forces. These moments and axial forces include the
amplification due to second-order effects.
The utility of the interaction equations is further enhanced by the fact that they also
permit the consideration of biaxial bending.
2. Doubly and Singly Symmetric Members Subject to Flexure and Tension
Section H1.1 considers the most frequently occurring cases in design: members
under flexure and axial compression. Section H1.2 addresses the less frequent cases
of flexure and axial tension. Since axial tension increases the bending stiffness of the
member to some extent, Section H1.2 permits the increase of C
bin Chapter F. Thus,
when the bending term is controlled by lateral-torsional buckling, the moment gradi-
ent factor, C
b, is increased by . For the 2010 Specification, this multiplier
was altered slightly as shown here to use the same constant, α, as is used throughout
the Specification when results at the ultimate strength level are required.
3. Doubly Symmetric Rolled Compact Members Subject to Single Axis
Flexure and Compression
For doubly symmetric wide-flange sections with moment applied about the x-axis,
the bilinear interaction Equation C-H1-5 is conservative for cases where the axial
limit state is out-of-plane buckling and the flexural limit state is lateral-torsional
buckling (Ziemian, 2010). Section H1.3 gives an optional equation for checking the
out-of-plane resistance of such beam-columns.
The two curves labeled Equation H1-1 (out-of-plane) and Equation H1-2 (out-of-
plane) in Figure C-H1.4 illustrate the difference between the bilinear and the
parabolic interaction equations for out-of-plane resistance for the case of a W27×84
beam-column, L
b=10 ft (3.05 m) and F y=50 ksi (345 MPa), subjected to a linearly
varying strong axis moment with zero moment at one end and maximum moment at
the other end (C
b=1.67). In addition, the solid line in the figure shows the in-plane
bilinear strength interaction for this member obtained from Equation H1-1. Note that
the resistance term C
bMcxmay be larger than φ bMpin LRFD and M p/Ωbin ASD. The
smaller ordinate from the out-of-plane and in-plane resistance curves is the control-
ling strength.
Equation H1-2 is developed from the following fundamental form for the out-of-
plane lateral-torsional buckling strength of doubly-symmetric I-section members, in
LRFD:
(C-H1-6)
1+
P
P
r
eyα
M
CM
P
P
P
Pu
b b nx C
u
cny
u
cez
b
φφφ()=






≤−







1
2
11
⎛⎛





AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 335

16.1–336 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equation H1-2 is obtained by substituting a lower-bound of 2.0 for the ratio of the
elastic torsional buckling resistance to the out-of-plane nominal flexural buckling
resistance, P
ez/Pny, for W-shape members with KL y=KLz. The 2005 Specification
assumed an upper bound, P
ez/Pny=∞, in Equation C-H1-6 in the development of
Equation H1-2 which leads to some cases where the out-of-plane strength is overes-
timated. In addition, the fact that the nominal out-of-plane flexural resistance term,
C
bMnx(Cb=1), may be larger than M pwas not apparent in the 2005 Specification.
The relationship between Equations H1-1 and H1-2 is further illustrated in Figures
C-H1.5 (for LRFD) and C-H1.6 (for ASD). The curves relate the required axial
force, P(ordinate), and the required bending moment, M(abscissa), when the inter-
action Equations H1-1 and H1-2 are equal to unity. The positive values of Pare
compression and the negative values are tension. The curves are for a 10 ft (3 m)
long W16×26 [F
y=50 ksi (345 MPa)] member subjected to uniform strong axis
bending, C
b=1. The solid curve is for in-plane behavior, that is, lateral bracing pre-
vents lateral-torsional buckling. The dotted curve represents Equation H1-1 for the
case when there are no lateral braces between the ends of the beam-column. In the
Fig. C-H1.4. Comparison between bilinear (Equation H1-1) and parabolic
(Equation H1-2) out-of-plane strength interaction equations and bilinear
(Equation H1-1) in-plane strength interaction equation
(
W27×84, F y= 50 ksi, L b=10 ft, C b=1.75).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 336

Comm. H1.] DOUBLY AND SINGLY SYMMETRIC MEMBERS 16.1–337
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-H1.5. Beam-columns under compressive and tensile axial force
(tension is shown as negative) (LRFD)
(
W16×26, F y= 50 ksi, L b= 10 ft, C b= 1).
Fig. C-H1.6. Beam-columns under compressive and tensile axial force
(tension is shown as negative) (ASD)
(
W16×26, F y= 50 ksi, L b= 10 ft, C b= 1).
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 337

16.1–338 DOUBLY AND SINGLY SYMMETRIC MEMBERS [Comm. H1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
region of the tensile axial force, the curve is modified by the term , as per-
mitted in Section H1.2. The dashed curve is Equation H1-2 for the case of axial
compression, and it is taken as the lower-bound determined using Equation C-H1-6
with P
ez/Pnytaken equal to infinity for the case of axial tension. For a given com-
pressive or tensile axial force, Equations H1-2 and C-H1-6 allow a larger bending
moment over most of their applicable range.
H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE
AND AXIAL FORCE
The provisions of Section H1 apply to beam-columns with cross sections that are
either doubly or singly symmetric. However, there are many cross sections that are
unsymmetrical, such as unequal leg angles and any number of possible fabricated
sections. For these situations, the interaction equations of Section H1 may not be
appropriate. The linear interaction provides a conservative
and simple way to deal with such problems. The lower case stresses,f, are the
required axial and flexural stresses computed by elastic analysis for the applicable
loads, including second-order effects where appropriate, and the upper case stresses,
F, are the available stresses corresponding to the limit state of yielding or buckling.
The subscripts rand crefer to the required and available stresses respectively while
the subscripts wand zrefer to the principal axes of the unsymmetric cross section.
This Specification leaves the option to the designer to use the Section H2 interaction
equation for cross sections that would qualify for the more liberal interaction equa-
tion of Section H1.
The interaction equation, Equation H2-1, applies equally to the case where the axial
force is in tension. Equation H2-1 was written in stress format as an aid in examin-
ing the condition at the various critical locations of the unsymmetric member. For
unsymmetrical sections with uniaxial or biaxial flexure, the critical condition is
dependent on the resultant direction of the moment. This is also true for singly sym-
metric members such as for x-axis flexure of tees. The same elastic section properties
are used to compute the corresponding required and available flexural stress terms
which means that the moment ratio will be the same as the stress ratio.
There are two approaches for using Equation H2-1:
(a) Strictly using Equation H2-1 for the interaction of the critical moment about each
principal axis, there is only one flexural stress ratio term for every critical loca-
tion since moment and stress ratios are the same as noted above. In this case one
would algebraically add the value of each of the ratio terms to obtain the critical
condition at one of the extreme fibers.
Using Equation H2-1 is the conservative approach and is recommended for
examining members such as single angles. The available flexural stresses at a
particular location (tip of short or long leg or at the heel) are based on the yield-
ing limit moment, the local buckling limit moment, or the lateral-torsional
f
F
f
F
f
Fra
ca
rbw
cbw
rbz
cbz
++≤ 10.
1+
P
P

ey
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 338

Comm. H2.] UNSYMMETRIC AND OTHER MEMBERS 16.1–339
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
buckling moment consistent with the sign of the required flexural stress. In each
case the yield moment should be based on the smallest section modulus about the
axis being considered. One would check the stress condition at the tip of the long
and short legs and at the heel and find that at one of the locations the stress ratios
would be critical.
(b) For certain load components, where the critical stress can transition from tension
at one point on the cross section to compression at another, it may be advanta-
geous to consider two interaction relationships depending on the magnitude of
each component. This is permitted by the sentence at the end of Section H2
which permits a more detailed analysis in lieu of Equation H2-1 for the interac-
tion of flexure and tension.
As an example, for a tee with flexure about both the xand y-axes creating ten-
sion at the tip of the stem, compression at the flange could control or tension at
the stem could control the design. If y-axis flexure is large relative to x-axis flex-
ure, the stress ratio need only be checked for compression at the flange using
corresponding design compression stress limits. However, if the y-axis flexure is
small relative to the x-axis flexure, then one would check the tensile stress con-
dition at the tip of the stem, this limit being independent of the amount of the
y-axis flexure. The two differing interaction expressions are
The interaction diagrams for biaxial flexure of a WT using both approaches are illus-
trated in Figure C-H2.1.
Another situation in which one could benefit from consideration of more than one
interaction relationship occurs when axial tension is combined with a flexural com-
pression limit based on local buckling or lateral-torsional buckling. An example of
this is when the stem of a tee in flexural compression is combined with axial tension.
The introduction of the axial tension will reduce the compression which imposed the
buckling stress limit. With a required large axial tension and a relatively small flex-
ural compression, the design flexural stress could be set at the yield limit at the stem.
where F
cbxis the flange tension stress based on reaching φF yin the stem. There could
be justification for using F
cbxequal to φF yin this expression.
This interaction relationship would hold until the interaction between the flexural
compression stress at the stem with F
cbxbased on local or lateral-torsional buckling
limit as increased by the axial tension would control.
f
F
f
F
f
F
fra
ca
rby
cby
rbx
cbx
r
++ ≤ 10. at tee flange
and
aa
ca
rbx
cbx
F
f
F
+≤ 10. at tee stem
f
F
f
Fra
ca
rbx
cbx
+≤ 10.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 339

16.1–340 UNSYMMETRIC AND OTHER MEMBERS [Comm. H2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The interaction diagrams for this case, using both approaches, are illustrated in
Figure C-H2.2.
Fig. C-H2.1. WT with biaxial flexure.
Fig. C-H2.2. WT with flexural compression on the stem plus axial tension.
f
F
f
Fra
ca
rbx
cbx
−≤ 10.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 340

Comm. H3.] MEMBERS SUBJECT TO TORSION AND COMBINED TORSION 16.1–341
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION,
FLEXURE, SHEAR AND/OR AXIAL FORCE
Section H3 provides provisions for cases not covered in the previous two sections.
The first two parts of this section address the design of HSS members, and the third
part is a general provision directed to cases where the designer encounters torsion in
addition to normal stresses and shear stresses.
1. Round and Rectangular HSS Subject to Torsion
Hollow structural sections (HSS) are frequently used in space-frame construction
and in other situations wherein significant torsional moments must be resisted by the
members. Because of its closed cross section, an HSS is far more efficient in resist-
ing torsion than an open cross section such as a W-shape or a channel. While normal
and shear stresses due to restrained warping are usually significant in shapes of open
cross section, they are insignificant in closed cross sections. The total torsional
moment can be assumed to be resisted by pure torsional shear stresses. These are
often referred in the literature as St. Venant torsional stresses.
The pure torsional shear stress in HSS sections is assumed to be uniformly distrib-
uted along the wall of the cross section, and it is equal to the torsional moment, T
u,
divided by a torsional shear constant for the cross section, C. In a limit state format,
the nominal torsional resisting moment is the shear constant times the critical shear
stress, F
cr.
For round HSS, the torsional shear constant is equal to the polar moment of inertia
divided by the radius,
(C-H3-1)
where D
iis the inside diameter.
For rectangular HSS, the torsional shear constant is obtained as 2tA
ousing the mem-
brane analogy (Timoshenko, 1956), where A
ois the area bounded by the midline of
the section. Conservatively assuming an outside corner radius of 2t, the midline
radius is 1.5tand
(C-H3-2)
resulting in
(C-H3-3)
The resistance factor,φ,and the safety factor, Ω,are the same as for flexural shear in
Chapter G.
When considering local buckling in round HSS subjected to torsion, most structural
members will either be long or of moderate length and the provisions for short
C=
Dπ π
4
−( )


()
D
D
tD ti
4 2
32 2 2
A=B–t H–to()( )−
()
9
2
t
4–
4
π
C= t B–t H–t – t –2 4.5 4
3
()( ) ( )π
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 341

16.1–342 MEMBERS SUBJECT TO TORSION AND COMBINED TORSION [Comm. H3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
cylinders will not apply. The elastic local buckling strength of long cylinders is
unaffected by end conditions and the critical stress is given in Ziemian (2010) as
(C-H3-4)
The theoretical value of K
tis 0.73 but a value of 0.6 is recommended to account for
initial imperfections. An equation for the elastic local buckling stress for round HSS
of moderate length (L >5.1D
2
/t) where the edges are not fixed at the ends against
rotation is given in Schilling (1965) and Ziemian (2010) as
(C-H3-5)
This equation includes a 15% reduction to account for initial imperfections. The
length effect is included in this equation for simple end conditions, and the approxi-
mately 10% increase in buckling strength is neglected for edges fixed at the end. A
limitation is provided so that the shear yield strength, 0.6F
y, is not exceeded.
The critical stress provisions for rectangular HSS are identical to the flexural shear
provisions of Section G2 with the shear buckling coefficient equal to k
v= 5.0. The
shear distribution due to torsion is uniform in the longest sides of a rectangular HSS,
and this is the same distribution that is assumed to exist in the web of a W-shape
beam. Therefore, it is reasonable that the provisions for buckling are the same in both
cases.
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
Several interaction equation forms have been proposed in the literature for load com-
binations that produce both normal and shear stresses. In one common form, the
normal and shear stresses are combined elliptically with the sum of the squares
(Felton and Dobbs, 1967):
(C-H3-6)
In a second form, the first power of the ratio of the normal stresses is used:
(C-H3-7)
The latter form is somewhat more conservative, but not overly so (Schilling, 1965),
and this is the form used in this Specification:
(C-H3-8)
F=
E
D
t
L
Dcr
1.23






5
4
f
F
+
f
F
cr
v
vcr













22
1
f
F
+
f
F
cr
v
vcr













2
1
P
P
+
M
M
+
V
V
+
T
Tr
c
r
c
r
c
r
c⎛












2
1.0
F=
KE
D
tcr
t






3
2
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 342

Comm. H4.] RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION 16.1–343
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where the terms with the subscript rrepresent the required strengths, and the ones
with the subscript care the corresponding available strengths. Normal effects due to
flexural and axial load effects are combined linearly and then combined with the
square of the linear combination of flexural and torsional shear effects. When an
axial compressive load effect is present, the required flexural strength, M
c, is to be
determined by second-order analysis. When normal effects due to flexural and axial
load effects are not present, the square of the linear combination of flexural and tor-
sional shear effects underestimates the actual interaction. A more accurate measure
is obtained without squaring this combination.
3. Non-HSS Members Subject to Torsion and Combined Stress
This section covers all the cases not previously covered. Examples are built-up
unsymmetric crane girders and many other types of odd-shaped built-up cross sec-
tions. The required stresses are determined by elastic stress analysis based on
established theories of structural mechanics. The three limit states to consider and the
corresponding available stresses are:
1. Yielding under normal stress—F
y
2. Yielding under shear stress—0.6F y
3. Buckling—F cr
In most cases it is sufficient to consider normal stresses and shear stresses separately
because maximum values rarely occur in the same place in the cross section or at the
same place in the span. AISC Design Guide 9, Torsional Analysis of Structural Steel
Members (Seaburg and Carter, 1997), provides a complete discussion on torsional
analysis of open shapes.
H4. RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION
Equation H4-1 is provided to evaluate the limit state of tensile rupture of the flanges
of beam-columns. This provision is only applicable in cases where there are one or
more holes in the flange in net tension under the combined effect of flexure and axial
forces. When both the axial and flexural stresses are tensile, their effects are additive.
When the stresses are of opposite sign, the tensile effect is reduced by the compres-
sion effect.
AISC_PART 16_Comm.1_A copy:14Ed._ 2/14/11 7:04 AM Page 343

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
16.1–344
CHAPTER I
DESIGN OF COMPOSITE MEMBERS
Chapter I includes the following major changes and additions in this edition of the
Specification:
1. Concrete and Steel Reinforcement Detailing (Sections I1, I2 and I8): References to
ACI 318 (ACI, 2008) are made in Sections I1.1 and I2.1 to invoke requirements for
concrete and steel reinforcement requirements. References to ACI 318 are also made
in Section I8.3 to invoke requirements for concrete strength of steel headed stud
anchors.
2. Local Buckling Provisions (Section I1.2 and I1.4): New provisions are added for local
buckling in Sections I1.2 and I1.4. These requirements also lead to new provisions for
axial compression and flexural design of filled composite members that are compact,
noncompact and slender as addressed in Sections I2.2 and I3.4.
3. Minimum Axial Strength for Composite Compression Members (Sections I2.1 and
I2.2): These sections specify that the axial strength of an encased composite compres-
sion member and a filled composite compression member need not be less than the
strength of a bare steel compression member according to the provisions of Chapter E
using the same steel section as the composite member.
4. Load Transfer in Composite Members (Sections I3 and I6): New material is added and
revisions are made to the load transfer requirements in composite components. The
expanded scope of this section has warranted the creation of a new dedicated section
for load transfer in composite members.
5. Reliability of Strength for Encased and Filled Composite Beams (Sections I3.3 and
I3.4): The resistance factor and safety factor for encased and filled composite beams
were adjusted based upon assessment of new data.
6. Design for Shear (Section I4): All provisions for shear design of composite members
are consolidated in a new Section I4.
7. Design of Composite Beam-Columns (Section I5): Clarification of composite beam-
column design methods is covered in Section I5.
8. Diaphragms and Collector Beams (Section I7): Performance language has been added
in a new Section I7 that covers the design and detailing of composite diaphragms and
collector beams. Supplemental information is provided in the Commentary as guid-
ance to designers.
9. Steel Anchors (Section I8): New provisions covering the design of steel anchors (both
headed studs and hot rolled channels) are included in Section I8. Provisions for com-
posite beams with slabs remain essentially unchanged except for edits that were made
for consistency with the new provisions. Provisions are added in Section I8.2 for edge
distances of stud anchors along the axis of a composite beam for normal and light-
weight concrete. New steel anchor provisions for shear, tension, and interaction of
shear and tension are also provided for other forms of composite construction. These
changes propose new terminology to be consistent with the more general provisions
on anchorage in ACI 318 Appendix D (ACI, 2008). Specifically, the term “shear
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 344

Comm. I1.] GENERAL PROVISIONS 16.1–345
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connector” is replaced by the generic term “steel anchor.” Steel anchors in the
Specification can refer either to steel “headed stud anchors” or hot-rolled steel “chan-
nel anchors.”
I1. GENERAL PROVISIONS
Design of composite sections requires consideration of both steel and concrete
behavior. These provisions were developed with the intent both to minimize conflicts
between current steel and concrete design and detailing provisions and to give proper
recognition to the advantages of composite design.
As a result of the attempt to minimize design conflicts, this Specification uses a
cross-sectional strength approach for compression member design consistent with
that used in reinforced concrete design (ACI, 2008). This approach, in addition,
results in a consistent treatment of cross-sectional strengths for both composite
columns and beams.
The provisions in Chapter I address strength design of the composite sections only.
The designer needs to consider the loads resisted by the steel section alone when
determining load effects during the construction phase. The designer also needs to
consider deformations throughout the life of the structure and the appropriate cross
section for those deformations. When considering these latter limit states, due
allowance should be made for the additional long-term changes in stresses and defor-
mations due to creep and shrinkage of the concrete.
1. Concrete and Steel Reinforcement
Reference is made to ACI 318 (ACI, 2008) for provisions related to the concrete and
reinforcing steel portion of composite design and detailing, such as anchorage and
splice lengths, intermediate column ties, reinforcing spirals, and shear and torsion
provisions.
Exceptions and limitations are provided as follows:
(1) The composite design procedures of ACI 318 have remained unchanged for
many years. It was therefore decided to exclude the composite design sections of
ACI 318 to take advantage of recent research (Ziemian, 2010; Hajjar, 2000;
Shanmugam and Lakshmi, 2001; Leon et al., 2007; Varma and Zhang, 2009;
Jacobs and Goverdhan, 2010) into composite behavior that is reflected in the
Specification.
(2) Concrete limitations in addition to those given in ACI 318 are provided to reflect
the applicable range of test data on composite members. See also Commentary
Section I1.3.
(3) ACI provisions for tie reinforcing of noncomposite reinforced concrete com-
pression members shall be followed in addition to the provisions specified in
Section I2.1a(2). See also Commentary Section I2.1a(2).
(4) The limitation of 0.01A
gin ACI 318 for the minimum longitudinal reinforcing
ratio of reinforced concrete compression members is based upon the phenomena
of stress transfer under service load levels from the concrete to the reinforcement
due to creep and shrinkage. The inclusion of an encased structural steel section
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 345

16.1–346 GENERAL PROVISIONS [Comm. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
meeting the requirements of Section I2.1a aids in mitigating this effect and con-
sequently allows a reduction in minimum longitudinal reinforcing requirements.
See also Commentary Section I2.1a(3).
The design basis for ACI 318 is strength design. Designers using allowable stress
design for steel design must be conscious of the different load factors between the
two specifications.
2. Nominal Strength of Composite Sections
The strength of composite sections shall be computed based on either of the two
approaches presented in this Specification. One is the strain compatibility approach,
which provides a general calculation method. The other is the plastic stress distribu-
tion approach, which is a subset of the strain compatibility approach. The plastic
stress distribution method provides a simple and convenient calculation method for
the most common design situations, and is thus treated first. Limited use of the elas-
tic stress distribution method is retained for calculation of composite beams with
noncompact webs.
2a. Plastic Stress Distribution Method
The plastic stress distribution method is based on the assumption of linear strain
across the cross section and elasto-plastic behavior. It assumes that the concrete has
reached its crushing strength in compression at a strain of 0.003 and a corresponding
stress (typically 0.85f′
c) on a rectangular stress block, and that the steel has exceeded
its yield strain, taken as F
y/Es.
Based on these simple assumptions, the cross-sectional strength for different combi-
nations of axial force and bending moment may be approximated for typical
composite compression member cross sections. The actual interaction diagram for
moment and axial force for a composite section based on a plastic stress distribution
is similar to that of a reinforced concrete section as shown in Figure C-I1.1. As a sim-
plification, for concrete-encased sections a conservative linear interaction between
Fig. C-I1.1. Comparison between exact and simplified
moment-axial compressive force envelopes.
(a) Strong axis (b) Weak axis
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 346

Comm. I1.] GENERAL PROVISIONS 16.1–347
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
four or five anchor points, depending on axis of bending, can be used (Roik and
Bergmann, 1992; Ziemian, 2010). These points are identified as A, B, C, D and E in
Figure C-I1.1.
The plastic stress approach for compression members assumes that no slip has
occurred between the steel and concrete portions and that the required width-to-
thickness ratios prevent local buckling from occurring until some yielding and
concrete crushing have taken place. Tests and analyses have shown that these are rea-
sonable assumptions for both concrete-encased steel sections with steel anchors and
for HSS sections that comply with these provisions (Ziemian, 2010; Hajjar, 2000;
Shanmugam and Lakshmi, 2001; Varma et al. 2002; Leon et al., 2007). For round
HSS, these provisions allow for the increase of the usable concrete stress to 0.95f′
cfor
calculating both axial compressive and flexural strengths to account for the benefi-
cial effects of the restraining hoop action arising from transverse confinement (Leon
et al., 2007).
Based on similar assumptions, but allowing for slip between the steel beam and the
composite slab, simplified expressions can also be derived for typical composite
beam sections. Strictly speaking, these distributions are not based on slip, but on the
strength of the shear connection. Full interaction is assumed if the shear connection
strength exceeds that of either (a) the tensile yield strength of the steel section or the
compressive strength of the concrete slab when the composite beam is loaded in pos-
itive moment, or (b) the tensile yield strength of the longitudinal reinforcing bars in
the slab or the compressive strength of the steel section when loaded in negative
moment. When steel anchors are provided in sufficient numbers to fully develop this
flexural strength, any slip that occurs prior to yielding has a negligible affect on
behavior. When full interaction is not present, the beam is said to be partially com-
posite. The effects of slip on the elastic properties of a partially composite beam can
be significant and should be accounted for, if significant, in calculations of deflec-
tions and stresses at service loads. Approximate elastic properties of partially
composite beams are given in Commentary Section I3.
2b. Strain Compatibility Method
The principles used to calculate cross-sectional strength in Section I1.2a may not be
applicable to all design situations or possible cross sections. As an alternative,
Section I1.2b permits the use of a generalized strain-compatibility approach that
allows the use of any reasonable strain-stress model for the steel and concrete.
3. Material Limitations
The material limitations given in Section I1.3 reflect the range of material properties
available from experimental testing (Ziemian, 2010; Hajjar, 2000; Shanmugam and
Lakshmi, 2001; Varma et al., 2002; Leon et al., 2007). As for reinforced concrete
design, a limit of 10 ksi (70 MPa) is imposed for strength calculations, both to reflect
the scant data available above this strength and the changes in behavior observed
(Varma et al., 2002). A lower limit of 3 ksi (21 MPa) is specified for both normal and
lightweight concrete and an upper limit of 6 ksi (42 MPa) is specified for lightweight
concrete to encourage the use of good quality, yet readily available, grades of struc-
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 347

16.1–348 GENERAL PROVISIONS [Comm. I1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
tural concrete. The use of higher strengths in computing the modulus of elasticity is
permitted, and the limits given can be extended for strength calculations if appropri-
ate testing and analyses are carried out.
4. Classification of Filled Composite Sections for Local Buckling
The behavior of filled composite members is fundamentally different from the
behavior of hollow steel members. The concrete infill has a significant influence on
the stiffness, strength and ductility of composite members. As the steel section area
decreases, the concrete contribution becomes even more significant.
The elastic local buckling of the steel tube is influenced significantly by the pres-
ence of the concrete infill. The concrete infill changes the buckling mode of the steel
tube (both within the cross section and along the length of the member) by pre-
venting it from deforming inwards. For example, see Figures C-I1.2 and C-I1.3.
Bradford et al. (1998) analyzed the elastic local buckling behavior of filled com-
posite compression members, showing that for rectangular steel tubes, the plate
buckling coefficient (i.e., k-factor) in the elastic plate buckling equation (Ziemian,
Fig. C-I1.3. Changes in buckling mode with length due to the presence of infill.
Fig. C-I1.2. Change in cross-sectional buckling mode due to concrete infill.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 348

Comm. I2.] AXIAL FORCE 16.1–349
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2010) changes from 4.00 (for hollow tubes) to 10.6 (for filled sections). As a result,
the elastic plate buckling stress increases by a factor of 2.65 for filled sections as
compared to hollow structural sections. Similarly, Bradford et al. (2002) showed
that the elastic local buckling stress for filled round sections is 1.73 times that for
hollow round sections.
For rectangular filled sections, the elastic local buckling stress, F
cr, from the plate
buckling equation simplifies to Equation I2-10. This equation indicates that yielding
will occur for plates with b/tless than or equal to , which designates the
limit between noncompact and slender sections, λ
r. This limit does not account for
the effects of residual stressesor geometric imperfections because the concrete con-
tribution governs for these larger b/tratios and the effects of reducing steel stresses
is small. The maximum permitted b/tvalue for λ
p is based on the lack of experimen-
tal data above the limit of , and the potential effects (plate deflections
and locked-in stresses) of concrete placement in extremely slender filled HSS cross
sections. For flexure, the b/tlimits for the flanges are the same as those for walls
in axial compression due to the similarities in loading and behavior. The
compact/noncompact limit, λ
p, for webs in flexure was established conservatively as
. The noncompact/slender limit, λ
r, for the web was established con-
servatively as , which is also the maximum permitted for hollow
structural sections. This was also established as the maximum permitted value due to
the lack of experimental data and concrete placement concerns for thinner filled HSS
cross sections (Varma and Zhang, 2009).
For round filled sections in axial compression, the noncompact/slender limit, λ
r, was
established as 0.19E/F
y, which is 1.73 times the limit (0.11E/F y) for hollow round
sections. This was based on the findings of Bradford et al. (2002) mentioned earlier,
and it compares well with experimental data. The maximum permitted D/tequal to
0.31E/F
yis based on the lack of experimental data and the potential effects of con-
crete placement in extremely slender filled HSS cross sections. For round filled
sections in flexure, the compact/noncompact limit, λ
p, in Table I1.1b was developed
conservatively as 1.25 times the limit (0.07E/F
y) for round hollow structural sec-
tions. The noncompact/slender limit, λ
r, was assumed conservatively to be the same
for round hollow structural sections (0.31E/F
y). This was also established as the
maximum permitted value due to lack of experimental data and concrete placement
concerns for thinner filled HSS cross sections (Varma and Zhang, 2009).
I2. AXIAL FORCE
In Section I2, the design of concrete-encased and concrete-filled composite members
is treated separately, although they have much in common. The intent is to facilitate
design by keeping the general principles and detailing requirements for each type of
compression member separate.
An ultimate strength cross section model is used to determine the section strength
(Leon et al., 2007; Leon and Hajjar, 2008). This model is similar to that used in
previous LRFD Specifications. The major difference is that the full strength of the
reinforcing steel and concrete are accounted for rather than the 70% that was used in
those previous Specifications. In addition, these provisions give the strength of the
300./EF sy
500./EF sy
300./EF sy
570./EF sy
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 349

16.1–350 AXIAL FORCE [Comm. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
composite section as a force, while the previous approach had converted that force
to an equivalent stress. Since the reinforcing steel and concrete had been arbitrarily
discounted, the previous provisions did not accurately predict strength for compres-
sion members with a low percentage of steel.
The design for length effects is consistent with that for steel compression members.
The equations used are the same as those in Chapter E, albeit in a different format,
and as the percent of concrete in the section decreases, the design defaults to that of
a steel section (although with different resistance and safety factors). Comparisons
between the provisions in the Specification and experimental data show that the
method is generally conservative but that the coefficient of variation obtained is large
(Leon et al., 2007).
1. Encased Composite Members
1a. Limitations
(1) In this Specification, the use of composite compression members is applicable to
a minimum steel ratio (area of steel shape divided by the gross area of the mem-
ber) equal to or greater than 1%.
(2) The specified minimum quantity for transverse reinforcement is intended to pro-
vide good confinement to the concrete. It is the intent of the Specification that
the transverse tie provisions of ACI 318 Chapter 7 be followed in addition to the
limits provided.
(3) A minimum amount of longitudinal reinforcing steel is prescribed to ensure that
unreinforced concrete encasements are not designed with these provisions.
Continuous longitudinal bars should be placed at each corner of the cross section.
Additional provisions for minimum number of longitudinal bars are provided in
ACI 318 Section 10.9.2. Other longitudinal bars may be needed to provide the
required restraint to the cross-ties, but that longitudinal steel cannot be counted
towards the minimum area of longitudinal reinforcing nor the cross-sectional
strength unless it is continuous and properly anchored.
1b. Compressive Strength
The compressive strength of the cross section is given as the sum of the ultimate
strengths of the components. The strength is not capped as in reinforced concrete com-
pression member design for a combination of the following reasons: (1) the resistance
factor is 0.75 (lower than some older Specifications); (2) the required transverse steel
provides better performance than a typical reinforced concrete compression member;
(3) the presence of a steel section near the center of the section reduces the possibil-
ity of a sudden failure due to buckling of the longitudinal reinforcing steel; and
(4) there will typically be moment present due to the manner in which stability is
addressed in the Specification through the use of a minimum notional load and the
size of the member and the typical force introduction mechanisms.
For application of encased composite members using the direct analysis method as
defined in Chapter C, and pending the results of ongoing research on composite com-
pression members, it is suggested that the reduced flexural stiffness EI*be based on
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 350

Comm. I2.] AXIAL FORCE 16.1–351
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the use of the 0.8τbreduction applied to the EI eff(from Equation I2-6) unless a more
comprehensive study is undertaken. Alternatively, designers are referred to ACI 318
Chapter 10 for appropriate E
cIgvalues to use with the 0.8τbstiffness reduction in per-
forming frame analysis using encased composite compression members whose
stiffness may be evaluated in a similar way to conventional reinforced concrete com-
pression members. Refer to Commentary Section I3.2 for recommendations on
appropriate stiffness for composite beams.
1c. Tensile Strength
Section I2.1c clarifies the tensile strength to be used in situations where uplift is a
concern and for computations related to beam-column interaction. The provision
focuses on the limit state of yield on gross area. Where appropriate for the structural
configuration, consideration should also be given to other tensile strength and con-
nection strength limit states as specified in Chapters D and J.
2. Filled Composite Members
2a. Limitations
(1) As discussed for encased compression members, it is permissible to design filled
composite compression members with a steel ratio as low as 1%.
(2) Filled composite sections are classified as compact, noncompact or slender
depending on the tube slenderness, b/tor D/t, and the limits in Table I1.1a.
2b. Compressive Strength
A compact hollow structural section (HSS) has sufficient thickness to develop yield-
ing of the steel HSS in longitudinal compression, and to provide confinement to the
concrete infill to develop its compressive strength (0.85 or 0.95f′
c). A noncompact
section has sufficient tube thickness to develop yielding of the steel tube in the lon-
gitudinal direction, but it cannot adequately confine the concrete infill after it reaches
0.70f′
ccompressive stress in the concrete and starts undergoing significant inelastic-
ity and volumetric dilation, thus pushing against the steel HSS. A slender section can
neither develop yielding of the steel HSS in the longitudinal direction, nor confine
the concrete after it reaches 0.70f′
ccompressive stress in the concrete and starts
undergoing inelastic strains and significant volumetric dilation pushing against the
HSS (Varma and Zhang, 2009).
Figure C-I2.1 shows the variation of the nominal axial compressive strength, P
no, of
the composite section with respect to the HSS slenderness. As shown, compact sec-
tions can develop the full plastic strength, P
p, in compression. The nominal axial
strength, P
no, of noncompact sections can be determined using a quadratic interpola-
tion between the plastic strength, P
p, and the yield strength, P y, with respect to the
tube slenderness. This interpolation is quadratic because the ability of the steel tube
to confine the concrete infill undergoing inelasticity and volumetric dilation
decreases rapidly with HSS slenderness. Slender sections are limited to developing
the critical buckling stress, F
cr, of the steel HSS and 0.70f′ cof the concrete infill
(Varma and Zhang, 2009).
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 351

16.1–352 AXIAL FORCE [Comm. I2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The nominal axial strength, P n, of composite compression members including length
effects may be determined using Equations I2-2 and I2-3, while using EI
eff(from
Equation I2-12) to account for composite section rigidity and P
noto account for the
effects of local buckling as described above. This approach is slightly different than the
one used for hollow structural sections found in Section E7, where the effective local
buckling stress, f, for slender sections has an influence on the column buckling stress,
F
cr, and vice versa. This approach was not implemented for filled compression mem-
bers because: (i) their axial strength is governed significantly by the contribution of the
concrete infill, (ii) concrete inelasticity occurs within the compression member failure
segment irrespective of the buckling load, and (iii) the calculated nominal strengths
compare conservatively with experimental results (Varma and Zhang, 2009).
For application of filled composite members in the direct analysis method as defined
in Chapter C and pending the results of ongoing research on composite compression
members, it is suggested that the reduced flexural stiffness, EI*, be based on the use
of the 0.8τ
breduction applied to the EI efffrom Equation I2-12 unless a more com-
prehensive study is undertaken.
2c. Tensile Strength
As for encased compression members, Section I2.2c specifies the tensile strength for
filled composite members. Similarly, while the provision focuses on the limit state of
yield on gross area, where appropriate, consideration should also be given to other
tensile strength and connection strength limit states as specified in Chapters D and J.
I3. FLEXURE
1. General
Three types of composite flexural members are addressed in this section: fully
encased steel beams, concrete-filled HSS, and steel beams with mechanical anchor-
age to a concrete slab which are generally referred to as composite beams.
Fig. C-I2.1. Nominal axial strength, P no, vs. HSS slenderness.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 352

Comm. I3.] FLEXURE 16.1–353
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1a. Effective Width
The same effective width rules apply to composite beams with a slab on either one
side or both sides of the beam. In cases where the effective stiffnessof a beam with a
one-sided slab is important, special care should be exercised since this model can
substantially overestimate stiffness (Brosnan and Uang, 1995). To simplify design,
the effective width is based on the full span, center-to-center of supports, for both
simple and continuous beams.
1b. Strength During Construction
Composite beam design requires care in considering the loading history. Loads
applied to an unshored beam before the concrete has cured are resisted by the steel
section alone; total loads applied before and after the concrete has cured are consid-
ered to be resisted by the composite section. It is usually assumed for design
purposes that concrete has hardened when it attains 75% of its design strength.
Unshored beam deflection caused by fresh concrete tends to increase slab thickness
and dead load. For longer spans this may lead to instability analogous to roof pond-
ing. Excessive increase of slab thickness may be avoided by beam camber. Pouring
the slab to a constant thickness will also help eliminate the possibility of ponding
instability (Ruddy, 1986). When forms are not attached to the top flange, lateral brac-
ing of the steel beam during construction may not be continuous and the unbraced
length may control flexural strength, as defined in Chapter F.
This Specification does not include special requirements for strength during con-
struction. For these noncomposite beams, the provisions of Chapter F apply.
Load combinations for construction loads should be determined for individual proj-
ects according to local conditions, using ASCE (2010) as a guide.
2. Composite Beams with Steel Headed Stud or Steel Channel Anchors
Section I3.2 applies to simple and continuous composite beams with steel anchors,
constructed with or without temporary shores.
When a composite beam is controlled by deflection, the design should limit the
behavior of the beam to the elastic range under serviceability load combinations.
Alternatively, the amplification effects of inelastic behavior should be considered
when deflection is checked.
It is often not practical to make accurate stiffness calculations of composite flexural
members. Comparisons to short-term deflection tests indicate that the effective
moment of inertia, I
eff, is 15 to 30% lower than that calculated based on linear elas-
tic theory, I
equiv. Therefore, for realistic deflection calculations, I effshould be taken
as 0.75I
equiv(Leon, 1990; Leon and Alsamsam, 1993).
As an alternative, one may use a lower bound moment of inertia, I LB, as defined
below:
(C-I3-1)IIAY d QFddYLB s s ENA n y ENA=+ − + +−()(/)( ) 3
2
31
2 2Σ
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 353

16.1–354 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
A
s=area of steel cross section, in.
2
(mm
2
)
d
1=distance from the compression force in the concrete to the top of the steel
section, in. (mm)
d
3=distance from the resultant steel tension force for full section tension yield
to the top of the steel, in. (mm)
I
LB=lower bound moment of inertia, in.
4
(mm
4
)
I
s=moment of inertia for the structural steel section, in.
4
(mm
4
)
ΣQ
n=sum of the nominal strengths of steel anchors between the point of maxi-
mum positive moment and the point of zero moment to either side, kips
(kN)
Y
ENA=[A sd3+(ΣQ n/Fy ) (2d3+d1)]/[A s+(ΣQ n/Fy)], in. (mm) (C-I3-2)
The use of constant stiffness in elastic analyses of continuous beams is analogous to
the practice in reinforced concrete design. The stiffness calculated using a weighted
average of moments of inertia in the positive moment region and negative moment
regions may take the following form:
I
t=aIpos+bIneg (C-I3-3)
where
I
pos=effective moment of inertia for positive moment, in.
4
(mm
4
)
I
neg=effective moment of inertia for negative moment, in.
4
(mm
4
)
The effective moment of inertia is based on the cracked transformed section consid-
ering the degree of composite action. For continuous beams subjected to gravity
loads only, the value of amay be taken as 0.6 and the value of bmay be taken as 0.4.
For composite beams used as part of a lateral force resisting system in moment
frames, the value of aand bmay be taken as 0.5 for calculations related to drift.
In cases where elastic behavior is desired, the cross-sectional strength of composite
members is based on the superposition of elastic stresses including consideration of
the effective section modulus at the time each increment of load is applied. For cases
where elastic properties of partially composite beams are needed, the elastic moment
of inertia may be approximated by
(C-I3-4)
where
I
s= moment of inertia for the structural steel section, in.
4
(mm
4
)
I
tr=moment of inertia for the fully composite uncracked transformed section,
in.
4
(mm
4
)
ΣQ
n=strength of steel anchors between the point of maximum positive moment
and the point of zero moment to either side, kips (N)
C
f=compression force in concrete slab for fully composite beam; smaller of
A
sFyand 0.85f c′Ac,kips (N)
A
c=area of concrete slab within the effective width, in.
2
(mm
2
)
The effective section modulus, S
eff, referred to the tension flange of the steel section
for a partially composite beam, may be approximated by
II QCIIequiv s n f tr s=+ ( )−( )Σ/
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 354

Comm. I3.] FLEXURE 16.1–355
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-I3-5)
where
S
s=section modulus for the structural steel section, referred to the tension flange,
in.
3
(mm
3
)
S
tr=section modulus for the fully composite uncracked transformed section,
referred to the tension flange of the steel section, in.
3
(mm
3
)
Equations C-I3-4 and C-I3-5 should not be used for ratios, ΣQ
n/Cf, less than 0.25.
This restriction is to prevent excessive slip, as well as substantial loss in beam stiff-
ness. Studies indicate that Equations C-I3-4 and C-I3-5 adequately reflect the
reduction in beam stiffness and strength, respectively, when fewer anchors are used
than required for full composite action (Grant et al., 1977).
U.S. practice does not generally require the following items to be considered. They
are highlighted here for a designer who chooses to construct something for which
these items might apply.
1. Horizontal shear strength of the slab: For the case of girders with decks with nar-
row troughs or thin slabs, shear strength of the slab may govern the design (for
example, see Figure C-I3.1). Although the configuration of decks built in the U.S.
tends to preclude this mode of failure, it is important that it be checked if the
force in the slab is large or an unconventional assembly is chosen. The shear
strength of the slab may be calculated as the superposition of the shear strength
of the concrete plus the contribution of any slab steel crossing the shear plane.
The required shear strength, as shown in the figure, is given by the difference in
the force between the regions inside and outside the potential failure surface.
Where experience has shown that longitudinal cracking detrimental to servicea-
bility is likely to occur, the slab should be reinforced in the direction transverse
to the supporting steel section. It is recommended that the area of such rein-
forcement be at least 0.002 times the concrete area in the longitudinal direction
of the beam and that it be uniformly distributed.
2. Rotational capacity of hinging zones: There is no required rotational capacity for
hinging zones. Where plastic redistribution to collapse is allowed, the moments
SS QCSSeff s n f tr s=+ ( )−( )Σ
Fig. C-I3.1. Longitudinal shear in the slab [after Chien and Ritchie (1984)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 355

16.1–356 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
at a cross section may be as much as 30% lower than those given by a corre-
sponding elastic analysis. This reduction in load effects is predicated, however,
on the ability of the system to deform through very large rotations. To achieve
these rotations, very strict local buckling and lateral-torsional buckling require-
ments must be fulfilled (Dekker et al., 1995). For cases in which a 10%
redistribution is utilized, as permitted in Section B3.7, the required rotation
capacity is within the limits provided by the local and lateral-torsional buckling
provisions of Chapter F. Therefore, a rotational capacity check is not normally
required for designs using this provision.
3. Minimum amount of shear connection: There is no minimum requirement for the
amount of shear connection. Design aids in the U.S. often limit partial composite
action to a minimum of 25% for practical reasons, but two issues arise with the
use of low degrees of partial composite action. First, less than 50% composite
action requires large rotations to reach the available flexural strength of the mem-
ber and can result in very limited ductility after the nominal strength is reached.
Second, low composite action results in an early departure from elastic behavior
in both the beam and the studs. The current provisions, which are based on ulti-
mate strength concepts, have eliminated checks for ensuring elastic behavior
under service load combinations, and this can be an issue if low degrees of partial
composite action are used.
4. Long-term deformations due to shrinkage and creep: There is no direct guidance
in the computation of the long-term deformations of composite beams due to creep
and shrinkage. The long-term deformation due to shrinkage can be calculated with
the simplified model shown in Figure C-I3.2, in which the effect of shrinkage is
taken as an equivalent set of end moments given by the shrinkage force (long-term
restrained shrinkage strain times modulus of concrete times effective area of con-
crete) times the eccentricity between the center of the slab and the elastic neutral
Fig. C-I3.2. Calculation of shrinkage effects [from Chien and Ritchie (1984)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 356

Comm. I3.] FLEXURE 16.1–357
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
axis. If the restrained shrinkage coefficient for the aggregates is not known, the
shrinkage strain for these calculations may be taken as 0.02%. The long-term
deformations due to creep, which can be quantified using a model similar to that
shown in the figure, are small unless the spans are long and the permanent live
loads large. For shrinkage and creep effects, special attention should be given to
lightweight aggregates, which tend to have higher creep coefficients and moisture
absorption and lower modulus of elasticity than conventional aggregates, exacer-
bating any potential deflection problems. Engineering judgment is required, as
calculations for long-term deformations require consideration of the many vari-
ables involved and because linear superposition of these effects is not strictly
correct (ACI, 1997; Viest et al., 1997).
2a. Positive Flexural Strength
The flexural strength of a composite beam in the positive moment region may be
controlled by the strength of the steel section, the concrete slab or the steel anchors.
In addition, web buckling may limit flexural strength if the web is slender and a large
portion of the web is in compression.
Plastic Stress Distribution for Positive Moment. When flexural strength is deter-
mined from the plastic stress distribution shown in Figure C-I3.3, the compression
force, C, in the concrete slab is the smallest of:
C=A
swFy+2AsfFy (C-I3-6)
C=0.85f
c′Ac (C-I3-7)
C =ΣQ
n (C-I3-8)
where
f
c′=specified compressive strength of concrete, ksi (MPa)
A
c=area of concrete slab within effective width, in.
2
(mm
2
)
A
s=area of steel cross section, in.
2
(mm
2
)
A
sw=area of steel web, in.
2
(mm
2
)
A
sf=area of steel flange, in.
2
(mm
2
)
F
y=minimum specified yield stress of steel, ksi (MPa)
ΣQ
n=sum of nominal strengths of steel headed stud anchors between the point of
maximum positive moment and the point of zero moment to either side,
kips (N)
Longitudinal slab reinforcement makes a negligible contribution to the compression
force, except when Equation C-I3-7 governs. In this case, the area of longitudinal
reinforcement within the effective width of the concrete slab times the yield stress of
the reinforcement may be added in determining C.
The depth of the compression block is
(C-I3-9)
a
C
fb
c
=
′085.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 357

16.1–358 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
b =effective width of concrete slab, in. (mm)
A fully composite beam corresponds to the case of C governed by the yield strength
of the steel beam or the compressive strength of the concrete slab, as in Equation
C-I3-6 or C-I3-7. The number and strength of steel headed stud anchors govern C for
a partially composite beam as in Equation C-I3-8.
The plastic stress distribution may have the plastic neutral axis, PNA, in the web, in
the top flange of the steel section, or in the slab, depending on the value of C.
The nominal plastic moment resistance of a composite section in positive bending is
given by the following equation and Figure C-I3.3:
M
n=C(d 1+d2) +Py(d3λd2) (C-I3-10)
where
P
y=tensile strength of the steel section; P y=FyAs, kips (N)
d
1=distance from the centroid of the compression force, C, in the concrete to the
top of the steel section, in. (mm)
d
2=distance from the centroid of the compression force in the steel section to the
top of the steel section, in. (mm). For the case of no compression in the steel
section, d
2 =0.
d
3=distance from P y to the top of the steel section, in. (mm)
Equation C-I3-10 is applicable for steel sections symmetrical about one or two axes.
According to Table B4.1b, local web buckling does not reduce the plastic strength
of a bare steel beam if the beam depth-to-web thickness ratio is not larger than
. In the absence of web buckling research on composite beams, the same
ratio is conservatively applied to composite beams.
For beams with more slender webs, this Specification conservatively adopts first
yield as the flexural strength limit. In this case, stresses on the steel section from per-
manent loadsapplied to unshored beams before the concrete has cured must be
superimposed on stresses on the composite section from loads applied to the beams
376./EF
y
Fig. C-I3.3. Plastic stress distribution for positive moment in composite beams.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 358

Comm. I3.] FLEXURE 16.1–359
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
after hardening of concrete. For shored beams, all loads may be assumed to be resis-
ted by the composite section.
When first yield is the flexural strength limit, the elastic transformed section is used
to calculate stresses on the composite section. The modular ratio, n= E
s/Ec, used to
determine the transformed section, depends on the specified unit weight and strength
of concrete.
2b. Negative Flexural Strength
Plastic Stress Distribution for Negative Moment. When an adequately braced com-
pact steel section and adequately developed longitudinal reinforcing bars act
compositely in the negative moment region, the nominal flexural strength is deter-
mined from the plastic stress distributions as shown in Figure C-I3.4. Loads applied
to a continuous composite beam with steel anchors throughout its length, after the
slab is cracked in the negative moment region, are resisted in that region by the steel
section and by properly anchored longitudinal slab reinforcement.
The tensile force, T, in the reinforcing bars is the smaller of:
T =F
yrAr (C-I3-11)
T =ΣQ
n (C-I3-12)
where
A
r=area of properly developed slab reinforcement parallel to the steel beam and
within the effective width of the slab, in.
2
(mm
2
)
F
yr=specified yield stress of the slab reinforcement, ksi (MPa)
ΣQ
n=sum of the nominal strengths of steel headed stud anchors between the
point of maximum negative moment and the point of zero moment to either
side, kips (N)
A third theoretical limit on T is the product of the area and yield stress of the steel
section. However, this limit is redundant in view of practical limitations for slab rein-
forcement.
The nominal plastic moment resistance of a composite section in negative bending is
given by the following equation:
Fig. C-I3.4. Plastic stress distribution for negative moment.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 359

16.1–360 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Mn=T(d 1+d2) +Pyc(d3λd2) (C-I3-13)
where
P
yc=the compressive strength of the steel section; P yc=AsFy, kips (N)
d
1=distance from the centroid of the longitudinal slab reinforcement to the top
of the steel section, in. (mm)
d
2=distance from the centroid of the tension force in the steel section to the top
of the steel section, in. (mm)
d
3=distance from P ycto the top of the steel section, in. (mm)
2c. Composite Beams with Formed Steel Deck
Figure C-I3.5 is a graphic presentation of the terminology used in Section I3.2c.
The design rules for composite construction with formed steel deck are based upon
a study (Grant et al., 1977) of the then-available test results. The limiting parameters
listed in Section I3.2c were established to keep composite construction with formed
steel deck within the available research data.
The Specification requires steel headed stud anchors to project a minimum of
1
1
/2in. (38 mm) above the deck flutes. This is intended to be the minimum in-place
projection, and stud lengths prior to installation should account for any shortening
of the stud that could occur during the welding process. The minimum specified
cover over a steel headed stud anchor of
1
/2in. (13 mm) after installation is intended
to prevent the anchor from being exposed after construction is complete. In achiev-
ing this requirement the designer should carefully consider tolerances on steel beam
camber, concrete placement and finishing tolerances, and the accuracy with which
steel beam deflections can be calculated. In order to minimize the possibility of
exposed anchors in the final construction, the designer should consider increasing
the bare steel beam size to reduce or eliminate camber requirements (this also
improves floor vibration performance), checking beam camber tolerances in the
fabrication shop and monitoring concrete placement operations in the field.
Wherever possible, the designer should also consider providing for anchor cover
requirements above the
1
/2in. (13 mm) minimum by increasing the slab thickness
while maintaining the 1
1
/2in. (38 mm) requirement for anchor projection above the
top of the steel deck as required by the Specification.
The maximum spacing of 18 in. (450 mm) for connecting composite decking to the
support is intended to address a minimum uplift requirement during the construction
phase prior to placing concrete.
2d. Load Transfer between Steel Beam and Concrete Slab
(1) Load Transfer for Positive Flexural strength
When studs are used on beams with formed steel deck, they may be welded
directly through the deck or through prepunched or cut-in-place holes in the
deck. The usual procedure is to install studs by welding directly through the
deck; however, when the deck thickness is greater than 16 gage (1.5 mm) for sin-
gle thickness, or 18 gage (1.2 mm) for each sheet of double thickness, or when
the total thickness of galvanized coating is greater than 1.25 ounces/ft
2
(0.38
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 360

Comm. I3.] FLEXURE 16.1–361
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
kg/m
2
), special precautions and procedures recommended by the stud manufac-
turer should be followed.
Composite beam tests in which the longitudinal spacing of steel anchors was
varied according to the intensity of the static shear, and duplicate beams in which
the anchors were uniformly spaced, exhibited approximately the same ultimate
strength and approximately the same amount of deflection at nominal loads.
Under distributed load conditions, only a slight deformation in the concrete near
the more heavily stressed anchors is needed to redistribute the horizontal shear
Fig. C-I3.5. Steel deck limits.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 361

16.1–362 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to other less heavily stressed anchors. The important consideration is that the
total number of anchors be sufficient to develop the shear on either side of the
point of maximum moment. The provisions of this Specification are based upon
this concept of composite action.
(2) Load Transfer for Negative Flexural strength
In computing the available flexural strength at points of maximum negative
bending, reinforcement parallel to the steel beam within the effective width of
the slab may be included, provided such reinforcement is properly anchored
beyond the region of negative moment. However, steel anchors are required to
transfer the ultimate tensile force in the reinforcement from the slab to the steel
beam.
When steel deck includes units for carrying electrical wiring, crossover head-
ers are commonly installed over the cellular deck perpendicular to the ribs. These
create trenches that completely or partially replace sections of the concrete slab
above the deck. These trenches, running parallel to or transverse to a composite
beam, may reduce the effectiveness of the concrete flange. Without special pro-
visions to replace the concrete displaced by the trench, the trench should be
considered as a complete structural discontinuity in the concrete flange.
When trenches are parallel to the composite beam, the effective flange width
should be determined from the known position of the trench.
Trenches oriented transverse to composite beams should, if possible, be
located in areas of low bending moment and the full required number of studs
should be placed between the trench and the point of maximum positive moment.
Where the trench cannot be located in an area of low moment, the beam should
be designed as noncomposite.
3. Encased Composite Members
Tests of concrete-encased beams demonstrate that: (1) the encasement drastically
reduces the possibility of lateral-torsional instability and prevents local buckling of
the encased steel; (2) the restrictions imposed on the encasement practically prevent
bond failure prior to first yielding of the steel section; and (3) bond failure does not
necessarily limit the moment strength of an encased steel beam (ASCE, 1979).
Accordingly, this Specification permits three alternative design methods for deter-
mination of the nominal flexural strength: (a) based on the first yield in the tension
flange of the composite section; (b) based on the plastic flexural strength of the steel
section alone; and (c) based on the strength of the composite section obtained from
the plastic stress distribution method or the strain-compatibility method. An assess-
ment of the data indicates that the same resistance and safety factors may be used for
all three approaches (Leon et al., 2007). For concrete-encased composite beams,
method (c) is applicable only when shear anchors are provided along the steel sec-
tion and reinforcement of the concrete encasement meets the specified detailing
requirements. For concrete-encased composite beams, no limitations are placed on
the slenderness of either the composite beam or the elements of the steel section,
since the encasement effectively inhibits both local and lateral buckling.
In method (a), stresses on the steel section from permanent loads applied to unshored
beams before the concrete has hardened must be superimposed on stresses on the
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 362

Comm. I3.] FLEXURE 16.1–363
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
composite section from loads applied to the beams after hardening of the concrete.
In this superposition, all permanent loads should be multiplied by the dead load fac-
tor and all live loads should be multiplied by the live load factor. For shored beams,
all loads may be assumed as resisted by the composite section. Complete interaction
(no slip) between the concrete and steel is assumed.
Insufficient research is available to warrant coverage of partially composite encased
or filled sections subjected to flexure.
4. Filled Composite Members
Tests of concrete-filled composite beams indicate that: (1) the steel tube drastically
reduces the possibility of lateral-torsional instability; (2) the concrete infill changes
the buckling mode of the steel HSS; and (3) bond failure does not necessarily limit
the moment strength of a filled composite beam (Leon et al., 2007).
Figure C-I3.6 shows the variation of the nominal flexural strength, M
n, of the filled
section with respect to the HSS slenderness. As shown, compact sections can develop
the full plastic strength, M
p, in flexure. The nominal flexural strength, M n, of non-
compact sections can be determined using a linear interpolation between the plastic
strength, M
p, and the yield strength, M y, with respect to the HSS slenderness. Slender
sections are limited to developing the first yield moment, M
cr, of the composite sec-
tion where the tension flange reaches first yielding, while the compression flange is
limited to the critical buckling stress, F
cr, and the concrete is limited to linear elastic
behavior with maximum compressive stress equal to 0.70f′
c(Varma and Zhang,
2009). The nominal flexural strengths calculated using the Specification compare
conservatively with experimental results (Varma and Zhang, 2009). Figure C-I3.7
Fig. C-I3.6. Nominal flexural strength of filled beam vs. HSS slenderness.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 363

16.1–364 FLEXURE [Comm. I3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) Compact section—stress blocks for calculating M p
Fig. C-I3.7. Stress blocks for calculating nominal flexural strengths
of filled rectangular box sections.
(b) Noncompact section—stress blocks for calculating M
y
(c) Slender section—stress blocks for calculating first yield moment, M cr
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 364

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–365
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
shows typical stress blocks for determining the nominal flexural strengths of com-
pact, noncompact and slender filled rectangular box sections.
I4. SHEAR
Shear provisions for filled and encased composite members have been revised
from the 2005 Specification, and all shear provisions are now consolidated in
Section I4.
1. Filled and Encased Composite Members
Three methods for determining the shear strength of filled and encased composite
members are now offered:
(1) The available shear strength of the steel alone as specified in Chapter G. The
intent of this method is to allow the designer to ignore the concrete contribution
entirely and simply use the provisions of Chapter G with their associated resist-
ance or safety factors.
(2) The strength of the reinforced concrete portion (concrete plus transverse rein-
forcing bars) alone as defined by ACI 318. For this method, a resistance factor of
0.75 or the corresponding safety factor of 1.5 is to be applied which is consistent
with ACI 318.
(3) The strength of the steel section in combination with the contribution of the
transverse reinforcing bars. For this method, the nominal shear strength (without
a resistance or safety factor) of the steel section alone should be determined
according to the provisions of Chapter G and then combined with the nominal
shear strength of the transverse reinforcing as determined by ACI 318. These two
nominal strengths should then be combined, and an overall resistance factor of
0.75 or the corresponding safety factor of 1.5 applied to the sum to determine the
overall available shear strength of the member.
Though it would be logical to suggest provisions where both the contributions of the
steel section and reinforced concrete are superimposed, there is insufficient research
available to justify such a combination.
2. Composite Beams with Formed Steel Deck
A conservative approach to shear provisions for composite beams with steel headed
stud or steel channel anchors is adopted by assigning all shear to the steel section in
accordance with Chapter G. This method neglects any concrete contribution and
serves to simplify design.
I5. COMBINED FLEXURE AND AXIAL FORCE
As with all frame analyses in this Specification, required strengths for composite
beam-columns should be obtained from second-order analysis or amplified first-
order analysis as specified in Chapter C and Appendix 7. Sections I2.1 and I2.2
suggest appropriate reduced stiffness, EI*, for composite compression members to
be used with the direct analysis method of Chapter C. For the assessment of the avail-
able strength, the Specification provisions for interaction between axial force and
flexure in composite members are the same as for bare steel members as covered in
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 365

16.1–366 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Section H1.1. The provisions also permit an analysis based on the strength provisions
of Section I1.2 which would lead to an interaction diagram similar to those used in
reinforced concrete design. This latter approach is discussed here.
For encased composite members, the available axial strength, including the effects
of buckling, and the available flexural strength can be calculated using either the
plastic stress distribution method or the strain-compatibility method (Leon et al.,
2007; Leon and Hajjar, 2008). For filled composite members, the available axial and
flexural strengths can be calculated using Sections I2.2 and I3.4, respectively, which
also include the effects of local buckling for noncomposite and slender sections
(classified according to Section I1.4).
The section below describes three different approaches to design composite beam-
columns that are applicable to both concrete-encased steel shapes and to compact
concrete-filled HSS sections. The first two approaches are based on variations in the
plastic stress distribution method while the third method references AISC Design
Guide 6, Load and Resistance Factor Design of W-shapes Encased in Concrete
(Griffis, 1992), which is based on an earlier version of the Specification. The strain
compatibility method is similar to that used in the design of concrete compression
members as specified in ACI 318 Chapter 10. The design of noncompact and slender
concrete-filled sections is limited to the use of method 1 described below (Varma and
Zhang, 2009).
Method 1—Interaction Equations of Section H1.The first approach applies to dou-
bly symmetric composite beam-columns, the most common geometry found in
building construction. For this case, the interaction equations of Section H1 provide
a conservative assessment of the available strength of the member for combined axial
compression and flexure (see Figure C-I5.1). These provisions may also be used for
Fig. C-I5.1. Interaction diagram for composite beam-column design—Method 1.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:40 PM Page 366

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–367
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
combined axial tension and flexure. The degree of conservatism generally depends
on the extent of concrete contribution to the overall strength relative to the steel con-
tribution. The larger the load carrying contribution coming from the steel section the
less conservative the strength prediction of the interaction equations from Section
H1. Thus, for example, the equations are generally more conservative for members
with high concrete compressive strength as compared to members with low concrete
compressive strength. The advantages to this method include the following: (1) The
same interaction equations used for steel beam-columns are applicable; and (2) Only
two anchor points are needed to define the interaction curves—one for pure flexure
(point B) and one for pure axial load (point A). Point A is determined using Equations
I2-2 or I2-3, as applicable. Point B is determined as the flexural strength of the sec-
tion according to the provisions of Section I3. Note that slenderness must also be
considered using the provisions of Section I2. For many common concrete filled
HSS sections, available axial strengths are provided in tables in the manual.
The design of noncompact and slender concrete-filled sections is limited to this
method of interaction equation solution. The other two methods described below
may not be used for their design, due to lack of research to validate those
approaches for cross sections that are not compact. The nominal strengths predicted
using the equations of Section H1 compare conservatively with a wide range of
experimental data for noncompact/slender rectangular and round filled sections
(Varma and Zhang, 2009).
Method 2—Interaction Curves from the Plastic Stress Distribution Method. The sec-
ond approach applies to doubly symmetric composite beam-columns and is based on
developing interaction surfaces for combined axial compression and flexure at the
nominal strength level using the plastic stress distribution method. This approach
results in interaction surfaces similar to those shown in Figure C-I5.2. The four
points identified in Figure C-I5.2 are defined by the plastic stress distribution used
Fig. C-I5.2 Interaction diagram for composite beam-columns—Method 2.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 367

16.1–368 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in their determination. The strength equations for concrete encased W-shapes and
concrete filled HSS shapes used to define each point A through D are provided in the
AISC Design Examplesavailable at www.aisc.org(Geschwindner, 2010b). Point A
is the pure axial strength determined according to Section I2. Point B is determined
as the flexural strength of the section according to the provisions of Section I3. Point
C corresponds to a plastic neutral axis location that results in the same flexural
strength as Point B, but including axial compression. Point D corresponds to an axial
compressive strength of one half of that determined for Point C. An additional Point
E (see Figure C-I1.1) is included (between points A and C) for encased W-shapes
bent about their weak axis. Point E is an arbitrary point, generally corresponding to
a plastic neutral axis location at the flange tips of the encased W-shape, necessary to
better reflect bending strength for weak-axis bending of encased shapes. Linear inter-
polation between these anchor points may be used. However, with this approach,
care should be taken in reducing Point D by a resistance factor or to account for
member slenderness, as this may lead to an unsafe situation whereby additional flex-
ural strength is permitted at a lower axial compressive strength than predicted by the
cross section strength of the member. This potential problem may be avoided through
a simplification to this method whereby point D is removed from the interaction sur-
face. Figure C-I5.3 demonstrates this simplification with the vertical dashed line that
connects point C′′to point B′′. Once the nominal strength interaction surface is deter-
mined, length effects according to Equations I2-2 and I2-3 must be applied. Note that
the same slenderness reduction factor (λ =A′/A in Figure C-I5.2, equal to P
n/Pno,
where P
nand P noare calculated from Section I2) applies to points A, C, D and E. The
available strength is then determined by applying the compression and bending
resistance factors or safety factors.
Fig. C-I5.3 Interaction diagram for composite beam-columns—Method 2 simplified.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 368

Comm. I5.] COMBINED FLEXURE AND AXIAL FORCE 16.1–369
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Using linear interpolation between points A′′, C′′and B′′in Figure C-I5.3, the fol-
lowing interaction equations may be derived for composite beam-columns subjected
to combined axial compression plus biaxial flexure:
(a) If P
r<PC
(C-I5-1a)
(b) If P
r≥PC
(C-I5-1b)
where
P
r=required compressive strength, kips (N)
P
A=available axial compressive strength at Point A′′, kips (N)
P
C=available axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength, kip-in. (N-mm)
M
C=available flexural strength at Point C′′, kip-in. (N-mm)
x=subscript relating symbol to strong axis bending
y=subscript relating symbol to weak axis bending
For design according to Section B3.3 (LRFD):
P
r=Pu=required compressive strength using LRFD load combinations, kips
(N)
P
A=design axial compressive strength at Point A′′in Figure C-I5.3, determined
in accordance with Section I2, kips (N)
P
C=design axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength using LRFD load combinations, kip-in. (N-mm)
M
C=design flexural strength at Point C′′, determined in accordance with Section
I3, kip-in. (N-mm)
For design according to Section B3.4 (ASD):
P
r=Pa=required compressive strength using ASD load combinations, kips (N)
P
A=allowable compressive strength at Point A′′in Figure C-I5.3, determined in
accordance with Section I2, kips (N)
P
C=allowable axial compressive strength at Point C′′, kips (N)
M
r=required flexural strength using ASD load combinations, kip-in. (N-mm)
M
C=allowable flexural strength at Point C′′, determined in accordance with
Section I3, kip-in. (N-mm)
For biaxial bending, the value of the axial compressive strength at Point C may be dif-
ferent when computed for the major and minor axis. The smaller of the two values
should be used in Equation C-I5-1b and for the limits in Equations C-I5-1a and b.
Method 3—Design Guide 6.The approach presented in AISC Design Guide 6, Load
and Resistance Factor Design of W-Shapes Encased in Concrete(Griffis, 1992) may
M
M
M
Mrx
Cx
ry
Cy
+≤ 1
PP
PP
M
M
M
MrC
AC
rx
Cx
ry
Cy−

++≤ 1
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 369

16.1–370 COMBINED FLEXURE AND AXIAL FORCE [Comm. I5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
also be used to determine the beam-column strength of concrete encased W-shapes.
Although this method is based on an earlier version of the Specification, axial load
and moment strengths can conservatively be determined directly from the tables in
this design guide. The difference in resistance factors from the earlier Specification
may safely be ignored.
I6. LOAD TRANSFER
1. General Requirements
External forces are typically applied to composite members through direct connec-
tion to the steel member, bearing on the concrete, or a combination thereof. Design
of the connection for force application shall follow the applicable limit states within
Chapters J and K of the Specification as well as the provisions of Section I6. Note
that for concrete bearing checks on filled composite members, confinement can
affect the bearing strength for external force application as discussed in
Commentary Section I6.2.
Once a load path has been provided for the introduction of external force to the mem-
ber, the interface between the concrete and steel must be designed to transfer the
longitudinal shear required to obtain force equilibrium within the composite section.
Section I6.2 contains provisions for determining the magnitude of longitudinal shear
to be transferred between the steel and concrete depending upon the external force
application condition. Section I6.3 contains provisions addressing mechanisms for
the transfer of longitudinal shear.
The load transfer provisions of the Specification are primarily intended for the trans-
fer of longitudinal shear due to applied axial forces. Load transfer of longitudinal
shear due to applied bending moments is beyond the scope of the Specification; how-
ever, tests (Lu and Kennedy, 1994; Prion and Boehme, 1994; Wheeler and Bridge,
2006) indicate that filled composite members can develop their full plastic moment
capacity based on bond alone without the use of additional anchorage.
2. Force Allocation
The Specification addresses conditions in which the entire external force is applied
to the steel or concrete as well as conditions in which the external force is applied to
both materials concurrently. The provisions are based upon the assumption that in
order to achieve equilibrium across the cross section, transfer of longitudinal shears
along the interface between the concrete and steel shall occur such that the resulting
force levels within the two materials may be proportioned according to a plastic
stress distribution model. Load allocation based on the plastic stress distribution
model is represented by Equations I6-1 and I6-2. Equation I6-1 represents the mag-
nitude of force that is present within the concrete encasement or concrete fill at
equilibrium. The longitudinal shear generated by loads applied directly to the steel
section is determined based on the amount of force to be distributed to the concrete
according to Equation I6-1. Conversely, when load is applied to the concrete section
only, the longitudinal shear required for cross-sectional equilibrium is based upon the
amount of force to be distributed to the steel according to Equation I6-2. Where loads
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 370

Comm. I6.] LOAD TRANSFER 16.1–371
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
are applied concurrently to the two materials, the longitudinal shear force to be trans-
ferred to achieve cross-sectional equilibrium can be taken as either the difference in
magnitudes between the portion of external force applied directly to the concrete and
that required by Equation I6-1 or the portion of external force applied directly to the
steel section and that required by Equation I6-2.
When external forces are applied to the concrete of a filled composite member via
bearing, it is acceptable to assume that adequate confinement is provided by the steel
encasement to allow the maximum available bearing strength permitted by Equation
J8-2 to be used. This strength is obtained by setting the term=2. This dis-
cussion is in reference to the introduction of external load to the compression
member. The transfer of longitudinal shear within the compression member via bear-
ing mechanisms such as internal steel plates is addressed directly in Section I6.3a.
3. Force Transfer Mechanisms
Transfer of longitudinal shear by direct bearing via internal bearing mechanisms
(such as internal bearing plates) or shear connection via steel anchors is permitted
for both filled and encased composite members. Transfer of longitudinal shear via
direct bond interaction is permitted solely for filled composite members. Although
it is recognized that force transfer also occurs by direct bond interaction between
the steel and concrete for encased composite columns, this mechanism is typically
ignored and shear transfer is generally carried out solely with steel anchors
(Griffis, 1992).
The use of the force transfer mechanism providing the largest resistance is per-
missible. Superposition of force transfer mechanisms is not permitted as the
experimental data indicate that direct bearing or shear connection often does not
initiate until after direct bond interaction has been breached, and little experimen-
tal data is available regarding the interaction of direct bearing and shear connection
via steel anchors.
3a. Direct Bearing
For the general condition of assessing load applied directly to concrete in bearing,
and considering a supporting concrete area that is wider on all sides than the loaded
area, the nominal bearing strength for concrete may be taken as
(C-I6-1)
where
A
1=loaded area of concrete, in.
2
(mm
2
)
A
2=maximum area of the portion of the supporting surface that is geometrically
similar to and concentric with the loaded area, in.
2
(mm
2
)
f
c′=specified compressive concrete strength, ksi (MPa)
The value of must be less than or equal to 2 (ACI, 2008).
For the specific condition of transferring longitudinal shear by direct bearing via
internal bearing mechanisms, the Specification uses the maximum nominal bearing
AA21/
RfAAAnc= ′085 121./
AA21/
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 371

16.1–372 LOAD TRANSFER [Comm. I6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
strength allowed by Equation C-I6-1 of 1.7f c′A1as indicated in Equation I6-3. The
resistance factor for bearing, φ
B, is 0.65 (and the associated safety factor, Ω B, is 2.31)
in accordance with ACI 318.
3b. Shear Connection
Steel anchors for shear connection shall be designed as composite components
according to Section I8.3.
3c. Direct Bond Interaction
Force transfer by direct bond is commonly used in filled composite members as long
as the connections are detailed to limit local deformations (API, 1993; Roeder et al.,
1999). However, there is large scatter in the experimental data on the bond strength
and associated force transfer length of filled composite compression members, par-
ticularly when comparing tests in which the concrete core is pushed through the steel
tube (push-out tests) to tests in which a beam is connected just to the steel tube and
beam shear is transferred to the filled composite compression member. The added
eccentricities of the connection tests typically raise the bond strength of the filled
composite compression members.
A reasonable lower bound value of the bond strength of filled composite compres-
sion members that meet the provisions of Section I2 is 60 psi (0.4 MPa). While
push-out tests often show bond strengths below this value, eccentricity introduced
into the connection is likely to increase the bond strength to this value or higher.
Experiments also indicate that a reasonable assumption for the distance along the
length of the filled composite compression member required to transfer the force
from the steel HSS to the concrete core is approximately equal to twice the width
of a rectangular HSS or the diameter of a round HSS, to either side of the point of
load transfer.
The equations for direct bond interaction for filled composite compression members
assume that one face of a rectangular filled composite compression member or one-
quarter of the perimeter of a round filled composite compression member is engaged
in the transfer of stress by direct bond interaction for the connection elements fram-
ing into the compression member from each side. If connecting elements frame in
from multiple sides, the direct bond interaction strengths may be increased accord-
ingly. The scatter in the data leads to the recommended low value of the resistance
factor, φ, and the corresponding high value of the safety factor, Ω.
4. Detailing Requirements
To avoid overstressing the structural steel section or the concrete at connections in
encased or filled composite members, transfer of longitudinal shear is required to
occur within the load introduction length. The load introduction length is taken as
two times the minimum transverse dimension of the composite member both above
and below the load transfer region. The load transfer region is generally taken as the
depth of the connecting element as indicated in Figure C-I6.1. In cases where the
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 372

Comm. I6.] LOAD TRANSFER 16.1–373
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
applied forces are of such a magnitude that the required longitudinal shear transfer
cannot take place within the prescribed load introduction length, the designer should
treat the compression member as noncomposite along the additional length required
for shear transfer.
For encased composite members, steel anchors are required throughout the com-
pression member length in order to maintain composite action of the member under
incidental moments (including flexure induced by incipient buckling). These anchors
are typically placed at the maximum permitted spacing according to Section I8.3e.
Additional anchors required for longitudinal shear transfer shall be located within the
load introduction length as described previously.
Unlike concrete encased members, steel anchors in filled members are required only
when used for longitudinal shear transfer and are not required along the length of the
member outside of the introduction region. This discrepancy is due to the adequate
confinement provided by the steel encasement which prevents the loss of composite
action under incidental moments.
Fig. C-I6.1. Load transfer region/load introduction length.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 373

16.1–374 COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS [Comm. I7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I7. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS
In composite construction, floor or roof slabs consisting of composite metal deck
and concrete fill are typically connected to the structural framing to form compos-
ite diaphragms. Diaphragms are horizontally spanning members, analogous to deep
beams, which distribute seismic and/or wind loads from their origin to the lateral-
force-resisting-system either directly or in combination with load transfer elements
known as collectors or collector beams (also known as diaphragm struts and drag
struts).
Diaphragms serve the important structural function of interconnecting the compo-
nents of a structure to behave as a unit. Diaphragms are commonly analyzed as
simple-span or continuously spanning deep beams, and hence are subject to shear,
moment and axial forces as well as the associated deformations. Further informa-
tion on diaphragm classifications and behavior can be found in AISC (2006a) and
SDI (2001).
Composite Diaphragm Strength
Diaphragms should be designed to resist all forces associated with the collection and
distribution of seismic and/or wind forces to the lateral force resisting system. In
some cases, loads from other floors should also be included, such as at a level where
a horizontal offset in the lateral force resisting system exists. Several methods exist
for determining the in-place shear strength of composite diaphragms. Three such
methods are as follows:
(1) As determined for the combined strength of composite deck and concrete fill
including the considerations of composite deck configuration as well as type and
layout of deck attachments. One publication which is considered to provide such
guidance is the SDI Diaphragm Design Manual(SDI, 2004). This publication
covers many aspects of diaphragm design including strength and stiffness calcu-
lations. Calculation procedures are also provided for alternative deck to framing
connection methods such as puddle welding and mechanical fasteners in cases
where anchors are not used. Where stud anchors are used, stud shear strength val-
ues shall be as determined in Section I8.
(2) As the thickness of concrete over the steel deck is increased, the shear strength
can approach that for a concrete slab of the same thickness. For example, in com-
posite floor deck diaphragms having cover depths between 2 in. (50 mm) and
6 in. (150 mm), measured shear stresses in the order of 0.11 (where f
c′is in
units of ksi) have been reported. In such cases, the diaphragm strength of con-
crete metal deck slabs can conservatively be based on the principles of reinforced
concrete design (ACI, 2008) using the concrete and reinforcement above the
metal deck ribs and ignoring the beneficial effect of the concrete in the flutes.
(3) Results from in-plane tests of concrete filled diaphragms.
Collector Beams and Other Composite Elements
Horizontal diaphragm forces are transferred to the steel lateral load resisting frame
as axial forces in collector beams (also known as diaphragm struts or drag struts).
The design of collector beams has not been addressed directly in this Chapter. The
rigorous design of composite beam-columns (collector beams) is complex and few
′fc
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 374

Comm. I7.] COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS 16.1–375
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
detailed guidelines exist on such members. Until additional research becomes avail-
able, a reasonable simplified design approach is provided as follows:
Force Application. Collector beams can be designed for the combined effects of
axial load due to diaphragm forces as well as flexure due to gravity and/or lateral
loads. The effect of the vertical offset (eccentricity) between the plane of the
diaphragm and the centerline of the collector element should be investigated for
design.
Axial Strength. The available axial strength of collector beams can be determined
according to the noncomposite provisions of Chapter D and Chapter E. For com-
pressive loading, collector beams are generally considered unbraced for buckling
between braced points about their major axis, and fully braced by the composite
diaphragm for buckling about the minor axis.
Flexural Strength. The available flexural strength of collector beams can be deter-
mined using either the composite provisions of Chapter I or the noncomposite
provisions of Chapter F. It is recommended that all collector beams, even those
designed as noncomposite members, contain enough anchors to ensure that a minimum
of 25% composite action is achieved. This recommendation is intended to prevent
designers from utilizing a small amount of anchors solely to transfer diaphragm forces
on a beam designed as a noncomposite member. Anchors designed only to transfer hor-
izontal shear due to lateral forces will still be subjected to horizontal shear due to
flexure from gravity loads superimposed on the composite section and could become
overloaded under gravity loading conditions. Overloading the anchors could result in
loss of stud strength which could inhibit the ability of the collector beam to function as
required for the transfer of diaphragm forces due to lateral loads.
Interaction. Combined axial force and flexure can be assessed using the interaction
equations provided in Chapter H. As a reasonable simplification for design purposes,
it is acceptable to use the noncomposite axial strength and the composite flexural
strength in combination for determining interaction.
Shear Connection. It is not required to superimpose the horizontal shear due to lat-
eral forces with the horizontal shear due to flexure for the determination of steel
anchor requirements. The reasoning behind this methodology is twofold. First, the
load combinations as presented in ASCE/SEI 7 (ASCE, 2010) provide reduced live
load levels for load combinations containing lateral loads. This reduction decreases
the demand on the steel anchors and provides additional capacity for diaphragm force
transfer. Secondly, horizontal shear due to flexure flows in two directions. For a uni-
formly loaded beam, the shear flow emanates outwards from the center of the beam
as illustrated in Figure C-I7.1(a). Lateral loads on collector beams induce shear in one
direction. As these shears are superimposed, the horizontal shears on one portion of
the beam are increased, and the horizontal shears on the opposite portion of the beam
are decreased as illustrated in Figure C-I7.1(b). In lieu of additional research, it is con-
sidered acceptable for the localized additional loading of the steel anchors in the
additive beam segment to be considered offset by the concurrent unloading of the steel
anchors in the subtractive beam segment up to a force level corresponding to the sum-
mation of the nominal strengths of all studs placed on the beam.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 375

16.1–376 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
I8. STEEL ANCHORS
1. General
This section covers the strength, placement and limitations on the use of steel anchors
in composite construction. A new definition is provided for “steel anchor” which
replaces the old term “shear connector” in the 2005 and earlier Specifications. This
change was made to recognize the more generic term “anchor” as used in ACI 318,
PCI and throughout the industry. This term includes the traditional “shear connector,”
now defined as a “steel headed stud anchor” and a “steel channel anchor” both of
which have been part of previous Specifications. Both steel headed stud anchors and
hot-rolled steel channel anchors are addressed in the Specification. The design provi-
sions for steel anchors are given for composite beams with solid slabs or with formed
steel deck and for composite components. A new glossary term is provided for “com-
posite component” as a member, connecting element or assemblage in which steel and
concrete elements work as a unit in the distribution of internal forces. This term
excludes composite beams with solid slabs or formed steel deck. The provisions for
composite components include the use of a resistance factor or safety factor applied
to the nominal strength of the steel anchor, while for composite beams the resistance
factor and safety factor are part of the composite beam resistance and safety factor.
Studs not located directly over the web of a beam tend to tear out of a thin flange
before attaining full shear-resisting strength. To guard against this contingency,
(a) Shear flow due to gravity loads only
(b) Shear flow due to gravity and lateral loads in combination
Fig. C-I7.1. Shear flow at collector beams.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 376

Comm. I8.] STEEL ANCHORS 16.1–377
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the size of a stud not located over the beam web is limited to 2
1
/2times the flange
thickness (Goble, 1968). The practical application of this limitation is to select only
beams with flanges thicker than the stud diameter divided by 2.5.
Section I8.2 requires a minimum ratio value of four for the overall headed stud
anchor height to the shank diameter when calculating the nominal shear strength of
a steel headed stud anchor in a composite beam. This requirement has been used in
previous Specifications and has had a record of successful performance. For calcu-
lating the nominal shear strength of a steel headed stud anchor in other composite
components, Section I8.3 increases this minimum ratio value to five for normal
weight concrete and seven for lightweight concrete. Additional increases in the min-
imum value of this ratio are required for computing the nominal tensile strength or
the nominal strength for interaction of shear and tension in Section I8.3. The provi-
sions of Section I8.3 also establish minimum edge distances and center-to-center
spacings for steel headed stud anchors if the nominal strength equations in that sec-
tion are to be used. These limits are established in recognition of the fact that only
steel failure modes are checked in the calculation of the nominal anchor strengths in
Equations I8-3, I8-4 and I8-5. Concrete failure modes are not checked explicitly in
these equations (Pallarés and Hajjar, 2010a, 2010b), whereas concrete failure is
checked in Equation I8-1. This is discussed further in Commentary Section I8.3.
2. Steel Anchors in Composite Beams
2a. Strength of Steel Headed Stud Anchors
The present strength equations for composite beams and steel stud anchors are
based on the considerable research that has been published in recent years (Jayas
and Hosain, 1988a, 1988b; Mottram and Johnson, 1990; Easterling et al., 1993;
Roddenberry et al., 2002a). Equation I8-1 contains R
gand R pfactors to bring these
composite beam strength requirements comparable to other codes around the world.
Other codes use a stud strength expression similar to the AISC Specification but the
stud strength is reduced by a φfactor of 0.8 in the Canadian code (CSA, 2009) and
by an even lower partial safety factor (φ =0.60) for the corresponding stud strength
equations in Eurocode 4(CEN, 2003). The AISC Specification includes the stud
anchor resistance factor as part of the overall composite beam resistance factor.
The majority of composite steel floor decks used today have a stiffening rib in the
middle of each deck flute. Because of the stiffener, studs must be welded off-center
in the deck rib. Studies have shown that steel studs behave differently depending
upon their location within the deck rib (Lawson, 1992; Easterling et al., 1993; Van
der Sanden, 1995; Yuan, 1996; Johnson and Yuan, 1998; Roddenberry et al., 2002a,
2002b). The so-called “weak” (unfavorable) and “strong” (favorable) positions are
illustrated in Figure C-I8.1. Furthermore, the maximum value shown in these studies
for studs welded through steel deck is on the order of 0.7 to 0.75F
uAsc. Studs placed
in the weak position have strengths as low as 0.5F
uAsc.
The strength of stud anchors installed in the ribs of concrete slabs on formed steel
deck with the ribs oriented perpendicular to the steel beam is reasonably estimated
by the strength of stud anchors computed from Equation I8-1, which sets the default
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 377

16.1–378 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
value for steel stud strength equal to that for the weak stud position. Both AISC
(1997a) and the Steel Deck Institute (SDI, 2001) recommend that studs be detailed
in the strong position, but ensuring that studs are placed in the strong position is not
necessarily an easy task because it is not always easy for the installer to determine
where along the beam the particular rib is located relative to the end, midspan, or
point of zero shear. Therefore, the installer may not be clear on which location is the
strong, and which is the weak position.
In most composite floors designed today, the ultimate strength of the composite sec-
tion is governed by the stud strength, as full composite action is typically not the
most economical solution to resist the required strength. The degree of composite
action, as represented by the ratio ΣQ
n/FyAs(the total shear connection strength
divided by the yield strength of the steel cross section), influences the flexural
strength as shown in Figure C-I8.2.
Fig. C-I8.2. Normalized flexural strength versus shear connection strength ratio
(
W16×31, F y=50 ksi, Y2 =4.5 in.)
(Easterling et al., 1993).
Fig. C-I8.1. Weak and strong stud positions
[Roddenberry et al. (2002b)].
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 378

Comm. I8.] STEEL ANCHORS 16.1–379
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
It can be seen from Figure C-I8.2 that a relatively large change in shear connection
strength results in a much smaller change in flexural strength. Thus, formulating the
influence of steel deck on shear anchor strength by conducting beam tests and back-
calculating through the flexural model, as was done in the past, leads to an inaccurate
assessment of stud strength when installed in metal deck.
The changes in stud anchor requirements that occurred in the 2005 Specification
were not a result of either structural failures or performance problems. Designers
concerned about the strength of existing structures based on earlier Specification
requirements need to note that the slope of the curve shown in Figure C-I8.2 is rather
flat as the degree of composite action approaches one. Thus, even a large change in
steel stud strength does not result in a proportional decrease of the flexural strength.
In addition, as noted above, the current expression does not account for all the pos-
sible shear force transfer mechanisms, primarily because many of them are difficult
or impossible to quantify. However, as noted in Commentary Section I3.1, as the
degree of composite action decreases, the deformation demands on steel studs
increase. This effect is reflected by the increasing slope of the relationship shown in
Figure C-I8.2 as the degree of composite action decreases. Thus designers should
specify 50% composite action or more.
The reduction factor, R
p, for headed stud anchors used in composite beams with no
decking has been reduced from 1.0 to 0.75 in the 2010 Specification. The methodol-
ogy used for headed stud anchors that incorporates R
gand R pwas implemented in
the 2005 Specification. The research (Roddenberry et al., 2002a) in which the factors
(R
gand R p) were developed focused almost exclusively on cases involving the use
of headed stud anchors welded through steel deck. The research pointed to the like-
lihood that the solid slab case should use R
p=0.75, however, the body of test data
had not been established to support the change. More recent research has shown that
the 0.75 factor is appropriate (Pallarés and Hajjar, 2010a).
2b. Strength of Steel Channel Anchors
Equation I8-2 is a modified form of the formula for the strength of channel anchors
presented in Slutter and Driscoll (1965), which was based on the results of pushout
tests and a few simply supported beam tests with solid slabs by Viest et al. (1952).
The modification has extended its use to lightweight concrete.
Eccentricities need not be considered in the weld design for cases where the welds at
the toe and heel of the channel are greater than
3
/16in. (5 mm) and the anchor meets
the following requirements:
10 55
80
60
05 16
..
.
.
..
≤≤


≤≤
t
t
H
t
L
t
R
t
f
w
w
c
f
w
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 379

16.1–380 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
t
f=flange thickness of channel anchor, in. (mm)
t
w=thickness of channel anchor web, in. (mm)
H=height of anchor, in. (mm)
L
c=length of anchor, in. (mm)
R=radius of the fillet between the flange and the web of the anchor, in. (mm)
2d. Detailing Requirements
Uniform spacing of shear anchors is permitted, except in the presence of heavy con-
centrated loads.
The minimum spacing of anchors along the length of the beam, in both flat soffit
concrete slabs and in formed steel deck with ribs parallel to the beam, is six diame-
ters; this spacing reflects development of shear planes in the concrete slab (Ollgaard
et al., 1971). Because most test data are based on the minimum transverse spacing of
four diameters, this transverse spacing was set as the minimum permitted. If the steel
beam flange is narrow, this spacing requirement may be achieved by staggering the
studs with a minimum transverse spacing of three diameters between the staggered
row of studs. When deck ribs are parallel to the beam and the design requires more
studs than can be placed in the rib, the deck may be split so that adequate spacing is
available for stud installation. Figure C-I8.3 shows possible anchor arrangements.
3. Steel Anchors in Composite Components
This section applies to steel headed stud anchors used primarily in the load transfer
(connection) region of composite compression members and beam-columns, con-
crete-encased and filled composite beams, composite coupling beams, and composite
walls (see Figure C-I8.4), where the steel and concrete are working compositely
within a member. In such cases, it is possible that the steel anchor will be subjected
to shear, tension, or interaction of shear and tension. As the strength of the connec-
tors in the load transfer region must be assessed directly (rather than implicitly within
the strength assessment of a composite member), a resistance or safety factor should
be applied, comparable to the design of bolted connections in Chapter J.
Fig. C-I8.3. Steel anchor arrangements.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 380

Comm. I8.] STEEL ANCHORS 16.1–381
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
These provisions are not intended for hybrid construction where the steel and con-
crete are not working compositely, such as with embed plates. Section I8.2 specifies
the strength of steel anchors embedded in a solid concrete slab or in a concrete slab
with formed steel deck in a composite beam.
Data from a wide range of experiments indicate that the failure of steel headed stud
anchors subjected to shear occurs in the steel shank or weld in a large percentage of
cases if the ratio of the overall height to the shank diameter of the steel headed stud
anchor is greater than five for normal weight concrete. In the case of lightweight con-
crete, the necessary minimum ratio between the overall height of the stud and the
diameter increases up to seven (Pallarés and Hajjar, 2010a). A similarly large percent-
age of failures occur in the steel shank or weld of steel headed stud anchors subjected
to tension or interaction of shear and tension if the ratio of the overall height to shank
diameter of the steel headed stud anchor is greater than eight for normal weight con-
crete. In the case of lightweight concrete, the necessary minimum ratio between the
overall height of the stud and the diameter increases up to ten for steel headed stud
anchors subjected to tension (Pallarés and Hajjar, 2010b). For steel headed stud
anchors subjected to interaction of shear and tension in lightweight concrete, there are
so few experiments available that it is not possible to discern sufficiently when the steel
material will control the failure mode. For the strength of steel headed stud anchors in
lightweight concrete subjected to interaction of shear and tension, it is recommended
that the provisions of ACI 318 (ACI, 2008) Appendix D be used.
Fig. C-I8.4. Typical reinforcement detailing in a composite wall for
steel headed stud anchors subjected to tension.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 381

16.1–382 STEEL ANCHORS [Comm. I8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The use of edge distances in ACI 318 Appendix D to compute the strength of a steel
anchor subjected to concrete crushing failure is complex. It is rare in composite con-
struction that there is a nearby edge that is not uniformly supported in a way that
prevents the possibility of concrete breakout failure due to a close edge. Thus, for
brevity, the provisions in this Specification simplify the assessment of whether it is
warranted to check for a concrete failure mode. Additionally, if an edge is supported
uniformly, as would be common in composite construction, it is assumed that a con-
crete failure mode will not occur due to the edge condition. Thus, if these provisions
are to be used, it is important that it be deemed by the engineer that a concrete
breakout failure mode in shear is directly avoided through having the edges per-
pendicular to the line of force supported, and the edges parallel to the line of force
sufficiently distant that concrete breakout through a side edge is not deemed viable.
For loading in shear, the determination of whether breakout failure in the concrete
is a viable failure mode for the stud anchor is left to the engineer. Alternatively, the
provisions call for required anchor reinforcement with provisions comparable to
those of ACI 318 Appendix D, Section D6.2.9 (which in turn refers to Chapter 12
of ACI 318) (ACI, 2008). In addition, the provisions of the applicable building code
or ACI 318 Appendix D may be used directly to compute the strength of the steel
headed stud anchor.
The steel limit states and resistance factors (and corresponding safety factors) covered
in this section match with the corresponding limit states of ACI 318 Appendix D,
although they were assessed independently for these provisions. As only steel limit
states are required to be checked if there are no edge conditions, experiments that sat-
isfy the minimum height/diameter ratio but that included failure of the steel headed
stud anchor either in the steel or in the concrete were included in the assessment of
the resistance and safety factors (Pallarés and Hajjar, 2010a, 2010b).
For steel headed stud anchors subjected to tension or combined shear and tension
interaction, it is recommended that anchor reinforcement always be included around
the stud to mitigate premature failure in the concrete. If the ratio of the diameter of
the head of the stud to the shank diameter is too small, the provisions call for use of
ACI 318 Appendix D to compute the strength of the steel headed stud anchor. If the
distance to the edge of the concrete or the distance to the neighboring anchor is too
small, the provisions call for required anchor reinforcement with provisions compa-
rable to those of ACI 318 Appendix D, Section D5.2.9 (which in turn refers to
Chapter 12 of ACI 318) (ACI, 2008). Alternatively, the provisions of the applicable
building code or ACI 318 Appendix D may be also be used directly to compute the
strength of the steel headed stud anchor.
I9. SPECIAL CASES
Tests are required for composite construction that falls outside the limits given in this
Specification. Different types of steel anchors may require different spacing and
other detailing than steel headed stud and channel anchors.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 382

16.1–383
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER J
DESIGN OF CONNECTIONS
The provisions of Chapter J cover the design of connections not subject to cyclic loads.
Wind and other environmental loads are generally not considered to be cyclic loads. The
provisions generally apply to connections other than HSS and box members. See Chapter K
for HSS and box member connections and Appendix 3 for fatigue provisions.
J1. GENERAL PROVISIONS
1. Design Basis
In the absence of defined design loads, a minimum design load should be considered.
Historically, a value of 10 kips (44 kN) for LRFD and 6 kips (27 kN) for ASD have
been used as reasonable values. For smaller elements such as lacing, sag rods, girts
or similar small members, a load more appropriate to the size and use of the part
should be used. Both design requirements and construction loads should be consid-
ered when specifying minimum loads for connections.
2. Simple Connections
Simple connections are considered in Sections B3.6a and J1.2. In Section B3.6a,
simple connections are defined (with further elaboration in Commentary Section
B3.6) in an idealized manner for the purpose of analysis. The assumptions made in
the analysis determine the outcome of the analysis that serves as the basis for design
(for connections that means the force and deformation demands that the connection
must resist). Section J1.2 focuses on the actual proportioning of the connection ele-
ments to achieve the required resistance. Thus, Section B3.6a establishes the
modeling assumptions that determine the design forces and deformations for use in
Section J1.2.
Sections B3.6a and J1.2 are not mutually exclusive. If a “simple” connection is
assumed for analysis, the actual connection, as finally designed, must perform con-
sistent with that assumption. A simple connection must be able to meet the required
rotation and must not introduce strength and stiffness that significantly alter the rota-
tional response.
3. Moment Connections
Two types of moment connections are defined in Section B3.6b: fully restrained
(FR) and partially restrained (PR). FR moment connections must have sufficient
strength and stiffness to transfer moment and maintain the angle between connected
members. PR moment connections are designed to transfer moments but also allow
rotation between connected members as the loads are resisted. The response char-
acteristics of a PR connection must be documented in the technical literature or
established by analytical or experimental means. The component elements of a PR
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 383

16.1–384 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
connection must have sufficient strength, stiffness and deformation capacity to sat-
isfy the design assumptions.
4. Compression Members with Bearing Joints
The provisions for “compression members other than columns finished to bear” are
intended to account for member out-of-straightness and also to provide a degree of
robustness in the structure to resist unintended or accidental lateral loadings that may
not have been considered explicitly in the design.
A provision analogous to that in Section J1.4(2)(i), requiring that splice materials and
connectors have an available strength of at least 50% of the required compressive
strength, has been in the AISC Specifications since 1946. The current Specification
clarifies this requirement by stating that the force for proportioning the splice mate-
rials and connectors is a tensile force. This avoids uncertainty as to how to handle
situations where compression on the connection imposes no force on the connectors.
Proportioning the splice materials and connectors for 50% of the required member
strength is simple, but can be very conservative. In Section J1.4(2)(ii), the
Specification offers an alternative that addresses directly the design intent of these
provisions. The lateral load of 2% of the required compressive strength of the mem-
ber simulates the effect of a kink at the splice, caused by an end finished slightly
out-of-square or other construction condition. Proportioning the connection for the
resulting moment and shear also provides a degree of robustness in the structure.
5. Splices in Heavy Sections
Solidified but still hot weld metal contracts significantly as it cools to ambient tem-
perature. Shrinkage of large groove welds between elements that are not free to move
so as to accommodate the shrinkage causes strains in the material adjacent to the
weld that can exceed the yield point strain. In thick material the weld shrinkage is
restrained in the thickness direction, as well as in the width and length directions,
causing triaxial stresses to develop that may inhibit the ability to deform in a ductile
manner. Under these conditions, the possibility of brittle fractureincreases.
When splicing hot-rolled shapes with flange thickness exceeding 2 in. (50 mm) or
heavy welded built-up members, these potentially harmful weld shrinkage strains
can be avoided by using bolted splices, fillet-welded lap splices, or splices that com-
bine a welded and bolted detail (see Figure C-J1.1). Details and techniques that
perform well for materials of modest thickness usually must be changed or supple-
mented by more demanding requirements when welding thick material.
The provisions of AWS D1.1/D1.1M (AWS, 2010) are minimum requirements that
apply to most structural welding situations. However, when designing and fabricat-
ing welded splices of hot-rolled shapes with flange thicknesses exceeding 2 in. (50
mm) and similar built-up cross sections, special consideration must be given to all
aspects of the welded splice detail:
(1) Notch-toughness requirements are required to be specified for tension members;
see Commentary Section A3.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 384

Comm. J1.] GENERAL PROVISIONS 16.1–385
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(2) Generously sized weld access holes (see Section J1.6) are required to provide
increased relief from concentrated weld shrinkage strains, to avoid close juncture
of welds in orthogonal directions, and to provide adequate clearance for the exer-
cise of high quality workmanship in hole preparation, welding, and for ease of
inspection.
(3) Preheating for thermal cutting is required to minimize the formation of a hard
surface layer. (See Section M2.2.)
(4) Grinding of copes and weld access holes to bright metal to remove the hard sur-
face layer is required, along with inspection using magnetic particle or
dye-penetrant methods, to verify that transitions are free of notches and cracks.
In addition to tension splices of truss chord members and tension flanges of flexural
members, other joints fabricated from heavy sections subject to tension should be
given special consideration during design and fabrication.
Alternative details that do not generate shrinkage strains can be used. In connections
where the forces transferred approach the member strength, direct welded groove
joints may still be the most effective choice.
Earlier editions of this Specification mandated that backing bars and weld tabs be
removed from all splices of heavy sections. These requirements were deliberately
removed, being judged unnecessary and, in some situations, potentially resulting in
more harm than good. The Specification still permits the engineer of record to spec-
ify their removal when this is judged appropriate.
The previous requirement for the removal of backing bars necessitated, in some sit-
uations, that such operations be performed out-of-position; that is, the welding
required to restore the backgouged area had to be applied in the overhead position.
This may necessitate difficult equipment for gaining access, different welding
equipment, processes and/or procedures, and other practical constraints. When box
sections made of plate are spliced, access to the interior side (necessary for backing
removal) is typically impossible.
Fig. C-J1.1. Alternative splices that minimize weld restraint tensile stresses.
(a) Shear plate welded
to web
(b) Shear plate welded
to flange tips
(c) Bolted splice plates
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 385

16.1–386 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Weld tabs that are left in place on splices act as “short attachments” and attract little
stress. Even though it is acknowledged that weld tabs might contain regions of infe-
rior quality weld metal, the stress concentration effect is minimized since little stress
is conducted through the attachment.
6. Weld Access Holes
Weld access holes are frequently required in the fabrication of structural components.
The geometry of these structural details can affect the components’ performance. The
size and shape of beam copes and weld access holes can have a significant effect on
the ease of depositing sound weld metal, the ability to conduct nondestructive exam-
inations, and the magnitude of the stresses at the geometric discontinuities produced
by these details.
Weld access holes used to facilitate welding operations are required to have a mini-
mum length from the toe of the weld preparation (see Figure C-J1.2) equal to 1.5
times the thickness of the material in which the hole is made. This minimum length
Notes: These are typical details for joints welded from one side against steel backing.
Alternative details are discussed in the commentary text.
1) Length: Greater of 1.5
twor 1
1
/2in. (38 mm)
2) Height: Greater of 1.0
twor
3
/4in. (19 mm) but need not exceed 2 in. (50 mm)
3)
R: 3/8 in. min. (10 mm). Grind the thermally cut surfaces of weld access holes in
heavy shapes as defined in Sections A3.1(c) and (d).
4) Slope
‘a’forms a transition from the web to the flange. Slope ‘b’may be horizontal.
5) The bottom of the top flange is to be contoured to permit the tight fit of backing bars
where they are to be used.
6) The web-to-flange weld of built-up members is to be held back a distance of at least
the weld size from the edge of the access hole.
Built-up shapes assembled
after cutting the weld access
hole.
Rolled shapes and built-up shapes assembled prior to
cutting the weld access hole.
Alternate 1 Alternate 2 Alternate 3
Fig. C-J1.2. Weld access hole geometry.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 386

Comm. J1.] GENERAL PROVISIONS 16.1–387
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is expected to accommodate a significant amount of the weld shrinkage strains at the
web-to-flange intersection.
The height of the weld access hole must provide sufficient clearance for ease of weld-
ing and inspection and must be large enough to allow the welder to deposit sound
weld metal through and beyond the web. A weld access hole height equal to 1.0 times
the thickness of the material with the access hole but not less than
3
/4in. (19 mm) has
been judged to satisfy these welding and inspection requirements. The height of the
weld access hole need not exceed 2 in. (50 mm).
The geometry of the reentrant corner between the web and the flange determines the
level of stress concentration at that location. A 90°reentrant corner having a very
small radius produces a very high stress concentration that may lead to rupture of the
flange. Consequently, to minimize the stress concentration at this location, the edge
of the web is sloped or curved from the surface of the flange to the reentrant surface
of the weld access hole.
Stress concentrations along the perimeter of weld access holes also can affect the per-
formance of the joint. Consequently, weld access holes are required to be free of
stress raisers such as notches and gouges.
Stress concentrations at web-to-flange intersections of built-up shapes can be
decreased by terminating the weld away from the access hole. Thus, for built-up
shapes with fillet welds or partial-joint-penetration groove welds that join the web to
the flange, the weld access hole may terminate perpendicular to the flange, provided
that the weld is terminated a distance equal to or greater than one weld size away
from the access hole.
7. Placement of Welds and Bolts
Slight eccentricities between the gravity axis of single and double angle members
and the center of gravity of connecting bolts or rivets have long been ignored as
having negligible effect on the static strength of such members. Tests have shown
Fig. C-J1.3. Balanced welds
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:46 PM Page 387

16.1–388 GENERAL PROVISIONS [Comm. J1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
that similar practice is warranted in the case of welded members in statically loaded
structures (Gibson and Wake, 1942).
However, the fatigue life of eccentrically loaded welded angles has been shown to be
very short (Klöppel and Seeger, 1964). Notches at the roots of fillet welds are harm-
ful when alternating tensile stresses are normal to the axis of the weld, as could occur
due to bending when axial cyclic loading is applied to angles with end welds not bal-
anced about the neutral axis. Accordingly, balanced welds are required when such
members are subjected to cyclic loading (see Figure C-J1.3).
8. Bolts in Combination with Welds
As in previous editions, this Specification does not permit bolts to share the load with
welds except for bolts in shear connections. The conditions for load sharing have,
however, changed substantially based on recent research (Kulak and Grondin, 2003).
For shear-resisting connections with longitudinally loaded fillet welds, load sharing
between the longitudinal welds and bolts in standard holes or short-slotted holes
transverse to the direction of the load is permitted, but the contribution of the bolts is
limited to 50% of the available strength of the equivalent bearing-type connection.
Both ASTM A307 and high-strength bolts are permitted. The heat of welding near
bolts will not alter the mechanical properties of the bolts.
In making alterations to existing structures, the use of welding to resist loads other
than those produced by existing dead load present at the time of making the alteration
is permitted for riveted connections and high-strength bolted connections if the bolts
are pretensioned to the levels in Tables J3.1 or J3.1M prior to welding.
The restrictions on bolts in combination with welds do not apply to typical bolted/
welded beam-to-girder and beam-to-column connections and other comparable
connections (Kulak et al., 1987).
9. High-Strength Bolts in Combination with Rivets
When high-strength bolts are used in combination with rivets, the ductility of the riv-
ets permits the direct addition of the strengths of the two fastener types.
10. Limitations on Bolted and Welded Connections
Pretensioned bolts, slip-critical bolted connections, or welds are required whenever
connection slip can be detrimental to the performance of the structure or there is a
possibility that nuts will back off. Snug-tightened high-strength bolts are recom-
mended for all other connections.
J2. WELDS
Selection of weld type [complete-joint-penetration (CJP) groove weld versus fillet
versus partial-joint-penetration (PJP) groove weld] depends on base connection
geometry (butt versus T or corner), in addition to required strength, and other issues
discussed below. Notch effects and the ability to evaluate with nondestructive testing
may affect joint selection for cyclically loaded joints or joints expected to deform
plastically.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:47 PM Page 388

Comm. J2.] WELDS 16.1–389
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Groove Welds
1a. Effective Area
Tables J2.1 and J2.2 show that the effective throat of partial-joint-penetration and
flare groove welds is dependent upon the weld process and the position of the weld.
It is recommended that the design drawings should show either the required strength
or the required effective throat size and allow the fabricator to select the process and
determine the position required to meet the specified requirements. Effective throats
larger than those in Table J2.2 can be qualified by tests. Weld reinforcement is not
used in determining the effective throat of a groove weld but reinforcing fillets on T
and corner joints are accounted for in the effective throat. See AWS D1.1/D1.1M
Annex A (AWS, 2010).
1b. Limitations
Table J2.3 gives the minimum effective throat thickness of a PJP groove weld.
Notice that for PJP groove welds Table J2.3 goes up to a plate thickness of over 6
in. (150 mm) and a minimum weld throat of
5
/8in. (16 mm), whereas for fillet welds
Table J2.4 goes up to a plate thickness of over
3
/4in. (19 mm) and a minimum leg
size of fillet weld of only
5
/16in. (8 mm). The additional thickness for PJP groove
welds is intended to provide for reasonable proportionality between weld and mate-
rial thickness. The use of single-sided PJP groove welds in joints subject to rotation
about the toe of the weld is discouraged.
2. Fillet Welds
2a. Effective Area
The effective throat of a fillet weld does not include the weld reinforcement, nor any
penetration beyond the weld root. Some welding procedures produce a consistent
penetration beyond the root of the weld. This penetration contributes to the strength
of the weld. However, it is necessary to demonstrate that the weld procedure to be
used produces this increased penetration. In practice, this can be done initially by
cross-sectioning the runoff plates of the joint. Once this is done, no further testing is
required, as long as the welding procedure is not changed.
2b. Limitations
Table J2.4 provides the minimum size of a fillet weld for a given thickness of the
thinner part joined. The requirements are not based on strength considerations, but
on the quench effect of thick material on small welds. Very rapid cooling of weld
metal may result in a loss of ductility. Furthermore, the restraint to weld metal shrink-
age provided by thick material may result in weld cracking.
The use of the thinner part to determine the minimum size weld is based on the
prevalence of the use of filler metal considered to be “low hydrogen.” Because
a
5
/16-in. (8 mm) fillet weld is the largest that can be deposited in a single pass
by the SMAW process and still be considered prequalified under AWS D1.1/D1.1M,
5
/16in. (8 mm) applies to all material greater than
3
/4in. (19 mm) in thickness, but
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 389

16.1–390 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
minimum preheat and interpass temperatures are required by AWS D1.1/D1.1M. The
design drawings should reflect these minimum sizes, and the production welds
should be of these minimum sizes.
For thicker members in lap joints, it is possible for the welder to melt away the upper
corner, resulting in a weld that appears to be full size but actually lacks the required
weld throat dimension. See Figure C-J2.1(a). On thinner members, the full weld
throat is likely to be achieved, even if the edge is melted away. Accordingly, when
the plate is
1
/4in. (6 mm) or thicker, the maximum fillet weld size is
1
/16in. (2 mm)
less than the plate thickness, t, which is sufficient to ensure that the edge remains.
See Figure C-J2.1(b).
(a) Incorrect for t≥
1
/4in. (b) Correct for t≥
1
/4in.
Fig. C-J2.1. Identification of plate edge.
Fig. C-J2.2. Longitudinal fillet welds.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:51 PM Page 390

Comm. J2.] WELDS 16.1–391
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Where longitudinal fillet welds are used alone in a connection (see Figure C-J2.2),
Section J2.2b requires that the length of each weld be at least equal to the width of
the connecting material because of shear lag (Freeman, 1930).
By providing a minimum lap of five times the thickness of the thinner part of a lap
joint, the resulting rotation of the joint when pulled will not be excessive, as shown
in Figure C-J2.3. Fillet welded lap joints under tension tend to open and apply a tear-
ing action at the root of the weld as shown in Figure C-J2.4(b), unless restrained by
a force, F, as shown in Figure C-J2.4(a). The minimum length reduces stresses due
to Poisson effects.
The use of single-sided fillet welds in joints subject to rotation around the toe of the
weld is discouraged. End returns are not essential for developing the full length of
fillet welded connections and have a negligible effect on their strength. Their use has
been encouraged to ensure that the weld size is maintained over the length of the
weld, to enhance the fatigue resistance of cyclically loaded flexible end connections,
and to increase the plastic deformation capability of such connections.
The weld strength database on which the specifications were developed had no end
returns. This includes the study reported in Higgins and Preece (1968), the seat angle
tests in Lyse and Schreiner (1935), the seat and top angle tests in Lyse and Gibson
(1937), the tests on beam webs welded directly to a column or girder by fillet welds in
Johnston and Deits (1942), and the tests on eccentrically loaded welded connections
reported by Butler et al. (1972). Hence, the current strength values and joint design
models do not require end returns when the required weld size is provided. Johnston
and Green (1940) noted that movement consistent with the design assumption of no
end restraint (in other words, joint flexibility) was enhanced without end returns. They
also verified that greater plastic deformation of the connection was achieved when end
returns existed, although the strength was not significantly different.
Fig. C-J2.3. Minimum lap.
Fig. C-J2.4. Restraint of lap joints.
(a) Restrained (b) Unrestrained
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 391

16.1–392 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When longitudinal fillet welds parallel to the stress are used to transmit the load to
the end of an axially loaded member, the welds are termed “end loaded.” Typical
examples of such welds include, but are not limited to (a) longitudinally welded lap
joints at the end of axially loaded members, (b) welds attaching bearing stiffeners,
and (c) similar cases. Typical examples of longitudinally loaded fillet welds that are
not considered end loaded include, but are not limited to (a) welds that connect plates
or shapes to form built-up cross sections in which the shear force is applied to each
increment of length of weld depending upon the distribution of the shear along the
length of the member, and (b) welds attaching beam web connection angles and shear
plates because the flow of shear force from the beam or girder web to the weld is
essentially uniform throughout the weld length; that is, the weld is not end-loaded
despite the fact that it is loaded parallel to the weld axis. Neither does the reduction
coefficient, β, apply to welds attaching stiffeners to webs because the stiffeners and
welds are not subject to calculated axial stress but merely serve to keep the web flat.
The distribution of stress along the length of end-loaded fillet welds is not uniform
and is dependent upon complex relationships between the stiffness of the longitudi-
nal fillet weld relative to the stiffness of the connected materials. Experience has
shown that when the length of the weld is equal to approximately 100 times the weld
size or less, it is reasonable to assume that the full length is effective. For weld
lengths greater than 100 times the weld size, the effective length should be taken less
than the actual length. The reduction factor, β, provided in Section J2.2b is the equiv-
alent to that given in CEN (2005), which is a simplified approximation of
exponential formulas developed by finite element studies and tests performed in
Europe over many years. The provision is based on the combined consideration of
the nominal strength for fillet welds with leg size less than
1
/4in. (6 mm) and of a
judgment-based serviceability limit of slightly less than
1
/32in. (1 mm) displacement
at the end of the weld for welds with leg size
1
/4in. (6 mm) and larger. Given the
empirically derived mathematical form of the βfactor, as the ratio of weld length to
weld size, w, increases beyond 300, the effective length of the weld begins to
decrease, illogically causing a weld of greater length to have progressively less
strength. Therefore, the effective length is taken as 0.6(300)w =180wwhen the weld
length is greater than 300 times the leg size.
In most cases, fillet weld terminations do not affect the strength or serviceability of
connections. However, in certain cases the disposition of welds affect the planned
function of the connection, and notches may affect the static strength and/or the
resistance to crack initiation if cyclic loads of sufficient magnitude and frequency
occur. For these cases, termination details at the end of the joint are specified to pro-
vide the desired profile and performance. In cases where profile and notches are less
critical, terminations are permitted to be run to the end. In most cases, stopping the
weld short of the end of the joint will not reduce the strength of the weld. The small
loss of weld area due to stopping the weld short of the end of the joint by one to two
weld sizes is not typically considered in the calculation of weld strength. Only short
weld lengths will be significantly affected by this.
The following situations require special attention:
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 392

Comm. J2.] WELDS 16.1–393
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J2.5. Fillet welds near tension edges.
(1) For lapped joints where one part extends beyond the end or edge of the part to
which it is welded and if the parts are subject to calculated tensile stress at the
start of the overlap, it is important that the weld terminate a short distance from
the stressed edge. For one typical example, the lap joint between the tee chord
and the web members of a truss, the weld should not extend to the edge of the
tee stem (see Figure C-J2.5). The best technique to avoid inadvertent notches at
this critical location is to strike the welding arc at a point slightly back from the
edge and proceed with welding in the direction away from the edge (see Figure
C-J2.6). Where framing angles extend beyond the end of the beam web to which
they are welded, the free end of the beam web is subject to zero stress; thus, it
is permissible for the fillet weld to extend continuously across the top end, along
the side and along the bottom end of the angle to the extreme end of the beam
(see Figure C-J2.7).
Fig. C-J2.6. Suggested direction of welding travel to avoid notches.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 393

16.1–394 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J2.8. Flexible connection returns optional unless subject to fatigue.
Fig. C-J2.7. Fillet weld details on framing angles.
(2) For connections such as framing angles and framing tees, which are assumed in
the design of the structure to be flexible connections, the tension edges of the out-
standing legs or flanges must be left unwelded over a substantial portion of their
length to provide flexibility in the connection. Tests have shown that the static
strength of the connection is the same with or without end returns; therefore, the
use of returns is optional, but if used, their length must be restricted to not more
than four times the weld size (Johnston and Green, 1940) (see Figure C-J2.8).
(3) Experience has shown that when ends of intermediate transverse stiffeners on
the webs of plate girders are not welded to the flanges (the usual practice), small
torsional distortions of the flange occur near shipping bearing points in the
normal course of shipping by rail or truck and may cause high out-of-plane
bending stresses (up to the yield point) and fatigue cracking at the toe of the
web-to-flange welds. This has been observed even with closely fitted stiffeners.
The intensity of these out-of-plane stresses may be effectively limited and
cracking prevented if “breathing room” is provided by terminating the stiffener
weld away from the web-to-flange welds. The unwelded distance should not
exceed six times the web thickness so that column buckling of the web within
the unwelded length does not occur.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 394

Comm. J2.] WELDS 16.1–395
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(4) For fillet welds that occur on opposite sides of a common plane, it is difficult to
deposit a weld continuously around the corner from one side to the other without
causing a gouge in the corner of the parts joined; therefore, the welds must be
interrupted at the corner (see Figure C-J2.9).
3. Plug and Slot Welds
A plug weld is a weld made in a circular hole in one member of a joint fusing that
member to another member. A slot weld is a weld made in an elongated hole in one
member of a joint fusing that member to another member. Both plug and slot welds
are only applied to lap joints. Care should be taken when plug or slot welds are
applied to structures subject to cyclic loading as the fatigue performance of these
welds is limited.
A fillet weld inside a hole or slot is not a plug weld. A “puddle weld,” typically used
for joining decking to the supporting steel, is not the same as a plug weld.
3a. Effective Area
When plug and slot welds are detailed in accordance with Section J2.3b, the strength
of the weld is controlled by the size of the fused area between the weld and the base
metal. The total area of the hole or slot is used to determine the effective area.
3b. Limitations
Plug and slot welds are limited to situations where they are loaded in shear, or where
they are used to prevent elements of a cross section from buckling, such as for web
doubler plates on deeper rolled sections. Plug and slot welds are only allowed where
the applied loads result in shear between the joined materials—they are not to be used
to resist direct tensile loads. This restriction does not apply to fillets in holes or slots.
The geometric limitations on hole and slot sizes are prescribed in order to provide a
geometry that is conducive to good fusion. Deep, narrow slots and holes make it dif-
ficult for the welder to gain access and see the bottom of the cavity into which weld
Fig. C-J2.9. Details for fillet welds that occur on opposite sides of a common plane.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 395

16.1–396 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
metal must be placed. Where access is difficult, fusion may be limited, and the
strength of the connection reduced.
4. Strength
The strength of welds is governed by the strength of either the base material or the
deposited weld metal. Table J2.5 presents the nominal weld strengths and the φand
Ωfactors, as well as the limitations on filler metal strength levels.
The strength of a joint that contains a complete-joint-penetration (CJP) groove weld,
whether loaded in tension or compression, is dependent upon the strength of the
base metal, and no computation of the strength of the CJP groove weld is required.
For tension applications, matching strength filler metal is required, as defined in
AWS D1.1/D1.1M Table 3.1. For compression applications, up to a 10 ksi (70 MPa)
decrease in filler metal strength is permitted, which is equivalent to one strength level.
CJP groove welds loaded in tension or compression parallel to the weld axis, such as
for the groove welded corners of box columns, do not transfer primary loads across
the joint. In cases such as this, no computation of the strength of the CJP groove weld
strength is required.
CJP groove welded tension joints are intended to provide strength equivalent to the
base metal, therefore matching filler metal is required. CJP groove welds have been
shown not to exhibit compression failure even when they are undermatched. The
amount of undermatching before unacceptable deformation occurs has not been
established, but one standard strength level is conservative and therefore permitted.
Joints in which the weld strength is calculated based on filler metal classification
strength can be designed using any filler metal strength equal to or less than match-
ing. Filler metal selection is still subject to compliance with AWS D1.1/D1.1M.
The nominal strength of partial-joint-penetration (PJP) groove welded joints in com-
pression is higher than for other joints because compression limit states are not
observed on weld metal until significantly above the yield strength.
Connections that contain PJP groove welds designed to bear in accordance with
Section J1.4(2), and where the connection is loaded in compression, are not limited
in strength by the weld since the surrounding base metal can transfer compression
loads. When not designed in accordance with Section J1.4(2), an otherwise similar
connection must be designed considering the possibility that either the weld or the
base metal may be the critical component in the connection.
The factor of 0.6 on F
EXX for the tensile strength of PJP groove welds is an arbitrary
reduction that has been used since the early 1960s to compensate for the notch effect
of the unfused area of the joint, uncertain quality in the root of the weld due to the
inability to perform nondestructive evaluation, and the lack of a specific notch-
toughness requirement for filler metal. It does not imply that the tensile failure mode
is by shear stress on the effective throat, as in fillet welds.
Column splices have historically been connected with relatively small PJP groove
welds. Frequently, erection aids are available to resist construction loads. Columns are
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 396

Comm. J2.] WELDS 16.1–397
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
intended to be in bearing in splices and on base plates. Section M4.4 recognizes that,
in the as-fitted product, the contact may not be consistent across the joint and therefore
provides rules assuring some contact that limits the potential deformation of weld metal
and the material surrounding it. These welds are intended to hold the columns in place,
not to transfer the compressive loads. Additionally, the effects of very small deforma-
tion in column splices are accommodated by normal construction practices. Similarly,
the requirements for base plates and normal construction practice assure some bearing
at bases. Therefore the compressive stress in the weld metal does not need to be con-
sidered as the weld metal will deform and subsequently stop when the columns bear.
Other PJP groove welded joints connect members that may be subject to unantici-
pated loads and may fit with a gap. Where these connections are finished to bear,
fit-up may not be as good as that specified in Section M4.4 but some bearing is antic-
ipated and the weld is designed to resist loads defined in Section J1.4(2) using the
factors, strengths and effective areas in Table J2.5. Where the joints connect mem-
bers that are not finished to bear, the welds are designed for the total load using the
available strengths and areas in Table J2.5.
In Table J2.5, the nominal strength of fillet welds is determined from the effective
throat area, whereas the strengths of the connected parts are governed by their
respective thicknesses. Figure C-J2.10 illustrates the shear planes for fillet welds
and base material:
(1) Plane 1-1, in which the strength is governed by the shear strength of the material A
(2) Plane 2-2, in which the strength is governed by the shear strength of the weld
metal
(3) Plane 3-3, in which the strength is governed by the shear strength of the material B
The strength of the welded joint is the lowest of the strengths calculated in each plane
of shear transfer. Note that planes 1-1 and 3-3 are positioned away from the fusion
areas between the weld and the base material. Tests have demonstrated that the stress
on this fusion area is not critical in determining the shear strength of fillet welds
(Preece, 1968).
The shear planes for plug and PJP groove welds are shown in Figure C-J2.11 for the
weld and base metal. Generally the base metal will govern the shear strength.
Fig. C-J2.10. Shear planes for fillet welds loaded in longitudinal shear.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 397

16.1–398 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
When weld groups are loaded in shear by an external load that does not act through
the center of gravity of the group, the load is eccentric and will tend to cause a rela-
tive rotation and translation between the parts connected by the weld. The point
about which rotation tends to take place is called the instantaneous center of rotation.
Its location is dependent upon the load eccentricity, geometry of the weld group, and
deformation of the weld at different angles of the resultant elemental force relative
to the weld axis.
The individual strength of each unit weld element can be assumed to act on a line
perpendicular to a ray passing through the instantaneous center and that element’s
location (see Figure C-J2.12).
The ultimate shear strength of weld groups can be obtained from the load deforma-
tion relationship of a single-unit weld element. This relationship was originally
given by Butler et al. (1972) for E60 (E43) electrodes. Curves for E70 (E48) elec-
trodes were reported in Lesik and Kennedy (1990).
Unlike the load-deformation relationship for bolts, strength and deformation per-
formance in welds are dependent on the angle that the resultant elemental force
makes with the axis of the weld element as shown in Figure C-J2.12. The actual load
deformation relationship for welds is given in Figure C-J2.13, taken from Lesik and
Kennedy (1990). Conversion of the SI equation to U.S. customary units results in the
following weld strength equation for R
n:
(b) Partial-joint-penetration groove welds
Fig. C-J2.11. Shear planes for plug and partial-joint-penetration groove welds.
(a) Plug welds
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 398

Comm. J2.] WELDS 16.1–399
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-J2-1)
Because the maximum strength is limited to 0.60F
EXXfor longitudinally loaded
welds (θ=0º), the Specification provision provides, in the reduced equation coeffi-
cient, a reasonable margin for any variation in welding techniques and procedures.
To eliminate possible computational difficulties, the maximum deformation in the
weld elements is limited to 0.17w. For design convenience, a simple elliptical for-
mula is used for f(p) to closely approximate the empirically derived polynomial in
Fig. C-J2.12. Weld element nomenclature.
Fig. C-J2.13. Load deformation relationship.
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0.0 0.1 0.2 0.3 0.4
Normalized Weld Deformation, '/w
Normalized Weld Load, P/P
0
0
15
30
45
60
75
90
q
q
q
q
q
q
q
RFAn EXX w=+ ( )0852 10 050
15
...sin
.
θ
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 399

16.1–400 WELDS [Comm. J2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Lesik and Kennedy (1990). Previous to 2010, the increase in fillet weld strength was
restricted to weld groups loaded in the plane of the weld group elements. Testing by
Gomez et al. (2008) indicated that the strength increase defined in Equation J2-5
does not have to be restricted to loads in-plane.
The total strength of all the weld elements combine to resist the eccentric load
and, when the correct location of the instantaneous center has been selected, the three
in-plane equations of statics (ΣF
x= 0, ΣF y=0, ΣM=0) will be satisfied. Numerical
techniques, such as those given in Brandt (1982), have been developed to locate the
instantaneous center of rotation subject to convergent tolerances.
5. Combination of Welds
When determining the strength of a combination PJP groove weld and fillet weld
contained within the same joint, the total throat dimension is not the simple addition
of the fillet weld throat and the groove weld throat. In such cases, the resultant throat
of the combined weld (shortest dimension from the root to face of the final weld)
must be determined and the design based upon this dimension.
6. Filler Metal Requirements
Applied and residual stresses and geometrical discontinuities from backing bars with
associated notch effects contribute to sensitivity to fracture. Additionally, some weld
metals in combination with certain procedures result in welds with low notch tough-
ness. Accordingly, this Specification requires a minimum specified toughness for
weld metals in those joints that are subject to more significant applied stresses and
toughness demands. The level of toughness required is selected as one level more
conservative than the base metal requirement for hot-rolled shapes with a flange
thickness exceeding 2 in. (50 mm).
7. Mixed Weld Metal
Problems can occur when incompatible weld metals are used in combination and
notch-tough composite weld metal is required. For instance, tack welds deposited
using a self-shielded process with aluminum deoxidizers in the electrodes and sub-
sequently covered by SAW weld passes can result in a composite weld metal with
low notch-toughness, despite the fact that each process by itself could provide notch-
tough weld metal.
Potential concern about intermixing weld metal types is limited to situations where
one of the two weld metals is deposited by the self-shielded flux-cored arc welding
(FCAW-s) process. Changes in tensile and elongation properties have been demon-
strated to be of insignificant consequence. Notch toughness is the property that can
be affected the most. Many compatible combinations of FCAW-s and other processes
are commercially available.
J3. BOLTS AND THREADED PARTS
1. High-Strength Bolts
In general, except as provided in this Specification, the use of high-strength bolts is
required to conform to the provisions of the Specification for Structural Joints
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 400

Comm. J3.] BOLTS AND THREADED PARTS 16.1–401
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Using High-Strength Bolts (RCSC, 2009) as approved by the Research Council on
Structural Connections. Kulak (2002) provides an overview of the properties and
use of high-strength bolts.
Occasionally the need arises for the use of high-strength bolts of diameters in excess
of those permitted for ASTM A325 or A325M and ASTM A490 or A490M bolts (or
lengths exceeding those available in these grades). For joints requiring diameters in
excess of 1½ in. (38 mm) or lengths in excess of about 8 in. (200 mm), Section J3.1
permits the use of ASTM A449 bolts and ASTM A354 Grade BC and BD threaded
rods. Note that anchor rods are more preferably specified as ASTM F1554 material.
High-strength bolts have been grouped by strength levels into two categories:
Group A bolts which have a strength similar to ASTM A325 bolts
Group B bolts which have a strength similar to ASTM A490 bolts
Snug-tightened installation is the most economical installation procedure and is per-
mitted for bolts in bearing type connections except where pretensioning is required
in the Specification. Only Group A bolts in tension or combined shear and tension
and Group B bolts in shear, where loosening or fatigue are not design considerations,
are permitted to be installed snug tight. Two studies have been conducted to investi-
gate possible reductions in strength because of varying levels of pretension in bolts
within the same connection. The studies found that no significant loss of strength
resulted from having different pretensions in bolts within the same connection, even
with ASTM A490 fasteners. See Commentary Section J3.6 for more details.
There are no specified minimum or maximum pretensions for snug-tight installation
of bolts. The only requirement is that the bolts bring the plies into firm contact.
Depending on the thickness of material and the possible distortion due to welding,
portions of the connection may not be in contact.
There are practical cases in the design of structures where slip of the connection is
desirable to allow for expansion and contraction of a joint in a controlled manner.
Regardless of whether force transfer is required in the direction normal to the slip
direction, the nuts should be hand-tightened with a spud wrench and then backed off
one-quarter turn. Furthermore, it is advisable to deform the bolt threads or use a lock-
ing nut or jamb nut to ensure that the nut does not back off further under service
conditions. Thread deformation is commonly accomplished with a cold chisel and
hammer applied at one location. Note that tack-welding of the nut to the bolt threads
is not recommended.
2. Size and Use of Holes
Standard holes orshort slotted holes transverse to the direction of load are now per-
mitted for all applications complying with the requirements of this Specification. In
addition, to provide some latitude for adjustment in plumbing a frame during erec-
tion, three types of enlarged holes are permitted, subject to the approval of the
designer. The nominal maximum sizes of these holes are given in Table J3.3 or
J3.3M. The use of these enlarged holes is restricted to connections assembled with
high-strength bolts and is subject to the provisions of Sections J3.3 and J3.4.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 401

16.1–402 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Minimum Spacing
The minimum spacing dimensions of 2
2
/3times and 3 times the nominal diameter are
to facilitate construction and do not necessarily satisfy the bearing and tearout
strength requirements in Section J3.10.
4. Minimum Edge Distance
In previous editions of the Specification, separate minimum edge distances were
given in Tables J3.4 and J3.4M for sheared edges and for rolled or thermally cut
edges. Sections J3.10 and J4 are used to prevent exceeding bearing and tearout lim-
its, are suitable for use with both thermally cut, sawed and sheared edges, and must
be met for all bolt holes. Accordingly, the edge distances in Tables J3.4 and J3.4M
are workmanship standards and are no longer dependent on edge condition or fabri-
cation method.
5. Maximum Spacing and Edge Distance
Limiting the edge distance to not more than 12 times the thickness of an outside
connected part, but not more than 6 in. (150 mm), is intended to provide for the
exclusion of moisture in the event of paint failure, thus preventing corrosion
between the parts that might accumulate and force these parts to separate. More
restrictive limitations are required for connected parts of unpainted weathering steel
exposed to atmospheric corrosion.
The longitudinal spacing applies only to elements consisting of a shape and a plate
or two plates. For elements such as back-to-back angles not subject to corrosion, the
longitudinal spacing may be as required for structural requirements.
6. Tension and Shear Strength of Bolts and Threaded Parts
Tension loading of fasteners is usually accompanied by some bending due to the
deformation of the connected parts. Hence, the resistance factor, φ,and the safety
factor, Ω, are relatively conservative. The nominal tensile strength values in Table
J3.2 were obtained from the equation
F
nt =0.75F u (C-J3-2)
The factor of 0.75 included in this equation accounts for the approximate ratio of the
effective tension area of the threaded portion of the bolt to the area of the shank of
the bolt for common sizes. Thus A
bis defined as the area of the unthreaded body of
the bolt and the value reported for F
ntin Table J3.2 is calculated as 0.75F u.
The tensile strength given by Equation C-J3-2 is independent of whether the bolt was
initially installed pretensioned or snug-tightened. Tests confirm that the performance
of ASTM A325 and A325M bolts in tension not subjected to fatigue are unaffected
by the original installation condition (Amrine and Swanson, 2004; Johnson, 1996;
Murray et al., 1992). While the equation was developed for bolted connections, it
was also conservatively applied to threaded parts (Kulak et al., 1987).
For ASTM A325 or A325M bolts, no distinction is made between small and large
diameters, even though the minimum tensile strength, F
u, is lower for bolts with
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 402

Comm. J3.] BOLTS AND THREADED PARTS 16.1–403
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
diameters in excess of 1 in. (25 mm). Such a refinement is not justified, particularly
in view of the conservative resistance factor, φ, and safety factor, Ω, the increasing
ratio of tensile area to gross area, and other compensating factors.
The values of nominal shear strength in Table J3.2 were obtained from the following
equations rounded to the nearest whole ksi:
(a) When threads are excluded from the shear planes
F
nv=0.563F u (C-J3-3)
(b) When threads are not excluded from the shear plane
F
nv=0.450F u (C-J3-4)
The factor 0.563 accounts for the effect of a shear/tension ratio of 0.625 and a 0.90
length reduction factor. The factor of 0.450 is 80% of 0.563, which accounts for the
reduced area of the threaded portion of the fastener when the threads are not excluded
from the shear plane. The initial reduction factor of 0.90 is imposed on connections
with lengths up to and including 38 in. (965 mm). The resistance factor, φ, and the
safety factor, Ω, for shear in bearing-type connections in combination with the initial
0.90 factor accommodate the effects of differential strain and second-order effects in
connections less than or equal to 38 in. (965 mm) in length.
In connections consisting of only a few fasteners and length not exceeding approx-
imately 16 in. (406 mm), the effect of differential strain on the shear in bearing
fasteners is negligible (Kulak et al., 1987; Fisher et al., 1978; Tide, 2010). In longer
tension and compression joints, the differential strain produces an uneven distribu-
tion of load between fasteners, those near the end taking a disproportionate part of
the total load, so that the maximum strength per fastener is reduced. This
Specification does not limit the length but requires that the initial 0.90 factor be
replaced by 0.75 when determining bolt shear strength for connections longer than
38 in. (965 mm). In lieu of another column of design values, the appropriate val-
ues are obtained by multiplying the tabulated values by 0.75/0.90=0.833.
The ongoing discussion is primarily applicable to end-loaded tension and compres-
sion connections, but for connection lengths less than or equal to 38 in. (965 mm) it
is applied to all connections to maintain simplicity. For shear type connections used
in beams and girders, with lengths greater than 38 in. (965 mm), there is no need to
make the second reduction. Examples of end-loaded and non-end-loaded connec-
tions are shown in Figure C-J3.1.
When determining the shear strength of a fastener, the area, A
b, is multiplied by the
number of shear planes. While developed for bolted connections, the equations were
also conservatively applied to threaded parts. The value given for ASTM A307 bolts
was obtained from Equation C-J3-4 but is specified for all cases regardless of the
position of threads.
Additional information regarding the development of the provisions in this section
can be found in the Commentary to the RCSC Specification(RCSC, 2009).
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:52 PM Page 403

16.1–404 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In Table J3.2, footnote c, the specified reduction of 1% for each
1
/16in. over 5 diam-
eters for ASTM A307 bolts is a carryover from the reduction that was specified for
long rivets. Because the material strengths are similar, it was decided a similar reduc-
tion was appropriate.
7. Combined Tension and Shear in Bearing-Type Connections
Tests have shown that the strength of bearing fasteners subject to combined shear and
tension resulting from externally applied forces can be closely defined by an ellipse
(Kulak et al., 1987). The relationship is expressed as:
For design according to Section B3.3 (LRFD):
(C-J3-5a)
For design according to Section B3.4 (ASD):
(C-J3-5b)
where
f
v=required shear stress, ksi (MPa)
f
t=required tensile stress, ksi (MPa)
f
F
f
Ft
nt
v
nv
φφ






+






=
22
1
ΩΩf
F
f
Ft
nt
v
nv⎛





+






=
22
1
Fig. C-J3.1. End loaded and non-end-loaded connection examples;
l
pl=fastener pattern length.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 404

Comm. J3.] BOLTS AND THREADED PARTS 16.1–405
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fnv=nominal shear stress, ksi (MPa)
F
nt=nominal tensile stress, ksi (MPa)
The elliptical relationship can be replaced, with only minor deviations, by three
straight lines as shown in Figure C-J3.2. The sloped portion of the straight-line rep-
resentation follows.
For design according to Section B3.3 (LRFD):
(C-J3-6a)
For design according to Section B3.4 (ASD):
(C-J3-6b)
which results in Equations J3-3a and J3-3b (Carter et al., 1997).
This latter representation offers the advantage that no modification of either type of
stress is required in the presence of fairly large magnitudes of the other type. Note
that Equations J3-3a and J3-3b can be rewritten so as to find the nominal shear
strength per unit area, F
nv′, as a function of the required tensile stress, f t. These for-
mulations are:
f
F
f
Ft
nt
v
nv
φφ






+






=13.
ΩΩf
F
f
Ft
nt
v
nv⎛





+






=13.
Fig. C-J3.2. Straight-line representation of elliptical solution.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 405

16.1–406 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For design according to Section B3.3 (LRFD):
(C-J3-7a)
For design according to Section B3.4 (ASD):
(C-J3-7b)
The linear relationship was adopted for use in Section J3.7; generally, use of the
elliptical relationship is acceptable (see Figure C-J3.2). A similar formulation using
the elliptical solution is:
For design according to Section B3.3 (LRFD):
(C-J3-8a)
For design according to Section B3.4 (ASD):
(C-J3-8b)
8. High-Strength Bolts in Slip-Critical Connections
The design provisions for slip critical connections have remained substantially
the same for many years. The original provisions, using standard holes with
1
/16in.
clearance, were based on a 10% probability of slip at code loads when tightened by
calibrated wrench methods. This was comparable to a design for slip at approxi-
mately 1.4 to 1.5 times code loads. Because slip resistance was considered to be a
serviceability design limit state, this was determined to be an adequate safety fac-
tor. Per the RCSC Guide to the Design Criteria for Bolted and Riveted Joints (Kulak
et al., 1987) the provisions were revised to include oversized and slotted holes
(Allan and Fisher, 1968). The revised provisions included a reduction in the allow-
able strength of 15% for oversize holes, 30% for long slots perpendicular, and 40%
for long slots parallel to the direction of the load.
Except for minor changes and adding provisions for LRFD, the design of slip-criti-
cal connections was unchanged until the 2005 AISC Specification added a higher
reliability level for slip-critical connections designed for use where selected by the
engineer of record. The reason for this added provision was twofold. First, the use of
slip-critical connections with oversize holes had become very popular because of the
economy they afforded, especially with large bolted trusses and heavy vertical brac-
ing systems. While the Commentary to the RCSC Specificationindicated that only
the engineer of record can determine if potential slippage at service loads could
reduce the ability of the frame to resist factored loads, it did not give any guidance
FF
F
F
fFnv nv
nv
nt
tnv
′=− ≤13.
Ω
FF
f
Fnv nt
v
nv
′=−






1
2
φ
FF
f
Fnv nt
v
nv
′=−






1
2
Ω
FF
F
F
fFnv nv
nv
nt
tnv
′=− ≤13.
φ
AISC_PART 16_Comm.2B_14Ed._February 12, 2013 12/02/13 10:08 AM Page 406

Comm. J3.] BOLTS AND THREADED PARTS 16.1–407
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
on how to do this. The 2005 Specification provided a procedure to design to resist
slip at factored loads if slip at service loads could reduce the ability of the structure
to support factored loads.
Second, many of these connection details require large filler plates. There was a
question about the need to develop these fills and how to do it. The 1999 LRFD
Specification stated that as an alternative to developing the filler “the joint shall
be designed as slip critical.” The RCSC Specificationstated, “The joint shall be
designed as a slip-critical joint. The slip resistance of the joint shall not be reduced
for the presence of fillers or shims.” Both specifications required the joint to be
checked as a bearing connection, which normally would require development of
large fillers.
The answer to both of these issues seemed to provide a method for designing a con-
nection with oversize holes to resist slip at the strength level and not require the
bearing strength check for the connection. In order to do this, it was necessary to first
determine as closely as possible what the slip resistance currently was for oversize
holes. Then it was necessary to establish what would be an adequate level of slip
resistance to be able to say the connection could resist slip at factored loads.
Three major research projects formed the primary sources for the development of the
2010 Specification provisions for slip-critical connections:
(1) Dusicka and Iwai (2007) evaluated slip-critical connections with fills for the
Research Council on Structural Connections. The work provides results relevant
to all slip-critical connections with fills.
(2) Grondin et al. (2007) is a two-part study that assembles slip resistance data from
all known sources and analyzes reliability of SC connections indicated by that
data. A structural system configuration—a long span roof truss—is evaluated to
see if slip required more reliability in slip-critical connections.
(3) Borello et al. (2009) conducted 16 large-scale tests of slip-critical connections in
both standard and oversize holes with and without thick fillers.
Deliberations considered in development and investigation of the 2010 Specification
slip-critical provisions include the following:
Slip Coefficient for Class A Surfaces. Grondin et al. (2007) rigorously evaluated
the test procedures and eliminated a substantial number of tests that did not meet the
required protocol. The result was a recommended slip coefficient for Class A sur-
faces between 0.31 and 0.32. Part of the problem is the variability of what is
considered to be clean mill scale. Current data on galvanized surfaces indicated more
research was required and the American Galvanizers Association is sponsoring a
series of tests to determine if further changes in the slip coefficient for these types of
surfaces is needed.
Slip Coefficient for Class B Surfaces. Based on a review of slip tests by paint man-
ufacturers and the results of the slip resistance of the connections (Borello et al.,
2009), a slight increase in the slip coefficient for Class B surfaces might be possible,
but the available data is insufficient to make a change in the 2010 Specification.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 407

16.1–408 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Oversized Holes and Loss of Pretension. Borello et al. (2009) confirms that there
is no additional loss of pretension and that connections with oversized holes had sim-
ilar slip resistance to the control group with standard holes.
Higher Pretension with Turn-of-Nut Method. The difficulty in knowing in
advance what method of pretensioning would be used resulted in leaving the value
of D
uat 1.13 as established for the calibrated wrench method. The Specification
does, however, allow the use of a higher D
uvalue when approved by the engineer of
record.
Shear/Bearing Strength. Borello et al. (2009) verified that connections with over-
sized holes, regardless of fill size, can develop the available bearing strength when
the fill is developed. There was some variation in shear strength with filler size but
the maximum reduction for thick fillers was approximately 15% when undeveloped.
Fillers in Slip-Critical Connections. Borello et al. (2009) indicated that filler thick-
ness did not reduce the slip resistance of the connection. Borello et al. (2009) and
Dusicka and Iwai (2007) indicated that the multiple fillers, as shown in Figure C-
J3.3, reduced the slip resistance. It was determined that a factor for the number of
fillers should be included in the design equation. A plate welded to the connected
member or connection plate is not a filler plate and does not require this reduction
factor.
The 2010 Specification provisions for slip-critical connections are based on the fol-
lowing conclusions:
• The mean and coefficient of variation in Class A slip-critical connections supports
the use of a μ=0.31, not 0.33 or 0.35. It was expected that the use of μ=0.30
would achieve more consistent reliability while using the same resistance factors
for both slip classes. The value of μ =0.30 was selected and the resistance and
safety factors reflect this value.
• A factor, h
f, to reflect the use of multiple filler plates was added to the equation for
nominal slip resistance resulting in
R
n=μD uhfTbns (C-J3-9)
where
h
f=factor for fillers; coefficient to reflect the reduction in slip due to multiple
fills
Fig C-J3.3. Single and multiple filler plate configurations.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 408

Turn-of-Nut Method Other Methods
Standard Oversized Standard Oversized
Group Class Holes Holes Holes Holes
Group A (A325) Class A 2.39 2.92 1.21 1.80
(μ=0.30)
Class B 2.78 3.52 1.48 2.16
(μ=0.50)
Group B (A490) Class A 2.01 2.63 1.31 1.90
(μ=0.30)
Class B 2.47 3.20 1.60 2.28
(μ=0.50)
Comm. J3.] BOLTS AND THREADED PARTS 16.1–409
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
•Duis defined as a parameter derived from statistical analysis to calculate nominal
slip resistance from statistical means developed as a function of installation method
and minimum specified pretension and the level of slip probability selected.
• The surfaces of fills must be prepared to the same or higher slip coefficient as the
other faying surfaces in the connection.
• The reduction in design slip resistance for oversized and slotted holes is not due to
a reduction in tested slip resistance but is a factor used to reflect the consequence
of slip. It was continued at the 0.85 level but clearly documented as a factor
increasing the slip resistance of the connection.
The Specification also recognizes a special type of slip-resistant connection for use
in built-up compression members in Section E6 where pretensioned bolts and a min-
imum of Class A surfaces are required but the connection is designed using the
bearing strength of the bolts. This is based on the need to prevent relative movement
between elements of the compression member at the ends.
Reliability levels for slip resistance in oversized holes and slots parallel to the load
(given in Table C-J3.1) exceed reliability levels associated with the nominal
strength of main members in the Specification when turn-of-nut pretensioning is
used. Reliability of slip resistance when other tightening methods are used exceeds
previous levels and is sufficient to prevent slip at load levels where inelastic defor-
mation of the connected parts is expected. Since the effect of slip in standard holes
is less than that of slip in oversized holes, the reliability factors permitted for stan-
dard holes are lower than those for oversized holes. This increased data on the
reliability of these connections allowed the return to a single design level of slip
resistance similar to the RCSC Specification(RCSC, 2009) and previous AISC
Specifications.
TABLE C-J3.1
Reliability Factors, β, for Slip Resistance
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 409

16.1–410 BOLTS AND THREADED PARTS [Comm. J3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9. Combined Tension and Shear in Slip-Critical Connections
The slip resistance of a slip-critical connection is reduced if there is applied tension.
The factor, k
sc, is a multiplier that reduces the nominal slip resistance given by
Equation J3-4 as a function of the applied tension load.
10. Bearing Strength at Bolt Holes
Provisions for bearing strength of pins differ from those for bearing strength of bolts;
refer to Section J7.
Bearing strength values are provided as a measure of the strength of the material
upon which a bolt bears, not as a protection to the fastener, which needs no such pro-
tection. Accordingly, the same bearing value applies to all joints assembled by bolts,
regardless of fastener shear strength or the presence or absence of threads in the bear-
ing area.
Material bearing strength may be limited either by bearing deformation of the hole
or by tearout (a bolt-by-bolt block shear rupture) of the material upon which the bolt
bears. Kim and Yura (1996) and Lewis and Zwerneman (1996) confirmed the bear-
ing strength provisions for the bearing case wherein the nominal bearing strength, R
n,
is equal to CdtF
uand C is equal to 2.4, 3.0 or 2.0 depending upon hole type and/or
acceptability of hole ovalization at ultimate load, as indicated in Section J3.10.
However, this same research indicated the need for different bearing strength provi-
sions when tearout failure would control. Appropriate equations for bearing strength
as a function of clear distance, l
c, are therefore provided and this formulation is con-
sistent with that in the RCSCSpecification (RCSC, 2009).
Frank and Yura (1981) demonstrated that hole elongation greater than
1
/4in.
(6 mm) will generally begin to develop as the bearing force is increased beyond
2.4dtF
u, especially if it is combined with high tensile stress on the net section, even
though rupture does not occur. For a long-slotted hole with the slot perpendicular to
the direction of force, the same is true for a bearing force greater than 2.0dtF
u. An
upper bound of 3.0dtF
uanticipates hole ovalization [deformation greater than
1
/4in.
(6 mm)] at maximum strength.
Additionally, to simplify and generalize such bearing strength calculations, the
current provisions have been based upon a clear-distance formulation. Previous pro-
visions utilized edge distances and bolt spacings measured to hole centerlines with
adjustment factors to account for varying hole type and orientation, as well as mini-
mum edge distance requirements.
A User Note has been added to this section pointing out that the effective strength of
an individual bolt in shear may also be limited by the available shear strength per
Section J3.6 or by the bearing per Section J3.10. The effective strength of the con-
nection is the sum of the effective strengths of the individual bolts. This typically
occurs when the effective strength of the end bolts in a connection is limited by tear-
out as described above. While the effective strength of some bolts in the connection
may be less than others, the connection has enough ductility to allow all of the bolts
to reach their individual effective strengths.
AISC_PART 16_Comm.2B_14Ed._February 25, 2013 14-11-22 12:37 PM Page 410 (Black plate)

Comm. J4.] AFFECTED ELEMENTS OF MEMBERS 16.1–411
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
12. Tension Fasteners
With any connection configuration where the fasteners transmit a tensile force to
the HSS wall, a rational analysis must be used to determine the appropriate limit
states. These may include a yield-line mechanism in the HSS wall and/or pull-out
through the HSS wall, in addition to applicable limit states for the fasteners sub-
ject to tension.
J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING
ELEMENTS
1. Strength of Elements in Tension
Tests have shown that for bolted splice plates yielding will occur on the gross section
before the tensile strength of the net section is reached if the ratio A
n/Agis greater than
or equal to 0.85 (Kulak et al., 1987). Since the length of connecting elements is small
compared to the member length, inelastic deformation of the gross section is limited.
Hence, the effective net area, A
e, of the connecting element is limited to 0.85A gin
recognition of the limited capacity for inelastic deformation, and to provide a reserve
capacity. Tests have also shown than A
emay be limited by the ability of the stress to
distribute in the member. Analysis procedures such as the Whitmore section should be
used to determine A
ein these cases.
2. Strength of Elements in Shear
Prior to 2005, the resistance factor for shear yielding had been 0.90, which was
equivalent to a safety factor of 1.67. In ASD Specifications, the allowable shear
yielding stress was 0.4F
y, which was equivalent to a safety factor of 1.5. To make the
LRFD approach in the 2005 Specification consistent with prior editions of the ASD
Specification, the resistance and safety factors for shear yielding became 1.0 and 1.5,
respectively. The resulting increase in LRFD design strength of approximately 10%
is justified by the long history of satisfactory performance of ASD use.
3. Block Shear Strength
Tests on coped beams indicated that a tearing failure mode (rupture) can occur
along the perimeter of the bolt holes as shown in Figure C-J4.1 (Birkemoe and
Gilmor, 1978). This block shear mode combines tensile failure on one plane and
shear failure on a perpendicular plane. The failure path is defined by the centerlines
of the bolt holes.
The block shear failure mode is not limited to coped ends of beams; other examples
are shown in Figures C-J4.1 and C-J4.2. The block shear failure mode must also be
checked around the periphery of welded connections.
This Specification has adopted a conservative model to predict block shear
strength. The mode of failure in coped beam webs and angles is different than that
of gusset plates because the shear resistance is present on only one plane, in which
case there must be some rotation of the block of material that is providing the total
resistance.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 411

16.1–412 AFFECTED ELEMENTS OF MEMBERS [Comm. J4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J4.1. Failure surface for block shear rupture limit state.
Fig. C-J4.2. Block shear tensile stress distributions.
(a) Cases for which U
bs=1.0
(b) Cases for which U
bs=0.5
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 412

Comm. J7.] BEARING STRENGTH 16.1–413
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Although tensile failure is observed through the net section on the end plane, the
distribution of tensile stresses is not always uniform (Ricles and Yura, 1983; Kulak
and Grondin, 2001; Hardash and Bjorhovde, 1985). A reduction factor, U
bs, has
been included in Equation J4-5 to approximate the nonuniform stress distribution on
the tensile plane. The tensile stress distribution is nonuniform in the two row con-
nection in Figure C-J4.2(b) because the rows of bolts nearest the beam end pick up
most of the shear load. For conditions not shown in Figure C-J4.2, U
bsmay be taken
as (1 λe/l) where e/l is the ratio of the eccentricity of the load to the centroid of
the resistance divided by the block length. This fits data reported by Kulak and
Grondin (2001), Kulak and Grondin (2002), and Yura et al. (1982).
Block shear is a rupture or tearing phenomenon, not a yielding limit state. However,
gross yielding on the shear plane can occur when tearing on the tensile plane com-
mences if 0.6F
uAnvexceeds 0.6F yAgv. Hence, Equation J4-5 limits the term
0.6F
uAnvto not greater than 0.6F yAgv(Hardash and Bjorhovde, 1985). Equation J4-
5 is consistent with the philosophy in Chapter D for tension members where the
gross area is used for the limit state of yielding and the net area is used for the limit
state of rupture.
4. Strength of Elements in Compression
To simplify connection calculations, the nominal strength of elements in compres-
sion when the element slenderness ratio is not greater than 25 is F
yAg. This is a very
slight increase over that obtained if the provisions of Chapter E are used. For more
slender elements, the provisions of Chapter E apply.
J5. FILLERS
As noted in Commentary Section J3.8, research reported in Borello et al. (2009)
resulted in significant changes in the design of bolted connections with fillers. In the
2010 Specification, bearing connections with fillers over
3
/4-in. thick are no longer
required to be developed provided the bolts are designed by multiplying the shear
strength by a 0.85 factor.
Slip-critical connections with a single filler of any thickness with proper surface
preparation may be designed without any reduction in slip resistance. Slip-critical
connections with multiple fillers may be designed without any reduction in slip
resistance provided the joint has either all faying surfaces with Class B surfaces or
Class A surfaces with turn-of-nut tensioning. This provision for multiple fillers is
based on the additional reliability of Class B surface or on the higher pretension
achieved with the turn-of-nut tensioning.
Filler plates may be used in lap joints of welded connections that splice parts of dif-
ferent thickness, or where there may be an offset in the joint.
J7. BEARING STRENGTH
In general, the bearing strength design of finished surfaces is governed by the limit
state of bearing (local compressive yielding) at nominal loads. The nominal bearing
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 413

16.1–414 BEARING STRENGTH [Comm. J7.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
strength of milled contact surfaces exceeds the yield strength because adequate
safety is provided by post-yield strength as deformation increases. Tests on pin con-
nections (Johnston, 1939) and rockers (Wilson, 1934) have confirmed this behavior.
J8. COLUMN BASES AND BEARING ON CONCRETE
The provisions of this section are identical to equivalent provisions in ACI 318
(ACI, 2008).
J9. ANCHOR RODS AND EMBEDMENTS
The term “anchor rod” is used for threaded rods embedded in concrete to anchor
structural steel. The term “rod” is intended to clearly indicate that these are threaded
rods, not structural bolts, and should be designed as threaded parts per Table J3.2
using the material specified in Section A3.4.
Generally, the largest tensile force for which anchor rods must be designed is that
produced by bending moment at the column base and augmented by any uplift
caused by the overturning tendency of a building under lateral load.
Shear at the base of a column is seldom resisted by bearing of the column base plate
against the anchor rods. Even considering the lowest conceivable slip coefficient, the
friction due to the vertical load on a column is generally more than sufficient to trans-
fer the shear from the column base to the foundation. The possible exception is at the
base of braced frames and moment frames where larger shear forces may require that
shear transfer be accomplished by embedding the column base or providing a shear
key at the top of the foundation.
The anchor rod hole sizes listed in Tables C-J9.1 and C-J9.1M are recommended to
accommodate the variations that are common for setting anchor rods cast in concrete.
These larger hole sizes are not detrimental to the integrity of the supported structure
when used with proper washers. The slightly conical hole that results from punching
operations or thermal cutting is acceptable.
If plate washers are utilized to resolve horizontal shear, bending in the anchor rod
must be considered in the design, and the layout of anchor rods must accommodate
plate washer clearances. In this case special attention must be given to weld clear-
ances, accessibility, edge distances on plate washers, and the effect of the tolerances
between the anchor rod and the edge of the hole.
It is important that the placement of anchor rods be coordinated with the placement
and design of reinforcing steel in the foundations as well as the design and overall
size of base plates. It is recommended that the anchorage device at the anchor rod
bottom be as small as possible to avoid interference with the reinforcing steel
in the foundation. A heavy-hex nut or forged head is adequate to develop the con-
crete shear cone. See AISC Design Guide 1, Base Plate and Anchor Rod Design
(Fisher and Kloiber, 2006) for design of base plates and anchor rods. See also ACI
318 (ACI, 2008) and ACI 349 (ACI, 2001) for embedment design; and OSHA
Safety and Health Regulations for Construction, Standards—29 CFR 1926 Subpart
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 414

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–415
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
R—Steel Erection (OSHA, 2001) for anchor rod design and construction require-
ments for erection safety.
J10. FLANGES AND WEBS WITH CONCENTRATED FORCES
This Specification separates flange and web strength requirements into distinct cate-
gories representing different limit states: flange local bending (Section J10.1), web
local yielding (Section J10.2), web crippling (Section J10.3), web sidesway buckling
(Section J10.4), web compression buckling (Section J10.5), and web panel-zone
shear (Section J10.6). These limit state provisions are applied to two distinct types of
concentrated forces normal to member flanges:
TABLE C-J9.1
Anchor Rod Hole Diameters, in.
Anchor Rod Diameter Anchor Rod Hole Diameter
1
/2 1
1
/16
5
/8 1
3
/16
3
/4 1
5
/16
7
/8 1
9
/16
11
13
/16
1
1
/4 2
1
/16
1
1
/2 2
5
/16
1
3
/4 2
3
/4
≥2 db+1
1
/4 TABLE C-J9.1M
Anchor Rod Hole Diameters, mm
Anchor Rod Diameter Anchor Rod Hole Diameter
18 32
22 36
24 42
27 48
30 51
33 54
36 60
39 63
42 74
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 415

16.1–416 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) Single concentrated forces may be tensile (such as those delivered by tension
hangers) or compressive (such as those delivered by bearing plates at beam inte-
rior positions, reactions at beam ends, and other bearing connections).
(2) Double concentrated forces, one tensile and one compressive, form a couple on
the same side of the loaded member, such as that delivered to column flanges
through welded and bolted moment connections.
Flange local bending applies only for tensile forces, web local yielding applies to
both tensile and compressive forces, and the remainder of these limit states apply
only to compressive forces.
Transverse stiffeners, also called continuity plates, and web doubler plates are only
required when the concentrated force exceeds the available strength given for the
applicable limit state. It is often more economical to choose a heavier member than
to provide such reinforcement (Carter, 1999; Troup, 1999). The demand may
be determined as the largest flange force from the various load cases, although the
demand may also be taken as the gross area of the attachment delivering the force
multiplied by the specified minimum yield strength, F
y. Stiffeners and/or doublers
and their attaching welds are sized for the difference between the demand and the
applicable limit state strength. Detailing and other requirements for stiffeners are
provided in Section J10.7 and Section J10.8; requirements for doublers are provided
in Section J10.9.
1. Flange Local Bending
Where a tensile force is applied through a plate welded across a flange, that flange
must be sufficiently rigid to prevent deformation of the flange and the corresponding
high stress concentration in the weld in line with the web.
The effective column flange length for local flange bending is 12t
f(Graham et al.,
1960). Thus, it is assumed that yield lines form in the flange at 6t
fin each direction
from the point of the applied concentrated force. To develop the fixed edge consis-
tent with the assumptions of this model, an additional 4t
f, and therefore a total of
10t
f, is required for the full flange-bending strength given by Equation J10-1. In the
absence of applicable research, a 50% reduction has been introduced for cases
wherein the applied concentrated force is less than 10t
ffrom the member end.
The strength given by Equation J10-1 was originally developed for moment connec-
tions but also applies to single concentrated forces such as tension hangers consisting
of a plate welded to the bottom flange of a beam and transverse to the beam web. In
the original tests, the strength given by Equation J10-1 was intended to provide a
lower bound to the force required for weld fracture, which was aggravated by the
uneven stress and strain demand on the weld caused by the flange deformation
(Graham et al., 1959).
Recent tests on welds with minimum Charpy V-notch (CVN) toughness require-
ments show that weld fracture is no longer the failure mode when the strength given
by Equation J10-1 is exceeded. Rather, it was found that the strength given by
Equation J10-1 is consistently less than the force required to separate the flanges in
typical column sections by
1
/4in. (6 mm) (Hajjar et al., 2003; Prochnow et al.,
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 416

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–417
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2000). This amount of flange deformation is on the order of the tolerances in ASTM
A6, and it is believed that if the flange deformation exceeded this level it could be
detrimental to other aspects of the performance of the member, such as flange local
buckling. Although this deformation could also occur under compressive normal
forces, it is customary that flange local bending is checked only for tensile forces
(because the original concern was weld fracture). Therefore it is not required to
check flange local bending for compressive forces.
The provision in Section J10.1 is not applicable to moment end-plate and tee-stub
type connections. For these connections, see Carter (1999) or the AISC Steel
Construction Manual (AISC, 2005b).
2. Web Local Yielding
The web local yielding provisions (Equations J10-2 and J10-3) apply to both com-
pressive and tensile forces of bearing and moment connections. These provisions are
intended to limit the extent of yielding in the web of a member into which a force is
being transmitted. The provisions are based on tests on two-sided directly welded
girder-to-column connections (cruciform tests) (Sherbourne and Jensen, 1957) and
were derived by considering a stress zone that spreads out with a slope of 2:1.
Graham et al. (1960) report pull-plate tests and suggest that a 2.5:1 stress gradient is
more appropriate. Recent tests confirm that the provisions given by Equations J10-2
and J10-3 are slightly conservative and that the yielding is confined to a length con-
sistent with the slope of 2.5:1 (Hajjar et al., 2003; Prochnow et al., 2000).
3. Web Crippling
The web crippling provisions (Equations J10-4 and J10-5) apply only to compressive
forces. Originally, the term “web crippling” was used to characterize a phenomenon
now called local web yielding, which was then thought to also adequately predict
web crippling. The first edition of the AISC LRFD Specification (AISC, 1986) was
the first AISC Specification to distinguish between local web yielding and local web
crippling. Web crippling was defined as crumpling of the web into buckled waves
directly beneath the load, occurring in more slender webs, whereas web local yield-
ing is yielding of that same area, occurring in stockier webs.
Equations J10-4 and J10-5 are based on research reported in Roberts (1981). The
increase in Equation J10-5b for l
b/d >0.2 was developed after additional testing to
better represent the effect of longer bearing lengths at ends of members (Elgaaly and
Salkar, 1991). All tests were conducted on bare steel beams without the expected
beneficial contributions of any connection or floor attachments. Thus, the resulting
provisions are considered conservative for such applications. Kaczinski et al. (1994)
reported tests on cellular box beams with slender webs and confirmed that these pro-
visions are appropriate in this type of member as well.
The equations were developed for bearing connections but are also generally appli-
cable to moment connections.
The web crippling phenomenon has been observed to occur in the web adjacent to
the loaded flange. For this reason, a half-depth stiffener (or stiffeners) or a half-depth
doubler plate is needed to eliminate this limit state.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 417

16.1–418 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4. Web Sidesway Buckling
The web sidesway buckling provisions (Equations J10-6 and J10-7) apply only to
compressive forces in bearing connections and do not apply to moment connections.
The web sidesway buckling provisions were developed after observing several unex-
pected failures in tested beams (Summers and Yura, 1982; Elgaaly, 1983). In those
tests the compression flanges were braced at the concentrated load, the web was sub-
jected to compression from a concentrated load applied to the flange and the tension
flange buckled (see Figure C-J10.1).
Web sidesway buckling will not occur in the following cases:
(a) For flanges restrained against rotation (such as when connected to a slab), when
(C-J10-1)
(b) For flanges not restrained against rotation, when
(C-J10-2)
where L
bis as shown in Figure C-J10.2.
Web sidesway buckling can be prevented by the proper design of lateral bracing or
stiffeners at the load point. It is suggested that local bracing at both flanges be
designed for 1% of the concentrated force applied at that point. If stiffeners are used,
they must extend from the load point through at least one-half the beam or girder
depth. In addition, the pair of stiffeners must be designed to carry the full load. If
flange rotation is permitted at the loaded flange, neither stiffeners nor doubler plates
are effective.
5. Web Compression Buckling
The web compression buckling provision (Equation J10-8) applies only when there
are compressive forces on both flanges of a member at the same cross section, such
as might occur at the bottom flange of two back-to-back moment connections under
gravity loads. Under these conditions, the slenderness of the member web must be
ht
Lbw
bf/
/
.>23
ht
Lbw
bf/
/
.>17
Fig. C-J10.1. Web sidesway buckling.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 418

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–419
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
limited to avoid the possibility of buckling. Equation J10-8 is applicable to a pair of
moment connections, and to other pairs of compressive forces applied at both flanges
of a member, for which L
b/d is approximately less than 1. When L b/d is not small,
the member web should be designed as a compression member in accordance with
Chapter E.
Equation J10-8 is predicated on an interior member loading condition. In the absence
of applicable research, a 50% reduction has been introduced for cases wherein the
compressive forces are close to the member end.
6. Web Panel-Zone Shear
Column web shear stresses may be significant within the boundaries of the rigid con-
nection of two or more members with their webs in a common plane. Such webs
must be reinforced when the required force ΣR
ufor LRFD or ΣR afor ASD along
plane A-A in Figure C-J10.3 exceeds the column web available strength, φR
nor
R
n/Ω, respectively.
For design according to Section B3.3 (LRFD):
(C-J10-3a)
Fig. C-J10.2. Unbraced flange length for web sidesway buckling.
ΣR
M
d
M
d
Vu
u
m
u
m
u=+−
1
1
2
2
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 419

16.1–420 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
M
u1 =Mu1L+Mu1G
=sum of the moments due to the factored lateral loads, M u1L, and the
moments due to factored gravity loads, M
u1G, on the windward side of
the connection, kip-in. (N-mm)
M
u2 =Mu2L−Mu2G
=difference between the moments due to the factored lateral loads M u2L
and the moments due to factored gravity loads, M u2G, on the leeward
side of the connection, kip-in. (N-mm)
d
m1, dm2=distance between flange forces in the moment connection, in. (mm)
For design according to Section B3.4 (ASD):
(C-J10-3b)
where
M
a1=Ma1L+Ma1G
=sum of the moments due to the nominal lateral loads, M a1L, and the
moments due to nominal gravity loads, M
a1G, on the windward side of the
connection, kip-in. (N-mm)
M
a2=Ma2LΣMa2G
=difference between the moments due to the nominal lateral loads, M a2L, and
the moments due to nominal gravity loads, M
a2G, on the leeward side of the
connection, kip-in. (N-mm)
Historically (and conservatively), 0.95 times the beam depth has been used for d
m.
If, for LRFD ΣR
u≤φR n, or for ASD ΣR a≤Rn/Ω, no reinforcement is necessary;
in other words, t
req≤tw, where t wis the column web thickness.
ΣR
M
d
M
d
Va
a
m
a
m
a=+−
1
1
2
2
Fig. C-J10.3. LRFD forces in panel zone (ASD forces are similar).
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:53 PM Page 420

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16 .1–421
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equations J10-9 and J10-10 limit panel-zone behavior to the elastic range. While
such connection panels possess large reserve capacity beyond initial general shear
yielding, the corresponding inelastic joint deformations may adversely affect the
strength and stability of the frame or story (Fielding and Huang, 1971; Fielding and
Chen, 1973). Panel-zone shear yielding affects the overall frame stiffness and,
therefore, the resulting second-order effects may be significant. The shear/axial
interaction expression of Equation J10-10, as shown in Figure C-J10.4, provides
elastic panel behavior.
If adequate connection ductility is provided and the frame analysis considers the
inelastic panel-zone deformations, the additional inelastic shear strength is recog-
nized in Equations J10-11 and J10-12 by the factor
This increase in shear strength due to inelasticity has been most often utilized for the
design of frames in high seismic applications and should be used when the panel
zone is designed to develop the strength of the members from which it is formed.
The shear/axial interaction expression incorporated in Equation J10-12 (see Figure
C-J10.5) recognizes that when the panel-zone web has completely yielded in shear,
the axial column load is resisted by the flanges.
7. Unframed Ends of Beams and Girders
Full-depth stiffeners are required at unframed ends of beams and girders not other-
wise restrained to avoid twisting about their longitudinal axes. These stiffeners are
full depth but not fitted. They connect to the restrained flange but do not need to con-
tinue beyond the toe of the fillet at the far flange unless connection to the far flange
is necessary for other purposes, such as resisting compression from a concentrated
load on the far flange.
Fig. C-J10.4. Interaction of shear and axial force—elastic.
1
3
2
+






bt
ddt
cf cf
bcw
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 421

16.1–422 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
8. Additional Stiffener Requirements for Concentrated Forces
See Carter (1999), Troup (1999), and Murray and Sumner (2004) for guidelines on
column stiffener design.
For rotary-straightened W-shapes, an area of reduced notch toughness is sometimes
found in a limited region of the web immediately adjacent to the flange, referred to
as the “k-area,” as illustrated in Figure C-J10.6 (Kaufmann et al., 2001). The k-area
is defined as the region of the web that extends from the tangent point of the web
and the flange-web fillet (AISC kdimension) a distance 1
1
/2in. (38 mm) into the
web beyond the kdimension. Following the 1994 Northridge Earthquake, there was
a tendency to specify thicker transverse stiffeners that were groove welded to the
web and flange, and thicker doubler plates that were often groove welded in the gap
Fig. C-J10.5. Interaction of shear and axial force—inelastic.
Fig. C-J10.6. Representative “k-area” of a wide-flange shape.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 422

Comm. J10.] FLANGES AND WEBS WITH CONCENTRATED FORCES 16.1–423
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J10.7. Recommended placement of stiffener fillet welds
to avoid contact with “k-area.”
between the doubler plate and the flanges. These welds were highly restrained and
may have caused cracking during fabrication in some cases (Tide, 1999). AISC
(1997b) recommended that the welds for continuity plates terminate away from the
k-area.
Recent pull-plate tests (Dexter and Melendrez, 2000; Prochnow et al., 2000; Hajjar
et al., 2003) and full-scale beam-column joint testing (Bjorhovde et al., 1999; Dexter
et al., 2001; Lee et al., 2002a) have shown that this problem can be avoided if the
column stiffeners are fillet welded to both the web and the flange, the corner is
clipped at least 1
1
/2in. (38 mm), and the fillet welds are stopped short by a weld leg
length from the edges of the cutout, as shown in Figure C-J10.7. These tests also
show that groove welding the stiffeners to the flanges or the web is unnecessary, and
that the fillet welds performed well with no problems. If there is concern regarding
the development of the stiffeners using fillet welds, the corner clip can be made so
that the dimension along the flange is
3
/4in. (20 mm) and the dimension along the
web is 1
1
/2in. (38 mm).
Recent tests have also shown the viability of fillet welding doubler plates to the
flanges, as shown in Figure C-J10.8 (Prochnow et al., 2000; Dexter et al., 2001; Lee
et al., 2002a; Hajjar et al., 2003). It was found that it is not necessary to groove weld
the doubler plates and that they do not need to be in contact with the column web to
be fully effective.
9. Additional Doubler Plate Requirements for Concentrated Forces
When required, doubler plates are to be designed using the appropriate limit state
requirements for the type of loading. The sum of the strengths of the member ele-
ment and the doubler plate(s) must exceed the required strength and the doubler plate
must be welded to the member element.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 423

16.1–424 FLANGES AND WEBS WITH CONCENTRATED FORCES [Comm. J10.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-J10.8. Example of fillet welded doubler plate and stiffener details.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 424

16.1–425
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER K
DESIGN OF HSS AND BOX MEMBER
CONNECTIONS
Chapter K addresses the strength of HSS and box member welded connections. The provi-
sions are based on failure modes that have been reported in international research on
HSS, much of which has been sponsored and synthesized by CIDECT (International
Committee for the Development and Study of Tubular Construction) since the 1960s. This
work has also received critical review by the International Institute of Welding (IIW)
Subcommission XV-E on “Tubular Structures.” The HSS connection design recommenda-
tions are generally in accord with the design recommendations by this Subcommission
(IIW, 1989). Some minor modifications to the IIW recommended provisions for some limit
states have been made by the adoption of the formulations for the same limit states else-
where in this Specification. The IIW connection design recommendations referred to above
have also been implemented and supplemented in later design guides by CIDECT
(Wardenier et al., 1991; Packer et al., 1992), in the design guide by the Canadian Institute
of Steel Construction (Packer and Henderson, 1997) and in CEN (2005). Parts of these IIW
design recommendations are also incorporated in AWS (2010). A large amount of research
data generated by CIDECT research programs up to the mid-1980s is summarized in
CIDECT Monograph No. 6 (Giddings and Wardenier, 1986). Further information on
CIDECT publications and reports can be obtained from their website: www.cidect.com.
The scopes of Sections K2 and K3 note that the centerlines of the branch member(s) and the
chord members must lie in a single plane. For other configurations, such as multi-planar
connections, connections with partially or fully flattened branch member ends, double chord
connections, connections with a branch member that is offset so that its centerline does not
intersect with the centerline of the chord or connections with round branch members joined
to a square or rectangular chord member, the provisions of IIW (1989), CIDECT (Wardenier
et al., 1991; Packer et al., 1992), CISC (Packer and Henderson, 1997; Marshall, 1992; AWS,
2010), or other verified design guidance or tests can be used.
K1. CONCENTRATED FORCES ON HSS
1. Definitions of Parameters
Some of the notation used in Chapter K is illustrated in Figure C-K1.1.
2. Round HSS
See Commentary Section K1.3.
3. Rectangular HSS
The limits of applicability in Table K1.1A stem primarily from limitations on tests
conducted to date.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 425

Sections K1.2 and K1.3, although pertaining to all concentrated forces on HSS, are
particularly oriented towards plate-to-HSS welded connections. Most of the equa-
tions (after application of appropriate resistance factors for LRFD) conform to
CIDECT Design Guides 1 and 3 (Wardenier et al., 1991; Packer et al., 1992) with
updates in accordance with CIDECT Design Guide 9 (Kurobane et al., 2004). The
latter includes revisions for longitudinal plate-to-rectangular HSS connections
(Equation K1-12) based on extensive experimental and numerical studies reported in
Kosteski and Packer (2003). The provisions for the limit state of sidewall crippling
of rectangular HSS, Equations K1-10 and K1-11, conform to web crippling expres-
sions elsewhere in this Specification, and not to CIDECT or IIW recommendations.
If a longitudinal plate-to-rectangular HSS connection is made by passing the plate
through a slot in the HSS and then welding the plate to both the front and back HSS
faces to form a “through-plate connection,” the nominal strength can be taken as
twice that given by Equation K1-12 (Kosteski and Packer, 2003), and is given in
Equation K1-13.
16.1–426 CONCENTRATED FORCES ON HSS [Comm. K1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K1.1. Common notation for HSS connections.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 426

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–427
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The equations given for transverse plate-to-HSS connections can also be adapted for
wide-flange beam-to-HSS PR moment connections, by treating the beam flanges as
a pair of transverse plates and ignoring the beam web. For such wide-flange beam
connections, the beam moment is thus produced by a force couple in the beam
flanges. The connection flexural strength is then given by the plate-to-HSS connec-
tion strength multiplied by the distance between the beam flange centers. In Table
K1.2 there is no check for the limit state of chord wall plastification for transverse
plate-to-rectangular HSS connections, because this will not govern the design in
practical cases. However, if there is a major compression load in the HSS, such as
when it is used as a column, one should be aware that this compression load in the
main member has a negative influence on the yield line plastification failure mode of
the connecting chord wall (via a Q
f factor). In such a case, the designer can utilize
guidance in CIDECT Design Guide No. 9 (Kurobane et al., 2004).
Tables K1.1 and K1.2 include limit states for HSS to longitudinal plate connections
loaded in shear. These recommendations are based on Sherman and Ales (1991) and
Sherman (1995b, 1996), where a large number of simple framing connections
between wide-flange beams and rectangular HSS columns are investigated, in
which the load transferred was predominantly shear. A review of costs also showed
that single-plate and single-angle connections were the most economical, with dou-
ble-angle and fillet-welded tee connections being more expensive. Through-plate
and flare-bevel welded tee connections were among the most expensive (Sherman,
1995b). Over a wide range of connections tested, only one limit state was identified
for the rectangular HSS column: punching shear failure related to end rotation of the
beam, when a thick shear plate was joined to a relatively thin-walled HSS.
Compliance with the inequality given by Equation K1-3 precludes this HSS failure
mode. This design rule is valid providing the HSS wall is not classified as a slender
element. An extrapolation of the inequality given by Equation K1-3 has also been
made for round HSS columns, subject to the round HSS cross section not being clas-
sified as a slender element.
In Table K1.2, two limit states are given for the strength of a square or rectangular
HSS wall with load transferred through a cap plate (or the flange of a T-stub), as
shown in Figure C-K1.2. In general, the rectangular HSS could have dimensions of
B ×H, but the illustration shows the bearing length (or width), l
b,oriented for lateral
load dispersion into the wall of dimension B. A conservative distribution slope can
be assumed as 2.5:1 from each face of the tee web (Wardenier et al., 1991;
Kitipornchai and Traves, 1989), which produces a dispersed load width of (5t
p +lb).
If this is less than B,only the two side walls of dimension Bare effective in resisting
the load, and even they will both be only partially effective. If (5t
p +lb) ≥B, all four
walls of the rectangular HSS will be engaged, and all will be fully effective; how-
ever, the cap plate (or T-stub flange) must be sufficiently thick for this to happen.
In Equations K1-14 and K1-15 the size of any weld legs has been conservatively
ignored. If the weld leg size is known, it is acceptable to assume load dispersion from
the toes of the welds. The same load dispersion model as shown in Figure C-K1.2
can also be applied to round HSS-to-cap plate connections.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 427

K2. HSS-TO-HSS TRUSS CONNECTIONS
The classification of HSS truss-type connections as K- (which includes N-), Y-
(which includes T-), or cross- (also known as X-) connections is based on the method
of force transfer in the connection, not on the physical appearance of the connection.
Examples of such classification are shown in Figure C-K2.1.
As noted in Section K2, when branch members transmit part of their load as K-con-
nections and part of their load as T-, Y- or cross-connections, the adequacy of each
branch is determined by linear interaction of the proportion of the branch load
involved in each type of load transfer. One K-connection, shown in Figure C-
K2.1(b), illustrates that the branch force components normal to the chord member
may differ by as much as 20% and still be deemed to exhibit K-connection behavior.
This is to accommodate slight variations in branch member forces along a typical
truss, caused by a series of panel point loads. The N-connection in Figure C-K2.1(c),
however, has a ratio of branch force components normal to the chord member of 2:1.
In this case, the connection is analyzed as both a “pure” K-connection (with balanced
branch forces) and a cross-connection (because the remainder of the diagonal branch
load is being transferred through the connection), as shown in Figure C-K2.2. For the
diagonal tension branch in that connection, the following check is also made:
(0.5Psinθ/K-connection available strength)
+(0.5Psinθ/cross-connection available strength) ≤1.0
If the gap size in a gapped K- (or N-) connection [for example, Figure C-K2.1(a)]
becomes large and exceeds the value permitted by the eccentricity limit, the K-con-
nection should be treated as two independent Y-connections. In cross-connections,
such as Figure C-K2.1(e), where the branches are close together or overlapping, the
16.1–428 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K1.2. Load dispersion from a concentrated force through a cap plate.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 428

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–429
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fig. C-K2.1. Examples of HSS connection classification.
gap
T T
P
100%
K
P
T T
1.2P
100%
K
P
0.2P sinT
within tolerance
for:
T
100%
K
P
50% K
50% X
+e
0.5P sinT
0.5P sinT
T
P
100%
Y
0
T
P
100%
X
T
P
T T
P
100%
X
P
T T
P
100%
X P
T
P
100%
X
P
2P sinT
T
gap
T T
P 100%
K
P
100%
K
0
+e
T T
1.2P
100%
K
P
T T
P
100%
K 1.2P
(a)
(c)
(d)
(f)
(h)
(b)
(e)
(g)
(i)
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 429

16.1–430 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
0.5P sinT
0.5P sinT
T
P
P cosT
=
0.5P sinT
T
0.5P
0.5P cosT
0.5P sinT
T
+
0.5P
0.5P cos
T

Fig. C-K2.2. Checking of K-connection with imbalanced branch member loads.


(a) Chord plastification (b) Punching shear failure of the chord


(c) Uneven load distribution in the (d) Uneven load distribution in the
tension branch compression branch

Fig. C-K2.3. Typical limit states for HSS-to-HSS truss connections.
(e) Shear yielding of the chord (f) Chord sidewall failure
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 430

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–431
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
combined “footprint” of the two branches can be taken as the loaded area on the chord
member. In K-connections such as Figure C-K2.1(d), where a branch has very little or
no loading, the connection can be treated as a Y-connection, as shown.
The design of welded HSS connections is based on potential limit states that may
arise for a particular connection geometry and loading, which in turn represent pos-
sible failure modes that may occur within prescribed limits of applicability. Some
typical failure modes for truss-type connections, shown for rectangular HSS, are
given in Figure C-K2.3.
1. Definitions of Parameters
Some parameters are defined in Figure C-K1.1.
2. Round HSS
The limits of applicability in Table K2.1A generally represent the parameter range
over which the equations have been verified in experiments. The following limita-
tions bear explanation.
The minimum branch angle is a practical limit for good fabrication. Smaller branch
angles are possible, but prior agreement with the fabricator should be made.
The wall slenderness limit for the compression branch is a restriction so that con-
nection strength is not reduced by branch local buckling.
The minimum width ratio limit for gapped K-connections is based on Packer (2004),
who showed that for width ratios less than 0.4, Equation K2-4 may be potentially
unconservative when evaluated against proposed equations for the design of such
connections by the American Petroleum Institute (API, 1993).
The restriction on the minimum gap size is only stated so that adequate space is avail-
able to enable welding at the toes of the branches to be satisfactorily performed.
The restriction on the minimum overlap is applied so that there is an adequate inter-
connection of the branches, to enable effective shear transfer from one branch to the
other.
The provisions given in Table K2.1 for T-, Y-, cross- and K-connections are gener-
ally based, with the exception of the punching shear provision, on semi-empirical
“characteristic strength” expressions, which have a confidence of 95%, taking into
account the variation in experimental test results as well as typical variations in
mechanical and geometric properties. These “characteristic strength” expressions are
then multiplied by resistance factors for LRFD or divided by safety factors for ASD
to further allow for the relevant failure mode.
In the case of the chord plastification failure mode a φof 0.90 or Ωof 1.67 is applied,
whereas in the case of punching shear a φof 0.95 or a Ωof 1.58 is applied. The lat-
ter φis 1.00 (equivalent to Ωof 1.50) in many recommendations or specifications
[for example, IIW (1989), Wardenier et al. (1991), and Packer and Henderson
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 431

(1997)], to reflect the large degree of reserve strength beyond the analytical nominal
strength expression, which is itself based on the shear yield (rather than ultimate)
strength of the material. In this Specification, however, a φof 0.95 or Ωof 1.58 is
applied to maintain consistency with the factors for similar failure modes in Table
K2.2.
If the tensile stress, F
u, were adopted as a basis for a punching shear rupture crite-
rion, the accompanying φwould be 0.75 and Ωwould be 2.00, as elsewhere in this
Specification. Then, 0.75(0.6F
u)=0.45F u would yield a very similar value to
0.95(0.6F
y)=0.57F y , and in fact the latter is even more conservative for HSS with
specified nominal F
y/Fu ratios less than 0.79. Equation K2-1 need not be checked
when D
b>D – 2tbecause this is the physical limit at which the branch can punch
into (or out of) the main tubular member.
With round HSS in axially loaded K-connections, the size of the compression
branch dominates the determination of the connection strength. Hence, the term
D
bcompin Equation K2-4 pertains only to the compression branch and is not an
average of the two branches. Thus, if one requires the connection strength expressed
as a force in the tension branch, one can resolve the answer from Equation K2-4 into
the direction of the tension branch, using Equation K2-5. That is, it is not necessary
to repeat a calculation similar to Equation K2-4 with D
bas the tension branch. Note
that the K-connection section in Table K2.2 deals with branches subject to axial load-
ing only. This is because there should only be axial forces in the branches of a typical
planar K-connection if the truss structural analysis is performed according to one of
the recommended methods, which are:
(a) pin-jointed analysis; or
(b) analysis using web members pin-connected to continuous chord members, as
shown in Figure C-K2.4.
16.1–432 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Noding condition
for most overlap
connections
Extremely stiff members Pin
Extremely stiff
members
Noding condition
for most gap
connections
Fig. C-K2.4. Modeling assumption using web members pin-connected
to continuous chord members.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 432

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–433
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3. Rectangular HSS
The limits of validity in Table K2.2A are established similarly to the limits for round
HSS in Table K2.1A.
The restriction on the minimum gap ratio in Table K2.2A is modified from IIW
(1989), according to Packer and Henderson (1997), to be more practical. In Table
K2.2A there are two limits for the minimum gap dimension. The gap ratio (g/B) limit
serves to ensure that sufficient load from a branch is transferred to the chord mem-
ber sidewalls and to ensure that the demand for load transfer through the gap region
is not excessive. The limit on gbeing at least the sum of the branch thicknesses is
specified so that adequate space is available to enable welding at the toes of the
branches to be satisfactorily performed.
Equation K2-7 represents an analytical yield line solution for flexure of the con-
necting chord face. This nominal strength equation serves to limit connection
deformations and is known to be well below the ultimate connection strength. A φ
of 1.00 or Ωof 1.50 is thus appropriate. When the branch width exceeds 85% of the
chord width this yield line failure mechanism will result in a noncritical design load.
The limit state of punching shear, evident in Equations K2-8 and K2-15, is based on
the effective punching shear perimeter around the branch, with the total branch
perimeter being an upper limit on this length. The term β
eop represents the chord face
effective punching shear width ratio, adjacent to one (Equation K2-15) or two
(Equation K2-8) branch walls transverse to the chord axis. This β
eop term incorporates
a φof 0.80 or Ωof 1.88. Applying to generally one dimension of the rectangular
branch footprint, this was deemed by AWS to be similar to a global φof 0.95 or Ωof
1.58 for the whole expression, so this expression for punching shear appears in AWS
(2010) with an overall φof 0.95. This φof 0.95 or Ωof 1.58 has been carried over to
this Specification, and this topic is discussed further in Section C-K2.2. Limitations
given above Equations K2-8 and K2-15 in Table K2.2 indicate when this failure mode
is either physically impossible or noncritical. In particular, note that Equation K2-15
is noncritical for square HSS branches.
Equation K2-9 is generally in accord with a limit state given in IIW (1989), but with
the k term [simply tin IIW (1989)] modified to be compatible with Equation
K1-9, which in turn is derived from loads on I-shaped members. Equations K2-10
and K2-11 are in a format different than used internationally [for example, IIW
(1989)] for this limit state and are unique to this Specification, having been replicated
from Equations K1-10 and K1-11, along with their associated φ’s and Ω’s. These lat-
ter equations in turn are HSS versions (for two webs) of equations for I-shaped
members with a single web.
The limit state of “uneven load distribution,” which is manifested by local buckling
of a compression branch or premature yield failure of a tension branch, represented
by Equations K2-12 and K2-16, is checked by summing the effective areas of the
four sides of the branch member. For T-, Y- and cross-connections the two walls of
the branch transverse to the chord are likely to be only partially effective (Equation
K2-12), whereas for gapped K-connections one wall of the branch transverse to
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 433

the chord is likely to be only partially effective (Equation K2-16). This reduced
effectiveness is primarily a result of the flexibility of the connecting face of the
chord, as incorporated in Equations K2-13. The effective width term, b
eoi,has been
derived from research on transverse plate-to-HSS connections (as cited below for
overlapped K-connections) and incorporates a φfactor of 0.80 or Ωfactor of 1.88.
Applying the same logic described above for the limit state of punching shear, a
global φfactor of 0.95 or Ωfactor of 1.58 has been adopted in AWS D1.1/D1.1M
(AWS, 2010), and this has been carried over to this Specification [although, as noted
previously, a φfactor of 1.0 is used in IIW (1989)].
For T-, Y- and cross-connections with β≤0.85, the connection strength is determined
by Equation K2-7 only.
For axially loaded, gapped K-connections, plastification of the chord connecting
face under the “push-pull” action of the branches is by far the most prevalent and
critical failure mode. Indeed, if all the HSS members are square, this failure mode
is critical and Equation K2-14 is the only one to be checked. This formula for chord
face plastification is a semi-empirical “characteristic strength” expression, which
has a confidence of 95%, taking into account the variation in experimental test
results as well as typical variations in mechanical and geometric properties.
Equation K2-14 is then multiplied by a φfactor for LRFD or divided by an Ωfac-
tor for ASD to further allow for the failure mode and provide an appropriate safety
margin. A reliability calibration (Packer et al., 1984) for this equation, using a data-
base of 263 gapped K-connections and the exponential expression for the resistance
factor (with a safety index of 3.0 and a coefficient of separation of 0.55) derived a
φfactor of 0.89 (Ωfactor of 1.69), while also imposing the parameter limits of
validity. Since this failure mode dominates the test database, there is insufficient
supporting test data to calibrate Equations K2-15 and K2-16.
For the limit state of shear yielding of the chord in the gap of gapped K-
connections, Table K2.2 differs from international practice [for example, IIW (1989)]
by recommending application of another section of this Specification, Section G5.
This limit state need only be checked if the chord member is rectangular, not square,
and is also oriented such that the shorter wall of the chord section lies in the plane of
the truss, hence providing a more critical chord shear condition due to the short
“webs.” The axial force present in the gap region of the chord member may also have
an influence on the shear strength of the chord webs in the gap region.
For K-connections, the scope covers both gapped and overlapped connections. Note
that the latter are generally more difficult and more expensive to fabricate than K-
connections with a gap. However, an overlapped connection will, in general, produce
a connection with a higher static strength and fatigue resistance, as well as a stiffer
truss than its gapped connection counterpart.
Table K2.2 provisions for gapped and overlapped K-connections deal with branches
subject to axial loading only. This is because there should only be axial forces in the
branches of a typical planar K-connection if the truss structural analysis is performed
according to one of the recommended methods, which are:
16.1–434 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 434

Comm. K2.] HSS-TO-HSS TRUSS CONNECTIONS 16.1–435
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(a) pin-jointed analysis, or
(b) analysis using web members pin-connected to continuous chord members, as
shown in Figure C-K2.4.
For rectangular HSS, the sole failure mode to be considered for design of overlapped
connections is the limit state of “uneven load distribution” in the branches, mani-
fested by either local buckling of the compression branch or premature yield failure
of the tension branch. The design procedure presumes that one branch is welded
solely to the chord and hence only has a single cut at its end. This can be considered
“good practice” and the “thru member” is termed the overlapped member. For par-
tial overlaps of less than 100%, the other branch is then double-cut at its end and
welded to both the thru branch as well as the chord.
The branch to be selected as the “thru” or overlapped member should be the one with
the larger overall width. If both branches have the same width, the thicker branch
should be the overlapped branch.
For a single failure mode to be controlling (and not have failure by one branch
punching into or pulling out of the other branch, for example), limits are placed on
various connection parameters, including the relative width and relative thickness of
the two branches. The foregoing fabrication advice for rectangular HSS also pertains
to round HSS overlapped K-connections, but the latter involves more complicated
profiling of the branch ends to provide good saddle fits.
Overlapped rectangular HSS K-connection strength calculations (Equations
K2-17, K2-18 and K2-19) are performed initially just for the overlapping branch,
regardless of whether it is in tension or compression, and then the resistance of the
overlapped branch is determined from that. The equations for connection strength,
expressed as a force in a branch, are based on the load-carrying contributions of the
four side walls of the overlapping branch and follow the design recommendations
of the International Institute of Welding (IIW, 1989; Packer and Henderson, 1997;
AWS, 2010). The effective widths of overlapping branch member walls transverse
to the chord (b
eoiand b eov) depend on the flexibility of the surface on which they
land, and are derived from plate-to-HSS effective width measurements (Rolloos,
1969; Wardenier et al., 1981; Davies and Packer, 1982). The constant of 10 in the
b
eoiand b eovterms has already been reduced from values determined in tests and
incorporates a φfactor of 0.80 or Ωfactor of 1.88 in those terms. Applying the same
logic described above for the limit state of punching shear in T-, Y- and cross-con-
nections, a global φfactor of 0.95 or Ωfactor of 1.58 was adopted by AWS D1.1/
D1.1M and this has been carried over to this Specification [although as noted pre-
viously a φfactor of 1.0 is used by IIW (1989)].
The applicability of Equations K2-17, K2-18 and K2-19 depends on the amount of
overlap, O
v, where O v=(q/p) ×100%. It is important to note that pis the projected
length (or imaginary footprint) of the overlapping branch on the connecting face of
the chord, even though it does not physically contact the chord. Also, qis the over-
lap length measured along the connecting face of the chord beneath the region of
overlap of the branches. This is illustrated in Figure C-K1.1.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 435

A maximum overlap of 100% occurs when one branch sits completely on the other
branch. In such cases, the overlapping branch is sometimes moved slightly up the
overlapped branch so that the heel of the overlapping branch can be fillet welded to
the face of the overlapped branch. If the connection is fabricated in this manner, an
overlap slightly greater than 100% is created. In such cases, the connection strength
for a rectangular HSS connection can be calculated by Equation K2-19 but with the
B
biterm replaced by another b eovterm. Also, with regard to welding details, it has
been found experimentally that it is permissible to just tack weld the “hidden toe” of
the overlapped branch, providing that the components of the two branch member
forces normal to the chord substantially balance each other and providing that the
welds are designed for the yield capacity of the connected branch walls. The “hidden
toe” should be fully welded to the chord if the normal components of the two branch
forces differ by more than 20% or the welds to the branches are designed using an
effective length approach. More discussion is provided in Commentary Section K4.
If the components of the two branch forces normal to the chord do in fact differ sig-
nificantly, the connection should also be checked for behavior as a T-, Y- or
cross-connection, using the combined footprint and the net force normal to the chord
(see Figure C-K2.2).
K3. HSS-TO-HSS MOMENT CONNECTIONS
Section K3 on HSS-to-HSS connections under moment loading is applicable to
frames with PR or FR moment connections, such as Vierendeel girders. The provi-
sions of Section K3 are not generally applicable to typical planar triangulated trusses,
which are covered by Section K2, since the latter should be analyzed in a manner that
results in no bending moments in the web members (see Commentary Section K2).
Thus, K-connections with moment loading on the branches are not covered by this
Specification.
Available testing for HSS-to-HSS moment connections is much less extensive than
that for axially-loaded T-, Y-, cross- and K-connections. Hence, the governing limit
states to be checked for axially loaded connections have been used as a basis for the
possible limit states in moment-loaded connections. Thus, the design criteria for
round HSS moment connections are based on the limit states of chord plastification
and punching shear failure, with φand Ωfactors consistent with Section K2, while
the design criteria for rectangular HSS moment connections are based on the limit
states of plastification of the chord connecting face, chord side wall crushing,
uneven load distribution, and chord distortional failure, with φand Ωfactors con-
sistent with Section K2. The “chord distortional failure” mode is applicable only to
rectangular HSS T-connections with an out-of-plane bending moment on the
branch. Rhomboidal distortion of the branch can be prevented by the use of stiffen-
ers or diaphragms to maintain the rectangular cross-sectional shape of the chord.
The limits of applicability of the equations in Section K3 are predominantly repro-
duced from Section K2. The basis for the equations in Section K3 is Eurocode 3
(CEN, 2005), which represents one of the consensus specifications on welded HSS-
to-HSS connections. The equations in Section K3 have also been adopted in
CIDECT Design Guide No. 9 (Kurobane et al., 2004).
16.1–436 HSS-TO-HSS TRUSS CONNECTIONS [Comm. K2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 436

Comm. K4.] WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS 16.1–437
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
K4. WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS
Section K4 consolidates all the welding rules for plates and branch members to the
face of an HSS into one section. In addition to reformatting the design rules for
welds of plates and gapped connections (both unchanged) into a tabular format, the
weld design rules have been expanded for T-, Y- and cross-connections to include
moments, as well as axial loads, and added “fit for purpose” design rules for over-
lapped connections.
The design of welds to branches may be performed using either of two design
philosophies:
(a) The welds may be proportioned to develop the strength of the connected branch
wall, at all points along the weld length. This may be appropriate if the branch
loading is complex or if the loading is not known by the weld designer. Welds
sized in this manner represent an upper limit on the required weld size and may
be excessively conservative in some situations.
(b) The welds may be designed as “fit for purpose,” to resist branch forces that are typ-
ically known in HSS truss-type connections by using what is known as the
“effective length concept.” Many HSS truss web members are subjected to low
axial loads and, in such situations, this weld design philosophy is ideal. However,
the nonuniform loading of the weld perimeter due to the flexibility of the connect-
ing HSS face must be taken into account by using weld effective lengths. Suitable
effective lengths for plates and various rectangular HSS connections subject to
branch axial loading (and/or moment loading in some cases) are given in Table
K4.1. Several of these provisions are similar to those given in AWS (2010) and are
based on full-scale HSS connection and truss tests that studied weld failures (Frater
and Packer, 1992a, 1992b; Packer and Cassidy, 1995). Others (the newly added
rules for moments in T-, Y- and cross-connections and axial forces in overlapped
connections) are based on a rational extrapolation of the effective length concept
used for design of the member itself. Diagrams which show the locations of the
effective weld lengths (most of which are less than 100% of the total weld length)
are shown in Table K4.1. This effective length approach to weld design recognizes
that a branch to main member connection becomes stiffer along its edges, relative
to the center of the HSS face, as the angle of the branch to the connecting face
and/or the width ratio (the width of a branch member relative to the connecting
face) increase. Thus, the effective length used for sizing the weld may decrease as
either the angle of the branch member (when over 50°relative to the connecting
face) or the branch member width (creating width ratios over 0.85) increase. Note
that for ease of calculation and because the error is insignificant, the weld corners
were assumed as square for determination of the weld line section properties in cer-
tain cases.
As noted in Commentary Section K2, when the welds in overlapped joints are ade-
quate to develop the strength of the remaining member walls, it has been found
experimentally that it is permissible to tack weld the “hidden toe” of the overlapped
branch, providing that the components of the two branch member forces normal to
the chord substantially balance each other. The “hidden toe” should be fully welded
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 437

to the chord if the normal components of the two branch forces differ by more than
20%. If the “fit for purpose” weld design philosophy is used in an overlapped joint
the hidden weld should be completed even though the effective weld length may be
much less than the perimeter of the tube. This helps account for the moments that can
occur in typical HSS connections due to joint rotations and face deformations but are
not directly accounted for in design.
Until further investigation proves otherwise, directional strength increases typically
used in the design of fillet welds are not allowed in Section K4 when welding to the
face of HSS members in truss-type connections. Additionally, the design weld size in
all cases shown in Table K4.1, including the hidden weld underneath an overlapped
member as discussed above, is the smallest weld throat around the connection
perimeter; adding up the strengths of individual sections of a weld group with vary-
ing throat sizes around the perimeter of the cross section is not a viable approach to
HSS connection design.
16.1–438 WELDS OF PLATES AND BRANCHES TO RECTANGULAR HSS [Comm. K4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 438

16.1–439
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER L
DESIGN FOR SERVICEABILITY
L1. GENERAL PROVISIONS
Serviceability limit states are conditions in which the functions of a building are
impaired because of local damage, deterioration or deformation of building compo-
nents, or occupant discomfort. While serviceability limit states generally do not
involve collapse of a building, loss of life or injury, they can seriously impair the
building’s usefulness and lead to costly repairs and other economic consequences.
Serviceability provisions are essential to provide satisfactory performance of build-
ing structural systems. Neglect of serviceability may result in structures that are
excessively flexible or otherwise perform unacceptably in service.
The three general types of structural behavior that are indicative of impaired serv-
iceability in steel structures are:
(1) Excessive deflections or rotations that may affect the appearance, function or
drainage of the building or may cause damaging transfer of load to nonstructural
components and attachments;
(2) Excessive vibrations produced by the activities of the building occupants,
mechanical equipment or wind effects, which may cause occupant discomfort or
malfunction of building service equipment; and
(3) Excessive local damage (local yielding, buckling, slip or cracking) or deteriora-
tion (weathering, corrosion and discoloration) during the service life of the
structure.
Serviceability limit states depend on the occupancy or function of the building, the
perceptions of its occupants, and the type of structural system. Limiting values of
structural behavior intended to provide adequate levels of serviceability should be
determined by a team consisting of the building owner/developer, the architect and
the structural engineer after a careful analysis of all functional and economic require-
ments and constraints. In arriving at serviceability limits, the team should recognize
that building occupants are able to perceive structural deformations, motions, crack-
ing or other signs of distress at levels that are much lower than those that would
indicate impending structural damage or failure. Such signs of distress may be
viewed as an indication that the building is unsafe and diminish its economic value,
and therefore must be considered at the time of design.
Service loads that may require consideration in checking serviceability include: (1)
static loads from the occupants, snow or rain on the roof, or temperature fluctuations;
and (2) dynamic loads from human activities, wind effects, the operation of mechan-
ical or building service equipment, or traffic near the building. Service loads are
loads that act on the structure at an arbitrary point in time, and may be only a frac-
tion of the corresponding nominal load. The response of the structure to service loads
generally can be analyzed assuming elastic behavior. Members that accumulate
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 439

16.1–440 GENERAL PROVISIONS [Comm. L1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
residual deformations under service loads also may require examination with respect
to this long-term behavior.
Serviceability limit states and appropriate load combinations for checking
conformance to serviceability requirements can be found in ASCE/SEI 7, Minimum
Design Loads for Buildings and Other Structures, Appendix C, and the
Commentary Appendix C (ASCE, 2010).
L2. CAMBER
Camber is frequently specified in order to provide a level surface under permanent
loads, for reasons of appearance or for alignment with other work. In normal cir-
cumstances camber does nothing to prevent excessive deflection or vibration.
Camber in trusses is normally created by adjustment of member lengths prior to mak-
ing shop connections. It is normally introduced in beams by controlled heating of
selected portions of the beam or by cold bending, or both. Designers should be aware
of practical limits presented by normal fabricating and erection practices. The Code
of Standard Practice for Steel Buildings and Bridges(AISC, 2010a) provides toler-
ances on actual camber and recommends that all cambers be measured in the
fabricating shop on unstressed members, along general guidelines. Further informa-
tion on camber may be found in Ricker (1989) and Bjorhjovde (2006).
L3. DEFLECTIONS
Excessive vertical deflections and misalignment arise primarily from three sources:
(1) gravity loads, such as dead, live and snow loads; (2) effects of temperature, creep
and differential settlement; and (3) construction tolerances and errors. Such defor-
mations may be visually objectionable; cause separation, cracking or leakage of
exterior cladding, doors, windows and seals; and cause damage to interior compo-
nents and finishes. Appropriate limiting values of deformations depend on the type
of structure, detailing and intended use (Galambos and Ellingwood, 1986).
Historically, common deflection limits for horizontal members have been 1/360 of
the span for floors subjected to reduced live load and 1/240 of the span for roof mem-
bers. Deflections of about 1/300 of the span (for cantilevers, 1/150 of the length) are
visible and may lead to general architectural damage or cladding leakage.
Deflections greater than 1/200 of the span may impair operation of moveable com-
ponents such as doors, windows and sliding partitions.
Deflection limits depend very much on the function of the structure and the nature of
the supported construction. Traditional limits expressed as a fraction of the span
length should not be extrapolated beyond experience. For example, the traditional
limit of 1/360 of the span worked well for controlling cracks in plaster ceilings with
spans common in the first half of the twentieth century. Many structures with more
flexibility have performed satisfactorily with the now common, and more forgiving,
ceiling systems. On the other hand, with the advent of longer structural spans, serv-
iceability problems have been observed with flexible grid ceilings where actual
deflections were far less than 1/360 of the span, because the distance between parti-
tions or other elements that may interfere with ceiling deflection are far less than the
span of the structural member. Proper control of deflections is a complex subject
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 440

Comm. L4.] DRIFT 16.1–441
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
requiring careful application of professional judgment. West et al. (2003) provide an
extensive discussion of the issues.
Deflection computations for composite beams should include an allowance for slip,
creep and shrinkage (see Commentary Section I3).
In certain long-span floor systems, it may be necessary to place a limit, independent
of span, on the maximum deflection to minimize the possibility of damage of adja-
cent nonstructural elements (ISO, 1977). For example, damage to nonload-bearing
partitions may occur if vertical deflections exceed more than about
3
/8in. (10 mm)
unless special provision is made for differential movement (Cooney and King, 1988);
however, many components can and do accept larger deformations.
Load combinations for checking static deflections can be developed using first-order
reliability analysis (Galambos and Ellingwood, 1986). Current static deflection
guidelines for floor and roof systems are adequate for limiting superficial damage in
most buildings. A combined load with an annual probability of being exceeded of 5%
is appropriate in most instances. For serviceability limit states involving visually
objectionable deformations, repairable cracking or other damage to interior finishes,
and other short-term effects, the suggested load combinations are:
D+L
D+0.5S
For serviceability limit states involving creep, settlement or similar long-term or per-
manent effects, the suggested load combination is:
D+0.5L
The dead load effect, D, may be that portion of dead load that occurs following
attachment of nonstructural elements. For example, in composite construction, the
dead load effects frequently are taken as those imposed after the concrete has cured.
For ceiling related calculations, the dead load effects may include only those loads
placed after the ceiling structure is in place.
L4. DRIFT
Drift (lateral deflection) in a steel building is a serviceability issue primarily from
the effects of wind. Drift limits are imposed on buildings to minimize damage to
cladding and to nonstructural walls and partitions. Lateral frame deflection is eval-
uated for the building as a whole, where the applicable parameter is the total
building drift, defined as the lateral frame deflection at the top of the most occupied
floor divided by the height of the building to that level, Δ/H. For each floor, the
applicable parameter is interstory drift, defined as the lateral deflection of a floor
relative to the lateral deflection of the floor immediately below, divided by the dis-
tance between floors, (δ
nΔδn-1)/h.
Typical drift limits in common usage vary from H/100 to H/600 for total building
drift and h/200 to h/600 for interstory drift, depending on building type and the type
of cladding or partition materials used. The most widely used values are H(or h)/400
AISC_PART 16_Comm.2B_14Ed._February 12, 2013 12/02/13 10:09 AM Page 441

16.1–442 DRIFT [Comm. L4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
to H (or h)/500 (ASCE Task Committee on Drift Control of Steel Building
Structures, 1988). An absolute limit on interstory driftis sometimes imposed by
designers in light of evidence that damage to nonstructural partitions, cladding and
glazing may occur if the interstory drift exceeds about
3
/8in. (10 mm), unless special
detailing practices are employed to accommodate larger movements (Cooney and
King, 1988; Freeman, 1977). Many components can accept deformations that are
significantly larger. More specific information on the damage threshold for building
materials is available in the literature (Griffis, 1993).
It is important to recognize that frame racking or shear distortion (in other words,
strain) is the real cause of damage to building elements such as cladding and parti-
tions. Lateral drift only captures the horizontal component of the racking and does
not include potential vertical racking, as from differential column shortening in tall
buildings, which also contributes to damage. Moreover, some lateral drift may be
caused by rigid body rotation of the cladding or partition which by itself does not
cause strain and therefore damage. A more precise parameter, the drift damage index,
used to measure the potential damage, has been proposed (Griffis, 1993).
It must be emphasized that a reasonably accurate estimate of building drift is
essential to controlling damage. The structural analysis must capture all significant
components of potential frame deflection including flexural deformation of beams
and columns, axial deformation of columns and braces, shear deformation of beams
and columns, beam-column joint rotation (panel-zone deformation), the effect of
member joint size, and the P-Δeffect (Charney, 1990). For many low-rise steel
frames with normal bay widths of 30 to 40 ft (9 to 12 m), use of center-to-center
dimensions between columns without consideration of actual beam column joint
size and panel zone effects will usually suffice for checking drift limits. The stiff-
ening effect of nonstructural cladding, walls and partitions may be taken into
account if substantiating information (stress versus strain behavior) regarding their
effect is available.
The level of wind load used in drift limit checks varies among designers depending
upon the frequency with which the potential damage can be tolerated. Some design-
ers use the same nominal wind load (wind load specified by the building code
without a load factor) as used for the strength design of the members (typically a 50
or 100 year mean recurrence interval wind load). Other designers use a 10 year or 20
year mean recurrence interval wind load (Griffis, 1993; ASCE, 2010). Use of fac-
tored wind loads (nominal wind load multiplied by the wind load factor) is generally
considered to be very conservative when checking serviceability.
It is important to recognize that drift control limits by themselves in wind-sensitive
buildings do not provide comfort of the occupants under wind load. See Section
L6 for additional information regarding perception of motion in wind sensitive
buildings.
L5. VIBRATION
The increasing use of high-strength materials with efficient structural systems and
open plan architectural layouts leads to longer spans and more flexible floor systems
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 442

Comm. L6.] WIND-INDUCED MOTION 16.1–443
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
having less damping. Therefore, floor vibrations have become an important design
consideration. Acceleration is the recommended standard for evaluation.
An extensive treatment of vibration in steel-framed floor systems and pedestrian
bridges is found in Design Guide 11, Floor Vibrations Due to Human Activity
(Murray et al., 1997). This guide provides basic principles and simple analytical tools
to evaluate steel-framed floor systems and footbridges for vibration serviceability
due to human activities, including walking and rhythmic activities. Both human com-
fort and the need to control movement for sensitive equipment are considered.
L6. WIND-INDUCED MOTION
Designers of wind-sensitive buildings have long recognized the need for controlling
annoying vibrations under the action of wind to protect the psychological well-
being of the occupants (Chen and Robertson, 1972). The perception of building
motion under the action of wind may be described by various physical quantities
including maximum displacement, velocity, acceleration, and rate of change of
acceleration (sometimes called “jerk”). Acceleration has become the standard for
evaluation because it is readily measured in the field and can be easily calculated
analytically. Human response to building motion is a complex phenomenon involv-
ing many psychological and physiological factors. Perception and tolerance
thresholds of acceleration as a measure of building motion are known to depend on
factors such as frequency of the building, occupant gender, age, body posture (sit-
ting, standing or reclining), body orientation, expectation of motion, body
movement, visual cues, acoustic clues, and the type of motion (translational or tor-
sional) (ASCE, 1981). Different thresholds and tolerance levels exist for different
people and responses can be very subjective. It is known that some people can
become accustomed to building motion and tolerate higher levels than others.
Limited research exists on this subject but certain standards have been applied for
design as discussed below.
Acceleration in wind-sensitive buildings may be expressed as either root mean
square (RMS) or peak acceleration. Both measures are used in practice and there is
no clear agreement as to which is the more appropriate measure of motion percep-
tion. Some researchers believe that peak acceleration during wind storms is a better
measure of actual perception but that RMS acceleration during the entire course of
a wind storm is a better measure of actual discomfort. Target peak accelerations of
21 milli-g (0.021 times the acceleration of gravity) for commercial buildings (occu-
pied mostly during daylight hours) and 15 milli-g for residential buildings
(occupied during the entire day) under a 10-year mean recurrence interval wind
storm have been successfully used in practice for many tall building designs
(Griffis, 1993). The target is generally more strict for residential buildings because
of the continuous occupancy, the perception that people are less sensitive and more
tolerant at work than at home, the fact that there is more turnover in commercial
buildings, and the fact that commercial buildings are more easily evacuated for peak
wind events. Peak acceleration and RMS acceleration in wind-sensitive buildings
are related by the “peak factor” best determined in a wind tunnel study and gener-
ally in the range of 3.5 for tall buildings (in other words, peak acceleration=peak
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 443

16.1–444 WIND-INDUCED MOTION [Comm. L6.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
factor τRMS acceleration). Guidance for design acceleration levels used in build-
ing design may be found in the literature (Chen and Robertson, 1972; Hansen et al.,
1973; Irwin, 1986; NRCC, 1990; Griffis, 1993;).
It is important to recognize that perception to building motion is strongly influenced
by building mass and available damping as well as stiffness (Vickery et al., 1983).
For this reason, building drift limits by themselves should not be used as the sole
measure of controlling building motion (Islam et al., 1990). Damping levels for use
in evaluating building motion under wind events are generally taken as approxi-
mately 1% of critical damping for steel buildings.
L7. EXPANSION AND CONTRACTION
The satisfactory accommodation of expansion and contraction cannot be reduced to
a few simple rules, but must depend largely upon the judgment of a qualified engi-
neer.
The problem is likely to be more serious in buildings with masonry walls than with
prefabricated units. Complete separation of the framing at widely spaced expansion
joints is generally more satisfactory than more frequently located devices that depend
upon the sliding of parts in bearing, and usually less expensive than rocker or roller
expansion bearings.
Creep and shrinkage of concrete and yielding of steel are among the causes, other
than temperature, for dimensional changes. Conditions during construction, such as
temperature effects before enclosure of the structure, should also be considered.
Guidelines for the recommended size and spacing of expansion joints in buildings
may be found in NRC (1974).
L8. CONNECTION SLIP
In bolted connections with bolts in holes having only small clearances, such as stan-
dard holes and slotted holes loaded transversely to the axis of the slot, the amount of
possible slip is small. Slip at these connections is not likely to have serviceability
implications. Possible exceptions include certain unusual situations where the effect
of slip is magnified by the configuration of the structure, such as a connection at the
base of a shallow cantilever beam or post where a small amount of bolt slip may pro-
duce unacceptable rotation and deflection.
This Specification requires that connections with oversized holes or slotted holes
loaded parallel to the axis of the slot be designed as slip-critical connections. For a
discussion of slip at these connections, see the Commentary Section J3.8. Where slip
at service loads is a realistic possibility in these connections, the effect of connection
slip on the serviceability of the structure must be considered.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 444

16.1–445
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER M
FABRICATION AND ERECTION
M1. SHOP AND ERECTION DRAWINGS
Supplementary information relevant to shop drawing documentation and associated
fabrication, erection and inspection practices may be found in the Code of Standard
Practice for Steel Buildings and Bridges(AISC, 2010a) and in Schuster (1997).
M2. FABRICATION
1. Cambering, Curving and Straightening
In addition to mechanical means, local application of heat is permitted for curving,
cambering and straightening. Maximum temperatures are specified to avoid metal-
lurgical damage and inadvertent alteration of mechanical properties. For ASTM
A514/A514M and A852/A852M steels, the maximum is 1,100 °F (590 °C). For other
steels, the maximum is 1,200 °F (650 °C). In general, these should not be viewed
as absolute maximums; they include an allowance for a variation of about 100 °F
(38 °C), which is a common range achieved by experienced fabricators (FHWA,
1999).
Temperatures should be measured by appropriate means, such as temperature-
indicating crayons and steel color. Precise temperature measurements are seldom
called for. Also, surface temperature measurements should not be made immediately
after removing the heating torch because it takes a few seconds for the heat to soak
into the steel.
Local application of heat has long been used as a means of straightening or camber-
ing beams and girders. With this method, selected zones are rapidly heated and tend
to expand. But the expansion is resisted by the restraint provided by the surrounding
unheated areas. Thus, the heated areas are “upset” (increase in thickness) and, upon
cooling, they shorten to effect a change in curvature. In the case of trusses and gird-
ers, cambering can be built in during assembly of the component parts.
Although the desired curvature or camber can be obtained by these various methods,
including at room temperature (cold cambering) (Bjorhovde, 2006), it must be real-
ized that some deviation due to workmanship considerations, as well as some
permanent change due to handling, is inevitable. Camber is usually defined by one
mid-ordinate, because control of more than one point is difficult and not normally
needed. Reverse cambers are difficult to achieve and are discouraged. Long can-
tilevers are sensitive to camber and may deserve closer control.
2. Thermal Cutting
Thermal cutting is preferably done by machine. The requirement in ASTM A6/A6M
for a positive preheat of 150 °F (66 °C) minimum when beam copes and weld access
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 445

16.1–446 FABRICATION [Comm. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
holes are thermally cut in hot-rolled shapes with a flange thickness exceeding 2 in.
(50 mm) and in built-up shapes made of material more than 2 in. (50 mm) thick tends
to minimize the hard surface layer and the initiation of cracks. This requirement for
preheat for thermal cutting does not apply when the radius portion of the access hole
or cope is drilled and the thermally cut portion is essentially linear. Such thermally
cut surfaces are required to be ground and inspected in accordance with Section J1.6.
4. Welded Construction
To avoid weld contamination, the light oil coating that is generally present after
manufacturing an HSS should be removed with a suitable solvent in locations where
welding will be performed. In cases where an external coating has been applied at
the mill, the coating should be removed at the location of welding or the manufac-
turer should be consulted regarding the suitability of welding in the presence of the
coating.
5. Bolted Construction
In most connections made with high-strength bolts, it is only required to install the
bolts to the snug-tight condition. This includes bearing-type connections where slip
is permitted and, for ASTM A325 or A325M bolts only, tension (or combined shear
and tension) applications where loosening or fatigue due to vibration or load fluctu-
ations are not design considerations.
It is suggested that snug-tight bearing-type connections with ASTM A325 or A325M
or ASTM A490 or A490M bolts be used in applications where ASTM A307 bolts are
permitted.
This section provides rules for the use of oversized and slotted holes paralleling the
provisions that have been in the RCSCSpecification for High-Strength Boltssince
1972 (RCSC, 2009), extended to include ASTM A307 bolts, which are outside the
scope of the RCSC Specification.
The Specification previously limited the methods used to form holes, based on com-
mon practice and equipment capabilities. Fabrication methods have changed and will
continue to do so. To reflect these changes, this Specification has been revised to
define acceptable quality instead of specifying the method used to form the holes,
and specifically to permit thermally cut holes. AWS C4.1, Sample 3, is useful as an
indication of the thermally cut profile that is acceptable (AWS, 1977). The use of
numerically controlled or mechanically guided equipment is anticipated for the form-
ing of thermally cut holes. To the extent that the previous limits may have related to
safe operation in the fabrication shop, fabricators are referred to equipment manu-
facturers for equipment and tool operating limits.
10. Drain Holes
Because the interior of an HSS is difficult to inspect, concern is sometimes expressed
regarding internal corrosion. However, good design practice can eliminate the con-
cern and the need for expensive protection.
AISC_PART 16_Comm.2B:14Ed._ 2/17/12 12:55 PM Page 446

Comm. M2.] FABRICATION 16.1–447
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Corrosion occurs in the presence of oxygen and water. In an enclosed building, it is
improbable that there would be sufficient reintroduction of moisture to cause severe
corrosion. Therefore, internal corrosion protection is a consideration only in HSS
that are exposed to weather.
In a sealed HSS, internal corrosion cannot progress beyond the point where the oxy-
gen or moisture necessary for chemical oxidation is consumed (AISI, 1970). The
oxidation depth is insignificant when the corrosion process must stop, even when a
corrosive atmosphere exists at the time of sealing. If fine openings exist at connec-
tions, moisture and air can enter the HSS through capillary action or by aspiration
due to the partial vacuum that is created if the HSS is cooled rapidly (Blodgett,
1967). This can be prevented by providing pressure-equalizing holes in locations
that make it impossible for water to flow into the HSS by gravity.
Situations where an internal protective coating may be required include: (1) open
HSS where changes in the air volume by ventilation or direct flow of water is
possible; and (2) open HSS subject to a temperature gradient that causes conden-
sation. In such instances it may also be prudent to use a minimum
5
/16in. (8 mm)
wall thickness.
HSS that are filled or partially filled with concrete should not be sealed. In the event
of fire, water in the concrete will vaporize and may create pressure sufficient to burst
a sealed HSS. Care should be taken to ensure that water does not remain in the HSS
during or after construction, since the expansion caused by freezing can create pres-
sure that is sufficient to burst an HSS.
Galvanized HSS assemblies should not be completely sealed because rapid pressure
changes during the galvanizing process tend to burst sealed assemblies.
11. Requirements for Galvanized Members
Cracking has been observed in steel members during hot-dip galvanizing. The
occurrence of these cracks has been correlated to several characteristics including,
but not limited to, highly restrained details, base material chemistry, galvanizing
practices, and fabrication workmanship. The requirement to grind beam copes
before galvanizing will not prevent all cope cracks from occurring during galva-
nizing. However, it has been shown to be an effective means to reduce the
occurrence of this phenomenon.
Galvanizing of structural steel and hardware such as fasteners is a process that
depends on special design, detailing and fabrication to achieve the desired level of
corrosion protection. ASTM publishes a number of standards relating to galvanized
structural steel:
ASTM A123 (ASTM, 2009e) provides a standard for the galvanized coating and its
measurement and includes provisions for the materials and fabrication of the prod-
ucts to be galvanized.
ASTM A153/153M (ASTM, 2009a) is a standard for galvanized hardware such as
fasteners that are to be centrifuged.
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 447

16.1–448 FABRICATION [Comm. M2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASTM A384/384M (ASTM, 2007a) is the Standard Practice for Safeguarding
Against Warpage and Distortion During Hot-Dip Galvanizing of Steel Assemblies. It
includes information on factors that contribute to warpage and distortion as well as
suggestions for correction for fabricated assemblies.
ASTM A385/385M (ASTM, 2009b) is the Standard Practice for Providing High
Quality Zinc Coatings (Hot-Dip). It includes information on base materials, venting,
treatment of contacting surfaces, and cleaning. Many of these provisions should be
indicated on the design and detail drawings.
ASTM A780/A780M (ASTM, 2009c) provides for repair of damaged and uncoated
areas of hot-dip galvanized coatings.
M3. SHOP PAINTING
1. General Requirements
The surface condition of unpainted steel framing of long-standing buildings that have
been demolished has been found to be unchanged from the time of its erection,
except at isolated spots where leakage may have occurred. Even in the presence of
leakage, the shop coat is of minor influence (Bigos et al., 1954).
This Specification does not define the type of paint to be used when a shop coat is
required. Final exposure and individual preference with regard to finish paint are fac-
tors that determine the selection of a proper primer. A comprehensive treatment of
the subject is found in various SSPC publications.
3. Contact Surfaces
Special concerns regarding contact surfaces of HSS should be considered. As a
result of manufacturing, a light oil coating is generally present on the outer surface
of the HSS. If paint is specified, HSS must be cleaned of this oil coating with a
suitable solvent.
5. Surfaces Adjacent to Field Welds
This Specification allows for welding through surface materials, including appropri-
ate shop coatings that do not adversely affect weld quality nor create objectionable
fumes.
M4. ERECTION
2. Stability and Connections
For information on the design of temporary lateral support systems and components
for low-rise buildings, see Fisher and West (1997).
4. Fit of Column Compression Joints and Base Plates
Tests on spliced full-size columns with joints that had been intentionally milled out-
of-square, relative to either strong or weak axis, demonstrated that the load-carrying
capacity was the same as that for similar columns without splices (Popov and
AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 448

Comm. M4.] ERECTION 16.1–449
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stephen, 1977). In the tests, gaps of
1
/16in. (2 mm) were not shimmed; gaps of
1
/4in.
(6 mm) were shimmed with nontapered mild steel shims. Minimum size partial-joint-
penetration groove welds were used in all tests. No tests were performed on
specimens with gaps greater than
1
/4in. (6 mm).
5. Field Welding
The Specification incorporates AWS D1.1/D1.1M (AWS, 2010) by reference. Surface
preparation requirements are defined in that code. The erector is responsible for repair
of routine damage and corrosion occurring after fabrication. Welding on coated sur-
faces demands consideration of quality and safety. Wire brushing has been shown to
result in adequate quality welds in many cases. Erector weld procedures accommo-
date project site conditions within the range of variables normally used on structural
steel welding. Welds to material in contact with concrete and welded assemblies in
which shrinkage may add up to a substantial dimensional variance may be improved
by judicious selection of weld procedure variables and fit up. These conditions are
dependent on other variables such as the condition and content of the concrete and the
design details of the welded joint. The range of variables permitted in the class of weld
procedures considered to be prequalified in the process used by the erector is the range
normally used.AISC_PART 16_Comm.2B copy:14Ed._ 2/14/11 9:54 AM Page 449

Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
CHAPTER N
QUALITY CONTROL AND
QUALITY ASSURANCE
N1. SCOPE
Chapter N of the 2010 AISC Specification provides minimum requirements for qual-
ity control (QC), quality assurance (QA) and nondestructive testing (NDT) for
structural steel systems and steel elements of composite members for buildings and
other structures. Minimum observation and inspection tasks deemed necessary to
ensure quality structural steel construction are defined.
Chapter N defines a comprehensive system of “Quality Control” requirements on the
part of the steel fabricator and erector and similar requirements for “Quality
Assurance” on the part of the project owner’s representatives when such is deemed
necessary to complement the contractor’s quality control function. These require-
ments exemplify recognized principles of developing involvement of all levels of
management and the workforce in the quality control process as the most effective
method of achieving quality in the constructed product. Chapter N supplements these
quality control requirements with quality assurance responsibilities as are deemed
suitable for a specific task. The Chapter N requirements follow the same require-
ments for inspections utilized in the AISC Specification referenced Structural
Welding Code—Steel(AWS, 2010), hereafter referred to as AWS D1.1/D1.1M, and
the RCSC Specification for Structural Joints Using High-Strength Bolts(RCSC,
2009), hereafter referred to as the RCSC Specification.
Under Section 8 of the AISC Code of Standard Practice for Steel Buildings and
Bridges(AISC, 2010a), hereafter referred to as the Code of Standard Practice, the
fabricator or erector is to implement a QC system as part of their normal operations.
Those that participate in AISC Quality Certification or similar programs are required
to develop QC systems as part of those programs. The engineer of record should
evaluate what is already a part of the fabricator’s or erector’s QC system in deter-
mining the quality assurance needs for each project. Where the fabricator’s or
erector’s QC system is considered adequate for the project, including compliance
with any specific project needs, the special inspection or quality assurance plan may
be modified to reflect this. Similarly, where additional needs are identified, supple-
mentary requirements should be specified.
The terminology adopted for use in Chapter N is intended to provide a clear dis-
tinction of fabricator and erector requirements and the requirements of others. The
definitions of QC and QA used here are consistent with usage in related industries
such as the steel bridge industry and they are used for the purposes of this
Specification. It is recognized that these definitions are not the only definitions
in use. For example, QC and QA are defined differently in the AISC Quality
16.1–450
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 450

Comm. N2.] FABRICATOR AND ELECTOR QUALITY CONTROL PROGRAM 16.1–451
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Certification program in a fashion that is useful to that program and are consistent
with the International Standards Organization (ISO) and the American Society for
Quality (ASQ).
For the purposes of this Specification, quality control includes those tasks performed
by the steel fabricator and erector that have an effect on quality or are performed to
measure or confirm quality. Quality assurance tasks performed by organizations
other than the steel fabricator and erector are intended to provide a level of assurance
that the product meets the project requirements.
The terms quality control and quality assurance are used throughout this Chapter to
describe inspection tasks required to be performed by the steel fabricator and erector
and project owner’s representatives respectively. The quality assurance tasks are
inspections often performed when required by the applicable building code (ABC) or
authority having jurisdiction (AHJ), and designated as “Special Inspections,” or as
otherwise required by the project owner or engineer of record.
Chapter N defines two inspection levels for required inspection tasks and labels them
as either “observe” or “perform.” This is in contrast to common building code termi-
nology which use or have used the terms “periodic” or “continuous.” The reason for
this change in terminology reflects the multi-task nature of welding and high-strength
bolting operations, and the required inspections during each specific phase. The 2009
International Building Code(IBC) (ICC, 2009) requirements for special inspection of
structural steel refer in very general terms to “inspection of welding” and “inspection
of high-strength bolting.” However, welding and high-strength bolting operations are
each comprised of multiple tasks. The IBC does not specifically define what the scope
of these inspections is to entail during any particular phase of those operations.
Instead, Table 1704.3 in the 2009 IBC references AWS D1.1/D1.1M for weld inspec-
tions, and the 2005 AISC Specification for Structural Steel Buildings (AISC, 2005a)
Section M2.5 for high-strength bolting inspection. These referenced documents do
provide requirements pertaining to specific inspection tasks.
N2. FABRICATOR AND ERECTOR QUALITY CONTROL PROGRAM
Many quality requirements are common from project to project. Many of the
processes used to produce structural steel have an effect on quality and are funda-
mental and integral to the fabricator’s or erector’s success. Consistency in imposing
quality requirements between projects facilitates more efficient procedures for both.
The construction documents referred to in this Chapter are, of necessity, the versions
of the design drawings, specifications, and approved shop and erection drawings that
have been released for construction, as defined in the Code of Standard Practice.
When responses to requests for information (RFI) and change orders exist that mod-
ify the construction documents, these also are part of the construction documents.
When a building information model is used on the project, it also is a part of the con-
struction documents.
Elements of a quality control program can include a variety of documentation such
as policies, internal qualification requirements, and methods of tracking production
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 451

16.1–452 FABRICATOR AND ELECTOR QUALITY CONTROL PROGRAM [Comm. N2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
progress. Any procedure that is not apparent subsequent to the performance of the
work should be considered important enough to be part of the written procedures.
Any documents and procedures made available to the quality assurance inspector
(QAI) should be considered proprietary and not distributed inappropriately.
The inspection documentation should include the following information:
(1) The product inspected
(2) The inspection that was conducted
(3) The name of the inspector and the time period within which the inspection was
conducted
(4) Nonconformances and corrections implemented
Records can include marks on pieces, notes on drawings, process paperwork, or elec-
tronic files. A record showing adherence to a sampling plan for pre-welding
compliance during a given time period may be sufficient for pre-welding observation
inspection.
The level of detail recorded should result in confidence that the product is in com-
pliance with the requirements.
N3. FABRICATOR AND ERECTOR DOCUMENTS
1. Submittals for Steel Construction
The documents listed must be submitted so that the engineer of record (EOR) or the
EOR’s designee can evaluate that the items prepared by the fabricator or erector
meet the EOR’s design intent. This is usually done through the submittal of shop
and erection drawings. In many cases digital building models are produced in order
to develop drawings for fabrication and erection. In lieu of submitting shop and
erection drawings, the digital building model can be submitted and reviewed by the
EOR for compliance with the design intent. For additional information concerning
this process, refer to the Code of Standard PracticeAppendix A, Digital Building
Product Models.
2. Available Documents for Steel Construction
The documents listed must be available for review by the EOR. Certain items are of
a nature that submittal of substantial volumes of documentation is not practical, and
therefore it is acceptable to have these documents reviewed at the fabricator’s or
erector’s facility by the engineer or designee, such as the QA agency. Additional
commentary on some of the documentation listed in this section follows:
(4) This section requires documentation to be available for the fastening of deck. For
deck fasteners, such as screws and power fasteners, catalog cuts and/or manu-
facturers installation instructions are to be available for review. There is no
requirement for certification of any deck fastening products.
(8) Because the selection and proper use of welding filler metals is critical to achiev-
ing the necessary levels of strength, notch toughness, and quality, the availability
for review of welding filler metal documentation and welding procedure specifi-
cations (WPSs) is required. This allows a thorough review on the part of the
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 452

Comm. N4.] INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL 16.1–453
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
engineer, and allows the engineer to have outside consultants review these doc-
uments, if needed.
(11) The fabricator and erector maintain written records of welding personnel quali-
fication testing. Such records should contain information regarding date of
testing, process, WPS, test plate, position, and the results of the testing. In order
to verify the six-month limitation on welder qualification, the fabricator and
erector should also maintain a record documenting the dates that each welder has
used a particular welding process.
(12) The fabricator should consider Code of Standard Practice Section 6.1, in estab-
lishing material control procedures for structural steel.
N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL
1. Quality Control Inspector Qualifications
The fabricator or erector determines the qualifications, training and experience
required for personnel conducting the specified inspections. Qualifications should be
based on the actual work to be performed and should be incorporated into the fabri-
cator’s or erector’s QC program. Inspection of welding should be performed by an
individual who, by training and/or experience in metals fabrication, inspection and
testing, is competent to perform inspection of the work. This is in compliance with
AWS D1.1/D1.1M subclause 6.1.4. Recognized certification programs are a method
of demonstrating some qualifications but they are not the only method nor are they
required by Chapter N for quality control inspectors (QCI).
2. Quality Assurance Inspector Qualifications
The quality assurance agency determines the qualifications, training and experience
required for personnel conducting the specified QA inspections. This may be based
on the actual work to be performed on any particular project. AWS D1.1/D1.1M sub-
clause 6.1.4.1(3) states “An individual who, by training or experience, or both, in
metals fabrication, inspection and testing, is competent to perform inspection of the
work.” Qualification for the QA inspector may include experience, knowledge and
physical requirements. These qualification requirements are documented in the QA
agency’s written practice. AWS B5.1 (AWS, 2003) is a resource for qualifications of
a welding inspector.
The use of associate welding inspectors under direct supervision is as permitted in
AWS D1.1/D1.1M subclause 6.1.4.3.
3. NDT Personnel Qualifications
NDT personnel should have sufficient education, training and experience in those
NDT methods they will perform. ASNT SNT-TC-1a (ASNT, 2006a) and ASNT CP-
189 (ASNT, 2006b) prescribe visual acuity testing, topical outlines for training,
written knowledge, hands-on skills examinations, and experience levels for the NDT
methods and levels of qualification.
As an example, under the provisions of ASNT SNT-TC-1a, an NDT Level II indi-
vidual should be qualified to set up and calibrate equipment and to interpret and
evaluate results with respect to applicable codes, standards and specifications. The
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 453

16.1–454 INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL [Comm. N4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
NDT Level II individual should be thoroughly familiar with the scope and limita-
tions of the methods for which they are qualified and should exercise assigned
responsibility for on-the-job training and guidance of trainees and NDT Level I per-
sonnel. The NDT Level II individual should be able to organize and report the
results of NDT tests.
N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL
STEEL BUILDINGS
1. Quality Control
The welding inspection tasks listed in Tables N5.4-1 through N5.4-3 are inspection
items contained in AWS D1.1/D1.1M, but have been organized in the tables in a
more rational manner for scheduling and implementation using categories of before
welding, during welding and after welding. Similarly, the bolting inspection tasks
listed in Tables N5.6-1 through N5.6-3 are inspection items contained in the RCSC
Specification, but have been organized in a similar manner for scheduling and
implementation using traditional categories of before bolting, during bolting and
after bolting. The details of each table are discussed in Commentary Sections N5.4
and N5.6.
The 2009 International Building Code(IBC) (ICC, 2009) makes specific statements
about inspecting to “approved construction documents” the original and revised
design drawings and specifications as approved by the building official or authority
having jurisdiction (AHJ). Code of Standard PracticeSection 4.2(a), requires the
transfer of information from the contract documents (design drawings and project
specifications) into accurate and complete shop and erection drawings. Therefore,
relevant items in the design drawings and project specifications that must be fol-
lowed in fabrication and erection should be placed on the shop and erection
drawings, or in typical notes issued for the project. Because of this provision, QC
inspection may be performed using shop drawings and erection drawings, not the
original design drawings.
The applicable referenced standards in construction documents are commonly
this standard, the Specification for Structural Steel Buildings(ANSI/AISC 360-10),
Code of Standard Practice(AISC 303-10) (AISC, 2010a), AWS D1.1/D1.1M (AWS,
2010), and the RCSC Specification(RCSC, 2009).
2. Quality Assurance
Code of Standard PracticeSection 8.5.2 contains the following provisions regard-
ing the scheduling of shop fabrication inspection: “Inspection of shop work by the
Inspector shall be performed in the Fabricator’s shop to the fullest extent possible.
Such inspections shall be timely, in-sequence and performed in such a manner as
will not disrupt fabrication operations and will permit the repair of nonconforming
work prior to any required painting while the material is still in-process in the fab-
rication shop.”
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 454

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–455
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Similarly, Code of Standard PracticeSection 8.5.3 states “Inspection of field work
shall be promptly completed without delaying the progress or correction of the work.”
Code of Standard PracticeSection 8.5.1 states that, “The Fabricator and the Erector
shall provide the Inspector with access to all places where the work is being per-
formed. A minimum of 24 hours notification shall be given prior to the
commencement of work.” However, the inspector’s timely inspections are necessary
for this to be achieved, while the scaffolding, lifts or other means provided by the
fabricator or erector for their personnel are still in place or are readily available.
IBC Table 1703.3 item 3 requires material verification of structural steel, including
identification markings to conform to the 2005 AISC Specification for Structural
Steel Buildings(ANSI/AISC 360-05) (AISC, 2005a) Section M5.5 and manufactur-
ers’ certified mill (material) test reports. Additionally, the IBC Section 2203.1 states
“Identification of structural steel members shall comply with the requirements con-
tained in AISC 360-05. … Steel that is not readily identifiable as to grade from
marking and test records shall be tested to determine conformity to such standards.”
The 2005 AISC Specification for Structural Steel BuildingsSection M5.5 states:
“Identification of Steel. The fabricator shall be able to demonstrate by a written pro-
cedure and by actual practice a method of material identification, visible at least
through the ‘fit-up’ operation, for the main structural elements of each shipping
piece.” Code of Standard PracticeSection 6.1.1 contains similar language, with
more detailed options.
Code of Standard PracticeSection 8.2 states “Material test reports shall constitute
sufficient evidence that the mill product satisfies material order requirements. The
Fabricator shall make a visual inspection of material that is received from the mill,
…“ Code of Standard Practice, Sections 5.2 and 6.1, address the traceability of mate-
rial test reports to individual pieces of steel, and the identification requirements for
structural steel in the fabrication stage.
The IBC makes specific statements about inspecting to “approved construction
documents,” and the original and revised design drawings and specifications as
approved by the building official or the authority having jurisdiction (AHJ). Because
of these IBC provisions, the QAI should inspect using the original and revised design
drawings and project specifications. The QAI may also use the shop drawings and
erection drawings to assist in the inspection process.
3. Coordinated Inspection
Coordination of inspection tasks may be needed for fabricators in remote locations
or distant from the project itself, or for erectors with projects in locations, where
inspection by a local firm or individual may not be feasible or where tasks are
redundant.
The approval of both the AHJ and EOR is required for quality assurance to rely upon
quality control, so there must be a level of assurance provided by the quality activi-
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 455

16.1–456 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ties that are accepted. It may also serve as an intermediate step short of waiving qual-
ity assurance as described in Section N7.
4. Inspection of Welding
AWS D1.1/D1.1M requires inspection, and any inspection task should be done by the
fabricator or erector (termed contractor within AWS D1.1/D1.1M) under the terms of
subclause 6.1.2.1, as follows:
Contractor’s Inspection. This type of inspection and test shall be performed
as necessary prior to assembly, during assembly, during welding, and after
welding to ensure that materials and workmanship meet the requirements
of the contract documents. Fabrication/erection inspection and testing shall
be the responsibility of the Contractor unless otherwise provided in the con-
tract documents.
This is further clarified in subclause 6.1.3.3, which states:
Inspector(s). When the term inspector is used without further qualification
as to the specific inspector category described above, it applies equally to
inspection and verification within the limits of responsibility described in
6.1.2.
The basis of Tables N5.4-1, N5.4-2 and N5.4-3 are inspection tasks, quality require-
ments, and related detailed items contained within AWS D1.1/D1.1M. Commentary
Tables C-N5.4-1, C-N5.4-2 and C-N5.4-3 provide specific references to subclauses
in AWS D1.1/D1.1M: 2010. In the determination of the task lists, and whether the
task is designated “observe” or “perform,” the pertinent terms of the following AWS
D1.1/D1.1M clauses were used:
6.5 Inspection of Work and Records
6.5.1 Size, Length, and Location of Welds. The Inspector shall ensure that
the size, length, and location of all welds conform to the requirements of
this code and to the detail drawings and that no unspecified welds have
been added without the approval of the Engineer.
6.5.2 Scope of Examinations. The Inspector shall, at suitable intervals,
observe joint preparation, assembly practice, the welding techniques, and
performance of each welder, welding operator, and tack welder to ensure
that the applicable requirements of this code are met.
6.5.3 Extent of Examination. The Inspector shall examine the work to
ensure that it meets the requirements of this code. … Size and contour of
welds shall be measured with suitable gages. …
C-6.5 Inspection of Work and Records. Except for final visual inspection,
which is required for every weld, the Inspector shall inspect the work at
suitable intervals to ensure that the requirements of the applicable sections
of the code are met. Such inspections, on a sampling basis, shall be prior to
assembly, during assembly, and during welding. …
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 456

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–457
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Observe tasks are as described in subclauses 6.5.2 and 6.5.3. Subclause 6.5.2 uses the
term observe and also defines the frequency to be “at suitable intervals.” The
Commentary to subclause 6.5.2 further explains that “a sampling basis” is appropri-
ate. Perform tasks are required for each weld by AWS D1.1/D1.1M, as stated in
subclause 6.5.1 or 6.5.3, or are necessary for final acceptance of the weld or item.
The use of the term perform is based upon the use in AWS D1.1/D1.1M of the
phrases “shall examine the work” and “size and contour of welds shall be measured,”
hence perform items are limited to those functions typically performed at the com-
pletion of each weld.
The words “all welds” in subclause 6.5.1 clearly indicate that all welds are required
to be inspected for size, length and location in order to ensure conformity. Chapter N
follows the same principle in labeling these tasks perform, which is defined as
“Perform these tasks for each welded joint or member.”
TABLE C-N5.4-1
Inspection Tasks Prior to Welding
Inspection Tasks Prior to Welding AWS D1.1/D1.1M References*
Welding procedure specifications (WPSs)
available 6.3
Manufacturer certifications for welding 6.2
consumables available
Material identification (type/grade) 6.2
Welder identification system 6.4
(welder qualification)
(identification system not required by
AWS D1.1/D1.1M)
Fit-up of groove welds (including joint
geometry)
Joint preparation 6.5.2
Dimensions (alignment, root opening, 5.22
root face, bevel)
Cleanliness (condition of steel surfaces) 5.15
Tacking (tack weld quality and location) 5.18
Backing type and fit (if applicable) 5.10, 5.22.1.1
Configuration and finish of access holes 6.5.2, 5.17
(also see Section J1.6)
Fit-up of fillet welds
Dimensions (alignment, gaps at root) 5.22.1
Cleanliness (condition of steel surfaces) 5.15
Tacking (tack weld quality and location) 5.18
Check welding equipment 6.2, 5.11
*AWS (2010)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 457

16.1–458 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.4-2
Inspection Tasks During Welding
Inspection Tasks During Welding AWS D1.1/D1.1M References*
Use of qualified welders 6.4
Control and handling of welding consumables 6.2
Packaging 5.3.1
Exposure control 5.3.2 (for SMAW), 5.3.3 (for SAW)
No welding over cracked tack welds 5.18
Environmental conditions
Wind speed within limits 5.12.1
Precipitation and temperature 5.12.2
WPS followed 6.3.3, 6.5.2, 5.5, 5.21
Settings on welding equipment
Travel speeed
Selected welding materials
Shielding gas type/flow rate
Preheat applied 5.6, 5.7
Interpass temperature maintained
(min/max.)
Proper position (F, V, H, OH)
Welding techniques 6.5.2, 6.5.3, 5.24
Interpass and final cleaning 5.30.1
Each pass within profile limitations
Each pass meets quality requirements
*AWS (2010)
The words “suitable intervals” used in subclause 6.5.2 characterize that it is not nec-
essary to inspect these tasks for each weld, but as necessary to ensure that the
applicable requirements of AWS D1.1/D1.1M are met. Following the same principles
and terminology, Chapter N labels these tasks as “observe,” which is defined as
“Observe these items on a random basis.”
The selection of suitable intervals as used in AWS D1.1/D1.1M subclause 6.5.2, or a
suitable “sampling basis” as used in subclause C-6.5, is not defined within AWS
D1.1/D1.1M, nor is it defined within the IBC or the Specification, other than the
AWS statement “to ensure that the applicable requirements of this code are met.” The
establishment of “at suitable intervals” and an appropriate “sampling basis” is
dependent upon the quality control program of the fabricator or erector, the skills and
knowledge of the welders themselves, the type of weld, and the importance of the
weld. During the initial stages of a project, it may be advisable to have increased lev-
els of observation to establish the effectiveness of the fabricator’s or erector’s quality
control program, but such increased levels need not be maintained for the duration
of the project, nor to the extent of inspectors being on site. Rather, an appropriate
level of observation intervals can be used which is commensurate with the observed
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 458

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–459
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
performance of the contractor and their personnel. More inspection may be war-
ranted for weld fit-up and monitoring of welding operations for CJP and PJP groove
welds loaded in transverse tension, compared to the time spent on groove welds
loaded in compression or shear, or time spent on fillet welds. More time may be war-
ranted observing welding operations for multi-pass fillet welds, where poor quality
root passes and poor fit-up may be obscured by subsequent weld beads, when com-
pared to single pass fillet welds.
The terms perform and observe are not to be confused with periodic and continuous
used in the 2009 IBC. Both sets of terms establish two levels of inspection. The IBC
terms specify whether the inspector is present at all times or not during the course of
the work. Chapter N establishes inspection levels for specific tasks within each major
inspection area. Perform indicates each item is to be inspected and observe indicates
samples of the work are to be inspected. It is likely that the number of inspection
tasks will determine whether an inspector has to be present full time but it is not in
accordance with Chapter N to let the time an inspector is on site determine how many
inspection tasks are done.
AWS D1.1/D1.1M subclause 6.3 states that the contractor’s (fabricator/erector)
inspector is specifically responsible for the WPS, verification of prequalification or
proper qualification, and performance in compliance with the WPS. Quality assur-
TABLE C-N5.4-3
Inspection Tasks After Welding
Inspection Tasks After Welding AWS D1.1/D1.1M References**
Welds cleaned 5.30.1
Size, length and location of welds 6.5.1
Welds meet visual acceptance criteria 6.5.3
Crack prohibition Table 6.1(1)
Weld/base-metal fusion Table 6.1(2)
Crater cross section Table 6.1(3)
Weld profiles Table 6.1(4), 5.24
Weld size Table 6.1(6)
Undercut Table 6.1(7)
Porosity Table 6.1(8)
Arc strikes 5.29
k-area* not addressed in AWS
Backing removed and weld tabs removed (if required) 5.10, 5.31
Repair activities 6.5.3, 5.26
Document acceptance or rejection of 6.5.4, 6.5.5
welded joint or member
*k-area issues were identified in AISC (1997b). See Commentary Section A3.1c and Section J10.8.
** AWS (2010)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 459

16.1–460 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ance inspectors monitor welding to make sure QC is effective. For this reason, Tables
N5.4-1 and N5.4-2 maintain an inspection task for the QA for these functions. For
welding to be performed, and for this inspection work to be done, the WPS must be
available to both welder and inspector.
IBC Table 1704.3 item 4 requires material verification of weld filler materials. This
is accomplished by observing that the consumable markings correspond to those in
the WPS and that certificates of compliance are available for consumables used.
The footnote to Table N5.4-1 states that “The fabricator or erector, as applicable,
shall maintain a system by which a welder who has welded a joint or member can
be identified. Stamps, if used, shall be the low-stress type.” AWS D1.1/D1.1M does
not require a welding personnel identification system. However, the inspector must
verify the qualifications of welders, including identifying those welders whose work
“appears to be below the requirements of this code.” Also, if welds are to receive
nondestructive testing (NDT), it is essential to have a welding personnel identifica-
tion system to (a) reduce the rate of NDT for good welders, and (2) increase the rate
of NDT for welders whose welds frequently fail NDT. This welder identification
system can also benefit the contractor by clearly identifying welders who may need
additional training.
The proper fit-up for groove welds and fillet welds prior to welding should first be
checked by the fitter and/or welder. Such detailed dimensions should be provided on
the shop or erection drawings, as well as included in the WPS. Fitters and welders
must be equipped with the necessary measurement tools to ensure proper fit-up prior
to welding.
AWS D1.1/D1.1M subclause 6.2 on Inspection of Materials and Equipment states
that, “The Contractor’s Inspector shall ensure that only materials and equipment con-
forming to the requirements of this code shall be used.” For this reason, the check of
welding equipment is assigned to QC only, and is not required for QA.
5. Nondestructive Testing of Welded Joints
5a. Procedures
Buildings are subjected to static loading, unless fatigue is specifically addressed as
prescribed in Appendix 3. Specification Section J2 provisions contain exceptions to
AWS D1.1/D1.1M.
5b. CJP Groove Weld NDT
For statically loaded structures, AWS D1.1/D1.1M and the Specification have no
specific nondestructive testing (NDT) requirements, leaving it to the engineer to
determine the appropriate NDT method(s), locations or categories of welds to be
tested, and the frequency and type of testing (full, partial or spot), in accordance with
AWS D1.1/D1.1M subclause 6.15.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 460

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–461
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.4-4
Descriptions of Risk Categories for
Buildings and Other Structures from
ASCE/SEI 7*
Risk Category I
Buildings and other structures that represent a low risk to human life in the event of failure
Risk Category II
All buildings and other structures except those listed in Risk Categories I, III and IV
Risk Category III
Buildings and other structures, the failure of which could pose a substantial risk to
human life
Buildings and other structures, not included in Risk Category IV, with potential to cause a
substantial economic impact and/or mass disruption of day-to-day civilian life in the event
of failure
Buildings and other structures not included in Risk Category IV (including, but not limited
to, facilities that manufacture, process, handle, store, use, or dispose of such substances
as hazardous fuels, hazardous chemicals, hazardous waste, or explosives) containing
toxic or explosive substances where their quantity exceeds a threshold quantity
established by the authority having jurisdiction and is sufficient to pose a threat to the
public if released.
Risk Category IV
Buildings and other structures designated as essential facilities
Buildings and other structures, the failure of which could pose a substantial hazard to
the community.
Buildings and other structures (including, but not limited to, facilities that manufacture,
process, handle, store, use, or dispose of such substances as hazardous fuels, hazardous
chemicals, or hazardous waste) containing sufficient quantities of highly toxic substances
where the quantity exceeds a threshold quantity established by the authority having
jurisdiction to be dangerous to the public if released and is sufficient to pose a threat to
the public if released.
Buildings and other structures required to maintain the functionality of other Risk Category
IV structures
*ASCE (2010)
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 12:57 PM Page 461

16.1–462 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The Specification implements a selection of NDT methods and a rate of ultrasonic
testing (UT) based upon a rational system of risk of failure. ASCE Minimum Design
Loads for Buildings and Other Structures, (ASCE/SEI 7-10), (ASCE, 2010) provides
a recognized system of assigning risk to various types of structures.
Complete-joint-penetration (CJP) groove welds loaded in tension applied trans-
versely to their axis are assumed to develop the capacity of the smaller steel element
being joined, and therefore have the highest demand for quality. CJP groove welds
in compression or shear are not subjected to the same crack propagation risks as
welds subjected to tension. Partial-joint-penetration (PJP) groove welds are designed
using a limited design strength when in tension, based upon the root condition, and
therefore are not subjected to the same high stresses and subsequent crack propaga-
tion risk as a CJP groove weld. PJP groove welds in compression or shear are
similarly at substantially less risk of crack propagation than CJP groove welds.
Fillet welds are designed using limited strengths, similar to PJP groove welds, and
are designed for shear stresses regardless of load application, and therefore do not
warrant NDT.
The selection of joint type and thickness ranges for ultrasonic testing (UT) are based
upon AWS D1.1/D1.1M subclause 6.20.1, which limits the procedures and standards
as stated in Part F of AWS D1.1/D1.1M to groove welds and heat affected zones
(HAZ) between the thicknesses of
5
/16in. and 8 in. (8 mm and 200 mm), inclusive.
ASCE/SEI 7-10, Table 1.5-1, provides four risk categories for buildings and other
structures. Commentary Table C-N5.4-4, taken from Table 1-1 (ASCE/SEI 7-10),
describes the various risk categories in general terms. The example structures are
drawn from the 2005 ASCE Minimum Design Loads for Buildings and Other
Structures(ASCE, 2005b), which used the term “occupancy category” for a similar
purpose, and provided prescriptive definitions of building types and occupancies.
5c. Access Hole NDT
The web-to-flange intersection and the web center of heavy hot-rolled shapes, as well
as the interior portions of heavy plates, may contain a coarser grain structure and/or
lower notch toughness than other areas of these products. Grinding to bright metal is
required by Section M2.2 to remove the hard surface layer, and testing using mag-
netic particle or dye penetrate methods is performed to assure smooth transitions free
of notches or cracks.
5d. Welded Joints Subjected to Fatigue
CJP groove welds in butt joints so designated in Specification Table A-3.1, Sections
5 and 6.1, require that internal soundness be verified using ultrasonic testing (UT) or
radiographic testing (RT), meeting the acceptance requirements of AWS
D1.1/D1.1M (AWS, 2010) subclause 6.12 or 6.13, as appropriate.
5e. Reduction of Rate of Ultrasonic Testing
For statically loaded structures in Risk Categories III and IV, reduction of the rate of
UT from 100% is permitted for individual welders who have demonstrated a high
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 462

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–463
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
level of skill, proven after a significant number of their welds have been tested. This
provision has been adapted from similar provisions used in the Uniform Building
Code (ICBO, 1997) for UT inspection of CJP groove welds in moment frames in
areas of high seismic risk.
5f. Increase in Rate of Ultrasonic Testing
For Risk Category II, where 10% of CJP groove welds loaded in transverse tension
are tested, an increase in the rate of UT is required for individual welders who have
failed to demonstrate a high level of skill, established as a failure rate of more than
5%, after a sufficient number of their welds have been tested. To implement this
effectively, and not necessitate the retesting of welds previously deposited by a
welder who has a high reject rate established after the 20 welds have been tested, it
is suggested that at the start of the work, a higher rate of UT be performed on each
welder’s completed welds.
6. Inspection of High-Strength Bolting
The 2009 IBC, similar to Section M2.5 of the Specification, incorporates the RCSC
Specification(RCSC, 2009) by reference. The RCSC Specification, like the refer-
enced welding standard, defines bolting inspection requirements in terms of
inspection tasks and scope of examinations. The RCSC Specificationuses the term
“routine observation” for the inspection of all pretensioned bolts, further validating
the choice of the term “observe” in this chapter of the Specification.
Snug-tightened joints are required to be inspected to ensure that the proper fastener
components are used and that the faying surfaces are brought into firm contact dur-
ing installation of the bolts. The magnitude of the clamping force that exists in a
snug-tightened joint is not a consideration and need not be verified.
Pretensioned joints and slip-critical joints are required to be inspected to ensure that
the proper fastener components are used and that the faying surfaces are brought into
firm contact during the initial installation of the bolts. Pre-installation verification
testing is required for all pretensioned bolt installations, and the nature and scope of
installation verification will vary based on the installation method used. The follow-
ing provisions from the RCSC Specificationserve as the basis for Tables N5.6-1,
N5.6-2 and N5.6-3 (underlining added for emphasis of terms):
9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe
the pre-
installation verification testing required in Section 8.2.1. Subsequently, it
shall be insured by routine observation
that the bolting crew properly
rotates the turned element relative to the unturned element by the amount
specified in Table 8.2. Alternatively, when fastener assemblies are match-
marked after the initial fit-up of the joint, but prior to pretensioning; visual
inspection after pretensioning is permitted in lieu of routine observation.
9.2.2. Calibrated Wrench Pretensioning: The inspectorshall observe
the
pre-installation verification testing required in Section 8.2.2. Subsequently,
it shall be ensured by routine observation
that the bolting crew properly
applies the calibrated wrench to the turned element. No further evidence of
conformity is required.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 463

16.1–464 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
9.2.3. Twist-Off-Type Tension Control Bolt Pretensioning: The inspec-
tor shall observethe pre-installation verification testing required in Section
8.2.3. Subsequently, it shall be ensured by routine observationthat the
splined ends are properly severed during installation by the bolting crew.
9.2.4. Direct-Tension Indicator Pretensioning:The inspector shall
observethe pre-installation verification testing required in Section 8.2.4.
Subsequently, but prior to pretensioning, it shall be ensured by routine
observationthat the appropriate feeler gage is accepted in at least half of
the spaces between the protrusions of the direct tension indicator and that
the protrusions are properly oriented away from the work.
2009 IBC Table 1704.3 item 1 requires material verification of high-strength bolts,
nuts and washers, including manufacturer’s certificates of compliance, and verifica-
tion of the identification markings to conform to the ASTM fastener standards
specified in the approved construction documents.
2009 IBC Section 1704.3.3 contains extensive discussion of the requirements
for bolting inspection, including verifying fastener components, bolted parts and
installation. It includes observation of the fabricator’s or erector’s pre-installation
verification test, and observation of the calibration of wrenches if the calibrated
wrench method is being used. It requires verification that the snug-tight condition
has been achieved for all joints, and monitoring of installation to verify the proper
use of the installation procedure by the bolting crew for pretensioned bolts. The
presence of the inspector is dependent upon whether the installation method pro-
vides visual evidence of completed installation. Turn-of-nut installation with
matchmarking, installation using twist-off bolts, and installation using direct ten-
sion indicators provides visual evidence of a completed installation, and therefore
“periodic” special inspection is permitted for these methods. Turn-of-nut installa-
tion without matchmarking and calibrated wrench installation provides no such
visual evidence, and therefore “continuous” special inspection is required, such that
the inspector needs to be onsite, although not necessarily watching every bolt or
joint as it is being pretensioned.
The concepts of 2009 IBC, as stated above, serve as the basis of the bolting inspection
requirements of Section N5.6, along with the provisions of the RCSC Specification. In
lieu of “continuous” inspection as defined by the IBC, Chapter N uses the term “shall
be engaged” to indicate a higher level of observation for these methods.
The inspection provisions of the RCSC Specificationrely upon observation of
the work, hence all tables use Observe for the designated tasks. Commentary Tables
C-N5.6-1, C-N5.6-2 and C-N5.6-3 provide the applicable RCSC Specificationrefer-
ences for inspection tasks prior to, during and after bolting.
7. Other Inspection Tasks
2009 IBC Section 1704A.3.2 requires that the steel frame be inspected to verify com-
pliance with the details shown on the approved construction documents, such as
bracing, stiffening, member locations and proper application of joint details at each
connection. This is repeated in 2009 IBC Table 1704.3 item 6.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 464

Comm. N5.] MINIMUM REQUIREMENTS FOR INSPECTION 16.1–465
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-N5.6-1
Inspection Tasks Prior to Bolting
Inspection Tasks Prior to Bolting Applicable RCSC SpecificationReferences*
Manufacturer’s certifications available for 2.1, 9.1
fastener materials
Fasteners marked in accordance with ASTM Figure C-2.1, 9.1
requirements (also see ASTM standards)
Proper fasteners selected for the joint detail 2.3.2, 2.7.2, 9.1
(grade, type, bolt length if threads to be
excluded from shear plane)
Proper bolting procedure selected for 4, 8
joint detail
Connecting elements, including the 3, 9.1, 9.3
appropriate faying surface condition and hole
preparation, if specified, meet applicable
requirements
Pre-installation verification testing by 7, 9.2
installation personnel observed and
documented for fastener assemblies and
methods used
Proper storage provided for bolts, nuts, 2.2, 8, 9.1
washers, and other fastener components
*RCSC (2009)
TABLE C-N5.6-2
Inspection Tasks During Bolting
Inspection Tasks During Bolting Applicable RCSC SpecificationReferences*
Fastener assemblies, of suitable condition, 8.1, 9.1
placed in all holes and washers (if required)
are positioned as required
Joint brought to the snug tight condition 8.1, 9.1
prior to the pretensioning operation
Fastener component not turned by the 8.2, 9.2
wrench prevented from rotating
Fasteners are pretensioned in accordance 8.2, 9.2
with a method approved by RCSC and
progressing systematically from most rigid
point toward free edges
*RCSC (2009)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 465

16.1–466 MINIMUM REQUIREMENTS FOR INSPECTION [Comm. N5.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
2009 IBC Section 2204.2.1 on anchor rods for steel requires that they be set accu-
rately to the pattern and dimensions called for on the plans. In addition, it is required
that the protrusion of the threaded ends through the connected material be sufficient
to fully engage the threads of the nuts, but not be greater than the length of the
threads on the bolts.
Code of Standard Practice, Section 7.5.1, states that anchor rods, foundation bolts,
and other embedded items are to be set by the owner’s designated representative for
construction. The erector is likely not on site to verify placement, therefore it is
assigned solely to the quality assurance inspector (QAI). Because it is not possible to
verify proper anchor rod materials and embedment following installation, it is
required that the QAI be onsite when the anchor rods are being set.
N6. MINIMUM REQUIREMENTS FOR INSPECTION
OF COMPOSITE CONSTRUCTION
This section addresses the inspection of only those elements of composite construc-
tion that are structural steel or are frequently within the scope of the fabricator and/
or erector (steel deck and field-installed shear stud connectors). The inspection
requirements for the other elements of composite construction, such as concrete,
formwork, reinforcement, and the related dimensional tolerances, are addressed else-
where. Three publications of the American Concrete Institute may be applicable.
These are Specifications for Tolerances for Concrete Construction and Commentary
(ACI 117-06) (ACI, 2006), Specifications for Structural Concrete(ACI 301-05)
(ACI, 2005), and Building Code Requirements for Structural Concrete and
Commentary(ACI 318-08) (ACI, 2008).
N7. APPROVED FABRICATORS AND ERECTORS
The 2009 IBC Section 1704.2.2 (ICC, 2009) states that:
Special inspections required by this code are not required where the work
is done on the premises of a fabricator registered and approved to perform
such work without special inspection.
Approval shall be based upon review of the fabricator’s written procedural
and quality control manuals and periodic auditing of fabrication practices
by an approved special inspection agency.
TABLE C-N5.6-3
Inspection Tasks After Bolting
Inspection Tasks After Bolting Applicable RCSC SpecificationReferences*
Document acceptance or rejection of bolted not addressed by RCSC
connections
*RCSC (2009)
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 466

Comm. N7.] APPROVED FABRICATORS AND ERECTORS 16.1–467
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
An example of how these approvals may be made by the building official or author-
ity having jurisdiction (AHJ) is the use of the AISC Certification program. A
fabricator certified to the AISC Certification Program for Structural Steel
Fabricators, Standard for Steel Building Structures(AISC, 2006b), meets the criteria
of having a quality control manual, written procedures, and annual onsite audits con-
ducted by AISC’s independent auditing company, Quality Management Company,
LLC. Similarly, steel erectors may be an AISC Certified Erector or AISC Advanced
Certified Steel Erector. The audits confirm that the company has the personnel,
knowledge, organization, equipment, experience, capability, procedures and com-
mitment to produce the required quality of work for a given certification category.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 467

16.1–468
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 1
DESIGN BY INELASTIC ANALYSIS
Appendix 1 contains provisions for the inelastic analysis and design of structural steel
systems, including continuous beams, moment frames, braced frames and combined sys-
tems. The Appendix has been modified from the previous Specification to allow for the
use of a wider range of inelastic analysis methods, varying from the traditional plastic
design approaches to the more advanced nonlinear finite element analysis methods. In
several ways, this Appendix represents a logical extension of the direct analysis method
of Chapter C, in which second-order elastic analysis is used. The provision for moment
redistribution in continuous beams, which is permitted for elastic analysis only, is pro-
vided in Section B3.7.
The provisions of this Appendix permit the use of analysis methods that are more sophis-
ticated than those required by Chapter C. The provisions also permit the use of
computational analysis (e.g., the finite element method) to replace the Specification
equations used to evaluate limit states covered by Chapters D through K. The application
of these provisions requires a complete understanding of the provisions of this Appendix
as well as the equations they supersede. It is the responsibility of any engineer using these
provisions to fully verify the completeness and accuracy of analysis software used for
this purpose.
1.1. GENERAL REQUIREMENTS
These requirements directly parallel the general requirements of Chapter C and are
further discussed in Commentary Section C1.
Various levels of inelastic analysis are available to the designer (Ziemian, 2010;
Chen and Toma, 1994). All are intended to account for the potential redistribution of
member and connection forces and moments that are a result of localized yielding as
a structural system reaches a strength limit state. At the higher levels they have the
ability to model complex forms of nonlinear behavior and detect member and/or
frame instabilities well before the formation of a plastic mechanism. Many of the
strength design equations used in the Specification for members subject to compres-
sion, flexure and combinations thereof were developed using refined methods of
inelastic analysis; along with experimental results and engineering judgment (Yura et
al., 1978; Kanchanalai and Lu, 1979; Bjorhovde, 1988; Ziemian, 2010). Also,
research over the past twenty years has yielded significant advances in procedures
for the direct application of second-order inelastic analysis in design (Ziemian, et al.,
1992; White and Chen, 1993; Liew, et al., 1993; Ziemian and Miller, 1997; Chen and
Kim, 1997). Correspondingly, there has been a steady increase in the inclusion of
provisions for inelastic analysis in commercial steel design software, but the level
varies widely. Use of any analysis software requires an understanding of the aspects
of structural behavior it simulates, the quality of its methods, and whether or not the
software’s ductility and analysis provisions are equivalent to those of Sections 1.2
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 468

Comm. 1.1.] GENERAL REQUIREMENTS 16.1–469
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
and 1.3. There are numerous studies available for verifying the accuracy of the
inelastic analysis (Kanchanlai, 1977, El-Zanaty et al., 1980; White and Chen, 1993;
Surovek-Maleck and White, 2003; Martinez-Garcia and Ziemian, 2006; Ziemian,
2010).
With this background, it is the intent of this Appendix to allow certain levels of inelas-
tic analysis to be used in place of the Specification design equations as a basis for
confirming the adequacy of a member or system. In all cases, the strength limit state
behavior being addressed by the corresponding provisions of the Specification needs
to be considered. For example, Section E3 provides equations that define the nominal
compressive strength corresponding to the flexural buckling of members without slen-
der elements. The strengths determined by these equations account for many factors,
which primarily include the initial out-of-straightness of the compression member,
residual stressesthat result from the fabrication process, and the reduction of flexural
stiffness due to second-order effects and partial yielding of the cross section. If these
factors are directly incorporated within the inelastic analysis and a comparable or
higher level of reliability can be assured, then the specific strength equations of
Section E3 need not be evaluated. In other words, the inelastic analysis will indicate
the limit state of flexural buckling and the design can be evaluated accordingly. On
the other hand, suppose that the same inelastic analysis is not capable of modeling
flexural-torsional buckling. In this case, the provisions of Section E4 would need to
be evaluated. Other examples of strength limit states not detected by the analysis may
include, but are not limited to, lateral-torsional buckling strength of flexural members,
connection strength, and shear yielding or buckling strengths.
Item 5 in the second paragraph of Section 1.1, General Requirements, states that
“…uncertainty in system, member, and connection strength and stiffness…” shall be
taken into account. Member and connection reliability requirements are fulfilled by
the probabilistically derived resistance factors and load factors of load and resistance
factor design of this Specification. System reliability considerations at this time
(2010) are still a project-by-project exercise, and no overall methods have as yet been
developed for steel building structures. Introduction to the topic of system reliability
can be found in textbooks, for example, Ang and Tang (1984), Thoft-Christensen and
Murotsu (1986), and Nowak and Collins (2000), as well as in many publications, for
example, Buonopane and Schafer (2006).
Because this type of analysis is inherently conducted at ultimate load levels, the pro-
visions of this Appendix are limited to the design basis of Section B3.3 (LRFD).
Per Section B3.9, the serviceability of the design should be assessed with specific
requirements given in Chapter L. In satisfying these requirements in conjunction
with a design method based on inelastic analysis, consideration should be given to
the degree of steel yielding permitted at service loads. Of particular concern are: (a)
permanent deflections that may occur due to steel yielding, and (b) stiffness degra-
dation due to yielding and whether this is modeled in the inelastic analysis.
Although the use of inelastic analysis has great potential in earthquake engineering,
the specific provisions beyond the general requirements of this Appendix do not
apply to seismic design. The two primary reasons for this are:
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 469

16.1–470 GENERAL REQUIREMENTS [Comm. 1.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(1) In defining “equivalent” static loads for use in elastic seismic design procedures,
a significant level of yielding and inelastic force redistribution has been assumed
and hence, it would not be appropriate to use these loads with a design approach
based on inelastic analysis.
(2) The ductility requirements for seismic design based on inelastic analysis are
more stringent than those provided in this Specification for nonseismic loads.
Guidelines for the use of inelastic analysis and design for seismic applications are
provided in Chapter 16 of the Minimum Design Loads for Buildings and Other
Structures(ASCE/SEI 7-10) (ASCE, 2010) and Seismic Rehabilitation of Existing
Buildings(ASCE/SEI 41-06) (ASCE, 2006).
Connections adjacent to plastic hinges must be designed with sufficient strength and
ductility to sustain the forces and deformations imposed under the required loads.
The practical implementation of this rule is that the applicable requirements of
Section B3.6 and Chapter J must be strictly adhered to. These provisions for con-
nection design have been developed from plasticity theory and verified by extensive
testing, as discussed in ASCE (1971) and in many books and papers. Thus the con-
nections that meet these provisions are inherently qualified for use in designing
structures based on inelastic analysis.
Any method of design that is based on inelastic analysis and satisfies the given gen-
eral requirements is permitted. These methods may include the use of nonlinear finite
element analyses (Crisfield, 1991; Bathe, 1995) that are based on continuum ele-
ments to design a single structural component such as a connection, or the use of
second-order inelastic frame analyses (Clarke et al., 1992; McGuire et al., 2000) to
design a structural system consisting of beams, columns and connections.
Sections 1.2 and 1.3 collectively define provisions that can be used to satisfy the duc-
tility and analysis requirements of Section 1.1. They provide the basis for an
approved second-order inelastic frame analysis method. These provisions are not
intended to preclude other approaches meeting the requirements of Section 1.1.
1.2. DUCTILITY REQUIREMENTS
Because an inelastic analysis will provide for the redistribution of internal forces due
to yielding of structural components such as members and connections, it is impera-
tive that these components have adequate ductility and be capable of maintaining
their design strength while accommodating inelastic deformation demands. Factors
that affect the inelastic deformation capacity of components include the material
properties, the slenderness of cross-sectional elements, and the unbraced length.
There are two general methods for assuring adequate ductility: (1) limiting the afore-
mentioned factors, and (2) making direct comparisons of the actual inelastic
deformation demands with predefined values of inelastic deformation capacities. The
former is provided in Appendix 1. It essentially decouples inelastic local buckling
from inelastic lateral-torsional buckling. It has been part of the plastic design provi-
sions for several previous editions of the Specification. Examples of the latter
approach in which ductility demands are compared with defined capacities appear in
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 470

Comm. 1.2.] DUCTILITY REQUIREMENTS 16.1–471
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Galambos (1968b), Kato (1990), Kemp (1996), Gioncu and Petcu (1997), FEMA-
350 (FEMA, 2000), ASCE 41-06 (ASCE, 2006), and Ziemian (2010).
1. Material
Extensive past research on the plastic and inelastic behavior of continuous beams,
rigid framesand connections has amply demonstrated the suitability of steel with
yield stress levels up to 65 ksi (450 MPa) (ASCE, 1971).
2. Cross Section
Design by inelastic analysis requires that, up to the peak of the load-deflection curve
of the structure, the moments at the plastic hinge locations remain at the level of the
plastic moment, which itself should be reduced for the presence of axial force. This
implies that the member must have sufficient inelastic rotation capacity to permit
the redistribution of additional moments. Sections that are designated as compact in
Section B4 have a minimum rotation capacity of approximately R
cap=3 (see Figure
C-A-1.1) and are suitable for developing plastic hinges. The limiting width-to-
thickness ratio designated as λ
pin Table B4.1b and designated as λ pdin this
Appendix is the maximum slenderness ratio that will permit this rotation capacity
to be achieved. Further discussion of the antecedents of these provisions is given in
the Commentary Section B4.
The additional slenderness limits in Equations A-1-1 through A-1-4 apply to cases
not covered in Table B4.1b. Equations A-1-1 and A-1-2, which define height-to-
thickness ratio limits of webs of wide-flange members and rectangular HSS under
combined flexure and compression, have been part of the plastic design requirements
since the 1969 Specification and are based on research documented in Plastic Design
in Steel, A Guide and a Commentary(ASCE, 1971). The equations for the flanges
of HSS and other boxed sections (Equation A-1-3) and for circular HSS (Equation
A-1-4) are from the Specification for the Design of Steel Hollow Structural Sections
(AISC, 2000a).
Fig. C-A-1.1. Definition of rotation capacity.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 471

16.1–472 DUCTILITY REQUIREMENTS [Comm. 1.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Limiting the slenderness of elements in a cross section to ensure ductility at plastic
hinge locations is permissible only for doubly symmetric shapes. In general, single-
angle, tee and double-angle sections are not permitted for use in plastic design
because the inelastic rotation capacity in the regions where the moment produces
compression in an outstanding leg will typically not be sufficient.
3. Unbraced Length
The ductility of structural members with plastic hinges can be significantly reduced
by the possibility of inelastic lateral-torsional buckling. In order to provide adequate
rotation capacity, such members may need more closely spaced bracing than would
be otherwise needed for design in accordance with elastic theory. Equations A-1-5
and A-1-7 define the maximum permitted unbraced length in the vicinity of plastic
hinges for wide-flange shapes bent about their major axis, and for rectangular
shapes and symmetric box beams, respectively. These equations are a modified ver-
sion of those appearing in the 2005 AISC Specification (AISC, 2005a), which were
based on research reported by Yura et al. (1978). The intent of these equations is to
ensure a minimum rotation capacity, R
cap≥3, where R capis defined as shown in
Figure C-A-1.1.
Equations A-1-5 and A-1-7 have been modified to account for nonlinear moment dia-
grams and for situations in which a plastic hinge does not develop at the brace
location corresponding to the larger end moment. The moment M
2in these equations
is the larger moment at the end of the unbraced length, taken as positive in all cases.
The moment M
1′is the moment at the opposite end of the unbraced length corre-
sponding to an equivalent linear moment diagram that gives the same target rotation
capacity. This equivalent linear moment diagram is defined as follows:
(a) For cases in which the magnitude of the bending moment at any location within
the unbraced length, M
max, exceeds M 2, the equivalent linear moment diagram is
taken as a constant (uniform) moment diagram with a value equal to M
max[see
Figure C-A-1.2(a)]. Since the equivalent moment diagram is uniform, the appro-
priate value for L
pdcan be obtained by using M′ 1/M 2=+1.
(b) For cases in which the internal moment distribution along the unbraced length of
the beam is indeed linear, or when a linear moment diagram between M
2and the
actual moment, M
1, at the opposite end of the unbraced length gives a larger
magnitude moment in the vicinity of M
2[see Figure C-A-1.2(b)], M′ 1is taken
equal to the actual moment M
1.
(c) For all other cases in which the internal moment distribution along the unbraced
length of the beam is nonlinear and a linear moment diagram between M
2and the
actual moment, M
1, underestimates the moment in the vicinity of M 2, M′1is
defined as the opposite end moment for a line drawn between M
2and the moment
at the middle of the unbraced length, M
mid[see Figure C-A-1.2(c)].
The moments M
1and M midare individually taken as positive when they cause com-
pression in the same flange as the moment M
2and negative otherwise.
For conditions in which lateral-torsional buckling cannot occur, such as members
with square and round cross sections and members of doubly symmetric shapes
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 472

Comm. 1.3.] ANALYSIS REQUIREMENTS 16.1–473
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
subjected to minor axis bending or sufficient tension, the ductility of the member is
not a factor of the unbraced length.
4. Axial Force
The provision in this section restricts the axial force in a compression member to
0.75F
yAgor approximately 80% of the design yield load, φ cFyA. This provision is a
cautionary limitation because insufficient research has been conducted to ensure that
sufficient inelastic rotation capacity remains in members subject to high levels of
axial force.
1.3. ANALYSIS REQUIREMENTS
For all structural systems with members subject to axial force, the equations of equi-
librium must be formulated on the geometry of the deformed structure. The use of
second-order inelastic analysis to determine load effects on members and connec-
tions is discussed in the Guide to Stability Design Criteria for Metal Structures
(Ziemian, 2010). Textbooks [for example, Chen and Lui (1991), Chen and Sohal
(1995), and McGuire et al. (2000)] present basic approaches to inelastic analysis, as
well as worked examples and computer software for detailed study of the subject.
(a) M maxoccurs within L b
(b) M mid≤(M1+M2)/2
(c) M
mid>(M1+M2)/2
Fig. C-A-1.2. Equivalent linear moment diagram used to calculate M′
1.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 473

16.1–474 ANALYSIS REQUIREMENTS [Comm. 1.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Continuous, braced beams not subject to axial loads can be designed by first-order
inelastic analysis (traditional plastic analysis and design). First-order plastic analy-
sisis treated in ASCE (1971), in steel design textbooks [for example, Salmon et al.
(2008)], and in textbooks dedicated entirely to plastic design [for example, Beedle
(1958), Horne and Morris (1982), Bruneau et al. (1998), and Wong (2009)]. Tools for
plastic analysis of continuous beams are readily available to the designer from these
and other books that provide simple ways of calculating plastic mechanism loads. It
is important to note that such methods use LRFD load combinations, either directly
or implicitly, and therefore should be modified to include a reduction in the plastic
moment capacity of all members by a factor of 0.9. First-order inelastic analysis may
also be used in the design of continuous steel-concrete composite beams. Design lim-
its and ductility criteria for both the positive and negative plastic moments are given
by Oehlers and Bradford (1995).
1. Material Properties and Yield Criteria
This section provides an accepted method for including uncertainty in system,
member, and connection strength and stiffness. The reduction in yield strength and
member stiffness is equivalent to the reduction of member strength associated with
the AISC resistance factors used in elastic design. In particular, the factor of 0.90
is based on the member and component resistance factors of Chapters E and F,
which are appropriate when the structural system is composed of a single member
and in cases where the system resistance depends critically on the resistance of a
single member. For systems where this is not the case, the use of such a factor is
conservative. The reduction in stiffness will contribute to larger deformations and
in turn, increased second-order effects.
The inelastic behavior of most structural members is primarily the result of normal
stresses in the direction of the longitudinal axis of the member equaling the yield
strength of the material. Therefore the normal stresses produced by the axial force
and major and minor axis bending moments should be included in defining the plas-
tic strength of member cross sections (Chen and Atsuta, 1976).
Modeling of strain hardeningthat results in strengths greater than the plastic strength
of the cross section is not permitted.
2. Geometric Imperfections
Because initial geometric imperfections may affect the nonlinear behavior of a
structural system, it is imperative that they be included in the second-order analy-
sis. Discussion on how frame out-of-plumbness may be modeled is provided in
Commentary Section C2.2. Additional information is provided in ECCS (1984),
Bridge and Bizzanelli (1997), Bridge (1998), and Ziemian (2010).
Member out-of-straightness should be included in situations in which it can have a
significant impact on the inelastic behavior of the structural system. The significance
of such effects is a function of (1) the relative magnitude of the member’s applied
axial force and bending moments, (2) whether the member is subject to single or
reverse curvature bending, and (3) the slenderness of the member.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 474

Comm. 1.3.] ANALYSIS REQUIREMENTS 16.1–475
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In all cases, initial geometric imperfections should be modeled to represent the
potential maximum destabilizing effects.
3. Residual Stresses and Partial Yielding Effects
Depending on the ratio of a member’s plastic section modulus, Z, to its elastic sec-
tion modulus, S, the partial yielding that occurs before the formation of a plastic
hinge may significantly reduce the flexural stiffness of the member. This is particu-
larly the case for minor axis bending of I-shapes. Any change to bending stiffness
may result in force redistribution and increased second-order effects, and thus needs
to be considered in the inelastic analysis.
The impact of partial yielding is further accentuated by the presence of thermal resid-
ual stresses, which are due to nonuniform cooling during the manufacturing and
fabrication processes. Because the relative magnitude and distribution of these
stresses is dependent on the process and the member’s cross-section geometry, it is not
possible to specify a single idealized pattern for use in all levels of inelastic analysis.
Residual stress distributions used for common hot-rolled doubly symmetric shapes are
provided in the literature, including ECCS (1984) and Ziemian (2010). In most cases,
the maximum compressive residual stress is 30% to 50% of the yield stress.
The effects of partial yielding and residual stresses may either be included directly in
inelastic distributed-plasticity analyses or by modifying plastic hinge based methods
of analysis. An example of the latter is provided by Ziemian and McGuire (2002) and
Ziemian et al. (2008), in which the flexural stiffness of members are reduced accord-
ing to the amount of axial force and major and minor axis bending moments being
resisted. The Specification permits the use of a similar strategy, which is provided in
Section C2.3 and described in the Commentary to that section. If the residual stress
effect is not included in the analysis and the provisions of Section C2.3 are
employed, the stiffness reduction factor of 0.9 specified in Section 1.3.1 (which
accounts for uncertainty in strength and stiffness) must be changed to 0.8. The rea-
son for this is that the equations given in Section C2.3 assume that the analysis does
not account for partial yielding. Also, to avoid cases in which the use of Section C2.3
may be unconservative, it is further required that the yield or plastic hinge criterion
used in the inelastic analysis be defined by the interaction Equations H1-1a and H1-
1b. This condition on cross section strength does not have to be met when the
residual stress and partial yielding effects are accounted for in the analysis.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 475

16.1–476
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 2
DESIGN FOR PONDING
Ponding stability is determined by ascertaining that the conditions of Equations A-2-1 and
A-2-2 of Appendix 2 are fulfilled. These equations provide a conservative evaluation of the
stiffness required to avoid runaway deflection, giving a safety factor of four against pond-
ing instability.
Since Equations A-2-1 and A-2-2 yield conservative results, it may be advantageous to per-
form a more detailed stress analysis to check whether a roof system that does not meet the
above equations is still safe against ponding failure.
For the purposes of Appendix 2,secondary membersare the beams or joists that directly
support the distributed ponding loads on the roof of the structure, and primary membersare
the beams or girders that support the concentrated reactions from the secondary members
framing into them. Representing the deflected shape of the primary and critical secondary
member as a half-sine wave, the weight and distribution of the ponded water can be esti-
mated, and, from this, the contribution that the deflection of each of these members makes
to the total ponding deflection can be expressed as follows (Marino, 1966):
For the primary member
(C-A-2-1)
For the secondary member
(C-A-2-2)
In these expressions Δ
oand δ oare, respectively, the primary and secondary beam
deflections due to loading present at the initiation of ponding, and
Using the above expressions for Δ
wand δ w, the ratios Δ w/Δoand δ w/δocan
be computed for any given combination of primary and secondary beam framing
using the computed values of coefficients C
pand C s, respectively, defined in the
Specification.
Δ
Δw
po s s
ps=
++ +
[]

απαπρα
πα α
1025 025 1
1025
..()
.
δ
αδ
π
α
π
ρ
αααw
sppsp=
++++






o1
32 8
1 0 185
1
32
().
−−025.πα α ps
αα ρδpp pss s spCC CC CC=−( )=−( ) ==/, /, / /1 1 and ooΔ
αss sCC=−( )/1
ρδ==oo//ΔCC sp
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 476

Comm. 2.] DESIGN FOR PONDING 16.1–477
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Even on the basis of unlimited elastic behavior, it is seen that the ponding deflections
would become infinitely large unless
(C-A-2-3)
Since elastic behavior is not unlimited, the effective bending strength available in
each member to resist the stress caused by ponding action is restricted to the differ-
ence between the yield stress of the member and the stress, f
o, produced by the total
load supported by it before consideration of ponding is included.
Note that elastic deflection is directly proportional to stress. The admissible amount
of ponding in either the primary or critical (midspan) secondary member, in terms of
the applicable ratio, Δ
w/Δoand δ w/δo, can be represented as (0.8F yπfo)/fo, assum-
ing a safety factor of 1.25 against yielding under the ponding load. Substituting this
expression for Δ
w/Δoand δ w/δo, and combining with the foregoing expressions for
Δ
wand δ w, the relationship between the critical values for C pand C sand the avail-
able elastic bending strength to resist ponding is obtained. The curves presented in
Figures A-2.1 and A-2.2 are based upon this relationship. They constitute a design
aid for use when a more exact determination of required flat roof framing stiffness is
needed than given by the Specification provision that C
p+0.9C s≤0.25.
Given any combination of primary and secondary framing, the stress index is com-
puted as follows:
For the primary member
(C-A-2-4)
For the secondary member
(C-A-2-5)
where
f
o=the stress due to D +R(D=nominal dead load, R=nominal load due to rain-
water or ice exclusive of the ponding contribution), ksi (MPa)
Depending upon geographic location, this loading should include such amount of
snow as might also be present, although ponding failures have occurred more fre-
quently during torrential summer rains when the rate of precipitation exceeded the
rate of drainage runoff and the resulting hydraulic gradient over large roof areas
caused substantial accumulation of water some distance from the eaves.
Given the size, spacing and span of a tentatively selected combination of primary and
secondary beams, for example, one may enter Figure A-2.1 at the level of the com-
puted stress index, U
p, determined for the primary beam; move horizontally to the
computed C
svalue of the secondary beams; then move downward to the abscissa
C
C
C
Cp
p
s
s
11
4














<
π
U
Ff
fp
yo
o
p=
−⎛





08.
U
Ff
fs
yo
o
s=
−⎛





08.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 477

16.1–478 DESIGN FOR PONDING [Comm. 2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
scale. The combined stiffness of the primary and secondary framing is sufficient to
prevent ponding if the flexibility coefficient read from this latter scale is larger than
the value of C
pcomputed for the given primary member; if not, a stiffer primary or
secondary beam, or combination of both, is required.
If the roof framing consists of a series of equally spaced wall-bearing beams, the
beams would be considered as secondary members, supported on an infinitely stiff
primary member. For this case, one would use Figure A-2.2. The limiting value of C
s
would be determined by the intercept of a horizontal line representing the U svalue
and the curve for C
p=0.
The ponding deflection contributed by a metal deck is usually such a small part
of the total ponding deflection of a roof panel that it is sufficient merely to limit
its moment of inertia to 0.000025 (3 940) times the fourth power of its span length
[in.
4
per foot (mm
4
per meter) of width normal to its span], as provided in Equation
A-2-2. However, the stability against ponding of a roof consisting of a metal roof
deck of relatively slender depth-to-span ratio, spanning between beams supported
directly on columns, may need to be checked. This can be done using Figures A-2.1
or A-2.2 with the following computed values:
U
p=stress index for the supporting beam
U
s=stress index for the roof deck
C
p=flexibility coefficient for the supporting beams
C
s=flexibility coefficient for 1-ft (0.305-m) width of the roof deck (S=1.0)
Since the shear rigidity of the web system is less than that of a solid plate, the
moment of inertia of steel joists and trusses should be taken as somewhat less than
that of their chords (Heinzerling, 1987).
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 478

16.1–479
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 3
DESIGN FOR FATIGUE
When the limit state of fatigue is a design consideration, its severity is most significantly
affected by the number of load applications, the magnitude of the stress range, and the sever-
ity of the stress concentrations associated with particular details. Issues of fatigue are not
normally encountered in building design; however, when encountered and if the severity is
great enough, fatigue is of concern and all provisions of Appendix 3 must be satisfied.
3.1. GENERAL PROVISIONS
In general, members or connections subject to less than a few thousand cycles of
loading will not constitute a fatigue condition except possibly for cases involving full
reversal of loading and particularly sensitive categories of details. This is because the
applicable cyclic allowable stress range will be limited by the static allowable stress.
At low levels of cyclic tensile stress, a point is reached where the stress range is so
low that fatigue cracking will not initiate regardless of the number of cycles of load-
ing. This level of stress is defined as the fatigue threshold, F
TH.
Extensive test programs using full-size specimens, substantiated by theoretical stress
analysis, have confirmed the following general conclusions (Fisher et al., 1970;
Fisher et al., 1974):
(1) Stress range and notch severity are the dominant stress variables for welded
details and beams;
(2) Other variables such as minimum stress, mean stress and maximum stress are not
significant for design purposes; and
(3) Structural steels with a specified minimum yield stress of 36 to 100 ksi (250 to
690 MPa) do not exhibit significantly different fatigue strengths for given welded
details fabricated in the same manner.
3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES
Fluctuation in stress that does not involve tensile stress does not cause crack propa-
gation and is not considered to be a fatigue situation. On the other hand, in elements
of members subject solely to calculated compressive stress, fatigue cracks may initi-
ate in regions of high tensile residual stress. In such situations, the cracks generally
do not propagate beyond the region of the residual tensile stress, because the resid-
ual stress is relieved by the crack. For this reason, stress ranges that are completely
in compression need not be investigated for fatigue. For cases involving cyclic rever-
sal of stress, the calculated stress range must be taken as the sum of the compressive
stress and the tensile stress caused by different directions or patterns of the applied
live load.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 479

16.1–480 PLAIN MATERIAL AND WELDED JOINTS [Comm. 3.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
3.3. PLAIN MATERIAL AND WELDED JOINTS
Fatigue resistance has been derived from an exponential relationship between the
number of cycles to failure, N, and the stress range, S
r, called an S-Nrelationship, of
the form
(C-A-3-1)
The general relationship is often plotted as a linear log-log function (LogN =
A – n LogS
r). Figure C-A-3.1 shows the family of fatigue resistance curves identi-
fied as Categories A, B, B′, C, C′, D, E and E′. These relationships were established
based on an extensive database developed in the United States and abroad (Keating
and Fisher, 1986). The allowable stress range has been developed by adjusting the
coefficient, C
f, so that a design curve is provided that lies two standard deviations of
the standard error of estimate of the fatigue cycle life below the mean S-N relation-
ship of the actual test data. These values of C
fcorrespond to a probability of failure
of 2.5% of the design life.
Prior to the 1999 AISC Load and Resistance Factor Design Specification for
Structural Steel Buildings(AISC, 2000b), stepwise tables meeting the above criteria
of cycles of loading, stress categories, and allowable stress ranges were provided in
the Specifications. A single table format (Table A-3.1) was introduced in the 1999
AISC LRFD Specification that provides the stress categories, ingredients for the
applicable equation, and information and examples including the sites of concern for
potential crack initiation (AISC, 2000b).
Table A-3.1 is organized into eight sections of general conditions for fatigue design,
as follows:
N
C
S
f
r
n
=
Fig. C-A-3.1. Fatigue resistance curves.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 480

Comm. 3.4.] BOLTS AND THREADED PARTS 16.1–481
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
• Section 1 provides information and examples for the steel material at copes, holes,
cutouts or as produced.
• Section 2 provides information and examples for various types of mechanically
fastened joints including eyebars and pin plates.
• Section 3 provides information related to welded connections used to join built-up
members, such as longitudinal welds, access holes and reinforcements.
• Section 4 deals only with longitudinal load carrying fillet welds at shear splices.
• Section 5 provides information for various types of groove and fillet welded joints
that are transverse to the applied cyclic stress.
• Section 6 provides information on a variety of groove welded attachments to flange
tips and web plates as well as similar attachments connected with either fillet or
partial-joint-penetration groove welds.
• Section 7 provides information on several short attachments to structural members.
• Section 8 collects several miscellaneous details such as shear connectors, shear on the
throat of fillet, plug and slot welds, and their impact on base metal. It also provides
for tension on the stress area of various bolts, threaded anchor rods, and hangers.
A similar format and consistent criteria are used by other specifications.
When fabrication details involving more than one stress category occur at the same
location in a member, the stress range at that location must be limited to that of the
most restrictive category. The need for a member larger than required by static load-
ing will often be eliminated by locating notch-producing fabrication details in
regions subject to smaller ranges of stress.
A detail not explicitly covered before 1989 (AISC, 1989) was added in the 1999
AISC LRFD Specification to cover tension-loaded plate elements connected at their
end by transverse partial-joint-penetration groove or fillet welds in which there
is more than a single site for the initiation of fatigue cracking, one of which will be
more critical than the others depending upon welded joint type and size and material
thickness (Frank and Fisher, 1979). Regardless of the site within the joint at which
potential crack initiation is considered, the allowable stress range provided is appli-
cable to connected material at the toe of the weld.
3.4. BOLTS AND THREADED PARTS
The fatigue resistance of bolts subject to tension is predictable in the absence of
pretension and prying action; provisions are given for such nonpretensioned details
as hanger rods and anchor rods. In the case of pretensioned bolts, deformation of
the connected parts through which pretension is applied introduces prying action,
the magnitude of which is not completely predictable (Kulak et al., 1987). The
effect of prying is not limited to a change in the average axial tension on the bolt
but includes bending in the threaded area under the nut. Because of the uncertain-
ties in calculating prying effects, definitive provisions for the allowable stress
range for bolts subject to applied axial tension are not included in this
Specification. To limit the uncertainties regarding prying action on the fatigue of
pretensioned bolts in details which introduce prying, the allowable stress range
provided in Table A-3.1 is appropriate for extended cyclic loadingonly if the pry-
ing induced by the applied load is small.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 481

16.1–482 BOLTS AND THREADED PARTS [Comm. 3.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Nonpretensioned fasteners are not permitted under this Specification for joints sub-
ject to cyclic shear forces. Bolts installed in joints meeting all the requirements for
slip-critical connections survive unharmed when subject to cyclic shear stresses suf-
ficient to fracture the connected parts; provisions for such bolts are given in Section
2 of Table A-3.1.
3.5. SPECIAL FABRICATION AND ERECTION REQUIREMENTS
It is essential that when longitudinal backing bars are to be left in place, they be con-
tinuous or spliced using flush-ground complete-joint-penetration groove welds
before attachment to the parts being joined. Otherwise, the transverse nonfused sec-
tion constitutes a crack-like defect that can lead to premature fatigue failure or even
brittle fractureof the built-up member.
In transverse joints subjected to tension a lack-of-fusion plane in T-joints acts
as an initial crack-like condition. In groove welds, the root at the backing bar
often has discontinuities that can reduce the fatigue resistance of the connection.
Removing the backing, back gouging the joint and rewelding eliminates the unde-
sirable discontinuities.
The addition of contoured fillet welds at transverse complete-joint-penetration
groove welds in T- and corner joints and at reentrant corners reduces the stress con-
centration and improves fatigue resistance.
Experimental studies on welded built-up beams demonstrated that if the surface
roughness of flame-cut edges was less than 1,000 μin. (25 μm), fatigue cracks would
not develop from the flame-cut edge but from the longitudinal fillet welds connect-
ing the beam flanges to the web (Fisher et al., 1970, 1974). This provides stress
category B fatigue resistance without the necessity for grinding flame-cut edges.
Reentrant corners at cuts, copes and weld access holes provide a stress concentration
point that can reduce fatigue resistance if discontinuities are introduced by punching
or thermal cutting. Reaming sub-punched holes and grinding the thermally cut sur-
face to bright metal prevents any significant reduction in fatigue resistance.
The use of run-off tabs at transverse butt-joint groove welds enhances weld sound-
ness at the ends of the joint. Subsequent removal of the tabs and grinding of the ends
flush with the edge of the member removes discontinuities that are detrimental to
fatigue resistance.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 482

16.1–483
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 4
STRUCTURAL DESIGN FOR FIRE CONDITIONS
4.1. GENERAL PROVISIONS
Appendix 4 provides structural engineers with criteria for designing steel-framed
building systems and components, including columns, and floor and truss assem-
blies, for fire conditions. Additional guidance is provided in this Commentary.
Compliance with the performance objective in Section 4.1.1 can be demonstrated
by either structural analysis or component qualification testing.
Thermal expansion and progressive decrease in strength and stiffness are the pri-
mary structural responses to elevated temperatures that may occur during fires. An
assessment of a design of building components and systems based on structural
mechanics that allows designers to address the fire-induced restrained thermal
expansions, deformations and material degradation at elevated temperatures can
lead to a more robust structural design for fire conditions.
4.1.1. Performance Objective
The performance objective underlying the provisions in this Specification is that
of life safety. Fire safety levels should depend on the building occupancy, height
of the building, the presence of active fire mitigation measures, and the effec-
tiveness of fire-fighting. Three limit states exist for elements serving as fire
barriers (compartment walls and floors): (1) heat transmission leading to unac-
ceptable rise of temperature on the unexposed surface; (2) breach of barrier due
to cracking or loss of integrity; and (3) loss of load-bearing capacity. In general,
all three must be considered by the engineer to achieve the desired performance.
These three limit states are interrelated in fire-resistant design. For structural ele-
ments that are not part of a separating element, the governing limit state is loss of
load-bearing capacity.
Specific performance objectives for a facility are determined by the stakeholders
in the building process, within the context of the above general performance objec-
tive and limit states. In some instances, applicable building codes may stipulate
that steel in buildings of certain occupancies and heights be protected by fire-
resistant materials or assemblies to achieve specified performance goals.
4.1.2. Design by Engineering Analysis
The strength design criteria for steel beams and columns at elevated temperatures
have been revised from the 2005 Specification for Structural Steel Buildings
(AISC, 2005a) to reflect recent research (Tagaki and Deierlein, 2007). These
strength equations do not transition smoothly to the strength equations used to
design steel members under ambient conditions. The practical implications of the
discontinuity are minor, as the temperatures in the structural members during a
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 483

16.1–484 GENERAL PROVISIONS [Comm. 4.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
fully developed fire are far in excess of the temperatures at which this disconti-
nuity might otherwise be of concern in design. Nevertheless, to avoid the
possibility of misinterpretation, the scope of applicability of the analysis methods
in Section 4.2 of Appendix 4 is limited to temperatures above 400 °F (204 °C).
Structural behavior under severe fire conditions is highly nonlinear in nature as a
result of the constitutive behavior of materials at elevated temperatures and the rel-
atively large deformations that may develop in structural systems at sustained
elevated temperatures. As a result of this behavior, it is difficult to develop design
equations to ensure the necessary level of structural performance during severe
fires using elastically based ASD methods. Accordingly, structural design for fire
conditions by analysis should be performed using LRFD methods, in which the
nonlinear structural actions arising during severe fire exposures and the tempera-
ture-dependent design strengths can be properly taken into account.
4.1.4. Load Combinations and Required Strength
Fire safety measures are aimed at three levels: (1) to prevent the outbreak of fires
through elimination of ignition sources or hazardous practices; (2) to prevent
uncontrolled fire development and flashover through early detection and suppres-
sion; and (3) to prevent loss of life or structural collapse through fire protection
systems, compartmentation, exit ways, and provision of general structural integrity
and other passive measures. Specific structural design provisions to check struc-
tural integrity and risk of progressive failure due to severe fires can be developed
from principles of structural reliability theory (Ellingwood and Leyendecker,
1978; Ellingwood and Corotis, 1991).
The limit state probability of failure due to fire can be written as
P(F) =P(F|D,I) P(D|I) P(I) (C-A-4-1)
where P(I)=probability of ignition, P(D|I) =probability of development of a
structurally significant fire, and P(F|D,I)=probability of failure, given the occur-
rence of the two preceding events. Measures taken to reduce P(I) and P(D|I)are
mainly nonstructural in nature. Measures taken by the structural engineer to design
fire resistance into the structure impact the termP(F|D,I).
The development of structural design requirements requires a target reliability
level, reliability being measured by P(F)in Equation C-A-4-1. Analysis of relia-
bility of structural systems for gravity dead and live load (Galambos et al., 1982)
suggests that the limit state probability of individual steel members and connec-
tions is on the order of 10
−5
to 10
−4
per year. For redundant steel frame systems,
P(F) is on the order of 10
−6
to 10
−5
. The de minimisrisk, that is, the level below
which the risk is of regulatory or legal concern and the economic or social bene-
fits of risk reduction are small, is on the order of 10
−7
to 10
−6
per year
(Pate-Cornell, 1994). If P(I) is on the order of 10
−4
per year for typical buildings
and P(D|I)is on the order of 10
−2
for office or commercial buildings in urban areas
with suppression systems or other protective measures, then P(F|D,I)should be
approximately 0.1 to ascertain that the risk due to structural failure caused by fire
is socially acceptable.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 484

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–485
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
The use of first-order structural reliability analysis based on this target (condi-
tional) limit state probability leads to the gravity load combination presented as
Equation A-4-1. Load combination Equation A-4-1 is similar to Equation 2.5-1
that appears in ASCE/SEI 7-10 (ASCE, 2010), where the probabilistic bases for
load combinations for extraordinary events is explained in detail. The factor 0.9 is
applied to the dead load when the effect of the dead load is to stabilize the struc-
ture; otherwise, the factor 1.2 is applied. The companion action load factors on L
and Sin that equation reflect the fact that the probability of a coincidence of the
peak time-varying load with the occurrence of a fire is negligible (Ellingwood and
Corotis, 1991).
The overall stability of the structural system is checked by considering the effect
of a small notional lateral load equal to 0.2% of the story gravity force, as defined
in Section C2.2, acting in combination with the gravity loads. The required
strength of the structural component or system designed using load combination
A-4-1 is on the order of 60% to 70% of the required strength under full gravity or
wind load at normal temperature.
4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS
4.2.1. Design-Basis Fire
Once a fuel load has been agreed upon for the occupancy, the designer should
demonstrate the effect of various fires on the structure by assessing the tempera-
ture-time relationships for various ventilation factors. These relations may result
in different structural responses, and it is useful to demonstrate the capability of
the structure to withstand such exposures. The effects of a localized fire should
also be assessed to ascertain that local damage is not excessive. Based on these
results, connections and edge details can be specified to provide a structure that is
sufficiently robust.
4.2.1.1. Localized Fire
Localized fires may occur in large open spaces, such as the pedestrian area of
covered malls, concourses of airport terminals, warehouses, and factories, where
fuel packages are separated by large aisles or open spaces. In such cases, the radi-
ant heat flux can be estimated by a point source approximation, requiring the heat
release rate of the fire and separation distance between the center of the fuel pack-
age and the closest surface of the steelwork. The heat release rate can be
determined from experimental results or may be estimated if the mass loss rate
per unit floor area occupied by the fuel is known. Otherwise, a steady-state fire
may be assumed.
4.2.1.2. Post-Flashover Compartment Fires
Caution should be exercised when determining temperature-time profiles for
spaces with high aspect ratios, for example, 5:1 or greater, or for large spaces;
for example, those with an open (or exposed) floor area in excess of 5,000 ft
2
(465 m
2
). In such cases, it is unlikely that all combustibles will burn in the space
simultaneously. Instead, burning will be most intense in, or perhaps limited to,
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 485

16.1–486 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
the combustibles nearest to a ventilation source. For modest-sized compartments
with low aspect ratios, the temperature history of the design fire can be determined
by algebraic equations or computer models, such as those described in the SFPE
Handbook of Fire Protection Engineering(SFPE, 2002).
Caution should be exercised when determining the fire duration for spaces with
high aspect ratios, for example, 5:1 or greater, or for large spaces, for example,
those with a floor area in excess of 5,000 ft
2
(465 m
2
). The principal difficulty lies
in obtaining a realistic estimate for the mass loss rate, given that all combustibles
within the space may not be burning simultaneously. Failure to recognize uneven
burning will result in an overestimation of the mass burning rate and an underes-
timation of the fire duration by a significant margin. Note: some computation
methods may implicitly determine the duration of the fire, in which case the cal-
culation of mass loss rate is unnecessary.
Where a parametric curve is used to define a post-flashover fire, the duration is
determined by means of the fuel versus ventilation provisions, not explicitly by
loss of mass. This clause should not limit the use of temperature-time relationships
to those where duration is calculated, as stated above, as these tend to be localized
fires and external fire.
4.2.1.3. Exterior Fires
A design guide is available for determining the exposure resulting from an exte-
rior fire (AISI, 1979).
4.2.1.4. Active Fire Protection Systems
Due consideration should be given to the reliability and effectiveness of active fire
protection systems when describing the design-basis fire. When an automatic
sprinkler system is installed, the total fuel load may be reduced by up to 60%
[Eurocode 1 (CEN, 1991)]. The maximum reduction in the fuel load should be
considered only when the automatic sprinkler system is considered to be of the
highest reliability; for example, reliable and adequate water supply, supervision of
control valves, regular schedule for maintenance of the automatic sprinkler system
developed in accordance with NFPA (2002a), or alterations of the automatic sprin-
kler system are considered any time alterations for the space are considered.
For spaces with automatic smoke and heat vents, computer models are available to
determine the smoke temperature (SFPE, 2002). Reduction in the temperature pro-
file as a result of smoke and heat vents should only be considered for reliable
installations of smoke and heat vents. As such, a regular maintenance schedule for
the vents needs to be established in accordance with NFPA (2002b).
4.2.2. Temperatures in Structural Systems under Fire Conditions
The heat transfer analysis may range from one-dimensional analyses where the
steel is assumed to be at uniform temperature to three-dimensional analyses. The
uniform temperature assumption is appropriate in a “lumped heat capacity analy-
sis” where a steel column, beam or truss element is uniformly heated along the
entire length and around the entire perimeter of the exposed section and the
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 486

protection system is uniform along the entire length and around the entire perime-
ter of the section. In cases with nonuniform heating or where different protection
methods are used on different sides of the column, a one-dimensional analysis
should be conducted for steel column assemblies. Two-dimensional analyses are
appropriate for beams, bar joists or truss elements supporting floor or roof slabs.
Heat transfer analyses should consider changes in material properties with increas-
ing temperature for all materials included in the assembly. This may be done in the
lumped heat capacity analysis using an effective property value, determined at a
temperature near the estimated mid-point of the temperature range expected to be
experienced by that component over the duration of the exposure. In the one- and
two-dimensional analyses, the variation in properties with temperature should be
explicitly included.
The boundary conditions for the heat transfer analysis shall consider radiation heat
transfer in all cases and convection heat transfer if the exposed element is sub-
merged in the smoke or is being subjected to flame impingement. The presence of
fire resistive materials in the form of insulation, heat screens, or other protective
measures shall be taken into account, if appropriate.
Lumped Heat Capacity Analysis. This first-order analysis to predict the tempera-
ture rise of steel structural members can be conducted using algebraic equations
iteratively. This approach assumes that the steel member has a uniform tempera-
ture, applicable to cases where the steel member is unprotected or uniformly
protected (on all sides), and is exposed to fire around the entire perimeter of the
assembly containing the steel member. Caution should be used when applying this
method to steel beams supporting floor and roof slabs, as the approach will over-
estimate the temperature rise in the beam. In addition, where this analysis is used
as input for the structural analysis of a fire-exposed steel beam supporting a floor
and roof slab, the thermally induced moments will not be simulated as a result of
the uniform temperature assumption.
Unprotected Steel Members.The temperature rise in an unprotected steel section
in a short time period is determined by:
(C-A-4-2)
The heat transfer coefficient, a, is determined from
a =a
c+ar (C-A-4-3)
where
a
c=convective heat transfer coefficient
a
r=radiative heat transfer coefficient, given as:
(C-A-4-4)
Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–487
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ΔΔT
a
c
W
D
TTts
s
Fs=






− ( )
a
TT
TTr
F
FS
Fs=
×

− ( )

567 10
8
44
. ε
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 487

16.1–488 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For the standard exposure, the convective heat transfer coefficient, a c, can be
approximated as 25 W/m²-°C [4.4 Btu/(ft
2
-hr-°F)]. The parameter, ε F, accounts for
the emissivity of the fire and the view factor. Estimates for ε
F, are suggested in
Table C-A-4.1.
For accuracy reasons, a maximum limit for the time step, Δt, is suggested as 5 s.
The fire temperature needs to be determined based on the results of the design fire
analysis. As alternatives, the standard time-temperature curves indicated in ASTM
E119 (ASTM, 2009d) for building fires or ASTM E1529 (ASTM, 2006) for petro-
chemical fires may be selected.
Protected Steel Members.This method is most applicable for steel members with
contour protection schemes, in other words, where the insulating or (protection)
material follows the shape of the section. Application of this method for box pro-
tection methods will generally result in the temperature rise being overestimated.
The approach assumes that the outside insulation temperature is approximately
equal to the fire temperature. Alternatively, a more complex analysis may be con-
ducted which determines the exterior insulation temperature from a heat transfer
analysis between the assembly and the exposing fire environment.
If the thermal capacity of the insulation is much less than that for the steel, such
that the following inequality is satisfied:
c
sW/D >2d pρpcp (C-A-4-5)
Then, Equation C-A-4-6 can be applied to determine the temperature rise in the
steel:
(C-A-4-6)
TABLE C-A-4.1
Guidelines for Estimating ε
F
Type of Assembly ε F
Column, exposed on all sides 0.7
Floor beam: Embedded in concrete floor slab, with only bottom
flange of beam exposed to fire 0.5
Floor beam, with concrete slab resting on top flange of beam
Flange width-to-beam depth ratio ≥0.5 0.5
Flange width-to-beam depth ratio <0.5 0.7
Box girder and lattice girder 0.7
ΔΔT
k
cd
W
D
TTts
p
sp
Fs=






− ( )
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 488

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–489
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
If the thermal capacity of the insulation needs to be considered (such that the
inequality in Equation C-A-4-5 is not satisfied), then Equation C-A-4-7 should be
applied:
(C-A-4-7)
The maximum limit for the time step, Δt, should be 5 s.
Ideally, material properties should be considered as a function of temperature.
Alternatively, material properties may be evaluated at a mid-range temperature
expected for that component. For protected steel members, the material properties
may be evaluated at 572 °F (300 °C), and for protection materials, a temperature
of 932 °F (500 °C) may be considered.
External Steelwork.Temperature rise can be determined by applying the follow-
ing equation:
(C-A-4-8)
where q′′is the net heat flux incident on the steel member.
Advanced Calculation Methods.The thermal response of steel members may be
assessed by application of a computer model. A computer model for analyzing the
thermal response of the steel members should consider the following:
(1) Exposure conditions established based on the definition of a design fire. The
exposure conditions need to be stipulated either in terms of a time-temperature
history, along with radiation and convection heat transfer parameters associ-
ated with the exposure, or as an incident heat flux. The incident heat flux is
dependent on the design fire scenario and the location of the structural assem-
bly. The heat flux emitted by the fire or smoke can be determined from a fire
hazard analysis. Exposure conditions are established based on the definition of
a design fire. The exposure conditions are stipulated either in terms of a time-
temperature history, along with radiation and convection heat transfer
parameters associated with the exposure, or as an incident heat flux.
(2) Temperature-dependent material properties.
(3) Temperature variation within the steel member and any protection compo-
nents, especially where the exposure varies from side-to-side.
Nomenclature:
D=heat perimeter, in. (m)
T=temperature, °F (°C)
W=weight (mass) per unit length, lb/ft (kg/m)
a=heat transfer coefficient, Btu/ft
2
-sec-°F (W/m
2
-°C)
ΔΔT
k
d
TT
c
W
D
cd
ts
p
p
Fs
s
ppp=






⎟+












ρ
2
ΔΔT
q
c
W
D
ts
s=
′′






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 489

16.1–490 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
c=specific heat, Btu/lb·°F (J/kg-°C)
d=thickness, in. (m)
k=thermal conductivity, Btu/ft-sec-°F (W/m-°C)
Δt=time interval, s
ρ=density, lb/ft
3
(kg/m
3
)
Subscripts:
c=convection
p=fire protection material
r=radiation
s=steel
4.2.3. Material Strengths at Elevated Temperatures
The properties for steel and concrete at elevated temperatures are adopted from the
ECCS Model Code on Fire Engineering(ECCS, 2001), Section III.2, “Material
Properties.” These generic properties are consistent with those in Eurocode 3
(CEN, 2005) and Eurocode 4 (CEN, 2003), and reflect the consensus of the inter-
national fire engineering and research community. The background information for
the mechanical properties of structural steel at elevated temperatures can be found
in Cooke (1988) and Kirby and Preston (1988).
The stress-strain response of steel at elevated temperatures is more nonlinear
than at room temperature and experiences less strain hardening. As shown in
Figure C-A-4.1, at elevated temperatures the deviation from linear behavior is
represented by the proportional limit, F
p(T),and the yield strength, F y(T), is
defined at a 2% strain. At 1,000 °F (538 °C), the yield strength, F
y(T),reduces
to about 66% of its value at room temperature, and the proportional limit F
p(T)
occurs at 29% of the elevated temperature yield strength F
y(T). Finally, at
Fig. C-A-4.1. Parameters of idealized stress-strain curve at elevated temperatures
(Takagi and Deierlein, 2007).

TE
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 490

Comm. 4.2.] STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS 16.1–491
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
temperatures above 750 °F (399 °C), the elevated temperature ultimate strength
is essentially the same as the elevated temperature yield strength; in other words,
F
y(T) is equal to F u(T).
4.2.4. Structural Design Requirements
The resistance of the structural system in the design basis fire may be determined
by:
(a) Structural analysis of individual elements where the effects of restraint to
thermal expansion and bowing may be ignored but the reduction in strength
and stiffness with increasing temperature is incorporated
(b) Structural analysis of assemblies/subframes where the effects of restrained
thermal expansion and thermal bowing are considered by incorporating geo-
metric and material nonlinearities
(c) Global structural analysis where restrained thermal expansion, thermal bow-
ing, material degradation, and geometric nonlinearity are considered
4.2.4.1. General Structural Integrity
The requirement for general structural integrity is consistent with that appearing
in Section 1.4 of ASCE (2010). Structural integrity is the ability of the structural
system to absorb and contain local damage or failure without developing into a
progressive collapse that involves the entire structure or a disproportionately large
part of it.
The Commentary C1.4 to Section 1.4 of ASCE (2010) contains guidelines for the
provision of general structural integrity. Compartmentation (subdivision of build-
ings/stories in a building) is an effective means of achieving resistance to
progressive collapse as well as preventing fire spread, as a cellular arrangement
of structural components that are well tied together provides stability and integrity
to the structural system as well as insulation.
4.2.4.2. Strength Requirements and Deformation Limits
As structural elements are heated, their expansion is restrained by adjacent ele-
ments and connections. Material properties degrade with increasing temperature.
Load transfer can occur from hotter elements to adjacent cooler elements.
Excessive deformation may be of benefit in a fire as it allows release of thermally
induced stresses. Deformation is acceptable once horizontal and vertical separa-
tion as well as the overall load bearing capacity of the structural system is
maintained.
4.2.4.3. Methods of Analysis
4.2.4.3a. Advanced Methods of Analysis
Advanced methods are required when the overall structural system response to
fire, the interaction between structural members and separating elements in
fire, or the residual strength of the structural system following a fire must be
considered.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 491

16.1–492 STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS [Comm. 4.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.2.4.3b. Simple Methods of Analysis
Simple methods may suffice when a structural member or component can be
assumed to be subjected to uniform heat flux on all sides and the assumption of a
uniform temperature is reasonable as, for example, in a free-standing column.
In the 2005 Specification, nominal member strengths at elevated temperatures
were calculated using the standard strength equations of the Specification with
steel properties (E, F
yand F u) reduced for elevated temperatures by appropriate
factors. Recent research (Takagi and Deierlein, 2007) has shown this procedure
to over-estimate considerably the strengths of members that are sensitive to sta-
bility effects. To reduce these unconservative errors, new equations, developed by
Takagi and Deierlein (2007) are introduced in the 2010 edition of the
Specification to more accurately calculate the strength of compression members
subjected to flexural buckling and flexural members subjected to lateral-torsional
buckling. As shown in Figure C-A-4.2, the 2010 Specification equations are much
more accurate in comparison to detailed finite element method analyses (repre-
sented by the square symbol in the figure), which have been validated against test
data, and to equations from the Eurocode (ECCS, 2001).
4.2.4.4. Design Strength
The design strength for structural steel members and connections is calculated as
φR
n, in which R n=nominal strength, when the deterioration in strength at ele-
vated temperature is taken into account, and φis the resistance factor. The
nominal strength is computed as in Chapters C through K and Appendix 4 of the
Specification, using material strength and stiffnesses at elevated temperatures
defined in Tables A-4.2.1 and A-4.2.2. While ECCS (2001) and Eurocode 1
(CEN, 1991) specify partial material factors as equal to 1.0 for “accidental” limit
states, the uncertainties in strength at elevated temperatures are substantial and in
some cases are unknown. Accordingly, the resistance factors herein are the same
as those at ordinary conditions.
Fig. C-A-4.2 Comparison of compression and flexural strengths
at 500 °C (932 °F) (Takagi and Deierlein, 2007).
(a) Compression strength (b) Flexural strength
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 492

Comm. 4.3.] DESIGN BY QUALIFICATION TESTING 16.1–493
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
4.3. DESIGN BY QUALIFICATION TESTING
4.3.1. Qualification Standards
Qualification testing is an acceptable alternative to design by analysis for provid-
ing fire resistance. Fire resistance ratings of building elements are generally
determined in accordance with procedures set forth in ASTM E119, Standard Test
Methods for Fire Tests of Building Construction and Materials(ASTM, 2009d).
Tested building element designs, with their respective fire resistance ratings, may
be found in special directories and reports published by testing agencies.
Additionally, calculation procedures based on standard test results may be used as
specified in Standard Calculation Methods for Structural Fire Protection(ASCE,
2005a).
For building elements that are required to prevent the spread of fire, such as walls,
floors and roofs, the test standard provides for measurement of the transmission of
heat. For loadbearing building elements, such as columns, beams, floors, roofs and
loadbearing walls, the test standard also provides for measurement of the load-car-
rying ability under the standard fire exposure.
For beam, floor and roof specimens tested under ASTM E119, two fire resistance
classifications—restrained and unrestrained—may be determined, depending on the
conditions of restraint and the acceptance criteria applied to the specimen.
4.3.2. Restrained Construction
The ASTM E119 standard provides for tests of loaded beam specimens only in the
restrained condition, where the two ends of the beam specimen (including slab ends
for composite steel-concrete beam specimens) are placed tightly against the test
frame that supports the beam specimen. Therefore, during fire exposure, the ther-
mal expansion and rotation of the beam specimen ends are resisted by the test
frame. Similar restrained condition is provided in the ASTM E119 tests on
restrained loaded floor or roof assemblies, where the entire perimeter of the assem-
bly is placed tightly against the test frame.
The practice of restrained specimens dates back to the early fire tests (over 100
years ago), and it is predominant today in the qualification of structural steel
framed and reinforced concrete floors, roofs and beams in North America. While
the current ASTM E119 standard does provide for an option to test loaded floor and
roof assemblies in the unrestrained condition, this testing option is rarely used for
structural steel and concrete. However, unrestrained loaded floor and roof speci-
mens, with sufficient space around the perimeter to allow for free thermal
expansion and rotation, are common in the tests of wood and cold-formed-steel
framed assemblies.
Gewain and Troup (2001) provide a detailed review of the background research
and practices in the qualification fire resistance testing and rating of structural
steel (and composite steel/concrete) girders, beams, and steel framed floors and
roofs. The restrained assembly fire resistance ratings (developed from tests on
loaded restrained floor or roof specimens) and the restrained beam fire resistance
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 493

16.1–494 DESIGN BY QUALIFICATION TESTING [Comm. 4.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ratings (developed from tests on loaded restrained beam specimens) are com-
monly applicable to all types (with minor exceptions) of steel framed floors, roofs,
girders and beams, as recommended in Table X3.1 of ASTM E119, especially
where they incorporate or support cast-in-place or prefabricated concrete slabs.
Ruddy et al. (2003) provides several detailed examples of steel framed floor and
roof designs by qualification testing.
4.3.3. Unrestrained Construction
An unrestrained condition is one in which thermal expansion at the support of load-
carrying elements is not resisted by forces external to the element and the supported
ends are free to expand and rotate.
However, in the common practice for structural steel (and composite steel-con-
crete) beams and girders, the unrestrained beam ratings are developed from ASTM
E119 tests on loaded restrained beam specimens or from ASTM E119 tests on
loaded restrained floor or roof specimens, based only on temperature measurements
on the surface of structural steel members. For steel framed floors and roofs, the
unrestrained assembly ratings are developed from ASTM E119 tests on loaded
restrained floor and roof specimens, based only on temperature measurements on
the surface of the steel deck (if any) and on the surface of structural steel members.
As such, the unrestrained fire resistance ratings are temperature-based ratings
indicative of the time when the steel reaches specified temperature limits. These
unrestrained ratings do not bear much direct relevance to the unrestrained condition
or the load-bearing functions of the specimens in fire tests.
Nevertheless, unrestrained ratings provide useful supplementary information, and
they are used as a conservative estimate of fire resistance (in lieu of the restrained
ratings) in cases where the surrounding or supporting construction cannot be
expected to accommodate the thermal expansion of steel beams or girders. For
instance, as recommended in Table X3.1 of ASTM E119, a steel member bearing
on a wall in a single span or at the end span of multiple spans should be consid-
ered unrestrained when the wall has not been designed and detailed to resist
thermal thrust.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:01 AM Page 494

Comm. 4.] BIBLIOGRAPHY 16.1–495
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
BIBLIOGRAPHY
The following references provide further information on key issues related to fire-resistant
design of steel building systems and components, and are representative of the extensive
literature on the topic. The references were selected because they are archival in nature or
otherwise easily accessible by engineers seeking to design fire-resistance into building
structures.
AISI (1980), Designing Fire Protection for Steel Columns, American Iron and Steel
Institute, Washington, DC.
Bailey, C.G. (2000), “The Influence of the Thermal Expansion of Beams on the Structural
Behavior of Columns in Steel-Framed Structures During a Fire,” Engineering Structures,
Vol. 22, No. 7, pp. 755–768.
Bennetts, I.D. and Thomas, I.R. (2002), “Design of Steel Structures under Fire Conditions,”
Progress in Structural Engineering and Materials, Vol. 4, No. 1, pp. 6–17.
Boring, D.F., Spence, J.C. and Wells, W.G. (1981), Fire Protection Through Modern
Building Codes, 5th Ed., American Iron and Steel Institute, Washington, DC.
Brozzetti, J., Law, M., Pettersson, O. and Witteveen, J. (1983), “Safety Concepts and Design
for Fire Resistance of Steel Structures,” IABSE Surveys S-22/83, IABSE Periodica
1/1983, ETH-Honggerberg, Zurich, Switzerland.
Chalk, P.L. and Corotis, R.B. (1980), “Probability Model for Design Live Loads,” Journal
of the Structures Division, ASCE, Vol. 106, No. ST10, pp. 2,017–2,033.
Chan, S.L. and Chan, B.H.M. (2001), “Refined Plastic Hinge Analysis of Steel Frames
under Fire,” Steel and Composite Structures, Vol. 1, No. 1, pp. 111–130.
CIB W14 (1983), “A Conceptual Approach Towards a Probability Based Design Guide on
Structural Fire Safety,” Fire Safety Journal, Vol. 6, No. 1, pp. 1–79.
CIB W14 (2001), “Rational Safety Engineering Approach to Fire Resistance of Buildings,”
CIB Report No. 269, International Council for Research and Innovation in Building
and Construction, Rotterdam, The Netherlands.
Culver, C.G. (1978), “Characteristics of Fire Loads in Office Buildings,” Fire Technology,
Vol. 1,491, pp. 51–60.
Huang, Z., Burgess, I.W. and Plank, R.J. (2000), “Three-Dimensional Analysis of
Composite Steel-Framed Buildings in Fire,” Journal of Structural Engineering, ASCE,
Vol. 126, No. 3, pp. 389–397.
Jeanes, D.C. (1985), “Application of the Computer in Modeling Fire Endurance of
Structural Steel Floor Systems,” Fire Safety Journal, Vol. 9, pp. 119–135.
Kruppa, J. (2000), “Recent Developments in Fire Design,” Progress in Structures
Engineering and Materials, Vol. 2, No. 1, pp. 6–15.
Lane, B. (2000), “Performance-Based Design for Fire Resistance,” Modern Steel
Construction, AISC, December, pp. 54–61.
Lawson, R.M. (2001), “Fire Engineering Design of Steel and Composite Buildings,”
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 495

16.1–496 BIBLIOGRAPHY [Comm. 4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Journal of Constructional Steel Research, Vol. 57, pp. 1,233–1,247.
Lie, T.T. (1978), “Fire Resistance of Structural Steel,” Engineering Journal, AISC, Vol. 15,
No. 4, pp. 116–125.
Lie, T.T. and Almand, K.H. (1990), “A Method to Predict the Fire Resistance of Steel
Building Columns,” Engineering Journal, AISC, Vol. 27, pp. 158–167.
Magnusson, S.E. and Thelandersson, S. (1974), “A Discussion of Compartment Fires,” Fire
Technology, Vol. 10, No. 4, pp. 228–246.
Milke, J.A. (1985), “Overview of Existing Analytical Methods for the Determination of Fire
Resistance,” Fire Technology, Vol. 21, No. 1, pp. 59–65.
Milke, J.A. (1992), “Software Review: Temperature Analysis of Structures Exposed to
Fire,” Fire Technology, Vol. 28, No. 2, pp. 184–189.
Newman, G. (1999), “The Cardington Fire Tests,” Proceedings of the North American Steel
Construction Conference, Toronto, Canada, AISC, Chicago, IL, pp. 28.1–28.22.
Nwosu, D.I. and Kodur, V.K.R. (1999), “Behavior of Steel Frames Under Fire Conditions,”
Canadian Journal of Civil Engineering, Vol. 26, pp. 156–167.
Sakumoto, Y. (1992), “High-Temperature Properties of Fire-Resistant Steel for Buildings,”
Journal of Structural Engineering, ASCE, Vol. 18, No. 2, pp. 392–407.
Sakumoto, Y. (1999), “Research on New Fire-Protection Materials and Fire-Safe Design,”
Journal of Structural Engineering, ASCE, Vol. 125, No. 12, pp. 1,415–1,422.
Toh, W.S., Tan, K.H. and Fung, T.C. (2001), “Strength and Stability of Steel Frames in
Fire: Rankine Approach,” Journal of Structural Engineering, ASCE, Vol. 127, No. 4, pp.
461–468.
Usmani, A.S., Rotter, J.M., Lamont, S., Sanad, A.M. and Gillie, M. (2001), “Fundamental
Principles of Structural Behaviour Under Thermal Effects,” Fire Safety Journal, Vol. 36,
No. 8.
Wang, Y.C. and Moore, D.B. (1995), “Steel Frames in Fire: Analysis,” Engineering
Structures, Vol. 17, No. 6, pp. 462–472.
Wang, Y.C. and Kodur, V.K.R. (2000), “Research Toward Use of Unprotected Steel
Structures,” Journal of Structural Engineering, ASCE, Vol. 120, No. 12, pp. 1,442–1,450.
Wang, Y.C. (2000), “An Analysis of the Global Structural Behavior of the Cardington Steel-
Framed Building During the Two BRE Fire Tests,” Engineering Structures, Vol. 22,
pp. 401–412.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 496

16.1–497
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 5
EVALUATION OF EXISTING STRUCTURES
5.1. GENERAL PROVISIONS
The load combinations referred to in this chapter pertain to gravity loading because
it is the most prevalent condition encountered. If other loading conditions are a con-
sideration, such as lateral loads, the appropriate load combination from ASCE/SEI 7
(ASCE, 2010) or from the applicable building code should be used.
For seismic evaluation of existing buildings, ASCE/SEI 31 (ASCE, 2003) provides
a three-tiered process for determination of the design and construction adequacy of
existing buildings to resist earthquakes. The standard defines evaluation require-
ments as well as detailed evaluation procedures. Buildings may be evaluated in
accordance with this standard for life safety or immediate occupancy performance
levels. Where seismic rehabilitation of existing structural steel buildings is required,
engineering of seismic rehabilitation work may be performed in accordance with the
ASCE/SEI 41 (ASCE, 2006) standard or other standards. Use of the above two stan-
dards for seismic evaluation and seismic rehabilitation of existing structural steel
buildings is subject to the approval of the authority having jurisdiction.
5.2. MATERIAL PROPERTIES
1. Determination of Required Tests
The extent of tests required depends on the nature of the project, the criticality of the
structural system or member evaluated, and the availability of records pertinent to the
project. Thus, the engineer of record has the responsibility to determine the specific
tests required and the locations from which specimens are to be obtained.
2. Tensile Properties
Samples required for tensile tests should be removed from regions of reduced stress,
such as at flange tips at beam ends and external plate edges, to minimize the effects
of the reduced area. The number of tests required will depend on whether they are
conducted to merely confirm the strength of a known material or to establish the
strength of some other steel.
It should be recognized that the yield stress determined by standard ASTM methods
and reported by mills and testing laboratories is somewhat greater than the static
yield stress because of dynamic effects of testing. Also, the test specimen location
may have an effect. These effects have already been accounted for in the nominal
strength equations in the Specification. However, when strength evaluation is done
by load testing, this effect should be accounted for in test planning because yield-
ing will tend to occur earlier than otherwise anticipated. The static yield stress, F
ys,
can be estimated from that determined by routine application of ASTM methods, F
y,
by the following equation (Galambos, 1978, 1998):
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 497

16.1–498 MATERIAL PROPERTIES [Comm. 5.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fys=R(F yπ4) (C-A-5-1)
[S.I.: F
ys=R(F yπ27)] (C-A-5-1M)
where
F
ys=static yield stress, ksi (MPa)
F
y=reported yield stress, ksi (MPa)
R=0.95 for tests taken from web specimens
=1.00 for tests taken from flange specimens
The Rfactor in Equation C-A-5-1 accounts for the effect of the coupon location on
the reported yield stress. Prior to 1997, certified material test reports for structural
shapes were based on specimens removed from the web, in accordance with ASTM
A6/A6M (ASTM, 2009f). Subsequently the specified coupon location was changed
to the flange.
4. Base Metal Notch Toughness
The engineer of record shall specify the location of samples. Samples shall be cored,
flame cut or saw cut. The engineer of record will determine if remedial actions are
required, such as the possible use of bolted splice plates.
5. Weld Metal
Because connections typically are more reliable than structural members, strength
testing of weld metal is not usually necessary. However, field investigations have
sometimes indicated that complete-joint-penetration groove welds, such as at beam-
to-column connections, were not made in accordance with AWS D1.1/D1.1M (AWS,
2010). The specified provisions in AWS D1.1/D1.1M Section 5.24 provide a means
for judging the quality of such a weld. Where feasible, any samples removed should
be obtained from compression splices rather than tension splices, because the effects
of repairs to restore the sampled area are less critical.
6. Bolts and Rivets
Because connections typically are more reliable than structural members, removal
and strength testing of fasteners is not usually necessary. However, strength testing
of bolts is required where they can not be properly identified otherwise. Because
removal and testing of rivets is difficult, assuming the lowest rivet strength grade
simplifies the investigation.
5.3. EVALUATION BY STRUCTURAL ANALYSIS
2. Strength Evaluation
Resistance and safety factors reflect variations in determining strength of members
and connections, such as uncertainty in theory and variations in material properties
and dimensions. If an investigation of an existing structure indicates that there are
variations in material properties or dimensions significantly greater than those antic-
ipated in new construction, the engineer of record should consider the use of more
conservative values.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 498

Comm. 5.4.] EVALUATION BY LOAD TESTS 16.1–499
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
5.4. EVALUATION BY LOAD TESTS
1. Determination of Load Rating by Testing
Generally, structures that can be designed according to the provisions of this
Specification need no confirmation of calculated results by testing. However, special
situations may arise when it is desirable to confirm by tests the results of calcula-
tions. Minimal test procedures are provided to determine the live load rating of a
structure. However, in no case is the live load rating determined by testing to exceed
that which can be calculated using the provisions of this Specification. This is not
intended to preclude testing to evaluate special conditions or configurations that are
not adequately covered by this Specification.
It is essential that the engineer of record take all necessary precautions to ascertain
that the structure does not fail catastrophically during testing. A careful assessment
of structural conditions before testing is a fundamental requirement. This includes
accurate measurement and characterization of the size and strength of members, con-
nections and details. All safety regulations of OSHA and other pertinent bodies must
be strictly followed. Shoring and scaffolding should be used as required in the prox-
imity of the test area to mitigate against unexpected circumstances. Deformations
must be carefully monitored and structural conditions must be continually evaluated.
In some cases it may be desirable to monitor strains as well.
The engineer of record must use judgment to determine when deflections are becom-
ing excessive and terminate the tests at a safe level even if the desired loading has
not been achieved. Incremental loading is specified so that deformations can be accu-
rately monitored and the performance of the structure carefully observed. Load
increments should be small enough initially so that the onset of significant yielding
can be determined. The increment can be reduced as the level of inelastic behavior
increases, and the behavior at this level carefully evaluated to determine when to
safely terminate the test. Periodic unloading after the onset of inelastic behavior will
help the engineer of record determine when to terminate the test to avoid excessive
permanent deformation or catastrophic failure.
It must be recognized that the margin of safety at the maximum load level used in the
test may be very small, depending on such factors as the original design, the purpose
of the tests, and the condition of the structure. Thus, it is imperative that all appro-
priate safety measures be adopted. It is recommended that the maximum live load
used for load tests be selected conservatively. It should be noted that experience in
testing more than one bay of a structure is limited.
The provision limiting increases in deformations for a period of one hour is given so
as to have positive means to confirm that the structure is stable at the loads evaluated.
2. Serviceability Evaluation
In certain cases serviceability performance must be determined by load testing. It
should be recognized that complete recovery (in other words, return to initial
deflected shape) after removal of maximum load is unlikely because of phenomena
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 499

16.1–500 EVALUATION BY LOAD TESTS [Comm. 5.4.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
such as local yielding, slip at the slab interface in composite construction, creep in
concrete slabs, localized crushing or deformation at shear connections in slabs, slip
in bolted connections, and effects of continuity. Because most structures exhibit
some slack when load is first applied, it is appropriate to project the load-deforma-
tion curve back to zero load to determine the slack and exclude it from the recorded
deformations. Where desirable, the applied load sequence can be repeated to demon-
strate that the structure is essentially elastic under service loads and that the
permanent set is not detrimental.
5.5. EVALUATION REPORT
Extensive evaluation and load testing of existing structures is often performed when
appropriate documentation no longer exists or when there is considerable disagree-
ment about the condition of a structure. The resulting evaluation is only effective if
well documented, particularly when load testing is involved. Furthermore, as time
passes, various interpretations of the results can arise unless all parameters of the
structural performance, including material properties, strength, and stiffness, are
well documented.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 500

16.1–501
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 6
STABILITY BRACING FOR COLUMNS AND BEAMS
6.1. GENERAL PROVISIONS
Winter (1958, 1960) developed the concept of a dual requirement for bracing design,
which involves criteria for both strength and stiffness. The design requirements of
Appendix 6 are based upon this approach [for more discussion, see Ziemian (2010)]
and consider two general types of bracing systems, relative and nodal, as shown in
Figure C-A-6.1.
(b) Beam bracing
Fig. C-A-6.1. Types of bracing.
(a) Column bracing
AISC_PART 16_Comm.3C_14Ed._February 12, 2013 12/02/13 11:38 AM Page 501

16.1–502 GENERAL PROVISIONS [Comm. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
A relative brace for a column (such as diagonal bracing or shear walls) is attached to
two locations along the length of the column. The distance between these locations
is the unbraced length, L, of the column, for which K=1.0 can be used. The relative
bracing system shown in Figure C-A-6.1(a) consists of the diagonals and struts that
control the movement at one end of the unbraced length, A, with respect to the other
end of the unbraced length, B. The forces in these bracing elements are resolved by
the forces in the beams and columns in the frame that is braced. The diagonal and
strut both contribute to the strength and stiffness of the relative bracing system.
However, when the strut is a floor beam and the diagonal a brace, the floor beam
stiffness is usually large compared to the stiffness of the brace. In such a case, the
brace strength and stiffness often controls the strength and stiffness of the relative
bracing system.
A nodal brace for a column controls movement only at the point it braces, and with-
out direct interaction with adjacent braced points. The distance between adjacent
braced points is the unbraced length, L, of the column, for which K=1.0 can be used.
The nodal bracing system shown in Figure C-A-6.1(a) consists of a series of inde-
pendent braces, which connect to a rigid abutment, from braced points, including C
and D. The forces in these bracing elements are resolved by other structural elements
not part of the frame that is braced.
As illustrated in Figure C-A-6.1(b), a relative bracing system for a beam commonly
consists of a system with diagonals; a nodal bracing system commonly exists when
there is a link to an external support or a cross-frame between two adjacent beams.
The cross-frame prevents twist (not lateral displacement) of the beams only at the
particular cross frame location. With the required lateral and rotational restraint pro-
vided at the beam ends, the unbraced length, L
b, in all of these cases is the distance
from the support to the braced point.
The bracing requirements stipulated for columns in this Section enable the column
to sustain its maximum load based on the unbraced length, L, between the brace
points and the use of K=1.0. This is not the same as the no-sideswaycase. As illus-
trated in Figure C-A-6.2 for a cantilevered column with a brace of variable stiffness
Fig. C-A-6.2. Cantilevered column with brace at top.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 502

Comm. 6.1.] GENERAL PROVISIONS 16.1–503
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
at the top, the critical stiffness with K=1.0 is P e/L. However, a brace with five times
this stiffness only reaches 95% of the value required for the use of K=0.7, and an
infinitely stiff brace would be required to reach the no-sway limit, in theory.
Similarly, the determination of bracing required to reach specified rotation capacities
or ductility limits is beyond the scope of these recommendations.
The provisions for required brace stiffness, β
br, in Sections 6.2 and 6.3 for columns
and beams, respectively, have been selected equal to twice the critical stiffness, and
all bracing stiffness provisions have φ=0.75 and Ω =2.00. The required brace
strength, P
rb, is a function of the initial out-of-straightness, Δ o, and the brace stiff-
ness, β. φand Ωare not involved in the calculation of required brace strength; they
are applied when the provisions in other chapters of this Specification are applied to
design the members and connections provided to resist these forces.
For a relative bracing system, the relationship between column load, brace stiffness
and sway displacement is shown in Figure C-A-6.3. If the bracing stiffness, β, is
equal to the critical brace stiffness for a perfectly plumb member, β
i, Papproaches
P
eas the sway deflection increases. However, such large displacements would pro-
duce large bracing forces, and Δmust be kept small for practical design.
For the relative bracing system shown in Figure C-A-6.3, the use of β
br=2βiand an
initial displacement of Δ
o=L/500 results in P rbequal to 0.4% of P e. In the forego-
ing, Lis the distance between adjacent braced points as shown in Figure C-A-6.4,
and Δ
ois the displacement from the straight position at the braced points caused by
lateral loads, erection tolerances, column shortening, and other sources, but not
including brace elongations from gravity loads.
As stated in the Chapter C, the use of Δ
o=L/500 is based upon the maximum frame
out-of-plumbness specified in the AISC Code of Standard Practice for Steel
Buildings and Bridges(AISC, 2010a). Similarly, for torsional bracing of beams an
initial rotation, θ
o=L/(500h o), is assumed, where h ois the distance between flange
centroids. For other values of Δ
oand θ o, it is permissible to modify the bracing
required strengths, P
rband M rb, by direct proportion. For cases where it is unlikely
that all columns in a story will be out-of-plumb in the same direction, Chen and Tong
(1994) recommend an average initial displacement of , where n
o
Fig. C-A-6.3. Effect of initial out-of-plumbness.
Δoo=()Ln/ 500
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 503

16.1–504 GENERAL PROVISIONS [Comm. 6.1.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
is the number of columns, each with a randomΔ o, stabilized by the bracing system.
This reduced Δ
owould be appropriate when combining the stability brace forces
with wind and seismic forces.
If the actual bracing stiffness provided, β
act, is larger than β br, the required brace
strength, P
rb(or M rbin the case of a torsional brace), can be multiplied by the fol-
lowing factor:
(C-A-6-1)
Connections in the bracing system, if they are flexible or can slip, should be consid-
ered in the evaluation of the bracing stiffness as follows:
(C-A-6-2)
The resulting bracing system stiffness, β
act, is less than the smaller of the connection
stiffness, β
conn, and the brace stiffness, β brace. Slip in connections with standard holes
need not be considered, except when only a few bolts are used.
When evaluating the bracing of rows of columns or beams, consideration must be
given to the accumulation of the bracing forces, which may result in a different dis-
placement at each column or beam location. In general, bracing forces can be
minimized by increasing the number of braced bays and using stiff braces.
Member inelasticity has no significant effect on stability bracing requirements (Yura,
1995).
6.2. COLUMN BRACING
For nodal column bracing, the critical stiffness is a function of the number of inter-
mediate braces (Winter, 1958, 1960). For one intermediate brace, β
i=2Pr/Lb, and for
many braces, β
i=4Pr/Lb. The relationship between the critical stiffness and the num-
ber of braces, n, can be approximated (Yura, 1995) as:
1
2−
β
β
br
act
11 1
ββ β
act conn brace
=+
Fig. C-A-6.4. Definitions of initial displacements for relative and nodal braces.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 504

Comm. 6.3.] BEAM BRACING 16.1–505
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(C-A-6-3)
The most severe case (many braces) was adopted for the brace stiffness requirement,
β
br=2 ×4P/L b. The brace stiffness in Equation A-6-4 can be multiplied by the fol-
lowing ratio to account for the actual number of braces:
(C-A-6-4)
The unbraced length, L
b, in Equation A-6-4 is assumed equal to the length, KL, that
enables the column to reach P
r. When the actual brace spacing is less than the value
of KLso determined, the calculated required stiffness may become quite conserva-
tive since the stiffness equations are inversely proportional to L
b. In such cases, L b
can be taken equal to KL. This substitution is also permitted for the beam nodal brac-
ing formulations given in Equations A-6-8 and A-6-9.
For example, a W12×53 (W310×79) with P
u=400 kips (1 780 kN) for LRFD
or P
a=267 kips (1 190 kN) for ASD can have a maximum unbraced length of 18 ft
(5.5 m) for ASTM A992 steel. If the actual brace spacing is 8 ft (2.4 m), 18 ft (5.5
m) may be used in Equation A-6-4 to determine the required stiffness. The use of L
b
equal to the value of KLin Equation A-6-4 provides reasonable estimates of the brace
stiffness requirements; however, the solution can still result in conservative estimates
of the stiffness requirements. Improved accuracy can be obtained by treating the sys-
tem as a continuous bracing system (Lutz and Fisher, 1985; Ziemian, 2010).
With regard to the brace strength requirements, Winter’s rigid model only accounts
for force effects from lateral displacements and would derive a brace force equal to
0.8% of P
r, which accounts only for lateral displacement force effects. To account for
the additional force due to member curvature, this theoretical force has been
increased to 1% of P
r.
6.3. BEAM BRACING
Beam bracing must control twist of the section, but need not prevent lateral dis-
placement. Both lateral bracing, such as a steel joists attached to the compression
flange of a simply supported beam, and torsional bracing, such as a cross-frame or
diaphragm between adjacent girders, can be used to control twist. Note, however,
that lateral bracing systems that are attached only near the beam centroid are gener-
ally ineffective in controlling twist.
For beams subject to reverse-curvature bending, an unbraced inflection point cannot
be considered a braced point because twist can occur at that point (Ziemian, 2010).
If bracing is needed, lateral bracing provided near an inflection point must be
attached to both flanges to prevent twist; alternatively, torsional bracing can be pro-
vided. A lateral brace on one flange near the inflection point is ineffective.
The beam bracing requirements in this Section are based on the recommendations of
Yura (2001).
βi
r
b
n
P
L
=−





⎟4
2
21
2
n
n
−⎛





AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 505

16.1–506 BEAM BRACING [Comm. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
1. Lateral Bracing
For lateral bracing, the following stiffness requirement is derived following Winter’s
approach:
β
br=2NiCt(CbPf) Cd/φLb (C-A-6-5)
where
N
i=1.0 for relative bracing
=(4-2/n) for nodal bracing
C
t=1.0 for centroidal loading
=1 +(1.2/n) for top-flange loading
n=number of intermediate braces
P
f=beam compressive flange force, kips (N)

2
EIyc/Lb
2
Iyc=out-of-plane moment of inertia of the compression flange, in.
4
(mm
4
)
C
b=lateral-torsional buckling modification factor from Chapter F
C
d=double curvature factor (compression in both flanges)
=1 + (M
S/ML)
2
MS=smallest moment causing compression in either flange, kip-ft (N-mm)
M
L=largest moment causing compression in each flange, kip-ft (N-mm)
The C
dfactor varies between 1 and 2, and is applied only to the brace closest to the
inflection point. The term (2N
iCt) can be conservatively approximated as 10 for any
number of nodal braces and 4 for relative bracing, and (C
bPf) can be approximated
by M
r/ho, which simplifies Equation C-A-6-5 to the stiffness requirements given by
Equations A-6-6 and A-6-8. Equation C-A-6-5 can be used in lieu of Equations A-
6-6 and A-6-8.
The brace strength requirement for relative bracing is
P
rb=0.004M rCtCd/ho (C-A-6-6a)
and for nodal bracing
P
rb=0.01M rCtCd/h o (C-A-6-6b)
They are based on an assumed initial lateral displacement of the compression flange
of 0.002L
b. The brace strength requirements of Equations A-6-5 and A-6-7 are
derived from Equations C-A-6-6a and C-A-6-6b assuming top flange loading (C
t=
2). Equations C-A-6-6a and C-A-6-6b can be used in lieu of Equations A-6-5 and A-
6-7, respectively.
2. Torsional Bracing
Torsional bracing can either be attached continuously along the length of the beam
(for example, metal deck or slabs) or be located at discrete points along the length of
the member (for example, cross frames). With respect to the girder response, tor-
sional bracing attached to the tension flange is just as effective as a brace attached at
mid-depth or to the compression flange. Although the girder response is generally not
sensitive to the brace location, the position of the brace on the cross section does
have an effect on the stiffness of the brace itself. For example, a torsional brace
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 506

Comm. 6.3.] BEAM BRACING 16.1–507
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
attached on the bottom flange will often bend in single curvature (for example, with
a flexural stiffness of 2EI/Lbased on the brace properties), while a brace attached on
the top flange will often bend in reverse curvature (for example, with a flexural stiff-
ness of 6EI/Lbased on the brace properties). Partially restrained connections can be
used if their stiffness is considered in evaluating the torsional brace stiffness.
The torsional brace requirements are based on the buckling strength of a beam with
a continuous torsional brace along its length presented in Taylor and Ojalvo (1966)
and modified for cross section distortion in Yura (2001), as follows.
(C-A-6-7)
The term C
buMois the buckling strength of the beam without torsional bracing. C tt=
1.2 when there is top flange loading and C
tt=1.0 for centroidal loading. β
– T=nβT/L
is the continuous torsional brace stiffness per unit length or its equivalent when n
nodal braces, each with a stiffness β
T, are used along the span, L, and the 2 accounts
for initial out-of-straightness. Neglecting the unbraced beam buckling term gives a
conservative estimate of the torsional brace stiffness requirement (Equation A-6-11).
The strength requirements for beam torsional bracing were developed based upon an
assumed initial twist imperfection of θ
o=0.002L b/ho, where h ois equal to the depth
of the beam. Providing at least twice the ideal stiffness results in a brace force, M
rb
=βTθo. Using the formulation of Equation A-6-11 (without φor Ω), the strength
requirement for the torsional bracing is
(C-A-6-8)
To obtain Equation A-6-9, the equation was simplified as follows:
(C-A-6-9)
The term M
r/hocan be approximated as the flange force, P f, and the term
L
b
2
/Cbπ
2
EIycan be represented as the reciprocal of twice the buckling strength of the
flange [1/(2P
f)]. Substituting for these terms and evaluating the constants results in
(C-A-6-10)
which is the expression given in Equation A-6-9.
Equations A-6-9 and A-6-12 give the strength and stiffness requirements for doubly
symmetric beams. For singly symmetric sections these equations will generally be
MM CM
CEI
Crcr buo
by T
tt≤= ( )+
2
2
2
β
M
LM
nEI C
L
hrb T o
r
yb
b
o=
=












βθ
24
500
2
2
.
M
LM
nEI C
L
h
Lrb
r
yb
b
o
b=












24
500
2
2
22
. π
π222
2
24
500
L
ML
nC L
M
h
b
r
bb
r
o






=












⎟ ⎟






L
CEI
b
by
2
2
π
M
ML
nC Lrb
r
bb=
0 024.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 507

16.1–508 BEAM BRACING [Comm. 6.3.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
conservative. Better estimates of the strength requirements for torsional bracing of
singly symmetric sections can be obtained with Equation C-A-6-8 by replacing I
y
with I effas given in the following expression:
(C-A-6-11)
where
t =distance from the neutral axis to the extreme tensile fibers, in. (mm)
c =distance from the neutral axis to the extreme compressive fibers, in.
(mm)
I
ycand I yt=respective moments of inertia of compression and tension flanges
about an axis through the web, in.
4
(mm
4
)
Good estimates of the stiffness requirements of torsional braces for singly symmet-
ric I-shaped beams may be obtained using Equation A-6-11 and replacing I
ywith I eff
given in Equation C-A-6-11.
The β
secterm in Equations A-6-10, A-6-12 and A-6-13 accounts for cross section dis-
tortion. A web stiffener at the brace point reduces cross-sectional distortion and
improves the effectiveness of a torsional brace. When a cross frame is attached near
both flanges or a diaphragm is approximately the same depth as the girder, then web
distortion will be insignificant so β
secequals infinity. The required bracing stiffness,
β
Tb, given by Equation A-6-10 was obtained by solving the following expression that
represents the brace system stiffness including distortion effects:
(C-A-6-12)
Parallel chord trusses with both chords extended to the end of the span and attached
to supports can be treated like beams. In Equations A-6-5 through A-6-9, M
umay be
taken as the maximum compressive chord force times the depth of the truss to deter-
mine the brace strength and stiffness requirements. Cross-section distortion effects,
β
sec, need not be considered when full-depth cross frames are used for bracing. When
either chord does not extend to the end of the span, consideration should be given to
control twist near the ends of the span by the use of cross frames or ties.
6.4. BEAM-COLUMN BRACING
The section on bracing for beam-columns was introduced in the 2010 edition. The
bracing requirements for compression and those for flexure are, in effect, super-
imposed to arrive at the requirements for beam-columns. This approach will tend
to be conservative and a more refined solution obtained by rational analysis may
be desirable.
111
ββ β
TTbsec
=+
II
t
c
Ieff yc yt=+






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 508

16.1–509
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 7
ALTERNATIVE METHODS OF DESIGN
FOR STABILITY
The effective length method and first-order analysis method are addressed in this Appendix
as alternatives to the direct analysis method, which is presented in Chapter C. These alter-
native methods of design for stability can be used when the limits on their use as defined in
Appendix Sections 7.2.1 and 7.3.1, respectively, are satisfied.
Both methods in this Appendix utilize the nominal geometry and the nominal elastic stiff-
nesses (EI, EA) in the analysis. Accordingly, it is important to note that the sidesway
amplification (Δ
2nd-order/Δ1st-orderor B2) limits specified in Chapter C and Appendix 7 are
different. For the direct analysis method in Chapter C, the limit of 1.7 for certain require-
ments is based upon the use of reduced stiffnesses (EI* and EA*). For the effective length
method and first-order analysis method, the equivalent limit of 1.5 is based upon the use of
unreduced stiffnesses (EIand EA).
7.2. EFFECTIVE LENGTH METHOD
The effective length method (though it was not formally identified by this name) has
been used in various forms in the AISC Specification since 1961. The current provi-
sions are essentially the same as those in Chapter C of the 2005 Specification for
Structural Steel Buildings(AISC, 2005a), with the following exceptions:
These provisions, together with the use of a column effective length greater than the
actual length for calculating available strength in some cases, account for the effects
of initial out-of-plumbness and member stiffness reductions due to the spread of
plasticity. No stiffness reduction is required in the analysis.
The effective length, KL, for column buckling based upon elastic (or inelastic)
stability theory, or alternatively the equivalent elastic column buckling load, F
e=
π
2
EI/(KL)
2
, is used to calculate an axial compressive strength, P c, through an empir-
ical column curvethat accounts for geometric imperfections and distributed yielding
(including the effects of residual stresses). This column strength is then combined
with the flexural strength, M
c,and second-order member forces, P rand M r,in the
beam-column interaction equations.
Braced Frames
Braced frames are commonly idealized as vertically cantilevered pin-connected truss
systems, ignoring any secondary moments within the system. The effective length
factor, K, of components of the braced frame is normally taken as 1.0, unless a
smaller value is justified by structural analysis and the member and connection
design is consistent with this assumption. If connection fixity is modeled in the
analysis, the resulting member and connection moments must be accommodated in
the design.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 509

16.1–510 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
If K<1 is used for the calculation of P nin braced frames, the additional demands on
the stability bracing systems and the influence on the second-order moments in
beams providing restraint to the columns must be considered. The provisions in
Appendix 6 do not address the additional demands on bracing members from the use
of K <1. Generally, a rigorous second-order elastic analysis is necessary for calcu-
lation of the second-order moments in beams providing restraint to column members
designed based on K<1. Therefore, design using K=1 is recommended, except in
those special situations where the additional calculations are deemed justified.
Moment Frames
Moment frames rely primarily upon the flexural stiffness of the connected beams and
columns. Stiffness reductions due to shear deformations may require consideration
when bay sizes are small and/or members are deep.
When the effective length methodis used, the design of all beam-columns in moment
frames must be based on an effective length, KL, greater than the actual length, L,
except when specific exceptions based upon high structural stiffness are met. When
the sidesway amplification (Δ
2nd-order/Δ1st-orderor B2) is equal to or less than 1.1, the
frame design may be based on the use of K =1.0 for the columns. This simplifica-
tion for stiffer structures results in a 6% maximum error in the in-plane beam-column
strength checks of Chapter H (White and Hajjar, 1997a). When the sidesway ampli-
fication is larger, Kmust be calculated.
A wide range of methods has been suggested in the literature for the calculation
of K-factors (Kavanagh, 1962; Johnston, 1976; LeMessurier, 1977; ASCE Task
Committee on Effective Length, 1997; White and Hajjar, 1997b). These range from
simple idealizations of single columns as shown in Table C-A-7.1 to complex buck-
ling solutions for specific frames and loading conditions. In some types of frames,
K-factors are easily estimated or calculated, and are a convenient tool for stability
design. In other types of structures, the determination of accurate K-factors is deter-
mined by tedious hand procedures, and system stability may be assessed more
effectively with the direct analysis method.
The most common method for determining Kis through use of the alignment charts,
which are shown in Figure C-A-7.1 for frames with sidesway inhibited and Figure
C-A-7.2 for frames with sidesway uninhibited (Kavanagh, 1962). These charts are
based on assumptions of idealized conditions, which seldom exist in real structures,
as follows:
(1) Behavior is purely elastic.
(2) All members have constant cross section.
(3) All joints are rigid.
(4) For columns in frames with sidesway inhibited, rotations at opposite ends of the
restraining beams are equal in magnitude and opposite in direction, producing
single curvature bending.
(5) For columns in frames with sidesway uninhibited, rotations at opposite ends of
the restraining beams are equal in magnitude and direction, producing reverse
curvature bending.
(6) The stiffness parameter of all columns is equal.
LPEI/
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 510

(7) Joint restraint is distributed to the column above and below the joint in propor-
tion to EI/Lfor the two columns.
(8) All columns buckle simultaneously.
(9) No significant axial compression force exists in the girders.
The alignment chart for sidesway inhibited frames shown in Figure C-A-7.1 is based
on the following equation:
(C-A-7-1)
The alignment chart for sidesway uninhibited frames shown in Figure C-A-7.2 is
based on the following equation:
(C-A-7-2)
Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–511
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Buckled shape of
column is shown by
dashed line
(a)

(b)

(c)

(d)

(e)

(f)

Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0
Recommended design
value when ideal
conditions are
approximated
0.65 0.80 1.2 1.0 2.1 2.0
End condition code
























)a(























)b( )c(























)d( )e(























)f(























delkcuB
inmuloc
ldehsad























foepahs
ybnwohss
enil




























































































iteroehT
mmoceR
hweulav
noitidnoc
mixorppa
nocdnE























lacK eulav 5.0
giseddednem n
laedineh
erasn
detam
56.0
edocnoitid























7.0 0.1
08.0 2.1























0.1 0.2
0.1 1.2























0.2
0.2























nocdnE























edocnoitid





































































TABLE C-A-7.1
Approximate Values of Effective
Length Factor,
K
GG
K
GG K
KAB A B
42
1
2
2
π
π
π
/
/
tan /
ta()+
+⎛




⎟−
()






+nn/
/
π
π
2
10
K
K( )
()
−=
GG K
GG
K
KAB
ABππ
π
//
tan /()−
+
( )

()
()
=
2
36
6
0
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 511

16.1–512 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
where
(C-A-7-3)
The subscripts Aand Brefer to the joints at the ends of the column being considered.
The symbol Σ indicates a summation of all members rigidly connected to that joint
and located in the plane in which buckling of the column is being considered. E
cis
the elastic modulus of the column, I
cis the moment of inertia of the column, and L c
is the unsupported length of the column. E gis the elastic modulus of the girder, I gis
the moment of inertia of the girder, and L
gis the unsupported length of the girder or
other restraining member. I
cand I gare taken about axes perpendicular to the plane of
buckling being considered. The alignment charts are valid for different materials if
an appropriate effective rigidity, EI, is used in the calculation of G.
It is important to remember that the alignment charts are based on the assumptions
of idealized conditions previously discussed and that these conditions seldom exist
in real structures. Therefore, adjustments are often required, such as:
Fig. C-A-7.1. Alignment chart—sidesway inhibited (braced frame).
G
EI L
EI L
EI L
EI L
cc c
gg g
c
g
=
( )
( )
=
( )
( )
Σ
Σ
Σ
Σ
/
/
/
/
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 512

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–513
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Adjustments for Columns With Differing End Conditions.For column ends supported
by, but not rigidly connected to, a footing or foundation, Gis theoretically infinity
but unless designed as a true friction-free pin, may be taken as 10 for practical
designs. If the column end is rigidly attached to a properly designed footing, Gmay
be taken as 1.0. Smaller values may be used if justified by analysis.
Adjustments for Girders With Differing End Conditions.For sidesway inhibited
frames, these adjustments for different girder end conditions may be made:
(a) If the far end of a girder is fixed, multiply the (EI/L)
gof the member by 2.
(b) If the far end of the girder is pinned, multiply the (EI/L)
gof the member by 1
1
/2.
For sidesway uninhibited frames and girders with different boundary conditions, the
modified girder length, L′
g, should be used in place of the actual girder length, where
L′
g=Lg(2 πM F/MN) (C-A-7-4)
M
Fis the far end girder moment and M Nis the near end girder moment from a first-
order lateral analysis of the frame. The ratio of the two moments is positive if the
girder is in reverse curvature. If M
F/MNis more than 2.0, then L′ gbecomes negative,
Fig. C-A-7.2. Alignment chart sidesway—uninhibited (moment frame).
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 513

16.1–514 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in which case Gis negative and the alignment chart equation must be used. For side-
sway uninhibited frames, the following adjustments for different girder end
conditions may be made:
(a) If the far end of a girder is fixed, multiply the (EI/L)
gof the member by
2
/3.
(b) If the far end of the girder is pinned, multiply the (EI/L) gof the member by
1
/2.
Adjustments for Girders with Significant Axial Load.For both sidesway conditions,
multiply the (EI/L)
gby the factor (1–Q/Q cr), where Q is the axial load in the girder
and Q
cris the in-plane buckling load of the girder based on K =1.0.
Adjustments for Column Inelasticity.For both sidesway conditions, replace (E
cIc)
with τ
b(EcIc) for all columns in the expression for G Aand G B.
Adjustments for Connection Flexibility.One important assumption in the develop-
ment of the alignment charts is that all beam-column connections are fully restrained
(FR connections). As seen above, when the far end of a beam does not have an FR
connection that behaves as assumed, an adjustment must be made. When a beam con-
nection at the column under consideration is a shear-only connection, that is, there is
no moment, then that beam cannot participate in the restraint of the column and it
cannot be considered in the Σ(EI/L)
gterm of the equation for G. Only FR connec-
tions can be used directly in the determination of G. PR connections with a
documented moment-rotation response can be utilized, but the (EI/L)
gof each beam
must be adjusted to account for the connection flexibility. The ASCE Task
Committee on Effective Length (1997) provides a detailed discussion of frame sta-
bility with PR connections.
Combined Systems
When combined systems are used, all the systems must be included in the structural
analysis. Consideration must be given to the variation in stiffness inherent in con-
crete or masonry shear walls due to various degrees to which these elements may
experience cracking. This applies to load combinations for serviceability as well as
strength. It is prudent for the designer to consider a range of possible stiffnesses, as
well as the effects of shrinkage, creep and load history, in order to envelope the likely
behavior and provide sufficient strength in all interconnecting elements between sys-
tems. Following the analysis, the available strength of compression members in
moment frames must be assessed with effective lengths calculated as required for
moment frame systems; other compression members may be assessed using K=1.0.
Leaning Columns and Distribution of Sidesway Instability Effects
Columns in gravity framing systems can be designed as pin-ended columns with
K=1.0. However, the destabilizing effects (P-Δeffects) of the gravity loads on all
such columns, and the load transfer from these columns to the lateral-load-resisting
system, must be accounted for in the design of the lateral-load-resisting system.
It is important to recognize that sidesway instability of a building is a story phenom-
enon involving the sum of the sway resistances of all the lateral load-resisting
elements in the story and the sum of the factored gravity loads in the columns in that
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 514

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–515
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
story. No individual column in a story can buckle in a sidesway mode without the
entire story buckling.
If every column in a story is part of a moment frame and each column is designed
to support its own axial load, Pand P-Δmoment such that the contribution of each
column to the lateral stiffness or to the story buckling load is proportional to the
axial load supported by the column, all the columns will buckle simultaneously.
Under this idealized condition, there is no interaction among the columns in the
story; column sway instability and frame instability occur at the same time. Typical
framing, however, does not meet this idealized condition, and real systems redistrib-
ute the story P-Δeffects to the lateral load-resisting elements in that story in
proportion to their stiffnesses. This redistribution can be accomplished using such
elements as floor diaphragms or horizontal trusses.
In a building that contains columns that contribute little or nothing to the sway stiff-
ness of the story, such columns are referred to as leaning columns. These columns
can be designed using K=1.0, but the lateral load-resisting elements in the story
must be designed to support the destabilizing P-Δeffects developed from the loads
on these leaning columns. The redistribution of P-Δeffects among columns must be
considered in the determination of Kand F
efor all the columns in the story for the
design of moment frames. The proper K-factor for calculation of P
cin moment
frames, accounting for these effects, is denoted in the following by the symbol K
2.
Effective Length for Story Stability
Two approaches for evaluating story stability are recognized: the story stiffness
approach (LeMessurier, 1976, 1977) and the story buckling approach (Yura, 1971).
Additionally, a simplified approach proposed by LeMessurier is also discussed.
The column effective length factor associated with lateral story buckling is expressed
as K
2in the following discussions. The value of K 2determined from Equation C-A-
7-5 or Equation C-A-7-8 may be used directly in the equations of Chapter E.
However, it is important to note that this equation is not appropriate for use when cal-
culating the story buckling mode as the summation of π
2
EI/(K 2L)
2
. Also, note that
the value of P
ccalculated using K 2by either method cannot be taken greater than the
value of P
cdetermined based on sidesway-inhibited buckling.
Story Stiffness Approach.For the story stiffness approach, K
2 is defined as
(C-A-7-5)
It is possible that certain columns, having only a small contribution to the lateral load
resistance in the overall frame, will have a K
2value less than 1.0 based on the term
to the left of the inequality. The limit on the right-hand side is a minimum value for
K
2that accounts for the interaction between sidesway and non-sidesway buckling
(ASCE Task Committee on Effective Length, 1997; White and Hajjar, 1997b). The
term H is the shear in the column under consideration, produced by the lateral forces
used to compute Δ
H.
K
P
RP
EI
L HL
r
Lr
H
2
2
2
2
085 015
=
+( )











⎟≥
ΣΔ
Σ..
ππEEI
L HL H
2
17
Δ
.






AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 515

16.1–516 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Equation C-A-7-5 can be reformulated to obtain the column buckling load, P e2, as
(C-A-7-6)
R
Lis the ratio of the vertical column load for all leaning columns in the story to the
vertical load of all the columns in the story:
(C-A-7-7)
The purpose of R
Lis to account for the influence of P-δeffects on the sidesway stiff-
ness of the columns in a story. ΣP
rin Equations C-A-7-5 and C-A-7-6 includes all
columns in the story, including any leaning columns, and P
ris for the column under
consideration. The column buckling load, P
e2, calculated from Equation C-A-7-6
may be larger than π
2
EI/L
2
but may not be larger than the limit on the righthand side
of this equation.
The story stiffness approach is the basis for the B
2calculation (for P-Δeffects) in
Appendix 8. In Equation A-8-7 in Appendix 8, the buckling load for the story is
expressed in terms of the story drift ratio, Δ
H/L,from a first-order lateral load analy-
sis at a given applied lateral load level. In preliminary design, Δ
H/Lmay be taken in
terms of a target maximum value for this drift ratio. This approach focuses the engi-
neer’s attention on the most fundamental stability requirement in building frames:
providing adequate overall story stiffness in relation to the total vertical load, αΣP
r,
supported by the story. The elastic story stiffness expressed in terms of the drift ratio
and the total horizontal load acting on the story is H/(Δ
H/L).
Story Buckling Approach. For the story buckling approach, K
2 is defined as
(C-A-7-8)
where K
n2is defined as the value of Kdetermined directly from the alignment chart
in Figure C-A-7.2.
The value of K
2calculated from the above equation may be less than 1.0. The limit
on the righthand side is a minimum value for K
2 that accounts for the interaction
between sidesway and non-sidesway buckling (ASCE Task Committee on Effective
Length, 1997; White and Hajjar, 1997b; Geschwindner, 2002; AISC-SSRC, 2003a).
Other approaches to calculating K
2are given in previous editions of this
Commentary and the foregoing references.
Equation C-A-7-8 can be reformulated to obtain the column buckling load, P
e2, as
(C-A-7-9)
K
EI
L
P
P
EI
KL
K
r
r
n
n2
2
2
2
2
2
2
5
8
=
( )













π
π
Σ
Σ
P
P
P
EI
KL
EI
KLe
r
r
n n
2
2
2
2
2
2
2
16=






( )

( )Σ
Σ
ππ
.
R
P
PL
r leaning columns
r all columns=
Σ
Σ


P
HL P
P
RHLe
H
r
r
LH2 085 015 17=






+( )≤
Σ
ΔΣ
Δ.. ./
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 516

Comm. 7.2.] EFFECTIVE LENGTH METHOD 16.1–517
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ΣPr in Equations C-A-7-8 and C-A-7-9 includes all columns in the story, including
any leaning columns, and P
ris for the column under consideration. The column
buckling load, P
e2, calculated from Equation C-A-7-9 may be larger than π
2
EI/L
2
but
may not be larger than the limit on the righthand side of this equation.
LeMessurier Approach:Another simple approach for the determination of K
2
(LeMessurier, 1995), based only on the column end moments, is:
(C-A-7-10)
In this equation, M
1and M 2are the smaller and larger end moments, respectively, in
the column. These moments are determined from a first-order analysis of the frame
under lateral load. Column inelasticity is considered in the derivation of this equa-
tion. The unconservative error in P
c using the above equation is less than 3%, as long
as the following inequality is satisfied:
(C-A-7-11)
Some Conclusions Regarding K
Column design using K-factors can be tedious and confusing for complex building
structures containing leaning columns and/or combined framing systems, particu-
larly where column inelasticity is considered. This confusion can be avoided if the
direct analysis method of Chapter C is used, where P
cis always based on K=1.0.
Also, the first-order analysis method of Appendix 7, Section 7.3 is based on the
direct analysis method, and hence also uses K =1.0 in the determination of P
c.
Furthermore, under certain circumstances where Δ
2nd-order/Δ1st-orderor B2is suffi-
ciently low, K=1.0 may be assumed in the effective length method as specified in
Appendix 7, Section 7.2.3(b).
Comparison of the Effective Length Method and the Direct Analysis Method
Figure C-C2.5(a) shows a plot of the in-plane interaction equation for the effective
length method, where the anchor point on the vertical axis, P
nKL, is determined using
an effective length, KL. Also shown in this plot is the same interaction equation with
the first term based on the yield load, P
y. For W-shapes, this in-plane beam-column
interaction equation is a reasonable estimate of the internal force state associated
with full cross-section plastification.
The Pversus Mresponse of a typical member, obtained from second-order spread-
of-plasticity analysis and labeled “actual response,” indicates the maximum axial
force, P
r, that the member can sustain prior to the onset of instability. The load-
deflection response from a second-order elastic analysis using the nominal geometry
and elastic stiffness, as conducted with the effective length method, is also shown.
The “actual response” curve has larger moments than the above second-order elastic
curve due to the combined effects of distributed yielding and geometric imperfec-
tions, which are not included in the second-order elastic analysis.
K
M
M
P
r leaning colum
2
1
2
4
11 1
5
6
=+−














+
Σ

nns
r nonleaning columns

Σ
ΣΔ
ΣP
HL
Py nonleaning columns
H
r all colum
/






nns
r nonleaning columns







≤045.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 517

16.1–518 EFFECTIVE LENGTH METHOD [Comm. 7.2.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
In the effective length method, the intersection of the second-order elastic analysis
curve with theP
nKLinteraction curve determines the member strength. The plot in
Figure C-C2.5(a) shows that the effective length method is calibrated to give a result-
ant axial strength, P
c, consistent with the actual response. For slender columns, the
calculation of the effective length, KL, (and P
nKL) is critical to achieving an accurate
solution when using the effective length method.
One consequence of the procedure is that it underestimates the actual internal
moments under the factored loads, as shown in Figure C-C2.5(a). This is inconse-
quential for the beam-column in-plane strength check since P
nKLreduces the
effective strength in the correct proportion. However, the reduced moment can
affect the design of the beams and connections, which provide rotational restraint to
the column. This is of greatest concern when the calculated moments are small and
axial loads are large, such that P-Δmoments induced by column out-of-plumbness
can be significant.
The important difference between the direct analysis method and the effective length
method is that where the former uses reduced stiffness in the analysis and
K= 1.0 in the beam-column strength check, the latter uses nominal stiffness in the
analysis and Kfrom a sidesway buckling analysis in the beam-column strength
check. The direct analysis method can be more sensitive to the accuracy of the sec-
ond-order elastic analysis since analysis at reduced stiffness increases the magnitude
of second-order effects. However, this difference is important only at high sidesway
amplification levels; at those levels the accuracy of the calculation of Kfor the effec-
tive length method also becomes important.
7.3. FIRST-ORDER ANALYSIS METHOD
This section provides a method for designing frames using a first-order elastic
analysis with K =1.0, provided the limitations in Appendix 7, Section 7.3.1 are sat-
isfied. This method is derived from the direct analysis method by mathematical
manipulation (Kuchenbecker et al., 2004) so that the second-order internal forces
and moments are determined directly as part of the first-order analysis. It is based
upon a target maximum drift ratio, Δ/L, and assumptions, including:
(1) The sidesway amplification Δ
2nd order/Δ1st order(orB 2) is assumed equal to 1.5.
(2) The initial out-of-plumbness in the structure is assumed as Δ
o/L=1/500, but the
initial out-of-plumbness does not need to be considered in the calculation of Δ.
The first-order analysis is performed using the nominal (unreduced) stiffness; stiff-
ness reduction is accounted for solely within the calculation of the amplification
factors. The nonsway amplification of beam-column moments is addressed within
the procedure specified in this Section by applying the B
1amplifier of Appendix 8,
Section 8.2.1 conservatively to the total member moments. In many cases involving
beam-columns not subject to transverse loading between supports in the plane of
bending, B
1=1.0.
The target maximum drift ratio, corresponding to drifts under either the LRFD
strength load combinations or 1.6 times the ASD strength load combinations, can
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 518

Comm. 7.3.] FIRST-ORDER ANALYSIS METHOD 16.1–519
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
be assumed at the start of design to determine the additional lateral load, N i. As
long as that drift ratio is not exceeded at any strength load level, the design will be
conservative.
Kuchenbecker et al. (2004) present a general form of this method. If the above
approach is employed, it can be shown that for B
2≤1.5 and τ b=1.0 the required
additional lateral load to be applied with other lateral loads in a first-order analysis
of the structure, using the nominal (unreduced) stiffness, is:
(C-A-7-12)
where these variables are as defined in Chapter C, Appendix 7 and Appendix 8.Note
that if B
2(based on the unreduced stiffness) is set to the 1.5 limit prescribed in
Chapter C, then,
(C-A-7-13)
This is the additional lateral load required in Appendix 7, Section 7.3.2. The mini-
mum value of N
iof 0.0042Y iis based on the assumption of a minimum first-order
drift ratio due to any effects of Δ/L =1/500.
N
B
BL
Y
B
B
Yii i=















2
2
2
2
102 102
0 002
..
.
Δ
N
L
YYiii=





⎟≥2 1 0 0042..α
Δ
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 519

16.1–520
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
APPENDIX 8
APPROXIMATE SECOND-ORDER ANALYSIS
Section C2.1(2) states that a second-order analysis that captures both P-Δand P-δeffects is
required. As an alternative to a rigorous second-order analysis, the amplification of first-
order analysis forces and moments by the approximate procedure in this Appendix is
permitted. The main approximation in this technique is that it evaluates P-Δand P-δeffects
separately, through separate multipliers B
2and B 1, respectively, considering the influence of
P-δeffects on the overall response of the structure (which, in turn, influences P-Δ) only
indirectly, through the factor R
M. A rigorous second-order elastic analysis is recommended
for accurate determination of the frame internal forces when B
1is larger than 1.2 in mem-
bers that have a significant effect on the response of the overall structure.
This procedure uses a first-order elastic analysis with amplification factors that are applied
to the first-order forces and moments so as to obtain an estimate of the second-order forces
and moments. In the general case, a member may have first-order load effects not associ-
ated with sideswaythat are multiplied by a factor B
1, and first-order load effects produced
by sidesway that are multiplied by a factor B
2. The factor B 1 estimates the P-δeffects on the
nonsway moments in compression members. The factor B
2estimates the P-Δeffects on the
forces and moments in all members. These effects are shown graphically in Figures C-C2.1
and C-A-8.1.
The factor B
2applies only to internal forces associated with sidesway and is calculated for
an entire story. In building frames designed to limit Δ
H/L to a predetermined value, the fac-
tor B
2 may be found in advance of designing individual members by using the target
Fig. C-A-8.1. Moment amplification.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 520

Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–521
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
maximum limit on Δ H/Lwithin Equation A-8-7. Drift limits may also be set for design of
various categories of buildings so that the effect of secondary bending is reduced (ATC,
1978; Kanchanalai and Lu, 1979). However, drift limits alone are not sufficient to allow sta-
bility effects to be neglected (LeMessurier, 1977).
In determining B
2and the second-order effects on the lateral load resisting system, it is
important that Δ
H include not only the interstory displacement in the plane of the lateral load
resisting system, but also any additional displacement in the floor or roof diaphragm or hor-
izontal framing system that may increase the overturning effect of columns attached to and
“leaning” against the horizontal system. Either the maximum displacement or a weighted
average displacement, weighted in proportion to column load, should be considered.
The current Specification provides only one equation (Equation A-8-7) for determining the
elastic bucking strength of a story; this formula is based on the lateral stiffness of the story
as determined from a first-order analysis and is applicable to all buildings. The 2005 AISC
Specification for Structural Steel Buildings(AISC, 2005a) offered a second formula
(Equation C2-6a in that edition), based on the lateral buckling strength of individual
columns, applicable only to buildings in which lateral stiffness is provided entirely by
moment frames. That equation is:
(C-A-8-1)
where
ΣP
e2=elastic buckling strength of the story, kips (N)
L=story height, in. (mm)
K
2=effective length factor in the plane of bending, calculated from a sidesway buck-
linganalysis
This equation for the story elastic buckling strength was eliminated from the 2010
Specification because of its limited applicability, the difficulty involved in calculating
K
2correctly, and the greater ease of application of the story stiffness-based formula.
Additionally, with the deletion of this equation, the symbol ΣP
e2was changed to P estory
since the story buckling strength is not the summation of the strengths of individual
columns, as implied by the earlier symbol.
First-order member forces and moments with the structure restrained against sidesway are
labeled P
ntand M nt; the first-order effects of lateral translation are labeled P ltand M lt. For
structures where gravity load causes negligible lateral translation, P
ntand M ntare the effects
of gravity load and P
ltand M ltare the effects of lateral load. In the general case, P ntand M nt
are the results of an analysis with the structure restrained against sidesway; P ltand M ltare
from an analysis with the lateral reactions from the first analysis (as used to find P
ntand M nt)
applied as lateral loads. Algebraic addition of the two sets of forces and moments after appli-
cation of multipliers B
1and B 2as specified in Equations A-8-1 and A-8-2 gives reasonably
accurate values of the overall second-order forces and moments.
The B
2multiplier is applicable to forces and moments P ltand M ltin all members (includ-
ing beams, columns, bracing diagonals and shear walls) that participate in resisting lateral
load. P
ltand M ltwill be zero in members that do not participate in resisting lateral load;
ΣΣP
EI
KLe2
2
2
2=
()
π
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 521

16.1–522 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
hence B 2will have no effect on them. The B 1multiplier is applicable only to compression
members.
If B
2for a particular direction of translation does not vary significantly among the stories of
a building, it will be convenient to use the maximum value for all stories, leading to just two
B
2values, one for each direction, for the entire building. Where B 2does vary significantly
between stories, the multiplier for beams between stories should be the larger value.
When first-order end moments in columns are magnified by B
1and B 2factors, equilibrium
requires that they be balanced by moments in the beams that connect to them (for example,
see Figure C-A-8.1). The B
2multiplier does not cause any difficulty in this regard, since it
is applied to all members. The B
1multiplier, however, is applied only to compression mem-
bers; the associated second-order internal moments in the connected members can be
accounted for by amplifying the moments in those members by the B
1value of the com-
pression member (using the largest B
1value if there are two or more compression members
at the joint). Alternatively, the difference between the magnified moment (considering B
1
only) and the first-order moment in the compression member(s) at a given joint may be dis-
tributed to any other moment-resisting members attached to the compression member (or
members) in proportion to the relative stiffness of those members. Minor imbalances may
be neglected, based upon engineering judgment. Complex conditions may be treated more
expediently with a rigorous second-order analysis.
In braced frames and moment frames, P
cis governed by the maximum slenderness ratio
regardless of the plane of bending, if the member is subject to significant biaxial bending,
or the provisions in Section H1.3 are not utilized. Section H1.3 is an alternative approach
for checking beam-column strength that provides for the separate checking of beam-column
in-plane and out-of-plane stability in members predominantly subject to bending within the
plane of the frame. However, P
e1 expressed by Equation A-8-5 is always calculated using
the slenderness ratio in the plane of bending. Thus, when flexure in a beam-column is about
the strong axis only, two different values of slenderness ratio may be involved in the ampli-
fied first-order elastic analysis and strength check calculations.
The factor R
Min Equation A-8-7 accounts for the influence of P-δeffects on sidesway
amplification. R
Mcan be taken as 0.85 as a lower bound value for stories that include
moment frames (LeMessurier, 1977); R
M=1 if there are no moment frames in the story.
Equation A-8-8 can be used for greater precision between these extreme values.
Second-order internal forces from separate structural analyses cannot normally be combined
by superposition since second-order amplification is a nonlinear effect based on the total
axial forces within the structure; therefore, a separate analysis must be conducted for each
load combination considered in the design. However, in the amplified first-order elastic
analysis procedure of Appendix 8, the first-order internal forces, calculated prior to ampli-
fication may be superimposed to determine the total first-order internal forces.
Coefficient C
mand Effective Length Factor K
Equations A-8-3 and A-8-4 are used to approximate the maximum second-order moments
in compression members with no relative joint translation and no transverse loads between
the ends of the member. Figure C-A-8.2 compares the approximation for C
min Equation
A-8-4 to the exact theoretical solution for beam-columns subjected to applied end moments
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 522

Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–523
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
(Chen and Lui, 1987). The approximate and analytical values of C mare plotted versus the
end-moment ratio M
1/M2for several values of P/P e (Pe=Pe1with K=1). The correspon-
ding approximate and analytical solutions are shown in Figure C-A-8.3 for the maximum
second-order elastic moment within the member, M
r, versus the axial load level, P/P e, for
several values of the end moment ratio, M
1/M2.
For beam-columns with transverse loadings, the second-order moment can be approxi-
mated for simply supported members with
(C-A-8-2)
where
ψ (C-A-8-3)
δ
o=maximum deflection due to transverse loading, in. (mm)
M
o=maximum first-order moment within the member due to the transverse loading, kip-
in. (N-mm)
α=1.0 (LRFD) or 1.6 (ASD)
For restrained ends, some limiting cases are given in Table C-A-8.1 together with two
cases of simply supported beam-columns (Iwankiw, 1984). These values of C
mare always
Fig. C-A-8.2. Equivalent moment factor, C m, for beam-columns
subjected to applied end moments.
=−
πδ
2
2
1
o
oEI
ML
C
P
Pm
r
e=+






1
1
Ψ
α
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 523

16.1–524 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
used with the maximum moment in the member. For the restrained-end cases, the values of
B
1are most accurate if values of K<1.0, corresponding to the member end conditions, are
used in calculating P
e1.
In lieu of using the equations above, the use of C
m=1.0 is conservative for all transversely
loaded members. It can be shown that the use of C
m=0.85 for members with restrained ends,
specified in previous Specifications, can sometimes result in a significant underestimation of
the internal moments. Therefore, the use of C
m=1.0 is recommended as a simple conserva-
tive approximation for all cases involving transversely loaded members.
In second-order analysis by amplification of the results of first-order analysis, the effective
length factor, K, is used in the determination of the elastic critical buckling load, P
e1, for a
member. This elastic critical buckling load is then used for calculation of the corresponding
amplification factor B
1.
B
1is used to estimate the P-δ effects on the nonsway moments, M nt, in compression mem-
bers. K
1is calculated in the plane of bending on the basis of no translation of the ends of
the member and is normally set to 1.0, unless a smaller value is justified on the basis of
analysis.
Fig. C-A-8.3. Maximum second-order moments, M r, for beam-columns
subjected to applied end moments.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 524

Case π Cm
01.0
π0.4
π0.4
π0.2
π0.3
π0.2
Comm. 8.] APPROXIMATE SECOND-ORDER ANALYSIS 16.1–525
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
TABLE C-A-8.1
Amplification Factors ψand
Cm
10.4−
αP
P
r
e1
10.4−
αP
P
r
e1
10.2−
αP
P
r
e1
10.3−
αP
P
r
e1
10.2−
αP
P
r
e1
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 525

16.1–526 APPROXIMATE SECOND-ORDER ANALYSIS [Comm. 8.
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Since the amplified first-order elastic analysis involves the calculation of elastic buckling
loads as a measure of frame and column stiffness, only elastic Kfactors are appropriate for
this use.
Summary—Application of Multipliers B
1and B2
There is a single B 2value for each story and each direction of lateral translation of the
story, say B
2Xand B 2Yfor the two global directions. Multiplier B 2Xis applicable to all axial
and shear forces and moments produced by story translation in the global Xdirection. Thus,
in the common case where gravity load produces no lateral translation and all Xtranslation
is the result of lateral load in the Xdirection, B
2Xis applicable to all axial forces and
moments produced by lateral load in the global Xdirection. Similarly, B
2Yis applicable in
the Ydirection.
Note that B
2Xand B 2Yare associated with global axes Xand Yand the direction of story
translation or loading, but are completely unrelated to the direction of bending of individual
members. Thus, for example, if lateral load or translation in the global Xdirection causes
moments M
xand M yabout member axes xand yin a particular member, B 2Xmust be applied
to both M
xand M y.
There is a separate B
1value for every member subject to compression and flexure
and each direction of bending of the member, say B
1xand B 1yfor the two member axes.
Multiplier B
1xis applicable to the member x-axis moment, regardless of the load that causes
that moment. Similarly, B
1yis applicable to the member y-axis moment, regardless of the
load that causes that moment.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 526

16.1–527
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
REFERENCES
AASHTO (2002), Standard Specifications for Highway Bridges, 17th Ed., American
Association of State Highway and Transportation Officials, Washington, DC.
AASHTO (2010),LRFD Bridge Design Specifications, 5th Ed., American Association of
State Highway and Transportation Officials, Washington, DC.
ACI (1997), Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,
ACI 209R-92, American Concrete Institute, Farmington Hills, MI.
ACI (2001), Code Requirements for Nuclear Safety Related Concrete Structures, ACI 349-
01, American Concrete Institute, Farmington Hills, MI.
ACI (2002), Building Code Requirements for Structural Concrete, ACI 318-02 and ACI
318M-02, American Concrete Institute, Farmington Hills, MI.
ACI (2005), Specification for Structural Concrete, ACI 301-05, American Concrete
Institute, Farmington Hills, MI.
ACI (2006), Specifications for Tolerances for Concrete Construction and Materials, ACI
117-06, American Concrete Institute, Farmington Hills, MI.
ACI (2008), Building Code Requirements for Structural Concrete, ACI 318-08 and ACI
318M-08, American Concrete Institute, Farmington Hills, MI.
AISC (1969), Specification for the Design, Fabrication, and Erection of Structural Steel for
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1973), “Commentary on Highly Restrained Welded Connections,” Engineering
Journal, American Institute of Steel Construction, Vol. 10, No. 3, 3rd Quarter, pp. 61–73.
AISC (1975), Australian Standard AS1250, Australian Institute of Steel Construction,
Sydney, Australia.
AISC (1978), Specification for the Design, Fabrication, and Erection of Structural Steel for
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1986), Load and Resistance Factor Design Specification for Structural Steel
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1989), Specification for Structural Steel Buildings—Allowable Stress Design and
Plastic Design, American Institute of Steel Construction, Chicago, IL.
AISC (1993), Load and Resistance Factor Design Specification for Structural Steel
Buildings, American Institute of Steel Construction, Chicago, IL.
AISC (1997a), A Guide to Engineering and Quality Criteria for Steel Structures, American
Institute of Steel Construction, Chicago, IL.
AISC (1997b), “AISC Advisory Statement on Mechanical Properties Near the Fillet of
Wide Flange Shapes and Interim Recommendations, January 10, 1997,” Modern Steel
Construction, American Institute of Steel Construction, Chicago, IL, February, p. 18.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 527

16.1–528 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC (2000a), Specification for the Design of Steel Hollow Structural Sections, American
Institute of Steel Construction, Chicago, IL.
AISC (2000b), Load and Resistance Factor Design Specification for Structural Steel Buildings,
December 27, 1999, American Institute of Steel Construction, Chicago, IL.
AISC (2005a), Specification for Structural Steel Buildings, ANSI/AISC 360-05, American
Institute of Steel Construction, Chicago, IL.
AISC (2005b), Steel Construction Manual, 13th Ed., American Institute of Steel Construction,
Chicago, IL.
AISC (2005c), Design Examples, V13.1, www.aisc.org.
AISC (2006a), Seismic Design Manual, American Institute of Steel Construction, Chicago, IL.
AISC (2006b), Standard for Steel Building Structures, AISC 201-06, Certification Program
for Structural Steel Fabricators, American Institute of Steel Construction, Chicago, IL.
AISC (2010a),Code of Standard Practice for Steel Buildings and Bridges,AISC 303-
10, American Institute of Steel Construction, Chicago, IL.
AISC (2010b), Seismic Provisions for Structural Buildings, American Institute of Steel
Construction, Chicago, IL.
AISC-SSRC (2003a), “Basic Design for Stability: Lecture 3—Frame Stability—Alignment
Charts and Modifications,” American Institute of Steel Construction and Structural
Stability Research Council, Chicago, IL.
AISC-SSRC (2003b), “Background and Illustrative Examples on Proposed Direct Analysis
Method for Stability Design of Moment Frames,” Technical White Paper, AISC Technical
Committee 10, AISC-SSRC Ad Hoc Committee on Frame Stability, American Institute of
Steel Construction, Chicago, IL.
AISI (1969), Specification for the Design of Cold-Formed Steel Structural Members,
American Iron and Steel Institute, Washington, DC.
AISI (1970), “Interior Corrosion of Structural Steel Closed Sections,” Bulletin 18, February,
American Iron and Steel Institute, Washington, DC.
AISI (1979), Fire-Safe Structural Design A Design Guide, American Iron and Steel
Institute, Washington, DC.
AISI (2001), North American Specification for the Design of Cold-Formed Steel Structural
Members, American Iron and Steel Institute, Washington, DC.
AISI (2007), North American Specification for the Design of Cold-Formed Steel Structural
Members, ANSI/AISI Standard S100 2007, Washington, DC.
Allan, R.N. and Fisher, J.W. (1968), “Bolted Joints with Oversize and Slotted Holes,”
Journal of the Structural Division, ASCE, Vol. 94, No. ST9, September, pp. 2061–2080.
Amrine, J.J. and Swanson, J.A. (2004), “Effects of Variable Pretension on Bolted Connection
Behavior,” Engineering Journal, AISC, Vol. 41, No. 3, 3rd Quarter, pp. 107–116.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 528

REFERENCES 16.1–529
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ang, A.H-S. and Tang, H.T. (1984), Probability Concepts in Engineering Planning and
Design, Vol.II: Decision, Risk and Reliability, John Wiley & Sons Inc., New York, NY.
Ang, K.M. and Morris, G.A. (1984), “Analysis of Three-Dimensional Frames with Flexible
Beam-Column Connections,” Canadian Journal of Civil Engineering, Vol. 11, No. 2,
pp. 245–254.
API (1993), Recommended Practice for Planning, Designing and Constructing Fixed Offshore
Platforms—Load and Resistance Factor Design, 1st Ed., American Petroleum Institute,
Washington, DC, July.
ASCE (1971), Plastic Design in Steel, A Guide and a Commentary, ASCE Manuals and
Reports on Engineering Practice No. 41, American Society of Civil Engineers, New York,
NY.
ASCE (1979), Structural Design of Tall Steel Buildings, American Society of Civil Engineers,
New York, NY.
ASCE (1981), “Planning and Environmental Criteria for Tall Buildings, A Monograph on
Planning and Design of Tall Buildings,” Vol. PC, Chapter PC-13, American Society of
Civil Engineers, New York, NY.
ASCE (1999),Specification for Structural Steel Beams with Web Openings, ASCE/SEI 23-
97, American Society of Civil Engineers, Reston, VA.
ASCE (2000), Design of Latticed Steel Transmission Structures, ASCE 10-97, American
Society of Civil Engineers, Reston, VA.
ASCE (2003), Seismic Evaluation of Existing Buildings, ASCE/SEI 31-03, American Society
of Civil Engineers, Reston, VA.
ASCE (2005a), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI/
SFPE 29-05, American Society of Civil Engineers, Reston, VA.
ASCE (2005b), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI
7-05, American Society of Civil Engineers, Reston, VA.
ASCE (2006), Seismic Rehabilitation of Existing Buildings, ASCE/SEI 41-06, American
Society of Civil Engineers, Reston, VA.
ASCE (2008), Standard Calculation Methods for Structural Fire Protection, ASCE/SEI/
SFPE 29-08, American Society of Civil Engineers, Reston, VA.
ASCE (2010), Minimum Design Loads for Buildings and Other Structures, ASCE/SEI 7-10,
American Society of Civil Engineers, Reston, VA.
ASCE Task Committee on Design Criteria for Composite Structures in Steel and
Concrete (1992a), “Proposed Specification for Structural Steel Beams with Web
Openings,” Journal of Structural Engineering, ASCE, Vol. 118, No. ST12, December,
pp. 3,315–3,324.
ASCE Task Committee on Design Criteria for Composite Structures in Steel and Concrete
(1992b), “Commentary on Proposed Specification for Structural Steel Beams with Web
Openings,” Journal of Structural Engineering, ASCE, Vol. 118, No. ST12, December, pp.
3,325–3,349.
AISC_PART 16_Comm.3C_14Ed._February 12, 2013 12/02/13 10:17 AM Page 529

16.1–530 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASCE Task Committee on Drift Control of Steel Building Structures (1988), “Wind Drift
Design of Steel-Framed Buildings: State of the Art,”Journal of the Structural Division,
ASCE, Vol. 114, No. 9, pp. 2,085–2,108.
ASCE Task Committee on Effective Length (1997), Effective Length and Notional Load
Approaches for Assessing Frame Stability: Implications for American Steel Design,
American Society of Civil Engineers, New York, NY.
Aslani, F. and Goel, S.C. (1991), “An Analytical Criteria for Buckling Strength of Built-
Up Compression Members,” Engineering Journal, AISC, Vol. 28, No. 4, 4th Quarter,
pp. 159–168.
ASNT (2006a), Personnel Qualification and Certification in Nondestructive Testing, ASNT
SNT-TC-1A-2003, American Society of Nondestructive Testing, Columbus, OH.
ASNT (2006b), Standard for Qualification and Certification of Nondestructive Testing
Personnel, ANSI/ASNT CP-189-2006, American Society of Nondestructive Testing,
Columbus, OH.
ASTM (2006), Standard Test Methods for Determining Effects of Large Hydrocarbon Pool
Fires on Structural Members and Assemblies, ASTM E1529-06, American Society for
Testing and Materials, West Conshohocken, PA.
ASTM (2007a), Standard Practice for Safeguarding Against Warpage and Distortion
During Hot-Dip Galvanizing of Steel Assemblies, ASTM A384/A384M-07, American
Society for Testing and Materials, West Conshohocken, PA.
ASTM (2007b), Standard Practice for Castings, Carbon, Low-Alloy, and Martensitic
Stainless Steel, Ultrasonic Examination Thereof, ASTM A609/A609M-91(2007),
American Society for Testing and Materials, West Conshohocken, PA.
ASTM (2007c), Standard Specification for Carbon Steel Bolts and Studs, 60 000 PSI Tensile
Strength, ASTM A307-07b, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2007d), Standard Specification for Cold-Formed Welded and Seamless Carbon
Steel Structural Tubing in Rounds and Shapes, ASTM A500/A500M-07, American
Society for Testing and Materials, West Conshohocken, PA.
ASTM (2009a), Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel
Hardware, ASTM A153/153M-09, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2009b), Standard Practice for Providing High-Quality Zinc Coatings (Hot-
Dip), ASTM A385/A385M-09, American Society for Testing and Materials, West
Conshohocken, PA.
ASTM (2009c), Standard Practice for Repair of Damaged and Uncoated Areas of Hot-Dip
Galvanized Coatings, ASTM A780/A780M-09, American Society for Testing and
Materials, West Conshohocken, PA.
ASTM (2009d), Standard Test Methods for Fire Tests of Building Construction and
Materials, ASTM E119-09c, American Society for Testing and Materials, West
Conshohocken, PA.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 530

REFERENCES 16.1–531
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ASTM (2009e), Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and
Steel Products, ASTM A123/A123M-09, American Society for Testing and Materials,
West Conshohocken, PA.
ATC (1978), “Tentative Provisions for the Development of Seismic Regulations for
Buildings,” Publication 3-06, Applied Technology Council, Redwood City, CA, June.
Austin, W.J. (1961), “Strength and Design of Metal Beam-Columns,” Journal of the Structural
Division, ASCE, Vol. 87, No. ST4, April, pp. 1–32.
AWS (1977), Criteria for Describing Oxygen-Cut Surfaces, AWS C4.1-77, American
Welding Society, Miami, FL.
AWS (2003), Specification For The Qualification Of Welding Inspectors, AWS B5.1:03,
American Welding Society, Miami, FL.
AWS (2010), Structural Welding Code—Steel, AWS D1.1/D1.1M:2010, American Welding
Society, Miami, FL.
Bartlett, R.M., Dexter, R.J., Graeser, M.D., Jelinek, J.J., Schmidt, B.J. and Galambos, T.V.
(2003), “Updating Standard Shape Material Properties Database for Design and
Reliability,” Engineering Journal, AISC, Vol. 40, No. 1, pp. 2–14.
Basler, K. (1961), “Strength of Plate Girders in Shear,” Journal of the Structural Division,
ASCE, Vol. 104, No. ST9, October, pp. 151–180.
Basler, K., Yen, B.T., Mueller, J.A. and Thürlimann, B. (1960), “Web Buckling Tests on Welded
Plate Girders,” Welding Research Council Bulletin No. 64, September, New York, NY.
Basler, K. and Thürlimann, B. (1963), “Strength of Plate Girders in Bending,” Transactions
of the American Society of Civil Engineers, Vol. 128, Part II, pp. 655–682.
Bathe, K. (1995), Finite Element Procedures, Prentice-Hall, Upper Saddle River, NJ.
Beedle, L.S. (1958), Plastic Design of Steel Frames, John Wiley & Sons Inc., New York, NY.
Bigos, J., Smith, G.W., Ball, E.F. and Foehl, P.J. (1954), “Shop Paint and Painting Practice,”
Proceedings of AISC National Engineering Conference, Milwaukee, WI, American
Institute of Steel Construction, Chicago, IL.
Bijlaard, F.S.K., Gresnigt, A.M. and van der Vegte, G.J. (eds.) (2005), Connections in Steel
Structures V, Bouwen met Staal, Delft, the Netherlands.
Birkemoe, P.C. and Gilmor, M.I. (1978), “Behavior of Bearing-Critical Double-Angle Beam
Connections,” Engineering Journal, AISC, Vol. 15, No. 4, 4th Quarter, pp. 109–115.
Birnstiel, C. and Iffland, J.S.B. (1980), “Factors Influencing Frame Stability,” Journal of the
Structural Division, ASCE, Vol. 106, No. 2, pp. 491–504.
Bjorhovde, R. (1972), “Deterministic and Probabilistic Approaches to the Strength of Steel
Columns,” Ph.D. Dissertation, Lehigh University, Bethlehem, PA, May.
Bjorhovde, R. (1978), “The Safety of Steel Columns,” Journal of the Structural Division,
ASCE, Vol. 104, No. ST9, September, pp. 1371–1387.
Bjorhovde, R. and Birkemoe, P.C. (1979), ”Limit States Design of HSS Columns,” Canadian
Journal of Civil Engineering, Vol. 6, No. 2, pp. 276–291.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 531

16.1–532 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Bjorhovde, R., Brozzetti, J. and Colson, A. (eds.) (1988), Connections in Steel Structures:
Behaviour, Strength and Design, Elsevier Applied Science, London, England.
Bjorhovde, R. (1988), “Columns: From Theory to Practice,” Engineering Journal, AISC,
Vol. 25, No. 1, 1st Quarter, pp. 21–34.
Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), “Classification System for Beam-to-
Column Connections,” Journal of Structural Engineering, ASCE, Vol. 116, No. 11,
pp. 3,059–3,076.
Bjorhovde, R., Colson, A., Haaijer, G. and Stark, J.W.B. (eds.) (1992), Connections in Steel
Structures II: Behavior, Strength and Design, American Institute of Steel Construction,
Chicago, IL.
Bjorhovde, R., Colson, A. and Zandonini, R. (eds.) (1996), Connections in Steel Structures
III: Behaviour, Strength and Design, Pergamon Press, London, England.
Bjorhovde, R., Goland, L.J. and Benac, D.J. (1999), “Tests of Full-Scale Beam-to-Column
Connections,” Southwest Research Institute, San Antonio, TX and Nucor-Yamato Steel
Company, Blytheville, AR.
Bjorhovde, R. (2006), “Cold Bending of Wide-Flange Shapes for Construction,” Engineering
Journal, AISC, Vol. 43, No. 4, 4th Quarter, pp. 271–286.
Bjorhovde, R., Bijlaard, F.S.K. and Geschwindner, L.F. (eds.) (2008), Connections in Steel
Structures VI, AISC, Chicago, IL.
Bleich, F. (1952), Buckling Strength of Metal Structures, McGraw-Hill, New York, NY.
Blodgett, O.W. (1967), “The Question of Corrosion in Hollow Steel Sections,” Welding
Design Studies in Steel Structures, Lincoln Electric Company, D610.163, August,
Cleveland, OH.
Borello, D.J., Denavit, M.D. and Hajjar, J.F. (2009), “Behavior of Bolted Steel Slip-Critical
Connections with Fillers,” Report No. NSEL-017, Department of Civil and
Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL,
August.
Bradford, M.A., Wright, H.D. and Uy, B. (1998), “Local Buckling of the Steel Skin in
Lightweight Composites Induced by Creep and Shrinkage,” Advances in Structural
Engineering, Vol. 2, No. 1, pp. 25–34.
Bradford, M.A., Loh, H.Y. and Uy, B. (2002), “Slenderness Limits for Filled Circular Steel
Tubes,” Journal of Constructional Steel Research, Vol. 58, No. 2, pp. 243–252.
Brandt, G.D. (1982), “A General Solution for Eccentric Loads on Weld Groups,”
Engineering Journal, AISC, Vol. 19, No. 3, 3rd Quarter, pp. 150–159.
Bridge, R.Q. (1998), “The Inclusion of Imperfections in Probability-Based Limit States
Design,” Proceedings of the 1998 Structural Engineering World Congress, San Francisco,
CA, July.
Bridge, R.Q. and Bizzanelli, P. (1997), Imperfections in Steel Structures, Proceedings—
1997 Annual Technical Session, and Meeting, Structural Stability Research Council,
pp. 447–458.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 532

REFERENCES 16.1–533
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Brockenbrough, R.B. and Johnston, B.G. (1981), USS Steel Design Manual, United States
Steel Corporation, Pittsburgh, PA.
Brockenbrough, R.L. (1983), “Considerations in the Design of Bolted Joints for Weathering
Steel,” Engineering Journal, AISC, Vol. 20, No. 1, 1st Quarter, pp. 40–45.
Brosnan, D.P. and Uang, C.M. (1995), “Effective Width of Composite L-Beams in
Buildings,” Engineering Journal, AISC, Vol. 30, No. 2, 2nd Quarter, pp. 73–81.
Bruneau, M., Uang, C.-M. and Whittaker, A. (1998), Ductile Design of Steel Structures,
McGraw Hill, New York, NY.
BSSC (2003), NEHRP Recommended Provisions for Seismic Regulations for New
Buildings and Other Structures, FEMA 450-1, Building Seismic Safety Council,
Washington, DC.
BSSC (2009), NEHRP Recommended Seismic Provisions for New Buildings and Other
Structures, FEMA P-750, Building Seismic Safety Council, Washington, DC.
Buonopane, S.G. and Schafer, B.W. (2006), “Reliability of Steel Frames Designed
with Advanced Analysis,” Journal of Structural Engineering, ASCE, Vol. 132, No. 2,
pp. 267–276.
Butler, L.J., Pal, S. and Kulak, G.L. (1972), “Eccentrically Loaded Welded Connections,”
Journal of the Structural Division, ASCE, Vol. 98, No. ST5, May, pp. 989–1,005.
Carter, C.J., Tide, R.H. and Yura, J.A. (1997), “A Summary of Changes and Derivation of
LRFD Bolt Design Provisions,” Engineering Journal, AISC, Vol. 34, No. 3, 3rd Quarter,
pp. 75–81.
Carter, C.J. (1999), Stiffening of Wide-Flange Columns at Moment Connections: Wind
and Seismic Applications, Design Guide 13, AISC, Chicago, IL.
CEN (1991), Eurocode 1: Basis of Design and Actions on Structures, EC1 1991-2-2, Comite
Européen de Normalisation, Brussels, Belgium.
CEN (2003), Eurocode 4: Design of Composite Steel and Concrete Structures,Comite
Européen de Normalisation, Brussels, Belgium.
CEN (2005), Eurocode 3: Design of Steel Structures,Comite Européen de Normalisation,
Brussels, Belgium.
Charney, F.A. (1990), “Wind Drift Serviceability Limit State Design of Multi-story
Buildings,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 36,
pp. 203–212.
Chen, W.F. and Kim, S.E. (1997), LRFD Steel Design Using Advanced Analysis, CRC Press,
Boca Raton, FL.
Chen, P.W. and Robertson, L.E. (1972), “Human Perception Thresholds of Horizontal
Motion,” Journal of the Structural Division, ASCE, Vol. 98, No. ST8, August,
pp. 1681–1695.
Chen, S. and Tong, G. (1994), “Design for Stability: Correct Use of Braces,” Steel
Structures, Journal of the Singapore Structural Steel Society, Vol. 5, No. 1, December,
pp. 15–23.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 533

16.1–534 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Chen, W.F. and Atsuta, T. (1976), Theory of Beam-Columns, Volume I: In-Plane
Behavior and Design, and Volume II: Space Behavior and Design, McGraw-Hill, New
York, NY.
Chen, W.F. and Atsuta, T. (1977), Theory of Beam Columns, Volume II: Space Behavior and
Design, McGraw-Hill, New York, NY.
Chen, W.F. and Lui, E.M. (1987), Structural Stability: Theory and Implementation, Elsevier,
New York, NY.
Chen, W.F. and Lui, E.M. (1991), Stability Design of Steel Frames, CRC Press, Boca Raton,
FL.
Chen, W.F. and Toma, S. (eds.) (1994), Advanced Analysis of Steel Frames: Theory,
Software and Applications, CRC Press, Boca Raton, FL.
Chen, W.F. and Sohal, I. (1995), Plastic Design and Second-Order Analysis of Steel Frames,
Springer Verlag, New York, NY.
Chen, W.F., Goto, Y. and Liew, J.Y.R. (1995), Stability Design of Semi-Rigid Frames, John
Wiley & Sons, Inc., New York, NY.
Cheng, J.J.R. and Kulak, G.L. (2000), “Gusset Plate Connection to Round HSS Tension
Members,” Engineering Journal, AISC, Vol. 37, No. 4, 4
th
Quarter, pp. 133–139.
Chien, E.Y.L. and Ritchie, J.K. (1984), Composite Floor Systems, Canadian Institute of
Steel Construction, Willowdale, Ontario, Canada.
Clarke, M.J., Bridge, R.Q., Hancock, G.J. and Trahair, N.S. (1992), “Advanced Analysis
of Steel Building Frames,” Journal of Constructional Steel Research, Vol. 23, No. 1–3,
pp. 1–29.
Cooke, G.M.E. (1988), “An Introduction to the Mechanical Properties of Structural Steel at
Elevated Temperatures,” Fire Safety Journal, Vol. 13, pp. 45–54.
Cooney, R.C. and King, A.B. (1988), “Serviceability Criteria for Buildings,” BRANZ
Report SR14, Building Research Association of New Zealand, Porirua, New Zealand.
Cooper, P.B., Galambos, T.V. and Ravindra, M.K. (1978), “LRFD Criteria for Plate
Girders,” Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September,
pp. 1389–1407.
Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures, John
Wiley & Sons, Inc., NY.
CSA (2004), General Requirements for Rolled or Welded Structural Quality Steel/
Structural Quality Steel, CAN/CSA-G40.20/G40.21-04, Canadian Standards Association,
Mississauga, Ontario, Canada.
CSA (2009), Limit States Design of Steel Structures, CSA Standard S16-09, Canadian
Standards Association, Rexdale, Ontario, Canada
Darwin, D. (1990), Steel and Composite Beams with Web Openings, Design Guide 2, AISC,
Chicago, IL.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 534

REFERENCES 16.1–535
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Davies, G. and Packer, J.A. (1982), “Predicting the Strength of Branch Plate—RHS Connections
for Punching Shear,” Canadian Journal of Civil Engineering, Vol. 9, pp. 458–467.
Dekker, N.W., Kemp, A.R. and Trinchero, P. (1995), “Factors Influencing the Strength of
Continuous Composite Beams in Negative Bending,” Journal of Constructional Steel
Research, Vol. 34, Nos. 2–3, pp. 161–185.
Dexter, R.J. and Melendrez, M.I. (2000), “Through-Thickness Properties of Column
Flanges in Welded Moment Connections,” Journal of Structural Engineering, ASCE, Vol.
126, No. 1, pp. 24–31.
Dexter, R.J., Hajjar, J.F., Prochnow, S.D., Graeser, M.D., Galambos, T.V. and Cotton, S.C.
(2001), “Evaluation of the Design Requirements for Column Stiffeners and Doublers and
the Variation in Properties of A992 Shapes,” Proceedings of the North American Steel
Construction Conference, Fort Lauderdale, FL, May 9-12, 2001, AISC, Chicago, IL, pp.
14.1–14.21.
Dexter, R.J. and Altstadt, S.A. (2004), “Strength and Ductility of Tension Flanges in
Girders,” Recent Developments in Bridge Engineering, Proceedings of the Second New
York City Bridge Conference, October 20-21, 2003, New York, NY, Mahmoud, K.M.
(ed.), A.A. Balkema/Swets & Zeitlinger, Lisse, the Netherlands, pp. 67–81.
Disque, R.O. (1964), “Wind Connections with Simple Framing,” Engineering Journal,
AISC, Vol. 1, No. 3, July, pp. 101-103.
Dusicka, P. and Iwai, R. (2007), “Development of Linked Column Frame Lateral Load
Resisting System,” 2nd Progress Report for AISC and Oregon Iron Works, Portland State
University, Portland, OR.
Earls, C.J. and Galambos, T.V. (1997), “Design Recommendations for Equal Leg Single
Angle Flexural Members,” Journal of Constructional Steel Research, Vol. 43, Nos. 1-3,
pp. 65–85.
Easterling, W.S., Gibbings, D.R. and Murray, T.M. (1993), “Strength of Shear Studs in Steel
Deck on Composite Beams and Joists,” Engineering Journal, AISC, Vol. 30, No. 2, 2nd
Quarter, pp. 44–55.
Easterling, W.S. and Gonzales, L. (1993), “Shear Lag Effects in Steel Tension Members,”
Engineering Journal, AISC, Vol. 30, No. 3, 3rd Quarter, pp. 77–89.
ECCS (1984), Ultimate Limit States Calculations of Sway Frames With Rigid Joints,
Publications No. 33, European Convention for Constructional Steelwork, Rotterdam,
the Netherlands.
ECCS (2001),Model Code on Fire Engineering, 1st Ed., European Convention for
Constructional Steelwork Technical Committee 3, Brussels, Belgium.
Elgaaly, M. (1983), “Web Design under Compressive Edge Loads,” Engineering Journal,
AISC, Vol. 20, No. 4, 4th Quarter, pp. 153–171.
Elgaaly, M. and Salkar, R. (1991), “Web Crippling Under Edge Loading,” Proceedings of
AISC National Steel Construction Conference, Washington, DC.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 535

16.1–536 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ellifritt, D.S., Wine, G., Sputo, T. and Samuel, S. (1992), “Flexural Strength of WT
Sections,” Engineering Journal, AISC, Vol. 29, No. 2, 2nd Quarter, pp. 67–74.
Ellingwood, B. and Leyendecker, E.V. (1978), “Approaches for Design Against Progressive
Collapse,” Journal of the Structural Division, ASCE, Vol. 104, No. 3, pp. 413–423.
Ellingwood, B.E., MacGregor, J.G., Galambos, T.V., and Cornell, C.A. (1982), “Probability-
Based Load Criteria: Load Factors and Load Combinations,” Journal of the Structural
Division, ASCE, Vol. 108, No. 5, pp. 978–997.
Ellingwood, B., and Corotis, R.B. (1991), “Load Combinations for Building Exposed to
Fires,” Engineering Journal, AISC, Vol. 28, No. 1, pp. 37–44.
El-Zanaty, M.H., Murray, D.W. and Bjorhovde, R. (1980), “Inelastic Behavior Of Multistory
Steel Frames,” Structural Engineering Report No. 83, University of Alberta, Alberta, BC.
Felton, L.P. and Dobbs, M.W. (1967), “Optimum Design of Tubes for Bending and Torsion,”
Journal of the Structural Division, ASCE, Vol. 93, No. ST4, pp. 185–200.
FEMA (1995), Interim Guidelines: Evaluation, Repair, Modification and Design of Welded
Steel Moment Frame Structures, Bulletin No. 267, Federal Emergency Management
Agency, Washington, DC.
FEMA (1997), “Seismic Performance of Bolted and Riveted Connections” Background
Reports; Metallurgy, Fracture Mechanics, Welding, Moment Connections and Frame
Systems Behavior, Bulletin No. 288, Federal Emergency Management Agency,
Washington, DC.
FEMA (2000), Steel Moment-Frame Buildings: Design Criteria for New Buildings, FEMA-
350, Prepared by the SAC Joint Venture for the Federal Emergency Management Agency,
Washington, DC.
FHWA (1999), “FHWA Demonstration Project Heat Straightening Repair for Damaged
Steel Bridges,” FHWA Report No. FHWA-IF-99-004, Federal Highway Administration,
Washington, DC.
Fielding, D.J. and Huang, J.S. (1971), “Shear in Steel Beam-to-Column Connections,” The
Welding Journal, AWS, Vol. 50, No. 7, Research Supplement, pp. 313–326.
Fielding, D.J. and Chen, W.F. (1973), “Steel Frame Analysis and Connection Shear
Deformation,” Journal of the Structural Division, ASCE, Vol. 99, No. ST1, January,
pp. 1–18.
Fisher, J.M. and West, M.A. (1997), Erection Bracing of Low-Rise Structural Steel
Buildings, Design Guide 10, AISC, Chicago, IL.
Fisher, J.M. and Kloiber, L.A. (2006), Base Plate and Anchor Rod Design, 2nd Edition,
Design Guide 1, AISC, Chicago, IL.
Fisher, J.W., Frank, K.H., Hirt, M.A. and McNamee, B.M. (1970), “Effect of Weldments on
the Fatigue Strength of Beams,” Report 102, National Cooperative Highway Research
Program, Washington, DC.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 536

REFERENCES 16.1–537
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Fisher, J.W., Albrecht, P.A., Yen, B.T., Klingerman, D.J. and McNamee, B.M. (1974),
“Fatigue Strength of Steel Beams with Welded Stiffeners and Attachments,” Report 147,
National Cooperative Highway Research Program, Washington, DC.
Fisher, J.W., Galambos, T.V., Kulak, G.L. and Ravindra, M.K. (1978), “Load and Resistance
Factor Design Criteria for Connectors,” Journal of the Structural Division, ASCE, Vol.
104, No. ST9, September, pp. 1,427–1,441.
Frank, K.H. and Fisher, J.W. (1979), “Fatigue Strength of Fillet Welded Cruciform Joints,”
Journal of the Structural Division, ASCE, Vol. 105, No. ST9, September.
Frank, K.H. and Yura, J.A. (1981), “An Experimental Study of Bolted Shear Connections,”
FHWA/RD-81/148, Federal Highway Administration, Washington, DC, December.
Frater, G.S. and Packer, J.A. (1992a), “Weldment Design for RHS Truss Connections.
I: Applications,” Journal of Structural Engineering, ASCE, Vol. 118, No. 10,
pp. 2,784–2,803.
Frater, G.S. and Packer, J.A. (1992b), “Weldment Design for RHS Truss Connections.
II: Experimentation,” Journal of Structural Engineering, ASCE, Vol. 118, No. 10,
pp. 2,804–2,820.
Freeman, F.R. (1930), “The Strength of Arc-Welded Joints,” Proceedings of the Institution
of Civil Engineers, Vol. 231, London, England.
Freeman, S. (1977), “Racking Tests of High Rise Building Partitions,” Journal of the
Structural Division, ASCE, Vol. 103, No. 8, pp. 1,673–1,685.
Galambos, T.V. (1968a), Structural Members and Frames, Prentice-Hall, Englewood Cliffs,
NJ.
Galambos, T.V. (1968b), “Deformation and Energy Absorption Capacity of Steel Structures
in the Inelastic Range,” Steel Research for Construction Bulletin No. 8, American Iron
and Steel Institute.
Galambos. T.V. (1978), “Proposed Criteria for Load and Resistance Factor Design of Steel
Building Structures,” AISI Bulletin No. 27, American Iron and Steel Institute,
Washington, DC, January.
Galambos, T.V., Ellingwood, B., MacGregor, J.G. and Cornell, C.A. (1982), “Probability-
Based Load Criteria: Assessment of Current Design Practice,” Journal of the Structural
Division, ASCE, Vol. 108, No. ST5, May, pp. 959–977.
Galambos, T.V. (1983), “Reliability of Axially Loaded Columns,” Engineering Structures,
Vol. 5, No. 1, pp. 73–78.
Galambos, T.V. and Ellingwood, B. (1986), “Serviceability Limit States: Deflections,”
Journal of the Structural Division, ASCE, Vol. 112, No. 1, pp. 67–84.
Galambos, T.V. (1991), “Design of Axially Loaded Compressed Angles,” Proceedings of the
Annual Technical Session and Meeting, Chicago, IL, April 15-17, 1991, Structural
Stability Research Council, Bethlehem, PA, pp. 353–367.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 537

16.1–538 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Galambos, T.V. (ed.) (1998), Guide to Stability Design Criteria for Metal Structures, 5th
Ed., Structural Stability Research Council, John Wiley & Sons, Inc., New York, NY.
Galambos, T.V. (2001), “Strength of Singly Symmetric I-Shaped Beam-Columns,”
Engineering Journal, AISC, Vol. 38, No. 2, 2nd Quarter, pp. 65–77.
Galambos, T.V. and Surovek, A.E. (2008), Structural Stability of Steel—Concepts and
Applications for Structural Engineers, John Wiley & Sons, Inc., New York, NY.
Geschwindner, L.F. (2002), “A Practical Approach to Frame Analysis, Stability and Leaning
Columns,” Engineering Journal,AISC, Vol. 39, No. 4, 4th Quarter, pp. 167–181.
Geschwindner, L.F. and Disque, R.O. (2005), “Flexible Moment Connections for Unbraced
Frames Subject to Lateral Forces—A Return to Simplicity,” Engineering Journal,AISC,
Vol. 42, No. 2, 2nd Quarter, pp. 99–112.
Geschwindner, L.F. (2010a), “Notes on the Impact of Hole Reduction on the Flexural
Strength of Rolled Beams,” Engineering Journal, AISC, Vol. 47, No. 1, 1st Quarter,
pp. 37–40.
Geschwindner, L.F. (2010b), “Discussion of Limit State Response of Composite Columns
and Beam-Columns Part II: Application of Design Provisions for the 2005 AISC
Specification,” Engineering Journal, AISC, Vol. 47, No. 2, 2nd Quarter, pp. 131–139.
Geschwindner, L.F and Gustafson, K. (2010), “Single-Plate Shear Connection Design to
Meet Structural Integrity Requirements,” Engineering Journal, AISC, Vol. 47, No. 4,
3rd Quarter.
Gewain, R.G. and Troup, E.W.J. (2001), “Restrained Fire Resistance Ratings in Structural
Steel Buildings,” Engineering Journal, Vol. 38, No. 2, pp. 78–89.
Gibson, G.T. and Wake, B.T. (1942), “An Investigation of Welded Connections for Angle
Tension Members,” The Welding Journal, AWS, January, p. 44.
Giddings, T.W. and Wardenier, J. (1986), “The Strength and Behaviour of Statically Loaded
Welded Connections in Structural Hollow Sections,” CIDECT Monograph No. 6,
Sections 1-10, British Steel Corporation Tubes Division, Corby, England.
Gioncu, V. and Petcu, D. (1997), “Available Rotation Capacity of Wide-Flange Beams
and Beam-Columns, Part 1. Theoretical Approaches, and Part 2. Experimental and
Numerical Tests,” Journal of Constructional Steel Research, Vol. 43, Nos. 1-3,
pp. 161–244.
Gjelsvik, A. (1981), The Theory of Thin-Walled Bars, John Wiley & Sons, Inc., New York, NY.
Goble, G.G. (1968), “Shear Strength of Thin Flange Composite Specimens,” Engineering
Journal, AISC, Vol. 5, No. 2, 2nd Quarter, pp. 62–65.
Gomez, I., Kanvinde, A., Kwan, Y.K. and Grondin, G. (2008), “Strength and Ductility of
Welded Joints Subjected to Out-of-Plane Bending,” Final Report to AISC, University of
California, Davis, and University of Alberta, July.
Goverdhan, A.V. (1983), “A Collection of Experimental Moment Rotation Curves:
Evaluation of Predicting Equations for Semi-Rigid Connections,” M.S. Thesis, Vanderbilt
University, Nashville, TN.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 538

REFERENCES 16.1–539
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Graham, J.D., Sherbourne, A.N. and Khabbaz, R.N. (1959), “Welded Interior Beam-to-
Column Connections,” American Institute of Steel Construction, Chicago, IL.
Graham, J.D., Sherbourne, A.N., Khabbaz, R.N. and Jensen, C.D. (1960), “Welded Interior
Beam-to-Column Connections,” Welding Research Council, Bulletin No. 63, pp. 1–28.
Grant, J.A., Fisher, J.W. and Slutter, R.G. (1977), “Composite Beams with Formed Steel
Deck,” Engineering Journal, AISC, Vol. 14, No. 1, 1
st
Quarter, pp. 24-43.
Griffis, L.G. (1992), Load and Resistance Factor Design of W-Shapes Encased in Concrete,
Design Guide 6, AISC, Chicago, IL.
Griffis, L.G. (1993), “Serviceability Limit States Under Wind Load,” Engineering Journal,
AISC, Vol. 30, No. 1, 1st Quarter, pp. 1–16.
Grondin, G., Jin, M. and Josi, G. (2007), “Slip Critical Bolted Connections A Reliability
Analysis for the Design at the Ultimate Limit State,” Preliminary Report prepared for
AISC, University of Alberta, Edmonton, Alberta, CA.
Hajjar, J.F. (2000), “Concrete-Filled Steel Tube Columns under Earthquake Loads,”
Progress in Structural Engineering and Materials, Vol. 2, No. 1, pp. 72–82.
Hajjar, J.F., Dexter, R.J., Ojard, S.D., Ye, Y. and Cotton, S.C. (2003), “Continuity Plate
Detailing for Steel Moment-Resisting Connections,” Engineering Journal, AISC, No. 4,
4th Quarter, pp. 81–97.
Hansen, R.J., Reed, J.W., and Vanmarcke, E.H. (1973), “Human Response to Wind-Induced
Motion of Buildings,” Journal of the Structural Division, ASCE, Vol. 99, No. ST7,
pp. 1,589-1,606.
Hardash, S.G. and Bjorhovde, R. (1985), “New Design Criteria for Gusset Plates in
Tension”, Engineering Journal, AISC, Vol. 22, No. 2, 2nd Quarter, pp. 77–94.
Heinzerling, J.E. (1987), “Structural Design of Steel Joist Roofs to Resist Ponding Loads,”
Technical Digest No. 3, Steel Joist Institute, Myrtle Beach, SC.
Helwig, T.A., Frank, K.H. and Yura, J.A. (1997), “Lateral-Torsional Buckling of Singly-
Symmetric I-Beams,” Journal of Structural Engineering, ASCE, Vol. 123, No. 9,
September, pp. 1,172–1,179.
Higgins, T.R. and Preece, F.R. (1968), “AWS-AISC Fillet Weld Study, Longitudinal and
Transverse Shear Tests,” Internal Report, Testing Engineers, Inc., Oakland, CA, May 31.
Horne, M.R. and Morris, L.J. (1982), Plastic Design of Low-Rise Frames, MIT Press,
Cambridge, MA.
Horne, M.R. and Grayson, W.R. (1983), “Parametric Finite Element Study of Transverse
Stiffeners for Webs in Shear,” Instability and Plastic Collapse of Steel Structures,
Proceedings of the Michael R. Horne Conference, L.J. Morris (ed.), Granada Publishing,
London, pp. 329–341.
Hsieh, S.H. and Deierlein, G.G. (1991), “Nonlinear Analysis of Three-Dimensional Steel
Frames with Semi-Rigid Connections,” Computers and Structures, Vol. 41, No. 5, pp.
995–1,009.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 539

16.1–540 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ICBO (1997), Uniform Building Code, International Conference of Building Officials,
Whittier, CA.
ICC (2009), International Building Code, International Code Council, Falls Church, VA.
IIW (1989), “Design Recommendations for Hollow Section Joints—Predominantly Statically
Loaded,” 2nd Ed., IIW Document XV-701-89, IIW Annual Assembly, Subcommission
XV-E, International Institute of Welding, Helsinki, Finland.
Irwin, A.W. (1986), “Motion in Tall Buildings,” Second Century of the Skyscraper, L.S.
Beedle (ed.), Van Nostrand Reinhold Co., New York, NY.
Islam, M.S., Ellingwood, B. and Corotis, R.B. (1990), “Dynamic Response of Tall Buildings
to Stochastic Wind Load,” Journal of Structural Engineering, ASCE, Vol. 116, No. 11,
November, pp. 2,982–3,002.
ISO (1977), “Bases for the Design of Structures—Deformations of Buildings at the
Serviceability Limit States,” ISO 4356, International Standards Organization, Geneva,
Switzerland.
Iwankiw, N. (1984), “Note on Beam-Column Moment Amplification Factor,” Engineering
Journal, AISC, Vol. 21, No. 1, 1st Quarter, pp. 21-23.
Jacobs, W.J. and Goverdhan, A.V. (2010), “Review and Comparison of Encased Composite
Steel-Concrete Column Detailing Requirements,” Composite Construction in Steel and
Concrete VI, R. Leon et al. (eds.), ASCE, Reston, VA.
Jayas, B.S. and Hosain, M.U. (1988a), “Composite Beams with Perpendicular Ribbed Metal
Deck,” Composite Construction in Steel and Concrete II, C.D. Buckner and I.M. Viest,
(eds.), American Society of Civil Engineers, New York, NY, pp. 511–526.
Jayas, B.S. and Hosain, M.U. (1988b), “Behaviour of Headed Studs in Composite Beams:
Push-Out Tests,” Canadian Journal of Civil Engineering, Vol. 15, pp. 240–253.
JCRC (1971), Handbook of Structural Stability, Japanese Column Research Council,
English translation, pp. 3–22.
Johnson, D.L. (1985), “An Investigation into the Interaction of Flanges and Webs in
Wide-Flange Shapes,” Proceedings of the Annual Technical Session and Meeting,
Cleveland, OH, April 16-17, 1985, Structural Stability Research Council, Bethlehem, PA,
pp. 397–405.
Johnson, D.L. (1996), “Final Report on Tee Stub Tests,” Butler Corporation Research
Report, Grandview, MO, May.
Johnson, R.P. and Yuan, H. (1998), “Existing Rules and New Tests for Stud Shear
Connectors in Troughs of Profiled Sheeting,” Proceedings of the Institution of Civil
Engineers: Structures and Buildings, Vol. 128, No. 3, pp. 244–251.
Johnston, B.G. (1939), “Pin-Connected Plate Links,” Transactions of the ASCE, Vol. 104,
pp. 314–339.
Johnston, B.G. and Green, L.F. (1940), “Flexible Welded Angle Connections,” The Welding
Journal, AWS, October.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 540

REFERENCES 16.1–541
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Johnston, B.G. and Deits, G.R. (1942), “Tests of Miscellaneous Welded Building
Connections,” The Welding Journal, AWS, November, p. 5.
Johnston, B.G. (ed.) (1976), Guide to Stability Design for Metal Structures, 3rd Ed.,
Structural Stability Research Council, John Wiley & Sons, Inc., New York, NY.
Kaczinski, M.R., Schneider, C.R., Dexter, R.J. and Lu, L.-W. (1994), “Local Web
Crippling of Unstiffened Multi-Cell Box Sections,” Proceedings of the ASCE Structures
Congress ’94, Atlanta, GA, Vol. 1, American Society of Civil Engineers, New York, NY,
pp. 343–348.
Kaehler, R.C., White, D.W. and Kim, Y.D. (2010), Frame Design Using Web-Tapered Members,
Design Guide 25, Metal Building Manufacturers Association and AISC, Chicago, IL.
Kanchanalai, T. (1977), The Design and Behavior of Beam-Columns in Unbraced Steel
Frames, AISI Project No. 189, Report No. 2, Civil Engineering/Structures Research Lab.,
University of Texas, Austin, TX.
Kanchanalai, T. and Lu, L.-W. (1979), “Analysis and Design of Framed Columns under
Minor Axis Bending,”Engineering Journal, AISC, Vol. 16, No. 2, 2nd Quarter,
pp. 29–41.
Kato, B. (1990), “Deformation Capacity of Steel Structures,”Journal of Constructional
Steel Research,Vol. 17, No. 1–2, pp. 33–94.
Kaufmann, E.J., Metrovich, B., Pense, A.W. and Fisher, J.W. (2001), “Effect of
Manufacturing Process on k-Area Properties and Service Performance,” Proceedings of
the North American Steel Construction Conference, Fort Lauderdale, FL, May 9-12,
2001, American Institute of Steel Construction, Chicago, IL, pp. 17.1–17.24.
Kavanagh, T.C. (1962), “Effective Length of Framed Columns,” Transactions of the
American Society of Civil Engineers, Vol. 127, pp. 81–101.
Keating, P.B. and Fisher, J.W. (1986), “Evaluation of Fatigue Tests and Design Criteria on
Welded Details,” NCHRP Report No. 286, Transportation Research Board, Washington
DC, September.
Kemp, A.R. (1996), “Inelastic Local and Lateral Buckling in Design Codes,” Journal of
Structural Engineering, ASCE, Vol. 122, No. 4, pp. 374–382.
Kim, H.J. and Yura, J.A. (1996), “The Effect of End Distance on the Bearing Strength of
Bolted Connections,” PMFSEL Report No. 96-1, University of Texas, Austin, TX.
Kim, Y.D., Jung, S.-K. and White, D.W. (2007), “Transverse Stiffener Requirements in
Straight and Horizontally Curved Steel I-Girders,” Journal of Bridge Engineering, ASCE,
Vol. 12, No. 2, pp. 174–183.
Kirby, B.R. and Preston, R.R. (1988), “High Temperature Properties of Hot-Rolled
Structural Steels for Use in Fire Engineering Design Studies,” Fire Safety Journal, Vol.
13, pp. 27–37.
Kirby, P.A. and Nethercot, D.A. (1979), Design for Structural Stability, John Wiley & Sons,
Inc., New York, NY.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 541

16.1–542 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Kishi, N. and Chen, W.F. (1986), “Data Base of Steel Beam-to-Column Connections,” Vol.
1 and 2, Structural Engineering Report No. CE-STR-86-26, School of Civil Engineering,
Purdue University, West Lafayette, IN.
Kitipornchai, S. and Trahair, N.S. (1980), “Buckling Properties of Monosymmetric
I-Beams,” Journal of the Structural Division, ASCE, Vol. 106, No. ST5, May,
pp. 941–957.
Kitipornchai, S. and Traves, W.H. (1989), “Welded-Tee End Connections for Circular
Hollow Tubes,” Journal of Structural Engineering, ASCE, Vol. 115, No.12,
pp. 3,155–3,170.
Klöppel, K. and Seeger, T. (1964), “Dauerversuche Mit Einschnittigen HV-Verbindurgen
Aus ST37,” Der Stahlbau, Vol. 33, No. 8, August, pp. 225–245 and Vol. 33, No. 11,
November, pp. 335–346.
Kosteski, N. and Packer, J.A. (2003), “Longitudinal Plate and Through Plate-to-HSS
Welded Connections,” Journal of Structural Engineering, ASCE, Vol. 129, No. 4,
pp. 478–486.
Kuchenbecker, G.H., White, D.W. and Surovek-Maleck, A.E. (2004), “Simplified Design of
Building Frames Using First-Order Analysis and K=1,” Proceedings of the Annual
Technical Session and Meeting, Long Beach, CA, March 24-27, 2004, Structural Stability
Research Council, Rolla, MO, pp. 119–138.
Kulak, G.L., Fisher, J.W. and Struik, J.H.A. (1987), Guide to Design Criteria for Bolted and
Riveted Joints, 2nd Ed., John Wiley & Sons, Inc., New York, NY.
Kulak, G.L. and Grondin, G.Y. (2001), “AISC LRFD Rules for Block Shear—A Review,”
Engineering Journal, AISC, Vol. 38, No. 4, 4th Quarter, pp. 199–203.
Kulak, G.L. and Grondin, G.Y. (2002), “Closure: AISC LRFD Rules for Block Shear—A
Review,” Engineering Journal, AISC, Vol. 39, No. 4, 4th Quarter, p. 241.
Kulak, G.L. and Grondin, G.Y. (2003), “Strength of Joints that Combine Bolts and Welds,”
Engineering Journal, AISC, Vol. 40, No. 2, 2nd Quarter, pp. 89–98.
Kulak, G.L. (2002), High Strength Bolts: A Primer for Structural Engineers, Design Guide
17, AISC, Chicago, IL.
Kurobane, Y., Packer, J.A., Wardenier, J. and Yeomans, N.F. (2004), “Design Guide for
Structural Hollow Section Column Connections,” CIDECT Design Guide No. 9,
CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.
Lawson, R.M. (1992), “Shear Connection in Composite Beams,” Composite Construction
in Steel and Concrete II, W.S. Easterling and W.M.K. Roddis, (eds.), American Society
of Civil Engineers, New York, NY.
Lee, D., Cotton, S., Dexter, R.J., Hajjar, J.F., Ye, Y. and Ojard, S.D. (2002a), “Column
Stiffener Detailing and Panel Zone Behavior of Steel Moment Frame Connections,”
Report No. ST-01-3.2, Department of Civil Engineering, University of Minnesota,
Minneapolis, MN.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 542

REFERENCES 16.1–543
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Lee, S.C., Yoo, C.H. and Yoon, D.Y. (2002b), “Behavior of Intermediate Transverse
Stiffeners Attached on Web Panels,” Journal of Structural Engineering, ASCE, Vol. 128,
No. 3, pp. 337–345.
Leigh, J.M. and Lay, M.G. (1978), “Laterally Unsupported Angles with Equal and Unequal
Legs,” Report MRL 22/2, July, Melbourne Research Laboratories, Clayton, Victoria,
Australia.
Leigh, J.M. and Lay, M.G. (1984), “The Design of Laterally Unsupported Angles,” Steel
Design Current Practice, Section 2, Bending Members, American Institute of Steel
Construction, Chicago, IL, January.
LeMessurier, W.J. (1976), “A Practical Method of Second Order Analysis, Part 1—Pin-
Jointed Frames,” Engineering Journal, AISC, Vol. 13, No. 4, 4th Quarter, pp. 89–96.
LeMessurier, W.J. (1977), “A Practical Method of Second Order Analysis, Part 2—Rigid
Frames,” Engineering Journal, AISC, Vol. 14, No. 2, 2nd Quarter, pp. 49–67.
LeMessurier, W.J. (1995), “Simplified K Factors for Stiffness Controlled Designs,”
Restructuring: America and Beyond, Proceedings of ASCE Structures Congress XIII,
Boston, MA, April 2-5, 1995, American Society of Civil Engineers, New York, NY,
pp. 1,797–1,812.
Leon, R.T. (1990), “Serviceability of Composite Floor,” Proceedings of the 1990 National
Steel Construction Conference, AISC, pp. 18:1–18:23.
Leon, R.T. and Alsamsam, I. (1993), Performance and Serviceability of Composite Floors,
Structural Engineering in Natural Hazards Mitigation, Proceedings of the ASCE
Structures Congress, ASCE, pp. 1,479–1,484.
Leon, R.T. (1994), “Composite Semi-Rigid Construction,” Engineering Journal, AISC, Vol.
31. No. 2, 2nd Quarter, pp. 57–67.
Leon, R.T., Hoffman, J. and Staeger, T. (1996), Design of Partially-Restrained Composite
Connections, Design Guide 8, AISC, Chicago, IL.
Leon, R.T. and Easterling, W.S. (eds.) (2002), Connections in Steel Structures IV Behavior,
Strength and Design, American Institute of Steel Construction, Chicago, IL.
Leon, R.T., Kim, D.K. and Hajjar, J.F. (2007), “Limit State Response of Composite
Columns and Beam-Columns Part 1: Formulation of Design Provisions for the
2005 AISC Specification,” Engineering Journal, AISC, Vol. 44, No. 4, 4th Quarter,
pp. 341–358.
Leon, R.T. and Hajjar, J.F. (2008), “Limit State Response of Composite Columns and
Beam-Columns Part 2: Application of Design Provisions for the 2005 AISC
Specification,” Engineering Journal, AISC, Vol. 45, No. 1, 1st Quarter, pp. 21–46.
Lesik, D.F. and Kennedy, D.J.L. (1990), “Ultimate Strength of Fillet Welded Connections
Loaded in Plane,” Canadian Journal of Civil Engineering, Vol. 17, No. 1, pp. 55–67.
Lewis, B.E. and Zwerneman, F.J. (1996), “Edge Distance, Spacing, and Bearing in Bolted
Connections,” Research Report, Department of Civil and Environmental Engineering,
Oklahoma State University, Stillwater, OK, July.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 543

16.1–544 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Liew, J.Y., White, D.W. and Chen, W.F. (1993), “Second-Order Refined Plastic-Hinge
Analysis for Frame Design, Parts I and II,” Journal of Structural Engineering, ASCE, Vol.
119, No. 11, pp. 3,196–3,237.
Lorenz, R.F., Kato, B. and Chen, W.F. (eds.) (1993), Semi-Rigid Connections in Steel
Frames, Council for Tall Buildings and Urban Habitat, Bethlehem, PA.
Lu, Y.O. and Kennedy, D.J.L. (1994), “The Flexural Behaviour of Concrete-Filled
Hollow Structural Sections,” Canadian Journal of Civil Engineering, Vol. 21, No. 1,
pp. 111–130.
Lui, Z. and Goel, S.C. (1987), “Investigation of Concrete-Filled Steel Tubes Under Cyclic
Bending and Buckling,” UMCE Report 87-3, Department of Civil and Environmental
Engineering, University of Michigan, Ann Arbor, MI.
Lutz, L.A. and Fisher, J.M. (1985), “A Unified Approach for Stability Bracing
Requirements, Engineering Journal, AISC, Vol. 22, No. 4, 4th Quarter, pp. 163–167.
Lutz, L.A. (1992), “Critical Slenderness of Compression Members with Effective Lengths
about Non-Principal Axes,” Proceedings of the Annual Technical Session and Meeting,
April 6-7, 1992, Pittsburgh, PA, Structural Stability Research Council, Bethlehem, PA.
Lyse, I. and Schreiner, N.G. (1935), “An Investigation of Welded Seat Angle Connections,”
The Welding Journal, AWS, February, p. 1.
Lyse, I. and Gibson, G.J. (1937), “Effect of Welded Top Angles on Beam-Column
Connections,” The Welding Journal, AWS, October.
Madugula, M.K.S. and Kennedy, J.B. (1985), Single and Compound Angle Members,
Elsevier Applied Science, New York, NY.
Marino, F.J. (1966), “Ponding of Two-Way Roof Systems,” Engineering Journal, AISC, Vol.
3, No. 3, 3rd Quarter, pp. 93–100.
Marshall, P.W. (1992), Design of Welded Tubular Connections: Basis and Use of AWS Code
Provisions,Elsevier, Amsterdam, the Netherlands.
Martinez-Garcia, J.M. and Ziemian, R.D. (2006), “Benchmark Studies to Compare Frame
Stability Provisions,” Proceedings—Annual Technical Session and Meeting, Structural
Stability Research Council, San Antonio, TX, pp. 425–442.
McGuire, W. (1992), “Computer-Aided Analysis,” Constructional Steel Design: An
International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde (eds.), Elsevier
Applied Science, New York, NY, pp. 915–932.
McGuire, W., Gallagher, R.H. and Ziemian, R.D. (2000), Matrix Structural Analysis, 2nd
Ed., John Wiley & Sons, Inc., New York, NY.
Mottram, J.T. and Johnson, R.P. (1990), “Push Tests on Studs Welded Through Profiled
Steel Sheeting,” The Structural Engineer, Vol. 68, No. 10, pp. 187–193.
Munse, W.H. and Chesson, Jr., E., (1963), “Riveted and Bolted Joints: Net Section Design,”
Journal of the Structural Division, ASCE, Vol. 89, No. ST1, February, pp. 49–106.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 544

REFERENCES 16.1–545
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Murray, T.M., Kline, D.P. and Rojani, K.B. (1992), “Use of Snug-Tightened Bolts in End-
Plate Connections,” Connections in Steel Structures II, R. Bjorhovde, A. Colson, G.
Haaijer and J.W.B. Stark, (eds.), AISC, Chicago, IL.
Murray, T.M., Allen, D.E. and Ungar, E.E. (1997), Floor Vibrations Due to Human Activity,
Design Guide 11, AISC, Chicago, IL.
Murray, T.M. and Sumner, E.A. (2004), End-Plate Moment Connections—Wind and Seismic
Applications, Design Guide 4, 2nd Ed., AISC, Chicago, IL.
Nethercot, D.A. (1985), “Steel Beam to Column Connections—A Review of Test Data and
Their Applicability to the Evaluation of the Joint Behaviour of the Performance of Steel
Frames,” CIRIA, London, England.
NFPA (2002a), Standard for the Inspection, Testing, and Maintenance of Water-Based Fire
Protection Systems, NFPA 25, National Fire Protection Association, Quincy, MA.
NFPA (2002b), Standard on Smoke and Heat Venting, NFPA 204, National Fire Protection
Association, Quincy, MA.
Nowak, A.S. and Collins, K. R. (2000), Reliability of Structures, McGraw-Hill, New York, NY.
NRC (1974), “Expansion Joints in Buildings,” Technical Report No. 65, Standing
Committee on Structural Engineering of the Federal Construction Council, Building
Research Advisory Board, Division of Engineering, National Research Council, National
Academy of Sciences, Washington, DC.
NRCC (1990), National Building Code of Canada, National Research Council of Canada,
Ottawa, Ontario, Canada.
Oehlers, D.J. and Bradford, M.A. (1995), Composite Steel and Concrete Members, Elsevier
Science, Inc., Tarrytown, NY.
Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971), “Shear Strength of Stud Shear
Connections in Lightweight and Normal Weight Concrete,” Engineering Journal, AISC,
Vol. 8, No. 2, 2nd Quarter, pp. 55–64.
OSHA (2001), Safety and Health Regulations for Construction, Standards—29 CFR 1926
Subpart R—Steel Erection, Occupational Safety and Health Administration, Washington,
DC.
Packer, J.A., Birkemoe, P.C., and Tucker, W.J. (1984), “Canadian Implementation of
CIDECT Monograph No. 6,” CIDECT Report No. 5AJ-84/9-E, University of Toronto,
Toronto, Canada.
Packer, J.A. and Cassidy, C.E. (1995), “Effective Weld Length for HSS T, Y and X
Connections,” Journal of Structural Engineering, ASCE, Vol. 121, No. 10, pp. 1,402–1,408.
Packer, J.A. and Henderson, J.E. (1997), Hollow Structural Section Connections and Trusses—
A Design Guide, 2nd Ed., Canadian Institute of Steel Construction, Toronto, Canada.
Packer, J.A. (2004), “Reliability of Welded Tubular K-Connection Resistance Expressions,”
International Institute of Welding (IIW) Document XV-E-04-291, University of Toronto,
Toronto, Canada.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 545

16.1–546 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Packer, J.A. and Wardenier, J. (2010), “Design Guide for Rectangular Hollow Section (RHS)
Joints under Predominantly Static Loading,” Design Guide No. 3, CIDECT, 2nd Ed., LSS
Verlag, Köln, Germany.
Pallarés, L. and Hajjar, J.F. (2010a), “Headed Steel Stud Anchors in Composite Structures:
Part II. Tension and Interaction,” Journal of Constructional Steel Research, Vol. 66, No.
2, February, pp. 213–228.
Pallarés, L. and Hajjar, J.F. (2010b), “Headed Steel Stud Anchors in Composite Structures:
Part I. Shear,” Journal of Constructional Steel Research, Vol. 66, No. 2, February, pp.
198–212.
Pate-Cornell, E. (1994), “Quantitative Safety Goals for Risk Management of Industrial
Facilities,” Structural Safety, Vol. 13, No. 3, pp. 145–157.
Popov, E.P. and Stephen, R.M. (1977), “Capacity of Columns with Splice Imperfections,”
Engineering Journal, AISC, Vol. 14, No. 1, 1st Quarter, pp. 16–23.
Popov, E.P. (1980), “An Update on Eccentric Seismic Bracing,” Engineering Journal, AISC,
Vol. 17, No. 3, 3rd Quarter, pp. 70–71.
Preece, F.R. (1968), “AWS-AISC Fillet Weld Study—Longitudinal and Transverse Shear
Tests,” Testing Engineers, Inc., Los Angeles, CA, May.
Prion, H.G.L. and Boehme, J. (1994), “Beam-column behaviour of steel tubes filled
with high strength concrete,” Canadian Journal of Civil Engineering, Vol. 21, No. 2,
pp. 207–218.
Prochnow, S.D., Ye, Y., Dexter, R.J., Hajjar, J.F. and Cotton, S.C. (2000), “Local Flange
Bending and Local Web Yielding Limit States in Steel Moment Resisting Connections,”
Connections in Steel Structures IV Behavior, Strength and Design, R.T. Leon and W.S.
Easterling (eds.), AISC, Chicago, IL, pp. 318–328.
Rahal, K.N. and Harding, J.E. (1990a), “Transversely Stiffened Girder Webs Subjected to
Shear Loading—Part 1: Behaviour,” Proceedings of the Institution of Civil Engineers,
Part 2, 1989, March, pp. 47–65.
Rahal, K.N. and Harding, J.E. (1990b), “Transversely Stiffened Girder Webs Subjected to
Shear Loading—Part 2: Stiffener Design,” Proceedings of the Institution of Civil
Engineers, Part 2, 1989, March, pp. 67–87.
Rahal, K.N. and Harding, J.E. (1991), “Transversely Stiffened Girder Webs Subjected to
Combined In-Plane Loading,” Proceedings of the Institution of Civil Engineers, Part 2,
1991, June, pp. 237–258.
Ravindra, M.K. and Galambos, T.V. (1978), “Load and Resistance Factor Design for Steel,”
Journal of the Structural Division, ASCE, Vol. 104, No. ST9, September, pp. 1,337–1,353.
RCSC (2009), Specification for Structural Joints Using High Strength Bolts, Research Council
on Structural Connections, American Institute of Steel Construction, Chicago, IL.
Ricker, D.T. (1989), “Cambering Steel Beams,” Engineering Journal, AISC, Vol. 26, No. 4,
4th Quarter, pp. 136–142.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 546

REFERENCES 16.1–547
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Ricles, J.M. and Yura, J.A. (1983), “Strength of Double-Row Bolted Web Connections,”
Journal of the Structural Division, ASCE, Vol. 109, No. ST 1, January, pp. 126–142.
Roberts, T.M. (1981), “Slender Plate Girders Subjected to Edge Loading,” Proceedings of
the Institution of Civil Engineers, Part 2, No. 71, September.
Robinson, H. (1967), “Tests of Composite Beams with Cellular Deck,” Journal of the
Structural Division, ASCE, Vol. 93, No. ST4, pp. 139–163.
Roddenberry, M.R., Easterling, W.S. and Murray, T.M. (2002a) “Behavior and Strength of
Welded Stud Shear Connectors,” Report No. CE/VPI–02/04, Virginia Polytechnic
Institute and State University, Blacksburg, VA.
Roddenberry, M.R., Lyons, J.C., Easterling, W.S. and Murray, T.M. (2002b), “Performance
and Strength of Welded Shear Studs,” Composite Construction in Steel and Concrete IV,
J.F. Hajjar, M. Hosain, W.S. Easterling and B.M. Shahrooz (eds.), American Society of
Civil Engineers, Reston, VA, pp. 458–469.
Roeder, C.W., Cameron, B. and Brown, C.B. (1999), “Composite Action in Concrete Filled
Tubes,” Journal of Structural Engineering, ASCE, Vol. 125, No. 5, May, pp. 477–484.
Roik, K. and Bergmann, R. (1992), “Composite Column,” Constructional Steel Design: An
International Guide, P.J. Dowling, J.E. Harding and R. Bjorhovde, (eds.), Elsevier
Applied Science, London, United Kingdom.
Rolloos, A. (1969), “The Effective Weld Length of Beam to Column Connections without
Stiffening Plates,” Stevin Report 6-69-7-HL, Delft University of Technology, Delft, the
Netherlands.
Ruddy, J. (1986), “Ponding of Concrete Deck Floors,” Engineering Journal, AISC, Vol. 23,
No. 3, 3rd Quarter, pp. 107–115.
Ruddy, J.L., Marlo, J.P., Ioannides, S.A. and Alfawakhiri, F. (2003), Fire Resistance of
Structural Steel Framing, Design Guide 19, AISC, Chicago, IL.
Salmon, C.G. and Johnson, J.E. (1996), Steel Structures, Design and Behavior, 4th Ed.,
HarperCollins College Publishers, New York, NY.
Salmon, C.G., Johnson, J.E. and Malhas, F.A. (2008), Steel Structures: Design and
Behavior, Prentice-Hall, Upper Saddle River, NJ.
Salvadori, M. (1956), “Lateral Buckling of Eccentrically Loaded I-Columns,” Transactions
of the ASCE, Vol. 122, No. 1.
Sato, A. and Uang, C.-M. (2007), “Modified Slenderness Ratio for Built-up Members,”
Engineering Journal, AISC, pp. 269–280.
Schilling, C.G. (1965), Buckling Strength of Circular Tubes, Journal of the Structural
Division, ASCE, Vol. 91, No. ST5, pp. 325–348.
Schuster, J.W. (1997), Structural Steel Fabrication Practices, McGraw-Hill, New York, NY.
SDI (2001), Standard Practice Details, Steel Deck Institute, Fox River Grove, IL.
SDI (2004), Diaphragm Design Manual, Steel Deck Institute, Fox River Grove, IL.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 547

16.1–548 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Seaburg, P.A. and Carter, C.J. (1997), Torsional Analysis of Structural Steel Members,
Design Guide 9, AISC, Chicago, IL.
SFPE (2002), Handbook of Fire Protection Engineering, 3rd Ed., P.J. DiNenno (ed.),
National Fire Protection Association, Quincy, MA.
SFSA (1995), Steel Castings Handbook, Steel Founders Society of America, Crystal Lake, IL.
Shanmugam, N.E. and Lakshmi, B. (2001), “State of the Art Report on Steel-Concrete
Composite Columns,” Journal of Constructional Steel Research, Vol. 57, No. 10, October,
pp. 1,041–1,080.
Sherbourne, A.N. and Jensen, C.D. (1957), “Direct Welded Beam Column Connections,”
Report. No. 233.12, Fritz Engineering Laboratory, Lehigh University, Bethlehem, PA.
Sherman, D.R. (1976), “Tentative Criteria for Structural Applications of Steel Tubing and
Pipe,” American Iron and Steel Institute, Washington, DC, August.
Sherman, D.R. and Tanavde, A.S. (1984), “Comparative Study of Flexural Capacity of
Pipes,” Internal Report, Department of Civil Engineering, University of Wisconsin-
Milwaukee, WI, March.
Sherman, D.R. and Ales, J.M. (1991), “The Design of Shear Tabs with Tubular Columns,”
Proceedings of the National Steel Construction Conference, Washington, DC, American
Institute of Steel Construction, Chicago, IL, pp. 1.2–1.22.
Sherman, D.R. (1992), “Tubular Members,” Constructional Steel Design—An International
Guide,P.J. Dowling, J.H. Harding and R. Bjorhovde (eds.), Elsevier Applied Science,
London, England, pp. 91–104.
Sherman, D.R. (1995a), “Stability Related Deterioration of Structures,” Proceedings of the
Annual Technical Session and Meeting, Kansas City, MO, March 27-28, 1995, Structural
Stability Research Council, Bethlehem, PA.
Sherman, D.R. (1995b), “Simple Framing Connections to HSS Columns,” Proceedings of
the National Steel Construction Conference, San Antonio, Texas, American Institute of
Steel Construction, Chicago, IL, pp. 30.1–30.16.
Sherman, D.R. (1996), “Designing with Structural Tubing,” Engineering Journal, AISC,
Vol. 33, No. 3, 3rd Quarter, pp. 101–109.
Slutter, R.G. and Driscoll, G.C. (1965), “Flexural Strength of Steel-Concrete Composite
Beams,” Journal of the Structural Division, ASCE, Vol. 91, No. ST2, April, pp. 71–99.
Sourochnikoff, B. (1950), “Wind Stresses in Semi-Rigid Connections of Steel Framework,”
Transactions of the ASCE, Vol. 115, pp. 382–402.
Stang, A.H. and Jaffe, B.S. (1948), Perforated Cover Plates for Steel Columns, Research
Paper RP1861, National Bureau of Standards, Washington, DC.
Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1993), “Behaviour of a Web Plate in Shear
with an Intermediate Stiffener,” Proceedings of the Institution of Civil Engineers,
Structures and Buildings, Vol. 99, August, pp. 327–344.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 548

REFERENCES 16.1–549
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Stanway, G.S., Chapman, J.C. and Dowling, P.J. (1996), “A Design Model for Intermediate
Web Stiffeners,” Proceedings of the Institution of Civil Engineers, Structures and
Buildings, Vol. 116, February, pp. 54–68.
Summers, P.A. and Yura, J.A. (1982), “The Behavior of Beams Subjected to Concentrated
Loads,” Report No. 82-5, Phil M. Ferguson Structural Engineering Laboratory, University
of Texas, Austin, TX, August.
Surovek-Maleck, A.E. and White, D.W. (2003). “Direct Analysis Approach for the
Assessment of Frame Stability: Verification Studies,” Proceedings—Annual Technical
Session and Meeting,Structural Stability Research Council,Baltimore, MD,
pp. 423–441.
Surovek-Maleck, A., White, D.W. and Leon, R.T. (2004), “Direct Analysis and Design of
Partially-Restrained Steel Framing Systems,”Journal of Structural Engineering, ASCE,
Vol. 131, No. 9, pp. 1376–1389.
Takagi, J. and Deierlein, G.G. (2007), “Strength Design Criteria for Steel Members at
Elevated Temperatures,” Journal of Constructional Steel Research, Vol. 63,
pp. 1036–1050.
Taylor, A.C. and Ojalvo, M. (1966), “Torsional Restraint of Lateral Buckling,” Journal of
the Structural Division, ASCE, Vol. 92, No. ST2, pp. 115–129.
Thoft-Christensen, P. and Murotsu, Y. (1986) Application of Structural System Reliability
Theory, Springer Verlag, Berlin.
Tide, R.H.R. (1985), “Reasonable Column Design Equations,” Proceedings of the Annual
Technical Session and Meeting, Cleveland, OH, April 16-17, 1985, Structural Stability
Research Council, Bethlehem, PA.
Tide, R.H.R. (1999), “Evaluation of Steel Properties and Cracking in the ‘k’-area of W
Shapes,” Engineering Structures, Vol. 22, pp. 128-124.
Tide, R.H.R. (2001), “A Technical Note: Derivation of the LRFD Column Design
Equations,” Engineering Journal, AISC, Vol. 38, No. 3, 3rd Quarter, pp. 137–139.
Tide, R.H.R. (2010), “Bolt Shear Design Considerations,” Engineering Journal, AISC, Vol.
47, No. 1, 1st Quarter, pp. 47–64.
Timoshenko, S.P. (1956), Strength of Materials, Vol. II, 3rd Ed., D. Van Nostrand, New
York, NY.
Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill Book
Company, New York, NY.
Troup, E.W. (1999), “Effective Contract and Shop Drawings for Structural Steel,”
Proceedings of the AISC National Steel Construction Conference, Toronto, Ontario, May
19-21, 1999, American Institute of Steel Construction, Chicago, IL pp. 37-1–37-15.
Van der Sanden, P.G.F.J. (1996), “The Behaviour of a Headed Stud Connection in a ‘New’
Push Test including a Ribbed Slab. Tests: Main Report,” BKO Report No. 95-15,
Eindhoven University of Technology, Eindhoven, the Netherlands, March.
AISC_PART 16_Comm.3C_14Ed._February 12, 2013 12/02/13 10:18 AM Page 549

16.1–550 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.-W. (2002), “Experimental Behavior of High
Strength Square Concrete Filled Steel Tube (CFT) Columns,” Journal of Structural
Engineering, ASCE, Vol. 128, No. 3, pp. 309–318.
Varma, A.H. and Zhang, K. (2009), “Slenderness Limits for Noncompact/Slender Filled
Members,” Bowen Laboratory Report No. 2009-01, School of Civil Engineering, Purdue
University, West Lafayette, IN, August.
Vickery, B.J., Isyumov, N. and Davenport, A.G. (1983), “The Role of Damping, Mass and
Stiffness in the Reduction of Wind Effects on Structures,” Journal of Wind Engineering
and Industrial Aerodynamics, Vol. 11, Nos. 1-3, pp. 285–294.
Viest, I.M., Siess, C.P., Appleton, J.H. and Newmark, N. (1952), “Full-Scale Tests of
Channel Shear Connectors and Composite T-Beams,” Bulletin Series No. 405, Vol. 50,
No. 29, University of Illinois Engineering Experiment Station, University of Illinois,
Urbana, IL.
Viest, I.M., Colaco, J.P., Furlong, R.W., Griffis, L.G., Leon, R.T. and Wyllie, L.A., Jr.
(1997), Composite Construction: Design for Buildings, McGraw-Hill, New York, NY.
von Kármán, T., Sechler, E.E. and Donnell, L.H. (1932), “The Strength of Thin Plates in
Compression,” Transactions of the ASME, Vol. 54.
Wardenier, J., Davies, G. and Stolle, P. (1981), “The Effective Width of Branch Plate to RHS
Chord Connections in Cross Joints,” Stevin Report 6-81-6, Delft University of
Technology, Delft, the Netherlands.
Wardenier, J., Kurobane, Y., Packer, J.A., Dutta, D. and Yeomans, N. (1991), Design Guide
for Circular Hollow Section (CHS) Joints under Predominantly Static Loading,CIDECT
Design Guide No. 1, CIDECT (ed.) and Verlag TÜV Rheinland, Köln, Germany.
West, M.A., Fisher, J.M. and Griffis, L.G. (2003), Serviceability Design Considerations for
Steel Buildings, Design Guide 3, 2nd Ed., AISC, Chicago, IL.
Wheeler, A. and Bridge, R. (2006), “The Behaviour of Circular Concrete-Filled Thin-
Walled Steel Tubes in Flexure,” Proceedings of the 5th International Conference on
Composite Construction in Steel and Concrete V, R.T. Leon and J. Lange (eds.), ASCE,
Reston, Virginia, pp. 413–423.
White, D.W. and Chen, W.F. (ed.) (1993), Plastic Hinge Based Methods for Advanced
Analysis and Design of Steel Frames: An Assessment of State-of-the-Art, Structural
Stability Research Council, Bethlehem, PA.
White, D.W. and Hajjar, J.F. (1997a), “Design of Steel Frames without Consideration of
Effective Length,” Engineering Structures, Vol. 19, No. 10, pp. 797–810.
White, D.W. and Hajjar, J.F. (1997b), “Buckling Models and Stability Design of Steel
Frames: a Unified Approach,” Journal of Constructional Steel Research, Vol. 42, No. 3,
pp. 171–207.
White, D.W. (2003), “Improved Flexural Design Provisions for I-Shaped Members and
Channels,” Structural Engineering, Mechanics and Materials Report No. 23, School of
Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA.
AISC_PART 16_Comm.3C:14Ed._ 2/17/12 1:34 PM Page 550

REFERENCES 16.1–551
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
White, D.W. and Jung, S.K (2003), “Simplified Lateral-Torsional Buckling Equations for
Singly-Symmetric I-Section Members,” Structural Engineering, Mechanics and
Materials Report No. 24b, School of Civil and Environmental Engineering, Georgia
Institute of Technology, Atlanta, GA.
White, D.W. (2004), “Unified Flexural Resistance Equations for Stability Design of Steel I-
Section Members Overview,” Structural Engineering, Mechanics and Materials Report
No. 24a, School of Civil and Environmental Engineering, Georgia Institute of
Technology, Atlanta, GA.
White, D.W. and Barker, M. (2008), “Shear Resistance of Transversely-Stiffened Steel I-
Girders,” Journal of Structural Engineering, ASCE, Vol. 134, No. 9, pp. 1,425–1,436.
White, D.W. and Goverdhan, A.V. (2008), “Design of PR Frames Using the AISC Direct
Analysis Method,” in Connections in Steel Structures VI, R. Bjorhovde, F.S.K. Bijlaard
and L.F. Geschwindner (eds.), AISC, Chicago, IL, pp. 255–264.
Wilkinson, T. and Hancock, G.J. (1998), “Tests to Examine Compact Web Slenderness of
Cold-Formed RHS,” Journal of Structural Engineering, ASCE, Vol. 124, No. 10,
October, pp. 1,166–1,174.
Wilkinson, T. and Hancock, G.J. (2002), “Predicting the Rotation Capacity of Cold-Formed
RHS Beams Using Finite Element Analysis,” Journal of Constructional Steel Research,
Vol. 58, No. 11, November, pp. 1,455–1,471.
Wilson, W.M. (1934), “The Bearing Value of Rollers,” Bulletin No. 263, University of
Illinois Engineering Experiment Station, Urbana, IL.
Winter, G. (1947), “Strength of Thin Steel Compression Flanges,” Transactions of the
ASCE, Vol. 112, p. 547.
Winter, G. (1958), “Lateral Bracing of Columns and Beams,” Journal of the Structural
Division, ASCE, Vol. 84, No. ST3, March, pp. 1,561-1–1,561-22.
Winter, G. (1960), “Lateral Bracing of Columns and Beams,” Transactions of the ASCE,
Vol. 125, Part 1, pp. 809–825.
Winter, G. (1968), Commentary on the Specification for the Design of Cold-Formed Steel
Members, American Iron and Steel Institute, Washington, DC.
Winter, G. (1970),Light Gage Cold-Formed Steel Design Manual: Commentary of the 1968
Edition, American Iron and Steel Institute, Washington, DC.
Wong, M.B. (2009), Plastic Analysis and Design of Steel Structures, Butterworth-
Heinemann, Burlington, MA.
Xie, M. and Chapman, J.C. (2003), “Design of Web Stiffeners: Axial Forces,” Journal of
Constructional Steel Research, Vol. 59, pp. 1,035–1,056.
Yuan, H. (1996), “The Resistances of Stud Shear Connectors with Profiled Sheeting,” Ph.D.
Dissertation, Department of Engineering, The University of Warwick, Coventry, England.
Yuan, Q., Swanson, J. and Rassati, G.A. (2004), “An Investigation of Hole Making Practices
in the Fabrication of Structural Steel,” Internal Report, Department of Civil and
Environmental Engineering, University of Cincinnati, Cincinnati, OH.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 551

16.1–552 REFERENCES
Specification for Structural Steel Buildings, June 22, 2010
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Yura, J.A. (1971), “The Effective Length of Columns in Unbraced Frames,” Engineering
Journal, AISC, Vol. 8, No. 2, 2nd Quarter, pp. 37–42.
Yura, J.A., Galambos, T.V. and Ravindra, K. (1978), “The Bending Resistance of Steel
Beams,” Journal of the Structural Division, ASCE, Vol. 104, No. ST9, pp. 1,355–1,370.
Yura, J.A., Birkemoe, P.C. and Ricles, J.M. (1982), “Beam Web Shear Connections: An
Experimental Study,” Journal of the Structural Division, ASCE, Vol. 108, No. ST2,
February, pp. 311–326.
Yura, J.A. (1995), “Bracing for Stability—State-of-the-Art,” Proceedings of the ASCE
Structures Congress XIII, Boston, MA, April 2-5, 1995, American Society of Civil
Engineers, New York, NY, pp. 88–103.
Yura, J.A., Kanchanalai, T. and Chotichanathawenwong, S. (1996), “Verification of Steel
Beam-Column Design Based on the AISC–LRFD Method,” Proceedings—5th
International Colloquium on the Stability of Metal Structures, SSRC, Bethelem, PA,
pp. 21–30.
Yura, J.A. (2001), “Fundamentals of Beam Bracing,” Engineering Journal, AISC, Vol. 38,
No.1, 1st Quarter, pp. 11–26.
Yura, J.A. and Helwig, T.A. (2009), “Bracing for Stability,” Short Course Notes, Structural
Stability Research Council, North American Steel Construction Conference, Phoenix,
AZ, April.
Zahn, C.J. and Haaijer, G. (1987), “Effect of Connector Spacing on Double Angle
Compressive Strength,” Materials and Member Behavior, Proceedings, Structures
Congress 1987, ASCE, Orlando, FL, pp. 199–212.
Zandonini, R. (1985), “Stability of Compact Built-Up Struts: Experimental Investigation
and Numerical Simulation,” Costruzioni Metalliche, No. 4.
Ziemian, R.D, McGuire, W. and Deierlein, G. (1992), “Inelastic Limit States Design, Part I:
Planar Frame Studies, and Part II: Three-Dimensional Frame Study,” Journal of
Structural Engineering, ASCE, Vol. 118, No. 9, pp. 2532–2567.
Ziemian, R.D. and Miller, A.R. (1997), “Inelastic Analysis and Design: Frames With
Members in Minor-Axis Bending,” Journal of Structural Engineering, ASCE, Vol. 123,
No. 2, pp. 151–157.
Ziemian, R.D. and McGuire, W. (2002), “Modified Tangent Modulus Approach, a
Contribution to Plastic Hinge Analysis,” Journal of Structural Engineering, ASCE, Vol.
128, No. 10, October, pp. 1301–1307.
Ziemian, R.D., McGuire, W. and Seo, D.W. (2008), “On the Inelastic Strength of Beam-
Columns under Biaxial Bending,” Proceedings—Annual Stability Conference, Structural
Stability Research Council, Nashville, TN.
Ziemian, R.D. (ed.) (2010), Guide to Stability Design Criteria for Metal Structures, 6th Ed.,
John Wiley & Sons, Inc., Hoboken, NJ.
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 552

Unit Multiply by to obtain
length inch (in.) 25.4 millimeters (mm)
length foot (ft) 0.304 8 meters (m)
mass pound-mass (lbm) 0.453 6 kilogram (kg)
stress ksi 6.895
megapascals
(MPa), N/mm
2
moment kip-in 113 000 N-mm
energy ft-lbf 1.356 joule (J)
force kip (1 000 lbf) 4 448 newton (N)
force psf 47.88 pascal (Pa), N/m
2
force plf 14.59 N/m
temperature To convert °F to °C:
tc° = (tf° −32)/1.8
force in lbf or N =mass × g
where g, acceleration due to gravity =32.2 ft /sec
2
=9.81 m/sec
2
Metric Conversion Factors for
Common Steel Design Units Used in the
AISC Specification
AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 553

AISC_PART 16_Comm.3C copy:14Ed._ 2/14/11 10:02 AM Page 554

Specification for
Structural Joints Using
High-Strength Bolts



December 31, 2009


Supersedes the June 30, 2004 Specification for
Structural Joints Using ASTM A325 or A490 Bolts.

Prepared by RCSC Committee A.1—Specifications and
approved by the Research Council on Structural Connections.








www.boltcouncil.org
RESEARCH COUNCIL ON ST RUCTURAL CONNECTIONS
c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-ii







RCSC © 2010
by
Research Council on Structural Connections




All rights reserved. This book or any part thereof must not be reproduced in any form
without the written permission of the publisher.

The information presented in this publication has been prepared in accordance with
recognized engineering principles and is for general information only. While it is
believed to be accurate, this information should not be used or relied upon for any
specific application without competent professional examination and verification of
its accuracy, suitability, and applicability by a licensed professional engineer,
designer, or architect. The publication of the material contained herein is not
intended as a representation or warranty on the part of the Research Council on
Structural Connections or of any other person named herein, that this information
is suitable for any general or particular use or of freedom from infringement of any
patent or patents. Anyone making use of this information assumes all liability
arising from such use.

Caution must be exercised when relying upon other specifications and codes
developed by other bodies and incorporated by reference herein since such material
may be modified or amended from time to time subsequent to the printing of this
edition. The Institute bears no responsibility for such material other than to refer to
it and incorporate it by reference at the time of the initial publication of this edition.


Printed in the United States of America

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-iii
PREFACE


The purpose of the Research Council on Structural Connections (RCSC) is:

(1) To stimulate and support such investigation as may be deemed necessary and
valuable to determine the suitability, strength and behavior of various types of
structural connections;
(2) To promote the knowledge of economical and efficient practices relating to such
structural connections; and,
(3) To prepare and publish related specifications and such other documents as necessary
to achieving its purpose.

The Council membership consists of qualified structural engineers from academic and
research institutions, practicing design engineers, suppliers and manufacturers of fastener
components, fabricators, erectors and code-writing authorities.
The first Specification approved by the Council, called the Specification
for Assembly of Structural Joints Using High Tensile Steel Bolts, was published in
January 1951. Since that time the Council has published sixteen successive editions.
Each was developed through the deliberations and approval of the full Council
membership and based upon past successful usage, advances in the state of knowledge
and changes in engineering design practice. This edition of the Council’s Specification
for Structural Joints Using High-Strength Bolts continues the tradition of earlier editions.
The major changes are:

• ASTM F2280 bolt assemblies were added to the Specification.
• ASTM F1136 coating usage was added to the Specification.
• References to ASTM A153 have been replaced with an updated reference to ASTM
F2329.
• Section 3.3 was modified to provide a clarification on thermally-cut holes.
• Section 3.4 was modified in regard to burrs over z in. high.
• Table 5.1 was modified to show new shear design values for joints based on overall
joint length.
• Sections 7 and 8 had a number of clarifications added in relation to pre-installation
testing and installation practices. Table 7.1 was added to clarify the minimum bolt
pretension for pre-installation verification.
• The “snug-tight” definition and references have been modified to make this
terminology less subjective in its application.
• Appendix B Tables were brought into consistency with equivalent provisions in
Section 5.

In addition, typographical changes have been made throughout this Specification.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-iv
By the Research Council on Structural Connections,

Charles J. Carter
Chairman
Gregory S. Miazga
Vice Chairman
Chad M. Larson
Secretary/Treasurer
Abolhassan Astaneh-Asl
Joseph G. Bahadrian
Rodney L. Baxter
John J. Biel
Peter C. Birkemoe
David W. Bogaty
Salim V. Brahimi
Richard C. Brown
Frank M.A. Buck
Bruce M. Butler
Helen H. Chen
Robert J. Connor
Bastiaan E. Cornelissen
Chris Curven
Nick E. Deal
James M. Doyle
Dean G. Droddy
Peter Dusicka
Douglas B. Ferrell
John W. Fisher
Patrick J. Fortney
Danilo M. Francisco
Karl H. Frank
Michael C. Friel
James B. Gialamas
Rodney D. Gibble
Michael I. Gilmor
Joe Greeenslade
Gilbert Y. Grondin
Jerome F. Hajjar
Allen J. Harrold
Robert A. Hay III
Ian C. Hodgson
Charles E. Hundley
Kaushik A. Iyer
Emmanuel P. Jefferson
Suja G. John
Donald L. Johnson
Ronald B. Johnson
Peter F. Kasper
Daniel J. Kaufman
James S. Kennedy
Lawrence A. Kloiber
Richard F. Knoblock
Lawrence Kruth
Geoffrey L. Kulak
Bill R. Lindley, II
Kenneth B. Lohr
Hussam N. Mahmoud
Curtis Mayes
Jonathan C. McGormley
David L. McKenzie
Neil L. McMillan
Jinesh K. Mehta
William A. Milek, Jr.
Eugene R. Mitchell
Heath E. Mitchell
Scott Munter
Thomas M. Murray
Gian A. Rassati
James M. Ricles
Thomas J. Schlafly
Gerald E. Schroeder
David F. Sharp
Robert E. Shaw, Jr.
Victor Shneur
W. Lee Shoemaker
James A. Swanson
Arun A. Syam
Thomas S. Tarpy, Jr.
William A. Thornton
Raymond H.R. Tide
Todd C. Ude
Amit H. Varma
M. Blane Vines
Floyd J. Vissat
I. Wayne Wallace
Charles J. Wilson
Alfred F. Wong
Joseph A. Yura

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-v
TABLE OF CONTENTS


Symbols ......................................................................................................................... vii
Glossary ......................................................................................................................... ix

Section 1. General Requirements .................................................................................. 1
1.1. Scope ......................................................................................................................... 1
1.2. Loads, Load Factors and Load Combinations ........................................................... 1
1.3. Referenced Standards and Specifications ................................................................. 2
1.4. Drawing Information ................................................................................................. 3

Section 2. Fastener Components ................................................................................... 5
2.1. Manufacturer Certification of Fastener Components ................................................ 5
2.2. Storage of Fastener Components .............................................................................. 5
2.3. Heavy-Hex Structural Bolts ...................................................................................... 6
2.4. Heavy-Hex Nuts ...................................................................................................... 13
2.5. Washers ................................................................................................................... 14
2.6. Washer-Type Indicating Devices ............................................................................ 14
2.7. Twist-Off-Type Tension-Control Bolt Assemblies ................................................. 15
2.8. Alternative-Design Fasteners .................................................................................. 16

Section 3. Bolted Parts ................................................................................................. 17
3.1. Connected Plies ....................................................................................................... 17
3.2. Faying Surfaces ....................................................................................................... 17
3.3. Bolt Holes ............................................................................................................... 21
3.4. Burrs ........................................................................................................................ 24

Section 4. Joint Type .................................................................................................... 26
4.1. Snug-Tightened Joints ............................................................................................. 28
4.2. Pretensioned Joints .................................................................................................. 29
4.3. Slip-Critical Joints ................................................................................................... 30

Section 5. Limit States in Bolted Joints ...................................................................... 31
5.1. Design Shear and Tensile Strength ......................................................................... 32
5.2. Combined Shear and Tension ................................................................................. 35
5.3. Design Bearing Strength at Bolt Holes ................................................................... 36
5.4. Design Slip Resistance ............................................................................................ 38
5.5. Tensile Fatigue ........................................................................................................ 42

Section 6. Use of Washers ............................................................................................ 44
6.1. Snug-Tightened Joints ............................................................................................. 44
6.2. Pretensioned Joints and Slip-Critical Joints ............................................................ 44

Section 7. Pre-Installation Verification ...................................................................... 47
7.1. Tension Calibrator ................................................................................................... 47
7.2. Required Testing ..................................................................................................... 49

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-vi
Section 8. Installation ................................................................................................... 51
8.1. Snug-Tightened Joints ............................................................................................. 51
8.2. Pretensioned Joints and Slip-Critical Joints............................................................. 51

Section 9. Inspection .................................................................................................... 59
9.1. Snug-Tightened Joints ............................................................................................. 59
9.2. Pretensioned Joints .................................................................................................. 59
9.3. Slip-Critical Joints ................................................................................................... 62

Section 10. Arbitration ................................................................................................ 63

Appendix A. Testing Method to Determine the Slip
Coefficient for Coatings Used in Bolted Joints ........................................................... 65
A1. General Provisions .................................................................................................. 65
A2. Test Plates and Coating of the Specimens ............................................................... 66
A3. Slip Tests ................................................................................................................. 69
A4. Tension Creep Tests ................................................................................................ 73

Appendix B. Allowable Stress Design (ASD) Alternative .......................................... 75

References....................................................................................................................... 80

Index................................................................................................................................ 82

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-vii
SYMBOLS


The following symbols are used in this Specification.

A
b
Cross-sectional area based upon the nominal diameter of bolt, in.
2


D Slip probability factor as described in Section 5.4.2

D
u
Multiplier that reflects the ratio of the mean installed bolt pretension to the
specified minimum bolt pretension, T
m, as described in Section 5.4.1

F
n
Nominal strength (per unit area), ksi

F
u
Specified minimum tensile strength (per unit area), ksi

I Moment of inertia of the built-up member about the axis of buckling (see
the Commentary to Section 5.4), in.
4


L Total length of the built-up member (see the Commentary to Section 5.4), in.

L
s Length of a connection measured between extreme bolt hole centers parallel
to the line of force (see Table 5.1), in.

L
c Clear distance, in the direction of load, between the edge of the hole and the
edge of the adjacent hole or the edge of the material, in.

N
b Number of bolts in the joint

P
u Required strength in compression, kips; Axial compressive force in the
built-up member (see the Commentary to Section 5.4), kips

Q First moment of area of one component about the axis of buckling of the
built-up member (see the Commentary to Section 5.4), in.
3


R
n Nominal strength, kips

R
s Service-load slip resistance, kips

T Applied service load in tension, kips

T
m Specified minimum bolt pretension (for pretensioned joints as specified in Table
8.1), kips

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-viii

T
u Required strength in tension (factored tensile load), kips

V
u Required strength in shear (factored shear load), kips

d
b Nominal diameter of bolt, in.

t Thickness of the connected material, in.

t´ Total thickness of fillers or shims (see Section 5.1), in.

k
s Slip coefficient for an individual specimen determined in accordance with
Appendix A

φ Resistance factor

φR
n Design strength, kips

µ Mean slip coefficient

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-ix
GLOSSARY


The following terms are used in this Specification. Where used, they are italicized to alert
the user that the term is defined in this Glossary.

Coated Faying Surface. A faying surface that has been primed, primed and painted or
protected against corrosion, except by hot-dip galvanizing.

Connection. An assembly of one or more joints that is used to transmit forces between two
or more members.

Contractor. The party or parties responsible to provide, prepare and assemble the fastener
components and connected parts described in this Specification.

Design Strength. φR
n, the resistance provided by an element or connection; the product of
the nominal strength, R
n, and the resistance factor φ.

Engineer of Record. The party responsible for the design of the structure and for the
approvals that are required in this Specification (see Section 1.4 and the corresponding
Commentary).

Fastener Assembly. An assembly of fastener components that is supplied, tested and
installed as a unit.

Faying Surface. The plane of contact between two plies of a joint.

Firm Contact. The condition that exists on a faying surface when the plies are solidly
seated against each other, but not necessarily in continuous contact.

Galvanized Faying Surface. A faying surface that has been hot-dip galvanized.

Grip. The total thickness of the plies of a joint through which the bolt passes, exclusive
of washers or direct-tension indicators.

Guide. The Guide to Design Criteria for Bolted and Riveted Joints, 2
nd
Edition (Kulak
et al., 1987).

High-Strength Bolt. An ASTM A325 or A490 bolt, an ASTM F1852 or F2280 twist-
off-type tension-control bolt or an alternative-design fastener that meets the requirements
in Section 2.8.

Inspector. The party responsible to ensure that the contractor has satisfied the provisions
of this Specification in the work.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-x

Joint. A bolted assembly with or without collateral materials that is used to join two
structural elements.

Lot. In this Specification, the term lot shall be taken as that given in the ASTM Standard
as follows:

Product ASTM Standard
See Lot Definition
in ASTM Section
A325 9.4
Conventional bolts
A490 11.4
F1852 13.4
Twist-off-type tension-control
bolt assemblies
F2280 3.1.1
Nuts A563 9.2
Washers F436 9.2
Compressible-washer-type
direct tension indicators
F959 10.2.2

Manufacturer. The party or parties that produce the components of the fastener assembly.

Mean Slip Coefficient. µ, the ratio of the frictional shear load at the faying surface to the
total normal force when slip occurs.

Nominal Strength. The capacity of a structure or component to resist the effects of loads,
as determined by computations using the specified material strengths and dimensions and
equations derived from accepted principles of structural mechanics or by field tests or
laboratory tests of scaled models, allowing for modeling effects and differences between
laboratory and field conditions.

Pretensioned Joint. A joint that transmits shear and/or tensile loads in which the bolts have
been installed in accordance with Section 8.2 to provide a pretension in the installed bolt.

Protected Storage. The continuous protection of fastener components in closed containers
in a protected shelter as described in the Commentary to Section 2.2.

Prying Action. Lever action that exists in connections in which the line of application of
the applied load is eccentric to the axis of the bolt, causing deformation of the fitting and
an amplification of the axial tension in the bolt.

Required Strength. The load effect acting on an element or connection determined by
structural analysis from the factored loads using the most appropriate critical load
combination.

Routine Observation. Periodic monitoring of the work in progress.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-xi

Shear/Bearing Joint. A snug-tightened joint or pretensioned joint with bolts that transmit
shear loads and for which the design criteria are based upon the shear strength of the
bolts and the bearing strength of the connected materials.

Slip-Critical Joint. A joint that transmits shear loads or shear loads in combination with
tensile loads in which the bolts have been installed in accordance with Section 8.2 to
provide a pretension in the installed bolt (clamping force on the faying surfaces), and
with faying surfaces that have been prepared to provide a calculable resistance against
slip.

Snug-Tightened Joint. A joint in which the bolts have been installed in accordance with
Section 8.1. Snug tight is the condition that exists when all of the plies in a connection
have been pulled into firm contact by the bolts in the joint and all of the bolts in the joint
have been tightened sufficiently to prevent the removal of the nuts without the use of a
wrench.

Start of Work. Any time prior to the installation of high-strength bolts in structural
connections in accordance with Section 8.

Sufficient Thread Engagement. Having the end of the bolt extending beyond or at least
flush with the outer face of the nut; a condition that develops the strength of the bolt.

Supplier. The party that sells the fastener components to the party that will install them
in the work.

Tension Calibrator. A calibrated tension-indicating device that is used to verify the
acceptability of the pretensioning method when a pretensioned joint or slip-critical joint
is specified.

Uncoated Faying Surface. A faying surface that has neither been primed, painted, nor
galvanized and is free of loose scale, dirt and other foreign material.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-xii

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-1
SPECIFICATION FOR STRUCTURAL JOINTS
USING HIGH-STRENGTH BOLTS



SECTION 1. GENERAL REQUIREMENTS

1.1. Scope
This Specification covers the design of bolted joints and the installation and
inspection of the assemblies of fastener components listed in Section 1.3, the
use of alternative-design fasteners as permitted in Section 2.8 and alternative
washer-type indicating devices as permitted in Section 2.6.2, in structural steel
joints. This Specification relates only to those aspects of the connected
materials that bear upon the performance of the fastener components. The
Symbols, Glossary and Appendices are a part of this Specification.

Commentary:
This Specification deals principally with two strength grades of high-strength
bolts, ASTM A325 and A490, and with their design, installation and inspection
in structural steel joints. Equivalent fasteners, however, such as ASTM F1852
(equivalent to ASTM A325) and F2280 (equivalent to ASTM A490) twist-off-
type tension-control bolt assemblies, are also covered. These provisions may
not be relied upon for high-strength fasteners of other chemical composition,
mechanical properties, or size. These provisions do not apply when material
other than steel is included in the grip; nor are they applicable to anchor rods.
This Specification relates only to the performance of fasteners in
structural steel joints and those few aspects of the connected material that affect
this performance. Many other aspects of connection design and fabrication are of
equal importance and must not be overlooked. For more general information on
design and issues relating to high-strength bolting and the connected material,
refer to current steel design textbooks and the Guide to Design Criteria for
Bolted and Riveted Joints, 2
nd
Edition (Kulak et al., 1987).

1.2. Loads, Load Factors and Load Combinations
The design and construction of the structure shall conform to an applicable load
and resistance factor design specification for steel structures. Because factored
load combinations account for the reduced probabilities of maximum loads
acting concurrently, the design strengths given in this Specification shall not be
increased. Appendix B is included as an alternative approach.

Commentary:
This Specification is written in the load and resistance factor design (LRFD)
format, which provides a method of proportioning structural components such
that no applicable limit state is exceeded when the structure is subject to all

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-2
appropriate load combinations. When a structure or structural component ceases
to fulfill the intended purpose in some way, it is said to have exceeded a limit
state. Strength limit states concern maximum load-carrying capability, and are
related to safety. Serviceability limit states are usually related to performance
under normal service conditions, and usually are not related to strength or
safety. The term “resistance” includes both strength limit states and
serviceability limit states.
The design strength φR n
is the nominal strength R
n
multiplied by the
resistance factor φ. The factored load is the sum of the nominal loads multiplied
by load factors, with due recognition of load combinations that account for the
improbability of simultaneous occurrence of multiple transient load effects at
their respective maximum values. The design strength φR n
of each structural
component or assemblage must equal or exceed the required strength (V u, Tu,
etc.).
Although loads, load factors and load combinations are not explicitly
specified in this Specification, the resistance factors herein are based upon those
specified in ASCE 7. When the design is governed by other load criteria, the
resistance factors specified herein should be adjusted as appropriate.

1.3. Referenced Standards and Specifications
The following standards and specifications are referenced herein:

American Institute of Steel Construction
Specification for Structural Steel Buildings, June 22, 2010

American National Standards Institute
ANSI/ASME B18.2.6-06 Fasteners for Use in Structural Applications

American Society for Testing and Materials
ASTM A123-09 Standard Specification for Zinc (Hot-Dip Galvanized)
Coatings on Iron and Steel Products
ASTM A194-09 Specification for Carbon and Alloy Steel Nuts for Bolts for
High Pressure or High-Temperature Service, or Both
ASTM A325-09a Standard Specification for Structural Bolts, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength
ASTM A490-09 Standard Specification for Heat-Treated Steel Structural
Bolts, 150 ksi Minimum Tensile Strength
ASTM A563-07a Standard Specification for Carbon and Alloy Steel Nuts
ASTM B695-04(2009)

Standard Specification for Coatings of Zinc
Mechanically Deposited on Iron and Steel
ASTM F436-09 Standard Specification for Hardened Steel Washers
ASTM F959-09 Standard Specification for Compressible-Washer-Type
Direct Tension Indicators for Use with Structural Fasteners

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-3
ASTM F1136-04 Standard Specification for Zinc/Aluminum Corrosion
Protective Coatings for Fasteners
ASTM F1852-08 Standard Specification for “Twist Off” Type Tension
Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated,
120/105 ksi Minimum Tensile Strength
ASTM F2280-08e1 Standard Specification for “Twist Off” Type Tension
Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi
Minimum Tensile Strength
ASTM F2329-05 Standard Specification for Zinc Coating, Hot-Dip,
Requirements for Application to Carbon and Alloy Steel Bolts, Screws,
Washers, Nuts, and Special Threaded Fasteners

American Society of Civil Engineers
ASCE 7-05 Minimum Design Loads for Buildings and Other Structures

IFI: Industrial Fastener Institute
IFI 144 Test Evaluation Procedures for Coating Qualification Intended for Use
on High-Strength Structural Bolts

SSPC: The Society for Protective Coatings
SSPC-PA2-04 Measurement of Dry Coating Thickness With Magnetic Gages

Commentary:
Familiarity with the referenced AISC, ASCE, ASME, ASTM and SSPC
specification requirements is necessary for the proper application of this
Specification. The discussion of referenced specifications in this Commentary is
limited to only a few frequently overlooked or misunderstood items.

1.4. Drawing Information
The Engineer of Record shall specify the following information in the
contract documents:

(1) The ASTM designation and type (Section 2) of bolt to be used;
(2) The joint type (Section 4);
(3) The required class of slip resistance if slip-critical joints are specified
(Section 4); and,
(4) Whether slip is checked at the factored-load level or the service-load level, if
slip-critical joints are specified (Section 5).

Commentary:
A summary of the information that the Engineer of Record is required to
provide in the contract documents is provided in this Section. The parenthetical
reference after each listed item indicates the location of the actual requirement

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-4
in this Specification. In addition, the approval of the Engineer of Record is
required in this Specification in the following cases:

(1) For the reuse of non-galvanized ASTM A325 bolts (Section 2.3.3);
(2) For the use of alternative washer-type indicating devices that differ from
those that meet the requirements of ASTM F959, including the
corresponding installation and inspection requirements that are provided by
the manufacturer (Section 2.6.2);
(3) For the use of alternative-design fasteners, including the corresponding
installation and inspection requirements that are provided by the
manufacturer (Section 2.8);
(4) For the use of faying-surface coatings in slip-critical joints that provide a
mean slip coefficient determined per Appendix A, but differing from Class A
or Class B (Section 3.2.2(b));
(5) For the use of thermal cutting in the production of bolt holes (Section 3.3);
(6) For the use of oversized (Section 3.3.2), short-slotted (Section 3.3.3) or
long slotted holes (Section 3.3.4) in lieu of standard holes;
(7) For the use of a value of D u
other than 1.13 (Section 5.4.1); and,
(8) For the use of a value of D other than 0.80 (Section 5.4.2).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-5
SECTION 2. FASTENER COMPONENTS

2.1. Manufacturer Certification of Fastener Components
Manufacturer certifications documenting conformance to the applicable
specifications required in Sections 2.3 through 2.8 for all fastener
components used in the fastener assemblies shall be available to the Engineer of
Record and inspector prior to assembly or erection of structural steel.

Commentary:
Certification by the manufacturer or supplier of high-strength bolts, nuts,
washers and other components of the fastener assembly is required to ensure
that the components to be used are identifiable and meet the requirements of the
applicable ASTM Specifications.

2.2. Storage of Fastener Components
Fastener components shall be protected from dirt and moisture in closed
containers at the site of installation. Only as many fastener components as are
anticipated to be installed during the work shift shall be taken from protected
storage. Fastener components that are not incorporated into the work shall be
returned to protected storage at the end of the work shift. Fastener components
shall not be cleaned or modified from the as-delivered condition.
Fastener components that accumula te rust or dirt shall not be
incorporated into the work unless they are requalified as specified in Section 7.
ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies and
alternative-design fasteners that meet the requirements in Section 2.8 shall not
be relubricated, except by the manufacturer.

Commentary:
Protected storage requirements are specified for high-strength bolts, nuts,
washers and other fastener components with the intent that the condition of the
components be maintained as nearly as possible to the as-manufactured
condition until they are installed in the work. This involves:

(1) The storage of the fastener components in closed containers to protect from
dirt and corrosion;
(2) The storage of the closed containers in a protected shelter;
(3) The removal of fastener components from protected storage only as
necessary; and,
(4) The prompt return of unused fastener components to protected storage.

To facilitate manufacture, prevent corrosion and facilitate installation,
the manufacturer may apply various coatings and oils that are present in the as-
manufactured condition. As such, the condition of supplied fastener components

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-6
or the fastener assembly should not be altered to make them unsuitable for
pretensioned installation.
If fastener components become dirty, rusty, or otherwise have their as-
received condition altered, they may be unsuitable for pretensioned
installation. It is also possible that a fastener assembly may not pass the pre-
installation verification requirements of Section 7. Except for ASTM F1852
and F2280 twist-off-type tension-control bolt assemblies (Section 2.7) and
some alternative-design fasteners (Section 2.8), fastener components can be
cleaned and lubricated by the fabricator or the erector. Because the acceptability
of their installation is dependent upon specific lubrication, ASTM F1852 and
F2280 twist-off-type tension-control bolt assemblies and some alternative-
design fasteners are suitable only if the manufacturer lubricates them.

2.3. Heavy-Hex Structural Bolts
2.3.1. Specifications: Heavy-hex structural bolts shall meet the requirements of
ASTM A325 or ASTM A490. The Engineer of Record shall specify the ASTM
designation and type of bolt (see Table 2.1) to be used.

2.3.2. Geometry: Heavy-hex structural bolt dimensions shall meet the requirements of
ANSI/ASME B18.2.6. The bolt length used shall be such that the end of the
bolt extends beyond or is at least flush with the outer face of the nut when
properly installed.

2.3.3 Reuse: ASTM A490 bolts, ASTM F1852 and F2280 twist-off-type tension-
control bolt assemblies, and galvanized or Zn/Al Inorganic coated ASTM A325
bolts shall not be reused. When approved by the Engineer of Record, black
ASTM A325 bolts are permitted to be reused. Touching up or re-tightening
bolts that may have been loosened by the installation of adjacent bolts shall not
be considered to be a reuse.

Commentary:
ASTM A325 and ASTM A490 currently provide for two types (according to
metallurgical classification) of high-strength bolts, supplied in diameters
from 2 in. to 12 in. inclusive. Type 1 covers medium carbon steel for ASTM
A325 bolts and alloy steel for ASTM A490 bolts. Type 3 covers high-strength
bolts that have improved atmospheric corrosion resistance and weathering
characteristics. (Reference to Type 2 ASTM A325 and Type 2 A490 bolts,
which appeared in previous editions of this Specification, has been removed
following the removal of similar reference within the ASTM A325 and A490
Specifications). When the bolt type is not specified, either Type 1 or Type 3
may be supplied at the option of the manufacturer. Note that ASTM F1852
and ASTM F2280 twist-off-type tension-control bolt assemblies may be
manufactured with a button head or hexagonal head; other requirements for
these fastener assemblies are found in Section 2.7.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-7
Table 2.1. Acceptable ASTM A563 Nut Grade and Finish
and ASTM F436 Washer Type and Finish

ASTM
Desig.
Bolt
Type
Bolt Finish
d

ASTM A563 Nut
Grade and Finish d

ASTM F436 Washer
Type and Finish
a,d

Plain (uncoated)
C, C3, D, DH
c
and DH3;
plain
1; plain
Galvanized
DH
c
; galvanized and
lubricated
1; galvanized
1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH
c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
A325
3 Plain C3 and DH3; plain 3; plain
Plain (uncoated)
C, C3, DH
c
and DH3;
plain
1; plain
b

Mechanically Galvanized
DH
c
; mechanically
galvanized and lubricated
1; mechanically
galvanized
b

1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH
c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
b

F1852
3 Plain C3 and DH3; plain 3; plain
b

Plain DH
c
and DH3; plain 1; plain
1
Zn/Al Inorganic, per
ASTM F1136 Grade 3
DH c
; Zn/Al Inorganic, per
ASTM F1136 Grade 5
1; Zn/Al Inorganic, per
ASTM F1136 Grade 3
A490
3 Plain DH3; plain 3; plain
1 Plain DH
c
and DH3; plain 1; plain
b

F2280
3 Plain DH3; plain 3; plain
b


a
Applicable only if washer is required in Section 6.

b
Required in all cases under nut per Section 6.

c
The substitution of ASTM A194 grade 2H nuts in place of ASTM A563 grade DH nuts is
permitted.

d
“Galvanized” as used in this table refers to hot-dip galvanizing in accordance with ASTM F2329 or
mechanical galvanizing in accordance with ASTM B695.

e
"Zn/Al Inorganic" as used in this table refers to application of a Zn/Al Corrosion Protective
Coating in accordance with ASTM F1136 which has met all the requirements of IFI-144.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-8

Regular heavy-hex structural bolts and twist-off-type tension-control
bolt assemblies are required by ASTM Specifications to be distinctively
marked. Certain markings are mandatory. In addition to the mandatory
markings, the manufacturer may apply additional distinguishing markings. The
mandatory and sample optional markings are illustrated in Figure C-2.1.
ASTM Specifications permit the galvanizing of ASTM A325 bolts but
not ASTM A490 bolts. Similarly, the application of zinc to ASTM A490 bolts
by metallizing or mechanical coating is not permitted because the effect of
mechanical galvanizing on embrittlement and delayed cracking of ASTM
A490 bolts has not been fully investigated to date.

Bolt/Nut Type 1 Type 3
ASTM A325 bolt

Three radial lines 120°
apart are optional

ASTM F1852 bolt

Three radial lines 120°
apart are optional

ASTM A490 bolt

ASTM F2280 bolt


Arcs indicate
Grade C

Arcs with “3” indicate
Grade C3

Grade D
ASTM A563 nut

Grade DH

Grade DH3
Notes:
1. XYZ represents the manufacturer’s identification mark.
2. ASTM F1852 and ASTM F2280 twist-off-type tension-control bolt assemblies are
also produced with a heavy-hex head that has similar markings.
Figure C-2.1. Required marks for acceptable bolt and nut assemblies.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-9
An extensive investigation conducted in accordance with IFI-144 was
completed in 2006 and presented to the ASTM F16 Committee on Fasteners
(F16 Research Report RR: F16-1001). The investigation demonstrated that
Zn/Al Inorganic Coating, when applied per ASTM F1136 Grade 3 to ASTM
A490 bolts, does not cause delayed cracking by internal hydrogen
embrittlement, nor does it accelerate environmental hydrogen embrittlement by
cathodic hydrogen absorption. It was determined that this is an acceptable finish
to be used on Type 1 ASTM A325 and A490 bolts and F1852 and F2280 twist-
off-type tension-control bolt assemblies.
Although these bolts are typically not used in this manner, prior to
embedding bolts coated with Zn/Al Inorganic Coating in concrete, it should be
confirmed that there is no negative impact (to the bolt or the concrete) caused by
the reaction of the intended concrete mix and the aluminum in the coating.
Galvanized high-strength bolts and nuts must be considered as a
manufactured fastener assembly. Insofar as the hot-dip galvanized bolt and nut
assembly is concerned, four principal factors must be considered so that the
provisions of this Specification are understood and properly applied. These are:

(1) The effect of the hot-dip galvanizing process on the mechanical properties
of high-strength steels;
(2) The effect of over-tapping for hot-dip galvanized coatings on the nut
stripping strength;
(3) The effect of galvanizing and lubrication on the torque required for
pretensioning; and,
(4) Shipping requirements.

Birkemoe and Herrschaft (1970) showed that, in the as-galvanized
condition, galvanizing increases the friction between the bolt and nut threads as
well as the variability of the torque-induced pretension. A lower required
torque and more consistent results are obtained if the nuts are lubricated. Thus,
it is required in ASTM A325 that a galvanized bolt and lubricated galvanized
or Zn/Al Inorganic coated nut be assembled in a steel joint with an equivalently
coated washer and tested by the supplier prior to shipment. This testing must
show that the galvanized or Zn/Al Inorganic coated nut with the lubricant
provided may be rotated from the snug-tight condition well in excess of the
rotation required for pretensioned installation without stripping. This
requirement applies to hot-dip galvanized, mechanically galvanized, and Zn/Al
Inorganic coated fasteners. The above requirements clearly indicate that:

(1) Galvanized and Zn/Al Inorganic coated high-strength bolts and nuts must
be treated as a fastener assembly;
(2) The supplier must supply nuts that have been lubricated and tested with the
supplied high-strength bolts;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-10
(3) Nuts and high-strength bolts must be shipped together in the same shipping
container; and,
(4) The purchase of galvanized high-strength bolts and galvanized nuts from
separate suppliers is not in accordance with the intent of the ASTM
Specifications because the control of over-tapping, the testing and
application of lubricant and the supplier responsibility for the performance
of the assembly would clearly not have been provided as required.

Because some of the lubricants used to meet the requirements of
ASTM Specifications are water soluble, it is advisable that galvanized high-
strength bolts and nuts be shipped and stored in plastic bags or in sealed wood
or metal containers. Containers of fasteners with hot-wax-type lubricants should
not be subjected to heat that would cause depletion or change in the properties
of the lubricant.
Both the hot-dip galvanizing process (ASTM F2329) and the
mechanical galvanizing process (ASTM B695) are recognized in ASTM A325.
The effects of the two processes upon the performance characteristics and
requirements for proper installation are distinctly different. Therefore,
distinction between the two must be noted in the comments that follow. In
accordance with ASTM A325, all threaded components of the fastener
assembly must be galvanized by the same process and the supplier’s option is
limited to one process per item with no mixed processes in a lot. Mixing high-
strength bolts that are galvanized by one process with nuts that are galvanized
by the other may result in an unworkable assembly.
Steels in the 200 ksi and higher tensile-strength range are subject to
embrittlement if hydrogen is permitted to remain in the steel and the steel is
subjected to high tensile stress. The minimum tensile strength of ASTM A325
bolts is 105 ksi or 120 ksi, depending upon the diameter, and maximum
hardness limits result in production tensile strengths well below the critical
range. The maximum tensile strength for ASTM A490 bolts was set at 170 ksi
to provide a little more than a ten-percent margin below 200 ksi. However,
because manufacturers must target their production slightly higher than the
required minimum, ASTM A490 bolts close to the critical range of tensile
strength must be anticipated. For black high-strength bolts, this is not a cause
for concern. However, if the bolt is hot-dip galvanized, delayed brittle fracture
in service is a concern because of the possibility of the introduction of
hydrogen during the pickling operation of the hot-dip galvanizing process and
the subsequent “sealing-in” of the hydrogen by the zinc coating. There also exists
the possibility of cathodic hydrogen absorption arising from the corrosion
process in certain aggressive environments.
ASTM A325 and A490 bolts are manufactured to dimensions as
specified in ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure
C-2.2, are shown in Table C-2.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-11
Table C-2.1. Bolt and Nut Dimensions

Heavy-
Hex Bolt Dimensions, in. Heavy-Hex Nut Dims., in.
Nominal Bolt
Diameter,
db, in. Width across
flats,
F
Height,
H1
Thread
Length, T
Width across
flats,
W
Height,
H2
2 d c 1 d
31
64

s 1z
25
64

14 1 z
39
64

w 14 I 1a 1 4
47
64

d 1v
35
64
12 1 v
55
64

1 1s
39
64
1w 1 s
63
64

18 1m n 2 1m 1
7
64

14 2 G 2 2 1
7
32

1a 2x H 24 2 x 1
11
32

12 2a , 24 2 a 1
15
32



The principal geometric features of heavy-hex structural bolts that
distinguish them from bolts for general application are the size of the head and
the unthreaded body length. The head of the heavy-hex structural bolt is
specified to be the same size as a heavy-hex nut of the same nominal diameter
so that the ironworker may use the same wrench or socket either on the bolt
head and/or on the nut. With the specific exception of fully threaded ASTM
A325T bolts as discussed below, heavy-hex structural bolts have shorter
threaded lengths than bolts for general applications. By making the body length
of the bolt the control dimension, it has been possible to exclude the thread from
all shear planes when desirable, except for the case of thin outside parts
adjacent to the nut.



Figure C-2.2. Heavy-hex structural bolt and heavy-hex nut.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-12
The shorter threaded lengths provided with heavy-hex structural bolts
tend to minimize the threaded portion of the bolt within the grip. Accordingly,
care must also be exercised to provide adequate threaded length between the nut
and the bolt head to enable appropriate installation without jamming the nut on
the thread run-out.
Depending upon the increments of supplied bolt lengths, the full thread
may extend into the grip for an assembly without washers by as much as a in.
for 2, s, w, d, 14, and 12 in. diameter high-strength bolts and as much as 2
in. for 1, 18, and 1a in. diameter high-strength bolts. When the thickness of
the ply closest to the nut is less than the a in. or 2 in. dimensions given
above, it may still be possible to exclude the threads from the shear plane,
when required, depending upon the specific combination of bolt length, grip
and number of washers used under the nut (Carter, 1996). If necessary, the next
increment of bolt length can be specified with ASTM F436 washers in
sufficient number to both exclude the threads from the shear plane and
ensure that the assembly can be installed with adequate threads included in the
grip for proper installation.
At maximum accumulation of tolerances from all components in the
fastener assembly, the thread run-out will cross the shear plane for the critical
combination of bolt length and grip used to select the foregoing rules of thumb
for ply thickness required to exclude the threads. This condition is not of
concern, however, for two reasons. First, it is too unlikely that all component
tolerances will accumulate at their maximum values to warrant consideration.
Second, even if the maximum accumulation were to occur, the small reduction
in shear strength due to the presence of the thread run-out (not a full thread)
would be negligible.
There is an exception to the foregoing thread length requirements for
ASTM A325 bolts, but not for ASTM A490 bolts, ASTM F1852 or ASTM
F2280 twist-off-type tension-control bolt assemblies. Supplementary
requirements in ASTM A325 permit the purchaser to specify a bolt that is
threaded for the full length of the shank, when the bolt length is equal to or less
than four times the nominal diameter. This exception is provided to increase
economy through simplified ordering and inventory control in the fabrication
and erection of some structures. It is particularly useful in those structures in
which the strength of the connection is dependent upon the bearing strength of
relatively thin connected material rather than the shear strength of the bolt,
whether with threads in the shear plane or not. As required in ASTM A325,
high-strength bolts ordered to such supplementary requirements must be
marked with the symbol A325T.
To determine the required bolt length, the value shown in Table C-2.2
should be added to the grip (i.e., the total thickness of all connected material,
exclusive of washers). For each ASTM F436 washer that is used, add E in.; for
each beveled washer, add c in. The tabulated values provide appropriate
allowances for manufacturing tolerances and also provide sufficient thread

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-13
Table C-2.2. Bolt Length Selection Increment

Nominal Bolt
Diameter, d
b, in.
To Determine the
Required Bolt Length,
Add to Grip, in.

2 n
s d
w 1
d 18
1 14
18 12
14 1s
1a 1w
12 1d

engagement with an installed heavy-hex nut. The length determined by the use
of Table C-2.2 should be adjusted to the nearest 4-in. length increment (2-in.
length increment for lengths exceeding 6 in.). A more extensive table for bolt
length selection based upon these rules is available (Carter, 1996).
Pretensioned installation involves the inelastic elongation of the
portion of the threaded length between the nut and the thread run-out. ASTM
A490 bolts and galvanized ASTM A325 bolts possess sufficient ductility to
undergo one pretensioned installation, but are not consistently ductile enough to
undergo a second pretensioned installation. Black ASTM A325 bolts, however,
possess sufficient ductility to undergo more than one pretensioned installation
as suggested in the Guide (Kulak et al., 1987). As a simple rule of thumb, a
black ASTM A325 bolt is suitable for reuse if the nut can be run up the threads
by hand.

2.4. Heavy-Hex Nuts
2.4.1. Specifications: Heavy-hex nuts shall meet the requirements of ASTM A563.
The grade and finish of such nuts shall be as given in Table 2.1.

2.4.2. Geometry: Heavy-hex nut dimensions shall meet the requirements of
ANSI/ASME B18.2.6.

Commentary:
Heavy-hex nuts are required by ASTM Specifications to be distinctively
marked. Certain markings are mandatory. In addition to the mandatory
markings, the manufacturer may apply additional distinguishing markings. The

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-14
mandatory markings and sample optional markings are illustrated in Figure C-
2.1.
Hot-dip galvanizing affects the stripping strength of the bolt-nut
assembly because, to accommodate the relatively thick zinc coatings of non-
uniform thickness on bolt threads, it is usual practice to hot-dip galvanize the
blank nut and then to tap the nut over-size. This results in a reduction of thread
engagement with a consequent reduction of the stripping strength. Only the
stronger hardened nuts have adequate strength to meet ASTM thread strength
requirements after over-tapping. Therefore, as specified in ASTM A325, only
ASTM A563 grade DH are suitable for use as galvanized nuts. This requirement
should not be overlooked if non-galvanized nuts are purchased and then sent to a
local galvanizer for hot-dip galvanizing. Because the mechanical galvanizing
process results in a more uniformly distributed and smooth zinc coating, nuts
may be tapped over-size before galvanizing by an amount that is less than that
required for the hot-dip process before galvanizing.
Despite the thin-film of the Zn/Al Inorganic Coating, tapping the nuts
over-size may be necessary. Similar to mechanical galvanizing, the process
results in a comparatively uniform and evenly distributed coating.
In earlier editions, this Specification permitted the use of ASTM A194
grade 2H nuts in the same finish as that permitted for ASTM A563 nuts in the
following cases: with ASTM A325 Type 1 plain, Type 1 galvanized and Type 3
plain bolts and with ASTM A490 Type 1 plain bolts. Reference to ASTM A194
grade 2H nuts has been removed following the removal of similar reference
within the ASTM A325 and A490 Specifications. However, it should be noted
that ASTM A194 grade 2H nuts remain acceptable in these applications as
indicated by footnote in Table 2.1, should they be available.
ASTM A563 nuts are manufactured to dimensions as specified in
ANSI/ASME B18.2.6. The basic dimensions, as defined in Figure C-2.2, are
shown in Table C-2.1

2.5. Washers
Flat circular washers and square or rectangular beveled washers shall meet the
requirements of ASTM F436, except as provided in Table 6.1. The type and
finish of such washers shall be as given in Table 2.1.

2.6. Washer-Type Indicating Devices
The use of washer-type indicating devices is permitted as described in
Sections 2.6.1 and 2.6.2.

2.6.1. Compressible-Washer-Type Direct Tension Indicators: Compressible-washer-
type direct tension indicators shall meet the requirements of ASTM F959.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-15
2.6.2. Alternative Washer-Type Indicating Devices: When approved by the Engineer
of Record, the use of alternative washer-type indicating devices that differ from
those that meet the requirements of ASTM F959 is permitted.
Detailed installation instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the bolt without undue
damage to the threads;
(3) The placement of fastener assemblies in all types and sizes of holes,
including placement and orientation of the alternative and regular washers;
(4) The systematic assembly of the joint, progressing from the most rigid part
of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all bolts in the joint,
progressing from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts.

Detailed inspection instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the alternative
washer-type indicating device.

2.7. Twist-Off-Type Tension-Control Bolt Assemblies
2.7.1. Specifications: Twist-off-type tension-control bolt assemblies shall meet the
requirements of ASTM F1852 or F2280. The Engineer of Record shall specify
the type of bolt (Table 2.1) to be used.

2.7.2. Geometry: Twist-off-type tension-control bolt assembly dimensions shall meet
the requirements of ASTM F1852 or ASTM F2280. The bolt length used shall
be such that the end of the bolt extends beyond or is at least flush with the outer
face of the nut when properly installed.

Commentary:
It is the policy of the Research Council on Structural Connections to directly
recognize only those fastener components that are manufactured to meet the
requirements in an approved ASTM specification. Prior to this edition, the
RCSC Specification provided for the use of ASTM A325 and A490 bolts, and
F1852 twist-off-type tension-control bolt assemblies directly and alternative-
design fasteners meeting detailed requirements similar to those in Section 2.8
when approved by the Engineer of Record. With this edition, ASTM F2280

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-16
twist-off-type tension-control bolt assemblies are now recognized directly.
Essentially, ASTM F2280 relates an ASTM A490-equivalent product to a
specific method of installation that is suitable for use in all joint types as
described in Section 8. Provision has also been retained for approval by the
Engineer of Record of other alternative-design fasteners that meet the detailed
requirements in Section 2.8.
If galvanized, ASTM F1852 twist-off-type tension-control bolt
assemblies are required in ASTM F1852 to be mechanically galvanized.

2.8. Alternative-Design Fasteners
When approved by the Engineer of Record, the use of alternative-design
fasteners is permitted if they:

(1) Meet the materials, manufacturing and chemical composition requirements
of ASTM A325 or ASTM A490, as applicable;
(2) Meet the mechanical property requirements of ASTM A325 or ASTM A490
in full-size tests;
(3) Have a body diameter and bearing area under the bolt head and nut that is
equal to or greater than those provided by a bolt and nut of the same
nominal dimensions specified in Sections 2.3 and 2.4; and,
(4) Are supplied and used in the work as a fastener assembly.

Such alternative-design fasteners are permitted to differ in other dimensions
from those of the specified high-strength bolts and nuts.
Detailed installation instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) The required character and frequency of pre-installation verification;
(2) The alignment of bolt holes to permit insertion of the alternative-design
fastener without undue damage;
(3) The placement of fastener assemblies in all holes, including any washer
requirements as appropriate;
(4) The systematic assembly of the joint, progressing from the most rigid part
of the joint until the connected plies are in firm contact; and,
(5) The subsequent systematic pretensioning of all fastener assemblies in the
joint, progressing from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts.
Detailed inspection instructions shall be prepared by the manufacturer
in a supplemental specification that is approved by the Engineer of Record and
shall provide for:

(1) Observation of the required pre-installation verification testing; and,
(2) Subsequent routine observation to ensure the proper use of the
alternative-design fastener.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-17
SECTION 3. BOLTED PARTS

3.1. Connected Plies
All connected plies that are within the grip of the bolt and any materials that are
used under the head or nut shall be steel with faying surfaces that are uncoated,
coated or galvanized as defined in Section 3.2. Compressible materials shall not
be placed within the grip of the bolt. The slope of the surfaces of parts in
contact with the bolt head and nut shall be equal to or less than 1:20 with
respect to a plane that is normal to the bolt axis.

Commentary:
The presence of gaskets, insulation or any compressible materials other than the
specified coatings within the grip would preclude the development and/or
retention of the installed pretensions in the bolts, when required.
ASTM A325, A490, F1852, and F2280 bolt assemblies are ductile
enough to deform to a surface with a slope that is less than or equal to 1:20 with
respect to a plane normal to the bolt axis. Greater slopes are undesirable because
the resultant localized bending decreases both the strength and the ductility of
the bolt.

3.2. Faying Surfaces
Faying surfaces and surfaces adjacent to the bolt head and nut shall be free of
dirt and other foreign material. Additionally, faying surfaces shall meet the
requirements in Sections 3.2.1 or 3.2.2.

3.2.1. Snug-Tightened Joints and Pretensioned Joints: The faying surfaces of snug-
tightened joints and pretensioned joints as defined in Sections 4.1 and 4.2 are
permitted to be uncoated, coated with coatings of any formulation or
galvanized.

Commentary:
In both snug-tightened joints and pretensioned joints, the ultimate strength is
dependent upon shear transmitted by the bolts and bearing of the bolts against
the connected material. It is independent of any frictional resistance that may
exist on the faying surfaces. Consequently, since slip resistance is not an issue,
the faying surfaces are permitted to be uncoated, coated, or galvanized without
regard to the resulting slip coefficient obtained.
For pretensioned joints, caution should be used in the specification and
application of thick coatings within the faying surface. Although slip resistance
is not required, fastener assemblies in joints with thick or multi-layer coatings
may exhibit significant loss of pretension because of compressive creep in softer
coatings such as epoxies, alkyds, vinyls, acrylics, and urethanes. Previous bolt
relaxation studies have been conducted using uncoated steel with black bolts or
galvanized steel with galvanized bolts. Galvanized surfaces ranged up to

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-18
approximately 4 mils of thickness, of which approximately half the thickness
was the compressible soft pure zinc surface layer. The underlying zinc-iron
layers are very hard and would exhibit little creep. See Guide, Section 4.4. Tests
have indicated that significant bolt pretension may be lost when the total coating
thickness within the joint approaches 15 mils per surface, and that surface
coatings beneath the bolt head and nut can contribute to additional reduction in
pretension.

3.2.2 Slip-Critical Joints: The faying surfaces of slip-critical joints as defined in
Section 4.3, including those of filler plates and finger shims, shall meet the
following requirements:

(a) Uncoated Faying Surfaces: Uncoated faying surfaces shall be free of scale,
except tight mill scale, and free of coatings, including inadvertent overspray,
in areas closer than one bolt diameter but not less than 1 in. from the edge
of any hole and in all areas within the bolt pattern or shall be blast cleaned
(Class B).
(b) Coated Faying Surfaces: Coated faying surfaces shall first be blast cleaned
and subsequently coated with a coating that is qualified in accordance with
the requirements in Appendix A as a Class A or Class B coating as defined
in Section 5.4. Alternatively, when approved by the Engineer of Record,
coatings that provide a mean slip coefficient that differs from Class A or
Class B are permitted when:

(1) The mean slip coefficient µ is established by testing in accordance
with the requirements in Appendix A; and,
(2) The design slip resistance is determined in accordance with Section
5.4 using this coefficient, except that, for design purposes, a value of µ
greater than 0.50 shall not be used.

The plies of slip-critical joints with coated faying surfaces shall not be
assembled before the coating has cured for the minimum time that was used
in the qualifying tests.

(c) Galvanized Faying Surfaces: Galvanized faying surfaces shall first be hot
dip galvanized in accordance with the requirements of ASTM A123 and
subsequently roughened by means of hand wire brushing. Power wire
brushing is not permitted. When prepared by roughening, the galvanized
faying surface is designated as Class C for design.

Commentary:
Slip-critical joints are those joints that have specified faying surface conditions
that, in the presence of the clamping force provided by pretensioned fasteners,
resist a design load solely by friction and without displacement at the faying

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-19
surfaces. Consequently, it is necessary to prepare the faying surfaces in a
manner so that the desired slip performance is achieved.
Clean mill scale steel surfaces (Class A, see Section 5.4.1) and blast-
cleaned steel surfaces (Class B, see Section 5.4.1) can be used within slip-
critical joints. When used, it is necessary to keep the faying surfaces free of
coatings, including inadvertent overspray.
Corrosion often occurs on uncoated blast-cleaned steel surfaces
(Class B, see Section 5.4.1) due to exposure between the time of fabrication and
subsequent erection. In normal atmospheric exposures, this corrosion is not
detrimental and may actually increase the slip resistance of the joint. Yura et al.
(1981) found that the Class B slip coefficient could be maintained for up to one
year prior to joint assembly.
Polyzois and Frank (1986) demonstrated that, for plate material with
thickness in the range of a in. to w in., the contact pressure caused by bolt
pretension is concentrated on the faying surfaces in annular rings around and
close to the bolts. In this study, unqualified paint on the faying surfaces away
from the edge of the bolt hole by not less than 1 in. nor the bolt diameter did not
reduce the slip resistance. However, this would not likely be the case for
joints involving thicker material, particularly those with a large number of bolts
on multiple gage lines; the Table 8.1 minimum bolt pretension might not be
adequate to completely flatten and pull thicker material into tight contact
around every bolt. Instead, the bolt pretension would be balanced by contact
pressure on the regions of the faying surfaces that are in contact. To account
for both possibilities, it is required in this Specification that all areas between
the bolts be free of coatings, including overspray, as illustrated in Figure C-3.1.
As a practical matter, the smaller coating-free area can be laid out and
protected more easily using masking located relative to the bolt-hole pattern
than relative to the limits of the complete area of faying surface contact with
varying and uncertain edge distance. Furthermore, the narrow coating strip
around the perimeter of the faying surface minimizes the required field touch-up
of uncoated material outside of the joint.
Polyzois and Frank (1986) also investigated the effect of various
degrees of inadvertent overspray on slip resistance. It was found that even a
small amount of overspray of unqualified paint (that is, not qualified as a Class
A or Class B coating) within the specified coating-free area on clean mill scale
can reduce the slip resistance significantly. On blast-cleaned surfaces, however,
the presence of a small amount of overspray was not as detrimental. For
simplicity, this Specification requires that all overspray be prohibited from areas
that are required to be free of coatings in slip-critical joints regardless of
whether the surface is clean mill scale steel or blast-cleaned steel.
In the 1980 edition of this Specification, generic names for coatings
applied to faying surfaces were the basis for categories of allowable working
stresses in slip-critical (friction) joints. Frank and Yura (1981) demonstrated
that the slip coefficients for coatings described by a generic type are not unique

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-20
values for a given generic coating description or product, but rather depend also
upon the type of vehicle used. Small differences in formulation from
manufacturer to manufacturer or from lot to lot with a single manufacturer can
significantly affect slip coefficients if certain essential variables within a generic
type are changed. Consequently, it is unrealistic to assign coatings to categories
with relatively small incremental differences between categories based solely
upon a generic description.


Figure C-3.1. Faying surfaces of slip-critical
connections painted with unqualified paints.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-21
When the faying surfaces of a slip-critical joint are to be protected
against corrosion, a qualified coating must be used. A qualified coating is one
that has been tested in accordance with Appendix A, the sole basis for
qualification of any coating to be used in conjunction with this Specification.
Coatings can be qualified as follows:

(1) As a Class A coating as defined in Section 5.4.1;
(2) As a Class B coating as defined in Section 5.4.1; or,
(3) As a coating with a mean slip coefficient µ other than 0.33 (Class A) but not
greater than 0.50 (Class B).

Requalification is required if any essential variable associated with surface
preparation, paint manufacture, application method or curing requirements is
changed. See Appendix A.
For slip-critical joints, coating testing as prescribed in Appendix A
includes creep tests, which incorporate relaxation in the fastener and the effect
of the coating itself. Users should verify the coating thicknesses used in the
Appendix A testing and ensure that the actual coating thickness does not exceed
that tested. See Appendix A, Commentary to Section A3.
Frank and Yura (1981) also investigated the effect of varying the time
between coating the faying surfaces and assembly of the joint and pretensioning
the bolts in order to ascertain if partially cured paint continued to cure within the
assembled joint over a period of time. The results indicated that all curing
effectively ceased at the time the joint was assembled and paint that was not
fully cured at that time acted as a lubricant. The slip resistance of a joint that
was assembled after a time less than the curing time used in the qualifying tests
was severely reduced. Thus, the curing time prior to mating the faying surfaces
is an essential parameter to be specified and controlled during construction.
The mean slip coefficient for clean hot-dip galvanized surfaces is on
the order of 0.19 as compared with a factor of about 0.33 for clean mill scale.
Birkemoe and Herrschaft (1970) showed that this mean slip coefficient can be
significantly improved by treatments such as hand wire brushing or light
“brush-off” grit blasting. In either case, the treatment must be controlled to
achieve visible roughening or scoring. Power wire brushing is unsatisfactory
because it may polish rather than roughen the surface, or remove the coating.
Field experience and test results have indicated that galvanized
assemblies may continue to slip under sustained loading (Kulak et al., 1987; pp.
198-208). Tests of hot-dip galvanized joints subjected to sustained loading show
a creep-type behavior that was not observed in short-duration or fatigue-type
load application. See also the Commentary to Appendix A.

3.3. Bolt Holes
The nominal dimensions of standard, oversized, short-slotted and long-slotted
holes for high-strength bolts shall be equal to or less than those shown in

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-22
Table 3.1. Holes larger than those shown in Table 3.1 are permitted when specified or
approved by the Engineer of Record. Where thermally cut holes are permitted, the
surface roughness profile of the hole shall not exceed 1,000 microinches as
defined in ASME B46.1. Occasional gouges not more than z in. in depth are
permitted.
Thermally cut holes produced by mechanically guided means are
permitted in statically loaded joints. Thermally cut holes produced free hand
shall be permitted in statically loaded joints if approved by the Engineer of
Record. For cyclically loaded joints, thermally cut holes shall be permitted if
approved by the Engineer of Record.

Commentary:
The footnotes in Table 3.1 provide for slight variations in the dimensions of
bolt holes from the nominal dimensions. When the dimensions of bolt holes are
such that they exceed these permitted variations, the bolt hole must be treated as
the next larger type.
Slots longer than standard long slots may be required to accommodate
construction tolerances or expansion joints. Larger oversized holes may be
necessary to accommodate construction tolerances or misalignments. In the
latter two cases, the Specification provides no guidance for further reduction of
design strengths or allowable loads. Engineering design considerations should
include, as a minimum, the effects of edge distance, net section, reduction in
clamping force in slip-critical joints, washer requirements, bearing capacity, and
hole deformation.
For thermally cut holes produced free hand, it is usually necessary to
grind the hole surface after thermal cutting in order to achieve a maximum
surface roughness profile of 1,000 microinches.
Slotted holes in statically loaded joints are often produced by punching
or drilling the hole ends and thermally cutting the sides of the slots by
mechanically guided means. The sides of such slots should be ground smooth,
particularly at the junctures of the thermal cuts to the hole ends.
For cyclically loaded joints, test results have indicated that when no
major slip occurs in the joint, fretting fatigue failure usually occurs in the gross
section prior to fatigue failure in the net section (Kulak et al., 1987, pp. 116,
117). Conversely, when slip occurs in the joints of cyclically loaded
connections, failure usually occurs in the net section and the edge of a bolt hole
becomes the point of crack initiation (Kulak et al., 1987, pp. 118). Therefore,
for cyclically loaded joints designed as slip critical, the method used to produce
bolt holes (either thermal cutting or drilling) should not influence the ultimate
failure load, as failure usually occurs in the gross section when no major slip
occurs.

3.3.1. Standard Holes: In the absence of approval by the Engineer of Record for the
use of other hole types, standard holes shall be used in all plies of bolted joints.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-23

Table 3.1. Nominal Bolt Hole Dimensions

Nominal Bolt Hole Dimensions
a,b
, in.
Nominal
Bolt
Diameter,
d
b, in.
Standard
(diameter)

Oversized
(diameter)

Short-slotted
(width × length)
Long-slotted
(width × length)
2 b s b × n b × 14
s n m n × d n × 1b
w m , m × 1 m × 1d
d , 1 z , × 18 , × 2x
1 1z 1 4 1 z × 1c 1 z × 22
≥18 d b + z d b + c (d b + z) × (d b + a) ( d b + z) × (2.5d b)
a
The upper tolerance on the tabulated nominal dimensions shall not exceed Q in. Exception: In
the width of slotted holes, gouges not more than z in. deep are permitted.
b
The slightly conical hole that naturally results from punching operations with properly matched
punches and dies is acceptable.

Commentary:
The use of bolt holes z in. larger than the bolt installed in them has been
permitted since the first publication of this Specification. Allen and Fisher
(1968) showed that larger holes could be permitted for high-strength bolts
without adversely affecting the bolt shear or member bearing strength.
However, the slip resistance can be reduced by the failure to achieve adequate
pretension initially or by the relaxation of the bolt pretension as the highly
compressed material yields at the edge of the hole or slot. The provisions for
oversized and slotted holes in this Specification are based upon these findings
and the additional concern for the consequences of a slip of significant
magnitude if it should occur in the direction of the slot. Because an increase
in hole size generally reduces the net area of a connected part, the use of
oversized holes or of slotted holes is subject to approval by the Engineer of
Record.

3.3.2. Oversized Holes: When approved by the Engineer of Record, oversized holes
are permitted in any or all plies of slip-critical joints as defined in Section 4.3.

Commentary:
See the Commentary to Section 3.3.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-24
3.3.3. Short-Slotted Holes: When approved by the Engineer of Record, short-
slotted holes are permitted in any or all plies of snug-tightened joints as defined
in Section 4.1, and pretensioned joints as defined in Section 4.2, provided the
applied load is approximately perpendicular (between 80 and 100 degrees) to
the axis of the slot. When approved by the Engineer of Record, short-slotted
holes are permitted in any or all plies of slip-critical joints as defined in Section
4.3 without regard for the direction of the applied load.

Commentary:
See the Commentary to Section 3.3.1.

3.3.4. Long-Slotted Holes: When approved by the Engineer of Record, long-slotted
holes are permitted in only one ply at any individual faying surface of snug-
tightened joints as defined in Section 4.1, and pretensioned joints as defined in
Section 4.2, provided the applied load is approximately perpendicular (between
80 and 100 degrees) to the axis of the slot. When approved by the
Engineer of Record, long-slotted holes are permitted in one ply only at any
individual faying surface of slip-critical joints as defined in Section 4.3 without
regard for the direction of the applied load. Fully inserted finger shims between
the faying surfaces of load-transmitting elements of bolted joints are not
considered a long-slotted element of a joint; nor are they considered to be a ply
at any individual faying surface. However, finger shims must have the same
faying surface as the rest of the plies.

Commentary:
See the Commentary to Section 3.3.1.
Finger shims are devices that are often used to permit the alignment
and plumbing of structures. When these devices are fully and properly
inserted, they do not have the same effect on bolt pretension relaxation or the
connection performance, as do long-slotted holes in an outer ply. When fully
inserted, the shim provides support around approximately 75 percent of the
perimeter of the bolt in contrast to the greatly reduced area that exists with a
bolt that is centered in a long slot. Furthermore, finger shims are always
enclosed on both sides by the connected material, which should be effective in
bridging the space between the fingers.

3.4. Burrs
Burrs less than or equal to z in. in height are permitted to remain on faying
surfaces of all joints. Burrs larger than z in. in height shall be removed or
reduced to z in. or less from the faying surfaces of all joints.

Commentary:
Polyzois and Yura (1985) and McKinney and Zwerneman (1993) demonstrated
that the slip resistance of joints was either unchanged or slightly improved by

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-25
the presence of burrs. Therefore, small (z in. or less) burrs need not be
removed. On the other hand, parallel tests in the same program demonstrated
that large burrs (over z in.) could cause a small increase in the required nut
rotation from the snug-tight condition to achieve the specified pretension with
the turn-of-nut pretensioning method. Therefore, the Specification requires that
all large burrs be removed or reduced in height.
Note that prior to pretensioning, the snug-tightening procedure is
required to bring the plies into firm contact. If firm contact has not been
achieved after snugging due to the presence of burrs, additional snugging is
required to flatten the burrs, bringing the plies into firm contact.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-26
SECTION 4. JOINT TYPE

For joints with fasteners that are loaded in shear or combined shear and tension, the
Engineer of Record shall specify the joint type in the contract documents as snug-
tightened, pretensioned or slip-critical. For slip-critical joints, the required class of slip
resistance in accordance with Section 5.4 shall also be specified. For joints with fasteners
that are loaded in tension only, the Engineer of Record shall specify the joint type in the
contract documents as snug-tightened or pretensioned. Table 4.1 summarizes the
applications and requirements of the three joint types.

Table 4.1. Summary of Applications and Requirements for Bolted Joints

Load
Transfer

Application
Joint
Type
a,b

Faying
Surface
Prep.?
Install
per
Section
Inspect
per
Section

Arbitrate
per Section
10?

Resistance to shear load by
shear/bearing
ST No 8.1 9.1 No
Resistance to shear by
shear/bearing. Bolt pretension
is required, but for
reasons
other than
slip resistance.
PT No 8.2 9.2 No
Shear only
Shear-load resistance by friction
on faying surfaces is required.
SC Yes
d
8.2 9.3
If req’d to
resolve
dispute
Resistance to shear load by
shear/bearing. Tension load is
static only.
c

ST No 8.1 9.1 No
Resistance to shear by
shear/bearing. Bolt pretension
is required, but for
reasons
other than
slip resistance.
PT No 8.2 9.2
If req’d to
resolve
dispute
Combined
shear
and
tension

Shear-load resistance by friction
on faying surfaces is required.
SC Yes
d
8.2 9.3
If req’d to
resolve
dispute
Static loading only.
c
ST No 8.1 9.1 No
Tension only
All other conditions of tension-
only
loading.
PT No 8.2 9.2
If req’d to
resolve
dispute
a
Under Joint Type: ST = snug-tightened, PT = pretensioned and SC = slip-critical; See Section 4.
b
See Sections 4 and 5 for the design requirements for each joint type.
c
Per Section 4.2, the use of ASTM A490 or F2280 bolts in snug-tightened joints with tensile loads is
not permitted.
d
See Section 3.2.2.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-27
Commentary:
When first approved by the Research Council on Structural Connections, in January, 195l,
the “Specification for Assembly of Structural Joints Using High-Strength Bolts” merely
permitted the substitution of a like number of ASTM A325 bolts for hot driven ASTM
A141
1
steel rivets of the same nominal diameter. Additionally, it was required that all bolts
be pretensioned and that all faying surfaces be free of paint; hence, satisfying the
requirements for a slip-critical joint by the present-day definition. As revised in 1954, the
omission of paint was required to apply only to “joints subject to stress reversal, impact
or vibration, or to cases where stress redistribution due to joint slippage would be
undesirable.” This relaxation of the earlier provision recognized the fact that, in many
applications, movement of the connected parts that brings the bolts into bearing against
the sides of their holes is in no way detrimental. Bolted joints were then designated as
“bearing type,” “friction type,” or “direct tension.” With the 1985 edition of this
Specification, these designations were changed to “shear/bearing,” “slip-critical,” and
“direct tension,” respectively, and snug-tightened installation was permitted for many
shear/bearing joints. Snug-tightened joints are also permitted for qualified applications
involving ASTM A325 bolts in direct tension.
If non-pretensioned bolts are used in the type of joint that places the bolts in
shear, load is transferred by shear in the bolts and bearing stress in the connected
material. At the ultimate limit state, failure will occur by shear failure of the bolts, by
bearing failure of the connected material or by failure of the member itself. On the other
hand, if pretensioned bolts are used in such a joint, the frictional force that develops
between the connected plies will initially transfer the load. Until the frictional force is
exceeded, there is no shear in the bolts and no bearing stress in the connected
components. Further increase of load places the bolts into shear and against the
connected material in bearing, just as was the case when non-pretensioned bolts were
used. Since it is known that the pretension in bolts will have been dissipated by the time
bolt shear failure takes place (Kulak et al., 1987; p. 49), the ultimate limit state of a
pretensioned bolted joint is the same as an otherwise identical joint that uses non-
pretensioned bolts.
Because the consequences of slip into bearing vary from application to
application, the determination of whether a joint can be designated as snug-tightened or
as pretensioned or rather must be designated as slip-critical is best left to judgment and a
decision on the part of the Engineer of Record. In the case of joints with three or more
bolts in holes with only a small clearance, the freedom to slip generally does not exist. It
is probable that normal fabrication tolerances and erection procedures are such that one or
more bolts are in bearing even before additional load is applied. Such is the case for
standard holes and for slotted holes loaded transverse to the axis of the slot.
Joints that are required to be slip-critical joints include:

(1) Those cases where slip movement could theoretically exceed an amount deemed by
the Engineer of Record to affect the serviceability of the structure or through

1
ASTM A141 (discontinued in 1967) became identified as A502 Grade 1 (discontinued 1999).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-28
excessive distortion to cause a reduction in strength or stability, even though the
resistance to fracture of the connection and yielding of the member may be
adequate; and,
(2) Those cases where slip of any magnitude must be prevented, such as in joints
subject to significant load reversal and joints between elements of built-up
compression members in which any slip could cause a reduction of the flexural
stiffness required for the stability of the built-up member.

In this Specification, the provisions for the design, installation and inspection of bolted
joints are dependent upon the type of joint that is specified by the Engineer of Record.
Consequently, it is required that the Engineer of Record identify the joint type in the
contract documents.

4.1. Snug-Tightened Joints
Except as required in Sections 4.2 and 4.3, snug-tightened joints are permitted.
Bolts in snug-tightened joints shall be designed in accordance with the
applicable provisions of Sections 5.1, 5.2 and 5.3, installed in accordance with
Section 8.1 and inspected in accordance with Section 9.1. As indicated in
Section 4 and Table 4.1, requirements for faying surface condition shall not
apply to snug-tightened joints.

Commentary:
Recognizing that the ultimate strength of a connection is independent of the bolt
pretension and slip movement, there are numerous practical cases in the design
of structures where, if slip occurs, it will not be detrimental to the serviceability
of the structure. Additionally, there are cases where slip of the joint is desirable
to permit rotation in a joint or to minimize the transfer of moment. To provide
for these cases while at the same time making use of the shear strength of high-
strength bolts, snug-tightened joints are permitted.
The maximum amount of slip that can occur in a joint is, theoretically,
equal to twice the hole clearance. In practical terms, it is observed in laboratory
and field experience to be much less; usually, about one-half the hole clearance.
Acceptable inaccuracies in the location of holes within a pattern of bolts usually
cause one or more bolts to be in bearing in the initial, unloaded condition.
Furthermore, even with perfectly positioned holes, the usual method of erection
causes the weight of the connected elements to put some of the bolts into direct
bearing at the time the member is supported on loose bolts and the lifting crane
is unhooked. Additional loading in the same direction would not cause
additional joint slip of any significance.
Snug-tightened joints are also permitted for statically loaded
applications involving ASTM A325 bolts and ASTM F1852 twist-off-type
tension-control bolt assemblies in direct tension. However, snug-tightened
installation is not permitted for these fasteners in applications involving non-

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-29
static loading, nor for applications involving ASTM A490 bolts and ASTM
F2280 twist-off-type tension-control bolt assemblies.

4.2. Pretensioned Joints
Pretensioned joints are required in the following applications:

(1) Joints in which fastener pretension is required in the specification or code
that invokes this Specification;
(2) Joints that are subject to significant load reversal;
(3) Joints that are subject to fatigue load with no reversal of the loading
direction;
(4) Joints with ASTM A325 or F1852 bolts that are subject to tensile fatigue;
and,
(5) Joints with ASTM A490 or F2280 bolts that are subject to tension or
combined shear and tension, with or without fatigue.

Bolts in pretensioned joints subject to shear shall be designed in
accordance with the applicable provisions of Sections 5.1 and 5.3, installed in
accordance with Section 8.2 and inspected in accordance with Section 9.2. Bolts
in pretensioned joints subject to tension or combined shear and tension shall be
designed in accordance with the applicable provisions of Sections 5.1, 5.2, 5.3
and 5.5, installed in accordance with Section 8.2 and inspected in accordance
with Section 9.2. As indicated in Section 4 and Table 4.1, requirements for
faying surface condition shall not apply to pretensioned joints.

Commentary:
Under the provisions of some other specifications, certain shear connections are
required to be pretensioned, but are not required to be slip-critical. Several cases
are given, for example, in AISC Specification Section J1.10 (AISC, 2010)
wherein certain bolted joints in bearing connections are to be pretensioned
regardless of whether or not the potential for slip is a concern. The AISC
Specification requires that joints be pretensioned in the following
circumstances:

(1) Column splices in buildings with high ratios of height to width;
(2) Connections of members that provide bracing to columns in tall buildings;
(3) Various connections in buildings with cranes over 5-ton capacity; and,
(4) Connections for supports of running machinery and other sources of impact
or stress reversal.

When pretension is desired for reasons other than the necessity to prevent slip,
a pretensioned joint should be specified in the contract documents.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-30
4.3. Slip-Critical Joints
Slip-critical joints are required in the following applications involving shear or
combined shear and tension:

(1) Joints that are subject to fatigue load with reversal of the loading
direction;
(2) Joints that utilize oversized holes;
(3) Joints that utilize slotted holes, except those with applied load
approximately normal (within 80 to 100 degrees) to the direction of the
long dimension of the slot; and,
(4) Joints in which slip at the faying surfaces would be detrimental to
the performance of the structure.

Bolts in slip-critical joints shall be designed in accordance with the
applicable provisions of Sections 5.1, 5.2, 5.3, 5.4 and 5.5, installed in
accordance with Section 8.2 and inspected in accordance with Section 9.3.

Commentary:
In certain cases, slip of a bolted joint in shear under service loads would be
undesirable or must be precluded. Clearly, joints that are subject to reversed
fatigue load must be slip-critical since slip may result in back-and-forth
movement of the joint and the potential for accelerated fatigue failure. Unless
slip is intended, as desired in a sliding expansion joint, slip in joints with long-
slotted holes that are parallel to the direction of the applied load might be large
enough to invalidate structural analyses that are based upon the assumption of
small displacements.
For joints subject to fatigue load with respect to shear of the bolts that
does not involve a reversal of load direction, there are two alternatives for
fatigue design. The designer can provide either a slip-critical joint that is
proportioned on the basis of the applied stress range on the gross section, or a
pretensioned joint that is proportioned on the basis of applied stress range on
the net section.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-31
SECTION 5. LIMIT STATES IN BOLTED JOINTS

The design shear strength and design tensile strength of bolts shall be determined in
accordance with Section 5.1. The interaction of combined shear and tension on bolts
shall be limited in accordance with Section 5.2. The design bearing strength of the
connected parts at bolt holes shall be determined in accordance with Section 5.3.
Each of these design strengths shall be equal to or greater than the required strength.
The axial load in bolts that are subject to tension or combined shear and tension shall be
calculated with consideration of the effects of the externally applied tensile load
and any additional tension resulting from prying action produced by deformation of the
connected parts.
When slip resistance is required at the faying surfaces subject to shear or
combined shear and tension, slip resistance shall be checked at either the factored-load
level or service-load level, at the option of the Engineer of Record. When slip of the joint
under factored loads would affect the ability of the structure to support the factored
loads, the design strength determined in accordance with Section 5.4.1 shall be equal to
or greater than the required strength. When slip resistance under service loads is the
design criterion, the strength determined in accordance with Section 5.4.2 shall be equal
to or greater than the effect of the service loads. In addition, slip-critical
connections
must meet the strength requirements to resist the factored loads as shear/bearing joints.
Therefore, the strength requirements of Sections 5.1, 5.2 and 5.3 shall also be met.
When bolts are subject to cyclic application of axial tension, the stress
determined in accordance with Section 5.5 shall be equal to or greater than the
stress due to the effect of the service loads, including any additional tension resulting
from prying action
produced by deformation of the connected parts.

Commentary:
This section of the Specification provides the design requirements for high-strength bolts
in bolted joints. However, this information is not intended to provide comprehensive
coverage of the design of high-strength bolted connections. Other design
considerations of importance to the satisfactory performance of the connected material,
such as block shear rupture, shear lag, prying action and connection stiffness and its
effect on the performance of the structure, are beyond the scope of this Specification and
Commentary.
The design of bolted joints that transmit shear requires consideration of the
shear strength of the bolts and the bearing strength of the connected material. If such
joints are designated as slip-critical joints, the slip resistance must also be checked. This
serviceability check can be made at the factored-load level (Section 5.4.1) or at the
service-load level (Section 5.4.2). Regardless of which load level is selected for the
check of slip resistance, the prevention of slip in the service-load range is the design
criterion.
Parameters that influence the shear strength of bolted joints include:

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-32
(1) Geometric parameters – the ratio of the net area to the gross area of the connected
parts, the ratio of the net area of the connected parts to the total shear-resisting area
of the bolts and the length of the joint; and,
(2) Material parameter – the ratio of the yield strength to the tensile strength of the
connected parts.

Using both mathematical models and physical testing, it was possible to study the
influences of these parameters (Kulak et al., 1987; pp. 89-116 and 126-132). These
showed that, under the rules that existed at that time the longest (and often the most
important) joints had the lowest factor of safety, about 2.0 based on ultimate strength.
In general, bolted joints that are designed in accordance with the provisions of
this Specification will have a higher reliability than will the members they connect.
This occurs primarily because the resistance factors used in limit states for the design of
bolted joints were chosen to provide a reliability higher than that used for member
design. Additionally, the controlling strength limit state in the structural member, such as
yielding or deflection, is usually reached well before the strength limit state in the
connection, such as bolt shear strength or bearing strength of the connected material. The
installation requirements vary with joint type and influence the behavior of the joints
within the service-load range, however, this influence is ignored in all strength
calculations. Secondary tensile stresses that may be produced in bolts in shear/bearing
joints, such as through the flexing of double-angle connections to accommodate the
simple-beam end rotation, need not be considered.
It is sometimes necessary to use high-strength bolts and fillet welds in the same
connection, particularly as the result of remedial work. When these fastening elements
act in the same shear plane, the combined strength is a function of whether the bolts
are snug-tightened or pretensioned, the location of the bolts relative to the holes in
which they are located and the orientation of the fillet welds. The fillet welds can be
parallel or transverse to the direction of load. Manuel and Kulak (1999) provide an
approach that can be used to calculate the design strength of such joints.

5.1. Design Shear and Tensile Strengths
Shear and tensile strengths shall not be reduced by the installed bolt
pretension. For joints, the design shear and tensile strengths shall be taken as
the sum of the strengths of the individual bolts.
The design strength in shear or the design strength in tension for an
ASTM A325, A490, F1852 or F2280 bolt is φR
n, where φ= 0.75 and:


nnb
RFA= (Equation 5.1)

where

R
n = nominal strength (shear strength per shear plane or tensile strength)
of a bolt, kips;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-33
Table 5.1. Nominal Strengths per Unit Area of Bolts

Nominal Strength per Unit Area, F
n, ksi
Applied Load Condition
ASTM A325 or F1852 ASTM A490 or F2280
Static 90 113
Tension
a

Fatigue See Section 5.5
Ls M 38 in. 54 68
Threads
included in
shear plane
L
s > 38 in. 45 56 Ls M 38 in. 68 84
Shear
a,b

Threads
excluded from
shear plane L
s > 38 in. 56 70
a
Except as required in Section 5.2.
b
Reduction for values for L s > 38 in. applies only when the joint is end loaded, such as splice plates on a
beam or column flange.

F
n = nominal strength per unit area from Table 5.1 for the appropriate
applied load conditions, ksi, adjusted for the presence of fillers as
required below, and,
A
b = cross-sectional area based upon the nominal diameter of bolt, in.
2


When a bolt that carries load passes through fillers or shims in a
shear plane that are equal to or less than 4 in. thick, F
n from Table 5.1 shall
be used without reduction. When a bolt that carries load passes through fillers
or shims that are greater than 4 in. thick, they shall be designed in accordance
with one of the following procedures:

(1) For fillers or shims that are equal to or less than w in. thick, F
n from Table
5.1 shall be multiplied by the factor [1 - 0.4(t´ - 0.25)], where t´ is the total
thickness of fillers or shims, in., up to w in.;
(2) The fillers or shims shall be extended beyond the joint and the filler or shim
extension shall be secured with enough bolts to uniformly distribute the total
force in the connected element over the combined cross-section of the
connected element and the fillers or shims;
(3) The size of the joint shall be increased to accommodate a number of bolts
that is equivalent to the total number required in (2) above; or,
(4) The joint shall be designed as a slip-critical joint. The slip resistance of the
joint shall not be reduced for the presence of fillers or shims.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-34
Commentary:
The nominal shear and tensile strengths of ASTM A325, F1852, A490 and F2280
bolts are given in Table 5.1. These values are based upon the work of a large
number of researchers throughout the world, as reported in the Guide (Kulak et
al., 1987; Tide, 2010). The design strength equals the nominal strength
multiplied by a resistance factor φ.
The nominal shear strength is based upon the observation that the shear
strength of a single high-strength bolt is about 0.62 times the tensile strength of
that bolt (Kulak et al., 1987; pp. 44-50). In addition, a reduction factor of 0.90 is
applied to joints up to 38 in. in length to account for an increase in bolt force
due to minor secondary effects resulting from simplifying assumptions made in
the modeling of structures that are commonly accepted in practice (e.g. truss
bolted connections assumed pinned in the analysis model). Second order effects
such as those resulting from the action of the applied loads on the deformed
structure, should be accounted for through a second order analysis of the
structure. As noted in Table 5.1, the average shear strength of bolts in joints
longer than 38 in. in length is reduced by a factor of 0.75 instead of 0.90. This
factor accounts for both the non-uniform force distribution between the bolts in
a long joint and the minor secondary effects discussed above. Note that the 0.75
reduction factor does not apply in cases where the distribution of force is
essentially uniform along the joint, such as the bolted joints in a shear
connection at the end of a deep plate girder.
The average ratio of nominal shear strength for bolts with threads
included in the shear plane to the nominal shear strength for bolts with threads
excluded from the shear plane is 0.83 with a standard deviation of 0.03
(Frank and Yura, 1981). Conservatively, a reduction factor of 0.80 is used to
account for the reduction in shear strength for a bolt with threads included in the
shear plane but calculated with the area corresponding to the nominal bolt
diameter. The case of a bolt in double shear with a non-threaded section in one
shear plane and a threaded section in the other shear plane is not covered in this
Specification for two reasons. First, the manner in which load is shared between
these two dissimilar shear areas is uncertain. Second, the detailer's lack of
certainty as to the orientation of the bolt placement might leave both shear
planes in the threaded section. Thus, if threads are included in one shear plane,
the conservative assumption is made that threads are included in all shear
planes.
The tensile strength of a high-strength bolt is the product of its ultimate
tensile strength per unit area and some area through the threaded portion. This
area, called the tensile stress area, is a derived quantity that is a function of the
relative thread size and pitch. For the usual sizes of structural bolts, it is about
75 percent of the nominal cross-sectional area of the bolt. Hence, the nominal
tensile strengths per unit area given in Table 5.1 are 0.75 times the tensile
strength of the bolt material. According to Equation 5.1, the nominal area of the
bolt is then used to calculate the design strength in tension. The nominal

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-35
strengths so-calculated are intended to form the basis for comparison with the
externally applied bolt tension plus any additional tension that results from
prying action that is produced by deformation of the connected elements.
If pretensioned bolts are used in a joint that loads the bolts in tension,
the question arises as to whether the pretension and the applied tension are
additive. Because the compressed parts are being unloaded during the
application of the external tensile force, the increase in bolt tension is minimal
until the parts separate (Kulak et al., 1987; pp. 263-266). Thus, there will be
little increase in bolt force above the pretension load under service loads. After
the parts separate, the bolt acts as a tension member, as expected, and its design
strength is that given in Equation 5.1 multiplied by the resistance factor φ.
Pretensioned bolts have torsion present during the installation process.
Once the installation is completed, any residual torsion is quite small and will
disappear entirely when the fastener is loaded to the point of plate separation.
Hence, there is no question of torsion-tension interaction when considering the
ultimate tensile strength of a high-strength bolt (Kulak et al., 1987; pp. 41-47).
When required, pretension is induced in a bolt by imposing a small
axial elongation during installation, as described in the Commentary to Section
8. When the joint is subsequently loaded in shear, tension or combined shear
and tension, the bolts will undergo significant deformations prior to failure that
have the effect of overriding the small axial elongation that was introduced
during installation, thereby removing the pretension. Measurements taken in
laboratory tests confirm that the pretension that would be sustained if the
applied load were removed is essentially zero before the bolt fails in shear
(Kulak et al., 1987; pp. 93-94). Thus, the shear and tensile strengths of a
bolt are not affected by the presence of an initial pretension in the bolt.
See also the Commentary to Section 5.5.

5.2. Combined Shear and Tension
When combined shear and tension loads are transmitted by an ASTM A325,
A490, F1852 or F2280 bolt, the ultimate limit-state interaction shall be:


()
()
22
1
uu
nntv
TV
RR

+≤
φφ

(Equation 5.2)


where

T
u = required strength in tension (factored tensile load) per bolt,
kips;
V
u
= required strength in shear (factored shear load) per bolt, kips;
(φR
n)t
= design strength in tension determined in accordance with
Section 5.1, kips; and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-36
(
φRn)v

= design strength in shear determined in accordance with
Section 5.1, kips.

Commentary:
When both shear forces and tensile forces act on a bolt, the interaction can be
conveniently expressed as an elliptical solution (Chesson et al., 1965) that
includes the elements of the bolt acting in shear alone and the bolt acting in
tension alone. Although the elliptical solution provides the best estimate of the
strength of bolts subject to combined shear and tension and is thus used in this
Specification, the nature of the elliptical solution is such that it can be
approximated conveniently using three straight lines (Carter et al., 1997). Earlier
editions of this specification have used such linear representations for the
convenience of design calculations. The elliptical interaction equation in effect
shows that, for design purposes, significant interaction does not occur until
either force component exceeds 20 percent of the limiting strength for that
component.

5.3. Design Bearing Strength at Bolt Holes
For joints, the design bearing strength shall be taken as the sum of the strengths
of the connected material at the individual bolt holes.
The design bearing strength of the connected material at a standard bolt
hole, oversized bolt hole, short-slotted bolt hole independent of the direction of
loading or long-slotted bolt hole with the slot parallel to the direction of the
bearing load is φR
n, where φ = 0.75 and:

(1) when deformation of the bolt hole at service load is a design
consideration;


1.2 2.4
ncu bu
RLtFdtF=≤ (Equation 5.3)

(2) when deformation of the bolt hole at service load is not a design
consideration;


1.5 3
ncubu
RLtFdtF=≤ (Equation 5.4)

The design bearing strength of the connected material at a long-slotted bolt
hole with the slot perpendicular to the direction of the bearing load is φR
n,
where φ = 0.75 and:


2
ncu bu
RLtF dtF=≤ (Equation 5.5)

In Equations 5.3, 5.4 and 5.5,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-37

R
n
= nominal strength (bearing strength of the connected material),
kips;
F
u
= specified minimum tensile strength per unit area of the connected
material, ksi;
L
c
= clear distance, in the direction of load, between the edge of the
hole and the edge of the adjacent hole or the edge of the material,
in.;
d
b = nominal diameter of bolt, in.; and,
t = thickness of the connected material, in.

Commentary:
The contact pressure at the interface between a bolt and the connected material
can be expressed as a bearing stress on the bolt or on the connected material.
The connected material is always critical. For simplicity, the bearing area is
expressed as the bolt diameter times the thickness of the connected material in
bearing. The governing value of the bearing stress has been determined from
extensive experimental research and a further limitation on strength was derived
from the case of a bolt at the end of a tension member or near another fastener.
The design equations are based upon the models presented in the Guide
(Kulak et al., 1987; pp. 141-143), except that the clear distance to another hole
or edge is used in the Specification formulation rather than the bolt spacing or
end distance as used in the Guide (see Figure C-5.1). Equation 5.3 is derived
from tests (Kulak et al., 1987; pp. 112-116) that showed that the total
elongation, including local bearing deformation, of a standard hole that is
loaded to obtain the ultimate strength equal to 3d btFu in Equation 5.4 was on the
order of the diameter of the bolt.
This apparent hole elongation results largely from bearing
deformation of the material that is immediately adjacent to the bolt. The lower
value of 2.4d btFu in Equation 5.3 provides a bearing strength limit-state that is
attainable at reasonable deformation (4 in.). Strength and deformation limits
were thus used to jointly evaluate bearing strength test results for design.
When long-slotted holes are oriented with the long dimension
perpendicular to the direction of load, the bending component of the
deformation in the material between adjacent holes or between the hole and the
edge of the plate is increased. The nominal bearing strength is limited to 2d btFu,
which again provides a bearing strength limit-state that is attainable at
reasonable deformation.
The design bearing strength has been expressed as that of a single bolt,
although it is really that of the connected material that is immediately adjacent
to the bolt. In calculating the design bearing strength of a connected part, the
total bearing strength of the connected part can be taken as the sum of the
bearing strengths of the individual bolts.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-38

Figure. C-5.1. Bearing strength formulation.

5.4. Design Slip Resistance
5.4.1. At the Factored-Load Level: The design slip resistance is φR
n, where φ is
as defined below and:


1
u
numb
um b
T
RDTN
DTN

=μ − 

(Equation 5.6)

where

φ = 1.0 for standard holes
= 0.85 for oversized and short-slotted holes
= 0.70 for long-slotted holes perpendicular to the direction of load
= 0.60 for long-slotted holes parallel to the direction of load;
R
n = nominal strength (slip resistance) of a slip plane, kips;
µ = mean slip coefficient for Class A, B or C faying surfaces, as
applicable, or as established by testing in accordance with
Appendix A (see Section 3.2.2(b))
= 0.33 for Class A faying surfaces (uncoated clean mill scale steel
surfaces or surfaces with Class A coatings on blast-cleaned steel)
= 0.50 for Class B surfaces (uncoated blast-cleaned steel surfaces or
surfaces with Class B coatings on blast-cleaned steel)

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-39
= 0.35 for Class C surfaces (roughened hot-dip galvanized surfaces);
D
u
= 1.13, a multiplier that reflects the ratio of the mean installed bolt
pretension to the specified minimum bolt pretension T
m; the use of
other values of D
u
shall be approved by the Engineer of Record;
T
m
= specified minimum bolt pretension (for pretensioned joints as
specified in Table 8.1), kips;
N
b = number of bolts in the joint; and,
T
u = required strength in tension (tensile component of applied factored
load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

5.4.2. At the Service-Load Level: The service-load slip resistance is φR
s, where φ is
as defined in Section 5.4.1 and:


1
nmb
mb
T
RDTNDTN

=μ − 

(Equation 5.7)

where

D = 0.80, a slip probability factor that reflects the distribution of actual
slip coefficient values about the mean, the ratio of mean installed
bolt pretension to the specified minimum bolt pretension, T
m, and a
slip probability level; the use of other values of D must be
approved by the Engineer of Record; and,
T = applied service load in tension (tensile component of applied
service load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

and all other variables are as defined for Equation 5.6.

Commentary:
The design check for slip resistance can be made either at the factored-load level (Section
5.4.1) or at the service-load level (Section 5.4.2). These alternatives are based upon
different design philosophies, which are discussed below. They have been calibrated to
produce results that are essentially the same. The factored-load level approach is
provided for the expedience of only working with factored loads. Irrespective of the
approach, the limit state is based upon the prevention of slip at service-load levels.
If the factored-load provision is used, the nominal strength R n
represents the
mean resistance, which is a function of the mean slip coefficient µ and the specified
minimum bolt pretension (clamping force) T m. The 1.13 multiplier in Equation 5.6
accounts for the expected 13 percent higher mean value of the installed bolt pretension
provided by the calibrated wrench pretensioning method compared to the specified

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-40
minimum bolt pretension T m
used in the calculation. In the absence of other field test
data, this value is used for all methods.
If the service-load approach is used, a probability of slip is identified. It implies
that there is 90 percent reliability that slip will not occur at the calculated slip load if the
calibrated wrench pretensioning method is used, or that there is 95 percent reliability that
slip will not occur at the calculated slip load if the turn-of-nut pretensioning method is
used. The probability of loading occurrence was not considered in developing these
slip probabilities (Kulak et al., 1987; p. 135).
For most applications, the assumption that the slip resistance at each fastener is
equal and additive with that at the other fasteners is based on the fact that all locations
must develop the slip force before a total joint slip can occur at that plane. Similarly, the
forces developed at various slip planes do not necessarily develop simultaneously, but
one can assume that the full slip resistances must be mobilized at each plane before full
joint slip can occur. Equations 5.6 and 5.7 are formulated for the general case of a single
slip plane. The total slip resistance of a joint with multiple slip planes can be calculated
as that for a single slip plane multiplied by the number of slip planes.
Only the Engineer of Record can determine whether the potential slippage of a
joint is critical at the service-load level as a serviceability consideration only or whether
slippage could result in distortions of the frame such that the ability of the frame to resist
the factored loads would be reduced. The following comments reflect the collective
thinking of the Council and are provided as guidance and an indication of the intent of
the Specification (see also the Commentary to Sections 4.2 and 4.3):

(1) If joints with standard holes have only one or two bolts in the direction of the
applied load, a small slip may occur. In this case, joints subject to vibration should
be proportioned to resist slip at the service-load level;
(2) In built-up compression members, such as double-angle struts in trusses, a small
relative slip between the elements especially at the end connections can increase the
effective length of the combined cross-section to that of the individual components
and significantly reduce the compressive strength of the strut. Therefore, the
connection between the elements at the ends of built-up members should be checked
at the factored-load level, whether or not a slip-critical joint is required for
serviceability. As given by Sherman and Yura (1998), the required slip resistance is
0.008P uLQ/I, where P u
is the axial compressive force in the built-up member, kips, L
is the total length of the built-up member, in., Q is the first moment of area of one
component about the axis of buckling of the built-up member, in.
3
, and I is the
moment of inertia of the built-up member about the axis of buckling, in.
4
;
(3) In joints with long-slotted holes that are parallel to the direction of the applied
load, the designer has two alternatives. The joint can be designed to prevent slip in
the service-load range using either the factored-load-level provision in Section
5.4.1 or the service-load-level provision in Section 5.4.2. In either case, however,
the effect of the factored loads acting on the deformed structure (deformed by the
maximum amount of slip in the long slots at all locations) must be included in the
structural analysis; and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-41
(4) In joints subject to fatigue, design should be based upon service-load criteria and the
design slip resistance of Section 5.4.2 because fatigue is a function of the service
load performance rather than that of the factored load.

Extensive data developed through research sponsored by the Council and others
during the past twenty years has been statistically analyzed to provide improved
information on slip probability of joints in which the bolts have been pretensioned to the
requirements of Table 8.1. Two variables, the mean slip coefficient of the faying surfaces
and the bolt pretension, were found to affect the slip resistance of joints. Field studies
(Kulak and Birkemoe, 1993) of installed bolts in various structural applications indicate
that the Table 8.1 pretensions have been achieved as anticipated in the laboratory
research.
An examination of the slip-coefficient data for a wide range of surface
conditions indicates that the data are distributed normally and the standard deviation is
essentially the same for each surface condition class. This means that different reduction
factors should be applied to classes of surfaces with different mean slip coefficients—the
smaller the mean value of the coefficient of friction, the smaller (more severe) the
appropriate reduction factor—to provide equivalent reliability of slip resistance.
The bolt clamping force data indicate that bolt pretensions are distributed
normally for each pretensioning method. However, the data also indicate that the mean
value of the bolt pretension is different for each method. As noted previously, if the
calibrated wrench method is used to pretension ASTM A325 bolts, the mean value of
bolt pretension is about 1.13 times the specified minimum pretension in Table 8.1. If the
turn-of-nut pretensioning method is used, the mean pretension is about 1.35 times the
specified minimum pretension for ASTM A325 bolts and about 1.26 for ASTM A490
bolts.
The combined effects of the variability of the mean slip coefficient and bolt
pretension have been accounted for approximately in the single value of the slip
probability factor D in the equation for nominal slip resistance in Section 5.4.2. This
implies 90 percent reliability that slip will not occur if the calibrated wrench
pretensioning method is used and 95 percent reliability if the turn-of-nut pretensioning
method is used. For values of D that are appropriate for other mean slip coefficients and
slip probabilities, refer to the Guide (Kulak et al., 1987; p. 135). The values given
therein are suitable for direct substitution into the formula for slip resistance in Section
5.4.2.
The calibrated wrench installation method targets a specific bolt pretension,
which is 5 percent greater than the specified minimum value given in Table 8.1. Thus,
regardless of the actual strength of production bolts, this target value is unique for a
given fastener grade. On the other hand, the turn-of-nut installation method imposes an
elongation on the fastener. Consequently, the inherent strength of the bolts being installed
will be reflected in the resulting pretension because this elongation will bring the fastener
to its proportional limit under combined torsion and tension. As a result of these
differences, the mean value and nature of the frequency distribution of pretensions for
the two installation methods differ. Turn-of-nut installations result in higher mean levels

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-42
of pretension than do calibrated wrench installations. These differences were taken into
account when the design criteria for slip-critical joints were developed.
Statistical information on the pretension characteristics of bolts installed in the
field using direct tension indicators and twist-off-type tension-control bolts is limited.
In any of the foregoing installation methods, it can be expected that a
portion of the bolt assembly (the threaded portion of the bolt within the grip length and/or
the engaged threads of the nut and bolt) will reach the inelastic region of behavior. This
permanent distortion has no undesirable effect on the subsequent performance of the
bolt.
Because of the greater likelihood that significant deformation can occur in joints
with oversized or slotted holes, lower values of design slip resistance are provided for
joints with these hole types through a modification of the resistance factor φ. For the case
of long-slotted holes, even though the slip load is the same for loading transverse or
parallel to the axis of the slot, the value for loading parallel to the axis has been further
reduced, based upon judgment, in recognition of the greater consequences of slip.
Although the design philosophy for slip-critical joints presumes that they do not
slip into bearing when subject to loads in the service range, it is mandatory that slip-
critical joints also meet the requirements of Sections 5.1, 5.2 and 5.3. Thus, they must
meet the strength requirements to resist the factored loads as shear/bearing joints.
Section 3.2.2(b) permits the Engineer of Record to authorize the use of faying
surfaces with a mean slip coefficient µ that is less than 0.50 (Class B) and other than 0.33
(Class A). This authorization requires that the following restrictions are met:

(1) The mean slip coefficient µ must be determined in accordance with Appendix A;
and,
(2) The appropriate slip probability factor D must be selected from the Guide (Kulak
et al., 1987) for design at the service-load level.

Prior to the 1994 edition of this Specification, µ for Class C surfaces was taken
as 0.40. This value was reduced to 0.35 in the 1994 edition for better agreement with the
available research (Kulak et al., 1987; pp. 78-82).


5.5. Tensile Fatigue
The tensile stress in the bolt that results from the cyclic application of externally
applied service loads and the prying force, if any, but not the pretension, shall
not exceed the stress in Table 5.2. The nominal diameter of the bolt shall be
used in calculating the bolt stress. The connected parts shall be proportioned so
that the calculated prying force does not exceed 30 percent of the externally
applied load. Joints that are subject to tensile fatigue loading shall be specified
as pretensioned in accordance with Section 4.2 or slip-critical in accordance
with Section 4.3.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-43
Table 5.2. Maximum Tensile Stress for Fatigue Loading

Maximum Bolt Stress for Design at Service Loads
a
, ksi
Number of Cycles
ASTM A325 or F1852 ASTM A490 or F2280
Not more than 20,000 45 57
From 20,000 to 500,000 40 49
More than 500,000 31 38
a
Including the effects of prying action, if any, but excluding the pretension.


Commentary:
As described in the Commentary to Section 5.1, high-strength bolts in
pretensioned joints that are nominally loaded in tension will experience little, if
any, increase in axial stress under service loads. For this reason, pretensioned
bolts are not adversely affected by repeated application of service-load tensile
stress. However, care must be taken to ensure that the calculated prying force is
a relatively small part of the total applied bolt tension (Kulak et al., 1987; p.
272). The provisions that cover bolt fatigue in tension are based upon research
results where various single-bolt assemblies and joints with bolts in tension
were subjected to repeated external loads that produced fatigue failure of the
pretensioned fasteners. A limited range of prying effects was investigated in
this research.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-44
SECTION 6. USE OF WASHERS

6.1. Snug-Tightened Joints
Washers are not required in snug-tightened joints, except as required in
Sections 6.1.1 and 6.1.2.

6.1.1. Sloping Surfaces: When the outer face of the joint has a slope that is greater
than 1:20 with respect to a plane that is normal to the bolt axis, an ASTM
F436 beveled washer shall be used to compensate for the lack of parallelism.

6.1.2. Slotted Hole: When a slotted hole occurs in an outer ply, an ASTM F436
washer or c in. thick common plate washer shall be used as required to
completely cover the hole.

6.2. Pretensioned Joints and Slip-Critical Joints
Washers are not required in pretensioned joints and slip-critical joints, except
as required in Sections 6.1.1, 6.1.2, 6.2.1, 6.2.2, 6.2.3, 6.2.4 and 6.2.5.

6.2.1. Specified Minimum Yield Strength of Connected Material Less Than 40
ksi: When ASTM A490 or F2280 bolts are pretensioned in connected material
of specified minimum yield strength less than 40 ksi, ASTM F436 washers shall
be used under both the bolt head and nut, except that a washer is not needed
under the head of an ASTM F2280 round head twist-off bolt.

6.2.2. Calibrated Wrench Pretensioning: When the calibrated wrench
pretensioning method is used, an ASTM F436 washer shall be used under the
turned element.

6.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: When the twist-off-
type tension-control bolt pretensioning method is used, an ASTM F436 washer
shall be used under the nut as part of the fastener assembly.

6.2.4. Direct-Tension-Indicator Pretensioning: When the direct-tension-indicator
pretensioning method is used, an ASTM F436 washer shall be used as follows:

(1) When the nut is turned and the direct tension indicator is located under the
bolt head, an ASTM F436 washer shall be used under the nut;
(2) When the nut is turned and the direct tension indicator is located under the
nut, an ASTM F436 washer shall be used between the nut and the direct
tension indicator;
(3) When the bolt head is turned and the direct tension indicator is located
under the nut, an ASTM F436 washer shall be used under the bolt head;
and,

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-45

Table 6.1. Washer Requirements for Pretensioned and Slip-Critical
Bolted Joints with Oversized and Slotted Holes in the Outer Ply

Hole Type in Outer Ply
ASTM
Designation
Nominal Bolt
Diameter, d
b,
in. Oversized Short-Slotted Long-Slotted
A325 or F1852 2 - 12
≤ 1
ASTM F436
a

c in. thick plate
washer or
continuous bar
b,c

A490 or F2280
> 1
ASTM F436
with c in.
thickness
a,b,d

ASTM F436 washer
with either a a in.
thick plate washer
or continuous bar b,c a
This requirement shall not apply to heads of round head tension-control bolt assemblies that
meet the requirements in Section 2.7 and provide a bearing circle diameter that meets the
requirements of ASTM F1852 or F2280.
b
Multiple washers with a combined thickness of c in. or larger do not satisfy this requirement.
c
The plate washer or bar shall be of structural-grade steel material, but need not be hardened.
d
Alternatively, a a in. thick plate washer and an ordinary thickness F436 washer may be used.
The plate washer need not be hardened.


(4) When the bolt head is turned and the direct tension indicator is located
under the bolt head, an ASTM F436 washer shall be used between the bolt
head and the direct tension indicator.

6.2.5. Oversized or Slotted Hole: When an oversized or slotted hole occurs in an
outer ply, the washer requirements shall be as given in Table 6.1. The
washer used shall be of sufficient size to completely cover the hole.

Commentary:
It is important that shop drawings and connection details clearly reflect the number
and disposition of washers when they are required, especially the thick hardened washers
or plate washers that are required for some slotted hole applications. The total thickness
of washers in the grip affects the length of bolt that must be supplied and used.
The primary function of washers is to provide a hardened non-galling surface
under the turned element, particularly for torque-based pretensioning methods such as the
calibrated wrench pretensioning method and twist-off-type tension-control bolt
pretensioning method. Circular flat washers that meet the requirements of ASTM F436
provide both a hardened non-galling surface and an increase in bearing area that is
approximately 50 percent larger than that provided by a heavy-hex bolt head or nut.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-46
However, tests have shown that washers of the standard E in. thickness have a minor
influence on the pressure distribution of the induced bolt pretension. Furthermore, they
showed that a larger thickness is required when ASTM A490 bolts are used with material
that has a minimum specified yield strength that is less than 40 ksi. This is necessary to
mitigate the effects of local yielding of the material in the vicinity of the contact area of
the head and nut. The requirement for standard thickness hardened washers, when such
washers are specified, is waived for alternative design fasteners that incorporate a bearing
surface under the head of the same diameter as the hardened washer.
Heat-treated washers not less than c in. thick are required to cover
oversized and short-slotted holes in external plies, when ASTM A490 or F2280 bolts of
diameter larger than 1 in. are used, except per Table 6.1 footnote d. This was found
necessary to distribute the high clamping pressure so as to prevent collapse of the hole
perimeter and enable the development of the desired clamping force. Preliminary
investigation has shown that a similar but less severe deformation occurs when oversized
or slotted holes are in the interior plies. The reduction in clamping force may be offset
by “keying,” which tends to increase the resistance to slip. These effects are accentuated
in joints of thin plies. When long-slotted holes occur in an outer ply, ⅜ in. thick plate
washers or continuous bars and one ASTM F436 washer are required in Table 6.1. This
requirement can be satisfied with material of any structural grade. Alternatively, either
of the following options can be used:

(1) The use of material with F y greater than 40 ksi will eliminate the need to also
provide ASTM F436 washers in accordance with the requirements in Section
6.2.1 for ASTM A490 or F2280 bolts of any diameter; or,
(2) Material with F y equal to or less than 40 ksi can be used with ASTM F436
washers in accordance with the requirements in Section 6.2.1.

This specification previously required a washer under bolt heads with a
bearing area smaller than that provided by an ASTM F436 washer. Tests indicate that
the pretension achieved with a bolt having the minimum ASTM F1852 or F2280
bearing circle diameter is the same as that of a bolt with the larger bearing circle
diameter equal to the size of an ASTM F436 washer, provided that the hole size meets
the RCSC Specification limitations (Schnupp, 2003).

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-47
SECTION 7. PRE-INSTALLATION VERIFICATION

The requirements in this Section shall apply only as indicated in Section 8.2 to verify that
the fastener assemblies and pretensioned installation procedures perform as required prior
to installation.

7.1. Tension Calibrator
A tension calibrator shall be used where bolts are to be installed in
pretensioned joints and slip-critical joints to:

(1) Confirm the suitability of the complete fastener assembly, including
lubrication, for pretensioned installation; and,
(2) Confirm the procedure and proper use by the bolting crew of the
pretensioning method to be used.

The accuracy of a hydraulic tension calibrator shall be confirmed through
calibration at least annually.

Commentary:
A tension calibrator is a device that indicates the pretension that is developed
in a bolt. It must be readily available whenever high-strength bolts are to be
pretensioned. A bolt tension calibrator is essential for:

(1) The pre-installation verification of the suitability of the fastener assembly,
including the lubrication that is applied by the manufacturer or specially
applied, to develop the specified minimum pretension;
(2) Verifying the adequacy and proper use of the specified pretensioning method
to be used;
(3) Determining the installation torque for the calibrated wrench pretensioning
method; and,
(4) Determining an arbitration torque as specified in Section 10, if required to
resolve dispute.

Hydraulic tension calibrators undergo a slight deformation during bolt
pretensioning. Hence, when bolts are pretensioned according to Section 8.2.1,
the nut rotation corresponding to a given pretension reading may be somewhat
larger than it would be if the same bolt were pretensioned in a solid steel
assembly. Stated differently, the reading of a hydraulic tension calibrator tends
to underestimate the pretension that a given rotation of the turned element
would induce in a bolt in a pretensioned joint.
Direct tension indicators (DTIs) may be used as tension calibrators,
except in the case of turn-of-nut installation. This method is especially useful
for, but not restricted to, bolts that are too short to fit into a hydraulic tension
calibrator. The DTIs to be used for verification testing must first have the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-48
Table 7.1 Minimum Bolt Pretension for Pre-Installation Verification

Minimum Bolt Pretension for
Pre-Installation Verification, kips
a
Nominal Bolt
Diameter, d
b, in.
ASTM A325
and F1852
ASTM A490
and F2280
2 13 16
s 20 25
w 29 37
d 41 51
1 54 67
18 59 84
14 75 107
1a 89 127
12 108 155
a
Equal to 1.05 times the specified minimum bolt pretension
required in Table 8.1, rounded to the nearest kip.


average gap determined for the specific level of pretension required by Table
7.1, measured to the nearest 0.001 in. This is termed the “calibrated gap.” Such
measurements should be made for each lot of DTIs being used for verification
testing, termed the “verification lot.” The fastener assembly may then be
installed in a standard size hole with the additional verification DTI. The
prescribed pretensioning procedure is followed, and it is verified that the
average gap in the verification DTI is equal to or less than the calibrated gap for
the verification lot. For calibrated wrench installation, the verification DTI
should be placed at the fastener end opposite the installation wrench. For twist-
off bolt installation, the verification DTI must be placed beneath the bolt head,
with an additional ASTM F436 washer between bolt head and verification DTI,
and the bolt head is not permitted to turn. For DTI installation, the verification
DTI must be placed at the end opposite the placement of the production DTI.
This technique cannot be used for the turn-of-nut method because the
deformation of the DTI consumes a portion of the turns provided. For turn-of-
nut pre-installation verification of bolts too short to fit into a hydraulic
calibration device, installing the fastener assembly in a solid plate with the
proper size hole and applying the required turns is adequate. No verification is
required for achieved pretension to meet Table 7.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-49
7.2. Required Testing
A representative sample of not fewer than three complete fastener assemblies
of each combination of diameter, length, grade and lot to be used in the work
shall be checked at the site of installation in a tension calibrator to verify that
the pretensioning method develops a pretension that is equal to or greater than
that specified in Table 7.1. Washers shall be used in the pre-installation
verification assemblies as required in the work in accordance with the
requirements in Section 6.2.
If the actual pretension developed in any of the fastener assemblies is
less than that specified in Table 7.1, the cause(s) shall be determined and
resolved before the fastener assemblies are used in the work. Cleaning,
lubrication and retesting of these fastener assemblies, except ASTM F1852 or
F2280 twist-off-type tension-control bolt assemblies, (see Section 2.2) are
permitted, provided that all assemblies are treated in the same manner.
Impact wrenches, if used, shall be of adequate capacity and supplied
with sufficient air to perform the required pretensioning of each bolt within
approximately 10 seconds for bolts to 14-in. diameter, and within
approximately 15 seconds for larger bolts.

Commentary:
The fastener components listed in Section 1.3 are manufactured under separate
ASTM specifications, each of which includes tolerances that are appropriate for
the individual component covered. While these tolerances are intended to
provide for a reasonable and workable fit between the components when used
in an assembly, the cumulative effect of the individual tolerances permits a
significant variation in the installation characteristics of the complete fastener
assembly. It is the intent in this Specification that the responsibility rests with
the supplier for proper performance of the fastener assembly, the components of
which may have been produced by more than one manufacturer.
When pretensioned installation is required, it is essential that the effects
of the accumulation of tolerances, surface condition and lubrication be taken
into account. Hence, pre-installation verification testing of the complete fastener
assembly is required as indicated in Section 8 to ensure that the fastener
assemblies and installation method to be used in the work will provide a
pretension that exceeds those specified in Table 8.1. It is not, however, intended
simply to verify conformance with the individual ASTM specifications.
It is recognized in this Specification that a natural scatter is found in
the results of the pre-installation verification testing that is required in Section 8.
Furthermore, it is recognized that the pretensions developed in tests of a
representative sample of the fastener components that will be installed in the
work must be slightly higher to provide confidence that the majority of fastener
assemblies will achieve the minimum required pretension as given in Table 8.1.
Accordingly, the minimum pretension to be used in pre-installation verification

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-50
is 1.05 times that required for installation and inspection, rounded to the nearest
kip.
Pre-installation verification testing of as-received bolts and nuts is also
a requirement in this Specification because of instances of under-strength and
counterfeit bolts and nuts. Pre-installation verification testing provides a
practical means for ensuring that non-conforming fastener assemblies are not
incorporated into the work. Experience on many projects has shown that bolts
and/or nuts not meeting the requirements of the applicable ASTM Specification
would have been identified prior to installation if they had been tested as an
assembly in a tension calibrator. The expense of replacing bolts installed in
the structure when the non-conforming bolts were discovered at a later date
would have been avoided.
Additionally, pre-installation verification testing clarifies for the
bolting crew and the inspector the proper implementation of the selected
pretensioning method and the adequacy of the installation equipment. It will
also identify potential sources of problems, such as the need for lubrication to
prevent failure of bolts by combined high torque with tension, under-strength
assemblies resulting from excessive over-tapping of hot-dip galvanized nuts or
other failures to meet strength or geometry requirements of applicable ASTM
specifications.
The pre-installation verification requirements in this Section presume
that fastener assemblies so verified will be pretensioned before the condition of
the fastener assemblies, the equipment and the steelwork have changed
significantly. Research by Kulak and Undershute (1998) on twist-off-type
tension-control bolt assemblies from various manufacturers showed that
installed pretensions could be a function of the time and environmental
conditions of storage and exposure. The reduced performance of these bolts was
caused by a deterioration of the lubricity of the assemblies. Furthermore, all bolt
pretensioning that is achieved through rotation of the nut (or the head) is
affected by the presence of torque, the excess of which has been demonstrated
to adversely affect the development of the desired pretension. Thus, it is
required that the condition of the fastener assemblies must be replicated in pre-
installation verification. When time of exposure between the placement of
fastener assemblies in the field work and the subsequent pretensioning of those
fastener assemblies is of concern, pre-installation verification can be performed
on fastener assemblies removed from the work or on extra fastener assemblies
that, at the time of placement, were set aside to experience the same degree of
exposure.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-51
SECTION 8. INSTALLATION

Prior to installation, the fastener components shall be stored in accordance with Section
2.2. For joints that are designated in the contract documents as snug-tightened joints, the
bolts shall be installed in accordance with Section 8.1. For joints that are designated in
the contract documents as pretensioned or slip-critical, the bolts shall be installed in
accordance with Section 8.2.

8.1. Snug-Tightened Joints
All bolt holes shall be aligned to permit insertion of the bolts without undue
damage to the threads. Bolts shall be placed in all holes with washers positioned
as required in Section 6.1 and nuts threaded to complete the assembly.
Compacting the joint to the snug-tight condition shall progress systematically
from the most rigid part of the joint. Snug tight is the condition that exists when
all of the plies in a connection have been pulled into firm contact by the bolts in
the joint and all of the bolts in the joint have been tightened sufficiently to
prevent the removal of the nuts without the use of a wrench.

Commentary:
As discussed in the Commentary to Section 4, the bolted joints in most shear
connections and in many tension connections can be specified as snug-tightened
joints. The snug tightened condition is typically achieved with a few impacts of
an impact wrench, application of an electric torque wrench until the wrench
begins to slow or the full effort of a worker on an ordinary spud wrench. More
than one cycle through the bolt pattern may be required to achieve the snug-
tightened joint.
The actual pretensions that result in individual fasteners in snug-
tightened joints will vary from joint to joint depending upon the thickness,
flatness, and degree of parallelism of the connected plies, as well as the effort
applied. In most joints, plies of joints involving material of ordinary thickness
and flatness can be drawn into complete contact at relatively low levels of
pretension. However, in some joints in thick material or in material with large
burrs, it may not be possible to reach continuous contact throughout the faying
surface area as is commonly achieved in joints of thinner plates. This is
generally not detrimental to the performance of the joint.
As used in Section 8.1, the term “undue damage” is intended to mean
damage that would be sufficient to render the product unfit for its intended use.

8.2. Pretensioned Joints and Slip-Critical Joints
One of the pretensioning methods in Sections 8.2.1 through 8.2.4 shall be used,
except when alternative-design fasteners that meet the requirements of Section
2.8 or alternative washer-type indicating devices that meet the requirements of
Section 2.6.2 are used, in which case, installation instructions provided by the
manufacturer and approved by the Engineer of Record shall be followed.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-52
Table 8.1. Minimum Bolt Pretension, Pretensioned and Slip-Critical Joints

Specified Minimum Bolt
Pretension, T
m, kips
a
Nominal Bolt
Diameter, d
b, in.
ASTM A325
and F1852
ASTM A490
and F2280
2 12 15
s 19 24
w 28 35
d 39 49
1 51 64
18 56 80
14 71 102
1a 85 121
12 103 148
a
Equal to 70 percent of the specified minimum tensile strength
of bolts as specified in ASTM Specifications for tests of full-size
ASTM A325 and A490 bolts with UNC threads loaded in axial
tension, rounded to the nearest kip.


When it is impractical to turn the nut, pretensioning by turning the bolt
head is permitted while rotation of the nut is prevented, provided that the washer
requirements in Section 6.2 are met. A pretension that is equal to or greater than
the value in Table 8.1 shall be provided. The pre-installation verification
procedures specified in Section 7 shall be performed using fastener assemblies
that are representative of the condition of those that will be pretensioned in the
work.
Pre-installation testing shall be performed for each fastener assembly
lot prior to the use of that assembly lot in the work. The testing shall be done at
the start of the work. For calibrated wrench pretensioning, this testing shall be
performed daily for the calibration of the installation wrench.

Commentary:
The minimum pretension for ASTM A325 and A490 bolts is equal to 70
percent of the specified minimum tensile strength. As tabulated in Table 8.1,
the values have been rounded to the nearest kip.
Four pretensioning methods are provided without preference in this
Specification. Each method may be relied upon to provide satisfactory results
when conscientiously implemented with the specified fastener assembly

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-53
components in good condition. However, it must be recognized that misuse or
abuse is possible with any method. With all methods, it is important to first
install bolts in all holes of the joint and to compact the joint until the connected
plies are in firm contact. Only after completion of this operation can the joint be
reliably pretensioned. Both the initial phase of compacting the joint and the
subsequent phase of pretensioning should begin at the most rigidly fixed or
stiffest point.
In some joints in thick material, it may not be possible to reach
continuous contact throughout the faying surface area, as is commonly achieved
in joints of thinner plates. This is not detrimental to the performance of the
joint. If the specified pretension is present in all bolts of the completed joint, the
clamping force, which is equal to the total of the pretensions in all bolts, will be
transferred at the locations that are in contact and the joint will be fully effective
in resisting slip through friction.
If individual bolts are pretensioned in a single continuous operation in
a joint that has not first been properly compacted or fitted up, the pretension in
the bolts that are pretensioned first may be relaxed or removed by the
pretensioning of adjacent bolts. The resulting reduction in total clamping force
will reduce the slip resistance.
In the case of hot-dip galvanized coatings, especially if the joint
consists of many plies of thickly coated material, relaxation of bolt pretension
may be significant and re-pretensioning of the bolts may be required subsequent
to the initial pretensioning. Munse (1967) showed that a loss of pretension of
approximately 6.5 percent occurred for galvanized plates and bolts due to
relaxation as compared with 2.5 percent for uncoated joints. This loss of bolt
pretension occurred in five days; loss recorded thereafter was negligible. Either
this loss can be allowed for in design, or pretension may be brought back to the
prescribed level by re-pretensioning the bolts after an initial period of “settling-
in.”
As stated in the Guide (Kulak et al 1987; p. 61), “…it seems
reasonable to expect an increase in bolt force relaxation as the grip length is
decreased. Similarly, increasing the number of plies for a constant grip length
might also lead to an increase in bolt relaxation.”

8.2.1. Turn-of-Nut Pretensioning: All bolts shall be installed in accordance with the
requirements in Section 8.1, with washers positioned as required in Section 6.2.
Subsequently, the nut or head rotation specified in Table 8.2 shall be applied to
all fastener assemblies in the joint, progressing systematically from the most
rigid part of the joint in a manner that will minimize relaxation of previously
pretensioned bolts. The part not turned by the wrench shall be prevented from
rotating during this operation. Upon completion of the application of the
required nut rotation for pretensioning, it is not permitted to turn the nut in the
loosening direction except for the purpose of complete removal of the individual

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-54
Table 8.2. Nut Rotation from Snug-Tight Condition
for Turn-of-Nut Pretensioning
a,b

Disposition of Outer Faces of Bolted Parts
Bolt Length
c
Both faces
normal to bolt
axis
One face normal
to bolt axis, other
sloped not more
than 1:20
d

Both faces sloped
not more than 1:20
from normal to bolt
axis
d

Not more
than 4d
b
3 turn 2 turn q turn
More than 4d b
but not more
than 8d
b
2 turn q turn y turn
More than 8d b
but not more
than 12d
b
q turn y turn 1 turn
a
Nut rotation is relative to bolt regardless of the element (nut or bolt) being turned. For
required nut rotations of 2 turn and less, the tolerance is plus or minus 30 degrees; for
required nut rotations of q turn and more, the tolerance is plus or minus 45 degrees.
b
Applicable only to joints in which all material within the grip is steel.
c
When the bolt length exceeds 12d b, the required nut rotation shall be determined by
actual testing in a suitable tension calibrator that simulates the conditions of solidly
fitting steel.
d
Beveled washer not used.


fastener assembly. Such fastener assemblies shall not be reused except as
permitted in Section 2.3.3.

Commentary:
The turn-of-nut pretensioning method results in more uniform bolt pretensions
than is generally provided with torque-controlled pretensioning methods.
Strain-control that reaches the inelastic region of bolt behavior is inherently
more reliable than a method that is dependent upon torque control. However,
proper implementation is dependent upon ensuring that the joint is properly
compacted prior to application of the required partial turn and that the bolt head
(or nut) is securely held when the nut (or bolt head) is being turned.
Match-marking of the nut and protruding end of the bolt after snug-
tightening can be helpful in the subsequent installation process and is certainly
an aid to inspection.
As indicated in Table 8.2, there is no available research that establishes
the required nut rotation for bolt lengths exceeding 12d b. The required turn for
such bolts can be established on a case-by-case basis using a tension calibrator.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-55
8.2.2. Calibrated Wrench Pretensioning: The pre-installation verification procedures
specified in Section 7 shall be performed daily for the calibration of the
installation wrench. Torque values determined from tables or from equations that
claim to relate torque to pretension without verification shall not be used.
All bolts shall be installed in accordance with the requirements in
Section 8.1, with washers positioned as required in Section 6.2. Subsequently,
the installation torque determined in the pre-installation verification of the
fastener assembly (Section 7) shall be applied to all bolts in the joint,
progressing systematically from the most rigid part of the joint in a manner that
will minimize relaxation of previously pretensioned bolts. The part not turned
by the wrench shall be prevented from rotating during this operation.
Application of the installation torque need not produce a relative rotation
between the bolt and nut that is greater than the rotation specified in Table 8.2.

Commentary:
The scatter in installed pretension can be significant when torque-controlled
methods of installation are used. The variables that affect the relationship
between torque and pretension include:

(1) The finish and tolerance on the bolt and nut threads;
(2) The uniformity, degree and condition of lubrication;
(3) The shop or job-site conditions that contribute to dust and dirt or corrosion
on the threads;
(4) The friction that exists to a varying degree between the turned element (the
nut face or bearing area of the bolt head) and the supporting surface;
(5) The variability of the air supply parameters on impact wrenches that results
from the length of air lines or number of wrenches operating from the same
source;
(6) The condition, lubrication and power supply for the torque wrench, which
may change within a work shift; and,
(7) The repeatability of the performance of any wrench that senses or responds
to the level of the applied torque.

In the first edition of this Specification, which was published in 1951, a
table of torque-to-pretension relationships for bolts of various diameters was
included. It was soon demonstrated in research that a variation in the
torque-to-pretension of as high as ±40 percent must be anticipated unless the
relationship is established individually for each bolt lot, diameter, and fastener
condition. Hence, in the 1954 edition of this Specification, recognition of
relationships between torque and pretension in the form of tabulated values or
equations was withdrawn. Recognition of the calibrated wrench pretensioning
method was retained however until 1980, but with the requirement that the
torque required for installation be determined specifically for the bolts being
installed on a daily basis. Recognition of the method was withdrawn in 1980

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-56
because of the continuing controversy that resulted from the failure of users to
adhere to the requirements for the valid use of the method during both
installation and inspection.
In the 1985 edition of this Specification, the calibrated wrench
pretensioning method was reinstated, but with more emphasis on detailed
requirements that must be carefully followed. For calibrated wrench
pretensioning, wrenches must be calibrated:

(1) Daily;
(2) When the lot of any component of the fastener assembly is changed;
(3) When the lot of any component of the fastener assembly is relubricated;
(4) When significant differences are noted in the surface condition of the bolt
threads, nuts or washers; or,
(5) When any major component of the wrench including lubrication, hose and
air supply are altered.

It is also important that:

(1) Fastener components be protected from dirt and moisture at the shop or job
site as required in Section 2;
(2) Washers be used as specified in Section 6; and,
(3) The time between removal from protected storage and wrench calibration
and final pretensioning be minimal.

8.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: Twist-off-type tension-
control bolt assemblies that meet the requirements of ASTM F1852 or F2280
shall be used.
All fastener assemblies shall be installed in accordance with the
requirements in Section 8.1 without severing the splined end and with washers
positioned as required in Section 6.2. If a splined end is severed during this
operation, the fastener assembly shall be removed and replaced. Subsequently,
all bolts in the joint shall be pretensioned with the twist-off-type tension-control
bolt installation wrench, progressing systematically from the most rigid part of
the joint in a manner that will minimize relaxation of previously pretensioned
bolts.

Commentary:
ASTM F1852 and F2280 twist-off-type tension-control bolt assemblies have
a splined end that extends beyond the threaded portion of the bolt. During
installation, this splined end is gripped by a specially designed wrench chuck
and provides a means for turning the nut relative to the bolt. This product
is, in fact, based upon a torque-controlled installation method to which the
fastener assembly variables affecting torque that were discussed in the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-57
Commentary to Section 8.2.2 apply, except for wrench calibration, because
torque is controlled within the fastener assembly.
Twist-off-type tension-control bolt assemblies must be used in the as-
delivered, clean, lubricated condition as specified in Section 2. Adherence to
the requirements in this Specification, especially those for storage, cleanliness
and verification, is necessary for their proper use.

8.2.4. Direct-Tension-Indicator Pretensioning: Direct tension indicators that meet the
requirements of ASTM F959 shall be used. The pre-installation verification
procedures specified in Section 7 shall demonstrate that, when the pretension in
the bolt reaches that required in Table 7.1, the gap is not less than the job
inspection gap in accordance with ASTM F959.
All bolts shall be installed in accordance with the requirements in
Section 8.1, with washers positioned as required in Section 6.2. The installer
shall verify that the direct-tension-indicator protrusions have not been
compressed to a gap that is less than the job inspection gap during this operation,
and if this has occurred, the direct tension indicator shall be removed and
replaced. Subsequently, all bolts in the joint shall be pretensioned, progressing
systematically from the most rigid part of the joint in a manner that will
minimize relaxation of previously pretensioned bolts. The installer shall verify
that the direct tension indicator protrusions have been compressed to a gap that
is less than the job inspection gap.

Commentary:
ASTM F959 direct tension indicators are recognized in this Specification as
a bolt-tension-indicating device. Direct tension indicators are hardened, washer-
shaped devices incorporating small arch-like protrusions on the bearing surface
that are designed to deform in a controlled manner when subjected to
compressive load.
During installation, care must be taken to ensure that the direct-tension-
indicator arches are oriented to bear against the hardened bearing surface of the
bolt head or nut, or against a hardened flat washer if used under turned element,
whether that turned element is the nut or the bolt. Proper use and orientation is
illustrated in Figure C-8.1.
In some cases, more than a single cycle of systematic partial
pretensioning may be required to deform the direct-tension-indicator protrusions
to the gap that is specified by the manufacturer. If the gaps fail to close or when
the washer lot is changed, another verification procedure using the tension
calibrator must be performed.
Provided the connected plies are in firm contact, partial compression of
the direct tension indicator protrusions is commonly taken as an indication that
the snug-tight condition has been achieved.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-58




Figure C-8.1. Proper use and orientation of ASTM F959 direct-tension indicator

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-59
SECTION 9. INSPECTION

When inspection is required in the contract documents, the inspector shall ensure while
the work is in progress that the requirements in this Specification are met. When
inspection is not required in the contract documents, the contractor shall ensure while
the work is in progress that the requirements in this Specification are met.
For joints that are designated in the contract documents as snug-tightened joints,
the inspection shall be in accordance with Section 9.1. For joints that are designated in
the contract documents as pretensioned, the inspection shall be in accordance with
Section 9.2. For joints that are designated in the contract documents as slip-critical, the
inspection shall be in accordance with Section 9.3.

9.1. Snug-Tightened Joints
Prior to the start of work, it shall be ensured that all fastener components to be
used in the work meet the requirements in Section 2. Subsequently, it shall be
ensured that all connected plies meet the requirements in Section 3.1 and all bolt
holes meet the requirements in Sections 3.3 and 3.4. After the connections
have been assembled, it shall be visually ensured that the plies of the connected
elements have been brought into firm contact and that washers have been used
as required in Section 6. It shall be determined that all of the bolts in the joint
have been tightened sufficiently to prevent the turning of the nuts without the
use of a wrench. No further evidence of conformity is required for snug-
tightened joints. Where visual inspection indicates that the fastener may not
have been sufficiently tightened to prevent the removal of the nut by hand, the
inspector shall physically check for this condition for the fastener.

Commentary:
Inspection requirements for snug-tightened joints consist of verification that the
proper fastener components were used, the connected elements were fabricated
properly, the bolted joint was drawn into firm contact, and that the nuts could
not be removed without the use of a wrench. Because pretension, beyond what
is required to ensure that the nut cannot be removed from the bolt without the
use of a wrench, is not required for the proper performance of a snug-tightened
joint, the installed bolts should not be inspected to determine the actual installed
pretension. Likewise, the arbitration procedures described in Section 10 are not
applicable.

9.2. Pretensioned Joints
For pretensioned joints, the following inspection shall be performed in addition
to that required in Section 9.1:

(1) When the turn-of-nut pretensioning method is used for installation, the
inspection shall be in accordance with Section 9.2.1;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-60
(2) When the calibrated wrench pretensioning method is used for installation,
the inspection shall be in accordance with Section 9.2.2;
(3) When the twist-off-type tension-control bolt pretensioning method is used
for installation, the inspection shall be in accordance with Section 9.2.3;
(4) When the direct-tension-indicator pretensioning method is used for
installation, the inspection shall be in accordance with Section 9.2.4; and,
(5) When alternative-design fasteners that meet the requirements of Section 2.8
or alternative washer-type indicating devices that meet the requirements of
Section 2.6.2 are used, the inspection shall be in accordance with inspection
instructions provided by the manufacturer and approved by the Engineer of
Record.

Commentary:
When joints are designated as pretensioned, they are not subject to the same
faying-surface-treatment inspection requirements as is specified for slip-critical
joints in Section 9.3.

9.2.1. Turn-of-Nut Pretensioning: The inspector shall observe the pre-installation
verification testing required in Section 8.2.1. Subsequently, it shall be ensured
by routine observation that the bolting crew properly rotates the turned element
relative to the unturned element by the amount specified in Table 8.2.
Alternatively, when fastener assemblies are match-marked after the initial fit-
up of the joint but prior to pretensioning, visual inspection after pretensioning is
permitted in lieu of routine observation. No further evidence of conformity is
required. A pretension that is greater than the value specified in Table 8.1 shall
not be cause for rejection.

Commentary:
Match-marking of the assembly during installation as discussed in the
Commentary to Section 8.2.1 improves the ability to inspect bolts that have been
pretensioned with the turn-of-nut pretensioning method. The sides of nuts and
bolt heads that have been impacted sufficiently to induce the Table 8.1
minimum pretension will appear slightly peened.
The turn-of-nut pretensioning method, when properly applied and
verified during the construction, provides more reliable installed pretensions
than after-the-fact inspection testing. Therefore, proper inspection of the method
is for the inspector to observe the required pre-installation verification testing of
the fastener assemblies and the method to be used, followed by monitoring of
the work in progress to ensure that the method is routinely and properly applied,
or visual inspection of match-marked assemblies.
Some problems with the turn-of-nut pretensioning method have been
encountered with hot-dip galvanized bolts. In some cases, the problems have
been attributed to an especially effective lubricant applied by the
manufacturer to ensure that bolts and nuts from stock will meet the ASTM

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-61
Specification requirements for minimum turns testing of galvanized fasteners.
Job-site testing in the tension calibrator demonstrated that the lubricant reduced
the coefficient of friction between the bolt and nut to the degree that “the full
effort of an ironworker using an ordinary spud wrench” to snug-tighten the joint
actually induced the full required pretension. Also, because the nuts could be
removed with an ordinary spud wrench, they were erroneously judged by the
inspector to be improperly pretensioned. Excessively lubricated high-strength
bolts may require significantly less torque to induce the specified pretension.
The required pre-installation verification will reveal this potential problem.
Conversely, the absence of lubrication or lack of proper over-tapping
can cause seizing of the nut and bolt threads, which will result in a twist failure
of the bolt at less than the specified pretension. For such situations, the use of a
tension calibrator to check the bolt assemblies to be installed will be helpful in
establishing the need for lubrication.

9.2.2. Calibrated Wrench Pretensioning: The inspector shall observe the pre-
installation verification testing required in Section 8.2.2. Subsequently, it shall
be ensured by routine observation that the bolting crew properly applies the
calibrated wrench to the turned element. No further evidence of conformity is
required. A pretension that is greater than the value specified in Table 8.1 shall
not be cause for rejection.

Commentary:
For proper inspection of the method, it is necessary for the inspector to observe
the required pre-installation verification testing of the fastener assemblies and
the method to be used, followed by monitoring of the work in progress to ensure
that the method is routinely and properly applied within the limits on time
between removal from protected storage and final pretensioning.

9.2.3. Twist-Off-Type Tension-Control Bolt Pretensioning: The inspector shall
observe the pre-installation verification testing required in Section 8.2.3.
Subsequently, it shall be ensured by routine observation that the splined ends
are properly severed during installation by the bolting crew. No further evidence
of conformity is required. A pretension that is greater than the value specified in
Table 8.1 shall not be cause for rejection.

Commentary:
The sheared-off splined end of an installed twist-off-type tension-control bolt
assembly merely signifies that at some time the bolt was subjected to a torque
that was adequate to cause the shearing. If in fact all fasteners are
individually pretensioned in a single continuous operation without first properly
snug-tightening all fasteners, they may give a misleading indication that the
bolts have been properly pretensioned. Therefore, it is necessary that the
inspector observe the required pre-installation verification testing of the fastener

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-62
assemblies, and the ability to apply partial tension prior to twist-off is
demonstrated. This is followed by monitoring of the work in progress to ensure
that the method is routinely and properly applied within the limits on time
between removal from protected storage and final twist-off of the splined end.

9.2.4. Direct-Tension-Indicator Pretensioning: The inspector shall observe the pre-
installation verification testing required in Section 8.2.4. Subsequently, but
prior to pretensioning, it shall be ensured by routine observation that the
appropriate feeler gage is accepted in at least half of the spaces between the
protrusions of the direct tension indicator and that the protrusions are properly
oriented away from the work. If the appropriate feeler gage is accepted in fewer
than half of the spaces, the direct tension indicator shall be removed and
replaced. After pretensioning, it shall be ensured by routine observation that the
appropriate feeler gage is refused entry into at least half of the spaces between
the protrusions. No further evidence of conformity is required. A pretension that
is greater than that specified in Table 8.1 shall not be cause for rejection.

Commentary:
When the joint is initially snug tightened, the direct tension indicator arch-like
protrusions will generally compress partially. Whenever the snug-tightening
operation causes one-half or more of the gaps between these arch-like
protrusions to close to 0.015 in. or less (0.005 in. or less for coated direct
tension indicators), the direct tension indicator should be replaced. Only after
this initial operation should the bolts be pretensioned in a systematic manner. If
the bolts are installed and pretensioned in a single continuous operation, direct
tension indicators may give the inspector a misleading indication that the bolts
have been properly pretensioned. Therefore, it is necessary that the inspector
observe the required pre-installation verification testing of the fastener
assemblies with the direct-tension indicators properly located and the method to
be used. Following this operation, the inspector should monitor the work in
progress to ensure that the method is routinely and properly applied.

9.3. Slip-Critical Joints
Prior to assembly, it shall be visually verified that the faying surfaces of slip-
critical joints meet the requirements in Section 3.2.2. Subsequently, the
inspection required in Section 9.2 shall be performed.

Commentary:
When joints are specified as slip-critical, it is necessary to verify that the faying
surface condition meets the requirements as specified in the contract documents
prior to assembly of the joint and that the bolts are properly pretensioned after
they have been installed. Accordingly, the inspection requirements for slip-
critical joints are identical to those specified in Section 9.2, with additional
faying surface condition inspection requirements.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-63
SECTION 10. ARBITRATION

When it is suspected after inspection in accordance with Section 9.2 or Section 9.3 that
bolts in pretensioned or slip-critical joints do not have the proper pretension, the
following arbitration procedure is permitted.

(1) A representative sample of five bolt and nut assemblies of each combination of
diameter, length, grade and lot in question shall be installed in a tension calibrator.
The material under the turned element shall be the same as in the actual
installation, that is, structural steel or hardened washer. The bolt shall be partially
pretensioned to approximately 15 percent of the pretension specified in Table
8.1. Subsequently, the bolt shall be pretensioned to the minimum value specified in
Table 8.1;
(2) A manual torque wrench that indicates torque by means of a dial, or one that may be
adjusted to give an indication that a defined torque has been reached, shall be
applied to the pretensioned bolt. The torque that is necessary to rotate the nut or bolt
head five degrees (approximately 1 in. at 12 in. radius) relative to its mating
component in the tightening direction shall be determined. The arbitration torque
shall be determined by rejecting the high and low values and averaging the
remaining three; and,
(3) Bolts represented by the above sample shall be tested by applying, in the tightening
direction, the arbitration torque to 10 percent of the bolts, but no fewer than two
bolts, selected at random in each joint in question. If no nut or bolt head is turned
relative to its mating component by application of the arbitration torque, the joint
shall be accepted as properly pretensioned.

If verification of bolt pretension is required after the passage of a period of time and
exposure of the completed joints, an alternative arbitration procedure that is appropriate
to the specific situation shall be used.
If any nut or bolt is turned relative to its mating component by an attempted
application of the arbitration torque, all bolts in the joint shall be tested. Those bolts whose
nut or head is turned relative to its mating component by application of the arbitration
torque shall be re-pretensioned by the Fabricator or Erector and reinspected. Alternatively,
the Fabricator or Erector, at their option, is permitted to re-pretension all of the bolts in
the joint and subsequently resubmit the joint for inspection.

Commentary:
When bolt pretension is arbitrated using torque wrenches after pretensioning, such
arbitration is subject to all of the uncertainties of torque-controlled calibrated wrench
installation that are discussed in the Commentary to Section 8.2.2. Additionally, the
reliability of after-the-fact torque wrench arbitration is reduced by the absence of many of
the controls that are necessary to minimize the variability of the torque-to-pretension
relationship, such as:

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-64
(1) The use of hardened washers
2
;
(2) Careful attention to lubrication; and,
(3) The uncertainty of the effect of passage of time and exposure in the installed
condition.

Furthermore, in many cases such arbitration may have to be based upon an arbitration
torque that is determined either using bolts that can only be assumed to be representative
of the bolts used in the actual job or using bolts that are removed from completed joints.
Ultimately, such arbitration may wrongly reject bolts that were subjected to a properly
implemented installation procedure. The arbitration procedure contained in this
Specification is provided, in spite of its limitations, as the most feasible available at this
time.
Arbitration using an ultrasonic extensometer or a mechanical one capable of
measuring changes in bolt length can be performed on a sample of bolts that is
representative of those that have been installed in the work. Several manufacturers
produce equipment specifically for this application. The use of appropriate techniques,
which includes calibration, can produce a very accurate measurement of the actual
pretension. The method involves measurement of the change in bolt length during the
release of the nut, combined with either a load calibration of the removed fastener
assembly or a theoretical calculation of the force corresponding to the measured elastic
release or “stretch.” Reinstallation of the released bolt or installation of a replacement
bolt is required.
The required release suggests that the direct use of extensometers as an
inspection tool be used in only the most critical cases. The problem of reinstallation may
require bolt replacement unless torque can be applied slowly using a manual or hydraulic
wrench, which will permit the restoration of the original elongation.

2
For example, because the reliability of the turn-of-nut pretensioning method is not dependent
upon the presence or absence of washers under the turned element, washers are not generally
required, except for other reasons as indicated in Section 6. Thus, in the absence of washers, after-
the-fact, torque-based arbitration is particularly unreliable when the turn-of-nut pretensioning
method has been used for installation.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-65
APPENDIX A. TESTING METHOD TO DETERMINE THE SLIP
COEFFICIENT FOR COATINGS USED IN BOLTED JOINTS

SECTION A1. GENERAL PROVISIONS

A1.1. Purpose and Scope
The purpose of this testing procedure is to determine the mean slip coefficient
of a coating for use in the design of slip-critical joints. Adherence to this
testing method provides that the creep deformation of the coating due to both
the clamping force of the bolt and the service-load joint shear are such
that the coating will provide satisfactory performance under sustained loading.

Commentary:
The Research Council on Structural Connections on June 14, 1984, first
approved the testing method developed by Yura and Frank (1985). It has since
been revised to incorporate changes resulting from the intervening years of
experience with the testing method, and is now included as an appendix to this
Specification.
The slip coefficient under short-term static loading has been found to
be independent of the magnitude of the clamping force, variations in coating
thickness and bolt hole diameter.
The proposed test methods are designed to provide the necessary
information to evaluate the suitability of a coating for slip-critical joints and to
determine the mean slip coefficient to be used in the design of the joints. The
initial testing of the compression specimens provides a measure of the scatter of the
slip coefficient.
The creep tests are designed to measure the creep behavior of the
coating under the service loads, determined by the slip coefficient of the coating
based upon the compression test results. The slip test conducted at the
conclusion of the creep test is to ensure that the loss of clamping force in the
bolt does not reduce the slip load below that associated with the design slip
coefficient. ASTM A490 bolts are specified, since the loss of clamping force is
larger for these bolts than that for ASTM A325 bolts. Qualification of the
coating for use in a structure at an average thickness of 2 mils less than that to
be used for the test specimen is to ensure that a casual buildup of the coating
due to overspray and other causes does not jeopardize the coating's
performance.

A1.2. Definition of Essential Variables
Essential variables are those that, if changed, will require retesting of the
coating to determine its mean slip coefficient. The essential variables and the
relationship of these variables to the limitations of application of the coating for
structural joints are given below. The slip coefficient testing shall be repeated if
there is any change in these essential variables.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-66
A1.2.1. Time Interval: The time interval between application of the coating and the time
of testing is an essential variable. The time interval must be recorded in hours
and any special curing procedures detailed. Curing according to published
manufacturer’s recommendations would not be considered a special curing
procedure. The coatings are qualified for use in structural connections that are
assembled after coating for a time equal to or greater than the interval used in
the test specimens. Special curing conditions used in the test specimens will also
apply to the use of the coating in the structural connections.

A1.2.2. Coating Thickness: The coating thickness is an essential variable. The
maximum average coating thickness, as per SSPC PA2 (SSPC 1993; SSPC
1991), allowed on the faying surfaces is 2 mils less than the average thickness,
rounded to the nearest whole mil, of the coating that is used on the test
specimens.

A1.2.3. Coating Composition and Method of Manufacture: The composition of the
coating, including the thinners used, and its method of manufacture are essential
variables.

A1.3. Retesting
A coating that fails to meet the creep or the post-creep slip test requirements in
Section A4 may be retested in accordance with methods in Section A4 at a
lower slip coefficient without repeating the static short-term tests specified in
Section A3. Essential variables shall remain unchanged in the retest.

SECTION A2. TEST PLATES AND COATING OF THE SPECIMENS

A2.1. Test Plates
The test specimen plates for the short-term static tests are shown in Figure A1.
The plates are 4 in. × 4 in. × s in. thick, with a 1 in. diameter hole drilled 12
in. ± z in. from one edge. The test specimen plates for the creep tests are
shown in Figure A2. The plates are 4 in. × 7 in. × s in. thick with two 1 in.
diameter holes drilled 12 in. ± z in. from each end. The edges of the plates
may be milled, as-rolled or saw-cut; thermally cut edges are not permitted. The
plates shall be flat enough to ensure that they will be in reasonably full
contact over the faying surface. All burrs, lips or rough edges shall be
removed. The arrangement of the specimen plates for the testing is shown in
Figure A2. The plates shall be fabricated from a steel with a specified minimum
yield strength that is between 36 and 50 ksi.
If specimens with more than one bolt are desired, the contact surface
per bolt shall be 4 in. × 3 in. as shown for the single-bolt specimen in Figure
A1.

Commentary:
The use of 1 in.-diameter bolt holes in the specimens is to ensure that adequate
clearance is available for slip. Fabrication tolerances, coating buildup on the
holes, and assembly tolerances tend to reduce the apparent clearances.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-67
A2.2. Specimen Coating
Coatings are to be applied to the specimens in a manner that is consistent with
that to be used in the actual intended structural application. The method of
applying the coating and the surface preparation shall be given in the test report.
The specimens are to be coated to an average thickness that is 2 mils greater
than the maximum thickness to be used in the structure on both of the
plate surfaces (the faying and outer surfaces). The thickness of the total
coating and the primer, if used, shall be measured on the contact surface of the
specimens. The thickness shall be measured in accordance with SSPC-PA2
(SSPC, 1993; SSPC, 1991). Two spot readings (six gage readings) shall be
made for each contact surface. The overall average thickness from the three
plates comprising a specimen is the average thickness for the specimen. This
value shall be reported for each specimen. The average coating thickness of the
creep specimens shall be calculated and reported.
The time between application of the coating and specimen assembly
shall be the same for all specimens within ±4 hours. The average time shall be
calculated and reported.



Figure A-1. Compression slip test specimen.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-68



Figure A-2. Creep test specimen assembly.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-69
SECTION A3. SLIP TESTS

The methods and procedures described herein are used to experimentally determine the
mean slip coefficient under short-term static loading for high-strength bolted joints. The
mean slip coefficient shall be determined by testing one set of five specimens.

Commentary:
The slip load measured in this setup yields the slip coefficient directly since the clamping
force is controlled and measured directly. The resulting slip coefficient has been found to
correlate with both tension and compression tests of bolted specimens. However, tests of
bolted specimens revealed that the clamping force may not be constant but decreases with
time due to the compressive creep of the coating on the faying surfaces and under the nut
and bolt head. The reduction in clamping force can be considerable for joints with high
clamping force and thick coatings (as much as a 20 percent loss). This reduction in
clamping force causes a corresponding reduction in the slip load. The resulting reduction
in slip load must be considered in the procedure used to determine the design allowable
slip loads for the coating.
The loss in clamping force is a characteristic of the coating. Consequently,
it cannot be accounted for by an increase in the factor of safety or a reduction in the
clamping force used for design without unduly penalizing coatings that do not exhibit this
behavior.

A3.1. Compression Test Setup
The test setup shown in Figure A3 has two major loading components, one to
apply a clamping force to the specimen plates and another to apply a compressive
load to the specimen so that the load is transferred across the faying surfaces by
friction.

A3.1.1. Clamping Force System: The clamping force system consists of a ⅞ in.
diameter threaded rod that passes through the specimen and a centerhole
compression ram. An ASTM A563 grade DH nut is used at both ends of the
rod and a hardened washer is used at each side of the test specimen.
Between the ram and the specimen is a specially modified ⅞ in. diameter
ASTM A563 grade DH nut in which the threads have been drilled out so that
it will slide with little resistance along the rod. When oil is pumped into the
centerhole ram, the piston rod extends, thus forcing the special nut against one
of the outside plates of the specimen. This action puts tension in the threaded
rod and applies a clamping force to the specimen, thereby simulating the
effect of a pretensioned bolt. If the diameter of the centerhole ram is greater
than 1 in., additional plate washers will be necessary at the ends of the ram.
The clamping force system shall have a capability to apply a load of at least
49 kips and shall maintain this load during the test with an accuracy of 0.5 kips.

Commentary:
The slip coefficient can be easily determined using the hydraulic bolt test setup
included in this Specification. The clamping force system simulates the

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-70
clamping action of a pretensioned high-strength bolt. The centerhole ram
applies a clamping force to the specimen, simulating that due to a pretensioned
bolt.

A3.1.2. Compressive Load System: A compressive load shall be applied to the
specimen until slip occurs. This compressive load shall be applied with a
compression test machine or a reaction frame using a hydraulic loading device.
The loading device and the necessary supporting elements shall be able to
support a force of 120 kips. The compression loading system shall have a
minimum accuracy of 1 percent of the slip load.



Figure A-3. Compression slip test setup.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-71
A3.2. Instrumentation

A3.2.1. Clamping Force: The clamping force shall be measured within 0.5 kips. This is
accomplished by measuring the pressure in the calibrated ram or placing a load
cell in series with the ram.

A3.2.2. Compression Load: The compression load shall be measured during the test by
direct reading from a compression testing machine, a load cell in series with the
specimen and the compression loading device or pressure readings on a
calibrated compression ram.

A3.2.3. Slip Deformation: The displacement of the center plate relative to the two
outside plates shall be measured. This displacement, called “slip” for simplicity,
shall be the average or that which occurs at the centerline of the specimen. This
can be accomplished by using the average of two gages placed on the two
exposed edges of the specimen or by monitoring the movement of the loading
head relative to the base. If the latter method is used, due regard shall be taken
for any slack that may be present in the loading system prior to application of
the load. Deflections shall be measured by dial gages or any other calibrated
device that has an accuracy of at least 0.001 in.

A3.3. Test Procedure
The specimen shall be installed in the test setup as shown in Figure A3.
Before the hydraulic clamping force is applied, the individual plates shall be
positioned so that they are in, or close to, full bearing contact with the ⅞ in.
threaded rod in a direction that is opposite to the planned compressive loading to
ensure obvious slip deformation. Care shall be taken in positioning the two
outside plates so that the specimen is perpendicular to the base with both
plates in contact with the base. After the plates are positioned, the centerhole
ram shall be engaged to produce a clamping force of 49 kips. The applied
clamping force shall be maintained within ±0.5 kips during the test until slip
occurs.
The spherical head of the compression loading machine shall be
brought into contact with the center plate of the specimen after the clamping
force is applied. The spherical head or other appropriate device ensures
concentric loading. When 1 kip or less of compressive load is applied, the slip
gages shall be engaged or attached. The purpose of engaging the deflection
gage(s), after a slight load is applied, is to eliminate initial specimen settling
deformation from the slip reading.
When the slip gages are in place, the compression load shall be applied
at a rate that does not exceed 25 kips per minute nor 0.003 in. of slip
displacement per minute until the slip load is reached. The test should be
terminated when a slip of 0.05 in. or greater is recorded. The load-slip
relationship should preferably be monitored continuously on an X-Y plotter

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-72
throughout the test, but in lieu of continuous data, sufficient load-slip data shall
be recorded to evaluate the slip load defined below.

A3.4. Slip Load
Typical load-slip response is shown in Figure A4. Three types of curves are
usually observed and the slip load associated with each type is defined as
follows:

Curve (a) Slip load is the maximum load, provided this maximum occurs before
a slip of 0.02 in. is recorded.
Curve (b) Slip load is the load at which the slip rate increases suddenly.
Curve (c) Slip load is the load corresponding to a deformation of 0.02 in. This
definition applies when the load vs. slip curves show a gradual
change in response.


Figure A-4. Definition of slip load.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-73
A3.5. Slip Coefficient
The slip coefficient for an individual specimen k
s
shall be calculated as follows:


2
s
slip load
k
clamping force
=
×
(Equation A3.1)

The mean slip coefficient µ for one set of five specimens shall be reported.

A3.6. Alternative Test Methods
Alternative test methods to determine slip are permitted, provided the accuracy
of load measurement and clamping satisfies the conditions presented in the
previous sections. For example, the slip load may be determined from a tension-
type test setup rather than the compression-type test setup as long as the contact
surface area per bolt of the test specimen is the same as that shown in Figure
A1. The clamping force of at least 49 kips may be applied by any means,
provided the force can be established within ± 1 percent.

Commentary:
Alternative test procedures and specimens may be used as long as the accuracy
of load measurement and specimen geometry are maintained as prescribed. For
example, strain-gaged bolts can usually provide the desired accuracy. However,
bolts that are pretensioned by the turn-of-nut, calibrated wrench, alternative-
design fastener, or direct-tension-indicator pretensioning method usually show
too much variation to meet the ± 1 percent requirement of the slip test.

SECTION A4. TENSION CREEP TEST

The test method outlined is intended to ensure that the coating will not undergo
significant creep deformation under sustained service loading. The test also indicates the
loss in clamping force in the bolt due to the compression or creep of the coating. Three
replicate specimens are to be tested.

Commentary:
The creep deformation of the bolted joint under the applied shear loading is also an
important characteristic and a function of the coating applied. Thicker coatings tend to
creep more than thinner coatings. Rate of creep deformation increases as the applied load
approaches the slip load. Extensive testing has shown that the rate of creep is not constant
with time, rather it decreases with time. After about 1,000 hours of loading, the
additional creep deformation is negligible.

A4.1. Test Setup
Tension-type specimens, as shown in Figure A2, are to be used. The replicate
specimens are to be linked together in a single chain-like arrangement, using
loose pin bolts, so the same load is applied to all specimens. The specimens

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-74
shall be assembled so the specimen plates are bearing against the bolt in a
direction opposite to the applied tension loading. Care shall be taken in the
assembly of the specimens to ensure the centerline of the holes used to accept the
pin bolts is in line with the bolts used to assemble the joint. The load level,
specified in Section A4.2, shall be maintained constant within ±1 percent by
springs, load maintainers, servo controllers, dead weight or other suitable
equipment. The bolts used to clamp the specimens together shall be ⅞ in.
diameter ASTM A490 bolts. All bolts shall come from the same lot.
The clamping force in the bolts shall be a minimum of 49 kips. The
clamping force shall be determined by calibrating the bolt force with bolt
elongation, if standard bolts are used. Alternatively, special fastener assemblies
that control the clamping force by other means, such as calibrated bolt torque or
strain gages, are permitted. A minimum of three bolt calibrations shall be
performed using the technique selected for bolt force determination. The
average of the three-bolt calibration shall be calculated and reported. The
method of measuring bolt force shall ensure the clamping force is within ±2
kips of the average value.
The relative slip between the outside plates and the center plates shall
be measured to an accuracy of 0.001 in. These slips are to be measured on both
sides of each specimen.

A4.2. Test Procedure
The load to be placed on the creep specimens is the service load permitted by
Equation 5.7 for ⅞
in. diameter ASTM A490 bolts in slip-critical joints for
the particular slip coefficient category under consideration. The load shall be
placed on the specimen and held for 1,000 hours. The creep deformation of a
specimen is calculated using the average reading of the two displacements on
either side of the specimen. The difference between the average after 1,000
hours and the initial average reading taken within one-half hour after loading
the specimens is defined as the creep deformation of the specimen. This value
shall be reported for each specimen. If the creep deformation of any specimen
exceeds 0.005 in., the coating has failed the test for the slip coefficient used.
The coating may be retested using new specimens in accordance with this
Section at a load corresponding to a lower value of slip coefficient.
If the value of creep deformation is less than 0.005 in. for all
specimens, the specimens shall be loaded in tension to a load that is equal to the
average clamping force times the design slip coefficient times 2, since there are
two slip planes. The average slip deformation that occurs at this load shall
be less than 0.015 in. for the three specimens. If the deformation is greater than
this value, the coating is considered to have failed to meet the requirements for
the particular mean slip coefficient used. The value of deformation for each
specimen shall be reported.

Commentary:
See Commentary in Section A1.1.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-75
APPENDIX B. ALLOWABLE STRESS DESIGN (ASD) ALTERNATIVE

As an alternative to the load and resistance factor design provisions given in Sections 1
through 10, the following allowable stress design provisions are permitted. The
provisions in Sections 1 through 10 in this Specification shall apply to ASD,
except as follows:

SECTION B1. GENERAL REQUIREMENTS

B1.2. Loads, Load Factors and Load Combinations
The design and construction of the structure shall conform to an applicable
allowable stress design specification for steel structures. When permitted in the
applicable building code or specification, the allowable stresses in Section B5
are permitted to be increased to account for the effects of multiple transient
loads in combination. When a load reduction factor is used to account for the
effects of multiple transient loads in combination, the allowable stresses in
Section B5 shall not be increased.

Commentary:
Although loads, load factors and load combinations are not explicitly specified
in this Specification, the allowable stresses herein are based upon those
specified in ASCE 7. When the design is governed by other load criteria, the
allowable stresses specified herein shall be adjusted as appropriate.

SECTION B5. LIMIT STATES IN BOLTED JOINTS

The allowable shear strength and the allowable tensile strength of bolts shall be
determined in accordance with Section B5.1. The interaction of combined shear and
tension on bolts shall be limited in accordance with Section B5.2. The allowable bearing
strength of the connected parts at bolt holes shall be determined in accordance with
Section B5.3. Each of these allowable strengths shall be equal to or greater than the
effect of the service loads. The axial load in bolts that are subject to tension or
combined shear and tension shall be calculated with consideration of the externally
applied tensile load and any additional tension resulting from prying action produced by
deformation of the connected parts.
When slip resistance is required at the faying surfaces subject to shear or
combined shear and tension, the slip resistance determined in accordance with Section
B5.4 shall be equal to or greater than the effect of the service loads. In addition, the
strength requirements in Sections B5.1, B5.2 and B5.3 shall also be met.
When bolts are subject to cyclic application of axial tension, the allowable stress
determined in accordance with Section B5.5 shall be equal to or greater than the stress
due to the effect of the service loads, including any additional tension resulting from
prying action produced by deformation of the connected parts. In addition, the strength
requirements in Sections B5.1, B5.2 and B5.3 shall also be met.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-76
Table B5.1. Allowable Stresses in Bolts

Allowable Stress, F
a, ksi
Applied Load Condition
ASTM A325 or F1852 ASTM A490 or F2280
Static 45 57
Tension
a

Fatigue See Section 5.5
Ls M 38 in. 27 34
Threads
included in
shear plane
L
s > 38 in. 23 28
Ls M 38 in. 34 42
Shear
a,b

Threads
excluded from
shear plane
L
s > 38 in. 28 35
a
Except as required in Section 5.2.
b
Reduction for values for L s > 38 in. applies only when the joint is end loaded, such as splice plates on a
beam or column flange.

B5.1. Allowable Shear and Tensile Stresses
Shear and tensile strengths shall not be reduced by the installed bolt pretension.
For joints, the allowable strength shall be based upon the allowable shear
and tensile stresses of the individual bolts and shall be taken as the sum of the
allowable strengths of the individual bolts.
The allowable shear strength or allowable tensile strength for an
ASTM A325, A490, F1852 or F2280 bolt is R
a, where:


aab
RFA= (Equation B5.1)

where

R
a
= allowable shear strength per shear plane or allowable tensile
strength of a bolt, kips;
F
a
= allowable stress from Table B5.1 for the appropriate applied
load conditions, ksi, adjusted for the presence of fillers or shims as
required below; and,
A
b
= cross-sectional area based upon the nominal diameter of bolt, in.
2


When a bolt that carries load passes through fillers or shims in a shear
plane that are equal to or less than 4 in. thick, F
a from Table B5.1 shall be used
without reduction. When a bolt that carries load passes through fillers or

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-77
shims that are greater than 4 in. thick, one of the following requirements shall
apply:

(1) For fillers or shims that are equal to or less than w in. thick, F a from Table
B5.1 shall be multiplied by the factor [1 - 0.4(t´ - 0.25)], where t´ is the total
thickness of fillers or shims, in., up to w in.;
(2) The fillers or shims shall be extended beyond the joint and the filler
extension shall be secured with enough bolts to uniformly distribute the total
force in the connected element over the combined cross-section of the
connected element and the fillers or shims;
(3) The size of the joint shall be increased to accommodate a number of bolts
that is equivalent to the total number required in (2) above; or,
(4) The joint shall be designed as a slip-critical joint. The slip resistance of the
joint shall not be reduced for the presence of fillers or shims.

B5.2. Combined Shear and Tension Stress
When combined shear and tension loads are transmitted by an ASTM A325,
A490, F1852 or F2280 bolt, the bolt shall be proportioned so that the tensile
stress F
t, ksi, on the cross-sectional area based upon the nominal diameter of
bolt A
b
produced by forces applied to the connected parts, shall not exceed the
values computed from the equations in Table B5.2, where f
v, the shear stress
produced by the same forces, shall not exceed the value for shear determined in
accordance with the requirements in Section B5.1.


B5.3. Allowable Bearing at Bolt Holes
For joints, the allowable bearing strength shall be taken as the sum of the
strengths of the connected material at the individual bolt holes.
The allowable bearing strength of the connected material at a standard
bolt hole, oversized bolt hole, short-slotted bolt hole independent of the
direction of loading or long-slotted bolt hole with the slot parallel to the
direction of the bearing load is R
a, where:

(1) when deformation of the bolt hole at service load is a design consideration;

0.6 1.2
acubu
RLtFdtF=≤ (Equation B5.2)

(2) when deformation of the bolt hole at service load is not a design
consideration;

0.75 1.5
acubu
RLtFdtF=≤ (Equation B5.3)

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-78
Table B5.2. Allowable Tensile Stress, F
t, for Bolts
Subject to Combined Shear and Tension

Allowable Tensile Stress F
t
, ksi
Thread Condition
ASTM A325 or F1852 ASTM A490 or F2280
Ls M 38 in. ()
2
2
45 2.78−
v
f ()
2
2
57 2.81−
v
f
Threads included
in shear plane
L
s > 38 in. ()
2
2
45 3.82−
v
f ()
2
2
57 4.14−
v
f
Ls M 38 in. ()
2
2
45 1.75−
v
f ()
2
2
57 1.84−
v
f
Threads excluded
from shear plane
L
s > 38 in. ()
2
2
45 2.58−
v
f ()
2
2
57 2.65−
v
f

The allowable bearing strength of the connected material at a long-slotted bolt
hole with the slot perpendicular to the direction of the bearing load is R
a
,
where:

0.5
acubu
RLtFdtF=≤ (Equation B5.4)

In Equations B5.2, B5.3 and B5.4,

R a = allowable bearing strength of the connected material, kips;
F
u = specified minimum tensile strength (per unit area) of the connected
material, ksi;
L
c
= clear distance, in the direction of load, between the edge of the
hole and the edge of the adjacent hole or the edge of the material,
in.;
D
b = nominal bolt diameter, in.; and,
t = thickness of the connected material, in.

B5.4. Allowable Slip Resistance
The allowable slip resistance is R
a, where:


1
nmb
mb
T
RHDTNDTN

=μ − 

(Equation B5.5)

where

H = 1.0 for standard holes
= 0.85 for oversized and short-slotted holes
= 0.70 for long-slotted holes perpendicular to the direction of load
= 0.60 for long-slotted holes parallel to the direction of load;

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-79
Table B5.3. Allowable Stress for Fatigue Loading

Max. Bolt Stress for Design at Service Loads
a
, ksi
Number of Cycles
ASTM A325 or F1852 ASTM A490 or F2280
Not more than 20,000 45 57
From 20,000 to 500,000 40 49
More than 500,000 31 38
a
Including the effects of prying action, if any, but excluding the pretension.

µ = mean slip coefficient for Class A, B or C faying surfaces, as
applicable, or as established by testing in accordance with
Appendix A (see Section 3.2.2(b))
= 0.33 for Class A faying surfaces (uncoated clean mill scale
steel surfaces or surfaces with Class A coatings on blast cleaned
steel)
= 0.50 for Class B surfaces (uncoated blast-cleaned steel surfaces or
surfaces with Class B coatings on blast-cleaned steel)
= 0.35 for Class C surfaces (roughened hot-dip galvanized surfaces);
D = 0.80, a slip probability factor that reflects the distribution of
actual slip coefficient values about the mean, the ratio of measured
bolt tensile strength to the specified minimum values, and a slip
probability level; the use of other values of D shall be approved by
the Engineer of Record;
T
m
= specified minimum bolt pretension (for pretensioned joints as
specified in Table 8.1), kips;
N
b = number of bolts in the joint; and,
T = applied service load in tension (tensile component of applied
service load for combined shear and tension loading), kips
= zero if the joint is subject to shear only

B5.5. Tensile Fatigue
The tensile stress in the bolt that results from the cyclic application of externally
applied service loads and the prying force, if any, but not the pretension, shall
not exceed the stress in Table B5.3. The nominal diameter of the bolt shall be
used in calculating the bolt stress. The connected parts shall be proportioned so
that the calculated prying force does not exceed 30 percent of the externally
applied load. Joints that are subject to tensile fatigue loading shall be
pretensioned in accordance with Section 4.2 or slip-critical in accordance with
Section 4.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-80
REFERENCES

Allen, R.N. and J.W. Fisher, 1968, “Bolted Joints With Oversize or Slotted Holes,”
Journal of the Structural Division, Vol. 94, No. ST9, September, ASCE, Reston,
VA .

American Institute of Steel Construction, 2010, Specification for Structural Steel
Buildings, AISC, Chicago, IL.

Birkemoe, P.C. and D.C. Herrschaft, 1970, “Bolted Galvanized Bridges—Engineering
Acceptance Near,” Civil Engineering, April, ASCE, Reston, VA.

Brahimi, Salim, 2006, “Qualification of DACROMET
®
for use with ASTM A490 High-
Strength Structural Bolts,” IBECA Technologies Corp., ASTM F16 Research
Report RR: F16-1001.

Carter, C.J., R.H.R. Tide and J.A. Yura, 1997, “A Summary of Changes and Derivation of
LRFD Bolt Design Provisions,” Engineering Journal, Vol. 34, No. 3, (3rd Qtr.),
AISC, Chicago, IL.

Carter, C.J., 1996, “Specifying Bolt Length for High-Strength Bolts,” Engineering
Journal, Vol. 33, No. 2, (2nd Qtr.), AISC, Chicago, IL.

Chesson, Jr., E, N.L. Faustino and W.H. Munse, 1965, “High-Strength Bolts Subjected
to Tension and Shear,” Journal of the Structural Division, Vol. 91, No. ST5,
October, ASCE, Reston, VA.

Fisher, J.W. and J.L. Rumpf, 1965, “Analysis of Bolted Butt Joints,” Journal of the
Structural Division, Vol. 91, No. ST5, October, ASCE, Reston, VA.

Frank, K.H. and J.A. Yura, 1981, “An Experimental Study of Bolted Shear Connections,”
FHWA/RD-81/148, December, Federal Highway Administration, Washington, D.C.

Kulak, G.L., J.W. Fisher and J.H.A. Struik, 1987, Guide to Design Criteria for Bolted and
Riveted Joints, Second Edition, John Wiley & Sons, New York, NY.

Kulak, G.L. and P.C. Birkemoe, 1993, “Field Studies of Bolt Pretension,” Journal of
Constructional Steel Research, No. 25, pp. 95-106.

Kulak, G.L. and S.T. Undershute, 1998, “Tension Control Bolts: Strength and
Installation,” Journal of Bridge Engineering, Vol. 3 No. 1, February, ASCE,
Reston, VA.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-81
Manuel, T.J. and G.L. Kulak, 2000, “Strength of Joints that Combine Bolts and Welds,”
Journal of Structural Engineering, Vol. 126, No. 3, March, ASCE, Reston, VA.

McKinney, M. and F.J. Zwerneman, 1993, “The Effect of Burrs on the Slip Capacity in
Multiple Bolt Connections,” Final Report to the Research Council on Structural
Connections, August.

Munse, W. H., 1967, “Structural Behavior of Hot Galvanized Bolted Connections,”
Proceedings of the 8th International Conference on Hot-dip Galvanizing, June,
London, England.

Polyzois, D. and K.H. Frank, 1986, “Effect of Overspray and Incomplete Masking of
Faying Surfaces on the Slip Resistance of Bolted Connections,” Engineering
Journal, Vol. 23, No. 2, (2nd Qtr), AISC, Chicago, IL.

Polyzois, D. and J.A. Yura, 1985, “Effect of Burrs on Bolted Friction Connections,”
Engineering Journal, Vol.22, No. 3, (3rd Qtr), AISC, Chicago, IL.

Schnupp, K. O.; Murray, T. M. (2003), “Effects of Head Size on the Performance of
Twist-Off Bolts,” Virginia Polytechnic Institute and State University, CC/VTI-ST
03/09, July 2003.

Sherman, D.R. and J.A. Yura, 1998, “Bolted Double-Angle Compression Members,”
Journal of Constructional Steel Research, 46:1-3, Paper No. 197, Elsevier Science
Ltd., Kidlington, Oxford, UK.

SSPC, 1993, Steel Structures Painting Manual, Vol. 1, Third Edition, SSPC: The Society
for Protective Coatings, Pittsburgh, PA.

SSPC, 1991, Steel Structures Painting Manual, Vol. 2, Sixth Edition, SSPC: The Society
for Protective Coatings, Pittsburgh, PA.

Tide, R.H.R., 2010, “Bolt Shear Design Considerations,” Engineering Journal, Vol. 47,
No. 1, (1
st
Qtr.), AISC, Chicago, IL.

Yura, J.A. and K.H. Frank, 1985, “Testing Method to Determine Slip Coefficient for
Coatings Used in Bolted Joints,” Engineering Journal, Vol. 22, No. 3, (3rd Qtr.),
AISC, Chicago, IL.

Yura, J.A., K.H. Frank and L. Cayes, 1981, “Bolted Friction Connections with
Weathering Steel,” Journal of the Structural Division, Vol. 107, No. ST11,
November, ASCE, Reston, VA.

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-82
INDEX

Alternative-design fasteners.......................................................................................... 16
Alternative washer-type indicating device................................................................... 15
Arbitration...................................................................................................................... 63

Bearing strength............................................................................................................. 36
Bolt holes
Bearing strength at ........................................................................................................... 36
Use of............................................................................................................................... 21
Bolt pretensioning .......................................................................................................... 51
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56
Bolted joints, limit states in........................................................................................... 31
Bolted parts..................................................................................................................... 17
Bolts
Alternative-design fasteners............................................................................................. 16
Geometry............................................................................................................................ 6
Heavy-hex structural.......................................................................................................... 6
Reuse.................................................................................................................................. 6
Specifications..................................................................................................................... 6
Twist-off-type tension-control bolt assemblies................................................................ 15
Burrs................................................................................................................................ 24

Calibrated wrench pretensioning
Inspection of .................................................................................................................... 61
Installation using.............................................................................................................. 55
Use of washers in............................................................................................................. 44
Calibrator, tension ......................................................................................................... 47
Certification of fastener components, manufacturer.................................................... 5
Coatings
On faying surfaces ........................................................................................................... 17
Testing method to determine the slip coefficient for ....................................................... 65
Combined shear and tension......................................................................................... 35
Components, fastener ...................................................................................................... 5
Compressible-washer-type direct tension indicators .................................................. 14
Connected plies............................................................................................................... 17

Design
Bearing strength at bolt holes .......................................................................................... 36
Combined shear and tension ............................................................................................ 35
General............................................................................................................................. 31

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-83
Shear strength................................................................................................................... 32
Slip resistance .................................................................................................................. 38
At the factored-load level ................................................................................................ 38
At the service-load level .................................................................................................. 39
Tensile fatigue.................................................................................................................. 42
Tensile strength ................................................................................................................ 32
Direct tension indicators
Compressible-washer-type, general ................................................................................. 14
Inspection of .................................................................................................................... 62
Installation using.............................................................................................................. 57
Use of washers with......................................................................................................... 44
Drawing information ....................................................................................................... 3

Fasteners
Alternative-design............................................................................................................ 16
Manufacturer certification of ............................................................................................. 5
Storage of........................................................................................................................... 5
Fatigue, tensile................................................................................................................ 42
Faying surfaces............................................................................................................... 17
Coated .............................................................................................................................. 18
Galvanized ....................................................................................................................... 18
In pretensioned joints....................................................................................................... 17
In slip-critical joints ......................................................................................................... 18
In snug-tightened joints ................................................................................................... 17
Uncoated .......................................................................................................................... 18

Galvanized faying surfaces............................................................................................ 18
General requirements ...................................................................................................... 1
Geometry
Bolts ................................................................................................................................... 6
Nuts.................................................................................................................................. 13
Twist-off-type tension-control bolt assemblies................................................................ 15

Heavy-hex nuts............................................................................................................... 13
Heavy-hex structural bolts.............................................................................................. 6
Holes
Bolt................................................................................................................................... 21
Long-slotted ..................................................................................................................... 24
Oversized ......................................................................................................................... 23
Oversized, use of washers with ....................................................................................... 45
Short-slotted..................................................................................................................... 24
Slotted, use of washers with ....................................................................................... 44,45
Standard ........................................................................................................................... 22

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-84
Indicating devices
Alternative washer-type ................................................................................................... 15
Twist-off-type tension-control bolt assemblies................................................................ 15
Washer-type...................................................................................................................... 14
Inspection........................................................................................................................ 59
Of calibrated wrench pretensioning................................................................................. 61
Of direct-tension-indicator pretensioning ........................................................................ 62
Of pretensioned joints...................................................................................................... 59
Of slip-critical joints ........................................................................................................62
Of snug-tightened joints................................................................................................... 59
Of turn-of-nut pretensioning............................................................................................ 60
Of twist-off-type tension-control bolt pretensioning ....................................................... 61
Installation ...................................................................................................................... 51
In pretensioned joints....................................................................................................... 51
In slip-critical joints ......................................................................................................... 51
In snug-tightened joints ................................................................................................... 51
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56

Joints
Limit states in................................................................................................................... 31
Pretensioned..................................................................................................................... 29
Faying surfaces in......................................................................................................... 17
Inspection of................................................................................................................. 59
Installation in................................................................................................................51
Slip-critical....................................................................................................................... 30
Faying surfaces in......................................................................................................... 18
Inspection of................................................................................................................. 62
Installation in................................................................................................................51
Snug-tightened .................................................................................................................28
Faying surfaces............................................................................................................. 17
Inspection of................................................................................................................. 59
Installation in................................................................................................................51
Type.................................................................................................................................. 26

Limit states in bolted joints........................................................................................... 31
Loads ................................................................................................................................. 1
Combinations ..................................................................................................................... 1
Factors................................................................................................................................ 1
Long-slotted holes
General............................................................................................................................. 24
Use of washers with .................................................................................................... 44,45

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-85
Manufacturer certification of fastener components ..................................................... 5

Nuts
Geometry.......................................................................................................................... 13
Heavy-hex ........................................................................................................................ 13
Specifications................................................................................................................... 13

Oversized holes
General............................................................................................................................. 23
Use of washers with......................................................................................................... 45

Parts, bolted.................................................................................................................... 17
Plies, connected .............................................................................................................. 17
Pre-installation verification........................................................................................... 47
Pretensioned joints
Faying surfaces in ............................................................................................................ 17
General............................................................................................................................. 29
Inspection of..................................................................................................................... 59
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Using calibrated wrench pretensioning............................................................................ 55
Using direct-tension-indicator pretensioning................................................................... 57
Using turn-of-nut pretensioning....................................................................................... 53
Using twist-off-type tension-control bolt pretensioning.................................................. 56

References ....................................................................................................................... 80
Requirements, general ..................................................................................................... 1
Reuse, bolts ....................................................................................................................... 6

Shear, design strength.................................................................................................... 32
Short-slotted holes
General............................................................................................................................. 24
Use of washers with.................................................................................................... 44,45
Slip coefficient for coatings, testing to determine ....................................................... 65
Slip-critical joints
Faying surfaces in ............................................................................................................ 18
General............................................................................................................................. 30
Inspection of .................................................................................................................... 62
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Slip resistance ................................................................................................................. 38
Slotted hole, use of washers with............................................................................. 44,45
Snug-tightened joints
Faying surfaces in ............................................................................................................ 17

Specification for Structural Joints Using High-Strength Bolts, December 31, 2009
RESEARCH COUNCIL ON STRUCTURAL CONNECTIONS
16.2-86
General............................................................................................................................. 28
Inspection of .................................................................................................................... 59
Installation in ................................................................................................................... 51
Use of washers in............................................................................................................. 44
Specifications
Bolts ................................................................................................................................... 6
General............................................................................................................................... 2
Nuts.................................................................................................................................. 13
Twist-off-type tension-control bolt assemblies................................................................ 15
Washers ............................................................................................................................ 14
Standard holes ................................................................................................................ 22
Standards .......................................................................................................................... 2
Storage of fastener components...................................................................................... 5
Strength
Combined shear and tension ............................................................................................ 35
Bearing............................................................................................................................. 36
Shear ................................................................................................................................ 32
Slip resistance .................................................................................................................. 38
Tensile .............................................................................................................................. 32
Tensile fatigue.................................................................................................................. 42
Surfaces, faying .............................................................................................................. 17

Tensile design strength................................................................................................... 32
Tensile fatigue................................................................................................................. 42
Tension calibrator .......................................................................................................... 47
Testing, slip coefficient for coatings.............................................................................. 65
Turn-of-nut pretensioning
Inspection of .................................................................................................................... 60
Installation using.............................................................................................................. 53
Twist-off-type tension-control bolt assemblies
Geometry.......................................................................................................................... 15
Inspection of .................................................................................................................... 61
Installation using.............................................................................................................. 56
Specifications................................................................................................................... 15
Use of washers in............................................................................................................. 44

Uncoated faying surfaces............................................................................................... 18
Use of washers ................................................................................................................ 44

Verification, pre-installation ......................................................................................... 47

Washers
General............................................................................................................................. 14
Use of............................................................................................................................... 44
Washer-type indicating devices..................................................................................... 14

www.boltcouncil.org
RESEARCH COUNCIL ON ST RUCTURAL CONNECTIONS
c/o AISC, One East Wacker Drive, Suite 700, Chicago, Illinois 60601

AISC 348-09 (2M910)

AISC 303-10





Code of Standard Practice
for Steel Buildings
and Bridges



April 14, 2010


Supersedes the March 18, 2005 AISC Code of Standard Practice
for Steel Buildings and Bridges and all previous versions.

Prepared by the American Institute of Steel Construction
under th
e direction of the AISC Committee
on the Code of Standard Practice.








AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700, Chicago, Illinois 60601

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-ii







AISC © 2010
by
American Institute of Steel Construction




All rights reserved. This book or any part thereof must not be reproduced in any form
without the written permission of the publisher. The AISC logo is a registered trademark
of AISC.

The information presented in this publication has been prepared in accordance with
recognized engineering principles and is for general information only. While it is
believed to be accurate, this information should not be used or relied upon for any
specific application without competent professional examination and verification of
its accuracy, suitability, and applicability by a licensed professional engineer,
designer, or architect. The publication of the material contained herein is not
intended as a representation or warranty on the part of the American Institute of
Steel Construction or of any other person named herein, that this information is
suitable for any general or particular use or of freedom from infringement of any
patent or patents. Anyone making use of this information assumes all liability
arising from such use.

Caution must be exercised when relying upon other specifications and codes
developed by other bodies and incorporated by reference herein since such material
may be modified or amended from time to time subsequent to the printing of this
edition. The Institute bears no responsibility for such material other than to refer to
it and incorporate it by reference at the time of the initial publication of this edition.


Printed in the United States of America

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-iii
PREFACE


As in any industry, trade practices have developed among those that are involved in the
design, purchase, fabrication and erection of structural steel. This Code provides a useful
framework for a common understanding of the acceptable standards when contracting for
structural steel. As such, it is useful for owners, architects, engineers, general contractors,
construction managers, fabricators, steel detailers, erectors and others that are associated
with construction in structural steel. Unless specific provisions to the contrary are
contained in the contract documents, the existing trade practices that are contained herein
are considered to be the standard custom and usage of the industry and are thereby
incorporated into the relationships between the parties to a contract.
The Symbols and Glossary are an integral part of this Code. In many sections of
this Code, a non-mandatory Commentary has been prepared to provide background and
further explanation for the corresponding Code provisions. The user is encouraged to
consult it.
Since the first edition of this Code was published in 1924, AISC has
continuously surveyed the structural steel design community and construction industry to
determine standard trade practices. Since then, this Code has been periodically updated to
reflect new and changing technology and industry practices.
The 2000 edition was the fifth complete revision of this Code since it was first
published. Like the 2005 edition, the 2010 edition is not a complete revision but does add
important changes and updates. It is the result of the deliberations of a fair and balanced
Committee, the membership of which included structural engineers, architects, a code
official, a general contractor, fabricators, a steel detailer, erectors, inspectors, and an
attorney. The following changes have been made in this revision:

• The scope in Section 1.1 has been revised to cover buildings and other structures in a
manner that is consistent with how buildings and other structures are treated in AISC
360 (the AISC Specification for Structural Steel Buildings ). A similar and
corresponding revision has been made in Section 1.4.
• The list of referenced documents in Section 1.2 has been editorially updated.
• Section 1.9 has been added to emphasize that not all tolerances are explicitly covered
in the Code, and that tolerances not covered are not to be assumed as zero.
• Clarification has been added in Section 2 that base plates and bearing plates are
considered structural steel if they are attached to the structural frame, but not if they
are loose items that do not attach to the structural steel frame.
• Editorial improvements have been made in the Commentary to Section 3.1 to
improve upon the list of items that should be provided in the contract documents, as
well as to link column differential shortening and anticipated deflections to
information that has been added in the Commentary to Section 7.13.
• Explicit requirements have been added in Section 3.1.2 as “option 3” for when
connection design work is delegated by the Structural Engineer of Record (SER) to
be performed by another engineer. Provisions covering connection design by the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-iv
SER (option 1) and selection or completion of basic tabular connections by a steel
detailer (option 2) also have been revised for consistency with and distinction from
option 3. Additionally, the defined term substantiating connection information has
been added to the Glossary, and revisions also have been made in Section 4 to
correspond with the addition of option 3 in Section 3.1.2.
• Information has been added to the Commentary in Section 4.1 to summarize the
importance and benefits of holding a pre-detailing conference to open lines of
communication and develop a common understanding about the project.
• Section 4.7 has been added to address requirements for erection drawings.
• Section 6.4.3 has been modified to better address incidental camber in trusses.
• Information has been added in the Commentary to Section 7.10.1 to better describe
the provisions that relate to special erection conditions or other considerations that
are required by the design concept, as well as to highlight special considerations in
the erection of cantilevered members.
• The intent in Section 7.13.1.2(d) has been clarified in the text as well as with the
relocation of supporting Commentary.
• The intent in Section 10.2.5 has been editorially clarified for groove welds in butt
joints and outside corner joints.
• The document has been editorially revised for consistency with current terms and
other related documents.

The Committee thanks Glenn Bishop, the Council of American Structural Engineers
(CASE), and its Guidelines Committee for their assistance and partnership in the
development of Section 3.1.2 in this edition of the Code. Also, the Committee thanks
Rex I. Lewis and Homer R. Peterson, II for their contributions as mem
bers of the
Committee for part of this cycle of development, and honors Com
mittee member
Leonard R. Middleton, who passed away during this cycle.

By the AISC Committee on the Code of Standard Practice,

James A. Stori, Chairman
Barry L. Barger, Vice Chairman
William A. Andrews
Paul M. Brosnahan
Richard B. Cook
William B. Cooper
William R. Davidson
Theodore L. Droessler
Donald T. Engler
Lawrence G. Griffis
D. Kirk Harman
Viji Kuruvilla
Keith G. Landwehr
James L. Larson
H. Scott Metzger
Donald G. Moore
David B. Ratterman
David I. Ruby
Rex D. Smith
Thomas S. Tarpy, Jr.
James G. Thompson
Michael J. Tylk
Michael A. West
Charles J. Carter, Secretary
Amanuel Gebremeskel, Asst. Secretary

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-v
TABLE OF CONTENTS


Glossary ........................................................................................................................ vii

Section 1. General Provisions ........................................................................................ 1
1.1. Scope ......................................................................................................................... 1
1.2. Referenced Specifications, Codes and Standards ..................................................... 1
1.3. Units .......................................................................................................................... 2
1.4. Design Criteria .......................................................................................................... 3
1.5. Responsibility for Design .......................................................................................... 3
1.6. Patents and Copyrights .............................................................................................. 3
1.7. Existing Structures .................................................................................................... 3
1.8. Means, Methods and Safety of Erection ................................................................... 4
1.9. Tolerances ................................................................................................................. 4

Section 2. Classification of Materials ........................................................................... 5
2.1. Definition of Structural Steel .................................................................................... 5
2.2. Other Steel, Iron or Metal Items ............................................................................... 6

Section 3. Design Drawings and Specifications ........................................................... 9
3.1. Structural Design Drawings and Specifications ........................................................ 9
3.2. Architectural, Electrical and Mechanical Design Drawings and Specifications ..... 15
3.3. Discrepancies .......................................................................................................... 15
3.4. Legibility of Design Drawings ................................................................................ 16
3.5. Revisions to the Design Drawings and Specifications ............................................ 16
3.6. Fast-Track Project Delivery .................................................................................... 17

Section 4. Shop and Erection Drawings ..................................................................... 18
4.1. Owner Responsibility .............................................................................................. 18
4.2. Fabricator Responsibility ........................................................................................ 19
4.3. Use of CAD Files and/or Copies of Design Drawings ............................................ 20
4.4. Approval ................................................................................................................. 21
4.5. Shop and/or Erection Drawings Not Furnished by the Fabricator .......................... 23
4.6. The RFI Process ...................................................................................................... 23
4.7. Erection Drawings ................................................................................................... 24

Section 5. Materials ...................................................................................................... 25
5.1. Mill Materials .......................................................................................................... 25
5.2. Stock Materials ....................................................................................................... 26

Section 6. Shop Fabrication and Delivery .................................................................. 28
6.1. Identification of Material ........................................................................................ 28
6.2. Preparation of Material ........................................................................................... 29
6.3. Fitting and Fastening ............................................................................................... 29
6.4. Fabrication Tolerances ............................................................................................ 30
6.5. Shop Cleaning and Painting .................................................................................... 33
6.6. Marking and Shipping of Materials ........................................................................ 35

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-vi
6.7. Delivery of Materials .............................................................................................. 35

Section 7. Erection ........................................................................................................ 37
7.1. Method of Erection ................................................................................................. 37
7.2. Job-Site Conditions ................................................................................................. 37
7.3. Foundations, Piers and Abutments .......................................................................... 37
7.4. Lines and Bench Marks ........................................................................................... 38
7.5. Installation of Anchor Rods, Foundation Bolts and Other Embedded Items .......... 38
7.6. Installation of Bearing Devices ............................................................................... 39
7.7. Grouting .................................................................................................................. 40
7.8. Field Connection Material ....................................................................................... 40
7.9. Loose Material ........................................................................................................ 41
7.10. Temporary Support of Structural Steel Frames ..................................................... 41
7.11. Safety Protection ................................................................................................... 44
7.12. Structural Steel Frame Tolerances ........................................................................ 45
7.13. Erection Tolerances ............................................................................................... 46
7.14. Correction of Errors .............................................................................................. 56
7.15. Cuts, Alterations and Holes for Other Trades ....................................................... 56
7.16. Handling and Storage ............................................................................................ 56
7.17. Field Painting ........................................................................................................ 57
7.18. Final Cleaning Up ................................................................................................. 57

Section 8. Quality Control ........................................................................................... 58
8.1. General .................................................................................................................... 58
8.2. Inspection of Mill Material ...................................................................................... 59
8.3. Non-Destructive Testing ......................................................................................... 59
8.4. Surface Preparation and Shop Painting Inspection ................................................. 59
8.5. Independent Inspection ........................................................................................... 59

Section 9. Contracts ..................................................................................................... 61
9.1. Types of Contracts .................................................................................................. 61
9.2. Calculation of Weights ............................................................................................ 61
9.3. Revisions to the Contract Documents ..................................................................... 62
9.4. Contract Price Adjustment ...................................................................................... 63
9.5. Scheduling ............................................................................................................... 63
9.6. Terms of Payment ................................................................................................... 64

Section 10. Architecturally Exposed Structural Steel ............................................... 65
10.1. General Requirements ........................................................................................... 65
10.2. Fabrication ............................................................................................................ 65
10.3. Delivery of Materials ............................................................................................ 66
10.4. Erection ................................................................................................................. 67

Appendix A. Digital Building Product Models ........................................................... 68

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-vii
GLOSSARY


The following abbreviations and terms are used in this Code. Where used, terms are
italicised to alert the user that the term is defined in this Glossary.

AASHTO. American Association of State Highway and Transportation Officials.

Adjustable Items. See Section 7.13.1.3.

AESS. See architecturally exposed structural steel.

AISC. American Institute of Steel Construction.

Anchor Bolt. See anchor rod.

Anchor Rod. A mechanical device that is either cast or drilled and chemically adhered,
grouted or wedged into concrete and/or masonry for the purpose of the subsequent
attachment of structural steel.

Anchor-Rod Group. A set of anchor rods that receives a single fabricated structural steel
shipping piece.

ANSI. American National Standards Institute.

Architect. The entity that is professionally qualified and duly licensed to perform
architectural services.

Architecturally Exposed Structural Steel. See Section 10.

AREMA. American Railway Engineering and Maintenance of Way Association.

ASME. American Society of Mechanical Engineers.

ASTM. American Society for Testing and Materials.

AWS. American Welding Society.

Bearing Devices. Shop-attached base and bearing plates, loose base and bearing plates
and leveling devices, such as leveling plates, leveling nuts and washers and leveling
screws.

CASE. Council of American Structural Engineers.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-viii
Clarification. An interpretation, of the design drawings or specifications that have been
released for construction, made in response to an RFI or a note on an approval
drawing and providing an explanation that neither revises the information that has
been released for construction nor alters the cost or schedule of performance of the
work.

the Code, this Code. This document, the AISC Code of Standard Practice for Steel
Buildings and Bridges as adopted by the American Institute of Steel Construction.

Column line. The grid line of column centers set in the field based on the dimensions
shown on the structural design drawings and using the building layout provided by
the owners designated representative for construction. Column offsets are taken
from the column line . The column line may be straight or curved as shown in the
structural design drawings.

Connection. An assembly of one or more joints that is used to transmit forces between
two or more members and/or connection elements.

Contract Documents. The documents that define the responsibilities of the parties that
are involved in bidding, fabricating and erecting structural steel. These documents
normally include the design drawings, the specifications and the contract.

Design Drawings. The graphic and pictorial portions of the contract documents showing
the design, location and dimensions of the work. These documents generally include
plans, elevations, sections, details, schedules, diagrams and notes.

Embedment Drawings. Drawings that show the location and placement of items that are
installed to receive structural steel.

EOR, Engineer, Engineer of Record. See structural engineer of record.

Erection Bracing Drawings. Drawings that are prepared by the erector to illustrate the
sequence of erection, any requirements for temporary supports and the requirements
for raising, bolting and/or welding. These drawings are in addition to the erection
drawings.

Erection Drawings. Field-installation or member-placement drawings that are prepared
by the fabricator to show the location and attachment of the individual shipping
pieces.

Erector. The entity that is responsible for the erection of the structural steel.

Established Column Line. The actual field line that is most representative of the erected
column centers along a line of columns placed using the dimensions shown in the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-ix
structural design drawings and the lines and bench marks established by the owner’s
designated representative for construction, to be used in applying the erection
tolerances given in this Code for column shipping pieces.

Fabricator. The entity that is responsible for fabricating the structural steel.

Hazardous Materials. Components, compounds or devices that are either encountered
during the performance of the contract work or incorporated into it containing
substances that, not withstanding the application of reasonable care, present a threat
of harm to persons and/or the environment.

Inspector. The owner’s testing and inspection agency.

MBMA. Metal Building Manufacturers Association.

Mill Material. Steel mill products that are ordered expressly for the requirements of a
specific project.

Owner. The entity that is identified as such in the contract documents.

Owner’s Designated Representative for Construction. The owner or the entity that is
responsible to the owner for the overall construction of the project, including its
planning, quality, and completion. This is usually the general contractor, the
construction manager or similar authority at the job site.

Owner’s Designated Representative for Design. The owner or the entity that is
responsible to the owner for the overall structural design of the project, including the
structural steel frame. This is usually the structural engineer of record.

Plans. See design drawings.

RCSC. Research Council on Structural Connections.

Released for Construction. The term that describes the status of contract documents that
are in such a condition that the fabricator and the erector can rely upon them for the
performance of their work, including the ordering of material and the preparation of
shop and erection drawings.

Revision. An instruction or directive providing information that differs from information
that has been released for construction. A revision may, but does not always, impact
the cost or schedule of performance of the work.

RFI. A written request for information or clarification generated during the construction
phase of the project.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-x

SER. See structural engineer of record.

Shop Drawings. Drawings of the individual structural steel shipping pieces that are to be
produced in the fabrication shop.

SJI. Steel Joist Institute.

Specifications. The portion of the contract documents that consists of the written
requirements for materials, standards and workmanship.

SSPC. SSPC: The Society for Protective Coatings, which was formerly known as the
Steel Structures Painting Council.

Standard Structural Shapes. Hot-rolled W-, S-, M- and HP-shapes, channels and angles
listed in ASTM A6/A6M; structural tees split from the hot-rolled W-, S- and M-
shapes listed in ASTM A6/A6M; hollow structural sections produced to ASTM
A500, A501, A618 or A847; and, steel pipe produced to ASTM A53/A53M.

Steel Detailer. The entity that produces the shop and erection drawings.

Structural Engineer of Record. The licensed professional who is responsible for sealing
the contract documents, which indicates that he or she has performed or supervised
the analysis, design and document preparation for the structure and has knowledge
of the load-carrying structural system.

Structural Steel. The elements of the structural frame as given in Section 2.1.

Substantiating Connection Information. Information submitted by the fabricator, if
requested by the owner’s designated representative for design in the contract
documents, when option (2) or option (3) is designated for connections per Section
3.1.2.

Tier. The structural steel framing defined by a column shipping piece.

Weld Show-Through. In architecturally exposed structural steel, visual indication of the
presence of a weld or welds on the side of the member opposite the weld.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-1
CODE OF STANDARD PRACTICE
FOR STEEL BUILDINGS AND BRIDGES



SECTION 1. GENERAL PROVISIONS

1.1. Scope
This Code sets forth criteria for the trade practices involved in steel buildings,
bridges, and other structures, where other structures are defined as those
structures designed, fabricated, and erected in a manner similar to buildings,
with building-like vertical and lateral load resisting elements. In the absence of
specific instructions to the contrary in the contract documents, the trade
practices that are defined in this Code shall govern the fabrication and erection
of structural steel.

Commentary:
The practices defined in this Code are the commonly accepted standards of
custom and usage for structural steel fabrication and erection, which generally
represent the most efficient approach. This Code is not intended to define a
professional standard of care for the owners designated representative for
design, change the duties and responsibilities of the owner, contractor, architect
or structural engineer of record from those set forth in the contract documents,
or assign to the owner, architect or structural engineer of record any duty or
authority to undertake responsibility inconsistent with the provisions of the
contract documents.

This Code is not applicable to steel joists or metal building systems, which are
addressed by SJI and MBMA, respectively.

1.2. Referenced Specifications, Codes and Standards
The following documents are referenced in this Code:

AASHTO Specification—The 2010 AASHTO LRFD Bridge Design
Specifications, 5
th
Edition.
AISC Seismic Provisions—AISC 341-10, the 2010 AISC Seismic Provisions for
Structural Steel Buildings.
AISC Specification—AISC 360-10, the 2010 AISC Specification for Structural
Steel Buildings.
ASME B46.1—ASME B46.1-02, Su rface Texture (Surface Roughness,
Waviness and Lay).
AREMA Specification—The 2010 AREMA Manual for Railway Engineering,
Volume II—Structures, Chapter 15.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-2
ASTM A6/A6M—09, Standard Specification for General Requirements for
Rolled Structural Steel Bars, Plates, Shapes, and Sheet Piling.
ASTM A53/A53M—07, Standard Specification for Pi pe, Steel, Black and Hot-
Dipped, Zinc-Coated, Welded and Seamless.
ASTM A325—09, Standard Specification for Structural Bolts, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength.
ASTM A325M—09, Standard Specification for High-Strength Bolts for
Structural Steel Joints (Metric).
ASTM A490—08b, Standard Specification for Heat-Treated Steel Structural
Bolts, 150 ksi Minimum Tensile Strength.
ASTMA490M—08, Standard Specification for High-Strength Steel Bolts,
Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric).
ASTM A500/A500M—07, Standard Specification for Cold-Formed Welded
and Seamless Carbon Steel Structural Tubing in Rounds and Shapes.
ASTM A501—07, Standard Specification for Hot-Formed Welded and
Seamless Carbon Steel Structural Tubing. No metric equivalent exists.
ASTM A618/A618M—04, Standard Specification for Hot-Formed Welded and
Seamless High-Strength Low-Alloy Structural Tubing.
ASTM A847/A847M—05, Standard Specification for Cold-Formed Welded
and Seamless High-Strength, Low-Alloy Structural Tubing with Improved
Atmospheric Corrosion Resistance.
ASTM F1852/F1852M—08, Standard Specification for "Twist-Off" Type
Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat
Treated, 120/105 ksi Minimum Tensile Strength.
AWS D1.1—The AWS D1.1 Structural Welding Code—Steel, 2008.
CASE Document 11—An Agreement Between Structural Engineer of Record
and Contractor for Transfer of Computer Aided Drafting (CAD) files on
Electronic Media, 2000
CASE Document 962—The National Practice Guidelines for the Structural
Engineer of Record, Fourth Edition, 2000.
RCSC Specification—The Specification for Structural Joints Using High-
Strength Bolts, 2009.
SSPC SP2—SSPC Surface Preparation Specification No. 2, Hand Tool
Cleaning, 2004.
SSPC SP6—SSPC Surface Preparation Specification No. 6, Commercial Blast
Cleaning, 2004.

1.3. Units
In this Code, the values stated in either U.S. customary units or metric units
shall be used. Each system shall be used independently of the other.

Commentary:
In this Code, dimensions, weights and other measures are given in U.S.
customary units with rounded or rationalized metric-unit equivalents in

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-3
brackets. Because the values stated in each system are not exact equivalents, the
selective combination of values from each of the two systems is not permitted.

1.4. Design Criteria
For buildings and other structures, in the absence of other design criteria, the
provisions in the AISC Specification shall govern the design of the structural
steel. For bridges, in the absence of other design criteria, the provisions in the
AASHTO Specification and AREMA Specification shall govern the design of
the structural steel, as applicable.

1.5. Responsibility for Design

1.5.1. When the owner’s designated representative for design provides the design,
design drawings and specifications, the fabricator and the erector are not
responsible for the suitability, adequacy or building-code conformance of the
design.

1.5.2. When the owner enters into a direct contract with the fabricator to both design
and fabricate an entire, completed steel structure, the fabricator shall be
responsible for the suitability, adequacy, conformance with owner-established
performance criteria, and building-code conformance of the structural steel
design. The owner shall be responsible for the suitability, adequacy and
building-code conformance of the non-structural steel elements and shall
establish the performance criteria for the structural steel frame.

1.6. Patents and Copyrights
The entity or entities that are responsible for the specification and/or selection of
proprietary structural designs shall secure all intellectual property rights
necessary for the use of those designs.

1.7. Existing Structures

1.7.1. Demolition and shoring of any part of an existing structure are not within the
scope of work that is provided by either the fabricator or the erector. Such
demolition and shoring shall be performed in a timely manner so as not to
interfere with or delay the work of the fabricator and the erector.

1.7.2. Protection of an existing structure and its contents and equipment, so as to
prevent damage from normal erection processes, is not within the scope of work
that is provided by either the fabricator or the erector. Such protection shall be
performed in a timely manner so as not to interfere with or delay the work of the
fabricator or the erector .

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-4
1.7.3. Surveying or field dimensioning of an existing structure is not within the scope
of work that is provided by either the fabricator or the erector. Such surveying
or field dimensioning, which is necessary for the completion of shop and
erection drawings and fabrication, shall be performed and furnished to the
fabricator in a timely manner so as not to interfere with or delay the work of the
fabricator or the erector .

1.7.4. Abatement or removal of hazardous materials is not within the scope of work
that is provided by either the fabricator or the erector. Such abatement or
removal shall be performed in a timely manner so as not to interfere with or
delay the work of the fabricator and the erector.

1.8. Means, Methods and Safety of Erection

1.8.1. The erector shall be responsible for the means, methods and safety of erection
of the structural steel frame.

1.8.2. The structural engineer of record shall be responsible for the structural
adequacy of the design of the structure in the completed project. The structural
engineer of record shall not be responsible for the means, methods and safety of
erection of the structural steel frame. See also Sections 3.1.4 and 7.10.

1.9. Tolerances
Tolerances for materials, fabrication and erection shall be as stipulated in
Sections 5, 6, 7, and 10.

Commentary:
Tolerances are not necessarily specified in this Code for every possible variation
that could be encountered. For most projects, where a tolerance is not specified
or covered in this Code, it is not needed to ensure that the fabricated and erected
structural steel complies with the requirements in Section 6 and 7. If a special
design concept or system component requires a tolerance that is not specified in
this Code, the necessary tolerance should be specified in the contract
documents. If a tolerance is not shown and is deemed by the fabricator and/or
erector to be important to the successful fabrication and erection of the
structural steel, it should be requested from the owner’s designated
representative for design. The absence of a tolera nce in this Code for a
particular condition does not mean that the tolerance is zero; rather, it means
that no tolerance has been established. In any case, the default tolerance is not
zero.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-5
SECTION 2. CLASSIFICATION OF MATERIALS

2.1. Definition of Structural Steel
Structural steel shall consist of the elements of the structural frame that are
shown and sized in the structural design drawings, essential to support the
design loads and described as:

Anchor rods that will receive structural steel.
Base plates, if part of the structural steel frame.
Beams, including built-up beams, if made from standard structural shapes
and/or plates.
Bearing plates, if part of the structural steel frame.
Bearings of steel for girders, trusses or bridges.
Bracing, if permanent.
Canopy framing, if made from standard structural shapes and/or plates.
Columns, including built-up columns, if made from standard structural
shapes and/or plates.
Connection materials for framing structural steel to structural steel.
Crane stops, if made from standard structural shapes and/or plates.
Door frames, if made from standard structural shapes and/or plates and if
part of the structural steel frame.
Edge angles and plates, if attached to the structural steel frame or steel
(open-web) joists.
Embedded structural steel parts, other than bearing plates, that will receive
structural steel.
Expansion joints, if attached to the structural steel frame.
Fasteners for connecting structural steel items: permanent shop bolts, nuts
and washers; shop bolts, nuts and washers for shipment; field bolts,
nuts and washers for permanent connections; and, permanent pins.
Floor-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame or steel (open-web)
joists.
Floor plates (checkered or plain), if attached to the structural steel frame.
Girders, including built-up girders, if made from standard structural shapes
and/or plates.
Girts, if made from standard structural shapes.
Grillage beams and girders.
Hangers, if made from standard structural shapes, plates and/or rods and
framing structural steel to structural steel.
Leveling nuts and washers.
Leveling plates.
Leveling screws.
Lintels, if attached to the structural steel frame.
Marquee framing, if made from standard structural shapes and/or plates.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-6
Machinery supports, if made from standard structural shapes and/or plates
and attached to the structural steel frame.
Monorail elements, if made from standard structural shapes and/or plates
and attached to the structural steel frame.
Posts, if part of the structural steel frame.
Purlins, if made from standard structural shapes.
Relieving angles, if attached to the structural steel frame.
Roof-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame or steel (open-web)
joists.
Roof-screen support frames, if made from standard structural shapes.
Sag rods, if part of the structural steel frame and connecting structural steel
to structural steel.
Shear stud connectors, if specified to be shop attached.
Shims, if permanent.
Struts, if permanent and part of the structural steel frame.
Tie rods, if part of the structural steel frame.
Trusses, if made from standard structural shapes and/or built-up members.
Wall-opening frames, if made from standard structural shapes and/or
plates and attached to the structural steel frame.
Wedges, if permanent.

Commentary:
The fabricator normally fabricates the items listed in Section 2.1. Such items
must be shown, sized and described in the structural design drawings. Bracing
includes vertical bracing for resistance to wind and seismic load and structural
stability, horizontal bracing for floor and roof systems and permanent stability
bracing for components of the structural steel frame.

2.2. Other Steel, Iron or Metal Items
Structural steel shall not include other steel, iron or metal items that are not
generally described in Section 2.1, even where such items are shown in the
structural design drawings or are attached to the structural steel frame. Other
steel, iron or metal items include but are not limited to:

Base plates, if not part of the structural steel frame.
Bearing plates, if not part of the structural steel frame.
Bearings, if non-steel.
Cables for permanent bracing or suspension systems.
Castings.
Catwalks.
Chutes.
Cold-formed steel products.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-7
Cold-rolled steel products, except those that are specifically covered in the
AISC Specification.
Corner guards.
Crane rails, splices, bolts and clamps.
Crane stops, if not made from standard structural shapes or plates.
Door guards.
Embedded steel parts, other than bearing plates, that do not receive
structural steel or that are embedded in precast concrete.
Expansion joints, if not attached to the structural steel frame.
Flagpole support steel.
Floor plates (checkered or plain), if not attached to the structural steel
frame.
Forgings.
Gage-metal products.
Grating.
Handrail.
Hangers, if not made from standard structural shapes, plates and/or rods or
not framing structural steel to structural steel.
Hoppers.
Items that are required for the assembly or erection of materials that are
furnished by trades other than the fabricator or erector.
Ladders.
Lintels, if not attached to the structural steel frame.
Masonry anchors.
Miscellaneous metal.
Ornamental metal framing.
Pressure vessels.
Reinforcing steel for concrete or masonry.
Relieving angles, if not attached to the structural steel frame.
Roof screen support frames, if not made from standard structural shapes.
Safety cages.
Shear stud connectors, if specified to be field installed.
Stacks.
Stairs.
Steel deck.
Steel (open-web) joists.
Steel joist girders.
Tanks.
Toe plates.
Trench or pit covers.

Commentary:
Section 2.2 includes many items that may be furnished by the fabricator if
contracted to do so by specific notation and detail in the contract documents.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-8
When such items are contracted to be provided by the fabricator, coordination
will normally be required between the fabricator and other material suppliers
and trades. The provisions in this Code are not intended to apply to items in
Section 2.2.
In previous editions of this Code, provisions regarding who should
normally furnish field-installed shear stud connectors and cold-formed steel
deck support angles were included in Section 7.8. These provisions have been
eliminated since field-installed shear stud connectors and steel deck support
angles are not defined as structural steel in this Code.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-9
SECTION 3. DESIGN DRAWINGS AND SPECIFICATIONS

3.1. Structural Design Drawings and Specifications
Unless otherwise indicated in the contract documents, the structural design
drawings shall be based upon consideration of the design loads and forces to be
resisted by the structural steel frame in the completed project.
The structural design drawings shall clearly show the work that is to be
performed and shall give the following information with sufficient dimensions
to accurately convey the quantity and nature of the structural steel to be
fabricated:

(a) The size, section, material grade and location of all members;
(b) All geometry and working points necessary for layout;
(c) Floor elevations;
(d) Column centers and offsets;
(e) The camber requirements for members;
(f) Joining requirements between elements of built-up members; and,
(g) The information that is required in Sections 3.1.1 through 3.1.6.

The structural steel specifications shall include any special requirements for the
fabrication and erection of the structural steel.
The structural design drawings, specifications and addenda shall be
numbered and dated for the purposes of identification.

Commentary:
Contract documents vary greatly in complexity and completeness. Nonetheless,
the fabricator and the erector must be able to rely upon the accuracy and
completeness of the contract documents. This allows the fabricator and the
erector to provide the owner with bids that are adequate and complete. It also
enables the preparation of the shop and erection drawings, the ordering of
materials and the timely fabrication and erection of shipping pieces.
In some cases, the owner can benefit when reasonable latitude is
allowed in the contract documents for alternatives that can reduce cost without
compromising quality. However, critical requirements that are necessary to
protect the owner’s interest, that affect the integrity of the structure or that are
necessary for the fabricator and the erector to proceed with their work must be
included in the contract documents. Some examples of critical information may
include, when applicable:

Standard specifications and codes that govern structural steel design and
construction, including bolting and welding.
Material specifications.
Special material requirements to be reported on the material test reports.
Welded-joint configuration.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-10
Weld-procedure qualification.
Special requirements for work of other trades.
Final disposition of backing bars and runoff tabs.
Lateral bracing.
Stability bracing.
Connections or data for connection selection and/or completion.
Restrictions on connection types.
Column stiffeners (also known as continuity plates).
Column web doubler plates.
Bearing stiffeners on beams and girders.
Web reinforcement.
Openings for other trades.
Surface preparation and shop painting requirements.
Shop and field inspection requirements.
Non-destructive testing requirements, including acceptance criteria.
Special requirements on delivery.
Special erection limitations.
Identification of non-structural steel elements that interact with the
structural steel frame to provide for the lateral stability of the
structural steel frame (see Section 3.1.4).
Column differential shortening information (see Commentary to Section
7.13).
Anticipated deflections and the associated loading conditions for major
structural elements, such as transfer girders and trusses, supporting
columns and hangers (see Commentary to Section 7.13).
Special fabrication and erection tolerances for AESS.
Special pay-weight provisions.
3.1.1. Permanent bracing, column stiffeners, column web doubler plates, bearing
stiffeners in beams and girders, web reinforcement, openings for other trades
and other special details, where required, shall be shown in sufficient detail in the structural design drawings so that the quantity, detailing and fabrication
requirements for these items can be readily understood.
3.1.2. The owner’s designated representative for design shall indicate one of the
following options for each connection:
(1) The complete connection design shall be shown in the structural design
drawings;
(2) In the structural design drawings or specifications, the connection shall be
designated to be selected or completed by an experienced steel detailer; or,
(3) In the structural design drawings or specifications, the connection shall be
designated to be designed by a licensed professional engineer working for
the fabricator.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-11

In all of the above options,

(a) The requirements of Section 3.1.1 shall apply; and,
(b) The approvals process in Section 4.4 shall be followed.

When option (2) above is specified, the experienced steel detailer shall
utilize tables or schematic information provided in the structural design
drawings in the selection or completion of the connections. When such
information is not provided, tables in the AISC Steel Construction Manual, or
other reference information as approved by the owner’s designated
representative for design, shall be used.
When option (2) or (3) above is specified, the owner’s designated
representative for design shall provide the following information in the
structural design drawings and specifications:

(a) Any restrictions on the types of connections that are permitted;
(b) Data concerning the loads, including shears, moments, axial forces and
transfer forces, that are to be resisted by the individual members and their
connections, sufficient to allow the selection, completion, or design of the
connection details while preparing the shop and erection drawings;
(c) Whether the data required in (b) is given at the service-load level or the
factored-load level;
(d) Whether LRFD or ASD is to be used in the selection, completion, or design
of connection details; and,
(e) What substantiating connection information, if any, is to be provided with
the shop and erection drawings to the owner’s designated representative
for design.

When option (3) above is specified:

(a) The fabricator shall submit in a timely manner representative samples of
the required substantiating connection information to the owner’s
designated representatives for design and construction. The owner’s
designated representative for design shall confirm in writing in a timely
manner that these representative samples are consistent with the
requirements in the contract documents , or shall advise what modifications
are required to bring the representative samples into compliance with the
requirements in the contract documents . This initial submittal and review is
in addition to the requirements in Section 4.4.
(b) The licensed professional engineer in responsible charge of the connection
design shall
review and confirm in writing as part of the substantiating
connection information, that the shop and erection drawings properly
incorporate the connection designs. However, this review by the licensed

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-12
professional engineer in responsible charge of the connection design does
not replace the approval process of the shop and erection drawings by the
owner’s designated representative for design in Section 4.4.
(c) The fabricator shall provide a means by which the substantiating
connection information is referenced to the related connections on the shop
and erection drawings for the purpose of review.

Commentary:
There are three options covered in Section 3.1.2:

(1) When the owner’s designated representative for design shows the complete
design of the connections in the structural design drawings , the following
information is included:

(a) All weld types, sizes, and lengths;
(b) All bolt sizes, locations, quantities, and grades;
(c) All plate and angle sizes, thicknesses and dimensions; and,
(d) All work point locations and related information.

The intent of this approach is that complete design information necessary
for detailing the connection is shown in the structural design drawings.
Typical details are shown for each connection type, set of geometric
parameters and adjacent framing conditions. The steel detailer will then be
able to transfer this information to the shop and erection drawings, applying
it to the individual pieces being detailed.
(2) When the owner’s designated representative for design allows an
experienced steel detailer to select or complete the connections , this is
commonly done by referring to tables or schematic information in the
structural design drawings, tables in the AISC Steel Construction Manual,
or other reference information approved by the owner’s designated
representative for design, such as journal papers and recognized software
output. Tables and schematic information in the structural design drawings
should provide such information as weld types and sizes, plate thicknesses
and quantities of bolts. However, there may be some geometry and
dimensional information that the steel detailer must develop. The steel
detailer will then configure the connections based upon the design loads
and other information given in the structural design drawings and
specifications.
The intent of this method is that the steel detailer will select the
connection materials and configuration from the referenced tables or
complete the specific connection configuration (e.g., dimensions, edge
distances and bolt spacing) based upon the connection details that are
shown in the structural design drawings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-13
The steel detailer must be experienced and familiar with the AISC
requirements for connection configurations, the use of the connection tables
in the AISC Steel Construction Manual, the calculation of dimensions and
adaptation of typical connection details to similar situations. Notations of
loadings in the structural design drawings are only to facilitate selection of
the connections from the referenced tables. It is not the intent that this
method be used when the practice of engineering is required.
(3) Option 3 reflects a practice in some areas of the U.S. to have a licensed
professional engineer working for or retained by the fabricator design the
connections, and recognizes the information required by the fabricator to
do this work. The owner’s designated representative for design, who has
the knowledge of the structure as a whole, must review and approve the
shop and erection drawings, and take such action on substantiating
connection information as the owner’s designated representative for design
deems appropriate. See Section 4.4 for the approval process.
When, under Section 3.1.2, the owner’s designated representative for
design designates that connections be designed by a licensed professional
engineer employed or retained by the fabricator, this work is incidental to,
and part of, the overall means and methods of fabricating and constructing
the steel frame. The licensed professional engineer performing the
connection design is not providing a peer-review of the contract documents.

The owner’s designated representative for design reviews the shop and
erection drawings during the approvals process as specified in Section 4.4
for conformance with the specified criteria and compatibility with the
design of the primary structure.

One of these options should be indicated for each connection in a project. It is
acceptable to group connection types and utilize a combination of these options
for the various connection types involved in a project. Option (3) is not
normally specified for connections that can be selected or completed as noted in
Option (2) without practicing engineering.
If there are any restrictions as to the types of connections to be used, it
is required that these limitations be set forth in the structural design drawings
and specifications. There are a variety of connections available in the AISC
Steel Construction Manual for a given situation. Preference for a particular type
will vary between fabricators and erectors. Stating these limitations, if any, in
the structural design drawings and specifications will help to avoid repeated
changes to the shop and erection drawings due to the selection of a connection
that is not acceptable to the owner’s designated representative for design,
thereby avoiding additional cost and/or delay for the redrawing of the shop and
erection drawings.
The structural design drawings must indicate the method of design
used as LRFD or ASD. In order to conform to the spirit of the AISC

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-14
Specification, the connections must be selected using the same method and the
corresponding references.
Substantiating connection information, when required, can take many
forms. When option (2) is designated, shop and erection drawings may suffice
with no additional substantiating connection information required. When option
(3) is designated, the substantiating connection information may take the form
of hand calculations and/or software output.
When substantiating connection information is required, it is
recommended that representative samples of that information be agreed upon
prior to preparation of shop and erection drawings, in order to avoid additional
cost and/or delay for the connection redesign and/or redrawing that might
otherwise result.
The owner’s designated representative for design may require that the
substantiating connection information be signed and sealed for option (3). The
signing and sealing of the cover letter transmitting the shop and erection
drawings and substantiating connection information may suffice. This signing
and sealing indicates that a professional engineer performed the work but does
not replace the approval process provided in Section 4.4.
A requirement to sign and seal each sheet of the shop and erection
drawings is discouraged as it may serve to confuse the design responsibility
between the owner’s designated representative for design and the licensed
professional engineer’s work in performing the connection design.
3.1.3. When leveling plates are to be furnished as part of the contract requirements,
their locations and required thickness and sizes shall be specified in the contract
documents.
3.1.4. When the structural steel frame, in the completely erected and fully connected
state, requires interaction with non-structural steel elements (see Section 2) for
strength and/or stability, those non-structural steel elements shall be identified
in the contract documents as required in Section 7.10.

Commentary:
Examples of non-structural steel elements include diaphragms made of steel
deck, diaphragms made of concrete on steel deck and masonry and/or concrete
shear walls.
3.1.5. When camber is required, the magnitude, direction and location of camber shall
be specified in the structural design drawings.

Commentary:
For cantilevers, the specified camber may be up or down, depending upon the
framing and loading.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-15
3.1.6. Specific members or portions thereof that are to be left unpainted shall be
identified in the contract documents. When shop painting is required, the
painting requirements shall be specified in the contract documents, including the
following information:

(a) The identification of specific members or portions thereof to be painted;
(b) The surface preparation that is required for these members;
(c) The paint specifications and manufacturer’s product identification that are
required for these members; and,
(d) The minimum dry-film shop-coat thickness that is required for these
members.

Commentary:
Some members or portions thereof may be required to be left unpainted, such as
those that will be in contact and acting compositely with concrete, or those that
will receive spray-applied fire protection materials.

3.2. Architectural, Electrical and Mechanical
Design Drawings and Specifications
All requirements for the quantities, sizes and locations of structural steel shall
be shown or noted in the structural design drawings. The use of architectural,
electrical and/or mechanical design drawings as a supplement to the structural
design drawings is permitted for the purposes of defining detail configurations
and construction information.

3.3. Discrepancies
When discrepancies exist between the design drawings and specifications, the
design drawings shall govern. When discrepancies exist between scale
dimensions in the design drawings and the figures written in them, the figures
shall govern. When discrepancies exist between the structural design drawings
and the architectural, electrical or mechanical design drawings or design
drawings for other trades, the structural design drawings shall govern.
When a discrepancy is discovered in the contract documents in the
course of the fabricator’s work, the fabricator shall promptly notify the owner’s
designated representative for construction so that the discrepancy can be
resolved by the owner’s designated representative for design . Such resolution
shall be timely so as not to delay the fabricator’s work. See Sections 3.5 and
9.3.

Commentary:
While it is the fabricator’s responsibility to report any discrepancies that are
discovered in the contract documents, it is not the fabricator’s responsibility to
discover discrepancies, including those that are associated with the coordination

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-16
of the various design disciplines. The quality of the contract documents is the
responsibility of the entities that produce those documents.

3.4. Legibility of Design Drawings
Design drawings shall be clearly legible and drawn to an identified scale that is
appropriate to clearly convey the information.

Commentary:
Historically, the most commonly accepted scale for structural steel plans has
been 8 in. per ft [10 mm per 1 000 mm]. There are, however, situations where a
smaller or larger scale is appropriate. Ultimately, consideration must be given to
the clarity of the drawing.
The scaling of the design drawings to determine dimensions is not an
accepted practice for detailing the shop and erection drawings. However, it
should be remembered when preparing design drawings that scaling may be the
only method available when early-submission drawings are used to determine
dimensions for estimating and bidding purposes.
3.5. Revisions to the Design Drawings and Specifications
Revisions to the design drawings and specifications shall be made either by
issuing new design drawings and specifications or by reissuing the existing
design drawings and specifications. In either case, all revisions , including
revisions that are communicated through responses to RFIs or the annotation of
shop and/or erection drawings (see Section 4.4.2), shall be clearly and
individually indicated in the contract documents. The contract documents shall
be dated and identified by revision number. Each design drawings shall be
identified by the same drawing number throughout the duration of the project,
regardless of the revision. See also Section 9.3.

Commentary:
Revisions to the design drawings and specifications can be made by issuing
sketches and supplemental information separate from the design drawings and
specifications. These sketches and supplemental information become
amendments to the design drawings and specifications and are considered new
contract documents. All sketches and supplemental information must be
uniquely identified with a number and date as the latest instructions until such
time as they may be superseded by new information.
When revisions are made by revising and re-issuing the existing
structural design drawings and/or specifications, a unique revision number and
date must be added to those documents to identify that information as the latest
instructions until such time as they may be superseded by new information. The
same unique drawing number must identify each design drawings throughout
the duration of the project so that revisions can be properly tracked, thus

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-17
avoiding confusion and miscommunication among the various entities involved
in the project.
When revisions are communicated through the annotation of shop or
erection drawings or contractor submissions, such changes must be confirmed
in writing by one of the aforementioned methods. This written confirmation is
imperative to maintain control of the cost and schedule of a project and to avoid
potential errors in fabrication.

3.6. Fast-Track Project Delivery
When the fast-track project delivery system is selected, release of the structural
design drawings and specifications shall constitute a release for construction,
regardless of the status of the architectural, electrical, mechanical and other
interfacing designs and contract documents . Subsequent revisions, if any, shall
be the responsibility of the owner and shall be made in accordance with Sections
3.5 and 9.3.

Commentary:
The fast-track project delivery system generally provides for a condensed
schedule for the design and construction of a project. Under this delivery
system, the owner elects to release for construction the structural design
drawings and specifications, which may be partially complete, at a time that
may precede the completion of and coordination with architectural, mechanical,
electrical and other design work and contract documents . The release of these
structural design drawings and specifications may also precede the release of the
General Conditions and Division 1 Specifications.
Release of the structural design drawings and specifications to the
fabricator for ordering of material constitutes a release for construction.
Accordingly, the fabricator and the erector may begin their work based upon
those partially complete documents. As the architectural, mechanical, electrical
and other design elements of the project are completed, revisions may be
required in design and/or construction. Thus, when considering the fast-track
project delivery system, the owner should balance the potential benefits to the
project schedule with the project cost contingency that may be required to allow
for these subsequent revisions.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-18
SECTION 4. SHOP AND ERECTION DRAWINGS

4.1. Owner Responsibility
The owner shall furnish, in a timely manner and in accordance with the contract
documents, complete structural design drawings and specifications that have
been released for construction. Unless otherwise noted, design drawings that
are provided as part of a contract bid package shall constitute authorization by
the owner that the design drawings are released for construction.

Commentary:
When the owner issues design drawings and specifications that are released for
construction, the fabricator and the erector rely on the fact that these are the
owner’s requirements for the project. This release is required by the fabricator
prior to the ordering of material and the preparation and completion of shop and
erection drawings.
To ensure the orderly flow of material procurement, detailing,
fabrication and erection activities, on phased construction projects, it is essential
that designs are not continuously revised after they have been released for
construction. In essence, once a portion of a design is released for construction,
the essential elements of that design should be “frozen” to ensure adherence to
the contract price and construction schedule. Alternatively, all parties should
reach a common understanding of the effects of future changes, if any, as they
affect scheduled deliveries and added costs.
A pre-detailing conference, held after the structural steel fabrication
contract is awarded, can benefit the project. Typical attendees may include the
owner’s designated representative for construction, the owner’s designated
representative for design, the fabricator, the steel detailer, and the erector .
Topics of the meeting should relate to the specifics of the project, and might
include:

• Contract document review and general project overview, including
clarifications of scope of work, tolerances, layouts and sequences, and
special considerations.
• Detailing and coordination needs, such as bolting, welding, and connection
considerations, constructability considerations, OSHA requirements,
coordination with other trades, and the advanced bill of materials.
• The project communication system, including distribution of contact
information for relevant parties to the contract, identification of the primary
and alternate contacts in the general contractor’s office, and the RFI system
to be used on the project.
• The submittal schedule, including how many copies of documents are
required, connection submittals, and identification of schedule-critical areas
of the project, if any.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-19
• Review of quality and inspection requirements, including the approvals
process for corrective work.

Record of the meeting should be written and distributed to all parties.
Subsequent meetings to discuss progress and issues that arise during
construction also can be helpful, particularly when they are held on a regular
schedule.

4.2. Fabricator Responsibility
Except as provided in Section 4.5, the fabricator shall produce shop and
erection drawings for the fabrication and erection of the structural steel and is
responsible for the following:

(a) The transfer of information from the contract documents into accurate and
complete shop and erection drawings; and,
(b) The development of accurate, detailed dimensional information to provide
for the fit-up of parts in the field.

Each shop and erection drawing shall be identified by the same drawing number
throughout the duration of the project and shall be identified by revision number
and date, with each specific revision clearly identified.
When the fabricator submits a request to change connection details
that are described in the contract documents, the fabricator shall notify the
owner’s designated representatives for design and construction in writing in
advance of the submission of the shop and erection drawings. The owner’s
designated representative for design shall review and approve or reject the
request in a timely manner.
When requested to do so by the owner’s designated representative for
design, the fabricator shall provide to the owner’s designated representatives
for design and construction its schedule for the submittal of shop and erection
drawings so as to facilitate the timely flow of information between all parties.

Commentary:
The fabricator is permitted to use the services of independent steel detailers to
produce shop and erection drawings, and to perform other support services such
as producing advanced bills of material and bolt summaries.
As the fabricator develops the detailed dimensional information for
production of the shop and erection drawings, there may be discrepancies,
missing information or conflicts discovered in the contract documents. See
Section 3.3.
When the fabricator intends to make a submission of alternative
connection details to those shown in the contract documents, the fabricator
must notify the owner’s designated representatives for design and construction
in advance. This will allow the parties involved to plan for the increased effort

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-20
that may be required to review the alternative connection details. In addition, the
owner will be able to evaluate the potential for cost savings and/or schedule
improvements against the additional design cost for review of the alternative
connection details by the owner’s designated representative for design. This
evaluation by the owner may result in the rejection of the alternative connection
details or acceptance of the submission for review based upon cost savings,
schedule improvements and/or job efficiencies.
The owner’s designated representative for design may request the
fabricator’s schedule for the submittal of shop and erection drawings. This
process is intended to allow the parties to plan for the staffing demands of the
submission schedule. The contract documents may address this issue in more
detail. In the absence of the requirement to provide this schedule, none need be
provided.
When the fabricator provides a schedule for the submission of the shop
and erection drawings, it must be recognized that this schedule may be affected
by revisions and the response time to requests for missing information or the
resolution of discrepancies.

4.3. Use of CAD Files and/or Copies of Design Drawings
The fabricator shall neither use nor reproduce any part of the design drawings
as part of the shop or erection drawings without the written permission of the
owner’s designated representative for design. When CAD files or copies of the
design drawings are made available for the fabricator’s use, the fabricator shall
accept this information under the following conditions:

(a) All information contained in the CAD files or copies of the design drawings
shall be considered instruments of service of the owner’s designated
representative for design and shall not be used for other projects, additions
to the project or the completion of the project by others. CAD files and
copies of the design drawings shall remain the property of the owner’s
designated representative for design and in no case shall the transfer of
these CAD files or copies of the design drawings be considered a sale.
(b) The CAD files or copies of the design drawings shall not be considered to
be contract documents. In the event of a conflict between the design
drawings and the CAD files or copies thereof, the design drawings shall
govern;
(c) The use of CAD files or copies of the design drawings shall not in any way
obviate the fabricator’s responsibility for proper checking and coordination
of dimensions, details, member sizes and fit-up and quantities of materials
as required to facilitate the preparation of shop and erection drawings that
are complete and accurate as required in Section 4.2; and,
(d) The fabricator shall remove information that is not required for the
fabrication or erection of the structural steel from the CAD files or copies
of the design drawings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-21

Commentary:
With the advent of electronic media and the internet, electronic copies of design
drawings are readily available to the fabricator. As a result, the owner’s
designated representative for design may have reduced control over the
unauthorized use of the design drawings. There are many copyright and other
legal issues to be considered.
The owner’s designated representative for design may choose to make
CAD files or copies of the design drawings available to the fabricator , and may
charge a service or licensing fee for this convenience. In doing so, a carefully
negotiated agreement should be established to set out the specific
responsibilities of both parties in view of the liabilities involved for both parties.
For a sample contract, see CASE Document 11.
The CAD files and/or copies of the design drawings are provided to the
fabricator for convenience only. The information therein should be adapted for
use only in reference to the placement of structural steel members during
erection. The fabricator should treat this information as if it were fully produced
by the fabricator and undertake the same level of checking and quality
assurance. When amendments or revisions are made to the contract documents,
the fabricator must update this reference material.
When CAD files or copies of the design drawings are provided to the
fabricator, they often contain other information, such as architectural
backgrounds or references to other contract documents. This additional material
should be removed when producing shop and erection drawings to avoid the
potential for confusion.

4.4. Approval
Except as provided in Section 4.5, the shop and erection drawings shall be
submitted to the owner’s designated representatives for design and construction
for review and approval. The shop and erection drawings shall be returned to
the fabricator within 14 calendar days.

Final substantiating connection information, if any, shall also be submitted with
the shop and erection drawings. The owner’s designated representative for
design is the final authority in the event of a disagreement between parties
regarding connection design.

Approved shop and erection drawings shall be individually annotated by the
owner’s designated representatives for design and construction as either
approved or approved subject to corrections noted. When so required, the
fabricator shall subsequently make the corrections noted and furnish corrected
shop and erection drawings to the owner’s designated representatives for design
and construction.

Commentary:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-22
As used in this Code, the 14-day allotment for the return of shop and erection
drawings is intended to represent the fabricator’s portal-to-portal time. The
intent in this Code is that, in the absence of information to the contrary in the
contract documents, 14 days may be assumed for the purposes of bidding,
contracting and scheduling. When additional time is desired, such as when
substantiating connection information is part of the submittals, the modified
allotment should be specified in the contract documents. A submittal schedule is
commonly used to facilitate the approval process.
If a shop or erection drawing is approved subject to corrections noted,
the owner’s designated representative for design may or may not require that it
be re-submitted for record purposes following correction. If a shop or erection
drawing is not approved, revisions must be made and the drawing re-submitted
until approval is achieved.
4.4.1. Approval of the shop and erection drawings, approval subject to corrections
noted and similar approvals shall constitute the following:

(a) Confirmation that the fabricator has correctly interpreted the contract
documents in the preparation of those submittals;
(b) Confirmation that the owner’s designated representative for design has
reviewed and approved the connection details shown on the shop and
erection drawings and submitted in accordance with Section 3.1.2, if
applicable; and,
(c) Release by the owner’s designated representatives for design and
construction for the fabricator to begin fabrication using the approved
submittals.
Such approval shall not relieve the fabricator of the responsibility for either the
accuracy of the detailed dimensions in the shop and erection drawings or the
general fit-up of parts that are to be assembled in the field.
The fabricator shall determine the fabrication schedule that is
necessary to meet the requirements of the contract.

Commentary:
When considering the current language in this Section, the Committee sought
language that would parallel the practices of CASE. In CASE Document 962,
CASE indicates that when the design of some element of the primary structural
system is left to someone other than the structural engineer of record, “…such
elements, including connections designed by others, should be reviewed by the
structural engineer of record. He [or she] should review such designs and
details, accept or reject them and be responsible for their effects on the primary
structural system.” Historically, this Code has embraced this same concept.
From the inception of this Code, AISC and the industry in general have
recognized that only the owner’s designated representative for design has all the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-23
information necessary to evaluate the total impact of connection details on the
overall structural design of the project. This authority traditionally has been
exercised during the approval process for shop and erection drawings. The
owner’s designated representative for design has thus retained responsibility for
the adequacy and safety of the entire structure since at least the 1927 edition of
this Code.
4.4.2. Unless otherwise noted, any additions, deletions or revisions that are indicated
in responses to RFIs or on the approved shop and erection drawings shall
constitute authorization by the owner that the additions, deletions or revisions
are released for construction. The fabricator and the erector shall promptly
notify the owner’s designated representative for construction when any direction or notation in responses to RFIs or on the shop or erection drawings or
other information will result in an additional cost and/or a delay. See Sections 3.5 and 9.3.

Commentary:
When the fabricator notifies the owner’s designated representative for
construction that a direction or notation in responses to RFIs or on the shop or
erection drawings will result in an additional cost or a delay, it is then normally
the responsibility of the owner’s designated representative for construction to
subsequently notify the owner’s designated representative for design.

4.5. Shop and/or Erection Drawings Not Furnished by the Fabricator
When the shop and erection drawings are not prepared by the fabricator , but are
furnished by others, they shall be delivered to the fabricator in a timely manner.
These shop and erection drawings shall be prepared, insofar as is practical, in
accordance with the shop fabrication and detailing standards of the fabricator.
The fabricator shall neither be responsible for the completeness or accuracy of
shop and erection drawings so furnished, nor for the general fit-up of the
members that are fabricated from them.

4.6. The RFI Process
When requests for information (RFIs) are issued, the process shall include the
maintenance of a written record of inquiries and responses related to
interpretation and implementation of the contract documents, including the
clarifications and/or revisions to the contract documents that result, if any. RFIs
shall not be used for the incremental release for construction of design
drawings. When RFIs involve discrepancies or revisions, see Sections 3.3, 3.5,
and 4.4.2.

Commentary:
The RFI process is most commonly used during the detailing process, but can
also be used to forward inquiries by the erector or to inform the owner’s

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-24
designated representative for design in the event of a fabricator or erector error
and to develop corrective measures to resolve such errors.
The RFI process is intended to provide a written record of inquiries and
associated responses but not to replace all verbal communication between the
parties on the project. RFIs should be prepared and responded to in a timely
fashion so as not to delay the work of the steel detailer, fabricator, and erector.
Discussion of the RFI issues and possible solutions between the fabricator,
erector, and owner’s designated representatives for design and construction
often can facilitate timely and practical resolution. Unlike shop and erection
drawing submittals in Section 4.2, RFI response time can vary depending on the
urgency of the issue, the amount of work required by the owner’s designated
representatives for design and construction to develop a complete response, and
other circumstances such as building official approval.
RFIs should be prepared in a standardized format, including RFI
number and date, identity of the author, reference to a specific design drawing
number (and specific detail as applicable) or specification section, the needed
response date, a description of a suggested solution (graphic depictions are
recommended for more complex issues), and an indication of possible schedule
and cost impacts. RFIs should be limited to one question each (unless multiple
questions are interrelated to the same issue) to facilitate the resolution and
minimize response time. Questions and proposed solutions presented in RFIs
should be clear and complete. RFI responses should be equally clear and
complete in the depictions of the solutions, and signed and dated by the
responding party.
Unless otherwise noted, the fabricator and erector can assume that a
response to an RFI constitutes a release for construction. However, if the
response will result in an increase in cost or a delay in schedule, Section 4.4.2
requires that the fabricator and/or erector promptly inform the owner’s
designated representatives for design and construction.

4.7 Erection Drawings

Erection drawings shall be provided to the erector in a timely manner so as to
allow the erector to properly plan and perform the work.

Commentary:
For planning purposes, this may include release of preliminary erection
drawings, if requested by the erector .

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-25
SECTION 5. MATERIALS

5.1. Mill Materials
Unless otherwise noted in the contract documents , the fabricator is permitted to
order the materials that are necessary for fabrication when the fabricator
receives contract documents that have been released for construction.

Commentary:
The fabricator may purchase materials in stock lengths, exact lengths or
multiples of exact lengths to suit the dimensions shown in the structural design
drawings. Such purchases will normally be job-specific in nature and may not
suitable for use on other projects or returned for full credit if subsequent design
changes make these materials unsuitable for their originally intended use. The
fabricator should be paid for these materials upon delivery from the mill,
subject to appropriate additional payment or credit if subsequent unanticipated
modification or reorder is required. Purchasing materials to exact lengths is not
considered fabrication.

5.1.1. Unless otherwise specified by means of special testing requirements in the
contract documents, mill testing shall be limited to those tests that are required
for the material in the ASTM specifications indicated in the contract documents.
Materials ordered to special material requirements shall be marked by the
supplier as specified in ASTM A6/A6M Section 12 prior to delivery to the
fabricator’s shop or other point of use. Such material not so marked by the
supplier, shall not be used until:

(a) Its identification is established by means of testing in accordance with the
applicable ASTM specifications; and,
(b) A fabricator’s identification mark, as described in Section 6.1.2 and 6.1.3,
has been applied.

5.1.2. When mill material does not satisfy ASTM A6/A6M tolerances for camber,
profile, flatness or sweep, the fabricator shall be permitted to perform corrective
procedures, including the use of controlled heating and/or mechanical
straightening, subject to the limitations in the AISC Specification.

Commentary:
Mill dimensional tolerances are completely set forth in ASTM A6/A6M.
Normal variations in the cross-sectional geometry of standard structural shapes
must be recognized by the designer, the fabricator , the steel detailer, and the
erector (for example, see Figure C–5.1). Such tolerances are mandatory because
roll wear, thermal distortions of the hot cross-section immediately after leaving
the forming rolls and differential cooling distortions that take place on the
cooling beds are all unavoidable. Geometric perfection of the cross-section is

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-26
not necessary for either structural or architectural reasons, if the tolerances are
recognized and provided for.
ASTM A6/A6M also stipulates tolerances for straightness that are
adequate for typical construction. However, these characteristics may be
controlled or corrected to closer tolerances during the fabrication process when
the added cost is justified by the special requirements for an atypical project.
5.1.3. When variations that exceed ASTM A6/A6M tolerances are discovered or occur
after the receipt of mill material the fabricator shall, at the fabricator’s option,
be permitted to perform the ASTM A6/A6M corrective procedures for mill reconditioning of the surface of structural steel shapes and plates.
5.1.4. When special tolerances that are more restrictive than those in ASTM A6/A6M
are required for mill materials , such special tolerances shall be specified in the
contract documents. The fabricator shall, at the fabricator’s option, be
permitted to order material to ASTM A6/A6M tolerances and subsequently perform the corrective procedures described in Sections 5.1.2 and 5.1.3.

5.2. Stock Materials

5.2.1. If used for structural purposes, materials that are taken from stock by the
fabricator shall be of a quality that is at least equal to that required in the ASTM
specifications indicated in the contract documents.

5.2.2. Material test reports shall be accepted as sufficient record of the quality of
materials taken from stock by the fabricator. The fabricator shall review and
retain the material test reports that cover such stock materials. However, the
fabricator need not maintain records that identify individual pieces of stock
material against individual material test reports, provided the fabricator
purchases stock materials that meet the requirements for material grade and
quality in the applicable ASTM specifications.

5.2.3. Stock materials that are purchased under no particular specification, under a
specification that is less rigorous than the applicable ASTM specifications or
without material test reports or other recognized test reports shall not be used
without the approval of the owner’s designated representative for design.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-27

Figure C-5.1. Mill tolerances on the cross-section of a W-shape.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-28
SECTION 6. SHOP FABRICATION AND DELIVERY

6.1. Identification of Material

6.1.1. The fabricator shall be able to demonstrate by written procedure and actual
practice a method of material identification, visible up to the point of
assembling members as follows:

(a) For shop-standard material, identification capability shall include shape
designation. Representative material test reports shall be furnished by the
fabricator if requested to do so by the owner’s designated representative
for design, either in the contract documents or in separate written
instructions given to the fabricator prior to ordering mill materials .
(b) For material of grade other than shop-standard material, identification
capability shall include shape designation and material grade.
Representative material test reports shall be furnished by the fabricator if
requested to do so by the owner’s designated representative for design ,
either in the contract documents or in separate written instructions given to
the fabricator prior to ordering mill materials .
(c) For material ordered in accordance with an ASTM supplement or other
special material requirements in the contract documents, identification
capability shall include shape designation, material grade, and heat number.
The corresponding material test reports shall be furnished by the fabricator
if requested to do so by the owner’s designated representative for design ,
either in the contract documents or in separate written instructions given to
the fabricator prior to ordering mill materials .

Unless an alternative system is established in the fabricator’s written
procedures, shop-standard material shall be as follows:

Material Shop-standard material grade
W and WT ASTM A992
M, S, MT and ST ASTM A36
HP ASTM A36
L ASTM A36
C and MC ASTM A36
HSS ASTM A500 grade B
Steel Pipe ASTM A53 grade B
Plates and Bars ASTM A36

Commentary:
The requirements in Section 6.1.1(a) will suffice for most projects. When
material is of a strength level that differs from the shop-standard grade, the
requirements in Section 6.1.1(b) apply. When special material requirements

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-29
apply, such as ASTM A6/A6M supplement S5 or S30 for CVN testing, ASTM
A6/A6M supplement S8 for ultrasonic testing, or ASTM A588/A588M for
atmospheric corrosion resistance, the requirements in Section 6.1.1(c) are
applicable.
6.1.2. During fabrication, up to the point of assembling members, each piece of
material that is ordered to special material requirements shall carry a
fabricator’s identification mark or an original supplier’s identification mark.
The fabricator’s identification mark shall be in accordance with the fabricator’s
established material identification system, which shall be on record and available prior to the start of fabrication for the information of the owner’s
designated representative for construction, the building-code authority and the
inspector.
6.1.3. Members that are made of material that is ordered to special material
requirements shall not be given the same assembling or erection mark as
members made of other material, even if they are of identical dimensions and
detail.

6.2. Preparation of Material

6.2.1. The thermal cutting of structural steel by hand-guided or mechanically guided
means is permitted.

6.2.2. Surfaces that are specified as “finished” in the contract documents shall have a
roughness height value measured in accordance with ASME B46.1 that is equal
to or less than 500 μ in. The use of any fabricating technique that produces such
a finish is permitted.

Commentary:
Most cutting processes, including friction sawing and cold sawing, and milling
processes meet a surface roughness limitation of 500 μin per ASME B46.1.

6.3. Fitting and Fastening

6.3.1. Projecting elements of connection materials need not be straightened in the
connecting plane, subject to the limitations in the AISC Specification.

6.3.2. Backing bars and runoff tabs shall be used in accordance with AWS D1.1 as
required to produce sound welds. The fabricator or erector need not remove
backing bars or runoff tabs unless such removal is specified in the contract
documents. When the removal of backing bars is specified in the contract
documents, such removal shall meet the requirements in AWS D1.1. When the
removal of runoff tabs is specified in the contract documents, hand flame-

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-30
cutting close to the edge of the finished member with no further finishing is
permitted, unless other finishing is specified in the contract documents.

Commentary:
In most cases, the treatment of backing bars and runoff tabs is left to the
discretion of the owner’s designated representative for design. In some cases,
treatment beyond the basic cases described in this Section may be required. As
one example, special treatment is required for backing bars and runoff tabs in
beam-to-column moment connections when the requirements in the AISC
Seismic Provisions must be met. In all cases, the owner’s designated
representative for design should specify the required treatments in the contract
documents.
6.3.3. Unless otherwise noted in the shop drawings, high-strength bolts for shop-
attached connection material shall be installed in the shop in accordance with
the requirements in the AISC Specification.

6.4. Fabrication Tolerances
The tolerances on structural steel fabrication shall be in accordance with the
requirements in Section 6.4.1 through 6.4.6.

Commentary:
Fabrication tolerances are stipulated in several specifications and codes, each
applicable to a specialized area of construction. Basic fabrication tolerances are
stipulated in this Section. For architecturally exposed structural steel, see
Section 10. Other specifications and codes are also commonly incorporated by
reference in the contract documents, such as the AISC Specification, the RCSC
Specification, AWS D1.1, and the AASHTO Specification.
6.4.1. For members that have both ends finished (see Section 6.2.2) for contact
bearing, the variation in the overall length shall be equal to or less than Q in. [1
mm]. For other members that frame to other structural steel elements, the
variation in the detailed length shall be as follows:

(a) For members that are equal to or less than 30 ft [9 000 mm] in length, the
variation shall be equal to or less than z in. [2 mm].
(b) For members that are greater than 30 ft [9 000 mm] in length, the variation
shall be equal to or less than 8 in. [3 mm].

6.4.2. For straight structural members other than compression members, whether of a
single standard structural shape or built-up, the variation in straightness shall
be equal to or less than that specified for wide-flange shapes in ASTM
A6/A6M, except when a smaller variation in straightness is specified in the
contract documents. For straight compression members, whether of a standard

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-31
structural shape or built-up, the variation in straightness shall be equal to or less
than 1/1000 of the axial length between points that are to be laterally supported.
For curved structural members, the variation from the theoretical curvature shall
be equal to or less than the variation in sweep that is specified for an equivalent
straight member of the same straight length in ASTM A6/A6M.
In all cases, completed members shall be free of twists, bends and open
joints. Sharp kinks or bends shall be cause for rejection.

6.4.3. For beams that are detailed without specified camber, the member shall be
fabricated so that, after erection, any incidental camber due to rolling or shop
fabrication is upward. For trusses that are detailed without specified camber, the
components shall be fabricated so that, after erection, any incidental camber in
the truss due to rolling or shop fabrication is upward.

6.4.4. For beams that are specified in the contract documents with camber, beams
received by the fabricator with 75% of the specified camber shall require no
further cambering. Otherwise, the variation in camber shall be as follows:

(a) For beams that are equal to or less than 50 ft [15 000 mm] in length, the
variation shall be equal to or less than minus zero / plus 2 in. [13 mm].
(b) For beams that are greater than 50 ft [15 000 mm] in length, the variation
shall be equal to or less than minus zero / plus 2 in. plus 8 in. for each 10
ft or fraction thereof [13 mm plus 3 mm for each 3 000 mm or fraction
thereof] in excess of 50 ft [15 000 mm] in length.

For the purpose of inspection, camber shall be measured in the fabricator’s shop
in the unstressed condition.

Commentary:
There is no known way to inspect beam camber after the beam is received in the
field because of factors that include:

(a) The release of stresses in members over time and in varying applications;
(b) The effects of the dead weight of the member;
(c) The restraint caused by the end connections in the erected state; and,
(d) The effects of additional dead load that may ultimately be intended to be
applied, if any.

Therefore, inspection of the fabricator’s work on beam camber must be done in
the fabrication shop in the unstressed condition.
6.4.5. For fabricated trusses that are specified in the contract documents with camber,
the variation in camber at each specified camber point shall be equal to or less
than plus or minus 1/800 of the distance to that point from the nearest point of

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-32
support. For the purpose of inspection, camber shall be measured in the fabricator’s shop in the unstressed condition. For fabricated trusses that are
specified in the contract documents without indication of camber, the foregoing
requirements shall be applied at each panel point of the truss with a zero camber
ordinate.

Commentary:
There is no known way to inspect truss camber after the truss is received in the
field because of factors that include:

(a) The effects of the dead weight of the member;
(b) The restraint caused by the truss connections in the erected state; and,
(c) The effects of additional dead load that may ultimately be intended to be
applied, if any.

Therefore, inspection of the fabricator’s work on truss camber must be done in
the fabrication shop in the unstressed condition. See Figure C–6.1.

6.4.6. When permissible variations in the depths of beams and girders result in abrupt
changes in depth at splices, such deviations shall be accounted for as follows:

(a) For splices with bolted joints, the variations in depth shall be taken up with filler plates; and,
(b) For splices with welded joints, the weld profile shall be adjusted to conform to the variations in depth, the required cross-section of weld shall be provided and the slope of the weld surface shall meet the requirements in
AWS D1.1.
Figure C-6.1. Illustration of the tolerance on camber
for fabricated trusses with specified camber.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-33
6.5. Shop Cleaning and Painting (see also Section 3.1.6)
Structural steel that does not require shop paint shall be cleaned of oil and
grease with solvent cleaners, and of dirt and other foreign material by sweeping
with a fiber brush or other suitable means. For structural steel that is required to
be shop painted, the requirements in Sections 6.5.1 through 6.5.4 shall apply.

Commentary:
Extended exposure of unpainted structural steel that has been cleaned for the
subsequent application of fire protection materials can be detrimental to the
fabricated product. Most levels of cleaning require the removal of all loose mill
scale, but permit some amount of tightly adhering mill scale. When a piece of
structural steel that has been cleaned to an acceptable level is left exposed to a
normal environment, moisture can penetrate behind the scale, and some “lifting”
of the scale by the oxidation process is to be expected. Cleanup of “lifted” mill
scale is not the responsibility of the fabricator, but is to be assigned by contract
requirement to an appropriate contractor.
Section 6.5.4 of this Code is not applicable to weathering steel, for
which special cleaning specifications are always required in the contract
documents.

6.5.1. The fabricator is not responsible for deterioration of the shop coat that may
result from exposure to ordinary atmospheric conditions or corrosive conditions
that are more severe than ordinary atmospheric conditions.

Commentary:
The shop coat of paint is the prime coat of the protective system. It is intended
as protection for only a short period of exposure in ordinary atmospheric
conditions, and is considered a temporary and provisional coating.
6.5.2. Unless otherwise specified in the contract documents, the fabricator shall, as a
minimum, hand clean the structural steel of loose rust, loose mill scale, dirt and
other foreign matter, prior to painting, by means of wire brushing or by other methods elected by the fabricator, to meet the requirements of SSPC-SP2. If the
fabricator’s workmanship on surface preparation is to be inspected by the
inspector, such inspection shall be performed in a timely manner prior to the
application of the shop coat.

Commentary:
The selection of a paint system is a design decision involving many factors
including:

(a) The owner’s preference;
(b) The service life of the structure;
(c) The severity of environmental exposure;

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-34
(d) The cost of both initial application and future renewals; and,
(e) The compatibility of the various components that comprise the paint system
(surface preparation, shop coat and subsequent coats).

Because the inspection of shop painting must be concerned with
workmanship at each stage of the operation, the fabricator provides notice of
the schedule of operations and affords the inspector access to the work site.
Inspection must then be coordinated with that schedule so as to avoid delay of
the scheduled operations.
Acceptance of the prepared surface must be made prior to the
application of the shop coat because the degree of surface preparation cannot be
readily verified after painting. Time delay between surface preparation and the
application of the shop coat can result in unacceptable deterioration of a
properly prepared surface, necessitating a repetition of surface preparation. This
is especially true with blast-cleaned surfaces. Therefore, to avoid potential
deterioration of the surface, it is assumed that surface preparation is accepted
unless it is inspected and rejected prior to the scheduled application of the shop
coat.
The shop coat in any paint system is designed to maximize the wetting
and adherence characteristics of the paint, usually at the expense of its
weathering capabilities. Deterioration of the shop coat normally begins
immediately after exposure to the elements and worsens as the duration of
exposure is extended. Consequently, extended exposure of the shop coat will
likely lead to its deterioration and may necessitate repair, possibly including the
repetition of surface preparation and shop coat application in limited areas. With
the introduction of high-performance paint systems, avoiding delay in the
application of the shop coat has become more critical. High-performance paint
systems generally require a greater degree of surface preparation, as well as
early application of weathering protection for the shop coat.
Since the fabricator does not control the selection of the paint system,
the compatibility of the various components of the total paint system, or the
length of exposure of the shop coat, the fabricator cannot guarantee the
performance of the shop coat or any other part of the system. Instead, the
fabricator is responsible only for accomplishing the specified surface
preparation and for applying the shop coat (or coats) in accordance with the
contract documents.
This Section stipulates that the structural steel is to be cleaned to meet
the requirements in SSPC-SP2. This stipulation is not intended to represent an
exclusive cleaning level, but rather the level of surface preparation that will be
furnished unless otherwise specified in the contract documents if the structural
steel is to be painted.
6.5.3. Unless otherwise specified in the contract documents, paint shall be applied by
brushing, spraying, rolling, flow coating, dipping or other suitable means, at the

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-35
election of the fabricator. When the term “shop coat”, “shop paint” or other
equivalent term is used with no paint system specified, the fabricator’s standard
shop paint shall be applied to a minimum dry-film thickness of one mil [25 μm].

6.5.4. Touch-up of abrasions caused by handling after painting shall be the
responsibility of the contractor that performs touch-up in the field or field
painting.

Commentary:
Touch-up in the field and field painting are not normally part of the fabricator’s
or the erector’s contract.

6.6. Marking and Shipping of Materials

6.6.1. Unless otherwise specified in the contract documents, erection marks shall be
applied to the structural steel members by painting or other suitable means.

6.6.2. Bolt assemblies and loose bolts, nuts and washers shall be shipped in separate
closed containers according to length and diameter, as applicable. Pins and other
small parts and packages of bolts, nuts and washers shall be shipped in boxes,
crates, kegs or barrels. A list and description of the material shall appear on the
outside of each closed container.

Commentary:
In most cases bolts, nuts and other components in a fastener assembly can be
shipped loose in separate containers. However, ASTM F1852/F1852M twist-
off-type tension-control bolt assemblies and galvanized ASTM A325, A325M
and F1852/F1852M bolt assemblies must be assembled and shipped in the same
container according to length and diameter.

6.7. Delivery of Materials

6.7.1. Fabricated structural steel shall be delivered in a sequence that will permit
efficient and economical fabrication and erection, and that is consistent with
requirements in the contract documents. If the owner or owner’s designated
representative for construction wishes to prescribe or control the sequence of
delivery of materials, that entity shall specify the required sequence in the
contract documents. If the owner’s designated representative for construction
contracts separately for delivery and for erection, the owner’s designated
representative for construction shall coordinate planning between contractors.

6.7.2. Anchor rods, washers, nuts and other anchorage or grillage materials that are to
be built into concrete or masonry shall be shipped so that they will be available
when needed. The owner’s designated representative for construction shall

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-36
allow the fabricator sufficient time to fabricate and ship such materials before
they are needed.

6.7.3. If any shortage is claimed relative to the quantities of materials that are shown in
the shipping statements, the owner’s designated representative for construction
or the erector shall promptly notify the fabricator so that the claim can be
investigated.

Commentary:
The quantities of material that are shown in the shipping statement are
customarily accepted as correct by the owner’s designated representative for
construction, the fabricator and the erector.
6.7.4. Unless otherwise specified in the contract documents, and subject to the
approved shop and erection drawings, the fabricator shall limit the number of
field splices to that consistent with minimum project cost.

Commentary:
This Section recognizes that the size and weight of structural steel assemblies
may be limited by shop capabilities, the permissible weight and clearance
dimensions of available transportation or job-site conditions.
6.7.5. If material arrives at its destination in damaged condition, the receiving entity
shall promptly notify the fabricator and carrier prior to unloading the material,
or promptly upon discovery prior to erection.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-37
SECTION 7. ERECTION

7.1. Method of Erection
Fabricated structural steel shall be erected using methods and a sequence that
will permit efficient and economical performance of erection, and that is
consistent with the requirements in the contract documents. If the owner or
owner’s designated representative for construction wishes to prescribe or
control the method and/or sequence of erection, or specifies that certain
members cannot be erected in their normal sequence, that entity shall specify the
required method and sequence in the contract documents. If the owner’s
designated representative for construction contracts separately for fabrication
services and for erection services, the owner’s designated representative for
construction shall coordinate planning between contractors.

Commentary:
Design modifications are sometimes requested by the erector to allow or
facilitate the erection of the structural steel frame. When this is the case, the
erector should notify the fabricator prior to the preparation of shop and erection
drawings so that the fabricator may refer the erector’s request to the owner’s
designated representatives for design and construction for resolution.

7.2. Job-Site Conditions
The owner’s designated representative for construction shall provide and
maintain the following for the fabricator and the erector:

(a) Adequate access roads into and through the job site for the safe delivery
and movement of the material to be erected and of derricks, cranes, trucks
and other necessary equipment under their own power;
(b) A firm, properly graded, drained, convenient and adequate space at the job
site for the operation of the erector’s equipment, free from overhead
obstructions, such as power lines, telephone lines or similar conditions; and,
(c) Adequate storage space, when the structure does not occupy the full
available job site, to enable the fabricator and the erector to operate at
maximum practical speed.

Otherwise, the owner’s designated representative for construction shall inform
the fabricator and the erector of the actual job-site conditions and/or special
delivery requirements prior to bidding.

7.3. Foundations, Piers and Abutments
The accurate location, strength and suitability of, and access to, all foundations,
piers and abutments shall be the responsibility of the owner’s designated
representative for construction.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-38
7.4. Lines and Bench Marks
The owner’s designated representative for construction shall be responsible for
the accurate location of lines and benchmarks at the job site and shall furnish the
erector with a plan that contains all such information. The owner’s designated
representative for construction shall establish offset lines and reference
elevations at each level for the erector’s use in the positioning of adjustable
items (see Section 7.13.1.3), if any.

7.5. Installation of Anchor Rods, Foundation Bolts and Other Embedded Items

7.5.1. Anchor rods, foundation bolts and other embedded items shall be set by the
owner’s designated representative for construction in accordance with
embedment drawings that have been approved by the owner’s designated
representatives for design and construction. The variation in location of these
items from the dimensions shown in the embedment drawings shall be as
follows:

(a) The variation in dimension between the centers of any two anchor rods
within an anchor-rod group shall be equal to or less than 8 in. [3 mm].
(b) The variation in dimension between the centers of adjacent anchor-rod
groups shall be equal to or less than 4 in. [6 mm].
(c) The variation in elevation of the tops of anchor rods shall be equal to or
less than plus or minus 2 in. [13 mm].
(d) The accumulated variation in dimension between centers of anchor-rod
groups along the column line through multiple anchor-rod groups shall be
equal to or less than 4 in. per 100 ft [2 mm per 10 000 mm], but not to
exceed a total of 1 in. [25 mm].
(e) The variation in dimension from the center of any anchor-rod group to the
column line through that group shall be equal to or less than 4 in. [6 mm].

The tolerances that are specified in (b), (c) and (d) shall apply to offset
dimensions shown in the structural design drawings, measured parallel and
perpendicular to the nearest column line, for individual columns that are shown
in the structural design drawi
ngs as offset from column lines.

Commentary:
The tolerances established in this Section have been selected for compatibility
with the holes sizes that are recommended for base plates in the AISC Steel
Construction Manual. If special conditions require more restrictive tolerances,
the contractor responsible for setting the anchor rods should be so informed in
the contract documents. When the anchor rods are set in sleeves, the adjustment
provided may be used to satisfy the required anchor-rod setting tolerances.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-39
7.5.2. Unless otherwise specified in the contract documents, anchor rods shall be set
with their longitudinal axis perpendicular to the theoretical bearing surface.

7.5.3. Embedded items and connection materials that are part of the work of other
trades, but that will receive structural steel , shall be located and set by the
owner’s designated representative for construction in accordance with an
approved embedment drawing. The variation in location of these items shall be
limited to a magnitude that is consistent with the tolerances that are specified in
Section 7.13 for the erection of the structural steel.

7.5.4. All work that is performed by the owner’s designated representative for
construction shall be completed so as not to delay or interfere with the work of
the fabricator and the erector. The owner’s designated representative for
construction shall conduct a survey of the as-built locations of anchor rods,
foundation bolts and other embedded items, and shall verify that all items
covered in Section 7.5 meet the corresponding tolerances. When corrective
action is necessary, the owner’s designated representative for construction shall
obtain the guidance and approval of the owner’s designated representative for
design.

Commentary:
Few fabricators or erectors have the capability to provide this survey. Under
standard practice, it is the responsibility of others.

7.6. Installation of Bearing Devices
All leveling plates, leveling nuts and washers and loose base and bearing plates
that can be handled without a derrick or crane are set to line and grade by the
owner’s designated representative for construction. Loose base and bearing
plates that require handling with a derrick or crane shall be set by the erector to
lines and grades established by the owner’s designated representative for
construction. The fabricator shall clearly scribe loose base and bearing plates
with lines or other suitable marks to facilitate proper alignment.
Promptly after the setting of bearing devices, the owner’s designated
representative for construction shall check them for line and grade. The
variation in elevation relative to the established grade for all bearing devices
shall be equal to or less than plus or minus 8 in. [3 mm]. The final location of
bearing devices shall be the responsibility of the owner’s designated
representative for construction.

Commentary:
The 8 in. [3 mm] tolerance on elevation of bearing devices relative to
established grades is provided to permit some variation in setting bearing
devices, and to account for the accuracy that is attainable with standard
surveying instruments. The use of leveling plates larger than 22 in. by 22 in.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-40
[550 mm by 550 mm] is discouraged and grouting is recommended with larger
sizes. For the purposes of erection stability, the use of leveling nuts and washers
is discouraged when base plates have less than four anchor rods.

7.7. Grouting
Grouting shall be the responsibility of the owner’s designated representative for
construction. Leveling plates and loose base and bearing plates shall be
promptly grouted after they are set and checked for line and grade. Columns
with attached base plates, beams with attached bearing plates and other similar
members with attached bearing devices that are temporarily supported on
leveling nuts and washers, shims or other similar leveling devices, shall be
promptly grouted after the structural steel frame or portion thereof has been
plumbed.

Commentary:
In the majority of structures the vertical load from the column bases is
transmitted to the foundations through structural grout. In general, there are
three methods by which support is provided for column bases during erection:

(a) Pre-grouted leveling plates or loose base plates;
(b) Shims; and,
(c) Leveling nuts and washers on the anchor rods beneath the column base.

Standard practice provides that loose base plates and leveling plates are to be
grouted as they are set. Bearing devices that are set on shims or leveling nuts are
grouted after plumbing, which means that the weight of the erected structural
steel frame is supported on the shims or washers, nuts and anchor rods. The
erector must take care to ensure that the load that is transmitted in this
temporary condition does not exceed the strength of the shims or washers, nuts
and anchor rods. These considerations are presented in greater detail in AISC
Design Guides No. 1 and 10.

7.8. Field Connection Material

7.8.1. The fabricator shall provide field connection details that are consistent with the
requirements in the contract documents and that will, in the fabricator’s
opinion, result in economical fabrication and erection.

7.8.2. When the fabricator is responsible for erecting the structural steel, the
fabricator shall furnish all materials that are required for both temporary and
permanent connection of the component parts of the structural steel frame.

7.8.3. When the erection of the structural steel is not performed by the fabricator, the
fabricator shall furnish the following field connection material:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-41

(a) Bolts, nuts and washers of the required grade, type and size and in
sufficient quantity for all structural steel-to-structural steel field
connections that are to be permanently bolted, including an extra 2 percent
of each bolt size (diameter and length);
(b) Shims that are shown as necessary for make-up of permanent structural
steel-to-structural steel field connections; and,
(c) Backing bars and run-off tabs that are required for field welding.

7.8.4. The erector shall furnish all welding electrodes, fit-up bolts and drift pins used
for the erection of the structural steel.

Commentary:
See the Commentary for Section 2.2.

7.9. Loose Material
Unless otherwise specified in the contract documents, loose structural steel
items that are not connected to the structural steel frame shall be set by the
owner’s designated representative for construction without assistance from the
erector.

7.10. Temporary Support of Structural Steel Frames

7.10.1. The owner’s designated representative for design shall identify the following in
the contract documents:

(a) The lateral-load-resisting system and connecting diaphragm elements that
provide for lateral strength and stability in the completed structure; and,
(b) Any special erection conditions or other considerations that are required by
the design concept, such as the use of shores, jacks or loads that must be
adjusted as erection progresses to set or maintain camber, position within
specified tolerances or prestress.

Commentary:
The intent of Section 7.10.1 of the Code is to alert the owner’s designated
representative for construction and the erector of the means for lateral load
resistance in the completed structure so that appropriate planning can occur for
construction of the building. Examples of a description of the lateral load
resisting system as required by 7.10.1(a) are shown below.
Example 1 is an all-steel building with a composite metal deck and
concrete floor system. All lateral load resistance is provided by welded moment
frames in each orthogonal building direction. One suitable description of this
lateral load resisting system is:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-42
All lateral load resistance and stability of the building in the completed
structure is provided by moment frames with welded beam to column
connections framed in each orthogonal direction (see plan sheets for locations).
The composite metal deck and concrete floors serve as horizontal diaphragms
that distribute the lateral wind and seismic forces horizontally to the vertical
moment frames. The vertical moment frames carry the applied lateral loads to
the building foundation.
Example 2 is a steel-framed building with a composite metal deck and
concrete floor system. All beam-to-column connections are simple connections
and all lateral load resistance is provided by reinforced concrete shear walls in
the building core and in the stair wells. One suitable description of this lateral
load resisting system is:
All lateral load resistance and stability of the building in the completed
structure is provided exclusively by cast-in-place reinforced concrete shear
walls in the building core and stair wells (see plan sheets for locations). These
walls provide all lateral load resistance in each orthogonal building direction.
The composite metal deck and concrete floors serve as horizontal diaphragms
that distribute the lateral wind and seismic forces horizontally to the concrete
shear walls. The concrete shear walls carry the applied lateral loads to the
building foundation.
See also Commentary Section 7.10.3.

Section 7.10.1(b) is intended to apply to special requirements inherent in the
design concept that could not otherwise be known by the erector. Such
conditions might include designs that require the use of shores or jacks to impart
a load or to obtain a specific elevation or position in a subsequent step of the
erection process in a sequencially erected structure or member. These
requirements would not be apparent to an erector, and must be identified so the
erector can properly bid, plan and perform the erection.

The erector is responsible for installation of all members (including cantilevered
members) to the specified plumbness, elevation, and alignment within the
erection tolerances specified in this Code. The erector must provide all
temporary supports and devices to maintain elevation or position within these
tolerances. These works are part of the means and methods of the erector and
the owner’s designated representative for design need not specify these methods
or related equipement.
7.10.2. The owner’s designated representative for construction shall indicate to the
erector prior to bidding, the installation schedule for non-structural steel
elements of the lateral-load-resisting system and connecting diaphragm elements
identified by the owner’s designated representative for design in the contract
documents.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-43

Commentary:
See Commentary Section 7.10.3.
7.10.3. Based upon the information provided in accordance with Sections 7.10.1 and
7.10.2, the erector shall determine, furnish and install all temporary supports,
such as temporary guys, beams, falsework, cribbing or other elements required for the erection operation. These temporary supports shall be sufficient to secure the bare structural steel framing or any portion thereof against loads that are
likely to be encountered during erection, including those due to wind and those that result from erection operations.
The erector need not consider loads during erection that result from the
performance of work by, or the acts of, others, except as specifically identified
by the owner’s designated representatives for design and construction, nor
those that are unpredictable, such as loads due to hurricane, tornado, earthquake, explosion or collision.
Temporary supports that are required during or after the erection of the
structural steel frame for the support of loads caused by non-structural steel
elements, including cladding, interior partitions and other such elements that will induce or transmit loads to the structural steel frame during or after
erection, shall be the responsibility of others.
Commentary:
Many structural steel frames have lateral-load-resisting systems that are
activated during the erection process. Such lateral-load-resisting systems may
consist of welded moment frames, braced frames or, in some instances, columns
that cantilever from fixed-base foundations. Such frames are normally braced
with temporary guys that, together with the steel deck floor and roof
diaphragms, or other diaphragm bracing that may be included as part of the
design, provide stability during the erection process. The guy cables are also
commonly used to plumb the structural steel frame. The erector normally
furnishes and installs the required temporary supports and bracing to secure the
bare structural steel frame, or portion thereof, during the erection process.
When erection bracing drawings are required in the contract documents, those
drawings show this information.
If the owner’s designated representative for construction determines
that steel decking is not installed by the erector, temporary diaphragm bracing
may be required if a horizontal diaphragm is not available to distribute loads to
the vertical and lateral load resisting system. If the steel deck will not be
available as a diaphragm during structural steel erection, the owner’s designated
representative for construction must communicate this condition to the erector
prior to bidding. If such diaphragm bracing is required, it must be furnished and
installed by the erector.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-44
Sometimes structural systems that are employed by the owner’s
designated representative for design rely upon other elements besides the
structural steel frame for lateral-load resistance. For instance, concrete or
masonry shear walls or precast spandrels may be used to provide resistance to
vertical and lateral loads in the completed structure. Because these situations
may not be obvious to the contractor or the erector, it is required in this Code
that the owner’s designated representative for design must identify such
situations in the contract documents. Similarly, if a structure is designed so that
special erection techniques are required, such as jacking to impose certain loads
or position during erection, it is required in this Code that such requirements be
specifically identified in the contract documents.
In some instances, the owner’s designated representative for design
may elect to show erection bracing in the structural design drawings. When this
is the case, the owner’s designated representative for design should then
confirm that the bracing requirements were understood by review and approval
of the erection drawings during the submittal process.
Sometimes during construction of a building, collateral building
elements, such as exterior cladding, may be required to be installed on the bare
structural steel frame prior to completion of the lateral-load-resisting system.
These elements may increase the potential for lateral loads on the temporary
supports. Such temporary supports may also be required to be left in place after
the structural steel frame has been erected. Special provisions should be made
by the owner’s designated representative for construction for these conditions.
7.10.4. All temporary supports that are required for the erection operation and furnished
and installed by the erector shall remain the property of the erector and shall not
be modified, moved or removed without the consent of the erector. Temporary
supports provided by the erector shall remain in place until the portion of the
structural steel frame that they brace is complete and the lateral-load-resisting
system and connecting diaphragm elements identified by the owner’s designated
representative for design in accordance with Secti on 7.10.1 are installed.
Temporary supports that are required to be left in place after the completion of
structural steel erection shall be removed when no longer needed by the
owner’s designated representative for construction and returned to the erector
in good condition.

7.11. Safety Protection

7.11.1. The erector shall provide floor coverings, handrails, walkways and other safety
protection for the erector’s personnel as required by law and the applicable
safety regulations. Unless otherwise specified in the contract documents, the
erector is permitted to remove such safety protection from areas where the
erection operations are completed.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-45
7.11.2. When safety protection provided by the erector is left in an area for the use of
other trades after the structural steel erection activity is completed, the owner’s
designated representative for construction shall:

(a) Accept responsibility for and maintain this protection;
(b) Indemnify the fabricator and the erector from damages that may be
incurred from the use of this protection by other trades;
(c) Ensure that this protection is adequate for use by other affected trades;
(d) Ensure that this protection complies with applicable safety regulations when
being used by other trades; and,
(e) Remove this protection when it is no longer required and return it to the
erector in the same condition as it was received.

7.11.3. Safety protection for other trades that are not under the direct employment of the
erector shall be the responsibility of the owner’s designated representative for
construction.

7.11.4. When permanent steel decking is used for protective flooring and is installed by
the owner’s designated representative for construction, all such work shall be
scheduled and performed in a timely manner so as not to interfere with or delay
the work of the fabricator or the erector. The sequence of installation that is
used shall meet all safety regulations.

7.11.5. Unless the interaction and safety of activities of others, such as construction by
others or the storage of materials that belong to others, are coordinated with the
work of the erector by the owner’s designated representative for construction,
such activities shall not be permitted until the erection of the structural steel
frame or portion thereof is completed by the erector and accepted by the
owner’s designated representative for construction.

7.12. Structural Steel Frame Tolerances
The accumulation of the mill tolerances and fabrication tolerances shall not
cause the erection tolerances to be exceeded.

Commentary:
In editions of this Code previous to the 2005 edition, it was stated that
“…variations are deemed to be within the limits of good practice when they do
not exceed the cumulative effect of rolling tolerances, fabricating tolerances and
erection tolerances.” It is recognized in the current provision in this Section that
accumulations of mill tolerances and fabrication tolerances generally occur
between the locations at which erection tolerances are applied, and not at the
same locations.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-46
7.13. Erection Tolerances
Erection tolerances shall be defined relative to member working points and
working lines, which shall be defined as follows:

(a) For members other than horizontal members, the member work point shall
be the actual center of the member at each end of the shipping piece.
(b) For horizontal members, the working point shall be the actual centerline of
the top flange or top surface at each end.
(c) The member working line shall be the straight line that connects the
member working points.

The substitution of other working points is permitted for ease of reference,
provided they are based upon the above definitions.
The tolerances on structural steel erection shall be in accordance with
the requirements in Sections 7.13.1 through 7.13.3.

Commentary:
The erection tolerances defined in this Section have been developed through
long-standing usage as practical criteria for the erection of structural steel.
Erection tolerances were first defined in the 1924 edition of this Code in Section
7(f), “Plumbing Up.” With the changes that took place in the types and use of
materials in building construction after World War II, and the increasing
demand by architects and owners for more specific tolerances, AISC adopted
new standards for erection tolerances in Section 7(h) of the March 15, 1959
edition of this Code. Experience has proven that those tolerances can be
economically obtained.
Differential column shortening may be a consideration in design and
construction. In some cases, it may occur due to variability in the accumulation
of dead load among different columns (see Figure C–7.1). In other cases, it may
be characteristic of the structural system that is employed in the design.
Consideration of the effects of differential column shortening may be very
important, such as when the slab thickness is reduced, when electrical and other
similar fittings mounted on the structural steel are intended to be flush with the
finished floor and when there is little clearance between bottoms of beams and
the tops of door frames or ductwork.
The effects of the deflection of transfer girders and trusses on the
position of columns and hangers supported from them may be a consideration in
design and construction. As in the case of differential column shortening, the
deflecton of these supporting members during and after construction will affect
the position and alignment of the framing tributary to these transfer members.

(Commentary continues after figures)

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-47
Figure C-7.1. Effects of differential column shortening.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-48






Figure C-7.2. Tolerances in plan location of column.
Figure C-7.3.Clearance required to accommodate fascia.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-49
Expansion and contraction in a structural steel frame may be a
consideration in design and construction. Steel will expand or contract
approximately 8 in. per 100 ft for each change of 15°F [2 mm per 10 000 mm
for each change of 15°C] in temperature. This change in length can be assumed
to act about the center of rigidity. When anchored to their foundations, end
columns will be plumb only when the steel is at normal temperature (see Figure
C–7.2). It is therefore necessary to correct field measurements of offsets to the
structure from established baselines for the expansion or contraction of the
exposed structural steel frame. For example, a 200-ft-long [60 000-m-long]
building that is plumbed up at 100°F [38°C] should have working points at the
tops of the end columns positioned 2 in. [14 mm] further apart than the
working points at the corresponding bases in order for the columns to be plumb
at 70°F [21°C]. Differential temperature effects on column length should also be
taken into account in plumbing surveys when tall structural steel frames are
subjected to sun exposure on one side.
The alignment of lintels, spandrels, wall supports and similar members
that are used to connect other building construction units to the structural steel
frame should have an adjustment of sufficient magnitude to allow for the
accumulation of mill tolerances and fabrication tolerances, as well as the
erection tolerances. See Figure C–7.3.

7.13.1. The tolerances on position and alignment of member working points and
working lines shall be as described in Sections 7.13.1.1 through 7.13.1.3.

7.13.1.1. For an individual column shipping piece, the angular variation of the working
line from a plumb line shall be equal to or less than 1/500 of the distance between working points, subject to the following additional limitations:

(a) For an individual column shipping piece that is adjacent to an elevator
shaft, the displacement of member working points shall be equal to or less
than 1 in. [25 mm] from the established column line in the first 20 stories.
Above this level, an increase in the displacement of Q in. [1 mm] is
permitted for each additional story up to a maximum displacement of 2 in. [50 mm] from the established column line.
(b) For an exterior individual column shipping piece, the displacement of
member working points from the established column line in the first 20
stories shall be equal to or less than 1 in. [25 mm] toward and 2 in. [50 mm] away from the building line. Above this level, an increase in the
displacement of z in. [2 mm] is permitted for each additional story up to a
maximum displacement of 2 in. [50 mm] toward and 3 in. [75 mm] away
from the building line.

Commentary:
The limitations that are described in this Section and illustrated in Figures
C–7.4 and C–7.5 make it possible to maintain built-in-place or

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-50
prefabricated facades in a true vertical plane up to the 20th story, if
connections that provide for 3 in. [75 mm] of adjustment are used. Above
the 20th story, the facade may be maintained within z in. [2 mm] per story
with a maximum total deviation of 1 in. [25 mm] from a true vertical plane,
if connections that provide for 3 in. [75 mm] of adjustment are used.
Connections that permit adjustments of plus 2 in. [50 mm] to minus 3 in.
[75 mm] (5 in. [125 mm] total) will be necessary in cases where it is desired
to construct the facade to a true vertical plane above the 20th story.
(c) For an exterior individual column shipping piece, the member working
points at any splice level for multi-tier buildings and at the tops of columns
for single-tier buildings shall fall within a horizontal envelope, parallel to
the building line, that is equal to or less than 12 in. [38 mm] wide for
buildings up to 300 ft [90 000 mm] in length. An increase in the width of
this horizontal envelope of 2 in. [13 mm] is permitted for each additional
100 ft [30 000 m] in length up to a maximum width of 3 in. [75 mm].

Commentary:
This Section limits the position of exterior column working points at any
given splice elevation to a narrow horizontal envelope parallel to the
building line (see Figure C–7.6). This envelope is limited to a width of 12
in. [38 mm], normal to the building line, in up to 300 ft [90 000 mm] of
building length. The horizontal location of this envelope is not necessarily
directly above or below the corresponding envelope at the adjacent splice
elevations, but should be within the limitation of the 1 in 500 plumbness
tolerance specified for the controlling columns (see Figure C–7.5).

(d) For an exterior column shipping piece, the displacement of member
working points from the established column line, parallel to the building
line, shall be equal to or less than 2 in. [50 mm] in the first 20 stories. Above this level, an increase in the displacement of z in. [2 mm] is
permitted for each additional story up to a maximum displacement of 3 in.
[75 mm] parallel to the building line.

7.13.1.2. For members other than column shipping pieces, the following limitations shall
apply:

(a) For a member that consists of an individual, straight shipping piece without
field splices, other than a cantilevered member, the variation in alignment
shall be acceptable if it is caused solely by variations in column alignment
and/or primary supporting member alignment that are within the
permissible variations for the fabrication and erection of such members.
(b) For a member that consists of an individual, straight shipping piece that
connects to a column, the variation in the distance from the member
working point to the upper finished splice line of the column shall be equal
to or less than plus x in. [5 mm] and minus c in. [8 mm].

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-51
Figure C-7.4. Clearance required to accommodate accumulated column tolerance.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-52

Figure C-7.5.Exterior column plumbness tolerances normal to building line.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-53






Figure C-7.6. Tolerances in plan at any splice elevation of exterior columns.
Figure C-7.7. Alignment tolerances for members with field splices.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-54

(c) For a member that consists of an individual shipping piece that does not
connect to a column, the variation in elevation shall be acceptable if it is
caused solely by the variations in the elevations of the supporting members
within the permissible variations for the fabrication and erection of those
members.
(d) For a member that consists of an individual, straight shipping piece and that
is a segment of a field assembled unit containing field splices between
points of support, the plumbness, elevation and alignment shall be
acceptable if the angular variation, vertically and horizontally, of the
working line from a straight line between points of support is equal to or
less than 1/500 of the distance between working points.

Commentary:
The angular misalignment of the working line of all fabricated shipping
pieces relative to the line between support points of the member as a whole
in erected position must not exceed 1 in 500. Note that the tolerance is not
stated in terms of a linear displacement at any point and is not to be taken as
the overall length between supports divided by 500. Typical examples are
shown in Figure C–7.7. Numerous conditions within tolerance for these and
other cases are possible. The condition described in (d) applies to both plan
and elevation tolerances.
(e) For a cantilevered member that consists of an individual, straight shipping
piece, the plumbness, elevation and alignment shall be acceptable if the
angular variation of the working line from a straight line that is extended in the plan direction from the working point at its supported end is equal to or less than 1/500 of the distance from the working point at the free end.
(f) For a member of irregular shape, the plumbness, elevation and alignment
shall be acceptable if the fabricated member is within its tolerances and the
members that support it are within the tolerances specified in this Code.
(g) For a member that is fully assembled in the field in an unstressed condition,
the same tolerances shall apply as if fully assembled in the shop.
(h) For a member that is field-assembled, element-by-element in place,
temporary support shall be used or an alternative erection plan shall be submitted to the owner’s designated representatives for design and
construction. The tolerance in Section 7.13.1.2(d) shall be met in the
supported condition with working points taken at the point(s) of temporary
support.

Commentary:
Trusses fabricated and erected as a unit or as an assembly of truss segments
normally have excellent controls on vertical position regardless of
fabrication and erection techniques. However, a truss fabricated and erected
by assembling individual components in place in the field is potentially

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-55
more sensitive to deflections of the individual truss components and the
partially completed work during erection, particularly the chord members.
In such a case, the erection process should follow an erection plan that
addresses this issue.

7.13.1.3. For members that are identified as adjustable items by the owner’s designated
representative for design in the contract documents, the fabricator shall provide
adjustable connections for these members to the supporting structural steel
frame. Otherwise, the fabricator is permitted to provide non-adjustable
connections. When adjustable items are specified, the owner's designated
representative for design shall indicate the total adjustability that is required for the proper alignment of these supports for other trades. The variation in the position and alignment of adjustable items shall be as follows:

(a) The variation in the vertical distance from the upper finished splice line of
the nearest column to the support location specified in the structural design
drawings shall be equal to or less than plus or minus a in. [10 mm].
(b) The variation in the horizontal distance from the established finish line at
the particular floor shall be equal to or less than plus or minus a in. [10
mm].
(c) The variation in vertical and horizontal alignment at the abutting ends of
adjustable items shall be equal to or less than plus or minus x in. [5 mm].

Commentary:
When the alignment of lintels, wall supports, curb angles, mullions and similar
supporting members for the use of other trades is required to be closer than that
permitted by the foregoing tolerances for structural steel, the owner's
designated representative for design must identify such items in the contract
documents as adjustable items.
7.13.2. In the design of steel structures, the owner's designated representative for
design shall provide for the necessary clearances and adjustments for material
furnished by other trades to accommodate the mill tolerances, fabrication
tolerances and erection tolerances in this Code for the structural steel frame.

Commentary:
In spite of all efforts to minimize inaccuracies, deviations will still exist;
therefore, in addition, the designs of prefabricated wall panels, partition panels,
fenestrations, floor-to-ceiling door frames and similar elements must provide for
clearance and details for adjustment as described in Section 7.13.2. Designs
must provide for adjustment in the vertical dimension of prefabricated facade
panels that are supported by the structural steel frame because the accumulation
of shortening of loaded steel columns will result in the unstressed facade
supported at each floor level being higher than the structural steel framing to

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-56
which it must be attached. Observations in the field have shown that where a
heavy facade is erected to a greater height on one side of a multistory building
than on the other, the structural steel framing will be pulled out of alignment.
Facades should be erected at a relatively uniform rate around the perimeter of
the structure.

7.13.3. Prior to placing or applying any other materials, the owner's designated
representative for construction shall determine that the location of the structural
steel is acceptable for plumbness, elevation and alignment. The erector shall be
given either timely notice of acceptance by the owner's designated
representative for construction, or a listing of specific items that are to be
corrected in order to obtain acceptance. Such notice shall be rendered promptly upon completion of any part of the work and prior to the start of work by other trades that may be supported, attached or applied to the structural steel frame.

7.14. Correction of Errors
The correction of minor misfits by moderate amounts of reaming, grinding, welding or cutting, and the drawing of elements into line with drift pins, shall be considered to be normal erection operations. Errors that cannot be corrected using the foregoing means, or that require major changes in member or connection configuration, shall be promptly reported to the owner's designated
representatives for design and construction and the fabricator by the erector , to
enable the responsible entity to either correct the error or approve the most
efficient and economical method of correction to be used by others.

Commentary:
As used in this Section, the term “moderate” refers to the amount of reaming,
grinding, welding or cutting that must be done on the project as a whole, not the
amount that is required at an individual location. It is not intended to address
limitations on the amount of material that is removed by reaming at an
individual bolt hole, for example, which is limited by the bolt-hole size and
tolerance requirements in the AISC and RCSC Specifications.

7.15. Cuts, Alterations and Holes for Other Trades
Neither the fabricator nor the erector shall cut, drill or otherwise alter their
work, nor the work of other trades, to accommodate other trades, unless such
work is clearly specified in the contract documents. When such work is so
specified, the owner's designated representatives for design and construction
shall furnish complete information as to materials, size, location and number of alterations in a timely manner so as not to delay the preparation of shop and
erection drawings.

7.16. Handling and Storage
The erector shall take reasonable care in the proper handling and storage of the
structural steel during erection operations to avoid the accumulation of excess
dirt and foreign matter. The erector shall not be responsible for the removal
from the structural steel of dust, dirt or other foreign matter that may

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-57
accumulate during erection as the result of job-site conditions or exposure to the
elements. The erector shall handle and store all bolts, nuts, washers and related
fastening products in accordance with the requirements of the RCSC
Specification.

Commentary:
During storage, loading, transport, unloading and erection, blemish marks
caused by slings, chains, blocking, tie-downs, etc., occur in varying degrees.
Abrasions caused by handling or cartage after painting are to be expected. It
must be recognized that any shop-applied coating, no matter how carefully
protected, will require touching-up in the field. Touching-up of these blemished
areas is the responsibility of the contractor performing the field touch-up or field
painting.
The erector is responsible for the proper storage and handling of
fabricated structural steel at the job site during erection. Shop-painted structural
steel that is stored in the field pending erection should be kept free of the ground
and positioned so as to minimize the potential for water retention. The owner or
owner's designated representative for construction is responsible for providing
suitable job-site conditions and proper access so that the fabricator and the
erector may perform their work.
Job-site conditions are frequently muddy, sandy, dusty or a
combination thereof during the erection period. Under such conditions it may be
impossible to store and handle the structural steel in such a way as to
completely avoid any accumulation of mud, dirt or sand on the surface of the
structural steel, even though the fabricator and the erector manages to proceed
with their work.
Repairs of damage to painted surfaces and/or removal of foreign
materials due to adverse job-site conditions are outside the scope of
responsibility of the fabricator and the erector when reasonable attempts at
proper handling and storage have been made.

7.17. Field Painting
Neither the fabricator nor the erector is responsible to paint field bolt heads and
nuts or field welds, nor to touch up abrasions of the shop coat, nor to perform
any other field painting.

7.18. Final Cleaning Up
Upon the completion of erection and before final acceptance, the erector shall
remove all of the erector’s falsework, rubbish and temporary buildings.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-58
SECTION 8. QUALITY CONTROL

8.1. General

8.1.1. The fabricator shall maintain a quality control program to ensure that the work
is performed in accordance with the requirements in this Code, the AISC
Specification and the contract documents. The fabricator shall have the option
to use the AISC Quality Certification Program to establish and administer the
quality control program.

Commentary:
The AISC Quality Certification Program confirms to the construction industry
that a certified structural steel fabrication shop has the capability by reason of
commitment, personnel, organization, experience, procedures, knowledge and
equipment to produce fabricated structural steel of the required quality for a
given category of work. The AISC Quality Certification Program is not intended
to involve inspection and/or judgment of product quality on individual projects.
Neither is it intended to guarantee the quality of specific fabricated structural
steel products.
8.1.2. The erector shall maintain a quality control program to ensure that the work is
performed in accordance with the requirements in this Code, the AISC
Specification and the contract documents. The erector shall be capable of
performing the erection of the structural steel , and shall provide the equipment,
personnel and management for the scope, magnitude and required quality of
each project. The erector shall have the option to use the AISC Erector
Certification Program to establish and administer the quality control program.

Commentary:
The AISC Erector Certification Program confirms to the construction industry
that a certified structural steel erector has the capability by reason of
commitment, personnel, organization, experience, procedures, knowledge and
equipment to erect fabricated structural steel to the required quality for a given
category of work. The AISC Erector Certification Program is not intended to
involve inspection and/or judgment of product quality on individual projects.
Neither is it intended to guarantee the quality of specific erected structural steel
products.
8.1.3. When the owner requires more extensive quality control procedures, or
independent inspection by qualified personnel, or requires that the fabricator
must be certified under the AISC Quality Certification Program and/or requires
that the erector must be certified under the AISC Erector Certification Program,
this shall be clearly stated in the contract documents, including a definition of
the scope of such inspection.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-59

8.2. Inspection of Mill Material
Material test reports shall constitute sufficient evidence that the mill product
satisfies material order requirements. The fabricator shall make a visual
inspection of material that is received from the mill, but need not perform any
material tests unless the owner's designated representative for design specifies
in the contract documents that additional testing is to be performed at the
owner’s expense.

8.3. Non-Destructive Testing
When non-destructive testing is required, the process, extent, technique and
standards of acceptance shall be clearly specified in the contract documents.

8.4. Surface Preparation and Shop Painting Inspection
Inspection of surface preparation and shop painting shall be planned for the
acceptance of each operation as the fabricator completes it. Inspection of the
paint system, including material and thickness, shall be made promptly upon
completion of the paint application. When wet-film thickness is to be inspected,
it shall be measured during the application.

8.5. Independent Inspection
When inspection by personnel other than those of the fabricator and/or erector
is specified in the contract documents, the requirements in Sections 8.5.1
through 8.5.6 shall be met.

8.5.1. The fabricator and the erector shall provide the inspector with access to all
places where the work is being performed. A minimum of 24 hours notification
shall be given prior to the commencement of work.

8.5.2. Inspection of shop work by the inspector shall be performed in the fabricator’s
shop to the fullest extent possible. Such inspections shall be timely, in-sequence
and performed in such a manner as will not disrupt fabrication operations and
will permit the repair of non-conforming work prior to any required painting
while the material is still in-process in the fabrication shop.

8.5.3. Inspection of field work shall be promptly completed without delaying the
progress or correction of the work.

8.5.4. Rejection of material or workmanship that is not in conformance with the
contract documents shall be permitted at any time during the progress of the
work. However, this provision shall not relieve the owner or the inspector of the
obligation for timely, in-sequence inspections.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-60
8.5.5. The fabricator, erector, and owner's designated representatives for design and
construction shall be informed of defici encies that are noted by the inspector
promptly after the inspection. Copies of all reports prepared by the inspector
shall be promptly given to the fabricator, erector, and owner's designated
representatives for design and construction. The necessary corrective work shall
be performed in a timely manner.

8.5.6. The inspector shall not suggest, direct, or approve the fabricator or erector to
deviate from the contract documents or the approved shop and erection
drawings, or approve such deviation, without the written approval of the
owner's designated representatives for design and construction.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-61
SECTION 9. CONTRACTS

9.1. Types of Contracts

9.1.1. For contracts that stipulate a lump sum price, the work that is required to be
performed by the fabricator and the erector shall be completely defined in the
contract documents.

9.1.2. For contracts that stipulate a price per pound, the scope of work that is required
to be performed by the fabricator and the erector, the type of materials, the
character of fabrication and the conditions of erection shall be based upon the
contract documents, which shall be representative of the work to be performed.

9.1.3. For contracts that stipulate a price per item, the work that is required to be
performed by the fabricator and the erector shall be based upon the quantity
and the character of the items that are described in the contract documents.

9.1.4. For contracts that stipulate unit prices for various categories of structural steel,
the scope of work that is required to be performed by the fabricator and the
erector shall be based upon the quantity, character and complexity of the items
in each category as described in the contract documents, and shall also be
representative of the work to be performed in each category.

9.2. Calculation of Weights
Unless otherwise specified in the contract, for contracts stipulating a price per
pound for fabricated structural steel that is delivered and/or erected, the
quantities of materials for payment shall be determined by the calculation of the
gross weight of materials as shown in the shop drawings.

Commentary:
The standard procedure for calculation of weights that is described in this Code
meets the need for a universally acceptable system for defining “pay weights” in
contracts based upon the weight of delivered and/or erected materials. These
procedures permits the owner to easily and accurately evaluate price-per-pound
proposals from potential suppliers and enables all parties to a contract to have a
clear and common understanding of the basis for payment.
The procedure in this Code affords a simple, readily understood
method of calculation that will produce pay weights that are consistent
throughout the industry and that may be easily verified by the owner. While this
procedure does not produce actual weights, it can be used by purchasers and
suppliers to define a widely accepted basis for bidding and contracting for
structural steel. However, any other system can be used as the basis for a
contractual agreement. When other systems are used, both the supplier and the
purchaser should clearly understand how the alternative procedure is handled.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-62

9.2.1. The unit weight of steel shall be taken as 490 lb/ft
3
[7 850 kg/m
3
]. The unit
weight of other materials shall be in accordance with the manufacturer’s
published data for the specific product.

9.2.2. The weights of standard structural shapes, plates and bars shall be calculated
on the basis of shop drawings that show the actual quantities and dimensions of
material to be fabricated, as follows:

(a) The weights of all standard structural shapes shall be calculated using the
nominal weight per ft [mass per m] and the detailed overall length.
(b) The weights of plates and bars shall be calculated using the detailed overall
rectangular dimensions.
(c) When parts can be economically cut in multiples from material of larger
dimensions, the weight shall be calculated on the basis of the theoretical
rectangular dimensions of the material from which the parts are cut.
(d) When parts are cut from standard structural shapes, leaving a non-standard
section that is not useable on the same contract, the weight shall be
calculated using the nominal weight per ft [mass per m] and the overall
length of the standard structural shapes from which the parts are cut.
(e) Deductions shall not be made for material that is removed for cuts, copes,
clips, blocks, drilling, punching, boring, slot milling, planing or weld joint
preparation.

9.2.3. The items for which weights are shown in tables in the AISC Steel Construction
Manual shall be calculated on the basis of the tabulated weights shown therein.

9.2.4. The weights of items that are not shown in tables in the AISC Steel
Construction Manual shall be taken from the manufacturer’s catalog and the
manufacturer’s shipping weight shall be used.

Commentary:
Many items that are weighed for payment purposes are not tabulated with
weights in the AISC Steel Construction Manual. These include, but are not
limited to, anchor rods , clevises, turnbuckles, sleeve nuts, recessed-pin nuts,
cotter pins and similar devices.
9.2.5. The weights of shop or field weld metal and protective coatings shall not be
included in the calculated weight for the purposes of payment.

9.3. Revisions to the Contract Documents
Revisions to the contract documents shall be confirmed by change order or extra
work order. Unless otherwise noted, the issuance of a revision to the contract
documents shall constitute authorization by the owner that the revision is

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-63
released for construction. The contract price and schedule shall be adjusted in
accordance with Sections 9.4 and 9.5.

9.4. Contract Price Adjustment

9.4.1. When the scope of work and responsibilities of the fabricator and the erector
are changed from those previously established in the contract documents, an
appropriate modification of the contract price shall be made. In computing the
contract price adjustment, the fabricator and the erector shall consider the
quantity of work that is added or deleted, the modifications in the character of
the work and the timeliness of the change with respect to the status of material
ordering, detailing, fabrication and erection operations.

Commentary:
The fabrication and erection of structural steel is a dynamic process. Typically,
material is being acquired at the same time that the shop and erection drawings
are being prepared. Additionally, the fabrication shop will normally fabricate
pieces in the order that the structural steel is being shipped and erected.
Items that are revised or placed on hold generally upset these
relationships and can be very disruptive to the detailing, fabricating and erecting
processes. The provisions in Sections 3.5, 4.4.2 and 9.3 are intended to
minimize these disruptions so as to allow work to continue. Accordingly, it is
required in this Code that the reviewer of requests for contract price adjustments
recognize this and allow compensation to the fabricator and the erector for
these inefficiencies and for the materials that are purchased and the detailing,
fabrication and erection that has been performed, when affected by the change.
9.4.2. Requests for contract price adjustments shall be presented by the fabricator
and/or the erector in a timely manner and shall be accompanied by a description
of the change that is sufficient to permit evaluation and timely approval by the owner.
9.4.3. Price-per-pound and price-per-item contracts shall provide for additions or
deletions to the quantity of work that are made prior to the time the work is released for construction. When changes are made to the character of the work
at any time, or when additions and/or deletions are made to the quantity of the work after it is released for detailing, fabrication or erection, the contract price
shall be equitably adjusted.

9.5. Scheduling

9.5.1. The contract schedule shall state when the design drawings will be released for
construction, if the design drawings are not available at the time of bidding, and
when the job site, foundations, piers and abutments will be ready, free from

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-64
obstructions and accessible to the erector, so that erection can start at the
designated time and continue without interference or delay caused by the
owner's designated representative for construction or other trades.

9.5.2. The fabricator and the erector shall advise the owner's designated
representatives for design and construction, in a timely manner, of the effect
any revision has on the contract schedule.

9.5.3. If the fabrication or erection is significantly delayed due to revisions to the
requirements of the contract, or for other reasons that are the responsibility of
others, the fabricator and/or erector shall be compensated for the additional
costs incurred.

9.6. Terms of Payment
The fabricator shall be paid for mill materials and fabricated product that is
stored off the job site. Other terms of payment for the contract shall be outlined
in the contract documents.

Commentary:
These terms include such items as progress payments for material, fabrication,
erection, retainage, performance and payment bonds and final payment. If a
performance or payment bond, paid for by the owner, is required by contract, no
retainage shall be required.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-65
SECTION 10. ARCHITECTURALLY EXPOSED STRUCTURAL STEEL

10.1. General Requirements
When members are specifically designated as architecturally exposed structural
steel or AESS in the contract documents, the requirements in Sections 1 through
9 shall apply as modified in Section 10. AESS members or components shall be
fabricated and erected with the care and dimensional tolerances that are
stipulated in Sections 10.2 through 10.4. The following additional information
shall be provided in the contract documents when AESS is specified:

(a) Specific identification of members or components that are AESS;
(b) Fabrication and/or erection tolerances that are to be more restrictive than
provided for in this Section, if any; and,
(c) Requirements, if any, of a mock-up panel or components for inspection and
acceptance standards prior to the start of fabrication.

Commentary:
This Section of this Code defines additional requirements that apply only to
members that are specifically designated by the contract documents as
architecturally exposed structural steel (AESS). The common use of exposed
structural steel as a medium of architectural expression has given rise to a
demand for closer dimensional tolerances and smoother finished surfaces than
required for ordinary structural steel framing.
This Section of this Code establishes standards for these requirements
that take into account both the desired finished appearance and the abilities of
the fabrication shop to produce the desired product. It should be pointed out that
the term architecturally exposed structural steel, as covered in this Section,
must be specified in the contract documents if the fabricator is required to meet
the fabricating standards in this Section, and applies only to that portion of the
structural steel so identified.
AESS requirements usually involve significant cost in excess of that
for structural steel that is fabricated in the absence of an AESS requirement.
Therefore, the designation AESS should be applied rationally, with visual
acceptance criteria that are appropriate for the distance at which the exposed
element will be viewed in the completed structure. In order to avoid
misunderstandings and to hold costs to a minimum, only those structural steel
surfaces and connections that will remain exposed and subject to normal view
by pedestrians or occupants of the completed structure should be designated as
AESS.

10.2. Fabrication

10.2.1. The permissible tolerances for out-of-square or out-of-parallel, depth, width and
symmetry of rolled shapes shall be as specified in ASTM A6/A6M. Unless
otherwise specified in the contract documents, the exact matching of abutting

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-66
cross-sectional configurations shall not be necessary. The as-fabricated
straightness tolerances of members shall be one-half of the standard camber and
sweep tolerances in ASTM A6/A6M.

10.2.2. The tolerances on overall profile dimensions of members that are built-up from
a series of standard structural shapes, plates and/or bars by welding shall be
taken as the accumulation of the variations that are permitted for the component
parts in ASTM A6/A6M. The as-fabricated straightness tolerances for the
member as a whole shall be one-half the standard camber and sweep tolerances
for rolled shapes in ASTM A6/A6M.

10.2.3. Unless specific visual acceptance criteria for weld show-through are specified in
the contract documents, the members or components shall be acceptable as
produced.

Commentary:
Weld show-through generally is a function of weld size and material thickness.
10.2.4. All copes, miters and cuts in surfaces that are exposed to view shall be made
with uniform gaps of 8 in. [3 mm] if shown as open joints, or in reasonable
contact if shown without gap.
10.2.5. All welds that are exposed to view shall be visually acceptable if they meet the
requirements in AWS D1.1, except all groove welds in butt joints and outside corner joints and plug welds that are exposed to view shall not project more than
z in. [2 mm] above the exposed surface. Finishing or grinding of welds shall
not be necessary, unless such treatment is required to provide for clearances or
fit of other components.

10.2.6. Erection marks or other painted marks shall not be made on those surfaces of
weathering steel AESS members that are to be exposed in the completed
structure. Unless otherwise specified in the contract documents , the fabricator
shall clean weathering steel AESS members to meet the requirements of SSPC-
SP6.

10.2.7. Stamped or raised manufacturer’s identification marks shall not be filled,
ground or otherwise removed.

10.2.8. Seams of hollow structural sections shall be acceptable as produced. Seams
shall be oriented away from view or as directed in the contract documents.

10.3. Delivery of Materials
The fabricator shall use special care to avoid bending, twisting or otherwise
distorting the structural steel.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-67

10.4. Erection

10.4.1. The erector shall use special care in unloading, handling and erecting the
structural steel to avoid marking or distorting the structural steel. Care shall
also be taken to minimize damage to any shop paint. If temporary braces or
erection clips are used, care shall be taken to avoid the creation of unsightly
surfaces upon removal. Tack welds shall be ground smooth and holes shall be
filled with weld metal or body solder and smoothed by grinding or filing. The
erector shall plan and execute all operations in such a manner that the close fit
and neat appearance of the structure will not be impaired.

10.4.2. Unless otherwise specified in the contract documents, AESS members and
components shall be plumbed, leveled and aligned to a tolerance that is one-half
that permitted for non-AESS members. To accommodate these erection
tolerances for AESS, the owner's designated representative for design shall
specify connections between AESS members and non-AESS members,
masonry, concrete and other supports as adjustable items, in order to provide the
erector with means for adjustment.

10.4.3. When AESS is backed with concrete, the owner's designated representative for
construction shall provide sufficient shores, ties and strongbacks to prevent
sagging, bulging or similar deformation of the AESS members due to the weight
and pressure of the wet concrete.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-68
APPENDIX A. DIGITAL BUILDING PRODUCT MODELS

The provisions in this Appendix shall apply when the contract documents indicate that a
three-dimensional digital building product model replaces contract drawings and is to be
used as the primary means of designing, representing, and exchanging structural steel
data for the project. When this is the case, all references to the design drawings in this
Code shall instead apply to the design model, and all references to the shop and erection
drawings in the Code shall instead apply to the manufacturing model. The CIS/2 Logical
Product Model shall be used as the building product model for structural steel.
If the primary means of project communication reverts from a model-based
system to a paper-based system, the requirements in this Code other than in this
Appendix shall apply.

Commentary:
Current technology permits the transfer of three-dimensional digital building product
model data among the design and construction teams for a project. Over the last several
years, designers and fabricators have used CIS/2 as a standard format in the exchange of
building product models representing the steel structure. This Appendix facilitates the
use of this technology in the design and construction of steel structures, and eliminates
any interpretation of this Code that might be construed to prohibit or inhibit the use of
this technology. While the technology is new and there is no long-established standard of
practice, it is the intent in this Appendix to provide guidance for its use.
APPENDIX A. GLOSSARY

Add the following definitions to the Glossary:

Building Product Model. A digital information structure of the objects making up a
building, capturing the form, function, behavior and relations of the parts and
assemblies within one or more building systems. A building product model can be
implemented in multiple ways, including as an ASCII file or as a database. The data
in the model is created, manipulated, evaluated, reviewed and presented using
computer-based design, engineering, and manufacturing applications. Traditional
two-dimensional drawings may be one of many reports generated by the building
product model (see Eastman, Charles M.: Building Product Models: Computer
Environments Supporting Design and Construction; 1999 by CRC Press).

CIS/2 (CIMSteel Integration Standards/Version 2). The specification providing the
building product model for structural steel and format for electronic data
interchange (EDI) among software applications dealing with steel design, analysis,
and manufacturing.

Data Management Conformance (DMC). The capability of the CIMSteel model to
include optional data entities for managing and tracking additions, deletions and

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-69
modifications to a model, including who made the change and when the change was
made for all data changes.

Logical Product Model (LPM). The CIS/2 building product model, which supports the
engineering of low-, medium- and high-rise construction, in domestic, commercial
and industrial contexts. All elements of the structure are covered, including main and
secondary framing and connections. The components used can be of any variety of
structural shape or element.
The LPM addresses the exchange of data between structural steel applications.
It is meant to support a heterogeneous set of applications over a fairly broad portion
of the steel lifecycle. It is organized around three different sub-models: the analysis
model (data represented in structural analysis), the design model (data represented in
frame design layout) and the manufacturing model (data represented in detailing for
fabrication).

A1.2. Referenced Specifications, Codes and Standards
Add the following reference to Section 1.2:

CIMSteel Integration Standards Release 2: Second Edition P265: CIS/2.1:
Volumes 1 through 4.

A3. DESIGN DRAWINGS AND SPECIFICATIONS
In addition to the requirements in Section 3, the following requirements shall
apply to the design model:

A3.1. Design Model

The design model shall:

(a) Consist of data management conformance classes.
(b) Contain analysis model data so as to include load calculations as specified
in the contract documents.
(c) Include entities that fully define each steel element and the extent of
detailing of each element, as would be recorded on equivalent set of
structural steel design drawings.
(d) Include all steel elements identified in the contract documents, as well as
any other entities required for strength and stability of the completely
erected structure.
(e) Govern over all other forms of information, including drawings, sketches,
etc.

A3.2. LPM Administration

The owner shall designate an administrator for the LPM, who shall:

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-70

(a) Control the LPM by providing appropriate access privileges (read, write,
etc) to all relevant parties.
(b) Maintain the security of the LPM.
(c) Guard against data loss of the LPM.
(d) Be responsible for updates and revisions to the LPM as they occur.
(e) Inform all appropriate parties as to changes to the LPM.

Commentary:
When a project is designed and constructed using EDI, it is imperative that an
individual entity on the team be responsible for maintaining the LPM. This is to
assure protection of data through proper backup, storage and security and to
provide coordination of the flow of information to all team members when
information is added to the model. Team members exchange information to
revise the model with this administrator. The administrator will validate all
changes to the LPM. This is to assure proper tracking and control of revisions.
This administrator can be one of the design team members such as an
architect, structural engineer of record, or a separate entity on the design team
serving this purpose. The administrator can also be the steel detailer or a
separate entity on the construction team serving this purpose.

A4.3. Fabricator Responsibility
In addition to the requirements in Section 4.3, the following requirements shall
apply:

When the design model is used to develop the manufacturing model the
fabricator shall accept the information under the following conditions:

(a) When the design information is to be conveyed to the fabricator by way of
the design model, in the event of a conflict between the model and the
design drawings, the design model will control.
(b) The ownership of the information added to the LPM in the manufacturing
model should be defined in the contract documents. In the absence of terms
for ownership regarding the information added by the fabricator to the
LPM in the contract documents, the ownership will belong to the
fabricator.
(c) During the development of the manufacturing model, as member locations
are adjusted to convert the modeled parts from a design model, these
relocations will only be done with the approval of the owner’s designated
representative for design.
(d) The fabricator and erector shall accept the use of the LPM and design
model under the same conditions as set forth in Section 4.3 with regard to
CAD files, except as modified in Section A4.3 above.

Code of Standard Practice for Steel Buildings and Bridges, April 14, 2010
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
16.3-71


A4.4. Approval
In addition to the requirements in Section 4.4, the following requirements shall
apply:

When the approval of the detailed material is to be done by the use of the
manufacturing model the version of the submitted model shall be identified. The
approver shall annotate the manufacturing model with approval comments
attached to the individual elements as specified in the CIS/2 standard. As
directed by the approval comment the fabricator will reissue the manufacturing
model for re-review and the version of the model submitted will be tracked as
previously defined.

Commentary:
Approval of the manufacturing model by the owner’s designated representative
for design can replace the approval of actual shop and erection drawings. For
this method to be effective, a system must be in place to record review,
approval, correction and final release of the manufacturing model for fabrication
of structural steel. The versions of the model must be tracked, and review
comments and approvals permanently attached to the versions of the model to
the same extent as such data is maintained with conventional hard copy
approvals. The CIS/2 standard provides this level of tracking.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700, Chicago, Illinois 60601

AISC 303-10 (2M710)

17–1
AMERICANINSTITUTE OFSTEELCONSTRUCTION
PART 17
MISCELLANEOUS DATA AND MATHEMATICAL
INFORMATION
SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES . . . . . . . . . . . . . . . . . 17–3
Table 17-1. W-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–3
Table 17-2. M-, S-, and HP-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–6
Table 17-3. Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–7
Table 17-4. Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–8
Table 17-5. WT-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–10
Table 17-6. MT- and ST-Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–13
Table 17-7. Rectangular HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–14
Table 17-8. Square HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–18
Table 17-9. Round HSS and Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–20
MISCELLANEOUS DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–22
Table 17-10. Wire and Sheet Metal Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–22
Table 17-11. Coefficients of Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–23
Table 17-12. Weights and Specific Gravities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–24
Table 17-13. Weights of Building Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–26
Table 17-14. U.S. Weights and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–27
SI UNITS FOR STRUCTURAL STEEL DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Table 17-15. Base SI Units for Steel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Table 17-16. SI Prefixes for Steel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Table 17-17. Derived SI Units for Steel Design . . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Table 17-18. Summary of SI Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Table 17-19. SI Equivalents of Fractions of an Inch . . . . . . . . . . . . . . . . . . . . . . . 17–29
Table 17-20. SI Bolt Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–29
Table 17-21. SI Steel Yield Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–29
Table 17-22. SI (Metric) Weights and Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 17–30
Table 17-23. SI Conversion Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–31
AISC_PART 17:14th Ed. 4/1/11 9:17 AM Page 1

17–2 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
GEOMETRIC AND TRIGONOMETRIC DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–33
Table 17-24. Bracing Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–33
Table 17-25. Properties of the Parabola and Ellipse . . . . . . . . . . . . . . . . . . . . . . . 17–34
Table 17-26. Properties of the Circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–35
Table 17-27. Properties of Geometric Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–36
Table 17-28. Trigonometric Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–43
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 2

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-1
SI Equivalents of Standard U.S.
Shape Profiles
W-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
W44×335 W1100 ×499
×290 ×433
×262 ×390
×230 ×343
W40×593 W1000 ×883
×503 ×748
×431 ×642
×397 ×591
×372 ×554
×362 ×539
×324 ×483
×297 ×443
×277 ×412
×249 ×371
×215 ×321
×199 ×296
W40×392 W1000 ×584
×331 ×494
×327 ×486
×294 ×438
×278 ×415
×264 ×393
×235 ×350
×211 ×314
×183
×272
×167 ×249
×149 ×222
W36×652 W920 ×970
×529 ×787
×487 ×725
×441 ×656
×395 ×588
×361 ×537
×330 ×491
×302 ×449
×282 ×420
×262 ×390
×247 ×368
×231 ×345
W36×256 W920 ×381
×232 ×345
×210 ×313
×194 ×289
×182 ×271
×170 ×253
×160 ×238
×150 ×223
×135 ×201
W33×387 W840 ×576
×354 ×527
×318 ×473
×291 ×433
×263 ×392
×241 ×359
×221 ×329
×201 ×299
W33×169 W840 ×251
×152 ×226
×141 ×210
×130 ×193
×118 ×176
W30×391 W760 ×582
×357 ×531
×326 ×484
×292 ×434
×261 ×389
×235 ×350
×211 ×314
×191 ×284
×173 ×257
W30×148 W760 ×220
×132 ×196
×124 ×185
×116
×173
×108 ×161
×99 ×147
×90 ×134
W27×539 W690 ×802
×368 ×548
×336 ×500
×307 ×457
×281 ×419
×258 ×384
×235 ×350
×217 ×323
×194 ×289
×178 ×265
×161 ×240
×146 ×217
W27×129 W690 ×192
×114 ×170
×102 ×152
×94 ×140
×84 ×125
W24×370 W610 ×551
×335 ×498
×306 ×455
×279 ×415
×250 ×372
×229 ×341
×207 ×307
×192 ×285
×176 ×262
×162 ×241
×146 ×217
×131 ×195
×117 ×174
×104 ×155
W24×103 W610 ×153
×94 ×140
×84 ×125
×76 ×113
×68 ×101
W24×62 W610 ×92
×55 ×82
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 3

17–4 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-1 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
W-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
W21×201 W530 ×300
×182 ×272
×166 ×248
×147 ×219
×132 ×196
×122 ×182
×111 ×165
×101 ×150
W21×93 W530 ×138
×83 ×123
×73 ×109
×68 ×101
×62 ×92
×55 ×82
×48 ×72
W21×57 W530 ×85
×50 ×74
×44 ×66
W18×311 W460 ×464
×283 ×421
×258 ×384
×234 ×349
×211 ×315
×192 ×286
×
175 ×260
×158 ×235
×143 ×213
×130 ×193
×119 ×177
×106 ×158
×97 ×144
×86 ×128
×76 ×113
W18×71 W460 ×106
×65 ×97
×60 ×89
×55 ×82
×50 ×74
W18×46 W460 ×68
×40 ×60
×35 ×52
W16×100 W410 ×149
×89 ×132
×77 ×114
×67 ×100
W16×57 W410 ×85
×50 ×75
×45 ×67
×40
×60
×36 ×53
W16×31 W410 ×46.1
×26 ×38.8
W14×730 W360 ×1086
×665 ×990
×605 ×900
×550 ×818
×500 ×744
×455 ×677
×426 ×634
×398 ×592
×370 ×551
×342 ×509
×311 ×463
×283 ×421
×257 ×382
×233 ×347
×211 ×314
×193 ×287
×176 ×262
×159 ×237
×145 ×216
W14×132 W360 ×196
×120 ×179
×109 ×162
×99 ×147
×90 ×134
W14×82 W360 ×122
×74 ×110
×68 ×101
×61 ×91
W14×53 W360 ×79
×48 ×72
×43 ×64
W14×38 W360 ×58
×34 ×51
×30 ×44.6
W14×26 W360 ×39
×22 ×32.9
W12×336 W310 ×500
×305 ×454
×279 ×415
×252 ×375
×230 ×342
×210 ×313
×190 ×283
×170 ×253
×152 ×226
×136 ×202
×120 ×179
×106 ×158
×96 ×143
×87 ×129
×79 ×117
×72 ×107
×65 ×97
W12×58 W310 ×86
×53 ×79
W12×50 W310 ×74
×45 ×67
×40 ×60
W12×35 W310 ×52
×30 ×44.5
×26 ×38.7
W12×22 W310 ×32.7
×19 ×28.3
×16 ×23.8
×14 ×21.0
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 4

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-1 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
W-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
W10×112 W250 ×167
×100 ×149
×88 ×131
×77 ×115
×68 ×101
×60 ×89
×54 ×80
×49 ×73
W10×45 W250 ×67
×39 ×58
×33 ×49.1
W10×30 W250 ×44.8
×26 ×38.5
×22 ×32.7
W10×19 W250 ×28.4
×17 ×25.3
×15 ×22.3
×12 ×17.9
W8×67 W200 ×100
×58 ×86
×48 ×71
×40 ×59
×35 ×52
×31 ×46.1
W8×28 W200 ×41.7
×24 ×35.9
W8×21 W200 ×31.3
×18 ×26.6
W8×15 W200 ×22.5
×13 ×19.3
×10 ×15.0
W6×25 W150 ×37.1
×20 ×29.8
×15 ×22.5
W6×16 W150 ×24.0
×12 ×18.0
×9 ×13.5
×8.5 ×13.0
W5×19 W130 ×28.1
×16 ×23.8
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 5

Table 17-2
SI Equivalents of Standard U.S.
Shape Profiles
M-, S- and HP-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
M12.5×12.4 M318×18.5
×11.6 ×17.3
M12×11.8 M310×17.6
×10.8 ×16.1
M12×10 M310 ×14.9
M10×9 M250 ×13.4
×8 ×11.9
M10×7.5 M250 ×11.2
M8×6.5 M200 ×9.7
×6.2 ×9.2
M6×4.4 M150 ×6.6
×3.7 ×5.5
M5×18.9 M130×28.1
M4×6 M100 ×8.9
×4.08 ×6.1
×3.45 ×5.1
×3.2 ×4.8
M3×2.9 M75 ×4.3
HP18×204 HP460 ×304
×181 ×269
×157 ×234
×135 ×201
HP16×
183 HP410 ×272
×162 ×241
×141 ×210
×121 ×180
×101 ×150
×88 ×131
HP14×117 HP360 ×174
×102 ×152
×89 ×132
×73 ×108
HP12×84 HP310 ×125
×74 ×110
×63 ×93
×53 ×79
HP10×57 HP250 ×85
×42 ×62
HP8×36 HP200 ×53
S24×121 S610 ×180
×106 ×158
S24×100 S610 ×149
×90 ×134
×80 ×119
S20×96 S510 ×143
×86 ×
128
S20×75 S510 ×112
×66 ×98
S18×70 S460 ×104
×54.7 ×81.4
S15×50 S380 ×74
×42.9 ×64
S12×50 S310 ×74
×40.8 ×60.7
S12×35 S310 ×52
×31.8 ×47.3
S10×35 S250 ×52
×25.4 ×37.8
S8×23 S200 ×34
×18.4 ×27.4
S6×17.2 S150 ×25.7
×12.5 ×18.6
S5×10 S130 ×15
S4×9.5 S100 ×14.1
×7.7 ×11.5
S3×7.5 S75 ×11.2
×5.7 ×8.5
17–6 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 6

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-3
SI Equivalents of Standard U.S.
Shape Profiles
Channels
Shape
mm ×kg/min. ×lb/ft
SI Equivalent Shape
in. ×lb/ft
SI Equivalent
mm ×kg/m
C15×50 C380 ×74
×40 ×60
×33.9 ×50.4
C12×30 C310 ×45
×25 ×37
×20.7 ×30.8
C10×30 C250 ×45
×25 ×37
×20 ×30
×15.3 ×22.8
C9×20 C230 ×30
×15 ×22
×13.4 ×19.9
C8×18.75 C200 ×27.9
×13.75 ×20.5
×11.5 ×17.1
C7×14.75 C180 ×22
×12.25 ×18.2
×9.8 ×14.6
C6×13 C150 ×19.3
×10.5 ×15.6
×8.2 ×12.2
C5×9 C130 ×13
×
6.7 ×10.4
C4×7.25 C100 ×10.8
×6.25 ×9.3
×5.4 ×8
×4.5 ×6.7
C3×6C75 ×8.9
×5 ×7.4
×4.1 ×6.1
×3.5 ×5.2
MC18×58 MC460 ×86
×51.9 ×77.2
×45.8 ×68.2
×42.7 ×63.5
MC13×50 MC330 ×74
×40 ×60
×35 ×52
×31.8 ×47.3
MC12×50 MC310 ×74
×45 ×67
×40 ×60
×35 ×52
×31 ×46
MC12×14.3 MC310 ×21.3
MC12×10.6 MC310 ×
15.8
MC10×41.1 MC250 ×61.2
×33.6 ×50
×28.5 ×42.4
MC10×25 MC250 ×37
×22 ×33
MC10×8.4 MC250 ×12.5
×6.5 ×9.7
MC9×25.4 MC230 ×37.8
×23.9 ×35.6
MC8×22.8 MC200 ×33.9
×21.4 ×31.8
MC8×20 MC200 ×29.8
×18.7 ×27.8
MC8×8.5 MC200 ×12.6
MC7×22.7 MC180 ×33.8
×19.1 ×28.4
MC6×18 MC150 ×26.8
×15.3 ×22.8
MC6×16.3 MC150 ×24.3
×15.1 ×22.5
MC6×12 MC150 ×17.9
MC6×7 MC150 ×10.4
×6.5 ×9.7
MC4×13.8 MC100 ×20.5
MC3×7.1 MC75 ×10.6
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 7

17–8 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-4
SI Equivalents of Standard U.S.
Shape Profiles
Angles
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent
in. ×in. ×in.
ShapeShape SI Equivalent
mm ×mm ×mm in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
L8×8×1
1
/8L203×203×28.6
×1 ×25.4
×
7
/8 ×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
9
/16 ×14.3
×
1
/2 ×12.7
L8×6×1 L203×152×25.4
×
7
/8 ×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
9
/16 ×14.3
×
1
/2 ×12.7
×
7
/16 ×11.1
L8×4×1 L203×102×25.4
×
7
/8 ×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
9
/16 ×14.3
×
1
/2 ×12.7
×
7
/16 ×11.1
L7×4×
3
/4L178×102×19.0
×
5
/8 ×15.9
×
1
/2 ×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
L6×6×1 L152×152×25.4
×
7
/8 ×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
9
/16 ×14.3
×
1
/2 ×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
L4×3
1
/2×
1
/2 L102×89×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L4×3×
5
/8 L102×76×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L3
1
/2×3
1
/2×
1
/2 L89×89×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L3
1
/2×3×
1
/2 L89×76×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L3
1
/2×2
1
/2×
1
/2 L89×64×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L3×3×
1
/2 L76×76×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
L3×2
1
/2×
1
/2 L76×64×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
L6×4×
7
/8L152×102×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
9
/16 ×14.3
×
1
/2 ×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
L6×3
1
/2×
1
/2 L152×89×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
L5×5×
7
/8L127×127×22.2
×
3
/4 ×19.0
×
5
/8 ×15.9
×
1
/2 ×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
L5×3
1
/2×
3
/4 L127×89×19.0
×
5
/8 ×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L5×3×
1
/2 L127×76×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
L4×4×
3
/4L102×102×19
×
5
/8 ×15.9
×
1
/2 ×12.7
×
7
/16 ×11.1
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 8

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-4 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Angles
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent
in. ×in. ×in.
ShapeShape SI Equivalent
mm ×mm ×mm in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
L3×2×
1
/2 L76×51×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
L2
1
/2×2
1
/2×
1
/2 L64×64×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
L2×2×
3
/8 L51×51×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
L2
1
/2×2×
3
/8 L64×51×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
L2
1
/2×1
1
/2×
1
/4 L64×38×6.4
×
3
/16 ×4.8
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 9

17–10 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-5
SI Equivalents of Standard U.S.
Shape Profiles
WT-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
WT22×167.5 WT550×249.5
×145 ×216.5
×131 ×195
×115 ×171.5
WT20×296.5 WT500×441.5
×251.5 ×374
×215.5 ×321
×198.5 ×295.5
×186 ×277
×181 ×269.5
×162 ×241.5
×148.5 ×221.5
×138.5 ×206
×124.5 ×185.5
×107.5 ×160.5
×99.5 ×148
WT20×196 WT500 ×292
×165.5 ×247
×163.5 ×243
×147 ×219
×139 ×207.5
×132 ×196.5
×117.5 ×175
×105.5 ×157
×91.5
×136
×83.5 ×124.5
×74.5 ×111
WT18×326 WT460 ×485
×264.5 ×393.5
×243.5 ×362.5
×220.5 ×328
×197.5 ×294
×180.5 ×268.5
×165 ×245.5
×151 ×224.5
×141 ×210
×131 ×195
×123.5 ×184
×115.5 ×172.5
WT13.5×269.5 WT345×401
×184 ×274
×168 ×250
×153.5 ×228.5
×140.5 ×209.5
×129 ×192
×117.5 ×175
×108.5 ×161.5
×97 ×144.5
×89 ×132.5
×
80.5 ×120
×73 ×108.5
WT13.5×64.5 WT345×96
×57 ×85
×51 ×76
×47 ×70
×42 ×62.5
WT12×185 WT305 ×275.5
×167.5 ×249
×153 ×227.5
×139.5 ×207.5
×125 ×186
×114.5 ×170.5
×103.5 ×153.5
×96 ×142.5
×88 ×131
×81 ×120.5
×73 ×108.5
×65.5 ×97.5
×58.5 ×87
×52 ×77.5
WT12×51.5 WT305×76.5
×47 ×70
×42 ×62.5
×38 ×
56.5
×34 ×50.5
WT12×31 WT12 ×46
×27.5 ×41
WT18×128 WT460 ×190.5
×116 ×172.5
×105 ×156.5
×97 ×144.5
×91 ×135.5
×85 ×126.5
×80 ×119
×75 ×111.5
×67.5 ×100.5
WT16.5×193.5 WT420×288
×177 ×263.5
×159 ×236.5
×145.5 ×216.5
×131.5 ×196
×120.5 ×179.5
×110.5 ×164.5
×100.5 ×149.5
WT16.5×84.5 WT460×125.5
×76 ×113
×70.5 ×105
×65 ×96.5
×59 ×88
WT15×195.5 WT380×291
×178.5 ×265.5
×163 ×242
×146 ×217
×130.5 ×194.5
×117.5 ×175
×105.5 ×157
×95.5 ×142
WT15×86.5 WT380×128.5
×74 ×110
×66 ×98
×62 ×92.5
×58 ×86.5
×54 ×80.5
×49.5 ×73.5
×45 ×67
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 10

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-5 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
WT-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
WT10.5×100.5 WT265×150
×91 ×136
×83 ×124
×73.5 ×109.5
×66 ×98
×61 ×91
×55.5 ×82.5
×50.5 ×75
WT10.5×46.5 WT265×69
×41.5 ×61.5
×36.5 ×54.5
×34 ×50.5
×31 ×46
×27.5 ×41
×24 ×36
WT10.5×28.5 WT265×42.5
×25 ×37
×22 ×33
WT9×155.5 WT230×232
×141.5 ×210.5
×129 ×192
×117 ×174.5
×105.5 ×157.5
×96 ×143
×
87.5 ×130
×79 ×117.5
×71.5 ×106.5
×65 ×96.5
×59.5 ×88.5
×53 ×79
×48.5 ×72
×43 ×64
×38 ×56.5
WT9×35.5 WT230×53
×32.5 ×48.5
×30 ×44.5
×27.5 ×41
×25 ×37
WT9×23 WT230 ×34
×20 ×30
×17.5 ×26
WT7×26.5 WT180×39.5
×24 ×36
×21.5 ×32
WT7×19 WT180 ×29
×17 ×25.5
×15 ×22.3
WT7×13 WT180 ×19.5
×
11 ×16.45
WT6×168 WT155 ×250
×152.5 ×227
×139.5 ×207.5
×126 ×187.5
×115 ×171
×105 ×156.5
×95 ×141.5
×85 ×126.5
×76 ×113
×68 ×101
×60 ×89.5
×53 ×79
×48 ×71.5
×43.5 ×64.5
×39.5 ×58.5
×36 ×53.5
×32.5 ×48.5
WT6×29 WT155 ×43
×26.5 ×39.5
WT6×25 WT155 ×37
×22.5 ×33.5
×20 ×30
WT6×17.5 WT155×26
×15
×22.25
×13 ×19.35
WT6×11 WT155 ×16.35
×9.5 ×14.15
×8 ×11.9
×7 ×10.5
WT8×50 WT205 ×74.5
×44.5 ×66
×38.5 ×57
×33.5 ×50
WT8×28.5 WT205×42.5
×25 ×37.5
×22.5 ×33.5
×20 ×30
×18 ×26.5
WT8×15.5 WT205×23.05
×13 ×19.4
WT7×365 WT180 ×543
×332.5 ×495
×302.5 ×450
×275 ×409
×250 ×372
×227.5 ×338.5
×213 ×317
×199
×296
×185 ×275.5
×171 ×254.5
×155.5 ×231.5
×141.5 ×210.5
×128.5 ×191
×116.5 ×173.5
×105.5 ×157
×96.5 ×143.5
×88 ×131
×79.5 ×118.5
×72.5 ×108
WT7×66 WT180 ×98
×60 ×89.5
×54.5 ×81
×49.5 ×73.5
×45 ×67
WT7×41 WT180 ×61
×37 ×55
×34 ×50.5
×30.5 ×45.5
AISC_PART 17:14th Ed._ 2/17/12 1:41 PM Page 11

17–12 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-5 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
WT-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent
in. ×lb/ft
ShapeShape SI Equivalent
mm ×kg/m in. ×lb/ft
SI Equivalent
mm ×kg/m
WT5×56 WT125 ×83.5
×50 ×74.5
×44 ×65.5
×38.5 ×57.5
×34 ×50.5
×30 ×44.5
×27 ×40
×24.5 ×36.5
WT5×22.5 WT125×33.5
×19.5 ×29
×16.5 ×24.55
WT5×15 WT125 ×22.4
×13 ×19.25
×11 ×16.35
WT5×9.5 WT125 ×14.2
×8.5 ×12.65
×7.5 ×11.15
×6 ×8.95
WT4×33.5 WT100×50
×29 ×43
×24 ×35.5
×20 ×29.5
×17.5 ×26
×15.5 ×23.05
WT4×14 WT100 ×20.85
×12 ×17.95
WT4×10.5 WT100×15.65
×9 ×13.3
WT4×7.5 WT100 ×11.25
×6.5 ×9.65
×5 ×7.5
WT3×12.5 WT75 ×18.55
×10 ×14.9
×7.5 ×11.25
WT3×8 WT75 ×12
×6 ×9
×4.5 ×6.75
×4.25 ×6.5
WT2.5×9.5 WT65 ×14.05
×8 ×11.9
WT2×6.5 WT50 ×9.65
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 12

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-6
SI Equivalents of Standard U.S.
Shape Profiles
MT- and ST-Shapes
Shape
mm ×kg/min. ×lb/ft
SI Equivalent Shape
in. ×lb/ft
SI Equivalent
mm ×kg/m
MT6.25×6.2 MT159 ×9.70
×5.8 ×8.65
MT6×5.9 MT155 ×8.80
MT6×5.4 MT155 ×8.05
MT6×5 MT125 ×7.45
MT5×4.5 MT125 ×6.70
5×4 ×5.95
MT5×3.75 MT125 ×5.60
MT4×3.25 MT100 ×4.85
×3.1 ×4.25
MT3×2.2 MT75 ×3.3
×1.85 ×2.75
MT2.5×9.45 MT65 ×14.1
MT2×3 MT50 ×4.45
×2.04 ×3.05
×1.725 ×2.55
×1.6 ×2.4
MT1.5×1.45 MT37.5 ×2.15
ST12×60.5 ST305 ×90
×53 ×79
ST12×50 ST305 ×75
×45 ×
67
×40 ×60
ST10×48 ST254 ×72
×43 ×64
ST10×37.5 ST254 ×56
×33 ×49
ST9×35 ST230 ×52
×27.35 ×41
ST7.5×25 ST190 ×37
×21.45 ×32
ST6×25 ST152 ×37
×20.4 ×30
ST6×17.5 ST152 ×26
×15.9 ×24
ST5×17.5 ST127 ×26
×12.7 ×19
ST4×11.5 ST102 ×17
×9.2 ×14
ST3×8.6 ST76.2 ×13
×6.25 ×9.3
ST2.5×5 ST63.5 ×7.5
ST2×4.75 ST50.8 ×7.1
×3.85 ×5.7
ST1.5
×3.75 ST38.1 ×5.6
×2.85 ×4.25
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 13

17–14 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-7
SI Equivalents of Standard U.S.
Shape Profiles
Rectangular HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS20×12×
5
/8 HSS508×304.8×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
HSS20×8×
5
/8 HSS508×203.2×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
HSS20×4×
1
/2 HSS508×101.6×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
HSS18×6×
5
/8 HSS457.2×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
HSS16×12×
5
/8 HSS406.4×304.8×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
HSS16×8×
5
/8 HSS406.4×203.2×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
HSS16×4×
5
/8 HSS406.4×101.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS14×10×
5
/8 HSS355.6×254×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
HSS14×6×
5
/8 HSS355.6×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS14×4×
5
/8 HSS355.6×101.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS12×10×
1
/2 HSS304.8×254×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
HSS12×8×
5
/8 HSS304.8×203.2×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS12×6×
5
/8 HSS304.8×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS12×4×
5
/8 HSS304.8×101.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS12×3
1
/2×
3
/8 HSS304.8×88.9×9.5
×
5
/16 ×7.9
HSS12×3×
5
/16 HSS304.8×76.2×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 14

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-7 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Rectangular HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS12×2×
3
/8 HSS304.8×50.8×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS10×8×
5
/8 HSS254×203.2×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS10×6×
5
/8 HSS254×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS10×5×
3
/8 HSS254×127×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS10×4×
5
/8 HSS254×101.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS10×3
1
/2×
1
/2 HSS254×88.9×4.8
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS10×3×
3
/8 HSS254×76.2×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS10×2×
3
/8 HSS254×50.8×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS9×7×
5
/8 HSS228.6×177.8×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS9×5×
5
/8 HSS228.6×127×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS9×3×
1
/2 HSS228.6×76.2×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS8×6×
5
/8 HSS203.2×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS8×4×
5
/8 HSS203.2×101.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS8×3×
1
/2 HSS203.2×76.2×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 15

17–16 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-7 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Rectangular HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS8×2×
3
/8 HSS203.2×50.8×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS7×5×
1
/2 HSS177.8×127×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS7×4×
1
/2 HSS177.8×101.6×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS7×3×
1
/2 HSS177.8×76.2×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS7×2×
1
/4 HSS177.8×50.8×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS6×5×
1
/2 HSS152.4×127×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS6×4×
1
/2 HSS152.4×101.6×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS6×3×
1
/2 HSS152.4×76.2×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS6×2×
3
/8 HSS152.4×50.8×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5×4×
1
/2 HSS127×101.6×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5×3×
1
/2 HSS127×76.2×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5×2
1
/2×
1
/4 HSS127×63.5×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5×2×
3
/8 HSS127×50.8×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS4×3×
3
/8 HSS101.6×76.2×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 16

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-7 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Rectangular HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS4×2
1
/2×
3
/8 HSS101.6×63.5×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS4×2×
3
/8 HSS101.6×50.8×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3
1
/2×2
1
/2×
3
/8 HSS88.9×63.5×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3
1
/2×2×
1
/4 HSS88.9×50.8×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3
1
/2×1
1
/2×
1
/4 HSS88.9×38.1×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3×2
1
/2×
5
/16 HSS76.2×63.5×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3×2×
5
/16 HSS76.2×50.8×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3×1
1
/2×
1
/4 HSS76.2×38.1×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3×1×
3
/16 HSS76.2×25.4×4.8
×
1
/8 ×3.2
HSS2
1
/2×2×
1
/4 HSS63.5×50.8×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS2
1
/2×1
1
/2×
1
/4 HSS63.5×38.1×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS2
1
/2×1×
3
/16 HSS63.5×25.4×4.8
×
1
/8 ×3.2
HSS2
1
/4×2×
3
/16 HSS57.2×50.8×4.8
×
1
/8 ×3.2
HSS2×1
1
/2×
3
/16 HSS50.8×38.1×4.8
×
1
/8 ×3.2
HSS2×1×
3
/16 HSS50.8×25.4×4.8
×
1
/8 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 17

17–18 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-8
SI Equivalents of Standard U.S.
Shape Profiles
Square HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS16×16×
5
/8 HSS406.4×406.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
HSS14×14×
5
/8 HSS355.6×355.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
HSS12×12×
5
/8 HSS304.8×304.8×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS10×10×
5
/8 HSS254×254×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
HSS9×9×
5
/8 HSS228.6×228.6×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS8×8×
5
/8 HSS203.2×203.2×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS7×7×
5
/8 HSS177.8×177.8×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS6×6×
5
/8 HSS152.4×152.4×15.9
×
1
/2 ×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5
1
/2×5
1
/2×
3
/8 HSS139.7×139.7×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS5×5×
1
/2 HSS127×127×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS4
1
/2×4
1
/2×
1
/2 HSS114.3×114.3×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS4×4×
1
/2 HSS101.6×101.6×12.7
×
3
/8 ×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 18

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–19
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-8 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Square HSS
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS3
1
/2×3
1
/2×
3
/8 HSS88.9×88.9×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS3×3×
3
/8 HSS76.2×76.2×9.5
×
5
/16 ×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS2
1
/2×2
1
/2×
5
/16 HSS63.5×63.5×7.9
×
1
/4 ×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS2
1
/4×2
1
/4×
1
/4 HSS57.2×57.2×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
HSS2×2×
1
/4 HSS50.8×50.8×6.4
×
3
/16 ×4.8
×
1
/8 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 19

17–20 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-9
SI Equivalents of Standard U.S.
Shape Profiles
Round HSS and Pipe
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent Shape
in. ×in. ×in.
SI Equivalent
mm ×mm ×mm
HSS20×0.500 HSS508 ×12.7
×0.375 ×9.5
HSS18×0.500 HSS457.2 ×12.7
×0.375 ×9.5
HSS16×0.625 HSS406.4 ×15.9
×0.500 ×12.7
×0.438 ×11.1
×0.375 ×9.5
×0.312 ×7.9
×0.250 ×6.4
HSS14×0.625 HSS355.6 ×15.9
×0.500 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.250 ×6.4
HSS12.750×0.500 HSS323.9 ×12.7
×0.375 ×9.5
×0.250 ×6.4
HSS10.750×0.500 HSS273.1 ×12.7
×0.375 ×9.5
×0.250 ×6.4
HSS10×0.625 HSS254 ×15.9
×0.500 ×12.7
×0.375
×9.5
×0.312 ×7.9
×0.250 ×6.4
×0.188 ×4.8
HSS9.625×0.500 HSS244.5 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.250 ×6.4
×0.188 ×4.8
HSS8.625×0.625 HSS219.1 ×15.9
×0.500 ×12.7
×0.375 ×9.5
×0.322 ×8.2
×0.250 ×6.4
×0.188 ×4.8
HSS7.625×0.375 HSS193.7 ×9.5
×0.328 ×8.3
HSS7.500×0.500 HSS190.5 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.250 ×6.4
×0.188 ×4.8
HSS7×0.500 HSS177.8 ×12.7
×0.375 ×9.5
×0.312
×7.9
×0.250 ×6.4
×0.188 ×4.8
×0.125 ×3.2
HSS6.875×0.500 HSS174.6 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.250 ×6.4
×0.188 ×4.8
HSS6.625×0.500 HSS168.3 ×12.7
×0.432 ×11
×0.375 ×9.5
×0.312 ×7.9
×0.280 ×7.1
×0.250 ×6.4
×0.188 ×4.8
×0.125 ×3.2
HSS6×0.500 HSS152.4 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.280 ×7.1
×0.250 ×6.4
×0.188 ×4.8
×0.125 ×3.2
HSS5.563×0.500 HSS141.3 ×
12.7
×0.375 ×9.5
×0.258 ×6.6
×0.188 ×4.8
×0.134 ×3.4
HSS5.500×0.500 HSS139.7 ×12.7
×0.375 ×9.5
×0.258 ×6.6
HSS5×0.500 HSS127 ×12.7
×0.375 ×9.5
×0.312 ×7.9
×0.258 ×6.6
×0.250 ×6.4
×0.188 ×4.8
×0.125 ×3.2
HSS4.500×0.375 HSS114.3 ×9.5
×0.337 ×8.6
×0.237 ×6.0
×0.188 ×4.8
×0.125 ×3.2
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 20

SI EQUIVALENTS OF STANDARD U.S. SHAPE PROFILES 17–21
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-9 (continued)
SI Equivalents of Standard U.S.
Shape Profiles
Round HSS and Pipe
Shape
mm ×mm ×mmin. ×in. ×in.
SI Equivalent
Shape SI Equivalent
HSS4×0.313 HSS101.6 ×8.0
×0.250 ×6.4
×0.237 ×6.0
×0.226 ×5.7
×0.220 ×5.6
×0.188 ×4.8
×0.125 ×3.2
HSS3.500×0.313 HSS88.9 ×8
×0.300 ×7.6
×0.250 ×6.4
×0.216 ×5.5
×0.203 ×5.2
×0.188 ×4.8
×0.125 ×3.2
HSS3×0.250 HSS76.2 ×6.4
×0.216 ×5.5
×0.203 ×5.2
×0.188 ×4.8
×0.152 ×3.9
×0.134 ×3.4
×0.125 ×3.2
HSS2.875×0.250 HSS73 ×6.4
×0.203 ×5.2
×0.188 ×4.8
×
0.125 ×3.2
HSS2.500×0.250 HSS63.5 ×6.4
×0.188 ×4.8
×0.125 ×3.2
HSS2.375×0.250 HSS60.3 ×6.4
×0.218 ×5.5
×0.188 ×4.8
×0.154 ×3.9
×0.125 ×3.2
HSS1.900×0.188 HSS48.3 ×4.8
×0.145 ×3.7
×0.120 ×3.0
HSS1.660×0.140 HSS42.2 ×3.6
PIPE
1
/2Std. PIPE 13 Std.
PIPE
3
/4Std. PIPE 19 Std.
PIPE 1 Std. PIPE 25 Std.
PIPE 1
1
/4Std. PIPE 32 Std.
PIPE 1
1
/2Std. PIPE 38 Std.
PIPE 2 Std. PIPE 51 Std.
PIPE 2
1
/2Std. PIPE 64 Std.
PIPE 3 Std. PIPE 75 Std.
PIPE 3
1
/2Std. PIPE 89 Std.
PIPE 4 Std. PIPE 102 Std.
PIPE 5 Std. PIPE 127 Std.
PIPE 6 Std. PIPE 152 Std.
PIPE 8 Std. PIPE 203 Std.
PIPE 10 Std. PIPE 254 Std.
PIPE 12 Std. PIPE 310 Std.
PIPE
1
/2x-Strong PIPE 13 x-Strong
PIPE
3
/4x-Strong PIPE 19 x-Strong
PIPE 1 x-Strong PIPE 25 x-Strong
PIPE 1
1
/4x-Strong PIPE 32 x-Strong
PIPE 1
1
/2x-Strong PIPE 38 x-Strong
PIPE 2 x-Strong PIPE 51 x-Strong
PIPE 2
1
/2x-Strong PIPE 64 x-Strong
PIPE 3 x-Strong PIPE 75 x-Strong
PIPE 3
1
/2x-Strong PIPE 89 x-Strong
PIPE 4 x-Strong PIPE 102 x-Strong
PIPE 5 x-Strong PIPE 127 x-Strong
PIPE 6 x-Strong PIPE 152 x-Strong
PIPE 8 x-Strong PIPE 203 x-Strong
PIPE 10 x-Strong PIPE 254 x-Strong
PIPE 12 x-Strong PIPE 310 x-Strong
PIPE 2 xx-Strong PIPE 51 xx-Strong
PIPE 2
1
/2xx-Strong PIPE 64 xx-Strong
PIPE 3 xx-Strong PIPE 75 xx-Strong
PIPE 4 xx-Strong PIPE 102 xx-Strong
PIPE 5 xx-Strong PIPE 127 xx-Strong
PIPE 6 xx-Strong PIPE 152 xx-Strong
PIPE 8 xx-Strong PIPE 203 xx-Strong
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 21

17–22 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-10
Wire and Sheet Metal Gages
Equivalent thickness in decimals of an inch
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 22

MISCELLANEOUS DATA 17–23
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-11
Coefficients of Expansion
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 23

17–24 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-12
Densities of Common Materials
Substance
Weight
lb per ft 3
Substance
Weight
lb per ft 3
ASHLAR, MASONRY
Granite, syenite, gneiss 143 – 187
Limestone, marble 143 – 174
Sandstone, bluestone 131 – 150
MORTAR RUBBLE MASONRY
Granite, syenite, gneiss 137 – 174
Limestone, marble 137 – 162
Sandstone, bluestone 125 – 137
DRY RUBBLE MASONRY
Granite, syenite, gneiss 118 – 143
Limestone, marble 118 – 131
Sandstone, bluestone 112 – 118
BRICK MASONRY
Pressed brick 137 – 143
Common brick 112 – 125
Soft brick 93.5 – 106
CONCRETE MASONRY
Cement, stone, sand 137 – 150
Cement, slag, etc. 118 – 143
Cement, cinder, etc. 93.5 – 106
VARIOUS BUILDING MATERIALS
Ashes, cinders 40.0 – 45.0
Cement, portland, loose 90.0
Cement, portland, set 168 – 199
Lime, gypsum, loose 53.0 – 64.0
Mortar, set 87.2 – 118
Slags, bank slag 67.0 – 72.0
Slags, bank screenings 98 – 117
Slags, machine slag 96.0
Slag, slag sand 49.0 – 55.0
EARTH, ETC., EXCAVATED
Clay, dry 63.0
Clay, damp, plastic 110
Clay and gravel, dry 100
Earth, dry, loose 76.0
Earth, dry, packed 95.0
Earth, moist, loose 78.0
Earth, moist, packed 96.0
Earth, mud, flowing 108
Earth, mud, packed 115
Riprap, limestone 80.0 – 85.0
Riprap, sandstone 90.0
Riprap, shale 105
Sand, gravel, dry, loose 90.0 – 105
Sand, gravel, dry, packed 100 – 120
Sand, gravel, wet 118 – 120
EXCAVATIONS IN WATER
Sand or gravel 60.0
Sand or gravel and clay 65.0
Clay 80.0
River mud 90.0
Soil 70.0
Stone riprap 65.0
MINERALS
Asbestos 131 – 174
Barytes 280
Basalt 168 – 199
Bauxite 159
Borax 106 – 112
Chalk 112 – 162
Clay, marl 112 – 162
Dolomite 181
Feldspar, orthoclase 156 – 162
Gneiss, serpentine 150 – 168
Granite, syenite 156 – 193
Greenstone, trap 174 – 199
Gypsum, alabaster 143 – 174
Hornblende 187
Limestone, marble 156 – 174
Magnesite 187
Phosphate rock, apatite 199
Porphyry 162 – 181
Pumice, natural 23.1 – 56.1
Quartz, flint 156 – 174
Sandstone, bluestone 137 – 156
Shale, slate 168 – 181
Soapstone, talc 162 – 174
STONE, QUARRIED, PILED
Basalt, granite, gneiss 96.0
Limestone, marble, quartz 95.0
Sandstone 82.0
Shale 92.0
Greenstone, hornblende 107
BITUMINOUS SUBSTANCES
Asphaltum 68.5 – 93.5
Coal, anthracite 87.2 – 106
Coal, bituminous 74.8 – 93.5
Coal, lignite 68.5 – 87.2
Coal, peat, turf, dry 40.5 – 53
Coal, charcoal, pine 17.4 – 27.4
Coal, charcoal, oak 29.3 – 35.5
Coal, coke 62.3 – 87.2
Graphite 118 – 143
Paraffine 54.2 – 56.7
Petroleum 54.2
Petroleum, refined 49.2 – 51.1
Petroleum, benzine 45.5 – 46.7
Petroleum, gasoline 41.1 – 43
Pitch 66.7 – 71.6
Tar, bituminous 74.8
COAL AND COKE, PILED
Coal, anthracite 47.0 – 58.0
Coal, bituminous, lignite 40.0 – 54.0
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 24

MISCELLANEOUS DATA 17–25
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-12 (continued)
Densities of Common Materials
Substance
Weight
lb per ft 3
Substance
Weight
lb per ft 3
Coal, peat, turf 20.0 – 26.0
Coal charcoal 10.0 – 14.0
Coal coke 23.0 – 32.0
METALS, ALLOYS, ORES
Aluminum, cast, hammered 159 – 171
Brass, cast, rolled 523 – 542
Bronze, 7.9 to 14% Sn 461 – 554
Bronze, aluminum 480
Copper, cast, rolled 548 – 561
Copper ore, pyrites 255 – 268
Gold, cast, hammered 1200–1210
Iron, cast, pig 449
Iron, wrought 473 – 492
Iron, speigel–eisen 467
Iron, ferro–silicon 417 – 455
Iron ore, hematite 324
Iron ore, hematite in bank 160 – 180
Iron ore, hematite loose 130 – 160
Iron ore, limonite 224 – 249
Iron ore, magnetite 305 – 324
Iron slag 156 – 187
Lead 710
Lead ore, galena 455 – 473
Magnesium, alloys 108 – 114
Manganese 449 – 498
Manganese, ore, pyrolusite 231 – 287
Mercury 847
Monel Metal 548 – 561
Nickel 554 – 573
Platinum, cast, hammered 1310 – 1340
Silver, cast, hammered 648 – 668
Steel, rolled 490
Tin, cast, hammered 449 – 467
Tin ore, cassiterite 399 – 436
Zinc, cast, rolled 430 – 449
Zinc, ore, blende 243 – 262
VARIOUS SOLIDS
Cereals, oats, bulk 32.0
Cereals, barley, bulk 39.0
Cereals, corn, rye, bulk 48.0
Cereals, wheat, bulk 48.0
Hay and Straw, bales 20.0
Cotton, Flax, Hemp 91.6 – 93.5
Fats 56.1 – 60.4
Flour, loose 24.9 – 31.2
Flour, pressed 43.6 – 49.8
Glass, common 150 – 162
Glass, plate or crown 153 – 169
Glass, crystal 181 – 187
Leather 53.6 – 63.5
Paper 43.6 – 71.6
Potatoes, piled 42.0
Rubber, caoutchouc 57.3 – 59.8
Rubber goods 62.3 – 125
Salt, granulated, piled 48.0
Saltpeter 67.0
Starch 95.3
Sulphur 120 – 129
Wool 82.2
TIMBER, U.S. SEASONED
Moisture content by weight:
Seasoned timber 15 to 20%
Green timber up to 50%
Ash, white, red 38.6 – 40.5
Cedar, white, red 19.9 – 23.7
Chestnut 41.1
Cypress 29.9
Fir, Douglas spruce 31.8
Fir, eastern 24.9
Elm, white 44.9
Hemlock 26.2 – 32.4
Hickory 46.1 – 52.3
Locust 45.5
Maple, hard 42.4
Maple, white 33.0
Oak, chestnut 53.6
Oak, live 59.2
Oak, red, black 40.5
Oak, white 46.1
Pine, Oregon 31.8
Pine, red 29.9
Pine, white 25.5
Pine, yellow, long–leaf 43.6
Pine, yellow, short–leaf 38.0
Poplar 29.9
Redwood, California 26.2
Spruce, white, black 24.9 – 28.7
Walnut, black 38.0
Walnut, white 25.5
VARIOUS LIQUIDS
Alcohol, 100% 49.2
Acids, muriatic 40% 74.8
Acids, nitric 91% 93.5
Acids, sulphuric 87% 112
Lye, soda 66% 106
Oils, vegetable 56.7 – 58.6
Oils, mineral, lubricants 56.1 – 57.9
Water, 4ºC max. density 62.3
Water, 100ºC 59.7
Water, ice 54.8 – 57.3
Water, sea water 63.5 – 64.2
GASES
Air, 0ºC 760 mm 0.0871
Ammonia 0.0478
Carbon dioxide 0.123
Carbon monoxide 0.078
Gas, illuminating 0.028–0.036
Gas, natural 0.038–0.039
Hydrogen 0.00559
Nitrogen 0.0784
Oxygen 0.0892
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 25

17–26 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
For weights of other materials used in building construction, see Table 17-12.
See ASCE/SEI 7, Minimum Design Loads for Buildings and Other Structures for additional design dead loads.
Table 17–13
Weights of Building Materials
Materials
Weight
lb per sq ft
Materials
Weight
lb per sq ft
CEILINGS Channel suspended system 1 Lathing and plastering See Partitions Acoustical fiber tile 1
FLOORS
Steel Deck See Manufacturer
Concrete-Reinforced, 1 in.
Stone 12
1
/2
Structural Lightweight 9
1
/2
Concrete-Plain, 1 in.
Stone 12
Structural Lightweight 9
Non-Structural Lightweight 3 to 9
Finishes
Terrazzo, 1 in. 13
Ceramic or Quarry Tile
3
/4-in. 10
Linoleum
1
/4-in. 1
Mastic
3
/4-in. 9
Hardwood
7
/8-in. 4
Softwood
3
/4-in. 2
1
/2
ROOFS
Copper 1
Corrugated steel See Manufacturer
3-ply ready roofing 1
3-ply felt and gravel 5
1
/2
5-ply felt and gravel 6
Shingles
Wood 2
Asphalt 3
Clay tile 9 to 14
Slate,
1
/4in. 10
Sheathing
Wood,
3
/4in. 3
Gypsum, 1 in. 4
Insulation, 1 in.
Loose
1
/2
Poured 2
Rigid 1
1
/2
PARTITIONS
Wood Studs, 2 ×4
12-16 in. o. c. 2
Steel Studs
12-16 in. o. c. 1
Drywall,
1
/2in. 2
Drywall,
5
/8-in. 2
1
/2
Plaster, 1 in.
Cement 10
Gypsum 5
Lathing
Metal
1
/2
Gypsum board,
1
/2in. 2
WALLS
Brick
4 in. 40
8 in. 80
12 in. 120
Hollow Concrete Block
(135 pcf-No Grout/Full Grout)
4 in. 29/-
6 in. 30/62
8 in. 39/83
10 in. 47/105
12 in. 54/127
Hollow Concrete Block
(125 pcf-No Grout/Full Grout)
4 in. 26/-
6 in. 28/59
8 in. 36/81
10 in. 44/102
12 in. 50/123
Hollow Concrete Block
(105 pcf-No Grout/Full Grout)
4 in. 22/-
6 in. 24/55
8 in. 31/75
10 in. 37/95
12 in. 43/115
Stone, 4 in. 55
Glass Block, 4 in. 18
Curtain Walls See Manufacturer
Structural Glass, 1 in. 15
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 26

MISCELLANEOUS DATA 17–27
AMERICANINSTITUTE OFSTEELCONSTRUCTION
LINEAR MEASURE
Inches Feet Yards Rods Furlongs Miles
1.0
12.0
36.0
198.0
7,920.0
63,360.0
=
=
=
=
=
=
.08333
1.0
3.0
16.5
660.0
5,280.0
=
=
=
=
=
=
.02778
.33333
1.0
5.5
220.0
1,760.0
=
=
=
=
=
=
.0050505
.0606061
.1818182
1.0
40.0
320.0
=
=
=
=
=
=
.00012626
.00151515
.00454545
.025
1.0
8.0
=
=
=
=
=
=
.00001578
.00018939
.00056818
.003125
.125
1.0
SQUARE AND LAND MEASURE
Sq. Inches Square Feet Square Yards Square Rods Acres Sq. Miles
1.0
144.0
1,296.0
39,204.0
=
=
=
=
.006944
1.0
9.0
272.25
43,560.0
=
=
=
=
=
.000772
.111111
1.0
30.25
4,840.0
3,097,600.0
=
=
=
=
.03306
1.0
160.0
102,400.0
=
=
=
=
.000207
.00625
1.0
640.0
=
=
=
.0000098
.0015625
1.0
AVOIRDUPOIS WEIGHTS
Grains Drams Ounces Pounds Tons
1.0
27.34375
437.5
7,000.0
14,000,000.0
=
=
=
=
=
.03657
1.0
16.0
256.0
512,000.0
=
=
=
=
=
.002286
.0625
1.0
16.0
32,000.0
=
=
=
=
=
.000143
.003906
.0625
1.0
2,000.0
=
=
=
=
=
.0000000714
.00000195
.00003125
.0005
1.0
DRY MEASURE
Pints Quarts Pecks
Cubic
FeetBushels
1.0
2.0
16.0
51.42627
64.0
=
=
=
=
=
.5
1.0
8.0
25.71314
32.0
=
=
=
=
=
.0625
.125
1.0
3.21414
4.0
=
=
=
=
=
.01945
.03891
.31112
1.0
1.2445
=
=
=
=
=
.01563
.03125
.25
.80354
1.0
LIQUID MEASURE
Gills Pints Quarts
U.S.
Gallons
Cubic
Feet
1.0
4.0
8.0
32.0
=
=
=
=
.25
1.0
2.0
8.0
=
=
=
=
.125
.5
1.0
4.0
=
=
=
=
.03125
.125
.250
1.0
7.48052
=
=
=
=
=
.00418
.01671
.03342
.1337
1.0
Table 17-14
Weights and Measures
United States System
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 27

17–28 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-15. Base SI Units for Steel Design
Table 17-17. Derived SI Units for Steel Design
Table 17-18. Summary of SI Conversion Factors
Table 17-16. SI Prefixes for Steel Design
AISC_PART 17:14th Ed._ 2/17/12 1:49 PM Page 28

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–29
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-19. SI Equivalents of Fractions of an inch
Table 17-20. SI Bolt designation
Table 17-21. SI Steel Yield Stresses
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 29

17–30 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-22
Weights and Measures
International System of Units (SI)
a
(Metric practice)
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 30

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–31
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-23
SI Conversion Factors
a
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 31

17–32 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-23 (continued)
SI Conversion Factors
a
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 32

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–33
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-24
Bracing Formulas
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 33

17–34 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-25
Properties of Parabola and Ellipse
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 34

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–35
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-26
Properties of the Circle
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 35

17–36 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27
Properties of Geometric Sections
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 36

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–37
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27 (continued)
Properties of Geometric Sections
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 37

17–38 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27 (continued)
Properties of Geometric Sections
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 38

Table 17-27 (continued)
Properties of Geometric Sections
SI UNITS FOR STRUCTURAL STEEL DESIGN 17–39
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 39

17–40 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27 (continued)
Properties of Geometric Sections
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 40

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–41
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27 (continued)
Properties of Geometric Sections
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 41

17–42 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-27 (continued)
Properties of Geometric Sections
Atbc x
bct
bc
y
dat
bc=+ =
+
+
=
+
+
(),
()
,
()
22
22
Note that this is an idealized angle configuration
and it differs from that provided by producers with
dimensions given in Table 1-7.
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 42

SI UNITS FOR STRUCTURAL STEEL DESIGN 17–43
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Table 17-28
Trigonometric Formulas
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 43

17–44 MISCELLANEOUS DATA AND MATHEMATICAL INFORMATION
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_PART 17:14th Ed. 2/24/11 8:08 AM Page 44

AMERICANINSTITUTE OFSTEELCONSTRUCTION
GENERAL NOMENCLATURE
The following definitions apply, as these variables are used in this Manual. Additional
nomenclature used in both the Manual and the AISC Specificationcan be found in the AISC
Specification for Structural Steel Buildings, in Part 16 of this Manual.
A Area of directly connected elements, in.
2
A Gross area of the truss chord, in.
2
A Horizontal distance from end panel point to mid-span of a truss, ft
A Minimum side dimension for square or rectangular beveled washer, in.
A
b Nominal unthreaded body area of bolt, in.
2
Ab Required transverse force from an adjacent bay, kips
A
cp Projected surface area of concrete cone surrounding headed anchor rods, in.
2
Af Flange area, in.
2
Afe Effective tension flange area, in.
2
Ag Gross cross-sectional area of the shear plate, in.
2
Agt Gross area subject to tension, in.
2
B Available tensile strength per bolt subjected to prying action, kips
B Bearing plate width, in.
B Horizontal distance from midspan of a truss to a given panel point, ft
B Base plate width, in.
BF A factor that can be used to calculate the flexural strength for unbraced length, L
b,
between L
pand L r
C Coefficient for eccentrically loaded bolt and weld groups
C Required midspan camber, in.
C Width across points of square or hex bolt head or nut, or maximum diameter of
countersunk bolt head, in.
C
c Beam reaction coefficient
C
concEffective concrete flange force for a composite beam, kips
C
stlCompressive force in steel in a composite beam, kips
C
To tSum of compressive forces in a composite beam, kips
C
1 Loading constant used in deflection calculations
C
1 Clearance for tightening, in.
C
1 Electrode coefficient for relative strength of electrodes where, for E70 electrodes,
C
1=1.00
C
2 Clearance for entering, in.
C
3 Clearance for fillet based on one standard hardened washer, in.
C′ Coefficient for eccentrically loaded bolt groups subjected to moment only
CG Center of gravity
D Offset from the base line at a panel point of a truss, in.
D Weld size in sixteenths of an inch
E Earthquake load
E Minimum edge distance for clipped washer, in.
E Minimum effective throat thickness for partial-joint-penetration groove weld, in.
E
T Tangent modulus, ksi
AISC_NOMENCLATURE:14th Ed. 4/1/11 9:19 AM Page 1

2 GENERAL NOMENCLATURE
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ENA Elastic neutral axis
F Clearance for tightening staggered bolts, in.
F Width across flats of bolt head, in.
F
cr Flexural local buckling stress
F′
e Euler stress for a prismatic member divided by safety factor, ksi
F
nwiNominal shear strength of the weld segment at a deformation, Δ, ksi
F
p Nominal bearing stress on fastener, ksi
F
yb Fyof a beam, ksi
F
yc Fyof a column, ksi
F
yc Fyof a cap plate, ksi
F
yf Specified minimum yield stress of the flange, ksi
G Ratio of the total column stiffness framing into a joint to that of the stiffening
members framing into the same joint
H Horizontal force, kips
H Height of bolt head or nut, in.
H Height of story, in.
H Horizontal component of the required axial force, kips
H Theoretical thread height, in.
H
b Required shear force on the gusset-to-beam connection, kips
H
c Required axial force on the gusset-to-column connection, kips
H
1 Height of bolt head, in.
H
2 Maximum bolt shank extension based on one standard hardened washer, in.
I Moment of inertia of beam, in.
4
Ic Moment of inertia of column section about axis perpendicular to plane of
buckling, in.
4
Ig Moment of inertia of girder about axis perpendicular to plane of buckling, in.
4
ILB Lower bound moment of inertia for composite section, in.
4
Ip Polar moment of inertia of bolt and weld groups (I p=Ix+Iy), in.
4
per in.
2
Ist Moment of inertia of a transverse stiffener, in.
4
Ix Combined moment of inertia of the bolt group and compression block about the
neutral axis, in.
4
Ix Moment of inertia of bolt and weld groups about x-axis, in.
4
per in.
2
Iy Moment of inertia of bolt and weld groups about y-axis, in.
4
per in.
2
Iyc Moment of inertia about y-axis referred to compression flange, or if reverse
curvature bending referred to smaller flange, in.
4
IC Instantaneous center of rotation
ID Nominal inside diameter of flat circular washer, in.
K Minimum root diameter of threaded fastener, in.
K
depFillet depth, (k−t f), in.
L Depth of connecting element, in.
L Length of connection in the direction of loading, in.
L Live load due to occupancy and moveable equipment
L Total length of beam between reaction points, ft
L Vertical leg dimension of the seat angle, in.
L
c Unsupported length of a column section, ft
L
e Edge distance, in.
L
eh Horizontal edge distance, in.
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 2

GENERAL NOMENCLATURE 3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Lev Vertical edge distance, in.
L
g Unsupported length of a girder or other restraining member, ft
L
h Hook length for hooked anchor rods, in.
L
p′ Limiting laterally unbraced length for the maximum design flexural strength for
noncompact shapes, uniform moment case (C
b=1.0), in. or ft, as indicated
L
r Roof live load
L
s Span length of beam, in.
M Maximum service-load moment, kip-ft
M Beam bending moment, kip-in. or kip-ft, as indicated
M
a Required beam end moment using ASD load combinations, kip-in.
M
a Required flexural strength using ASD load combinations, kip-in. or kip-ft, as
indicated
M
a Required moment in the beam at the splice using ASD load combinations, kip-in.
M
crElastic buckling moment, kip-in. or kip-ft, as indicated
M
LLBeam moment due to live load, kip-in. or kip-ft, as indicated
M
maxMaximum moment, kip-in.
M
nyNominal flexural strength about y-axis, kip-ft
M
p′Maximum available flexural strength for noncompact shapes, when L b≤Lp′,
kip-in. or kip-ft, as indicated
M
paPlastic bending moment modified by axial load ratio, kip-in.
M
pxPlastic bending moment about the x-axis, kip-ft
M
r Limiting buckling moment, M cr, when λ=λ rand C b=1.0, kip-in. or kip-ft,
as indicated
M
u Required beam end moment using LRFD load combinations, kip-in.
M
u Required flexural strength using LRFD load combinations, kip-in. or kip-ft,
as indicated
M
u Required moment in the beam at the splice using LRFD load combinations, kip-in.
M
x Moment at distance xfrom end of beam, kip-in.
M
1 Maximum moment in left section of beam, kip-in.
M
2 Maximum moment in right section of beam, kip-in.
M
3 Maximum positive moment in beam with combined end moment conditions,
kip-in.
N Length of base plate, in.
N
b Number of bolts in a joint
N
r Number of shear stud connectors in one rib at a beam intersection
N
r Required length of bearing, in.
OD Nominal outside diameter of flat circular washer, in.
P Axial force due to service loads, kips
P Bolt stagger, in.
P Concentrated load, kips
P Required axial force, kips
P
a Required axial strength (tension or compression) using ASD load combinations,
kips
P
a Required concentrated beam load using ASD load combinations, kips
P
af Required beam flange force, tensile or compressive, using ASD load combinations,
kips
P
e Elastic Euler buckling load, kips
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 3

4 GENERAL NOMENCLATURE
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pex,PeyElastic Euler buckling load about the x- and y-axis, kips
P
fb Resistance to flange local bending per AISC SpecificationEquation J10-1 (used to
check need for column web stiffeners), kips
P
u Required concentrated beam load using LRFD load combinations, kips
P
uf Factored beam flange force, tensile or compressive, using LRFD load combina-
tions, kips
P
wb Resistance to web compression buckling per AISC SpecificationEquation J10-8
(used to check need for column web stiffening), kips
P
wi A factor consisting of terms from the second portion of AISC SpecificationEquation
J10-2 (used in a column web stiffener check for web local yielding), kips/in.
P
wo A factor consisting of the first portion of AISC SpecificationEquation J10-2 (used
in a column web stiffener check for web local yielding), kips
P
1 Concentrated load nearest left reaction, kips
P
2 Concentrated load nearest right reaction, and of different magnitude than P 1, kips
PNAPlastic neutral axis
R End beam reaction for any condition of symmetrical loading, kips
R Nominal load due to initial rainwater or ice exclusive of the ponding contribution
R Nominal reaction, kips
R Nominal shear strength of one bolt at a deformation Δ, kips
R Required end reaction, kips
R
a Beam end reaction based on ASD load combinations, kips
R
a stRequired strength for transverse stiffener (force delivered to stiffener) using ASD
load combinations, kips
R
b Required end reaction of the beam, kips
R
c Required column axial load above the connection, kips
R
u Beam end reaction based on LRFD load combinations, kips
R
ultUltimate shear strength of one bolt, kips
R
u st Required strength for transverse stiffener (force delivered to stiffener) using LRFD
load combinations, kips
R
v Web shear strength, kips
R
w Effective nominal strength of a concentrically loaded weld group, kips
R
1 Beam bearing constant for web local yielding, see Part 9
R
1 Left end beam reaction, kips
R
2 Beam bearing constant for web local yielding, see Part 9
R
2 Right end or intermediate beam reaction, kips
R
3 Beam bearing constant for web local crippling, see Part 9
R
3 Right end beam reaction, kips
R
4 Beam bearing constant for web local crippling, see Part 9
R
5 Beam bearing constant for web local crippling, see Part 9
R
6 Beam bearing constant for web local crippling, see Part 9
S Spacing, in. or ft, as indicated
S Groove depth for partial-joint-penetration groove welds, in.
S
netNet elastic section modulus, in.
3
S1,S2Elastic section modulus about the x-axis referred to the designated edge of
member, in.
3
T Distance between web toes of fillets at top and at bottom of web, (d−2k), in.
T Tension force due to service loads, kips
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 4

GENERAL NOMENCLATURE 5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
T Thickness of flat circular washer or mean thickness of square or rectangular beveled
washer, in.
T
availAvailable tensile strength, kips
T
stlTensile force in steel in a composite beam, kips
T
To tSum of tensile forces in a composite beam, kips
V Maximum vertical shear for any condition of symmetrical loading, kips
V Shear force, kips
V Vertical component of the required force, kips
V
a Required shear strength using ASD load combinations, kips
V
b Shear force component, kips
V
b Required shear force on the gusset-to-beam connection, kips
V
c Required shear force on the gusset-to-column connection, kips
V
nx Nominal strong-axis shear strength, kips
V
u Required shear strength using LRFD load combinations, kips
V
x Vertical shear at distance xfrom end of beam, kips
V
1 Maximum vertical shear in left section of beam, kips
V
2 Vertical shear at right reaction point, or to left of intermediate reaction point of
beam, kips
V
3 Vertical shear at right reaction point, or to right of intermediate reaction point of
beam, kips
W Total load on beam, kips
W Weight, lb or kips, as indicated
W Wind load
W Uniformly distributed load, kips
W Width across flats of nut, in.
W
a Total factored uniformly distributed load using ASD load combinations, kips
W
c Uniform load constant for beams, kip-ft
W
u Total factored uniformly distributed load using LRFD load combinations, kips
Y
ENADistance from bottom of steel beam to elastic neutral axis, in.
Y
conDistance from top of steel beam to top of concrete, in.
Y1 Distance from top of steel beam to the plastic neutral axis, in.
Y2 Distance from top of steel beam to the concrete flange force in a composite
beam, in.
Z Gross plastic section modulus, in.
3
Ze Effective plastic section modulus, in.
3
ZnetNet plastic section modulus, in.
3
Zpl Plastic section modulus of the shear plate, in.
3
a Coefficient for eccentrically loaded weld group
a Depth of bracket plate, in.
a Distance from bolt centerline to edge of fitting subjected to prying action, but not
greater than 1.25b, in.
a Distance from an HSS centroid to the end of an attached member, in.
a Distance from the support to the bolt line in a single plate connection, in.
a Distance from the support to the first line of bolts, in.
a Effective concrete flange thickness of a composite beam, in.
a Measured distance along beam, in.
a′ Length of free edge of bracket plate, in.
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 5

6 GENERAL NOMENCLATURE
AMERICANINSTITUTE OFSTEELCONSTRUCTION
a′ Weld length, in.
b Distance from bolt centerline to face of fitting subjected to prying action, in.
b Effective concrete flange width in a composite beam, in.
b Flexible width in connecting element, in.
b Measured distance along beam which may be greater or less than a, in.
b Minimum shelf dimension for deposition of fillet weld, in.
b
effEffective width, in.
b
f Connection element width, in.
b
x Coefficient for strong axis bending related to combined axial and bending strength
calculations
b
y Coefficient for weak axis bending related to combined axial and bending strength
calculations
c Cope length, in.
c Distance from the neutral axis to the extreme fiber of the cross section, in.
c Radial distance from center of gravity to center of bolt most remote from center of
gravity, in.
c Radial distance from center of gravity to point in weld group most remote from
center of gravity, in.
d Depth of compression block, in.
d Depth of plate, in.
d Distance from the HSS centroid to the end of the attached member, in.
d
c Cope depth, in.
d
ct Cope depth at the compression flange, in.
d
cb Bottom-flange cope depth, in.
d
h Hole diameter, in.
d
m Moment arm between the flange forces, in.
d
w Diameter of a part in contact with the inner surface of an HSS, in.
d
z Overall panel-zone depth, in.
e Distance from support to centroid of bolt group, in.
e Eccentricity, in.
e Base of natural logarithms =2.71828...
e Distance from the face of the cope to the point of inflection of the beam, in.
e
b One-half the depth of the beam, in.
e
c One-half the depth of the column, in.
e
o Horizontal distance from the outer edge of a channel web to its shear center, in.
f Computed compressive stress in the stiffened element, ksi
f Plate buckling model adjustment factor for beams coped at top flange only
f
a Computed axial stress, ksi
f
b Maximum bending stress, ksi
f
d Adjustment factor for beams coped at both flanges
f
un Required normal stress, ksi
f
uv Required shear stress, ksi
f
x, fyNormal stresses, ksi
f
xy Shear stress, ksi
g Acceleration due to gravity =32.2 ft/sec
2
=386 in./sec
2
g Transverse center-to-center spacing (gage) between fastener gage lines, in.
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 6

GENERAL NOMENCLATURE 7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ho Distance between flange centroids, in.
h
o Reduced beam depth of coped beam, in.
h
r Nominal rib height, in.
k Plate buckling coefficient for beams coped at top flange only
k
desDistance from outer face of flange to the web toe of fillet used for design, in.
k
detDistance from outer face of flange to the web toe of fillet used for detailing, in.
k
1 Distance from web center line to flange toe of fillet, in.
kip 1,000 lb
ksi kips/in.
2
l Characteristic length of weld group, in.
l Length of weld, in.
l Span length, in.
l Total length of beam between reaction points, in.
l
br Required bearing length for the attached member, in.
l
b,reqRequired bearing length, in.
l
i Distance of the ith bolt from the center of gravity, in.
l
max Distance from the center of gravity of the bolt group to the center of the farthest
bolt, in.
l
o Distance from center of gravity to instantaneous center of rotation of bolt or weld
group, in.
m Cantilever dimension for base plate, in.
n Cantilever dimension for base plate, in.
n Number of bolts in a vertical row
n Number of bolt rows
n Number of fasteners
n Number of shear connectors between point of maximum positive moment and the
point of zero moment to each side
n′ Number of bolts above the neutral axis (in tension)
p Coefficient for axial compression related to combined axial and bending strength
calculations
p Tributary length used in determining prying action, in.
q Horizontal shear, kips/in.
q Additional tension per bolt resulting from prying action produced by deformation
of the connected parts, kips/bolt
r
a Required shear strength per bolt using ASD load combinations, kips/bolt
r
at Required tensile strength per bolt or per inch of weld using ASD load combinations
(force per bolt or per inch of weld due to a tensile force), kips/bolt
r
av Required shear strength per bolt or per inch of weld using ASD load combinations
(force per bolt or per inch of weld due to a shear force), kips/bolt
r
m Radius of gyration of steel shape, pipe or tubing in composite columns, in.
r
m Required shear force on the bolt most remote from the center of gravity, due to
moment, kips
r
m Shear per inch of weld due to moment, kips/in.
r
n Nominal strength per bolt, kips

r
o Polar radius of gyration about the shear center, in.
r
p Required shear strength per bolt due to a concentric force, kips/bolt
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 7

8 GENERAL NOMENCLATURE
AMERICANINSTITUTE OFSTEELCONSTRUCTION
ru Required shear strength per bolt using LRFD load combinations, kips/bolt
r
ut Required tensile strength per bolt or per inch of weld using LRFD load combina-
tions (force per bolt or per inch of weld due to a tensile force), kips/bolt
r
uv Required shear strength per bolt or per inch of weld using LRFD load combinations
(force per bolt or per inch of weld due to a shear force), kips/bolt
r
x, ryRadius of gyration about xand yaxes respectively, in.
r
yc Radius of gyration about yaxis referred to compression flange, or if reverse
curvature bending, referred to smaller flange, in.
s Separation between double angles back-to-back, in.
s Vertical bolt row spacing, in.
t Change in temperature, degrees Fahrenheit or Celsius, as indicated
t Thickness of bracket plate, in.
t
b Thickness of beam flange or connection plate delivering concentrated force, in.
t
c Flange or angle thickness required to develop design tensile strength of bolts with
no prying action, in.
t
c Lesser of the depth of penetration and the HSS thickness, in.
t
c Thickness of cap plate, in.
t
designDesign thickness of an HSS wall, in.
t
f Lesser connection element thickness, in.
t
nom Nominal thickness of an HSS wall, in.
t
r Coefficient for tension rupture related to combined axial and bending strength
calculations
t
s Thickness of the tee stem, in.
t
wb Beam web thickness, in.
t
wc Column web thickness, in.
t
y Coefficient for tension yielding related to combined axial and bending strength
calculations
t
1 Cap plate thickness, in.
w Uniformly distributed load per unit of length, kips/in.
w Plate width; distance between welds, in.
w
1 Uniformly distributed load per unit of length nearest left reaction, kips/in.
w
2 Uniformly distributed load per unit of length nearest right reaction and of different
magnitude than w
1, kips/in.
x Any distance measured along beam from left reaction, in.
x Horizontal distance, in.
x Horizontal distance from the support to the location of applied bearing force, in.

x Horizontal distance from the outer edge of a channel web to center of gravity, in.
x
o Horizontal distance, in.
x
p Horizontal distance from the designated edge of member to its plastic neutral
axis, in.
x
1 Any distance measured along overhang section of beam from nearest reaction
point, in.
y Moment arm between centroid of tensile forces and compressive forces, in.
y

Vertical distance from the designated edge of member to center of gravity, in.
y
p Vertical distance from the designated edge of member to its plastic neutral axis, in.
y
1, y2Vertical distance from designated edge of member to center of gravity, in.
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 8

GENERAL NOMENCLATURE 9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
z Coefficient for buckling of triangular-shaped bracket plate
Δ Deflection, in.
Δ Elongation, in.
Δ Total deformation, including shear, bearing and bending deformation in the bolt
and bearing deformation of the connection elements, in.
Δ
maxMaximum deflection, in.
Δ
ucrUltimate deformation of the critical element, Δ ui, of the element with the minimum
Δ
ui /(IC to element distance), in.
Δ
x Deflection at any point xdistance from left reaction, in.
Δ
x1 Deflection of overhang section of beam at any distance from nearest reaction
point, in.
Δ
α Deflection at point of load, in.
α Distance from the face of the column flange or web to the centroid of the gusset-
to-beam connection for uniform force method, in.
α Fraction of member force transferred across a particular net section
α Ratio of the moment at the face of the tee stem or at the center of the other angle
leg thickness, to the moment at the bolt line used in determining prying action in
hanger connections
α

Actual distance from face of column flange or web to centroid of gusset-to-beam
connection for uniform force method, in.
α′ Value of αused for prying action that either maximizes the bolt available tensile
strength for a given thickness or minimizes the thickness required for a given bolt
available tensile strength
β Distance from the face of the beam flange to the centroid of the gusset-to-column
connection for uniform force method, in.
β

Actual distance from face of beam flange to centroid of gusset-to-column connec-
tion for uniform force method, in.
δ Deflection, in.
δ Ratio of the net length at the bolt line to the gross length at the face of the stem or
leg of angle used to determine prying action for hanger connections
ε Coefficient of linear expansion, with units as indicated
τ
a Stiffness reduction factor, for use with the alignment charts (AISC Specification
Figures C-C2.3 and C-C2.4) in the determination of effective length factors, K, for
columns
θ Angle of loading measured from the weld longitudinal axis, degrees
υ Poisson’s ratio =0.3 for steel
φR
nDesign strength from AISC Specification; must equal or exceed required strength
using LRFD load combinations, R
u
φrn Design strength per bolt or per inch of weld from AISC Specification; must
equal or exceed required strength per bolt or per inch of weld using LRFD load
combinations, r
u
Rn/ΩAllowable strength from AISC Specification; must equal or exceed required
strength using ASD load combinations, R
a
rn/ΩAllowable strength per bolt or per inch of weld from AISC Specification; must
equal or exceed required strength per bolt or per inch of weld using ASD load
combinations, r
a
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 9

10 GENERAL NOMENCLATURE
AMERICANINSTITUTE OFSTEELCONSTRUCTION
AISC_NOMENCLATURE:14th Ed. 2/23/11 9:53 AM Page 10

AMERICANINSTITUTE OFSTEELCONSTRUCTION
INDEX
The following list of terms provides reference to items found in the AISC Steel Construction
Manual, as well as selected supporting references. The locations of supporting references
have been abbreviated as follows:
“DG#” is used for items found in AISC’s Design Guide series.
“SDM” is used for items found in the AISC Seismic Design Manual.
“DSC” is used for items found in AISC’s Detailing for Steel Construction.
“AISC Design Examples” indicates that information can be found in the Design Examples
posted on the AISC web site at www.aisc.org.
Allowable stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
Alternative washer-type indicating device . . . . . . . . . . . . . . . . . . . . . 2–50, 16.1–8, 16.2–15
American Standard beams; see S-shapes
American Standard channels (C); see channels
Anchor rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–132, see also DSC
nut installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
headed or threaded and nutted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
holes for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6, 14–21
hooked . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–38
material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25, 2–49, 16.1–6
edge distance and embedment length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
properly specifying materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25
washer requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10, 14–21
Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–36, 16.1–58, see also DSC
dimensions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4, 1–42, 17–8
in compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7, 4–122
in eccentric compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8, 4–183
in tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4, 5–14
standard mill tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–119
Approvals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–21, see also DSC
Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–63
Architecturally Exposed Structural Steel (AESS) . . . . . . . . . . . . . . . 16.3–65, see also DSC
Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.1–18
ASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9, 16.1–11
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25, 2–27
Available strength . . . . . . . . . . . . . . . . . . . . . 2–12, 16.1–xliii, 16.1–25, 16.1–234, 16.1–235
Backing bars . . . . . . . . . . . . . . . . 8–19, 16.1–197, 16.1–200, 16.1–385, 16.1–386, 16.1–400
Bars and plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8, 2–25, 2–49, see also DSC
Base plates . . . . . . . . . . . . . . 14–4, 16.1–132, 16.1–167, 16.1–169, 16.1–397, see also DG1
holes for anchor rods and grouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
finishing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6, 14–21
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 1

2
AMERICANINSTITUTE OFSTEELCONSTRUCTION
grouting and leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–7
with tension, shear, or moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–8
Beam bearing plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–167
Beam bearing constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19, 9–40
Beam-columns; see members subject to combined loadings
Beams and girders; see also DSC
available flexural strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4, 16.1–44
available moment vs. unbraced length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11, 3–99
W-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9, 3–19, 3–35, 3–99
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–85, 3–135
available shear strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7, 16.1–66
available shear stress tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12, 3–152
braced, compact members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4, 16.1–47
classification of cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliv, 16.1–14, 16.1–17
composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12, 16.1–81, see also DSC
available strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158
lower bound moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–192
copes, blocks, and cuts . . . . . . . . . . . . . . 9–16, 16.1–xlv, 16.1–166, 16.1–197, 16.1–198
camber and deflection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1-xliv, 16.1–163, 16.1–165
diagrams and formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–210
dimensions; see specific shape (e.g., W-shapes, channels, etc.)
fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xlvii, 16.1–178, 16.1–192
heavy shapes and plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8, 16.1–7
hollow structural sections . . . . . . . . . . . . . . . . . . . . . 3–111, 3–143, 16.1–xlviii, 16.1–15
lateral-torsional buckling . . . . . . . 3–6, 16.1–xlix, 16.1–47, 16.1–49, 16.1–50, 16.1–54,
16.1–58, 16.1-60, 16.1–63, 16.1–64
local buckling . . . 3–6, 16.1–45, 16.1–49, 16.1–52, 16.1–55, 16.1–57, 16.1–58, 16.1–62
moment gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
noncompact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–14, 16.1–49
noncompact or slender flanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–14, 16.1–49
noncompact or slender webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–14, 16.1–54
OSHA requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
plastic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–li, 16.1–11, 16.1–186
ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–188
properties; see specific shape (e.g., W-shapes, channels, etc.)
seismic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–2, see also SDM
selection table
moment of inertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10, 3–28
plastic section modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9, 3–19, 3–30
serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8, 16.1–163
shored and unshored construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8, 16.1–83
stability bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17, 16.1–19, 16.1–191
steel anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26, 3–7, 3–209, 16.1–9, 16.1–97
torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–78, see also DG9
transverse stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–69
web openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–72, see also DG2
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 2

3
AMERICANINSTITUTE OFSTEELCONSTRUCTION
webs, crippling values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–134
width-thickness ratios for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6, 16.1–16
with bolt holes in the tension flange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–64
with concentrated forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15, 16.1–133
Bearing; see also DSC
at bolt holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 9–10, 16.1–127, 16.2–36
constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19, 9–40
in connecting elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11, 16.1–131, see also DSC
plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–3, 16.1–132
Bearing in bolted shear connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–11, 16.1–127
Bearing piles; see HP-shapes
Bearing plates; see beam bearing plates
Block shear rupture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5, 9–19, 9–33, 16.1–129
Bolt holes, reduction of area for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19, 9–23, 16.1–18
Bolt length, proper selection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Bolt pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5, 16.1–118, 16.2–51
Bolted connections; see connections
Bolted joints, limit states in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118. 16.2–31
Bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3, 16.1–118, see also DG17 and DSC
available resistance to slip . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 7–17, 7–24, 16.1–126
available strength; tension . . . . . . . . . . 7–6, 7–17, 7–23, 16.1–125, 16.1–127, 16.1–128
available strength; shear . . . . . . . . . . . . . . . . . . . . 7–5, 7–17, 7–22, 16.1–125, 16.1–127
available strength; bearing . . . . . . . . . . . 7–6, 7–17, 7–26, 16.1–127, 16.1–131, 16.2–36
alternative-design fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–16
anchor bolts; see anchor rods
A307 bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 16.1–3, 16.1–8, 16.1-108
A449 bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 16.1–31, 16.1–8, 16.1-118
blind bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
bolt holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–18, 16.1–120
bolt installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–51
bolt length selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
bolted parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
bolts in combination with welds or rivets . . . . . . . . . . . . . . . 8–15, 16.1–107, 16.1–108
clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 7–79
coefficients C for eccentrically loaded bolt groups . . . . . . . . . . . . . . . . 7–6, 7–18, 7–30
combined shear and tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6
in bearing-type connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–125
in slip-critical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–126
countersunk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–15, 7–17, 7–18
dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–19, 7–78, 7–81
entering and tightening clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 7–19, 7–79
fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16, 16.1–192
fully threaded ASTM A325 bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17
galvanizing high-strength bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–6
heavy-hex structural . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–6
holes, use of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–21
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 3

4
AMERICANINSTITUTE OFSTEELCONSTRUCTION
holes, bearing strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 7–26
HSS bolted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–50, 16.1–8
reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7–16
size and use of holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120
spacing and edge distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–122
tension-control bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–8, 16.1–118
threading dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–19, 7–81
through-bolting to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–13
twist-off tension-control bolt assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–15
washer requirements . . . . . . . . . 7–4, 16.1–8, 16.1–118, 16.1–121, 16.1–122, 16.1–132
weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–19, 7–82, 7–85
Box sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–16, 16.1–56, 16.1–71
Braced frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliv, 16.1–234, 16.1–239
Bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–227, see also DSC
at supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2
diagonal bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–2, 13–10
erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–33
seismic; see SDM
Bracket plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–3
net plastic section modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–4, 15–10, 15–14
Brittle fracture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40, 16.1–244, 16.1–384, 16.1–482
Buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3, 16.1–xliv
Building materials, weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–26
Built-up members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliv, see also DSC
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–37
heavy welded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–7
tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–27
Butt plate column splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
C-shapes; see Channels
CAD files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–20
Calibrated wrench pretensioning . . . . . . . . . . . . . . . . 16.1–118, 16.2–44, 16.2–55, 16.2–61
Camber . . . . . . . . . . . . . . . . . . . . . . . . . . 1–119, 2–13, 2–28, 2–37, 16.1–163, see also DSC
Canted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–164
Cantilevered beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–211
Castellated beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Castings and forgings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Cap plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–18
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–47, see also DSC
American Standard (C), dimensions and properties . . . . . . . . . . . . . . . 1–4, 1–36, 17–3
Miscellaneous (MC), dimensions and properties . . . . . . . . . . . . . . . . . . 1–4, 1–38, 17–7
W-shapes with cap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7, 1–114
standard mill tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–121
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 4

5
AMERICANINSTITUTE OFSTEELCONSTRUCTION
used as beams, maximum total uniform loads . . . . . . . . . . . . . . . . . . . . . . . . 3–11, 3–85
used as beams, available flexural strength . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11, 3–135
Channel shear connectors, strength of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–104
Circles, properties of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–35
Clamps, crane rail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8
Clearances
entering and tightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 7–79
welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Clevises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–17, 15–21, see also DSC
Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–126
on faying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–168
Code of Standard Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–i
Coefficients
for concentric loads on weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9, 8–33
for eccentric loads on fastener groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 7–30
for eccentric loads on weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9, 8–66
of expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–23
Column base plates; see also DG1
bearing on concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–132
for axial compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
for axial tension, shear or moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–8
Column slenderness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3, 16.1–33, 16.1–36, 16.1–38
Column splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12, 16.1–108
Columns
available compressive strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
for flexural buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–33
for flexural-torsional buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–34
available strength, angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8, 4–161
available strength, double angles . . . . . . . . . . . . 4–7, 4–122, 16.1–33, 16.1–34, 16.1–37
available strength, general notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–31
available strength, pipe and HSS . . . . . . . . . . . . . . . . . . . . 4–7, 4–28, 16.1–33, 16.1–40
available strength, structural tees . . . . . . . . . . . . . 4–7, 4–89, 16.1–33, 16.1–34, 16.1–40
available strength, W-, M-, S- and HP-shapes . . 4–4, 4–12, 16.1–33, 16.1–34, 16.1–40
base plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–4
combined flexure and axial loading (interaction) . . . . . . . . . . . . . . . . 6–2, 6–6, 16.1–73
composite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4, 4–9, 4–205, 16.1–85
critical stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–322
effective length and slenderness limitations . . . . . . . . . . . . . . . . . . . . . . . . 4–3, 16.1–33
OSHA requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
physical and effective column lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3, 16.1–33
plastic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–li, 16.1–11, 16.1–186
selection tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–12
slender-element cross sections . . . . . . . . . . . . . . . . . . . . . . . 16.1–liii, 16.1–14, 16.1–40
splices, typical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–22
stability and alignment devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–14
stability bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17, 16.1–228
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 5

6
AMERICANINSTITUTE OFSTEELCONSTRUCTION
stiffening at moment connections . . . . . . . . . . . . . . . . . . . . . . 16.1–133, see also DG13
stiffness reduction factor for inelastic buckling . . . . . . . . . . . . . . . . . . . . . . 4–11, 4–321
Column-web supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–143
Combination sections, properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7, 1–114
Compact section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliv, 16.1–14
Composite
beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–88, see also DG5
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4, 4–9, 4–205, 16.1–85, see also DG6
combined flexure and compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3, 16.1–93
design of beams with web openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see DG2
steel anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7, 3–209, 16.1–97
Composite connections, partially restrained; see DG8
Compressible-washer-type direct tension indicators . . . . . . . . . . . . . . . . . . . 16.1–5, 16.1–8
Compression members; see columns
Concentrated forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15
flange local bending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–133
on HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–140
unframed ends of beams and girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–138
web compression buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–136
web crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–134
web local yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–134
web panel-zone shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–136
web sidesway buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–135
Concentrated load equivalents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–210
Concentrically loaded fillet weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9, 8–33
Connected plies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
Connections; see also DSC
available strength of bolts, threaded parts and rivets . . . . . . . . 7–1, 16.1–125, 16.1–126
anchor rods and embedments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–9, 16.1–132
beam copes and weld access holes . . . . . . . . . . . . . . . . . 16.1-107, 16.1–166, 16.1–386
bearing strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10, 16.1–127, 16.1–131
block shear rupture strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–5, 9–33, 16.1–129
bolts and threaded parts . . . . . . . . . . . . . . . . . . . . . . . . . . 7–1, 16.1–118, see also DG17
bolts in combination with welds . . . . . . . . . . . . . . . . . . 7–16, 16.1–107, see also DG17
bracket plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–3
column bases and bearing on concrete . . . . . . . . . . . . . . . 14–4, 16.1–132, see also DG1
compression members with bearing joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–106
concentrated forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15
connecting elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3, 16.1–128
double angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7, 16.1–37, 16.1–258
ductility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9–14
end-plate, moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–8
end-plate, shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–15, 16.1–130
HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167, 12–21, 16.1–140
limitations on bolted and welded connections . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–108
minimum strength of connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–383
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 6

7
AMERICANINSTITUTE OFSTEELCONSTRUCTION
moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
offset and skewed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–169, 10–170
placement of welds and bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–107
prying action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
raised beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–143
seated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–84
shear end-plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
shear tab; see connections, single-plate shear
single-angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–132, 16.1–427
single-plate shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
slip-critical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–126
splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10, 10–129, 16.1–131
tee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–138
welded joints; see welded joints
Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–61
Continuity plates; see transverse stiffeners
Continuous spans
design properties of cantilevered beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–211
diagrams and formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–210
Copes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–16, 9–24, 16.1–xlv, 16.1–166, 16.1–197
Corner clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
Corrosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, 2–51, see also DG18
Cover plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–65
Crane rails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9, 1–118, 2–27
Crane-rail connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6
Deflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–213, 16.1–163
Delivery of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–35
Design documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–1, 16.3–9
Design examples; see AISC Design Examples
Design strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–9, 16.1–xlv, 16.1–11
Detailing; see DSC
Digital building product models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–68
Dimensions and weights
clevises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–16
cotter pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–21
recessed-pin nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–20
sleeve nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–19
turnbuckles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–18
high-strength fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–82
non-high-strength bolts and nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–83
Direct tension indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–15, see also DSC
compressible-washer-type, general . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–8, 16.2–14
inspection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–62
installation using . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–57
use of washers with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
Discrepancies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–15
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 7

8
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Double-angle connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
Double angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6, 1–102, 16.1–34, 16.1–58
Double channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7, 1–110
Double connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5, 10–147
Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.1–164
Eccentric connections, single-angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–36
Eccentrically loaded bolt groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 7–30
Eccentrically loaded weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9, 8–66
Edge distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–122, see also DSC
bearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–127
Effective net area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2, 16.1–27
Effective length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–33
Elastic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–8, 8–12
Electronic Data Interchange (EDI); see Digital building product models
Elevated-temperature service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40, 16.1–214
Ellipse, properties of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–34
End-plate connections
moment connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–8
shear connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
Entering and tightening clearances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–17, 7–79
Erection . . . . . . . . . . . . . . . . . . . . . . . . 16.1–168, 16.3–4, 16.3–37, see also DG10 and DSC
Evaluation of existing structures . . . . . . . . . . . . . . . . . . . . 16.1–223, 16.3–3, see also DG15
Examples; see AISC Design Examples
Expansion and contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39, 16.1–164
Eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–29
Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–165
Fabricator responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–19
Fast-track project delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–17
Fatigue . . . . . . . . . . . . . . . . . . . . . . . 2–40, 8–15, 16.1–192, 16.2–42, see also DG7 and DSC
Faying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
Field connection material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–40
Field painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–57
Filler metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xlvii, 16.1–9, 16.1–117
Fillers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–130, see also DSC
Fillet welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7, 8–8, 8–15, 8–17, 8–36, 16.1–110
Finishing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21, 16.1–166
Finishing, column base plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21, 16.1–167
Fire protection and engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, see also DG19
Fit of column compression joints and base plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
Fitting and fastening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–29
Flat-rolled carbon steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47
Flexible moment connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11–2
Flexural members; see beams
Floor plates
weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9, 1–113
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 8

9
AMERICANINSTITUTE OFSTEELCONSTRUCTION
bending capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12, 3–156
Floor vibration; see DG11
FR moment connections
across girder supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–2
splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–10
to column-web supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12–14
Frames
frame analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14, 16.1–20
frame stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14, 16.1–20
braced frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xliv, 16.1–20, 16.1–234
moment frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–l, 16.1–20, 16.1–234
second-order effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14, 16.1–lii, 16.1–20
stability bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17, 16.1–20, 16.1–227
Gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, see also DSC
angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6, 1–48, 10–133
sheet metal and wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–22
Geometric sections, properties of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–33
Girders; see beams and girders
Gouging, air-arc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
Grip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–3
Groove welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–108
complete-joint-penetration, prequalified . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–27, 8–37
partial-joint-penetration, prequalified . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–27, 8–52
Gross area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–18
connecting elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
Grouting and leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–7, 16.3–40
Hanger connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–9, 15–12
Handling and storage of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–56
Heavy-hex
nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–13
structural bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–6
High-seismic applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–2
Holes
bolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.2–21
for anchor rods and grouting (base plates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–6
long-slotted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.2–24
oversized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.2–23
oversized, use of washers with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–45
reduction of area for . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19, 9–23, 16.1–18
short-slotted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.2–24
slotted, use of washers with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.2–22
Hollow structural sections (HSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–9, see also DSC
beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11, 3–143, 16.1–56
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 9

10
AMERICANINSTITUTE OFSTEELCONSTRUCTION
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7, 4–28
concentrated forces on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–140
connections and fasteners . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167, 12–21, 16.1–140
dimensions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–74, 17–14
members under combined forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–73, 16.1–78
standard mill practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–4, 5–27
HP-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, 1–34, 17–6
I-shapes; see S-shapes
Identification of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–28
Independent inspection
Indicating devices
alternative washer-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–15
twist-off-type tension-control bolt assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–15
washer-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–14
Industrial buildings; see DG7
Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–172
independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–59
of calibrated wrench pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–61
of direct-tension-indicator pretensioning . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–62
of mill material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–59
of pretensioned joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–59
of slip-critical joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–62
of snug-tightened joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–59
of turn-of-nut pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–179, 16.2–60
of twist-off-type tension-control bolt pretensioning . . . . . . . . . . . . . 16.1–179, 16.2–61
of welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4, 16.1–174
Installation
of anchor rods, foundation bolts, and embodiments . . . . . . . . . . . . . . . . . . . . . . 16.3–38
of bearing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–39
in pretensioned joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–51
in slip-critical joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–51
in snug-tightened joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–51
using calibrated wrench pretensioning . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–55
using direct-tension-indicator pretensioning . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2-57
using turn-of-nut pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–118, 16.2–53
using twist-off-type tension-control bolt pretensioning . . . . . . . . . . . 16.1–118, 16.2–56
Instantaneous center of rotation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 8–9
Joint type, proper specification of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4, 8–7
Joints; see also connections
faying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
inspection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–59
installation in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–51
limit states in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–31
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 10

11
AMERICANINSTITUTE OFSTEELCONSTRUCTION
pretensioned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–29
slip-critical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–30
snug-tightened . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–28
type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–26
with fasteners in combined shear and tension . . . . . . . . . . . . . . . . . 16.1–125, 16.1–127
L-shapes; see angles
Lamellar tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42, 8–21, see also DSC
Lifting devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–12
Loads, load factors and load combinations . . . . . . . . . . . . . . . . . . . . . . . 16.1–xlix, 16.1–10
Loose material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–41
Low-temperature service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40, 2–41
Low and medium rise steel buildings; see DG5
LRFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
M-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, 1–30, 17–6
Magnetic-particle testing (MT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–5
Manufacturer certification of fastener components . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–5
Marking and shipping of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–35
Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25, 2–47, 16.3–25
Maximum total uniform load tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–35
MC-shapes; see channels
Members subject to combined loadings . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2, 6–6, 16.1–73
Method of erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–37
Metric; see SI equivalents of standard U.S. Shape profiles
Metal compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–51
Mill materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–25
Mill tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–119
Minimum edge distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10, 16.1–122
Minimum embedment length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
Minimum shelf dimensions for fillet welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
Minimum spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–122
Minimum strength of connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–383
MT-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–70, 17–13
Miscellaneous channels; see channels
Miscellaneous shapes; see M-shapes
Moment connections; see connections, moment
Moment diagrams, beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–213
Moment frames for seismic resistance; see SDM
Moment frame connections for seismic resistance; see DG12 and SDM
Moment of inertia, selection tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–10, 3–28, 3–33
Net area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–18
connecting elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
Net section of tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–18, 16.1–27
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 11

12
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Net section modulus
of bracket plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–4, 15–14
of coped beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–19, 9–24
Nominal strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
Non-destructive testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4, 16.1–177, 16.3–59
Notch toughness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–l, 16.1–106, 16.1–117
Nuts
dimensions and weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–84, 7–87
geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–84, 7–87, 16.2–13
heavy-hex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–13
high strength, dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–84
installation on anchor rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–10
properly specifying materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–50
recessed pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–20
sleeve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26, 15–19
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–13
OSHA requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
Oversize holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120, 16.1–121
Owner responsibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–18
Painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, 2–52, 16.1–168, 16.1–169, 16.3–33
Panel-point connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–13
Parabola, properties of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–34
Parking structures; see DG18
Parts, bolted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
Patents and copyrights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–3
Penetrant testing (PT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4
Piles; see HP-shapes
Pin-connected members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–29
Pin nuts, recessed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–20
Pins, cotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–21
Pipe
bending members, available strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12, 3–151
columns, available strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7, 4–85
dimensions and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–101
Plastic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–li, 16.1–183
beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–185
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–186
frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–183
local buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–184
Plate products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
Plug and slot welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–113
Ponding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–188
Pre-installation verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–47
Preparation of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38, 2-52
Prequalified welded joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–34
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 12

13
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Pretensioned joints
faying surfaces in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–29
inspection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–59
installation in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–51
proper specification of joint type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–4
use of washers in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
using calibrated wrench pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–55
using direct-tension-indicator pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–57
using turn-of-nut pretensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–53
using twist-off-type tension-control bolt pretensioning . . . . . . . . . . . . . . . . . . . 16.2–56
Properties; see specific shape (e.g., W-shapes, channels, etc.)
of the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–35
of the parabola and ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–34
of various geometric sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–36
Proportions of beams and girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–64
Prying action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–10
Quality assurance and control . . . . . . . . . . . . . . . . . . . . . . 16.1–170, 16.3–58, see also DSC
Radiographic testing (RT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
Rail clamp fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–6
Rail clip fastenings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–8
Raised-pattern floor plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9, 1–113, 2–25
Ratholes; see weld access holes
Recessed pin nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–20
Reduction of area for holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–23
Referenced specifications, codes, and standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–2
Rehabilitation; see evaluation of existing structures
Renovation and retrofit of existing structures . . . . . . . . . . . . . . . . . . . . 2–38, see also DG15
Request for information (RFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–23
Required strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14, 16.1–10
Resistance factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12, 16–1.11
Responsibility for design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–3
Restrained and unrestrained ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–222
Retrofit; see evaluation of existing structures
Reuse, bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–16
Revisions . . . . . . . . . . . . . . . . . . . . . 16.1–108, 16.1–223, 16.3–16, 16.3–62, see also DG15
S-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, 1–32, 17–6
S-shapes with cap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7, 1–116
Safety factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12, 16.1–11
Safety protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–44
Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–63
Seated connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–84
Second-order effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14, 16.1–lii, 16.1–20
Seismic design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4, 2–42, see also SDM
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 13

14
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Serviceability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12, 16.1–163
Shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.1–67
available strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–67
bolts, threaded parts and rivets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–125, 16.1–127
connection angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–129
Shear diagrams, beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16, 3–213
Shear lag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–liii, 16.1–27
Shear stud connectors; see steel anchors
Shear splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–139
Shear stress in plate girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12, 3–152
Shear tabs; see connections, single plate connections
Sheet and strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8, 1–9, 1–10, 2–26, 2–47
Sheet metal gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–22
Shims and fillers; see also DSC
Shop and field considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–165
Shop cleaning and painting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–33
Short-slotted holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120
SI equivalents of standard U.S. Shape profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–28
Simple shear connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–4
accessibility in column webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–6
bolted/welded unstiffened seated connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–85
canted connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–164
column-web supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–143
connections for raised beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–153
constructability considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5
double connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–5, 10–147
double-angle connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–7
HSS considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–167
shear end-plate connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–49
shear splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–139
simple shear connections at stiffened column-web locations . . . . . . . . . . . . . . . 10–131
simple shear connections subject to axial forces . . . . . . . . . . . . . . . . . . . . . . . . . 10–131
single-angle connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–132
single-plate connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–102
skewed connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–159, 10–170
sloped connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–162
stiffened seated connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–93
tee connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–138
unstiffened seated connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–84
Skewed connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–159, 10–170
Sleeve nuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15–19
Slender-element compression sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–14
Slip coefficient for coatings, testing to determine . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–65
Slip resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–6, 16.2–38
Slip-critical joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–5, see also DSC
faying surfaces in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 14

15
AMERICANINSTITUTE OFSTEELCONSTRUCTION
general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–30
inspection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–62
installation in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–51
use of washers in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
Sloped connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-152
Slotted hole, use of washers with . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
Snug-tightened joints
faying surfaces in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–17
general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–28
inspection of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–59
installation in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–51
use of washers in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
Spacer bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
Specification of appropriate material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–25, 2–47
Specification for Structural Steel Buildings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–i
Specification for Structural Joints Using High-Strength Bolts (RCSC) . . . . . . . . . . . 16.2–i
Specification of welded joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
Splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–131, see also DSC
ST-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–72, 17–13
Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16.1–20
Stability bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17, 16.1–227
Standard holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–120
Standard mill practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
Steel anchors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26, 3–7, 3–209, 16.1–9, 16.1–97
Steel castings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–26
Stiffeners; see transverse stiffeners
Stock materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–26
Straightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, see also DSC
Structural design drawings and specifications . . . . . . . . . . . . . . . . . . . . . . . . 16.1–9, 16.3–9
Structural steel, definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–liv, 16.3–5
Structural tubing; see hollow structural sections
Strut and tie connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
Surface and box areas of W-shapes; see DG19
Surface preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, 2–52
Symbols, AISC Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xxvii
Symbols, welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8, 8–35
Tack welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
Tees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
WT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–50, 17–10
MT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–70, 17–13
ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–72, 17–13
Tee connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10–138
Temperature, coefficients of expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–39
Temporary support of structural steel frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–41
Tension; bolts, threaded parts and rivets; available strengths . . . . . . . . . . . . . . . . . 16.1–125
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 15

16
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Tension calibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–47
Tension members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2, 16.1–26
available tensile strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2, 5–5, 16.1–26
combined flexure and tension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2, 6–3
effective net area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2, 16.1–27
eyebars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–29
gross, net and effective net areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2, 16.1–27
net area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–18, 16.1–27
net section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–27
pin-connected members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–29
reduction of area for holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–27
slenderness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–3, 16.1–26
special requirements for heavy shapes and plates . . . . . . . . . . . . . . . . . . . . 5–3, 16.1–7
Terms of payment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.3–64
Testing, slip coefficient for coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–65
Thermal cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8–3
Thermal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2–39
Threaded parts; see bolts
Threaded rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–8, 16.1–118
Threading dimensions for high-strength and non-high-strength bolts . . . . . . . . . . . . . . 7–19
threads, lengths and dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7–81
Through bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7–13
Tolerances; see also DSC
camber and sweep . . . . . . . . . . . . . . . . . . . . . . . . . . 1–119, 1–121, 1–122, 1–124, 1–127
erection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33, 16.3–46
mill . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–119, 2–33
fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–33, 16.3–30, 16.3–45
façade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–34
Torsion properties; see DG9
Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–34, 16.1–73, 16.1–230, see also DG9
Transverse stiffeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–69, 16.1–70
Trigonometric formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–43
Trusses; see also DSC
bracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–11
camber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38, see also DSC
chord splices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–17, see also DSC
connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–11, see also DSC
HSS connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–17
panel point connections-welded trusses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–13
Truss framing systems, staggered; see DG14
Tubing; see hollow structural sections
Turnbuckles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15–10, 15–18, see also DSC
Ultrasonic testing (UT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–6
Uncoated faying surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–18
Uniform force method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13–3
Uniform load tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–35
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 16

17
AMERICANINSTITUTE OFSTEELCONSTRUCTION
Verification, pre-installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–47
Visual testing (VT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8–4
W-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3, 1–12, 17–3
W-shapes encased in concrete . . . . . . . . . . . . . . . . . . . . . . . 16.1–85, 16.1–91, see also DG6
W-shapes with cap channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7, 1–114
Washers
for anchor rods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14–21
for bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7–4
general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–14
in pretensioned joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
in slip-critical joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
in snug-tightened joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–50
use of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.2–44
Web compression buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–136
Web local crippling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–18, 16.1–134
Web doubler plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1-138, see also DG 13
Web local yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–134
Web openings; see DG2
Web panel zone shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–136
Web reinforcement of coped beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20
Web sidesway buckling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–135
Web local yielding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–20, 16.1–134
Weights and measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–27
Weights and specific gravities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–24
Weld access holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18, 16.1–107
Weld groups, placement of . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Weld metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–lv, 16.1–113, 16.1–118
Weld symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–8
Weld tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
Weld types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7, 16.1–108
Welded connections; see connections
Welding; see also DSC
air-arc gouging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
backing bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
beam copes and weld access holes . . . . . . . . . . . . 8–18, 16.1–107, 16.1–166, 16.1–386
clearance requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
complete-joint-penetration groove welds . . . . . . . . . . . . . . . . 8–34, 16.1–xliv, 16.1–108
corner clips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–18
eccentrically loaded weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–9, 8–66
effective area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–108, 16.1–110, 16.1–113
fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15, 16.1–192
filler metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–xlvii, 16.1–9, 16.1–117
fillet welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7, 8–8, 8–15, 8–17, 8–36, 16.1–110
flare bevel groove welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–25, 8–61
groove welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–108
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 17

18
AMERICANINSTITUTE OFSTEELCONSTRUCTION
in combination with bolts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15, 16.1–107
inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–4, 16.1–174
lamellar tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
minimum shelf dimensions for fillet welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–17
one-sided fillet welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
painting welded connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–22
partial-joint-penetration groove welds . . . . . . . . . . . . . . . . . . . . 8–52, 16.1–l, 16.1–108
placement of weld groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
plug and slot welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–113
prequalified joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–34
prior qualification of welding procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
proper specification of joint type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
selection of weld type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–7
spacer bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
special requirements for heavy shapes and plates . . . . . . . . . . . 8–15, 16.1–7, 16.1–106
tack welds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–21
thermal cutting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–3
to HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–23
HSS (tubular) connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–62
weld tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–19
welding clearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8–15
Whitmore section (effective width) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9–3
Wide flange shapes; see W-shapes
Width-thickness limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16.1–14
beams and girders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
Wind applications and low-seismic applications . . . . . . . . . . . . . . . . . . . . . . . 2–42, 16.1–2
Wire and sheet metal gages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17–10
WT-shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5, 1–50, 17–10
AISC_Index:14th Ed. 2/24/11 9:38 AM Page 18